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RESEARCH Open Access

Genetic pleiotropy between age-related
macular degeneration and 16 complex
diseases and traits
Felix Grassmann1†, Christina Kiel1†, Martina E. Zimmermann2, Mathias Gorski2, Veronika Grassmann3, Klaus Stark2,
International AMD Genomics Consortium (IAMDGC), Iris M. Heid2 and Bernhard H. F. Weber1*

Abstract

Background: Age-related macular degeneration (AMD) is a common condition of vision loss with disease
development strongly influenced by environmental and genetic factors. Recently, 34 loci were associated with AMD
at genome-wide significance. So far, little is known about a genetic overlap between AMD and other complex
diseases or disease-relevant traits.

Methods: For each of 60 complex diseases/traits with publicly available genome-wide significant association data,
the lead genetic variant per independent locus was extracted and a genetic score was calculated for each disease/
trait as the weighted sum of risk alleles. The association with AMD was estimated based on 16,144 AMD cases and
17,832 controls using logistic regression.

Results: Of the respective disease/trait variance, the 60 genetic scores explained on average 4.8% (0.27–20.69%)
and 16 of them were found to be significantly associated with AMD (Q-values < 0.01, p values from < 1.0 × 10–16 to
1.9 × 10–3). Notably, an increased risk for AMD was associated with reduced risk for cardiovascular diseases,
increased risk for autoimmune diseases, higher HDL and lower LDL levels in serum, lower bone-mineral density as
well as an increased risk for skin cancer. By restricting the analysis to 1824 variants initially used to compute the 60
genetic scores, we identified 28 novel AMD risk variants (Q-values < 0.01, p values from 1.1 × 10–7 to 3.0 × 10–4),
known to be involved in cardiovascular disorders, lipid metabolism, autoimmune diseases, anthropomorphic traits,
ocular disorders, and neurological diseases. The latter variants represent 20 novel AMD-associated, pleiotropic loci.
Genes in the novel loci reinforce previous findings strongly implicating the complement system in AMD
pathogenesis.

Conclusions: We demonstrate a substantial overlap of the genetics of several complex diseases/traits with AMD
and provide statistically significant evidence for an additional 20 loci associated with AMD. This highlights the
possibility that so far unrelated pathologies may have disease pathways in common.

Keywords: Age-related macular degeneration, AMD, Genetic risk scores, GRS, Genetic association studies, Complex
traits, Shared genetics
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Background
Age-related macular degeneration (AMD) is the most
common cause of vision loss in senior citizens [1–3].
One of the first signs of AMD is the appearance of
yellowish drusen between the retinal pigment epithelium
(RPE) and Bruch’s membrane. Drusen comprise extracel-
lular deposits of proteins and lipids and predispose indi-
viduals to develop the degenerative late-stage form of
the disease [4]. Late-stage AMD manifests as geographic
atrophy (GA) or neovascular (NV) AMD although both
late-stage forms can be present in the same or in differ-
ent eyes of a single individual (mixed GA +NV). GA
affects up to 50% of people with late-stage AMD and is
defined as a discrete region of RPE atrophy. NV AMD
describes the abnormal growth of leaky blood vessels
from the choroid or from within the retina resulting in
detachment of the RPE, strong immune cell activation,
photoreceptor cell death, and eventually widespread RPE
damage. Although vision loss is more rapid in NV AMD,
visual acuity can be preserved by anti-angiogenic treat-
ment [5, 6].
Over the past decade, genome-wide association studies

(GWAS) have identified a number of single nucleotide
variants (SNVs) as well as copy number variations in
complement and complement-related genes that are in-
volved in AMD risk [7–12]. Recently, the International
AMD Genomics Consortium (IAMDGC) [13] identified
52 independent genetic variants at 34 loci across the
genome to be associated with late-stage AMD, explain-
ing up to 50% of the heritability of this disorder.
The genetic risk of an individual to develop a disease

can be expressed as a genetic score. One concept to calcu-
late such a score is to count the number of risk-increasing
alleles. To account for differences between the effect sizes
of genetic variants (i.e. the relative influence of each vari-
ant on disease risk), the score can be calculated as the
weighted sum of risk increasing alleles using the relative
effect size of a variant as weight [14]. Such scores effect-
ively summarize the genetic contribution to diseases or
traits and allow evaluation of the genetic risk of other dis-
eases and traits and its correlation with AMD risk.
To evaluate shared genetics between AMD and other

complex diseases or disease-relevant traits, we computed
genetic scores from published genome-wide significant
lead variants for 60 diseases and traits [15–81] and exam-
ined their association with AMD using data from a large
AMD case-control study including more than 33,000
participants.

Methods
Description of dataset
In total, we included data from 16,144 people with late-
stage AMD (NV, GA, or both, GA/NV AMD) and 17,832
control individuals without AMD, all unrelated and of

European ancestry [13]. Inclusion and exclusion criteria as
well as detailed information on ophthalmological grading,
quality control of genetic data as well as imputation are
given in detail elsewhere [13]. The dataset contained 14,352
men and 19,624 women. Twenty-six studies with different
study designs contributed to this dataset, including six
population-based studies (2166 cases, 4246 controls).

Diseases and traits under evaluation
We searched PubMed (www.pubmed.gov) for GWAS of
human diseases and traits which included primarily individ-
uals of European descent and publication dates prior to
April 2016 (Additional file 1: Figure S1). In addition, we
queried GWAS Central (www.gwascentral.org/browser)
using the same criteria. GWAS were excluded when no
genome-wide significant variants (p < 5.00 × 10–8 or log10
p < –7.3010) were reported or when relevant data such as
effect sizes, effect alleles, or p values of association were
missing. We also excluded GWAS dealing with diseases
and traits mainly attributable to childhood or pregnancy
and behavioral/lifestyle traits. In total, we selected 60 hu-
man diseases or traits that were eligible for further analysis.

Calculation of genetic (risk) scores
For each of the 60 diseases/traits, we extracted inde-
pendent genetic variants associated with each of the dis-
eases/traits from the relevant publication, provided their
individual association reached genome-wide significance
(p < 5.00 × 10–8 or log10 p < –7.3010) (Additional file 1:
Figure S1 and Additional file 2: Table S1). SNVs were in-
cluded with an imputation quality > 0.3, but only those
for which we could determine the risk increasing (effect)
allele and the associated effect size. Structural variants
(e.g. deletions or duplications) were included if they
could be imputed reliably (imputation quality > 0.3) into
the IAMDGC dataset. Otherwise, if available, proxy vari-
ants with R2 > 0.95 with sufficient imputation quality
were chosen. In this analysis, a locus region was defined
by a genome-wide significant variant and variants within
± 1 Mbp. For each locus, only the lead variant (i.e. the
variant with the smallest p value for association) was
included to represent the relevant disease-/trait-associ-
ated haplotype. In a few cases with multiple independent
variants reported within a locus, we included all of these.
We excluded diseases/traits with less than three
genome-wide significant variants published. To account
for differences in effect sizes, we extracted the relevant
measure of the effect for each of the identified variant
(log odds ratio [LOR] for binary outcome, log hazard ra-
tio [HR] for survival, or slope for continuous outcome)
from published sources for the respective lead variant
(Additional file 2: Table S1).
For each disease/trait, the genetic score was calculated

as reported in [14] with slight modifications. Briefly, the
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number of risk increasing alleles, each weighted (multi-
plied) by the respective effect size (LOR, log HR, or lin-
ear regression slope), were counted and the total divided
by the average weight. Thus, an individual with a genetic
score that is one unit larger than the genetic score of
another individual has one additional risk-increasing allele
with average effect size. An individual with a genetic score
of 50 would have 50 “average” risk-increasing alleles. In
addition to the 60 genetic scores for the selected diseases/
traits, we computed the genetic score for AMD based on
52 identified independent AMD variants [13].
The diseases/traits included in the study and the

respective publications used to extract the variants and
effect sizes are listed in Additional file 2: Table S1. The
variants of the traits that were included in the analysis
and further information on these variants are listed in
Additional file 3: Table S2.

Correlation between genetic scores and variance explained
We computed the correlation coefficient between se-
lected genetic scores in R [82]. The results were plotted
with the function heatmap2 from the gplots package
[83] using a diverging color palette implemented in the
package RColorBrewer [84]. In addition, we estimated
the disease/trait variance explained by each variant used
to calculate the individual genetic score. In case the
disease/trait is dichotomous (e.g. coronary artery disease
or psoriasis [PSO]), we extracted the relevant ORs and
allele frequencies and calculated the variance explained
using a liability threshold model [85]. In case a disease/
trait is continuous (e.g. body mass index, height), we cal-
culated the variance explained directly from the respect-
ive linear slopes and standard errors.

Association of the genetic scores with AMD
To understand the role of the genetic background of
each of the 60 diseases/traits for AMD, we conducted
association analyses for each of the 60 genetic scores
with AMD using logistic regression. Each model was ad-
justed for DNA source (whole genome amplification:
yes/no) and principal components to control for poten-
tial subpopulations. Additionally, adjustments were done
for age and gender [13].
To account for the multiple association testing of the

60 genetic scores, which were correlated due to shared
variants or loci, we controlled the false discovery rate
(FDR) to be smaller than 1% [86].
The strength of association of genetic scores and vari-

ants are reported as the log odds ratio (LOR). The OR
depicts the AMD risk increase per unit increase in the
genetic score that is the AMD risk increase per one
additional risk allele with average effect size.
Additional association testing was performed by sub-

groups, separately for participants at higher age versus

lower age (cutoff: age 75 years), for men and women,
and by disease subtype (restricting the cases to GA or to
NV/mixed GA +NV using the same controls). For the
ocular specific diseases/traits, we additionally restricted
the analysis to individuals from population-based studies
to avoid possible confounding effects.

Identification of novel AMD-associated variants and loci
Given the substantial overlap of genetic disease/trait scores
with AMD, we reasoned that shared pathways exist and
that there might be even more AMD variants among those
associated with other diseases/traits. Therefore, we com-
puted the association with AMD for each variant used to
compute any of the 60 genetic scores applying logistic re-
gression adjusted for age, gender, DNA source, and the first
two principle components. We controlled the FDR to be
smaller than 1%. Variants located in one of the 34 known
AMD-associated loci [13] were considered to be known
variants. To substantiate the independence of the selected
variants, we additionally conducted the analyses adjusting
for all of the 52 independent AMD-associated variants.

Pathway enrichment analysis based on novel and known
AMD risk variants
To derive information on potential genes influenced by
the observed association signal, we extracted all genes of
a region around the respective variant. Here, we used
the same locus definition as previously reported [13]
(most distant variant with R2 > 0.5 in a region ± 100
Kbp). In addition, we added the genes from 34 known
AMD loci [13]. The resulting gene list was subjected to
pathway enrichment analysis using INRICH [87]. We
queried significantly enriched KEGG, GO, and Reactome
pathways and required at least four genes of the gene list
to be present in the respective pathway. The FDR was
controlled at 1%.

Annotation of novel associated and linked variants
We extracted the position of novel associated variants as
well as their correlated variants (R2 > 0.5) and used the
Variant Effect Predictor on www.ensembl.org to find var-
iants in the coding region of a gene [88].

Results
Selection of variants and computation of genetic scores
We extracted 1876 independent genome-wide significant
variants for 60 diseases/traits from previously published
sources (Additional file 1: Figure S1 and Additional file
2: Table S1). For each disease/trait, we computed a
weighted genetic score in our 16,144 cases with late-
stage AMD (NV AMD, GA, or both NV/GA AMD) and
17,832 controls without signs of early-stage or late-stage
AMD. Additionally, we computed a genetic score for
AMD based on the 52 identified AMD variants [13].
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Pairwise correlation of genetic scores
To understand the dependencies between the genetic
scores, pair-wise correlation coefficients of the scores were
investigated (Fig. 1). We observed plausible correlations
between genetic scores particularly of traits related to auto-
immunity (inflammatory bowel disease, Crohn’s disease
and ulcerative colitis, rheumatoid arthritis (RA), PSO;
Spearman correlation coefficient r in the range of 0.01–
0.85), cardiovascular disease risk, and lipid levels in blood
(blood pressure, coronary artery disease, hypertension, high

density lipoprotein (HDL), low density lipoprotein (LDL),
total cholesterol and total glycerol; r in the range of -0.36–
0.98). Interestingly, the score for the glaucoma-related trait
“optic disc/disc area” (ODDA) was not correlated to the
genetic score of primary open angle glaucoma (POAG, r =
0.00), indicating that both phenotypes share no known
genetic overlap. In summary, these correlations are in line
with known relationships of the respective diseases and
traits [24, 40] and with previously published correlations
between genetic loci of diseases/traits [89]. On average, the

Fig. 1 Pairwise correlation between selected genetic scores. The color key represents the strength of the correlation between pairs of genetic
scores, estimated as the correlation coefficient. The numbers on the bottom half of the graph indicate the correlation coefficient. The numbers in
the top half indicate the statistical significance of the observed correlation coefficient (*Q-value < 0.01, **Q-value < 0.001, ***Q-value < 0.0001). The
abbreviations used for each trait are listed in Additional file 2: Table S1
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60 genetic scores explain 4.81% of the variance of each
disease/trait.

Association of genetic scores with AMD
Next, we investigated the association of the 60 calculated
genetic scores with AMD using logistic regression
models, adjusted for age, gender, DNA source, and the
first two principle components. We found a statistically
significant association for the genetic scores for 16
diseases/traits with AMD when controlling the FDR to
be at 1% (Figs. 2 and 3). Three genetic scores related to
autoimmunity (PSO, RA, and systemic lupus erythema-
tosus [SLE]) were associated with increased risk for
AMD, suggesting that participants at increased risk for
autoimmune-related diseases are at higher risk for
AMD. The remaining seven autoimmune-related genetic
scores were consistent in trend (i.e. higher genetic scores
are associated with higher AMD risk), although they
failed to reach statistical significance. Similarly, we found
increased AMD risk for higher genetic scores for ele-
vated C-reactive protein (CRP).

Interestingly, our findings revealed that participants
with higher scores for cardiovascular diseases such as
hypertension (HTN) or coronary artery disease (CAD) are
at decreased risk for AMD. In line with this, participants
with more alleles that increase blood pressure have a re-
duced risk of developing AMD. Furthermore, several
scores related to adverse lipid levels in blood are associ-
ated with decreased AMD risk: participants with lower
HDL genetic scores and higher LDL and total glycerol
genetic scores were found to have decreased risk of AMD
(Fig. 2). Participants with more alleles for higher bone-
mineral density levels in the femoral neck (BMDFN) have
decreased risk for AMD. Although we did not find a con-
sistent trend for the association of genetic scores of vari-
ous types of cancer and AMD, we found that participants
at higher genetic risk for cutaneous malignant melanoma
(CMM) have an increased risk for AMD. This association
can, however, not be attributed to a single variant in the
CMM score, since none of the 20 variants used to calcu-
late the score was individually found to be significantly as-
sociated with AMD.

Fig. 2 Association of 60 genetic scores with AMD. Logistic regression models, adjusted for age, gender, the first two principle components
computed from the genotypes as well as DNA source were fitted for 60 genetic scores of selected complex diseases and traits. LOR (squares) and
95% confidence intervals (horizontal lines) obtained for each genetic score are plotted. *Q-value < 0.01, **Q-value < 0.001, ***Q-value < 0.0001
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Next, we investigated the association of genetic scores of
eye-related diseases/traits with AMD risk (Fig. 2, Additional
file 1: Figure S2). We found a highly significant association
of the myopia genetic score with AMD revealing a strong
protective effect. Similarly, AMD patients have fewer risk
alleles generally implicated in POAG and related traits of
the optic disc area (optic disc cup area [ODCA] and vertical
cup to disc ratio [VCDR]). Since the controls of our study
were largely recruited in ophthalmologic clinics, it is pos-
sible that the association of glaucoma genetic scores can be
explained by an enrichment of individuals with glaucoma
in our controls. We therefore investigated the association
of the glaucoma and related genetic scores restricted to
study participants from population-based (cross-sectional)
studies. This analysis included 6412 individuals and re-
vealed a consistent protective association of POAG and
ODCA with AMD (Additional file 1: Figure S2). Of note,
the association of VCDR and myopia (MYP) was markedly
weaker in individuals recruited in population-based studies
(Additional file 1: Figure S2).

Association of candidate variants with AMD
Given the association of genetic scores for several diseases
with AMD risk indicating an overlap of various disease
etiologies with AMD, we were interested to search for
novel AMD-associated variants among those identified.
Therefore, we analyzed the 1824 variants used for the
calculation of the 60 scores for potential association with
AMD risk. To account for multiple testing, we again con-
trolled the FDR at 1%. Consequently, 31 novel variants
were found to be associated with AMD risk (Q-value <
0.01, p values 1.07 × 10–7 to 3.0 × 10–4; Additional file 3:
Table S2). Moreover, this association was conditioned for
52 AMD-associated risk variants to exclude the significant
association signals which may be due to linkage to any of
the 52 known AMD associated variants. Following this
adjustment, 28 variants remained significantly associated
with AMD risk (Q-value < 0.01, Table 1).
Next, we extracted the variants correlated to the respect-

ive top variant at each locus (R2 > 0.5) and annotated these
using the Variant Effect Predictor [88]. In total, we identi-
fied 12 non-synonymous and 13 synonymous variants
(Table 2).
Finally, we defined AMD associated loci around the top

variants with the boundaries comprising the most distant
variant with R2 > 0.5 and added a margin of 100 Kbp to both
boundaries. In total, the 28 novel variants defined 20 loci as-
sociated with late-stage AMD (Table 1) and thus implicated
potential novel genes involved in disease risk. We extracted
the genes located in the 20 novel and 34 known loci [7] and
used INRICH to perform pathway enrichment analysis. This
approach strengthens the notion that complement activation
is the main pathway involved in AMD risk (Reactome NCBI
Regulation of complement cascade: Q-value = 0.0006, GO
Regulation of complement activation: Q-value = 0.002). No
other pathway reached the significance threshold (Q-value
< 0.01, Additional file 4: Table S3).

Discussion
Here, we show an association of genetic scores of 16 dif-
ferent diseases/traits with late-stage AMD. Most notably,
we found genetic scores of autoimmune diseases (PSO,
RA, and SLE), cardiovascular health (CAD, general blood
pressure [GBP], HTN) and lipid levels (HDL, LDL, and
triglyceride [TG]) to be associated with AMD. Remark-
ably, the genetic score for BMDFN as well as the genetic
score for CMM were also associated with AMD. We also
found that several genetic scores related to other ocular
diseases (POAG, VCDR, MYP, and ODCA) are associated
with AMD risk. Under the assumption that a genetic score
summarizes the known genetic factors for a disease/trait,
we conclude that these 16 diseases/traits share etiological
properties with AMD.
Our findings point to two major areas of interest. First, we

demonstrate that genetic scores related to autoimmunity are

Fig. 3 Relationship between complex diseases/traits and AMD based
on significant genetic score associations. Nodes represent diseases or
traits and are colored according to uniform color scheme (see also
Fig. 2 and Additional file 2: Table S1). The size of each node
represents the effect size of the association with AMD. Diseases and
traits within distinct disease categories (see also Fig. 2) are
connected with lines colored according to the respective disease
category. Lines connecting AMD and diseases/traits indicate the
direction of the association with red lines indicating an adverse
association and blue lines representing protective associations. Gray
lines depict interactions according to literature which could not be
confirmed by genetic scores or were not investigated within this
study. The numbers in brackets indicate the references which either
support or dispute the respective interaction. The colors of the
numbers indicate whether the cited literature reported an adverse
(red) or a protective (blue) interaction. In case a finding is novel, no
literature reference is presented on a connection between nodes
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associated with AMD with adverse effects, in agreement with
the observation that the presence of either PSO, RA, or SLE
resulted in a higher risk for AMD [90–92]. Overall, all of the
autoimmunity-related scores were higher in AMD patients
than in controls. This strengthens the notion that AMD
greatly overlaps with or possibly is an autoimmune-related
disease. It remains to be seen whether these patients at risk
for AMD might profit from anti-inflammatory or immuno-
suppressive medication [93–95].
Second, individuals with increased genetic risk for cardio-

vascular disease and related traits have a lower risk for
AMD, which could potentially be explained by a survival
bias since our cases are on average two years older than
our controls. Nevertheless, by adjusting for gender and age,
we should be able to account for the findings. Still, we find
a strong association of cardiovascular disease traits with
AMD. Such a protective effect of cardiovascular-related
genetic scores for AMD is in line with previous results [96,
97], despite disparate reports by other groups [98–101].
The latter discordance may be explained by factors other
than genetic influences on cardiovascular disease risk and

such factors may be elevated in late-stage AMD patients.
For example, it has long been recognized that HDL plays a
crucial role in preventing cardiovascular disease and is
believed to be neuroprotective while reducing the risk for
other neuropathies, e.g. Alzheimer’s disease [102] due to
anti-inflammatory and anti-oxidant properties [103]. Ac-
cording to our findings, AMD patients should have higher
HDL, lower LDL, and lower total glycerol levels in their
serum compared with controls, well in agreement with
published data [104–106]. On another note, high levels of
HDL and low total glycerol have been correlated with
increased complement activation [104, 107]. This could ex-
plain the observed association where variants causing high
HDL levels are also associated with increased CRP levels in
serum [104], additionally increasing complement activation
levels [55]. This is in line with the observation that elevated
CRP levels are a risk factor for AMD [108, 109]. The risk
for AMD may be increased by the same factors due to in-
creased complement activation.
The association of genetic scores of ocular traits with

AMD requires a more in-depth consideration. While the

Table 2 Coding variants in novel AMD-associated loci

Variant Top
variant

Chromosome Position
[hg19]

r2 to top
variant

Frequency
of variant

Affected
gene

Consequence Phenotype Locus
name

Locus boundary
in 1 M bp [hg19]

rs6683902 rs7523273 1 207881557 0.545 0.563 CR1L p.I455V SCZ CD46/CR1L 207.8–208.1

rs2796257 rs7523273 1 207890866 0.549 0.434 CR1L p.L491P SCZ CD46/CR1L 207.8–208.1

rs1550094 rs1550094 2 233385396 1.000 0.310 PRSS56 p.A30T MYP PRSS56 233.3–233.5

rs9860801 rs9844666 3 136088038 0.547 0.302 STAG1 p.F403F HGT STAG1 135.5–136.9

rs1052620 rs9844666 3 136574521 0.956 0.189 SLC35G2 p.L407L HGT STAG1 135.5–136.9

rs1422795 rs2277027 5 156936364 0.996 0.357 ADAM19 p.S17G LGF ADAM19 156.8–157.1

rs943037 rs11191548 10 104835919 0.988 0.088 CNNM2 p.A770A BP NT5C2 104.4–105.2

rs584961 rs634552 11 75277628 0.625 0.888 SERPINH1 p.L78L HGT SERPINH1 75.2–75.4

rs12811109 rs11830103 12 123471094 0.838 0.216 PITPNM2 p.H1205H HGT SBNO1 123.3–124

rs1051431 rs11830103 12 123645803 0.878 0.768 MPHOSPH9 p.Y935H HGT SBNO1 123.3–124

rs6488868 rs11830103 12 123799974 0.756 0.722 SBNO1 p.G1022G HGT SBNO1 123.3–124

rs1060105 rs11830103 12 123806219 0.988 0.223 SBNO1 p.S729N HGT SBNO1 123.3–124

rs61388686 rs11830103 12 123810873 0.591 0.664 SBNO1 p.I567I HGT SBNO1 123.3–124

rs12322888 rs11830103 12 123825559 1.000 0.225 SBNO1 p.K209K HGT SBNO1 123.3–124

rs1254319 rs10483727 14 60903757 0.613 0.301 C14orf39 p.L524F ODCA SIX6 60.7–61.3

rs33912345 rs10483727 14 60976537 0.978 0.597 SIX6 p.H141N ODCA SIX6 60.7–61.3

rs117068593 rs11627032 14 93118229 0.565 0.187 RIN3 p.R279C BRC RIN3 60.7–61.3

rs2470890 rs1378942 15 75047426 0.843 0.596 CYP1A2 p.N516N BP CSK 74.9–75.3

rs4886615 rs1378942 15 75131661 0.553 0.691 ULK3 p.A302A BP CSK 74.9–75.3

rs907092 rs2290400 17 37922259 0.761 0.473 IKZF3 p.S399S T1D GSDMB 37.8–38.2

rs11557466 rs2290400 17 38024626 0.792 0.472 ZPBP2 p.L7L T1D GSDMB 37.8–38.2

rs11557467 rs2290400 17 38028634 0.924 0.508 ZPBP2 p.S55I T1D GSDMB 37.8–38.2

rs10852935 rs2290400 17 38031674 0.792 0.472 ZPBP2 p.C174C T1D GSDMB 37.8–38.2

rs2305480 rs2290400 17 38062196 0.815 0.466 GSDMB p.P302S T1D GSDMB 37.8–38.2

rs2305479 rs2290400 17 38062217 0.948 0.502 GSDMB p.G295R T1D GSDMB 37.8–38.2
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genetic scores for central cornea thickness (CCT) and
ODDA are not associated with AMD, the remaining
genetic scores associated with glaucoma (POAG, ODCA,
and VCDR) as well as the genetic score for myopia were
protective for AMD. Under the assumption that our
controls are enriched for glaucoma and myopia cases, a
conceivable expectation for a hospital-based recruitment
of controls, the identified association could be explained
but would render this finding an artefact. Controls are
often enrolled as patients visiting the clinic for reasons
other than AMD and may thus be enriched for other
prevalent ocular diseases. Furthermore, AMD cases with
myopia may be less frequently recruited since grading of
AMD can be difficult in the presence of high myopia.
Consequently, there may be fewer myopia patients in
the patient cohort. On the other hand, population-based
studies, i.e. studies randomly recruiting patients and
controls in a community setting, should not be compro-
mised by an enrichment of any ocular disease unless
they share a similar genetic or non-genetic risk. Testing
our dataset for this possibility showed that the associ-
ation of the genetic scores in the population-based stud-
ies remained unchanged when comparing to the entire
data including case-control studies with the exception of
the VCDR and MYP genetic scores. From this, we con-
clude that AMD patients indeed have a genetically re-
duced risk to develop open angle glaucoma, although a
smaller study found an adverse relationship between
AMD and POAG using summary statistics [110]. Con-
versely, we found no association of the myopia genetic
score with AMD in our dataset in the population-based
studies, in line with previous reports [111–114].
A surprising finding was the association of bone-

mineral density genetic scores with AMD. Both scores
of bone-mineral density (in the femoral neck and in the
lumbar spine) are nominally significant, suggesting a
protective effect for AMD in individuals having a higher
bone-mineral density. Interestingly, vitamin D deficiency
was linked to incident AMD in the CARED study [115]
and bone-mineral density can be increased with vitamin
D supplementation [116]. Of note, neither the genetic
score of serum calcium concentration nor vitamin D
concentration was found to be significantly associated
with AMD. Nevertheless, these findings could point to
future studies that explore vitamin D and calcium sup-
plementation to prevent AMD.
The significant association of CMM with AMD is not

due to a single variant associated with both diseases, as
none of the 20 variants used for the calculation of the gen-
etic score by itself was significantly associated with AMD.
The effect seems to result from an accumulation of all 20
variant effect sizes (mean LOR = 0.018). A possible ex-
planation may be that pigmentation plays a role in both
diseases. CMM is a cancer type affecting the skin and

associations with different characteristics of pigmentation
are described [117]. In general, people with lighter skin
have a higher melanoma risk [118]. This is in accordance
with observations that Caucasians are more likely to be
affected by AMD compared with black individuals [119].
Our candidate variant approach was restricted to vari-

ants significantly associated with other diseases/traits
and revealed 20 novel AMD-associated loci with 28
AMD associated variants. These variants have been im-
plicated in other diseases/traits with genome-wide sig-
nificance and therefore represent compelling novel
findings, although these novel loci do not harbor genes
that provide insights into so far unknown AMD-
associated pathways. However, the newly identified loci
strengthen the notion that AMD disease is extensively
related to pathologic complement activation with the
discovery that variants in the CD46/CR1L locus are sig-
nificantly associated with AMD. In subsequent studies,
in-depth bioinformatics and molecular evaluation of
these risk signals need to be performed, particularly in
the light of pathways and mechanisms associated with
both AMD and the relevant disease/trait.
The results of this study are in accordance with the an-

tagonistic pleiotropy theory of aging [120], which states
that many pleiotropic genetic factors are beneficial at
younger ages (by either increasing fecundity or survival)
while possibly unfavorable later in life by influencing sen-
escence and thus age-related disease processes [121]. We
speculate that this could also be true for pleiotropic vari-
ants associated with AMD. For instance, increased im-
mune activity could be advantageous at younger ages by
reducing the risk for infections, but could ultimately lead
to self-tissue damage causing autoimmune disease and
late-stage AMD. Similarly, increased HDL and lower LDL
levels result in improved cardiovascular health, which is
an important factor to survive to old age. However, these
same processes can cause late-stage AMD and might per-
sist in populations due to a lack of negative selection in
the elderly. As a consequence, our findings challenge the
prospects of gene/genome manipulations to target a se-
lected complex disease or trait, since seemingly beneficial
genetic manipulations targeting a specific disease might in
fact result in a seemingly unrelated disease at old age or
accelerate aging in consequence.

Conclusions
Our findings suggest a substantial overlap of the genetics
of autoimmune diseases, cardiovascular traits, lipid me-
tabolism, cancer and metabolic traits as well as other
eye-related diseases and traits with AMD. Investigating
the association of variants associated with other diseases
proves worthwhile to identify novel AMD risk variants
and further implicates the complement system as the
major pathway involved in AMD pathology.
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