
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Improving the performance of distributed simulations of wireless sensor networks

Permalink
https://escholarship.org/uc/item/0w32x21q

Author
Jin, Zhong-Yi

Publication Date
2010

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0w32x21q
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Improving the Performance of Distributed Simulations of Wireless

Sensor Networks

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Zhong-Yi Jin

Committee in charge:

Professor Rajesh K. Gupta, Chair
Professor William Hodgkiss
Professor Ryan Kastner
Professor Curt Schurgers
Professor Tajana Simunic-Rosing

2010

Copyright

Zhong-Yi Jin, 2010

All rights reserved.

The dissertation of Zhong-Yi Jin is approved, and it is ac-

ceptable in quality and form for publication on microfilm

and electronically:

Chair

University of California, San Diego

2010

iii

DEDICATION

To my wife, parents and brother

iv

EPIGRAPH

Isn’t it a pleasure to study and practice what you have learned?

-Confucius

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . viii

List of Tables . xi

Acknowledgements . xii

Vita and Publications . xiv

Abstract of the Dissertation . xv

Chapter 1 Introduction . 1
1.1 Approaches to Improve Simulation Speed 2
1.2 Parallel and Distributed Simulations of WSNs 3
1.3 Contributions . 5
1.4 Dissertation Organization . 5

Chapter 2 Overview of WSN Simulators . 7
2.1 Requirements for Designing WSN simulators 7

2.1.1 Overview of Wireless Sensor Networks 7
2.1.2 Difficulties in Building WSNs 10
2.1.3 Design Requirements for WSN simulators 10

2.2 WSN Simulator Designs and Architectures 12
2.2.1 Simulator Designs . 12
2.2.2 Simulator Architectures 16

2.3 Taxonomy of WSN simulators 17
2.4 Summary . 23

Chapter 3 Exploiting Application Level Parallelism in Conservative Simulations 24
3.1 Simulation Overheads with the Conservative Approach 24
3.2 Technique to Exploit Application Level Parallelism 25
3.3 Algorithm . 27
3.4 Implementation . 31

3.4.1 PolarLite Simulator . 31
3.5 Evaluation . 33

3.5.1 Performance in one-hop networks 34
3.5.2 Performance in multi-hop networks 38

3.6 Related work . 41

vi

3.7 Summary . 41

Chapter 4 Exploiting Radio and MAC Level Parallelism in Conservative Sim-
ulations . 43

4.0.1 Technique to Exploit Radio-level Parallelism 43
4.0.2 Technique to Exploit MAC-level Parallelism 46

4.1 Implementation . 47
4.2 Evaluation . 50

4.2.1 Performance of Radio-level Technique 51
4.2.2 Performance of MAC-level Technique 57
4.2.3 Performance with Both Techniques 60

4.3 Related work . 62
4.4 Summary . 62

Chapter 5 A New Synchronization Scheme for Conservative Simulations 64
5.1 Lazy Synchronization Scheme 64

5.1.1 Limitations of AEAP Synchronization Scheme 65
5.1.2 Lazy Synchronization Algorithm 67

5.2 Implementation . 71
5.3 Evaluation . 71

5.3.1 Performance in One-hop WSNs 72
5.3.2 Performance in Multi-hop WSNs 75

5.4 Related Work . 76
5.5 Summary . 76

Chapter 6 A Framework for Evaluating the Performance of Conservative and
Optimistic Simulations of WSNs . 78
6.1 Introduction . 78
6.2 Idea and Approach . 80

6.2.1 Ideal-Trace . 83
6.3 SimVal . 84

6.3.1 Conservative Playback 85
6.3.2 Optimistic Playback . 89

6.4 Implementation . 91
6.5 Evaluation . 94

6.5.1 Accuracy of SimVal . 96
6.5.2 Conservative vs. Optimistic in Simulating Single-hop

WSNs . 101
6.5.3 Conservative vs. Optimistic in Simulating Multi-hop

WSNs . 104
6.6 Related Work . 106
6.7 Summary . 107

Chapter 7 Conclusions and Future Work . 108

Bibliography . 111

vii

LIST OF FIGURES

Figure 1.1: The progress of simulating in parallel a wireless sensor network with
two nodes that are in direct communication range of each other on 2
processors. 4

Figure 2.1: System structure of the Great Duck Island bird monitoring sensor
network [SMP+04] . 8

Figure 2.2: Telos Mote [PSC05] . 9
Figure 2.3: Taxonomy of sensor network simulators 20

Figure 3.1: The progress of simulating in parallel a wireless sensor network with
two duty cycled nodes that are in direct communication range of each
other . 26

Figure 3.2: Average number of synchronizations per node in one-hop networks
during 60 seconds of simulation time 35

Figure 3.3: Percentage reductions of the average number of synchronizations per
node in one-hop networks during 60 seconds of simulation time 35

Figure 3.4: Average simulation speed in one-hop networks 36
Figure 3.5: Percentage increases of average simulation speed in one-hop networks 36
Figure 3.6: Average number of synchronizations per node in one-hop networks

during 60 seconds of simulation time (a zoomed in view of Figure 3.2) 38
Figure 3.7: Average number of synchronizations per node in multi-hop networks

during 20 seconds of simulation time 39
Figure 3.8: Percentage reductions of the average number of synchronizations per

node in multi-hop networks during 20 seconds of simulation time . . . 39
Figure 3.9: Average simulation speed in multi-hop networks 40
Figure 3.10: Percentage increases of average simulation speed in multi-hop networks 40

Figure 4.1: The progress of simulating two nodes that are in direct communication
range with the radio-level speedup technique 45

Figure 4.2: The progress of simulating two nodes that are in direct communication
range with the MAC-level speedup technique 47

Figure 4.3: Speed of simulating with Avrora and PolarLite running the radio-level
speedup (1 sender 31 receivers, mode 3) 52

Figure 4.4: Percentage reductions of synchronizations using the radio-level speedup
technique in PolarLite (1 sender 31 receivers, mode 3) 53

Figure 4.5: Speed of simulating with and without the radio-level speedup tech-
nique in PolarLite (1 sender 31 receivers, mode 3) 53

Figure 4.6: Percentage reductions of synchronizations and percentage increases of
simulation speed using the radio-level speedup technique in simulating
WSNs of different sizes and radio off times in PolarLite (1 packet/10
seconds, 8 processors) . 55

Figure 4.7: Total number of synchronizations in simulating WSNs of different
sizes and radio off times with and without the radio-level speedup
technique in PolarLite (1 packet/10 seconds, 8 processors) 56

viii

Figure 4.8: Speed of simulating large WSNs (1 packet/10 seconds, 8 processors,
mode 3) . 56

Figure 4.9: Percentage reductions of synchronizations with MAC-level speedup
on WSNs of different sizes in PolarLite (No duty cycling) 58

Figure 4.10: Speed of simulating 2 WSNs with Avrora, PolarLite and PolarLite +
MAC-speedup (No duty cycling) . 58

Figure 4.11: Speed of simulating with MAC-level speedup on WSNs using default
and double sized backoff windows (No duty cycling, 8 processors) . . 59

Figure 4.12: Speed of simulating with Avrora, PolarLite without speedups and
PolarLite with both speedup techniques (8 processors) 60

Figure 4.13: Percentage increases of simulation speed and percentage reductions of
synchronizations with both speedup techniques in PolarLite (8 pro-
cessors) . 61

Figure 5.1: The progress of simulating in parallel a wireless sensor network with
three nodes that are in direct communication range of each other on
2 processors. 66

Figure 5.2: Performance improvements of the LazySync scheme over the AEAP
scheme in simulating one-hop WSNs. Senders transmit at a 250ms
interval. 73

Figure 5.3: Performance improvements of the LazySync scheme over the AEAP
scheme in simulating one-hop WSNs. Senders transmit as fast as
possible. 74

Figure 5.4: Performance improvements of the LazySync scheme over the AEAP
scheme in simulating multi-hop WSNs. 75

Figure 6.1: The progress of simulating with the conservative approach on one
CPU a wireless sensor network of two nodes that are in direct com-
munication range of each other. 81

Figure 6.2: The ideal-trace of the simulation scenario in Figure 6.1. 82
Figure 6.3: The trace of simulating a wireless sensor network with two nodes that

are in direct communication range of each other. 86
Figure 6.4: The ideal-trace of simulating a wireless sensor network with three

nodes that are in direct communication range of each other. 90
Figure 6.5: Actual and estimated simulation speed with the conservative approach

on different numbers of CPUs (1 hop, 3 receivers and 1 sender) 96
Figure 6.6: Simulation overheads on different numbers of CPUs (1 hop, 3 receivers

and 1 sender) . 97
Figure 6.7: Actual and estimated total number of synchronizations with the con-

servative approach on different numbers of CPUs (1 hop, 3 receivers
and 1 sender) . 97

Figure 6.8: Actual and estimated total number of context switches with the con-
servative approach on different numbers of CPUs (1 hop, 3 receivers
and 1 sender) . 98

Figure 6.9: Actual and estimated simulation speed with the conservative approach
on different numbers of CPUs (1 hop, 12 receivers and 12 senders) . . 99

ix

Figure 6.10: Simulation overheads on different numbers of CPUs (1 hop, 12 re-
ceivers and 12 senders) . 99

Figure 6.11: The percentage difference of the actual and estimated total number of
synchronizations and context switches with the conservative approach
on different numbers of CPUs (1 hop, 12 receivers and 12 senders) . . 100

Figure 6.12: Estimated simulation speeds with the conservative and optimistic ap-
proaches (1 hop, 12 receivers and 12 senders) 102

Figure 6.13: Estimated simulation speeds with the conservative and optimistic ap-
proaches (1 hop, 6 receivers and 18 senders) 102

Figure 6.14: Simulation overheads on different number of CPUs (1 hop, 6 receivers
and 18 senders) . 103

Figure 6.15: Estimated simulation speeds with the conservative and optimistic ap-
proaches (multi-hop, 24 forwarders and 1 sender, 500ms transmission
interval) . 105

Figure 6.16: Estimated simulation speeds with the conservative and optimistic ap-
proaches (multi-hop, 24 forwarders and 1 sender, 1000ms transmission
interval) . 105

x

LIST OF TABLES

Table 2.1: Telos Mote Hardware Specification . 9
Table 2.2: Evaluations of Sensor Network Simulators 22

Table 4.1: Radio off periods under different duty cycling modes of B-MAC 50

Table 6.1: Trace events . 92
Table 6.2: Supported conservative overheads . 92
Table 6.3: Supported optimistic overheads . 93

xi

ACKNOWLEDGEMENTS

First of all, I want to thank my advisor, Professor Rajesh Gupta, for his guidance,

support and trust. Without him, I could never come this far and still be passionate

about research. I would also like to thank Professors William Hodgkiss, Ryan Kastner,

Curt Schurgers and Tajana Simunic-Rosing for serving on my Ph.D. committee. Their

feedbacks and suggestions were invaluable. Special thanks go to Dr. Douglas A. Palmer

for his inspiration and encouragement.

I am also grateful to my fellow students at the MESL lab: Muhammad Abdullah

Adnan, Yuvraj Agarwal, Joel Coburn, Arup De, Frederic Doucet, Dohyung Kim, Sudipta

Kundu, Kaisen Lin, Zhen Ma, Jeffrey Namkung, Cristiano L Pereira, Ryo Sugihara and

Thomas Weng. Their support, encouragement and friendship are important parts of this

work.

I would like to thank my friends William Chang, Felix Chow, Aaron Jow, XiaoJie

Ma, Dr. Eric Chi-Wang Yu and many others. Our trips to the national parks, hikes in

the Anza Borrego Desert, and sailings at the Mission Bay make my six years at UCSD

too ephemeral.

Finally, I would like to thank my family. I want to thank my parents for encour-

agement and support, my brother for believing in me, and my wife, Liwen Yu, for her

unconditional love.

Papers included in this dissertation

Chapter 3, in part, has been published as “Improved Distributed Simulation of

Sensor Networks Based on Sensor Node Sleep Time” by Zhong-Yi Jin and Rajesh Gupta

in DCOSS 08: Proceedings of the 4th ACM/IEEE International Conference on Dis-

tributed Computing in Sensor Systems [JG08], pages 204-218. The dissertation author

was the primary investigator and author of this paper.

Chapter 4, in part, has been published as “Improving the speed and scalability of

distributed simulations of sensor networks” by Zhong-Yi Jin and Rajesh Gupta in IPSN

09: The 8th ACM/IEEE International Conference on Information Processing in Sensor

Networks [JG09a], pages 169-180. The dissertation author was the primary investigator

and author of this paper.

Chapter 5, in part, has been published as “A New Synchronization Scheme

for Distributed Simulation of Sensor Networks” by Zhong-Yi Jin and Rajesh Gupta in

xii

DCOSS 09: Proceedings of the 5th ACM/IEEE International Conference on Distributed

Computing in Sensor Systems [JG09b], pages 103-116. The dissertation author was the

primary investigator and author of this paper.

Chapter 6, in part, has been submitted for publications as “A Framework for

Evaluating the Performance of Conservative and Optimistic Approaches in Simulating

Sensor Networks” by Zhong-Yi Jin and Rajesh Gupta. The dissertation author was the

primary investigator and author of this paper.

xiii

VITA AND PUBLICATIONS

1998 B. A. in Computer Science, Boston University, Boston

2006 M. S. in Computer Science, University of California, San Diego

2010 Ph. D. in Computer Science, University of California, San Diego

PUBLICATIONS

Zhong-Yi Jin and Rajesh Gupta, “A Framework for Evaluating the Performance of Con-
servative and Optimistic Approaches in Simulating Sensor Networks”, Under submission,
2010.

Zhong-Yi Jin and Rajesh Gupta, “LazySync: A New Synchronization Scheme for Dis-
tributed Simulation of Sensor Networks”, In DCOSS ’09: Proceedings of the 5th IEEE
International Conference on Distributed Computing in Sensor Systems, pages 103–116,
2009.

Zhong-Yi Jin, Curt Schurgers, and Rajesh Gupta, “A Gateway Node with Duty-cycled
Radio and Processing Subsystems for Wireless Sensor Networks”, In TODAES: ACM
Transactions on Design Automation of Electronic Systems, 14(1):1–17, 2009.

Zhong-Yi Jin and Rajesh Gupta, “Improving the Speed and Scalability of Distributed
Simulations of Sensor Networks”, In IPSN ’09: Proceedings of the 8th ACM/IEEE In-
ternational Conference on Information Processing in Sensor Networks, pages 169–180,
2009.

Zhong-Yi Jin and Rajesh Gupta, “RSSI Based Location-Aware PC Power Management”,
In HotPower ’09: Proceedings of the Workshop on Power Aware Computing and Systems,
2009.

Zhong-Yi Jin and Rajesh Gupta, “Improved Distributed Simulation of Sensor Networks
Based on Sensor Node Sleep Time”, In DCOSS ’08: Proceedings of the 4th ACM/IEEE
International Conference on Distributed Computing in Sensor Systems, pages 204–218,
2008.

Zhong-Yi Jin and Rajesh Gupta, “Simulations of Wireless Sensor Networks: A survey”,
In Technical Report CS2008-0925, UCSD, 2008.

Zhong-Yi Jin, Curt Schurgers, and Rajesh Gupta, “An Embedded Platform With Duty-
cycled Radio and Processing Subsystems for Wireless Sensor Networks”, In SAMOS ’07:
Proceedings of the 7th International Workshop on Systems, Architectures, Modeling, and
Simulation, pages 421–430, 2007.

xiv

ABSTRACT OF THE DISSERTATION

Improving the Performance of Distributed Simulations of Wireless

Sensor Networks

by

Zhong-Yi Jin

Doctor of Philosophy in Computer Science

University of California, San Diego, 2010

Professor Rajesh K. Gupta, Chair

Simulations are key to the design, implementation, and evaluation of wireless

sensor networks (WSNs) and their applications. To meet the demands for high simu-

lation fidelity and speed, distributed simulation techniques are increasingly being used

in WSN simulators. However, existing distributed WSN simulators only provide limited

speedup and scalability because of the large overheads in preserving the causality of

the interactions of wireless sensor nodes during distributed simulations. In this disserta-

tion, we examine methods to improve the performance of distributed WSN simulators by

controlling the overheads related to distributed simulations and parallelizing simulations.

When building distributed simulators, “conservative” and “optimistic” are the

two basic approaches for preserving causality. The former ensures causality violations

never occur whereas the latter features mechanisms to recover from causality violations.

xv

These two approaches incur different overheads and their relative performances vary

over different WSNs or simulation hardware. Given that all existing distributed WSN

simulators are based on the conservative approach, we study, in the first part of this

dissertation, how to improve the performance of the conservative approach in simulat-

ing WSNs. We first develop three novel techniques that reduce simulation overheads

by exploiting the parallelism in the physical radios, communication protocols and WSN

applications. Then we propose a lazy synchronization scheme that further improves sim-

ulation performance by identifying and eliminating unnecessary synchronizations during

simulations. With these techniques, we implement a fully functional distributed WSN

simulator.

In the second part of this dissertation, we study the performance of the optimistic

approach in simulating WSNs. Our focus is on understanding the relative performance

of the two approaches so appropriate simulation strategies can be devised for a WSN.

Since events are handled fundamentally differently across these two classes of simulators,

it is difficult to compare the approaches for a specific WSN. We address this challenge

by developing a novel trace-based performance evaluation technique that separates sim-

ulation overheads from actual simulation algorithms or implementations. This allows

one to use the same traces to prototype and evaluate any simulation techniques on vir-

tual platforms with arbitrary hardware. We implement this technique in a simulation

performance evaluation framework.

xvi

Chapter 1

Introduction

A wireless sensor network (WSN) is an ad-hoc network of wireless sensor nodes

which are small embedded devices with on-board sensors, processors and wireless radios.

Over the past decade, we have witnessed growing applications of WSNs in areas as diverse

as environmental monitoring, military target tracking, and power management [SOP+04,

WALJ+06, SML+04, JG09b, JG09c]. The popularity of WSNs arises from two of their

unique capabilities. First, tiny sensor nodes can be deployed throughout a physical

space non-intrusively, providing dense in-situ sensing of the physical phenomena that

might be difficult or costly to observe previously. Second, by forming ad-hoc networks,

sensor nodes are able to process and communicate this information cooperatively and

autonomously without human oversight. Combining these capabilities with the Internet

makes it possible to instrument the world with increasing fidelity.

Although the number of WSN applications is rapidly increasing, building WSNs

remains a challenging task. We can attribute this difficulty to two main reasons. First

of all, a WSN is a distributed system with a large number of sensor nodes collaborating

and interacting with each other. Developing and debugging software for such a complex

system on platforms with limited energy supply, computational resources, and commu-

nication capabilities are difficult by nature. Second, it is difficult to test and evaluate

sensor network applications before actual deployments. Not only is it expensive to build

and maintain testbeds for large sensor networks, but it is also not practical or even

possible to duplicate the deployment environments in controlled settings.

Given the challenges of building WSNs to meet application requirements, sim-

ulations are key to the design, implementation, evaluation, and debugging of WSNs

1

2

and their applications [LLWC03, PBM+04, SHrC+04, TLP05, WWM07, LAW08, JG08,

JG09a, JG09b]. Many other techniques have also been developed to address the same

challenges. They range from new operating systems [Wor05, BCD+05], special pro-

gramming languages [GLvB+03] and application specific programming models [SG08].

Simulation is particularly important among all these techniques because it provides the

foundation to attack many of the problems at once and is a complement to the other

techniques. By running sensor network programs on top of simulated sensor nodes inside

simulated environments, the states and interactions of sensor network programs can be

inspected and studied easily and repeatedly. In addition, the properties of the simu-

lated entities (simulation models) such as the locations of sensor nodes and the inputs

to the sensor nodes can be readily changed before or during simulations. By choosing

appropriate simulation models, one can build an entire WSN application, including the

underlying operating system, using simulations.

Compared to network level simulators such as ns-2 [NS2], a modern WSN sim-

ulator needs to simulate more than just the network protocols. For instance, it needs

to emulate the applications or operating systems to satisfy debugging needs and at the

same time accurately model the hardware so low level details such as node energy usage

can be simulated. These additional requirements for simulating WSNs demand the use of

high fidelity simulation models [LLWC03, SHrC+04, PBM+04, LAW08]. In event driven

simulations, fidelity represents the bit and temporal accuracy of events and actions. Be-

cause of the need to process a large number of events, high simulation fidelity often leads

to slow simulation speed [LLWC03, JG08] which is defined as the ratio of simulation

time to wallclock time. Simulation time is the virtual clock time in the simulated models

[Fuj99a] while wallclock time corresponds to the actual physical time used in running the

simulation program. A simulation speed of 1 indicates that the simulated sensor nodes

advance at the same rate as real sensor nodes and this type of simulation is called real

time simulation.

1.1 Approaches to Improve Simulation Speed

A commonly used approach to improve simulation speed is developing efficient

modeling techniques that sacrifice a small degree of simulation fidelity for a large increase

of simulation speed [LLWC03, LAW08]. For example, it is very computationally expen-

sive to emulate an actual sensor node processor in a simulation model for cycle accurate

3

simulations [PBM+04] of WSNs. To reduce the large computational need, TimeTossim

[LAW08] automatically instruments applications at source code level with cycle counts

and compiles the instrumented code into the native instructions of simulation computers

for fast executions. This achieves a cycle accuracy of up to 99% with only a 10 times

increase of simulation time.

However, the approach of trading simulation fidelity for simulation speed has

limitations. Besides reducing simulation fidelity, the biggest limitation of this approach

in simulating WSNs is that it does not scale as the number of sensor nodes increases

because of the increased complexity in the simulations. A scalable and widely used

alternative to this approach is parallel and distributed simulations as described below

[RAF+04, TLP05, WWM07, Hen08].

1.2 Parallel and Distributed Simulations of WSNs

WSN simulators can be broadly divided into two types: sequential simulators

[LLWC03, LAW08] and distributed (parallel) simulators [RAF+04, TLP05, WWM07,

Hen08]. Unlike sequential simulators that process all the events of a WSN in sequence

on a single processor, distributed simulators can process the events of different nodes in

parallel on a multi-core processor or on multiple processors and therefore can significantly

improve simulation speed and scalability.

However, existing distributed WSN simulators only provide limited speedup and

scalability because of the large overheads in preserving the temporal relations (causal-

ity) of the interactions of wireless sensor nodes during distributed simulations [WWM07,

JG08]. When sensor nodes are simulated in parallel, their simulation speeds may vary.

The variation of simulation speeds can be caused by the differences in simulated nodes

or by the simulation environment. For example, different sensor nodes may run differ-

ent programs or have different inputs. Also, there may not be enough processors to

simulate all the nodes at the same time. Since nodes may get simulated at different

speeds, it becomes critical to preserve the causality of events for correct simulations

[TLP05, WWM07, JG08]. For example, as shown in Figure 1.1, two nodes in direct

communication range of each other are simulated in parallel on two processors. After

TW0 seconds of simulation, Node B is simulated faster than Node A as indicated by the

fact that the simulation time of Node B (TS1) is greater than the simulation time of Node

A at TW0. At TS1, Node B is supposed to read the wireless channel and see if there is

4

TS0

TS1

TW0 TW1

Node B

Node A

S
im

u
la

ti
o

n
 T

im
e

 (
T

S
)

Wallclock Time (TW)

B.ReadChannel

Figure 1.1: The progress of simulating in parallel a wireless sensor network with two

nodes that are in direct communication range of each other on 2 processors.

an incoming transmission from Node A. However, after reaching TS1 at TW0, Node B

cannot advance any further because at TW0 Node B does not know whether Node A is

going to transmit at TS1 or not. In other words, there exists in this simulation a causal

relationship between the input event of Node B and the output event of Node A at TS1.

There are two general approaches to preserve causality like this in distributed

simulations: “conservative” [CM81] and “optimistic” [Jef85]. The conservative approach

seeks to preserve causality by advancing local simulation time to the extent that the

simulation is provably correct and guaranteed to be free of causality violations. For

instance, with the conservative approach, Node B in Figure 1.1 has to wait at TS1 until

Node A reaches TS1.

The optimistic approach works by advancing local simulation time under well

justified assumptions that reduce the likelihood of causality violations, but includes

mechanisms to roll back simulation state should this occur. For example, with the

optimistic approach, Node B in Figure 1.1 does not wait for the output of Node A at

TS1 but instead advances forward by guessing whether Node A will transmit. However,

the entire simulation state of Node B at TS1 must be saved so Node B can be rolled back

to the saved state if the guess is detected to be wrong when Node A reaches TS1. Since

there is usually a limited amount of physical memory, special mechanisms are required to

periodically compute a global safe time and release the memory used by the saved states

when they become safe. Since the conservative approach has to guard against the worst

case scenario, it cannot fully exploit the parallelism in the simulation like the optimistic

5

approach does. However, the optimistic approach also introduces additional simulation

overheads from state savings and rollbacks [Fuj99b]. Since these two approaches incur

different overheads, their relative performances vary over different simulation scenarios

or simulation hardware [Fuj99a]. To the best of our knowledge, existing distributed WSN

simulators are based on the conservative approach because it is simpler to implement

and has a lower memory footprint. How well the optimistic approach will perform in

simulating WSNs is an open question and we seek to address that in this dissertation.

1.3 Contributions

In this dissertation, we examine methods to improve the performance of dis-

tributed WSN simulators by parallelizing simulations and controlling the overheads re-

lated to distributed simulations. The first contribution of this dissertation is that we

propose four different techniques to systematically improve the performance of the con-

servative approach in simulating WSNs. Using these techniques, we develop the Polar-

Lite WSN simulator that provides better simulation performance in terms of simulation

speed and scalability than any other existing WSN simulators of similar accuracy.

The second contribution of this dissertation is the development of a trace-based

simulation performance evaluation technique for WSNs. The technique enables the pro-

totyping and evaluation of any simulation approaches or optimization techniques without

their actual implementations in real simulators. The technique also makes it possible

to evaluate simulation performance on virtual platforms with arbitrary hardware. We

implement this technique in the SimVal simulation performance evaluation framework.

Using this framework, we study the relative performance of the conservative and opti-

mistic approaches in simulating WSNs under various conditions. Based on the results of

the study, we propose a new direction for future WSN simulator design.

1.4 Dissertation Organization

In Chapter 2, we explore the design requirements for a modern WSN simulator

and survey the state of the art simulation techniques. Based on the survey, we classify

existing WSN simulators according to their architectures, designs and levels of abstrac-

tion.

Given that existing distributed WSN simulators use the conservative approach,

6

in Chapters 3, 4 and 5, we investigate how to improve the performance of the conserva-

tive approach in simulating WSNs. We first develop three novel techniques that improve

simulation performance by exploiting the parallelism in the WSN applications (Chap-

ter 3), physical radios, and communication protocols (Chapter 4). Then we propose a

lazy synchronization scheme (Chapter 5) that further improves simulation performance

by identifying and eliminating unnecessary synchronizations during simulations. We

validate these techniques by their implementations in PolarLite, a fully functional dis-

tributed cycle accurate simulator that we develop based on the Avrora simulator [JG08].

PolatLite is presented in Chapter 3.

In Chapter 6, we study the performance of the optimistic approach in simulating

WSNs. Our focus is on understanding the relative performance of the two approaches

so appropriate simulation strategies can be derived for a WSN. Since events are handled

fundamentally differently across these two classes of simulators and there exist a large

number of design tradeoffs, potential speedup techniques and optimizations for each of

the approaches, it is difficult to compare the approaches for a specific WSN. We address

this challenge by developing a novel trace based performance evaluation technique that

separates simulation overheads from actual simulation algorithms or implementations.

This allows one to use the same traces to prototype and evaluate any simulation ap-

proaches or techniques on virtual platforms with arbitrary hardware. We implement the

performance evaluation technique in the SimVal simulation evaluation framework and

use it to evaluate and compare the performance of the two approaches in simulating

WSNs.

In Chapter 7, we conclude the dissertation and discuss future work.

Chapter 2

Overview of WSN Simulators

Simulators are important tools for the design, implementation and evaluation

of WSNs and have been the subject of intense research in the past decade [LLWC03,

PBM+04, SHrC+04, TLP05, WWM07, LAW08, JG08, JG09a, JG09b]. The resource

constrained nature of sensor nodes, distributed operations of sensor network applications,

as well as the unique working environments and deployment scenarios of sensor networks

give special requirements and challenges to simulator design. More than 20 simulators

have been developed or augmented for sensor networks by various companies and research

groups to address different problems and needs. In this chapter, we first explore the

requirements for designing a modern WSN simulator. Then we study simulator designs

and architectures. In the end, we classify existing WSN simulators according to their

designs, architectures and levels of abstraction.

2.1 Requirements for Designing WSN simulators

The design requirements for a modern WSN simulator are rooted in the need to

address the difficulties in building WSNs and their applications. Before going into the

details of the design requirements, we first give an overview of the general designs and

architectures of WSNs and discuss the challenges in building WSNs.

2.1.1 Overview of Wireless Sensor Networks

We start with a real world example of a typical WSN. Figure 2.1 shows one of the

earliest applications of sensor networks: habitat monitoring. In the habitat monitoring

7

8

Transit Network

Basestation

Gateway

Sensor Patch

Patch
Network

Base-Remote Link

Data Service

InternetInternet

Client Data Browsing
and Processing

Sensor Node

Figure 2.1: System structure of the Great Duck Island bird monitoring sensor network

[SMP+04]

project [SMP+04], researchers focus on studying the distribution and abundance of sea

birds in an offshore breading colony on the Great Duck Island, Maine. Specifically, they

need to measure the occupancy of small, underground nesting burrows, and investigate

the role of micro-climatic factors in habitat selection. To accomplish this, sensor nodes

equipped with passive infrared (PIR), temperature and humidity sensors are placed into

the burrows. PIR sensors could directly measure heat from seabirds while temperature

and humidity sensors could measure variations in ambient conditions as results of pro-

longed occupancy. Sensor readings are collected, filtered and processed by individual

nodes and transmitted via gateway nodes to the Internet. Sensor nodes automatically

form patch networks so data can be relayed by other sensor nodes even if the sending

nodes are not in direct communication range with the gateway nodes. Gateway nodes

are responsible for bridging data between sensor networks and servers/devices in other

networks. Without gateway nodes, data collected by a sensor network are only local to

that sensor network and therefore no remote monitoring or interactions can be achieved

[JSG09].

The sensor nodes deployed on the Great Duck Island are the Berkeley Mica Motes

[HC02]. Motes are a family of sensor nodes developed by UC Berkeley and the latest in

this line is the Telos Mote [PSC05] as shown in Figure 2.2. The hardware specification

9

Figure 2.2: Telos Mote [PSC05]

Table 2.1: Telos Mote Hardware Specification

Sensors Humidity, Temperature, Light

Processor TI-MSP430, 16-bit 8MHz RISC,
3mW active, 15µW sleep, 6µS
wakeup time

Memory 10KB Data, 48KB Program,
1024KB Flash

Radio CC2420, 250kbps, 35 mW Trans-
mit, 38mW Receive, 0.58mS turn
on time, 50M indoor, 125M outdoor

Power Two AA Batteries

of Telos Mote is listed in Table 2.1 and we can see that a sensor node typically has

very limited processing, storage and communication capabilities compared to a typical

desktop computer. This design is key to the success of WSNs because it keeps sensor

nodes small for non-intrusive deployments, lowers the cost of sensor nodes for large

scale deployments, and keeps the power consumption of sensor nodes low for long term

operations. Low power is critical for WSNs because reliable energy sources often are not

easily available in the deployment fields and consequently sensor nodes may have to rely

on limited energy supply from batteries or harvested energy from intermittent sources

like solar or wind. To ensure long lifetimes demanded by the application and deployment

scenarios, sensor nodes have to be very energy efficient.

10

2.1.2 Difficulties in Building WSNs

From the Great Duck Island deployment example, we can see that a WSN is

a distributed system with many sensor nodes collaborating and interacting with each

other. Designing and developing software for such a complex system on platforms with

limited energy sources, memories, processing power and communication capabilities are

inherently difficult.

We can also see from the example that software for WSNs need to be highly

reliable because once deployed, the costs of diagnosing and fixing the software on a

large number of failed sensor nodes in the fields are extremely high. Besides, before

a software program can be fixed, it may have already drained an abnormal amount

of energy from the batteries, reducing the lifetimes of affected sensor nodes. However,

developing reliable software for WSNs is challenging since it is difficult to debug, test and

evaluate WSN applications before actual deployment. Software is difficult to debug in

WSNs because sensor nodes are low cost embedded devices and usually have no displays.

Once sensor nodes are detached from host computers, the only way to debug the software

directly is by flashing the on-board LEDs. It is also difficult to test and evaluate sensor

network applications before actual deployments because a sensor network could consist

of a large number of sensor nodes. Building and maintaining a testbed of that scale is

expensive. In addition, sensor network applications are driven by data collected from the

physical world but it is usually not practical or even possible to duplicate the deployment

environments in controlled settings.

2.1.3 Design Requirements for WSN simulators

Wireless sensor network simulators are designed to address the difficulties in

building wireless sensor networks [LLWC03, PBM+04, SHrC+04, TLP05, WWM07,

LAW08, JG08, JG09a, JG09b]. Similar to the integrated development environment

(IDE) for software development, simulators are emerging into standard platforms for de-

signing, developing, debugging and evaluating WSNs and their applications. By studying

the challenges in building WSNs and evaluating the designs of the latest WSN simulators,

we identify seven key design requirements for modern WSN simulators.

• Sensor network specific requirements

1. Real program simulation: Use sensor node programs directly as parts of sim-

11

ulation models to simulate WSN applications. This requirement is driven

by the complexity of programming the interactions of the sensor node ap-

plications, the operating systems and the hardware. Simply simulating the

algorithms or protocols without considering low level implementation details

may not reveal the true behaviors of a WSN application.

2. Real program debugging: Debug the running of actual sensor node programs

in simulations. This complements the real program simulation requirement.

Debugging should be supported at three different levels. At the application

level, a simulator should provide GDB like capabilities to debug the programs

on every simulated node. At the node level, a simulator should allow one to

monitor and set the location and the IOs of every sensor node. For example,

one should be able to monitor and change the sensor readings. At the network

level, a simulator should support coordinated debugging of multiple simulated

nodes. For example, set the following break condition:

break when ((sensor_reading_on_node_A > x &&

sensor_reading_on_node_B < y))

3. Real sensor node integration: The ability to connect simulated sensor nodes

with real sensor nodes. This is important for providing simulations with real

inputs such as actual sensor readings or communication patterns that are

difficult to model in software.

4. Fast prototyping: Enable sensor network developers to quickly prototype pro-

tocols and algorithms in simulations, independent of any hardware or oper-

ating systems. By abstracting out low level implementation details, one can

easily study and evaluate ideas when designing a WSN application. This

requirement is a complement to the real program simulation requirement.

• General requirements

5. High fidelity: To be useful, A WSN simulator must be able to provide simula-

tion fidelity that matches simulation needs. Fidelity indicates how accurately

the behaviors (events and actions) of WSNs are simulated. In simulations,

accuracy relates to both bit and temporal accuracies. For example, the accu-

racy of simulating a transmission event is determined by both the content of

12

the transmission (bit accuracy) and the time of the transmission (temporal

accuracy).

6. High performance: A WSN simulator should provide good simulation speed

and scalability [Fuj99a, LLWC03, JG08]. Simulation speed reflects how fast

a scenario can be simulated. It is defined as the ratio of simulation time to

wallclock time. Simulation time is the virtual clock time in the simulated

models [Fuj99a] while wallclock time corresponds to the actual physical time

used in running the simulation program. Scalability means a simulator should

be able to simulate sensor networks that consist of large numbers of sensor

nodes.

7. High flexibility: A WSN simulator should have a flexible design so that it can

be easily extended to support different sensor network applications, sensor

node operating systems, and sensor node hardware.

2.2 WSN Simulator Designs and Architectures

Most of the design requirements for WSN simulators, such as real program simu-

lation, real program debugging, real sensor node integration, and high simulation fidelity,

demand the use of highly accurate simulation models. However, simulating with these

sophisticated models is computationally expensive and can significantly reduce simu-

lation performance in terms of speed and scalability. Consequently, the fundamental

design decision in building WSN simulators relates to how to provide good simulation

performance while meeting other design requirements. In this section, we give a complete

overview of the various design options and architectures for WSN simulators.

2.2.1 Simulator Designs

A simulator is a system that represents or emulates the behaviors of another

system over time [Fuj99a]. Although it is possible for simulators to model physical

systems continuously using techniques such as differential equations, WSN simulators

are discrete time simulators that progress simulations by processing discrete events over

time. Conceptually, a discrete time simulator can be divided into two parts: the scheduler

and the simulation models. The simulation models contain the actual logics that model

a physical system. The scheduler is responsible to advance the simulation time and

13

Listing 2.1: Main simulation loop of a discrete time-stepped simulator

1 for (every x seconds)

2 {

3 // advance the simulation by x seconds

4 AdvanceTimeTo(currentTime + x);

5 // simulate

6 handleSimulation();

7 }

drive the simulation models to produce the changes of a physical system at discrete time

points. The changes of a physical system are represented as the changes of the values of

some state variables in simulations. According to the ways the time points are chosen,

there are two options to design a WSN simulator:

• Time-Stepped: Time points are divided into time steps of equal length, e.g., every

clock cycle.

• Event-Driven: Time points correspond to simulation events, e.g., sending a packet.

The main scheduling loops for simulators designed with these two options are

shown in Listings 2.1 and 2.2. For each time step or event, a handler (function) is

first invoked by the scheduler and then the handler calls the right simulation models

to compute the latest state of the simulated system and update the state variables if

necessary. There is usually only one handler function in a time-stepped simulator but

for an event-driven simulator, each event has its own handler function. Event-driven

approach is usually more efficient than time-stepped one because in an event-driven

simulation, evaluations of the physical system are only performed when events occur. A

time-stepped simulation, on the other hand, would perform evaluations at every time

step even if there are no changes in the physical system. However, without the overheads

of managing events, the time-stepped design could be more efficient in cases where the

changes of the simulated system only occur at some predictable time points, e.g. every

clock cycle. For the same reason, time-stepped simulators are also easier to implement.

As discussed in Section 1.2, another important set of design options for WSN

simulators are:

14

Listing 2.2: Main simulation loop of a discrete event-driven simulator

1 while(true)

2 {

3 // if the event queue is not empty

4 if(!empty(eventQueue))

5 {

6 // get the event with the smallest time

7 // stamp (stored at the head of the queue)

8 Event e = dequeue(eventQueue);

9 // advance the simulation time

10 AdvanceTimeTo(e.time);

11 // handles the event

12 Handler h = e.handler;

13 h.handleEvent(e);

14 }

15 }

15

• Sequential: Sensor nodes are simulated in sequence on a single processor.

• Parallel/Distributed: Sensor nodes are simulated in parallel on multiple proces-

sors/cores.

At a given simulation fidelity, the relative performance of the two approaches mainly

depends on the amount of parallelism in the simulation, the overheads in preserving the

causality and the number of processors available for the simulation [Fuj99a].

As described in Section 1.2, according to how causality is preserved, parallel and

distributed simulators can be designed with the following two approaches:

• Conservative: Ensure causality violations never occur [CM79].

• Optimistic: Feature mechanisms to recover from causality violations [JBW+87].

The relative performance of the conservative and optimistic approaches in simulating

WSNs is studied in Chapter 6.

Simulation Model Designs

Since simulation models contain the actual logics that model WSNs and their

applications, the designs of simulation models also play an important role in meeting

the design requirements for WSN simulators. There are two basic approaches to model

WSN applications:

• Emulation: Model the processor and IO devices of a sensor node so compiled WSN

programs can be executed by the models directly without modifications.

– Direct-execution A special type of emulation. The simulation computers

where the WSN application models are executed use exactly the same instruc-

tion set as the sensor node processor. Therefore, compiled WSN programs can

be executed natively on the simulation computers.

• Simulation: Model a representation of the original program. The representation

could be an approximation of the original program or is equivalent to the original

program but in other languages or instruction sets.

Emulation enables cycle-accurate simulations of WSNs because an emulator ex-

ecutes instruction by instruction the same machine code that runs on a real sensor node

16

processor. Simulation is not as accurate but allows fast-prototyping because it is easier

to develop WSN applications in high level modeling languages without concerning with

low level operating system and hardware details.

2.2.2 Simulator Architectures

As shown in Figure 2.2, a sensor node can be physically divided into four major

units: the sensing unit, the processing unit, the communication unit and the power unit.

The sensing unit includes all the sensors. It interacts with the environment as well as the

processing and power units. The processing unit contains one or more [JSG07] processors

and their associated memories (Flash/RAM/ROM). It interfaces with the other three

units. The communication unit includes the radio. It directly interacts with the local

processing unit and via wireless channels the communication units on other nodes. The

power unit supplies energy to all other units and may interact with the environment if

it collects energy from the environment or is affected by environmental factors such as

temperature.

Typically, a sensor network simulator is structured similarly to the real sensor

networks that it models. It includes models that represent the four major units of a

sensor node, the deployment environments and the communication channels. To simulate

a WSN, we only need to configure and connect the appropriate simulation models and, if

necessary, develop additional models. There are two very different approaches to connect

simulation models and represent their interactions:

• Event-oriented

• Process-oriented

These two approaches correspond to how one would view the physical world. In

the event-oriented view, one would regard the physical world as an event driven system.

The changes of the physical world are modeled by events and handlers of these events.

This view is the basis of the discrete event driven simulator design. In the process-

oriented view, the world is modeled as a set of self contained and autonomous entities

running in parallel and interacting with each other. The process-oriented view is more

intuitive and fits naturally with object oriented programming concepts. This makes

it easier to write, test, extend and maintain simulation models. However, since the

process-oriented view can not be mapped directly to the event driven simulator design, a

17

supporting layer has to be added for simulators employing the process oriented approach

and that introduces additional overheads.

To demonstrate the differences of the event-oriented and process-oriented ap-

proaches, we show in Listings 2.3 and 2.4 examples that simulate a WSN with these two

approaches respectively. The simulated WSN consists of two Nodes, A and B. Node A

sends a packet to Node B first. If a reply from Node B is received by Node A, Node

A sends another packet to Node B 5 seconds later. The process repeats until termi-

nated by the user. For simplicity, we only show the modeling of Node A and assume the

communication channels are perfect without any packet loss.

2.3 Taxonomy of WSN simulators

According to the architectures and designs discussed in the previous two sec-

tions, the top half of Figure 2.3 classifies the following sensor network simulators and

simulators that could potentially be used to simulate WSNs: ns-2 [NS2], SensorSim

[PSS00, PSS01], SENSE [CBMPS04], GTSNetS [OAVRHR05], OPNET [Cha99], J-Sim

[SCH+05, SCH+06], OMNet++ [Var01], SENSIM [MSK+05], TOSSIM [LLWC03], Scat-

terWeb [WS06], EmTOS [GSR+04], SenQ [VXSB07], TOSSF [PN02], NesCT [Nes],

Viptos [CLZ06], ATEMU [PBM+04], Avrora [TLP05], DiSenS [WWM07], SimGate

[WGC+06], and EmStar [GEC+04].

From a simulator user’s point view, a more intuitive method to categorize sensor

network simulators is by looking at the levels of physical abstraction they offer for simu-

lations. We define three levels of abstraction as shown in the bottom half of Figure 2.3.

18

Listing 2.3: Code example for event-oriented approach

1 main() {

2 // create a new event which will be handled

3 // by NodeASendEvent_Handler

4 Event e = new NodeASendEvent(NodeASendEvent_Handler)

5 // schedule the event right away

6 ScheduleEvent(0, e);

7 }

8

9 NodeASendEvent_Handler() {

10 // send a packet to node B. This is done by

11 // creating a new packet (event) that is handled

12 // by the NodeBReceiveEvent_Handler of Node B

13 Event e;

14 e = new NodeBReceiveEvent(NodeBReceiveEvent_Handler);

15 e.content=packet;

16 // models the TX delay by scheduling the packet

17 // txDelay seconds later

18 ScheduleEvent(txDelay, e);

19 }

20

21 // handles the reply from node B

22 // Send a new packet to Node B 5 seconds later

23 NodeAReceiveEvent_Handler(NodeAReceiveEvent re) {

24 // create a new event which will be handled

25 // by NodeASendEvent_Handler

26 Event e = new NodeASendEvent(NodeASendEvent_Handler)

27 // schedule the event in 5 seconds

28 ScheduleEvent(5, e);

29 }

19

Listing 2.4: Code example for process-oriented approach

1 NodeA {

2 while(true)

3 {

4 // send a packet to Node B with txDelay

5 Send_To(NodeB, packet, txDelay);

6 // wait for a reply from Node B

7 Wait_Until(Receives packet from Node B);

8 // continue in 5 seconds

9 Advance_Time(5);

10 }

11 }

20

S
e
n

s
o

r
N

e
tw

o
rk

 S
im

u
la

to
rs

E
m

u
la

ti
o

n
 B

a
s
e
d

T
im

e
 S

te
p
p

e
d

H
y
b

ri
d

A
T

E
M

U

C
O

O
JA

#

D
is

c
re

te
 E

v
e

n
t

D
ri
v
e

n

C
y
c
le

 A
c
c
u

ra
te

N
o

t
C

y
c
le

 A
c
c
u

ra
te

E
v
e

n
t

O
ri
e
n

te
d

D
is

c
re

te
 E

v
e

n
t

D
ri
v
e

n

P
ro

c
e

s
s
 O

ri
e
n

te
d

A
v
ro

ra
*

D
iS

en
S

S
im

G
at

e

D
is

tr
ib

u
te

d

S
im

u
la

ti
o

n
 B

a
s
e
d

D
is

c
re

te
 E

v
e

n
t

D
ri
v
e

n

S
e

q
u
e

n
ti
a

l

N
s-

2

S
en

so
rS

im

S
E

N
S

#

C
O

O
JA

#

P
ro

c
e

s
s
 O

ri
e
n

te
d

J-
S

im
*

S
c
a

le
d

 R
e

a
l
T

im
e

E
v
e

n
t-

O
ri
e
n

te
d

P
ro

c
e

s
s
 O

ri
e
n

te
d

T
O

S
S

IM

S
ca

tt
er

W
eb

S
im

S
E

N
S

#

C
O

O
JA

#

S
e

q
u
e

n
ti
a

l

S
en

Q

S
e

q
u
e

n
ti
a

l
D

is
tr

ib
u

te
d

E
m

S
ta

r
*

D
ir
e

c
t

E
x
e

c
u

ti
o
n

 B
a

s
e
d

D
is

tr
ib

u
te

d

S
E

N
S

E

O
P

N
E

T

G
T

S
N

et
S

D
is

tr
ib

u
te

d

T
O

S
S

F

N
es

C
T

V
ip

to
s

M
u

lt
i
M

e
th

o
d

s

O
M

N
et

+
+

S
en

S
im

D
is

tr
ib

u
te

d
D

is
tr

ib
u

te
d

H
a

rd
w

a
re

le
v
e

l

P
ro

to
c
o

l
a
n
d

 a
lg

o
ri
th

m

le
v
e

l

O
S

le
v
e

l

C
y
c
le

 A
c
c
u

ra
te

N
o

t
C

y
c
le

 A
c
c
u

ra
te

D
is

tr
ib

u
te

d

E
m

T
O

S
*

S
e

q
u
e

n
ti
a

l

R
ea

l
T

im
e

*

C
ro

ss
 L

ev
el

#

F
ig
u
r
e
2
.3
:
T
ax

on
om

y
of

se
n
so
r
n
et
w
or
k
si
m
u
la
to
rs

21

At the highest abstraction level, the protocol and algorithm level, most of the low

level details of the sensor node hardware and operating systems are abstracted away. This

level of abstraction provides an ideal environment for rapidly prototyping and evaluating

high level protocols and algorithms independent of sensor node platforms and operating

systems.

We call the middle level the operating system (OS) level. This level models

the services of an operating system with such details that applications written for that

operating system can run on top of it without modifications. As a result, algorithms and

protocols can be evaluated as parts of a real application but independent of any specific

sensor node hardware.

The bottom level is the hardware level. This level models the functions of major

hardware components of a sensor platform, mainly the processor and associated IO

devices. Since the entire physical platform is modeled, a simulator can execute clock

cycle by clock cycle, instruction by instruction the same binary program that is executed

by a real sensor node. In other words, we can boot from it, without modifications, any

operating systems capable of running on the corresponding physical hardware. This

makes it possible to study the accurate timing and interrupt behaviors of operating

systems and applications.

We can see from Figure 2.3 that the two types of classifications match well. All

protocol and algorithm level simulators are simulation based while OS level simulators

and hardware level simulators are emulation based. If we follow the tree in Figure 2.3

down, we can see that all OS level simulators are not cycle accurate but all hardware level

ones are. The correlations arise from the fact that different architectures and designs are

chosen for different levels of abstraction. A simulator does not need to be constrained

to a single abstraction level. For example, COOJA [ODE+06] is a multi-level simulator

that works at all three abstraction levels. In Table 2.2, we compare the features offered

by simulators of different abstraction levels.

22

T
a
b
le

2
.2
:
E
va
lu
at
io
n
s
of

S
en
so
r
N
et
w
or
k
S
im

u
la
to
rs

R
ea
l

R
ea
l

R
ea
l

F
as
t

F
id
el
it
y

P
er
fo
rm

an
ce

F
le
x
ib
il
it
y

p
ro
gr
am

p
ro
gr
am

se
n
so
r
n
o
d
e

p
ro
to
ty
p
in
g

si
m
u
la
ti
on

d
eb
u
gg
in
g

in
te
gr
at
io
n

P
ro
to
co
l
an

d
A
lg
or
it
h
m

le
ve
l

-
-

+
+

+
+
+
+

+
+
+

O
S
le
ve
l

+
+

+
+

-
+
+

+
+

+
+

H
ar
d
w
ar
e
le
ve
l

+
+

+
+

+
+
+

-
+
+
+

+
+

23

2.4 Summary

In this chapter, we gave a general overview of WSN simulators. In particular,

we considered the requirements for simulating WSNs and presented in detail the designs

and architectures of existing WSN simulators. We have shown that the major design

decision in building WSN simulators is to provide good simulation performance while

meeting other requirements. We have also developed a taxonomy that partitions WSN

simulators based on their designs, architectures and levels of abstraction.

Chapter 3

Exploiting Application Level

Parallelism in Conservative

Simulations

As described in Chapter 1, “conservative” and “optimistic” are the two basic

approaches to preserve causality in distributed simulations. Existing distributed WSN

simulators are based on the conservative approach since it is simpler to implement and

has a lower memory footprint [Fuj99a]. In this chapter, we present a technique that

improves the performance of the conservative approach in simulating WSNs by exploit-

ing the parallelism available in WSN applications. In particular, we seek to use the

information regarding duty cycling of nodes in WSNs to speed up simulations. Before

discussing the speedup technique in detail, we first summarize the types of overheads of

the conservative approach in distributed simulations of WSNs.

3.1 Simulation Overheads with the Conservative Approach

As described in Section 1.2, in distributed simulations, simulated sensor nodes

have to synchronize with each other to preserve causality. Synchronizations bring sig-

nificant overheads to distributed simulations. With the conservative approach, the over-

heads can be divided into management overheads and communication overheads.

Management overheads come from managing the threads or processes that simu-

late sensor nodes. For example, to maximize the parallel use of computational resources,

24

25

the thread or process simulating a waiting Node, e.g., Node B in Figure 1.1 between

TW0 and TW1, needs to be suspended so another thread or process simulating a different

node can be swapped in for execution. Suspended nodes also need to be swapped back

in for simulation later on. These usually involve context switches and large numbers of

them would significantly reduce simulation speed and scalability.

Communication overheads arise because nodes need to communicate their pro-

gresses to each other during simulations. For example, in Figure 1.1, Node A must notify

Node B after it advances past TS1 so that Node B can continue. Communicating across

processes or threads is generally expensive. In the case where nodes are simulated on

different computers, the communication overheads could be very high since synchroniza-

tion messages have to be sent across the physical networks and through the protocol

stacks before reaching the destination nodes.

3.2 Technique to Exploit Application Level Parallelism

Sensor node synchronizations are required for enforcing dependencies between

sensor nodes in simulations. Since the dependencies come from the interactions of sensor

nodes over wireless channels, the number of required synchronizations in a distributed

simulation is inversely proportional to the degree of parallelism in the WSN application

under simulation [Fuj99a].

To reduce the number of synchronizations, we exploit the parallelism available in

WSN applications. In particular, we seek to use the information regarding duty cycling

of nodes in sensor networks to speed up simulations. Node duty cycling is common

in WSN applications for power management purposes. Most WSN applications have

very low duty cycles and need to carefully manage their power consumptions in order to

function for an extended period of time under the constraint of limited energy supply.

In other words, sensor nodes sleep most of the time and do not interact with each other

frequently until certain events are detected [SPMC04]. Very little power is consumed by

a sensor node in the sleep state since its wireless radio is turned off and its processor is

put into a low power sleep mode.

Our speedup technique is illustrated in Figure 3.1 which shows the progress of

simulating two duty cycled sensor nodes that are within direct communication range of

each other. In the simulation, Node B enters into the sleep state at TS0′ and wakes up at

TS1′ . With existing distributed WSN simulators, Node A needs to wait for Node B at TS1

26

Node A

Node B

Simulation Time (TS)

TW1 TW2

TS0 TS1

Node A

Reads Channel

TS2

Node A

Reads Channel

Node B

Sleeps

Node B

Wakes up

TW0

TS0’ TS1’

SleepUpdate

(B, TS0’ , TS1’)

Figure 3.1: The progress of simulating in parallel a wireless sensor network with two

duty cycled nodes that are in direct communication range of each other

although Node B does not transmit anything during its sleep period. To eliminate this

type of unnecessary synchronization, our technique keeps track of the time that a node

enters into the sleep state and the time it wakes up. When we detect during a simulation

that a node is entering into the sleep state, we immediately send both the entering time

and exiting time (simulation time) in a SleepUpdate message to the neighboring nodes

that are within direct communication range. As a result, neighboring nodes no longer

need to synchronize with the sleeping node during the sleep period. For example, when

we detect that Node B is entering into the sleep state at TS0′ , we immediately notify

Node A that Node B will be in the sleep state from TS0′ to TS1′ . Once Node A knows

that Node B will not transmit between TS0′ and TS1′ and TS0′ ≤ TS1 < TS1′ , it no longer

needs to wait for Node B at TS1 and its lookahead time increases. Lookahead time is

defined as the amount of simulation time that a simulated sensor node can advance freely

without waiting for inputs from other simulated sensor nodes [Fuj99a]. The speedup of

our technique increases with the durations of sleep periods because the longer the sleep

periods, the larger the lookahead time.

For the speedup technique to work, we have to be able to detect both sleep

time and wakeup time in simulations. Sleep time can always be detected because a

real sensor node processor has to execute some special instructions to put the node

into the sleep mode. Correspondingly, sleep events, which are integral parts of any WSN

27

simulators, are used in simulations to signal the transitions of nodes from active states to

the sleep state. For example, in the case of cycle accurate sensor network simulators, sleep

events are associated with the execution of specific machine instructions of the sensor

node processors under simulation. However, detecting wakeup time is a challenging

process since a node can be woken up by interrupts from either a timer or an external

autonomous sensor such as a passive infrared sensor. Autonomous sensors are devices

that can function independently without the support of a node processor and therefore

may wakeup a sensor node at any time.

The wakeup time for sensor nodes that do not have autonomous sensors can

always be detected. This is because the wakeup time has to be passed to a physical

timer before a real sensor node is able to enter into the sleep state since the node

processor can not execute any instructions during the sleep mode. For nodes equipped

with autonomous sensors, if the input events to the autonomous sensors are known before

a simulation starts, which is generally the case, the wakeup time can always be computed

as the smaller of the time of the timers and the input events. If the input events to the

autonomous sensors are not known before a node enters into the sleep mode, for example,

inputs are collected in real time from real sensors [GEC+04], then the speedup technique

has to be disabled on that node. However, we only need to turn off the speedup technique

on those nodes receiving unpredictable input events, while other nodes can still use the

technique.

3.3 Algorithm

Before an algorithm for the proposed speedup technique can be developed, we

have to first build a distributed conservative synchronization algorithm that enables the

exploiting of application level parallelism for speedup. For such purposes, we develop a

generic distributed conservative synchronization algorithm that is similar to the one in

DiSenS [WWM07] and suitable for both parallel and distributed simulations of WSNs.

On top of our synchronization algorithm, we develop the speedup algorithm to exploit

the application level parallelism. It is shown together with the synchronization algorithm

in Algorithm 1.

Algorithm 1: Conservative Synchronization Algorithm with Speedup Technique

28

Require: nl := {< nid, nclock >} /*a list of neighboring node ids and their reported

simulation time*/

Require: id /*current node ID*/, bytetime /*the amount of time to transmit one

byte with a wireless radio*/

1. clock ⇐ 0 /*current sim clock to 0*/, lookahead ⇐ bytetime, intervalclock ⇐ 0

2. for every tuple < nid, nclock > in nl do

3. nclock ⇐ 0 /*initialize simulation time of neighboring nodes to zero before

starting the simulation*/

4. end for

5. while clock ≤ user inputed simulation time do

6. waitchannel ⇐ false

7. execute next instruction

8. if the instruction puts a node into the sleep state then

9. exitclock = wakeuptime, intervalclock ⇐ exitclock

10. send a ClockUpdate(id, exitclock) message to every nid node in the tuple

< nid, nclock > of nl

11. else if the instruction reads from the wireless radio then

12. if lookahead ≥ 0 then

13. read the wireless radio

14. else

15. if intervalclock 6= clock then

16. intervalclock ⇐ clock

17. send a ClockUpdate(id, clock) message to every nid node in the tuple

< nid, nclock > of nl

18. end if

19. waitchannel ⇐ true

20. end if

21. end if

22. if waitchannel is false then

23. clock ⇐ clock + cyclesconsumed /*advance clock by the clock cycles of the

executed instruction*/

24. end if

29

25. updated ⇐ false /*check incoming ClockUpdate messages at least once per

instruction*/

26. repeat

27. for each received ClockUpdate(cid, cclock) message do

28. for every tuple < nid, nclock > in nl do

29. if uid equals to cid then

30. nclock ⇐ cclock

31. end if

32. end for

33. end for

34. updated ⇐ true

35. minclock = min(nclock) in the tuple < nid, nclock > of nl /*find the neigh-

bor with the smallest clock*/

36. lookahead ⇐ (minclock−floor(clock/bytetime)∗bytetime) /*on byte bound-

aries with byte-radio*/

37. if lookahead ≥ 0 and waitchannel is true then

38. read the wireless radio /*all neighbors have advanced past the byte bound-

ary this node is waiting on*/

39. clock ⇐ clock + cyclesconsumed, waitchannel ⇐ false

40. end if

41. until waitchannel is false and update is true

42. if (clock − intervalclock) ≥ bytetime then

43. intervalclock ⇐ clock

44. send a ClockUpdate(id, clock) message to every nid node in the tuple <

nid, nclock > of nl

45. end if

46. end while

Synchronizations are only necessary between neighboring nodes that are within

direct communication range of each other. The first step before applying our algorithm is

to build a neighbor node list for each node according to the locations of the sensor nodes

and the maximum transmission range of their wireless radios. Mobile nodes need to be

included in the neighbor node list of all other nodes. Then, a time stamp is assigned to

every node (node id) in the lists to keep the last reported simulation time of that node.

30

This list, named nl in Algorithm 1 is the first required input to the synchronization

algorithm. There are two more inputs to the algorithm. The second input id is used to

identify the node under simulation. The nodes in nl are neighbors of this node. The

third input bytetime is the amount of time to transmit one byte with a wireless radio.

It is the maximum lookahead time without synchronizations. Every node starts with

that lookahead time because it takes that amount of time for one byte of data to travel

from the sender to the receiver. For example, if a node starts at simulation time 0 and

wants to read the wireless channel at that time, it can do so because the earliest time

that a byte of data can arrive is 0 + bytetime. Similarly, after synchronizing at time TS ,

all synchronized nodes can advance freely up to TS + bytetime without any additional

synchronizations. However, this approach only works if the processor and radio on a real

sensor node communicate by exchanging data one byte at a time (byte-level).

The variable intervalclock in Algorithm 1 is used to ensure that the ClockUpdate

messages are sent by every simulated node once every bytetime if the node is not already

in the sleep state. These messages update neighboring nodes about the latest simulation

time of the sender and ensure neighboring nodes have the right time information to

make synchronization decisions according to Condition 1. The interval chosen to send

the messages will affect the performance of the algorithm as nodes may have to wait if

ClockUpdate messages are delayed. The smallest interval one can use with byte-level

radios is bytetime because the actual waiting time must fall on byte boundaries. This

can be seen in Algorithm 1 where the floor function is used to calculate the lookahead

time.

Condition 1 If a node Ni reads data sent by a node Ns over a wireless channel Ck at

simulation time TSNi
, then the simulation time of node Ns, TSNs

, must be greater than

or equal to TSNi
.

The SleepUpdate message described in Section 3.2 is replaced in Algorithm 1

with the ClockUpdate message because receiving nodes only need to use the wakeup

time of the sender to calculate lookahead time. However, to take advantage of a special

optimization described in the future work part of Section 3.7, SleepUpdate messages

must be used so the time that a node enters into the sleep state is sent as well. The

time that a node enters into the sleep state is detected when the Sleep instruction of

the ATMega128L microcontroller [Atm03] is executed. This instruction can put the

microcontroller into different sleep modes based on the values set in the MCU Control

31

Register. It is critical to read that register before sending any ClockUpdate messages

as the speedup technique only works if a microcontroller is put into Power-Save Mode.

The reason is that the only way to wake up a microcontroller from Power-Save Mode

is through interrupts generated by timers or external autonomous sensors. Because of

that, we can find the wakeup time by keeping track of the values written to the Timer

Control Register and using the techniques described in section 3.2.

3.4 Implementation

To accurately evaluate the performance of the speedup technique, we develop the

PolarLite simulator.

3.4.1 PolarLite Simulator

PolarLite is a distributed conservative WSN simulator that we develop on top

of the Avrora simulator [TLP05]. It uses the same simulation models as the ones in

Avrora but runs our distributed synchronization algorithm in Algorithm 1. The lock-

step style synchronization algorithm of Avrora is optimized for parallel simulations on

SMP computers but lacks necessary features to support our speedup technique.

We choose to build PolarLite on top of Avrora because Avrora is a widely used

cycle accurate sensor network simulator. Among all types of sensor network simulators,

cycle accurate sensor network simulators [PBM+04, TLP05, WWM07] offer the highest

level of fidelity. They provide simulation models that emulate the functions of major

hardware components of a sensor node, mainly the processor. Therefore, one can run

on top of them, clock cycle by clock cycle, instruction by instruction, the same binary

code (images) that are executed by real sensor nodes. As a result, accurate timing and

interactive behaviors of sensor network applications can be studied in details.

Avrora is written in Java and supports parallel simulations of sensor networks

comprised of Mica2 Motes [Cro08]. It allocates one thread for each simulated node and

relies on the Java virtual machine (VM) to assign runnable threads to any available

processors on an SMP computer. Our implementation of PolarLite is based on the Beta

1.6.0 code release of Avrora which is well documented and publicly available. Imple-

menting PolarLite on top of Avrora mainly involves developing new code in two areas:

channel modeling and synchronization algorithm.

32

Channel modeling

With our synchronization algorithm, a node can write to a wireless channel long

before the packets are read by other nodes (the transmitting code is omitted in Algo-

rithm 1 for simplicity). Because of this, we develop a new wireless channel model that

uses a circular buffer to store unread wireless packets. Our channel model uses a simi-

lar method as the original channel model in Avrora to map transmitting and receiving

time into time slots that are bytetime apart. The slot number is used to index into the

circular buffer. Note that with the original channel model, a write to a channel right

after synchronizations could be dropped as the write may happen before the time slots

are carried forward. Our channel implementation does not drop data.

Complexity of Synchronization Algorithm

The computational complexity of a synchronization algorithm is determined by

the total number of synchronization messages that need to be sent and the overheads

in sending and processing each of the messages [Nic98]. Our synchronization algorithm

has higher computational complexity than the one in Avrora because our algorithm is

designed as an unoptimized generic distributed algorithm. In Avrora, a global data struc-

ture is used to keep track of the simulation time of each node and therefore a node only

needs to update the global data structure once for each clock update. This centralized

approach is optimized for parallel simulation over SMP computers but does not support

distributed simulations over a network of computers. We implement our synchronization

algorithm as a truly distributed algorithm by distributing parts of the global data struc-

ture to each node. The penalty is that a node with N nodes in direct communication

range has to send a total of N messages for each clock update. However, the penalty is

not significant when the number of nodes within direct communication range is not big.

In fact, because the synchronization algorithm of Avora works by synchronizing a node

with all other nodes regardless of whether they are within communication range or not,

our distributed algorithm may even perform better when nodes are sparsely distributed.

If performance is an issue in the future, we could choose to optimize our implementation

for parallel simulations using a centralized approach.

33

3.5 Evaluation

We conduct a series of experiments to evaluate the performance of our speedup

technique. The experiments are conducted on an SMP server running Linux 2.6.9. The

server has 4 processors (Intel Xeon 2.8GHz) and 2GByte of RAM. For comparison, the

same test cases are simulated using both our modified Avrora and the original Avrora.

Sun’s Java 1.6.0 is used to run both simulators.

To demonstrate the effectiveness of our speedup technique, we choose two pro-

grams from the CountSleepRadio example which is a part of the TinyOS 1.1 distribution

[HSW+00, TA]. These two programs behave exactly like the CntToRfm and RfmToLeds

programs used in the experiments of the Avrora paper and serve similar purposes. The

only difference is that the new programs can put sensor nodes into sleep states to save

power. (The latest TinyOS 2.0 release [LGH+05] is not used for our experiments because

its radio stack is not fully compatible with the radio model in the version of the Avrora

that our code is based on.)

The first program we use for our experiments is CountSleepRadio. It wakes up

a node periodically from the sleep state to increase the value of a counter by one and

broadcast that value in a packet. Once the packet is sent, it puts the node back into the

sleep state to save power. We have to modify this program for some of our experiments

because the original program has an upper bound on how long a sensor node can stay

in the sleep state 1. This is unnecessary and we work around this limitation by using

the Clock interface of the TinyOS 1.1 directly. The problem has reportedly been fixed

in TinyOS 2.0. The counterpart of our CountSleepRadio program is CountReceive.

It receives packets sent by CountSleepRadio and flashes different LEDs based on the

values in the packets. For simplicity, we identify nodes running CountSleepRadio and

CountReceive as senders and receivers respectively in the following sections.

Both CountSleepRadio and CountReceive use the default TinyOS 1.1 CC1000

CSMA (carrier sense multiple access) MAC (media access control) which is based on B-

MAC [PHC04]. Before sending a packet, the CC1000 MAC first backs off for a random

amount of time and then reads its transmitting channel for ongoing transmissions. It

only sends the packet if the channel is clear. Otherwise, it backs off for a random amount

of time before checking the channel again. As a result, a sender in our experiments reads

1The upper bound is imposed by the timer implementation of TinyOS 1.1. The timer code sets
maxTimerInteval to 230ms and the physical timers of a real sensor node can not be set to anything
larger than that using the timer API.

34

the wireless channel at least once before each transmission.

3.5.1 Performance in one-hop networks

In this section, the performance of our speedup technique is evaluated under

various sleep times and network sizes using one-hop sensor networks. One-hop sensor

networks are sensor networks set up in such a way that all sensor nodes are within direct

communication range of each other. It is a common form of sensor network used in

actual deployments [SPMC04].

In the one-hop sensor network experiments, nodes are laid on a 10 by 10 grid 1

meter apart and their maximum transmission ranges are set to 20 meters. A fixed node

is selected as a receiver and the rest as senders. The receiver listens continuously like a

gateway node [SPMC04, JSG07] and does not enter into the sleep state. The senders are

duty cycled and their sleep durations are varied for different experiments. Sleep duration

is how long a node stays in the sleep state before waking up. All results in this section

are averages of three runs.

Figure 3.2 shows the average number of synchronizations per node in one-hop

networks during 60 seconds of simulation time. Since all nodes are simulated for the

same number of clock cycles (60 × clock frequency of ATMega128L) in all test cases, the

average number of synchronizations per node is a good indicator to the performance of the

speedup technique. The synchronization numbers are collected by logging code we add

specifically for evaluation purposes. Figure 3.3 shows the percentage reductions of the

average number of synchronizations per node in one-hop networks during the 60 seconds

of simulation time. Figure 3.4 shows average simulation speed in one-hop networks. The

average simulation speed Vavg is calculated using Equation 3.1. The percentage increases

of average simulation speed in one-hop networks are shown in Figure 3.5.

Vavg =
total number of clock cycles executed by the sensor nodes

(execution time of the simulation)× (number of sensor nodes)
(3.1)

As shown in Figure 3.2 and Figure 3.3, the speedup technique significantly re-

duces synchronizations in all the test cases and the largest percentage reduction is more

than 99%. The reduction percentages increase with sleep durations under fixed network

sizes except for the 16 (1 receiver, 15 senders) and 32 (1 receiver and 31 sender) node

35

0

25000

50000

75000

100000

125000

150000

175000

200000

0 1 2 3 4 5 6 7 8

Sleep Duration (seconds)

T
h

e
 A

v
e
ra

g
e

 N
u

m
b

e
r

o
f

S
y
n

c
h

ro
n

iz
a

ti
o

n
s

 P
e
r

N
o

d
e

With speedup technique
(1 receiver, 2 senders)

Without (1 receiver, 2
senders)

With speedup technique
(1 receiver, 15 senders)

Without (1 receiver, 15
senders)

With speedup technique
(1 receiver, 31 senders)

Without (1 receiver, 31
senders)

Figure 3.2: Average number of synchronizations per node in

one-hop networks during 60 seconds of simulation time

70

75

80

85

90

95

100

0.0625 0.125 0.25 0.5 1 2 4 8

Sleep Duration (seconds)

S
y
n

c
h

ro
n

iz
a
ti

o
n

 R
e
d

u
c
ti

o
n

 (
%

)

1 receiver, 2 senders 1 receiver, 15 senders 1 receiver, 31 senders

Figure 3.3: Percentage reductions of the average number

of synchronizations per node in one-hop networks during 60

seconds of simulation time

test cases with 62.5ms sleep durations. The unusually high percentage reductions in

those cases are results of using the CC1000 CSMA MAC protocol of TinyOS 1.1. When

multiple senders in communication range transmit at the same time, the MAC protocol

36

0

50

100

150

200

250

300

0 2 4 6 8

Sleep Duration (seconds)

A
v

e
ra

g
e

 S
im

u
la

ti
o

n
 S

p
e

e
d

 (
M

H
z
) With speedup technique

(1 receiver, 2 senders)

Without (1 receiver, 2
senders)

With speedup technique
(1 receiver, 15 senders)

Without (1 receiver, 15
senders)

With speedup technique
(1 receiver, 31 senders)

Without (1 receiver, 31
senders)

Figure 3.4: Average simulation speed in one-hop networks

0

100

200

300

400

500

600

700

800

0.0625 0.125 0.25 0.5 1 2 4 8

Sleep Duration (seconds)

A
v
e
ra

g
e
 S

im
u

la
ti

o
n

 S
p

e
e
d

 G
a
in

 (
%

)

1 receiver, 2 senders 1 receiver, 15 senders 1 receiver, 31 senders

Figure 3.5: Percentage increases of average simulation speed

in one-hop networks

would sequence their transmission times using random backoffs. Since the senders will

not return back to the sleep state until packets are successfully transmitted, the sleep

times of the senders are sequenced as well. This effectively reduces synchronizations

in simulations as the number of nodes that are active at a same time is reduced. The

37

3-node (1 receiver, 2 senders) test case is not affected by this because we randomly delay

the starting time of each node between 0 and 1 second in all our experiments to prevent

the nodes from artificially starting at the same time. When the number of nodes in a

one-hop network decreases, the chance for concurrent transmissions decreases and the

number of synchronizations increases. Similarly, the chance for concurrent transmissions

also decreases when the sleep duration increases because the nodes in a one-hop network

would transmit less frequently with larger sleep durations. As a result, the number of

synchronizations increases with sleep durations in such cases. We can see this from Fig-

ure 3.6, a zoomed in view of Figure 3.2. When sleep duration doubles from 62.5ms to

125ms, the average number of synchronizations per node actually increases for both of

the 16 and 32 node test cases, regardless of whether the speedup technique is used or not.

We can also see in the same test cases that the average number of synchronizations per

node decreases with network size under fixed sleep durations. The speedup technique

can further reduce synchronizations in cases like these because it increases the lookahead

time of simulated nodes. The reduction from applying the speedup technique is greater

for larger one-hop networks in those cases as there is more of this type of sequencing in

larger one-hop networks under fixed sleep durations.

As shown in Figure 3.4 and Figure 3.5, the speedup technique significantly in-

creases average simulation speed in all the test cases and the largest increase is more

than 700%. Although the 3-node speedup test case has the highest percentage reduction

of the average number synchronizations per node as shown in Figure 3.3, it does not

have the largest average simulation speed increase in Figure 3.5. This is because the

overhead in performing a synchronization is very low for the 3-node test cases. Context

switches are generally not needed for synchronizations in those cases because there are

more processors (4) than nodes/threads (3). We can also see in Figure 3.5 that the

growth of the average simulation speed quickly flattens out for large sleep durations in

original Avrora but continues after applying the speedup technique. We expect even

better average simulation speed in simulating large one-hop networks after optimizing

our generic distributed synchronization algorithm for parallel simulations as discussed

in Section 3.3.

The speedup technique can not completely eliminate the synchronizations caused

by having only limited numbers of physical processors available for simulations. We can

see this from Figure 3.2 and Figure 3.6. When the sleep duration is long enough, the

38

0

25000

50000

75000

100000

125000

150000

175000

200000

0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000

Sleep Duration (seconds)

T
h

e
 A

v
e

ra
g

e
 N

u
m

b
e

r
o

f
S

y
n

c
h

ro
n

iz
a

ti
o

n
s

 P
e

r

N
o

d
e

With speedup technique
(1 receiver, 2 senders)

Without (1 receiver, 2
senders)

With speedup technique
(1 receiver, 15 senders)

Without (1 receiver, 15
senders)

With speedup technique
(1 receiver, 31 senders)

Without (1 receiver, 31
senders)

Figure 3.6: Average number of synchronizations per node in one-hop networks during

60 seconds of simulation time (a zoomed in view of Figure 3.2)

average number of synchronization per node with speedup is similar for all network sizes.

3.5.2 Performance in multi-hop networks

In this section, we evaluate the performance of the speedup technique using multi-

hop sensor networks. Nodes are laid 20 meters apart on square grids of various sizes.

Sender and receivers are positioned on the grids in such a way that nodes of the same

types are not adjacent to each other. By setting a maximum transmission range of 20

meters, this setup ensures that only neighboring nodes are within direct communication

range of each other. This configuration is very similar to the two dimensional topology

in DiSenS [WWM07]. Once again, only senders are duty cycled to keep the experiments

simple.

Figure 3.7 shows the average number of synchronizations per node in multi-hop

networks during 20 seconds of simulation time. The percentage reductions of the average

number of synchronizations per node in multi-hop networks during the 20 seconds of

simulation time are shown in Figure 3.8. We can see that there are significant reductions

in the average number of synchronizations per node in all the test cases using the speedup

technique and the reduction percentages scale with sleep durations.

39

0

25000

50000

75000

100000

0 2 4 6 8

Sleep Duration (seconds)

T
h

e
 A

v
e
ra

g
e

 N
u

m
b

e
r

o
f

S
y
n

c
h

ro
n

iz
a
ti

o
n

s
 P

e
r

N
o

d
e With speedup

technique (50 receiver,
50 senders)

Without (50 receiver,
50 senders)

With speedup
technique (200
receiver, 200 senders)

Without (200 receiver,
200 senders)

With speedup
technique (450
receiver, 450 senders)

Without (450 receiver,
450 senders)

Figure 3.7: Average number of synchronizations per node in

multi-hop networks during 20 seconds of simulation time

60

65

70

75

80

85

90

95

100

0.0625 1 2 8

Sleep Duration (seconds)

S
y
n

c
h

ro
n

iz
a
ti

o
n

 r
e
d

u
c
ti

o
n

(%
)

50 receiver, 50 senders 200 receiver, 200 senders 450 receiver, 450 senders

Figure 3.8: Percentage reductions of the average number of syn-

chronizations per node in multi-hop networks during 20 seconds of

simulation time

40

0

2

4

6

8

10

12

0 2 4 6 8

Sleep Duration (seconds)

A
v
e

ra
g

e
 S

im
u

la
ti

o
n

 S
p

e
e
d

 (
M

H
z
)

With speedup technique
(50 receiver, 50
senders)
Without (50 receiver, 50
senders)

With speedup technique
(200 receiver, 200
senders)
Without (200 receiver,
200 senders)

With speedup technique
(450 receiver, 450
senders)
Without (450 receiver,
450 senders)

Figure 3.9: Average simulation speed in multi-hop networks

0

200

400

600

800

1000

1200

0.0625 1 2 8

Sleep Duration (seconds)

A
v
e
ra

g
e
 S

im
u

la
ti

o
n

 S
p

e
e
d

 G
a
in

 (
%

)

50 receiver, 50 senders 200 receiver, 200 senders 450 receiver, 450 senders

Figure 3.10: Percentage increases of average simulation speed in

multi-hop networks

Figure 3.9 and Figure 3.10 indicate that the speedup technique significantly in-

creases average simulation speed in all multi-hop test cases. Compared to the one-hop

test results in Figure 3.5, the speed increases scale better with network sizes in multi-hop

41

tests. This is because our distributed synchronization algorithm has less overhead on

sensor networks that have smaller numbers of nodes within direct communication range

as described in the end of Section 3.3.

3.6 Related work

Previous work on improving the speed and scalability of WSN simulators can be

broadly divided into three categories. The first category focuses on trading simulation

fidelity for simulation speed. As described in Chapter 1, it works by giving up a small

degree of fidelity for a big reduction of the computational demands of individual sim-

ulation models. A good example of this approach is TimeTossim [LAW08]. Our work

makes this type of effort scalable on multiple processors/cores.

The second category of work focuses on reducing overheads in parallel and dis-

tributed simulations. DiSenS reduces the overheads of synchronizing nodes across com-

puters by using the sensor network topology information to partition nodes into groups

that do not communicate frequently and simulating each group on a separate computer

[WWM07]. However, this technique only works well if most of the nodes are not within

direct communication range as described in the paper. Increasing lookahead time is

another commonly used approach to reduce the overheads of the conservative approach

[FKM92, Fuj99a, LN02] and increase parallelism. Our technique belongs to this cate-

gory in the sense that we also improve speed and scalability by increasing the lookahead

time. However, our technique is fundamentally different since we use application specific

characteristics in a different context to increase lookahead time.

The third category uses special-purpose hardware to improve simulation speed.

For example, the IBM Yorktown Simulation Engine can increase the speed of gate-level

logic simulations by several orders of magnitude using highly parallel, special-purpose

hardware [Den82, KP82, Pfi86]. Our proposed technique is a complement to such ap-

proaches.

3.7 Summary

We have described a speedup technique that significantly reduces the number

of sensor node synchronizations in distributed simulations of WSNs and consequently

improves average simulation speed and scalability of distributed WSN simulators. We

42

implemented this technique in the PolarLite simulator which is developed on top of the

Avrora simulator, a widely used parallel sensor network simulator and conducted exten-

sive experiments. The significant performance improvements on a SMP computer suggest

even greater benefits in applying the speedup technique to distributed simulations over

a network of computers because of their large overheads in sending synchronization mes-

sages across computers during simulations.

Acknowledgements: Chapter 3, in part, has been published as “Improved Distributed

Simulation of Sensor Networks Based on Sensor Node Sleep Time” by Zhong-Yi Jin

and Rajesh Gupta in DCOSS 08: Proceedings of the 4th ACM/IEEE International

Conference on Distributed Computing in Sensor Systems [JG08], pages 204-218. The

dissertation author was the primary investigator and author of this paper.

Chapter 4

Exploiting Radio and MAC Level

Parallelism in Conservative

Simulations

In the previous chapter, we describe how to exploit application level parallelism

to improve the performance of conservative WSN simulators. In this chapter, we present

two techniques that improve the performance of conservative WSN simulators by ex-

ploiting radio and MAC level parallelism. In addition, we describe a probing mechanism

that makes it possible to exploit any potential application specific characteristics at the

communication layers for synchronization reductions.

4.0.1 Technique to Exploit Radio-level Parallelism

Our radio-level speedup technique exploits the radio off time when a sensor node

radio is duty cycled. Radio-level duty cycling works by selectively turning radios on

and off. Since radios are one of the most power consuming components of sensor nodes,

radio-level duty cycling is ubiquitously used in WSNs to reduce energy consumption and

extend working life of energy constrained sensor nodes. Due to its wide applications and

the complex tradeoffs in energy savings and communication overheads, radio-level duty

cycling is commonly built into energy efficient WSN MACs such as S-MAC [YHE02] and

B-MAC [PHC04].

Our radio-level speedup technique is illustrated in Figure 4.1 which shows the

progress of simulating two sensor nodes in parallel. In this simulation, Node B turns

43

44

its radio off at time TS1 and puts it back on at time TSx. With existing distributed

simulators, after running the simulation for TW0 seconds of wallclock time, Node A has

to wait at TS3 for Node B to catch up from TS2, despite the fact that node B will not

transmit any packets at TS3. Ideally, we can avoid this unnecessary synchronization by

having Node B notify node A at time TS1 that its radio is off until TSx. However, this

will not work as it is not possible for Node B to predict the exact radio wakeup time

TSx at TS1. This is because while the radio is off at TS1, the sensor node processor

is still running and it can turn the radio back on at any time based on current states,

application logics and sensor readings. In other words, it is just not possible for Node B

to predict when the radio will be turned on in the future.

Instead of predicting the exact radio wakeup time, our radio-level speedup tech-

nique exploits the radio off period by calculating the earliest possible communication

time, TEarliestCom. TEarliestCom is the earliest time that a turned off radio can be used

to send or receive data over wireless channels and can be calculated based on TAct, the

amount of time to fully activate a turned off radio. A turned off radio can not be activated

instantly for sending or receiving data. It takes time for the radio to be initialized and

become fully functional [PSC05]. For example, the CC1000 radio of Mica2 nodes [Cro08]

needs 2.45ms to be activated and the CC2420 radio of Telos nodes [PSC05] needs about

1.66ms without counting the SPI acquisition time [Lev06]. The exact delays in terms of

numbers of clock cycles are hard coded into WSN MAC protocols and can be easily iden-

tified in the source code. For example, in TinyOS 1.1 [HSW+00, TA], B-MAC waits for

a total of 34300 clock cycles for the CC1000 radio of MICA2 by calling the TOSH_uwait

function. While the delays seem to be small, they are significantly larger than typical

lookahead times in simulating WSNs. For example, it is about 11 times larger than the

3072 clock cycle lookahead time in simulating Mica2 nodes [TLP05, JG08]. As men-

tioned, lookahead time is defined as the maximum amount of simulation time that a

simulated sensor node can advance freely without synchronizing with other simulated

sensor nodes [JG08].

Our radio-level speedup technique works by tracking when sensor node radios are

turned on and off. When we detect that a sensor node radio is turned off, we immediately

send its TEarliestCom in a clock synchronization message to all neighboring nodes and then

repeatedly send the latest TEarliestCom every TAct time until the radio is detected to be

turned on. TEarliestCom can be calculated as the sum of current simulation time and TAct.

45

Node A

Node B

Simulation Time (TS)

T
W0

TS0 TS3TS2

Dependency

Radio Off

TS1

ClockSync

T
W0

TS4TSx

Read Channel

TActTAct

Figure 4.1: The progress of simulating two nodes that are in direct communication

range with the radio-level speedup technique

As a result, neighboring nodes no longer need to synchronize with the radio off node until

the latest TEarliestCom. For example, as shown in Figure 4.1, when we detect that Node B

turns its radio off at TS1, we immediately send its TEarliestCom to Node A and repeat that

every TAct time which is fixed according to the radio of Node B. The clock synchronization

messages are shown as arrows from Node B to Node A in the figure. Upon receiving

the second TEarliestCom, the lookahead of node A increases to a time beyond TS3 and

therefore it no longer needs to wait at TS3 after TW0 seconds of simulation. In other

words, Node A knows before TW0 that Node B will not be able to transmit any packet

at TS3. Since the increase of lookahead time (TAct − OldLookAheadT ime) may just

be a very small fraction of the total radio off period, it is critical to repeatedly send

TEarliestCom every TAct time to fully exploit the entire radio off period.

The radio-level speedup technique also reduces the number of clock synchroniza-

tions. In distributed simulations, clock synchronization messages are used to send the

simulation time of a node to all its neighboring nodes so causality can be maintained and

suspended waiting nodes can be revived. To maximize parallelism in simulations, a node

needs to send 1 clock synchronization message for every lookahead time of its neighbor-

ing nodes [TLP05, WWM07, JG08]. Since our radio-level speedup technique increases

the lookahead times of neighboring nodes, the number of clock synchronizations can be

greatly reduced. For example, in the case of simulating Mica2 nodes, one TEarliestCom

message can increase lookahead time by a factor of 11 and therefore eliminates 10 clock

46

synchronization messages.

4.0.2 Technique to Exploit MAC-level Parallelism

While the radio-level speedup technique takes advantage of physical delays in

WSN radios, our MAC-level speedup technique exploits the random backoff behaviors

of WSN MACs. Almost all WSN MACs need to perform random backoffs to avoid

concurrent transmissions [YHE02, PHC04]. For example, before transmitting a packet,

B-MAC would first perform an initial backoff. If the channel is not clear after the initial

backoff, B-MAC needs to repeatedly perform congestion backoffs until the channel is

clear. Because a MAC will not transmit any data during backoff periods, we are able

to exploit the backoff times for speedups. Although the backoff times are random and

MAC specific, they are usually a lot longer than typical lookahead times in simulating

WSNs. For example, in the case of B-MAC, the default initial backoff is 1 to 32 times

longer than the 3072 clock cycle lookahead time in simulating Mica2 nodes. The default

congestion backoff is 1 to 16 times longer in B-MAC.

Our MAC-level speedup technique is illustrated in Figure 4.2 which is similar to

Figure 4.1 except Node B enters into a backoff period from TS1 to TS4. The MAC-level

speedup technique works by detecting the start and the duration of a backoff period.

When the start of a backoff period is identified, the end time of the backoff period is

first calculated based on the duration of the period and then sent to the neighboring

nodes. This effectively increases the lookahead times of neighboring nodes and helps to

eliminate unnecessary synchronizations. For example, in order to avoid the unnecessary

synchronization of Node A at TS3 after running the simulation for TW0 seconds of wall-

clock time, our MAC-level speedup technique first detects at TS1 the start of Node B’s

backoff period as well as the duration of the backoff period. Then we compute the end

time of the backoff period and send that in a clock synchronization message to Node A.

Once Node A knows that Node B will not transmit until TS4, it no longer needs to wait at

TS3. Similar to the radio-level speedup technique, the MAC-level technique also reduces

the number of clock synchronizations, which provides additional speedup. We discuss

how to detect the start and the duration of a random backoff period in Section 4.1.

The MAC-level speedup technique is a good complement to the radio-level tech-

nique as WSNs usually have very bursty traffic loads. Nodes in a WSN usually do not

communicate frequently and can duty cycle their radios extensively until certain trigger-

47

Simulation Time (TS)

Node A

Node B

T
W0

TS0 TS3TS2

Dependency

MAC Backoff

TS1

ClockSync

TS5TS4

Read Channel

T
W0

Figure 4.2: The progress of simulating two nodes that are in direct communication

range with the MAC-level speedup technique

ing events occur. Once triggered by those events, nodes need to actively communicate

and interact with each other to accomplish certain tasks. Our MAC-level technique is

most effective when wireless channels are busy.

4.1 Implementation

The proposed speedup techniques are implemented in PolarLite, a distributed

simulation framework that we developed based on Avrora as described in Chapter 3.

PolarLite provides the same level of cycle accurate simulation as Avrora but uses a

distributed synchronization engine instead of Avrora’s centralized one. This makes it

possible to implement and evaluate our speedup techniques in a distributed simula-

tion environment. The synchronization engine of PolarLite is based on the distributed

synchronization algorithm described in Chapter 3. With this algorithm, nodes can be

synchronized separately according to their own lookahead times. In other words, if a

node is not accessing the wireless channel, it only needs to communicate to neighbor-

ing nodes its simulation time and does not need to wait for any other nodes. As with

Avrora, PolarLite allocates one thread for each simulated node and relies on the Java

virtual machine (JVM) to assign runnable threads to any available processors on an SMP

computer.

To implement the radio-level speedup technique, we need to detect when radios

48

are turned on and off. In discrete event driven simulations, the changes of radio states

are triggered by events and can be tracked. For example, in our framework, we detect

the radio on/off time by tracking the IO events that access the registers of simulated

radios.

Detecting MAC backoff times and durations for the MAC-level speedup technique

are considerately more difficult. The backoffs are MAC and application specific and

generally do not correlate to any unique events or actions that can be easily tracked.

In addition, the backoff durations are completely random. One possible solution to

this problem is to insert special code into the source code of an application that is to

be simulated. These special pieces of code are compiled into the application and used

to report to the simulator the MAC backoff times and durations during simulations.

However, this technique does not work for cycle accurate simulators like ours.

Cycle accurate sensor network simulators [PBM+04, TLP05, WWM07, JG08]

offer the highest level of fidelity among all types of sensor network simulators. They

provide simulation models that emulate the functions of major hardware components of

a sensor node, mainly the processor. Therefore, they take as inputs the same binary code

(images) that are executed by real sensor nodes. To detect backoff times and durations

without changing the source code of the applications under simulation, we develop a

generic probing mechanism based on pattern matching to expose the internal states of

sensor network applications during simulations.

Our probing mechanism works by first using patterns to pinpoint from compiled

applications the machine instructions that represent events of interest during the start

of a simulation. The identified instructions are then replaced by corresponding “hook”

instructions to report the internal states of the applications, such as the backoff dura-

tions, to a simulator during simulations. Hook instructions are artificial instructions that

behave exactly the same as the original instructions they replace except they will pass

to a simulator the memory locations or registers accessed by the original instructions

during simulations. The values stored in those locations are the internal states of the

applications that correspond to the events of interest. Since an instruction may access

multiple locations, we associate with each pattern a list that indicates the operands of

interest based on their order in the instruction. Therefore, an instruction may be trans-

lated into different hook instructions according to the list. To maintain cycle accuracy,

our simulator ensures that the hook instructions consume the same number of clock

49

cycles as the original instructions.

Our current implementation of the probing mechanism is largely based on existing

constructs from Avrora. In Avrora, a compiled program (object file) is disassembled first

before simulation and each disassembled instruction is loaded into a separate instruction

object (Java object). Once an instruction of interest is identified with pattern matching,

we encapsulate the corresponding instruction object in a new hook instruction object

and attach to the hook instruction object a probe object created specifically for the

pattern. When executed, the hook instruction invokes the original instruction first and

then calls the probe attached to it. It is the specific probe that turns a regular hook

instruction into a unique hook instruction and reports values of interest to a simulator

during simulations.

We do not use addresses to identify instructions of interest because addresses

tend to vary across compilations after source code changes, even if the changes are at

places not related to the instructions. With pattern matching, we only need to create a

set of patterns once if the corresponding source code does not change. For example, if

an application is written with TinyOS, the instructions that assign backoff durations to

B-MAC are part of the OS, regardless of whether the backoffs are calculated by default

functions in the OS or user supplied functions in the application. Therefore, we only

need to create a set of patterns once for each version of TinyOS to track the backoff

times in B-MAC during simulations.

We use regular expressions for pattern matching. To uniquely identify an in-

struction, we need to match additional instructions before or after that instruction as

well. In the current implementation, the backoff matching process for B-MAC is hard

coded in our simulator. To match the initial backoff, we first locate the block of code

that corresponds to the send function in a disassembled program by using the function

name (symbol name). The send function is a part of TinyOS and is where the initial

backoff calculation function is invoked. Then we match within this code block a contin-

uous sequence of instructions (sts,sts,sts,lds,out,and,brne,rjmp) which are instructions

that immediately follow the initial backoff calculation code. Note that we only need to

match the names of the instructions in the sequence. Once this pattern is found, the

value for initial backoff can be tracked via the first 2 sts instructions in the matched code.

Similarly, we can identify the instructions that store congestion backoffs. For simplicity,

we consider that MAC backoffs start at the times that the hook instructions report the

50

Table 4.1: Radio off periods under different duty cycling modes of B-MAC

Duty cycling Mode Radio off Time (ms)

0 0

1 20

2 85

3 135

4 185

backoff durations. It is safe to do so as no data will be sent from this point on until the

end of the backoff periods.

Note that we can not simply use the symbol names of the backoff calculation

functions for pattern matching because these functions are in-lined by the compiler.

However, there are always some caller functions in TinyOS, such as the send, that are

not in-lined due to space and other constrains. Based on these functions, we can create

patterns that remain the same as long as the functions do not change.

4.2 Evaluation

We conduct a series of experiments to evaluate the performance of our speedup

techniques. All experiments are carried out on an SMP server running Linux 2.6.24.

The server features a total of 8 cores on 2 Intel Xeon 3.0GHz CPUs and 16GBytes of

RAM. Sun’s Java 1.6.0 is used to run all experiments. Simulation speed is calculated

using Equation (4.1). Note that the numerator of Equation (4.1) is the total simulation

time in units of clock cycles and consequently the calculated speed is in units of Hz.

Speed =
total number of simulated clock cycles

(execution time)× (number of nodes)
(4.1)

All of the experiments are based on the CountSend (sender) and CountReceive

(receiver) programs from the TinyOS 1.1 distribution. They are similar in nature to

the programs used by other WSN simulators in evaluating their performance [LLWC03,

TLP05, WWM07]. CountSend broadcasts at a fixed interval the value of a continuously

increasing counter. CountReceive simply listens for messages sent by CountSend and

displays the last received value on LEDs. The programs are executed on simulated

Mica2 nodes [Cro08] and the starting time of each node is randomly selected between 0

and 1 second of simulation time to avoid any artificial time locks. All simulations are

51

run for 300 seconds of simulation time and for each experiment we take average of three

runs as the results.

4.2.1 Performance of Radio-level Technique

For experiments in this section, we modify the sender and receiver programs

slightly to enable B-MAC’s built-in radio-level duty cycling feature. This can be done

by calling the SetListeningMode and SetTransmitMode functions of TinyOS 1.1 at start.

B-MAC supports a total of 7 radio-level duty cycling modes in TinyOS 1.1 and the 5

modes used in our experiments are shown in Table 4.1. Once enabled, B-MAC turns a

radio off periodically for a duration corresponding to the duty cycling mode. The radio

is turned back on either when there are data to transmit or a radio off period ends. The

radio is turned off again once there are no pending packets to transmit and the channel is

clear for a fixed period of time. In the case of TinyOS 1.1 and Mica2 nodes, the channel

clear time is the amount of time to transmit 8 bytes over the radio [HSW+00, TA].

Speed and Scalability with respect to the number of processors

Our first set of experiments evaluates the performance of the radio-level speedup

technique over different numbers of processors, or cores in this case. For these experi-

ments, we simulate a WSN of 32 nodes that are within direct communication range using

2 to 8 processors. The 32 nodes are set up in such a way that one node is configured as a

sender and the rest as receivers. Since all nodes are within direct communication range,

any one of the nodes can be chosen as the sender. The frequency that the sender trans-

mits packets is varied for different experiments. The radio-level duty cycling modes of

all nodes are set to 3. For comparisons, we conduct the same experiments using Avrora,

PolarLite without any speedups and PolarLite with the radio-level speedup.

As a baseline, Figure 4.3 compares the speeds of simulating with Avrora and

PolarLite running the radio-level speedup technique. We can see that PolarLite running

the radio-level speedup technique is considerably faster than Avrora (up to 544% or 6.44

times) and scales with the number of processors. In contrast, the speeds of simulating

with Avrora decrease with increasing number of processors in this set of experiments

due to larger synchronization overheads1.

1Our results are different from results of similar experiments in [TLP05] as our experiments use faster
3.0GHz CPUs, compared to 900MHz ones of theirs.

52

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2 4 6 8

Number of processors

S
im

u
la

ti
o

n
 S

p
e

e
d

 (
M

H
z
)

PolarLite with radio-level

speedup (1 packet / 1 s)

PolarLite with radio-level

speedup (1 packet / 5 s)

PolarLite with radio-level

speedup (1 packet / 10 s)

PolarLite with radio-level

speedup (no

transmissions)
Avrora (1 packet / 1 s)

Avrora (1 packet / 5 s)

Avrora (1 packet / 10 s)

Avrora (no transmissions)

Figure 4.3: Speed of simulating with Avrora and PolarLite running the radio-level

speedup (1 sender 31 receivers, mode 3)

We can also see in Figure 4.3 that the speeds of simulating with our radio-level

speedup technique increase with transmission intervals. This is because our radio-level

speedup technique is based on exploiting radio off time and large transmission intervals

increase that. Note that at a given radio-level duty cycling mode, increasing the trans-

mission intervals will also increase the radio off time of the receivers because radios have

to be left on when receiving packets. However, as shown in Figure 4.3, the percentage

increases of simulation speed with the radio-level speedup technique decrease quickly

with increasing transmission intervals. This is due to the fact that when transmission

intervals increase, the radio off time is determined more by the radio-level duty cycling

mode than by the transmission intervals.

Figure 4.4 shows the percentage reductions of synchronizations based on numbers

collected by running with and without the radio-level speedup technique in PolarLite.

For accurate evaluations, we only show synchronization reductions within our Polar-

Lite framework because PolarLite and Avrora are based on different synchronization

algorithms and our speedup techniques are only implemented in PolarLite.

As shown in Figure 4.4, the percentage reductions of synchronizations are sig-

nificant in all cases and actually grow very slowly with the number of processors. This

is because more nodes can be simulated in parallel when the number of processors in-

53

0

20

40

60

80

100

2 4 6 8

Number of Processors

S
y
n

c
h

ro
n

iz
a
ti

o
n

 R
e
d

u
c
ti

o
n

 (
%

)

1 packet / 1 second 1 packet / 5 seconds
1 packet / 10 seconds No transmissions

Figure 4.4: Percentage reductions of synchronizations using the

radio-level speedup technique in PolarLite (1 sender 31 receivers,

mode 3)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2 4 6 8

Number of processors

S
im

u
la

ti
o

n
 S

p
e

e
d

 (
M

H
z
)

PolarLite with radio-level

speedup (1 packet / 1 s)

PolarLite with radio-level

speedup (1 packet / 5 s)

PolarLite with radio-level

speedup (1 packet / 10 s)

PolarLite with radio-level

speedup (no

transmissions)
PolarLite without speedup

(1 packet / 1 s)

PolarLite without speedup

(1 packet / 5 s)

PolarLite without speedup

(1 packet / 10 s)

PolarLite without speedup

(no transmissions)

Figure 4.5: Speed of simulating with and without the radio-level

speedup technique in PolarLite (1 sender 31 receivers, mode 3)

54

creases. As a result, our radio-level speedup technique has more radio sleep time to

exploit at a given time. Although the reduction numbers are very close with respect

to the number of processors, simulation speeds increase significantly with the number

of processors in Figure 4.5 which shows the speed of simulating with and without the

radio-level speedup technique in PolarLite using different number of processors. The

reason is that per-synchronization overheads increase with the number of processors due

to high inter-processor communication overheads.

As shown in Figure 4.5, using the radio-level speedup technique increases sim-

ulation speeds significantly (up to 111%) in PolarLite. Comparing with Figure 4.3, we

observe that PolarLite alone without any speedup techniques is faster than Avrora in

these experiments. This is because our distributed synchronization algorithm (Section

4.1) can provide more parallelism by allowing nodes to be synchronized separately ac-

cording to their own lookahead times. Avrora on the other hand synchronizes all nodes

together at a fixed time interval. However, even using the distributed synchronization

algorithm, PolarLite alone does not scale well with the number of processors as shown

in Figure 4.5. Using the radio-level speedup technique significantly improves scalability.

Speed and Scalability with respect to network sizes and radio off times

We also evaluate the radio-level speedup technique over WSNs of different sizes

and radio sleep durations (radio-level duty cycling modes). Similar to the setups in

Section 4.2.1, nodes in these experiments are within direct communication range and

only one node is configured as the sender. The sender transmits a packet every 10 seconds

to the rest of receiver nodes. Figures 4.6, 4.7 and 4.8 show the results of simulating with

or without the radio-level speedup technique in PolarLite using all 8 processors.

Figure 4.6 shows significant percentage reductions of synchronizations using the

radio-level speedup technique. There are no reductions when the radio is constantly on

because the radio-level speedup technique works by exploiting radio off time. Figure 4.6

also shows that the reduction percentages scale with radio off durations since larger

durations bring more radio off time. While the reduction percentages are about the

same for all network sizes at a given radio off duration, the percentage increases of

simulation speed actually grow with network sizes according to Figure 4.6. This is

because in a network where all nodes are in direct communication range, the total number

of synchronizations in a distributed simulation is in the order of N ∗ (N − 1) where N

55

-20

0

20

40

60

80

100

120

-15 10 35 60 85 110 135 160 185

Radio off period (ms)

%

Sync reduction
(1 sender, 7 receivers)

Sync reduction
(1 sender, 15 receivers)

Sync reduction
(1 sender, 31 receivers)

Speed increase
(1 sender, 7 receivers)

Speed increase
(1 sender, 15 receivers)

Speed increase
(1 sender, 31 receivers)

Figure 4.6: Percentage reductions of synchronizations and percentage increases of sim-

ulation speed using the radio-level speedup technique in simulating WSNs of different

sizes and radio off times in PolarLite (1 packet/10 seconds, 8 processors)

is the network size. Therefore, the total number of reductions in the experiments grows

with network sizes. This can be seen clearly in Figure 4.7 which shows the total number

of synchronizations in logarithmic scale.

We can also see from Figure 4.6 that the percentage increases of simulation speed

scale well with radio off durations. The case of simulating 16 nodes with 135ms radio off

duration appears to be an outlier, showing a much higher increase in simulation speed

than normal. The figure also shows that in this case, the reduction in synchronizations

is not unusual to cause a higher simulation speedup. We find that this outlier point is

actually caused by a slow simulation speed in PolarLite without using the radio-level

speedup technique. In fact, when increasing the sleep duration from 85ms to 135ms, the

simulation speed actually decreases from 37.45MHz to 37.10MHz. So, when we apply

radio-level speedup to this case, the relative increase becomes larger than ordinary. This

shows that the proposed radio-level speedup is effective even when the baseline simulation

in PolarLite can not benefit from the increased radio off time.

Finally, we evaluate the scalability of the radio-level speedup technique over larger

WSNs under a transmission rate of 1 packet/10 seconds and a radio-level duty cycling

56

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1 sender, 7

receivers

1 sender, 15

receivers

1 sender, 31

receivers

N
u

m
b

e
r

o
f

s
y

n
c
h

ro
n

iz
a

ti
o

n
s

PolarLite with radio-level

speedup (Radio always on)

PolarLite with radio-level

speedup (20ms radio off time)

PolarLite with radio-level

speedup (85ms radio off time)

PolarLite with radio-level

speedup (135ms radio off time)

PolarLite with radio-level

speedup (185ms radio off time)

PolarLite without speedup

(Radio always on)

PolarLite without speedup

(20ms radio off time)

PolarLite without speedup

(85ms radio off time)

PolarLite without speedup

(135ms radio off time)

PolarLite without speedup

(185ms radio off time)

Figure 4.7: Total number of synchronizations in simulating WSNs of different sizes

and radio off times with and without the radio-level speedup technique in PolarLite (1

packet/10 seconds, 8 processors)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

64 128 256

Number of Nodes

S
im

u
la

ti
o

n
 S

p
e

e
d

 (
M

H
z
)

PolarLite with radio-
level speedup

PolarLite without
speedup

Avrora

Figure 4.8: Speed of simulating large WSNs (1 packet/10 seconds, 8 processors, mode

3)

57

mode of 3, using all 8 processors. The results are shown in Figure 4.8. We can see that

the radio-level speedup technique increases simulation speed in large WSNs as well. It

provides a 197% increase of simulation speed when simulating 256 nodes in PolarLite.

That is an additional 106% improvement over the 91% speed increase in simulating 32

nodes under the same setup in Figure 4.6. In other words, although simulation speeds

decrease with network sizes due to the limited computational power of our server, the

percentage increases of simulation speed using the radio-level speedup technique still

grow with network sizes.

4.2.2 Performance of MAC-level Technique

The performance of our MAC-level speedup technique depends on how busy

wireless channels are and how often sensor nodes transmit around the same time. Instead

of evaluating with a large number of scenarios, we study the maximum speedup that

can be achieved in simulating a WSN with the MAC-level speedup technique. For

experiments in this section, we enable CountSend to send as fast as possible by modifying

CountSend such that it sends out a new packet as soon as it is notified by the MAC

that the previous packet is sent. We also disable the radio-level duty cycling for both

CountSend and CountReceive.

We simulate two WSNs that have 1 receiver and 31 or 63 senders using Avrora,

PolarLite without speedups and PolarLite with the MAC-level speedup. Unless explicitly

specified, the default backoff calculation functions in TinyOS 1.1 are used for the senders.

The results are shown in Figures 4.9, 4.10 and 4.11.

Speed and Scalability with respect to the number of processors and backoff

times

We can see from Figure 4.9 that the MAC-level speedup technique reduces syn-

chronizations by about 44% to 47% in PolarLite. As a result, it brings a speedup of 14%

to 31% (96% to 323% compared to Avrora) using the default backoff calculation func-

tions of TinyOS 1.1 as shown in Figure 4.10. However, the default backoff windows are

not large enough for our experiments since we observe a significant amount of colliding

transmissions causing dropped packets. This limits the performance of our MAC-level

speedup technique as nodes may transmit at the same time without backoffs. To further

investigate this, we perform the same experiments by doubling the sizes of the default

58

0

15

30

45

60

2 4 6 8

Number of processors

S
y
n

c
h

ro
n

iz
a
ti

o
n

 R
e
d

u
c
ti

o
n

 (
%

)

31 senders, 1 receiver 63 senders, 1 receiver

Figure 4.9: Percentage reductions of synchronizations with MAC-level speedup on

WSNs of different sizes in PolarLite (No duty cycling)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 4 6 8

Number of processors

S
im

u
la

ti
o

n
 S

p
e

e
d

 (
M

H
z
)

PolarLite with MAC-
speedup (31 senders,
1 receiver)

PolarLite without
speedup (31 senders,
1 receiver)

Avrora (31 senders, 1
receiver)

PolarLite with MAC-
speedup (63 senders,
1 receiver)

PolarLite without
speedup (63 senders,
1 receiver)

Avrora (63 senders, 1
receiver)

Figure 4.10: Speed of simulating 2 WSNs with Avrora, PolarLite and PolarLite +

MAC-speedup (No duty cycling)

59

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

32 64

Number of Nodes

S
im

u
la

ti
o

n
 S

p
e
e
d

 (
M

H
z
)

PolarLite with MAC-
level speedup (Double
backoffs)

PolarLite without
speedups (Double
backoffs)

Avrora (Double
backoffs)

PolarLite with MAC-
level speedup (Default
backoffs)

PolarLite without
speedups (Default
backoffs)

Avrora (Default
backoffs)

Figure 4.11: Speed of simulating with MAC-level speedup on WSNs using default and

double sized backoff windows (No duty cycling, 8 processors)

backoff windows and the results are shown in Figure 4.11. We can see that our MAC-

level speedup technique brings more significant increases of simulation speed with larger

backoff windows. We can also see that as the number of nodes increases, the speeds of

simulating with the MAC-level speedup technique drop faster than with Avrora. This

is because given the small backoff window sizes, the number of colliding transmissions

increases quickly with the network size in these setups where nodes transmit as fast as

possible.

Speed and Scalability with respect to network sizes

Figure 4.9 also shows that the percentage reductions of synchronizations using

the MAC-level speedup technique increase with network sizes in PolarLite. As explained

in Section 4.2.1, the total number of synchronizations in these experiments is in the

order of the square of the network size. Therefore, the total number of reductions is

very significant when the network size doubles from 32 to 64. We can see in Figure 4.10

that the percentage increases of simulation speed using the MAC-level speedup technique

scale with network sizes even with the default backoff windows. We notice the unusually

low increase of speed in simulating with 6 processors. Since the percentage reductions

of synchronizations are consistent according to Figure 4.9, we believe this is caused by

60

0

0.5

1

1.5

2

2.5

3

36 64 100 144

Number of Nodes

S
im

u
la

ti
o

n
 S

p
e

e
d

 (
M

H
z
)

PolarLite with both
speedups

PolarLite without
speedups

Avrora

Figure 4.12: Speed of simulating with Avrora, PolarLite without speedups and Polar-

Lite with both speedup techniques (8 processors)

the asymmetrical use of all 4 cores of 1 CPU and 2 cores of another CPU in our server.

4.2.3 Performance with Both Techniques

We evaluate the combined performance of our speedup techniques with a real

world scenario. In this scenario, we simulate a WSN service that floods data to every

node in a WSN. This service works by having every node in a WSN relay, by broadcasting,

messages it receives. To avoid sending duplicate messages, a node only relays messages

with IDs greater than the largest IDs of the messages it has already sent. For experiments

in this section, we modify CountReceive to relay messages the way we just described.

In our experiments, we simulate WSNs that have nodes laid 3 meters apart on

square grids of different sizes. For each of the WSNs, a corner node is configured as

the sender and the rest of nodes are configured as relaying nodes running the modified

CountReceive program. The sender transmits a new packet every 20 seconds with an

increasing ID. The radio-level duty cycling modes of all nodes are set to 4 (Table 4.1)

and the backoff windows are doubled from TinyOS 1.1 defaults. The transmit range of

all nodes is set to 19 meters. We conduct the experiments with all 8 processors and the

61

0

10

20

30

40

50

60

70

80

36 64 100 144

Number of Nodes

%

Percentage Reductions of Synchronizations

Percentage increases of simulation speed

Figure 4.13: Percentage increases of simulation speed and percentage reductions of

synchronizations with both speedup techniques in PolarLite (8 processors)

results are shown in Figures 4.12 and 4.13.

As shown in Figures 4.12 and 4.13, PolarLite running both speedup techniques

is significantly faster and provides a speedup of 51% to 75% over PolarLite alone and

289% to 462% compared to Avrora. We can also see from Figure 4.13 that the speedup

techniques reduce synchronizations significantly by 58% to 70%. However, we observe

that the reduction percentages decrease with increasing network sizes. This is caused

by our simple flooding protocol. As the network size increases, the number of relaying

messages grows as well. Although a node does not transmit the same message twice,

it can be forced to receive the same message multiple times from different neighboring

nodes. In other words, a transmitting node can keep all nodes within its communication

range from turning off their radios. This significantly reduces the sleep time of the nodes

and lowers the performance of our radio-level speedup technique. However, even under

this setup, our speedup techniques still provide significant increases of simulation speed.

This is because our MAC-level speedup technique benefits from an increasing number of

backoffs in the larger networks. In practice, more advanced protocols are usually used

to reduce the number of unnecessary relaying messages. Therefore, we expect significant

better performance with the speedup techniques in those cases.

62

4.3 Related work

In Chapter 3, we describe a technique that uses sensor node sleep time to re-

duce the number of synchronizations. As demonstrated, using the node-sleep-time-based

technique can significantly increase speed and scalability of distributed WSN simulators.

However, the technique is only able to exploit for speedup the time when both the pro-

cessor and the radio of a sensor node are off. This is because it is not possible to predict

the exact radio wakeup time when the processor is running. As a result, we can not apply

the node-sleep-time-based technique if the radio is on or if the sensor node processor is

kept alive by tasks such as reading and monitoring sensor inputs.

The techniques we propose in this chapter are orthogonal to the node-sleep-time-

based technique. They are not bounded by the number of neighboring nodes and are

effective even when the processors or the radios of nodes are active. While the tech-

niques are developed specifically for simulating WSNs, they can also be applied to any

general distributed network simulators such as ns-3 [Hen08] for improved performance

in simulating wireless networks.

4.4 Summary

We have described two speedup techniques that significantly improve the speed

and scalability of distributed sensor network simulators by reducing the number of sensor

node synchronizations during simulations. We implemented the techniques in PolarLite,

a cycle accurate distributed simulation framework based on Avrora. The significant

improvements of simulation performance on a multi-processor computer in our experi-

ments suggest even greater benefits in applying our techniques to distributed simulations

over a network of computers because of their large overheads in sending synchronization

messages across computers during simulations.

We have also developed a general probing mechanism that can expose the in-

ternal states of any sensor network applications during simulations. By knowing the

internal states during simulations, we can exploit any application specific characteristics

at the communication layers for the increase of lookahead time and as a result, improve

simulation speed and scalability.

Acknowledgements: Chapter 4, in part, has been published as “Improving the speed

63

and scalability of distributed simulations of sensor networks” by Zhong-Yi Jin and Ra-

jesh Gupta in IPSN 09: The 8th ACM/IEEE International Conference on Information

Processing in Sensor Networks [JG09a], pages 169-180. The dissertation author was the

primary investigator and author of this paper.

Chapter 5

A New Synchronization Scheme

for Conservative Simulations

In Chapters 3 and 4, we exploit parallelism at the application, radio and MAC

levels to increase the performance of conservative WSN simulators. In this chapter,

we take a new approach and present LazySync, a conservative synchronization scheme

that further reduces the overheads of the conservative approach in simulating WSNs by

identifying and eliminating unnecessary synchronizations during simulations.

5.1 Lazy Synchronization Scheme

In distributed simulations, each sensor node is commonly simulated in a separate

thread or process. To maximize parallelism, a running node should try to prevent other

nodes from waiting by communicating its simulation progress to those nodes as early as

possible (AEAP). If a node has to wait for other nodes due to variations in simulation

speeds, the thread/process simulating the waiting node should be suspended so the

released physical resources can be used to simulate some other non-waiting nodes1. For

maximum parallelism, suspended nodes need to be revived AEAP once the conditions

that the nodes wait for are met. For example, Node A in Figure 1.1 should synchronize

with Node B immediately after it advances past TS1 to resume the simulation of Node

B.

1For synchronization purposes, a non-waiting node refers to a node that is not waiting for any syn-
chronization events. It may still be ready, active or inactive in a given simulation.

64

65

The AEAP synchronization scheme is adopted by most existing distributed WSN

simulators [TLP05, WWM07, JG08]. It is commonly implemented [TLP05, JG08] by

periodically sending the simulation time of every non-waiting node to all its neighboring

nodes, which are nodes that are within its direct communication range. Ideally, the clock

synchronization period should be as short as possible for maximum parallelism. However,

due to the overheads in performing clock synchronizations [JG08], the synchronization

period is commonly set to be the minimal lookahead time, which is the smallest possible

lookahead time in the simulation. As mentioned, lookahead time is the maximum amount

of simulation time that a simulated sensor node can advance freely without synchronizing

with any other simulated sensor nodes [Fuj99a]. For example, in the case of simulating

Mica2 nodes [Cro08], the minimal lookahead time is the lookahead time of nodes with

radios in the listening mode. It is equal to the amount of time to receive one byte over

Mica2’s CC1000 radio [JG08] and is equivalent to 3072 clock cycles of the 7.32728MHz

AVR microcontroller in Mica2. Therefore, when simulating a network of Mica2 nodes,

every non-waiting node needs to send its simulation time to all its neighboring nodes

every 3072 clock cycles. Depending on simulator implementations, once the simulation

time is received by a neighboring node, some mechanisms will be triggered to save the

received time and compute the earliest input time (EIT) [CM81]. EIT represents the

safe simulation time that the neighboring node can be simulated to. If the neighboring

node happens to be waiting, then it will also be revived if its EIT is not less than the

wait time. To be revived AEAP, a waiting node commonly sends its waiting time to

the nodes that it depends on before entering into the suspended state. By doing so, the

depending nodes can send their simulation time to the waiting node immediately after

they advance past the waiting time.

5.1.1 Limitations of AEAP Synchronization Scheme

While the AEAP synchronization scheme is sound in principle, its effectiveness

is based on the assumption that there is always a free processor available to simulate

every revived node. However, this is generally not the case in practice as the number of

nodes under a simulation is usually a lot larger than the number of processors used to

run the simulation. As a result, the AEAP synchronization scheme may slow simulations

down in many simulation scenarios by introducing unnecessary clock synchronizations.

For example, Figure 5.1 shows the progress of simulating in parallel 3 nodes that are

66

TS0

TS1

TW0 TW1

Node B Node A

S
im

u
la

ti
o

n
 T

im
e

 (
T

S
)

Wallclock Time (TW)

B.ReadChannel

Node C

A.ReadChannel

TW2

TS2

Figure 5.1: The progress of simulating in parallel a wireless sensor network with three

nodes that are in direct communication range of each other on 2 processors.

in direct communication range of each other on 2 processors. In the simulation, Node

A and B are simulated first on the two available processors and Node B reaches TS1

at TW0. Similar to the case in Figure 1.1 of Chapter 1, Node B has to wait at TS1

until the simulation time of both Node A and Node C reach TS1. However, unlike

the case in Figure 1.1, while Node B is waiting, the simulation of Node C begins and

both processors are kept busy. With the AEAP synchronization scheme, Node A should

send its simulation time to Node B at TW1 so the simulation of Node B can be resumed.

However, since both processors are busy simulating Node A and C at TW1, reviving Node

B at TW1 does not increase simulation performance at all. In fact, this may actually

slow the simulation down due to the overhead in performing this unnecessary clock

synchronization. For example, instead of synchronizing with Node B at TW1, Node A

can delay the synchronization until a free processor becomes available at TW2 when Node

A needs to read the wireless channel and waits for Node B and C. By delaying the clock

synchronization to TS2 at TW2, Node A effectively reduces one clock synchronization.

Another area that the existing AEAP synchronization algorithms fail to exploit

for synchronization reductions is the simulation time gaps among neighboring nodes

[TLP05, WWM07, JG08]. Due to the lack of processors to simulate all non-waiting

nodes simultaneously, the potential simulation time gaps of different nodes can be quite

large during a simulation. For example, an actively transmitting node cannot hear

transmissions from other nodes and therefore can be simulated without waiting until

it stops transmitting and reads the wireless channel. Given such time gaps, a node

67

receiving the simulation time of a node in the future can compare the future node’s time

with its own simulation time and calculate potential dependencies between the two nodes

in the future. Consequently, the node falling behind can skip clock synchronizations if

there are no dependencies between the two nodes. For instance, as shown in Figure 5.1,

once Node A sends a clock synchronization message to Node B at TS2, Node B knows

implicitly that Node A does not depend on it before TS2 and therefore does not need to

synchronize its clock with Node A until then. In other words, Node B no longer needs to

send its simulation time to Node A every minimal lookahead time before TS2 as it does

with the AEAP synchronization algorithms. By delaying clock synchronizations, we can

fully extend the time gaps and as a result create more opportunities for nodes falling

behind to act upon and reduce clock synchronizations. We will discuss this in detail in

the following section.

5.1.2 Lazy Synchronization Algorithm

To address the performance issue of the AEAP synchronization scheme, we pro-

pose a novel conservative synchronization scheme: LazySync. The key idea of the

LazySync scheme is to delay a synchronization even when it should be done accord-

ing to conservative simulations. It is opposite of opportunistic synchronization in that

the simulator seeks to avoid synchronization until it is essential and it is able to do it

given simulation resource constraints. Together, we show that the concept of lazy evalua-

tion can be extended to specifically benefit from the operational characteristics of sensor

networks. By procrastinating synchronizations, delayed clock synchronizations may be

safely discarded or substituted by newer clock synchronizations in simulating WSNs. As

a result, the total number of clock synchronizations in a simulation can be reduced.

Note that if free processors are available, our LazySync scheme must perform

synchronizations AEAP so potential nodes can be revived to use the available physi-

cal resources. To make this possible, we track the number of non-waiting nodes and

only procrastinate synchronizations when the number is below a threshold. Ideally, the

threshold should be set to be the number of processors used to run the simulation in

order to maximize clock synchronization reduction and processor usage. However, con-

sidering the frequency of checking the number of non-waiting nodes and the overheads

in reviving waiting nodes and performing scheduling, the threshold should be set to a

number slightly larger than that in practice. Tracking the number of non-waiting nodes

68

on a computer should incur very little overhead since that is already done by the under-

lying thread/process library or OS as part of their scheduling functions. For distributed

simulations on multiple computers, the number of non-waiting nodes on each computer

can be exchanged as part of clock synchronization messages sent between computers. If

a computer does not receive any clock synchronization messages from another computer

for a predetermined period of time, the nodes on the first computer can revert back to

the AEAP scheme.

Algorithm 2: Lazy Synchronization Algorithm

Require: syncThreshold /*sync threshold*/

Require: ∆T /*minimal lookahead time, the lookahead time of a node in the dependent

state*/

1: set timer to fire at every ∆T

2: syncT ime ⇐ 0 /*the time a sync condition is verified*/

3: while simulation not end do

4: simulate the next instruction

5: if in independent state then

6: if timer.fired then

7: syncT ime ⇐ current sim time

8: if numLiveNode < syncThreshold then

9: send current sim time to all neighboring nodes not ∆T ahead

10: end if

11: end if

12: else if in dependent state then

13: if instruction needs to read the wireless channel then

14: syncT ime ⇐ current sim time

15: if ((Condition 1) == true) then

16: if numLiveNode < syncThreshold then

17: send current sim time to all neighboring nodes not ∆T ahead

18: end if

19: else

20: send current sim time to all neighboring nodes not ∆T ahead

21: wait until ((Condition 1) == true)

22: end if

69

23: read the wireless channel

24: end if

25: end if

26: if syncT ime - (current sim time) > ∆T then

27: syncT ime ⇐ current sim time

28: if numLiveNode < syncThreshold then

29: send current sim time to all neighboring nodes not ∆T ahead

30: end if

31: end if

32: end while

Condition 1 If a node Ni reads wireless channel Ck at simulation time TSNi
, then for

all nodes Ns that are in direct communication range of Ni, (TSNs
+∆T) ≥ TSNi

, where

TSNs
is the simulation time of Ns and ∆T is the lookahead time of Ni which is in the

dependent state.

Our proposed LazySync algorithm is presented in Algorithm 2. As shown in

Algorithm 2, we design the LazySync algorithm to work differently on nodes in different

states because nodes may have different synchronization needs. In a simulation, a sensor

node can be in one of two states, the independent state and the dependent state.

A node is in the independent state if its radio is not in receiving mode. This

happens when the radio is off, in transmission mode or in any one of the initialization

and transition states. Since a node in the independent state (independent node) does

not take inputs from any other nodes, it can be simulated without waiting for any other

nodes until the state changes. However, if free processors are available, an independent

node still needs to synchronize with neighboring nodes so that the nodes depending on

the outputs of the independent node can be simulated. In the LazySync algorithm, an

independent node checks the number of non-waiting nodes every minimal lookahead time

and only sends a clock synchronization message to its neighboring nodes if the number

of non-waiting nodes is below a threshold.

A node is in the dependent state if its radio is in receiving mode. Since any node

in direct communication range of a dependent node (a node in the dependent state)

can potentially transmit, a dependent node needs to meet Condition 1 before actually

reading the wireless channel to ensure correct simulation results. In other words, a

dependent node needs to evaluate Condition 1 to determine if it can read the wireless

70

channel and continue the simulation or has to wait for some neighboring nodes to catch

up for their potential outputs. Since a dependent node has its radio in receiving mode,

it needs to read the wireless channel at least once every minimal lookahead time (∆T)

which is the lookahead time of a node in the dependent state. Therefore, Condition 1

is evaluated at least once every ∆T . In the LazySync algorithm, a dependent node

only performs clock synchronizations under two circumstances. The first circumstance

happens when Condition 1 is evaluated to be false and as a result, a dependent node

has to wait for neighboring nodes. To prevent deadlocks, a synchronization has to be

performed in this case before suspending the node, regardless of the number of available

processors. A deadlock occurs when nodes wait for each other at the same simulation

time. For instance, it happens when nodes within direct communication range read

the wireless channel at the same simulation time. The second circumstance occurs when

Condition 1 is evaluated to be true so a dependent node can go ahead to read the wireless

channel. If the number of non-waiting nodes is below a threshold at this point, a clock

synchronization is required to revive some nodes to use the available processors. Note

that the block of code from line 26 to 31 in Algorithm 2 is just a safety mechanism to

guard against the cases that a node does not stay in any of the two states long enough

to check for synchronization conditions.

It is important to note that a dependent node may only perform clock synchro-

nizations at the times it reads the wireless channel. This is very different from the case

in a typical AEAP synchronization algorithm. A node in an AEAP synchronization al-

gorithm may perform clock synchronizations at any time according to the waiting times

of other nodes. The decision to limit dependent nodes to perform clock synchronizations

at channel read time only is based on the assumption that there are no free processors

available to simulate any other nodes until an actively running dependent node gives

up its processor due to waiting. By procrastinating clock synchronizations to channel

read time, we can eliminate all intermediate synchronizations that need to be performed

otherwise in AEAP synchronization algorithms, as described in Section 5.1.1.

With the LazySync algorithm described above, a node can be simulated for a long

period of time without sending its simulation time to neighboring nodes. As discussed in

Section 5.1.1, the extended simulation time gaps of neighboring nodes can be exploited

effectively to reduce clock synchronizations. According to Condition 1, a dependent node

Ni can read the wireless channel only if the simulation time of all neighboring nodes are

71

equal to or greater than the simulation time of Ni minus ∆T . If the simulation time of a

neighboring Ns is more than ∆T ahead of the simulation time of Ni, there are no needs

for Ni to send its simulation time to Ns until the simulation time of Ni is greater than

TSNs
− ∆T . The same also applies if an independent node receives a simulation time

that is more than ∆T ahead. Based on these, the LazySync algorithm uses a filter to

remove unnecessary clock synchronizations.

It is important to see that our LazySync algorithm still follows the principles

of conservative synchronization algorithms [CM81, Fuj99a, RAF+04] to not violate any

causality during simulations. We only delay and discard unnecessary clock synchroniza-

tions to improve the performance of distributed simulations of WSNs. Due to space

limits, a formal correctness proof of the LazySync algorithm is not given here.

5.2 Implementation

The proposed LazySync scheme is implemented in PolarLite, a distributed simu-

lation framework that we developed based on Avrora as described in Chapter 3 [JG08].

As with Avrora, PolarLite allocates one thread for each simulated node and relies on the

Java virtual machine (JVM) to assign runnable threads to any available processors on

an SMP computer. However, we cannot identify any Java APIs that allow us to check

the number of suspended/blocked threads in a running program. As an alternative, we

track that using an atomic variable. The syncThreshold in Algorithm 2 is configurable

via a command line argument.

To implement the LazySync algorithm, we need to detect the state that a node

is in. In discrete event driven simulations, the changes of radio states are triggered by

events and can be tracked. For example, in our framework, we detect the radio on/off

time by tracking the IO events that access the registers of simulated radios. We verify

the correctness of our implementation by running the same simulations with and without

the LazySync algorithm using the same random seeds.

5.3 Evaluation

To evaluate the performance of the LazySync scheme, we simulate some typical

WSNs with PolarLite using both the AEAP synchronization algorithm from [JG08] and

the LazySync algorithm from Section 5.1.2. The performance results are compared

72

according to three criteria:

• Speedavg: The average simulation speed.

• Syncavg: The average number of clock synchronizations per node.

• Waitavg: The average number of waits per node.

Speedavg is calculated using Equation (5.1). Note that the numerator of Equation (5.1)

is the total simulation time in units of clock cycles. Syncavg is equal to the total number

of clock synchronizations in a simulation divided by the total number of nodes in the

simulation. Similarly, Waitavg is equal to the total number of times that nodes are

suspended in a simulation due to waiting divided by the total number of nodes in the

simulation.

Speedavg =
total number of clock cycles executed by the sensor nodes

(simulation execution time)× (number of sensor nodes)
(5.1)

The WSNs we simulate in this section consist of only Mica2 nodes [Cro08] run-

ning either CountSend (sender) or CountReceive (receiver) programs. Both programs

are from the TinyOS 1.1 distribution and are similar to the programs used by other WSN

simulators in evaluating their performance [LLWC03, TLP05, WWM07]. For example,

CountSend broadcasts a continuously increasing counter repeatedly at a fixed interval.

If the interval is set to 250ms, it behaves exactly the same as CntToRfm which is used

in [LLWC03, TLP05, WWM07] for performance evaluations. CountReceive listens for

messages sent by CountSend and displays the received values on LEDS. All simulation

experiments are conducted on an SMP server running Linux 2.6.24. The server features

a total of 8 cores on 2 Intel Xeon 3.0GHz CPUs and 16GBytes of RAM. Sun’s Java

1.6.0 is used to run all experiments. In the simulations, the starting time of each node

is randomly selected between 0 and 1 second of simulation time to avoid any artificial

time locks. All simulations are run for 120 seconds of simulation time and for each ex-

periment we take the average of three runs as the results. The synchronization threshold

(Algorithm 2) of the LazySync algorithm is set to 9 (the number of processors plus one)

for all experiments.

5.3.1 Performance in One-hop WSNs

In this section, we evaluate the performance of the LazySync scheme in simulating

one-hop WSNs of various sizes. One-hop WSNs are sensor networks with all their nodes

73

-20

0

20

40

60

0 32 64 96 128 160 192 224 256 288

Number of Nodes

%

Increase of Speedavg Decrease of Syncavg Decrease of Waitavg

Figure 5.2: Performance improvements of the LazySync scheme over the AEAP scheme

in simulating one-hop WSNs. Senders transmit at a 250ms interval.

in direct communication range. All the one-hop WSNs that we simulate in this section

have 50% of the nodes running CountSend and 50% of the nodes running CountReceive.

In the first experiment, we modify CountSend so that all senders transmit at a

fixed interval of 250ms. Five WSNs with 8, 16, 32, 128 and 256 nodes are simulated

and Figure 5.2 shows the percentage improvements of the LazySync scheme compared

to the AEAP scheme. As shown in Figure 5.2, the LazySync scheme reduces Syncavg in

all cases and the percentage reductions grow slowly with network sizes. It is important

to see that the total number of clock synchronizations in a distributed simulation of

a one-hop WSN is on the order of N ∗ (N − 1) where N is the network size [JG08].

So, although the percentage reductions of Syncavg increase slowly with network sizes in

Figure 5.2, the actual values of Syncavg decrease significantly with network sizes.

The significant percentage reduction of Syncavg in simulating 8 nodes with 8

processors is due to the time gap based filter and the fact that the synchronization

threshold is only checked every ∆T or at channel read time. Since the threshold is not

monitored at a finer time granularity, a processor may be left idle for a maximum of

the amount of wallclock time to simulate a node for ∆T according to Algorithm 2. As

a result, we can see in Figure 5.2 that there are moderate increases of Waitavg when

74

0

20

40

60

0 32 64 96 128 160 192 224 256 288

Number of Nodes

%

Increase of Speedavg Decrease of Syncavg Decrease of Waitavg

Figure 5.3: Performance improvements of the LazySync scheme over the AEAP scheme

in simulating one-hop WSNs. Senders transmit as fast as possible.

simulating small WSNs with 8 and 16 nodes. However, as the WSN size increases,

the percentage reduction of Waitavg increases because processors are more likely to

be kept busy by the extra nodes. In fact, the LazySync scheme performs better in

terms of percentage reductions of Waitavg when simulating 128 and 256 nodes, as shown

in Figure 5.2. We believe this is because more CPU cycles become available for real

simulations after significant reductions in the number of clock synchronizations. For the

same reason, despite the increases of Waitavg in simulating small WSNs, we see increases

of Speedavg in all cases, ranging from 4% to 46%.

Our second experiment is designed to evaluate the LazySync scheme in busy

WSNs that have heavy communication traffic. It is based on the same setup as the first

experiment except all senders transmit as fast as possible. As shown in Figure 5.3, the

LazySync scheme provides more significant percentage reductions of Waitavg in busier

networks. This is because a busier network has more transmissions and consequently

more independent states. The increased number of independent states in a busier network

provides more opportunities for the LazySync scheme to exploit. It allows nodes to skip

synchronizations and gives the filter larger gaps to exploit. As a result, the LazySync

scheme brings a 12% to 53% increase of Speedavg in Figure 5.3. We can also see in

75

0

20

40

60

80

100

120

0 32 64 96 128 160 192 224 256 288

Number of Nodes

%

Increase of Speedavg (as fast as possible)

Decrease of Syncavg (as fast as possible)

Decrease of Waitavg (as fast as possible)

Increase of Speedavg (250ms)

Decrease of Syncavg (250ms)

Decrease of Waitavg (250ms)

Figure 5.4: Performance improvements of the LazySync scheme over the AEAP scheme

in simulating multi-hop WSNs.

Figure 5.3 that there are no increases of Waitavg in simulating small WSNs as in the first

experiment. This is because it takes more CPU cycles to simulate all the communications

in a busy network and that keeps the processors busy.

5.3.2 Performance in Multi-hop WSNs

In this section, we evaluate the performance of the LazySync scheme in simulating

multi-hop WSNs of various sizes. Nodes are laid 15 meters apart on square grids of

various sizes. Senders and receivers are positioned on the grids in such a way that nodes of

the same types are not adjacent to each other. By setting a maximum transmission range

of 20 meters, this setup ensures that only adjacent nodes are within direct communication

range of each other. This configuration is very similar to the two dimensional topology

in DiSenS [WWM07].

We simulate WSNs with 16, 36, 100 and 256 nodes. For each network size, we

76

simulate both a quiet network with all the senders transmitting at a fixed 250ms interval

and a busy network with all the senders transmitting as fast as possible. The results

are shown in Figure 5.4. We can see that the percentage decreases of Syncavg are more

significant in the multi-hop networks than in the one-hop networks. The reason for this

is that there are fewer dependencies among nodes in our multi-hop networks than in

the one-hop networks, as a result of only having adjacent nodes in communication range

in the multi-hop network setup. Having fewer dependencies brings two opportunities

to the LazySync scheme. First, a node can be simulated for a longer period of time

without waiting. Second, the increased number of non-waiting nodes keeps processors

busy. Together, they enable nodes to skip clock synchronizations in LazySync. In ad-

dition, the increased simulation time gaps can also be exploited by LazySync to reduce

clock synchronizations. As shown in Figure 5.4, the percentage reductions of Syncavg are

significantly higher in the busy multi-hop networks than in the quiet ones. This demon-

strates once again that the LazySync scheme can exploit wireless transmissions in a

WSN for synchronization reductions. As a result, we see significant percentage increases

of Speedavg in simulating busy multi-hop networks, ranging from 25% to 118%.

5.4 Related Work

Increasing lookahead time [CM81] is a commonly used approach [FKM92, LN02]

to improve the performance of conservative simulators. Our previous work in Chapter 4

and 5 follows this direction. LazySync is very different from the previous approaches

because it works by identifying and eliminating unnecessary synchronizations during

simulations. In addition, LazySync is particularly effective in improving the performance

of simulating dense WSNs with a large amount of communication traffic.

LazySync is based on similar ideas as lazy evaluations which have been used in

earlier work on very different problems from architectural designs to programming lan-

guages [Hug89]. Though conceptually similar, we show how the notion of lazy evaluation

can be applied in sensor networks for improved performance of distributed simulations.

5.5 Summary

We have presented LazySync, a synchronization scheme that significantly im-

proves the speed and scalability of distributed sensor network simulators by reducing

77

the number of clock synchronizations. We implemented LazySync in PolarLite and eval-

uated it against an AEAP scheme inside the same simulation framework. The significant

improvements of simulation performance on a multi-processor computer in our experi-

ments suggest even greater benefits in applying our techniques to distributed simulations

over a network of computers because of their large overheads in sending synchronization

messages across computers during simulations.

Acknowledgements: Chapter 5, in part, has been published as “A New Synchroniza-

tion Scheme for Distributed Simulation of Sensor Networks” by Zhong-Yi Jin and Rajesh

Gupta in DCOSS 09: Proceedings of the 5th ACM/IEEE International Conference on

Distributed Computing in Sensor Systems [JG09b], pages 103-116. The dissertation

author was the primary investigator and author of this paper.

Chapter 6

A Framework for Evaluating the

Performance of Conservative and

Optimistic Simulations of WSNs

In this chapter, we study the relative performance of the conservative and opti-

mistic approaches in simulating WSNs. We describe a technique that evaluates the per-

formance of conservative and optimistic approaches accurately using simulation traces.

Simulation traces can be collected from actual simulations using any distributed or se-

quential simulators. The technique is independent of the trace collection process and

separates the simulation overheads from the actual simulation algorithms. This makes

it possible to use the same traces to quickly prototype and study both approaches with

any design tradeoffs, speedup techniques and optimizations. In addition, the technique

can evaluate the performance of both approaches on virtual computing platforms with

arbitrary numbers of CPUs without using real hardware. With this technique, we de-

velop the SimVal simulation performance evaluation framework and evaluate the relative

performance of the two approaches in simulating some typical WSNs.

6.1 Introduction

The fundamental design decision in building parallel and distributed WSN simu-

lators relates to how to keep sensor nodes synchronized during simulations while provid-

ing good simulation speed and scalability. The conservative and optimistic approaches

78

79

work very differently in preserving the causality of events [TLP05, WWM07, JG08] and

therefore affect simulation performance differently in terms of simulation speed and scal-

ability. A significant amount of research [ACD+92, Nic93, TTA98, Fuj99b, Son01], both

experimental and analytical, has been conducted to study the performance of the con-

servative and optimistic approaches on many types of applications. Results show that

the relative performance of the two approaches depends largely on the characteristics of

the applications under simulation. In other words, a better performance in simulating

a queuing network with the optimistic approach does not necessarily suggest it can also

provide a better performance in simulating an air traffic control system.

Given that it is difficult to estimate the performance of the approaches for a

specific application due to the fundamental differences in how events are handled with

these two approaches, rough guidelines based on look-ahead time, communication pat-

terns, and simulation overheads are proposed to help choose the right approach for the

application [Fuj99b]. However, the various design tradeoffs, numerous speedup tech-

niques, and subtle differences in different simulation scenarios make it unreliable to use

the rough guidelines to predict the relative performance of the two approaches for a

given application. In the case of simulating WSNs, there are significant amounts of di-

versity in WSNs and their applications. Compared to pure network level simulations,

the need for accurate simulations of low level details such as node energy usage further

increases the complexity and diversity of WSN simulations. As a result, there are no

existing guidelines or ways to tell which approach is more effective in simulating a WSN

application.

In this chapter, we focus on studying the performance of the conservative and

optimistic approaches in simulating WSNs. For a given simulation, the performance

of the two approaches can be greatly affected by tradeoffs in controlling simulation

overheads, speedup techniques and how well the simulation models are optimized for

the approaches. A direct performance comparison of the two approaches is difficult

since one has to develop two very different simulators with different design tradeoffs,

speedup techniques and simulation models. This is especially challenging for WSNs

since we cannot find any existing optimistic WSN simulators and it is more difficult to

implement an optimistic simulator than a conservative one due to inherent complexity.

In addition, a simulator is usually implemented and optimized for a specific hardware

architecture such as symmetric multiprocessors (SMPs) or clusters, making it challenging

80

to compare simulation performance over different hardware architectures. Finally, direct

comparisons are limited by available hardware and that makes it hard to study the

scalability of the approaches on very large numbers of CPUs or on future generations of

CPUs that feature large numbers of cores. Performance evaluations based on analytical

methods are also challenging due to the complexity of the simulation models and the

intricate interactions of a large number of sensor nodes. To address these challenges,

we develop the SimVal framework that evaluates the performance of both approaches

accurately using simulation traces.

6.2 Idea and Approach

There are two notions of time in a simulation. Simulation time is the virtual

clock time in the simulated models [Fuj99a] while wallclock time corresponds to the

actual physical time used in running the simulation program. Regardless of what type

of distributed simulation approach is used, the amount of wallclock time consumed by a

simulation can always be divided into three parts:

• Resource-contention-time: Those times used to wait for the availability of simula-

tion resources such as processors.

• Causality-preservation-time: Those times used to preserve causality relations in

the simulation.

• Real-work-time: Those times used to perform the actual simulation work.

The first two parts are essentially the overheads of the simulation and the third

part determines the upper bound on the simulation speed which is defined as the ratio

of simulation time over wallclock time. For example, Figure 6.1 shows the progress of

simulating with the conservative approach a sensor network of 2 nodes on a single CPU.

We can see that Node B is simulated first and the simulation of Node B is paused at

wallclock time TWα. This is because according to the conservative approach, before Node

B can read the wireless channel at simulation time TS1, it needs to wait for Node A at

that point to ensure no causality is violated. Since there is only one CPU available for

the simulation, Node A cannot be simulated until the simulation of Node B is paused

at wallclock time TWα. In other words, TWα is a part of the resource-contention-time of

81

RX(TS1)

TX(TS1)

Node B

Node A

TWα TWβ

Wallclock Time (TW)

Context In

Real Work

∆T=TW0

Send Sync + Context out

Context In + Recv Sync

Real Work

∆T=TW1

Figure 6.1: The progress of simulating with the conservative approach on one CPU

a wireless sensor network of two nodes that are in direct communication range of each

other.

Node A. Similarly, the overhead time of context in/out the thread or process simulating

Node A or B is counted as a part of the resource-contention-time of the corresponding

node as well. With the conservative approach, Node B must synchronize with Node

A before the waiting at TS1 to prevent deadlocks. The overhead time of sending the

synchronization message is counted as a part of the causality-preservation-time of Node

B. Similarly, the time that it takes for Node A to process the synchronization message

is a part of the causality-preservation-time for Node A. Other overheads such as those

from scheduling the threads/processes are not shown in Figure 6.1 for simplicity. They

are described in detail in Section 6.4. The real-work-times for Node A and B are TW1

and TW0 respectively, as shown in Figure 6.1.

The basic idea of SimVal is to evaluate the performance of the conservative and

optimistic approaches using ideal-traces. Ideally, if there are no overheads in a simulation

(both resource-contention-time and causality-preservation-time are zero) and we log, in

the order they occur, every safe event of every node in the simulation, both conservative

and optimistic simulators would generate the exact same sequence of event logs for each

node and we call such sequences of event logs the ideal-trace of a simulation. Figure 6.2

shows the ideal-trace of the simulation scenario illustrated in Figure 6.1.

In principle, an ideal-trace contains both the information about the causality

of events as well as the actual real-work-time that it takes to generate each event in a

82

RX(TS1)

TX(TS1)

Node B

Node A

TW0 TW1

Wallclock Time (TW)

Real Work

Real Work

Figure 6.2: The ideal-trace of the simulation scenario in Figure 6.1.

real simulation. Therefore, we can evaluate the performance of different simulation ap-

proaches and algorithms by replaying the events and introducing the resource-contention-

time and causality-preservation-time piece by piece during the playback process as if in

a real simulation. In addition, the events can be played back on any numbers of virtual

CPUs so simulation performance on any numbers of CPUs can be evaluated without

using real hardware. For example, we can use the ideal-trace in Figure 6.2 to play back

the scenario in Figure 6.1 on a single CPU using the optimistic approach. If we pick

Node B to play back first, it has to be context switched in and the context-in overhead

is added into the playback process. After advancing to TS1, Node B would have to save

the simulation state at TS1 and the state saving overhead is added into the playback

process. Similarly, when Node A is advanced to TS1, Node B needs to roll back to TS1

and the rollback overhead is added into the playback process. The playback process is

discussed in detail in Section 6.3. As shown in Figure 6.2, every event in an ideal-trace

is represented by a 4-tuple of 〈Node ID, Event Type, Wallclock Time, Simulation Time〉.

For example, the RX event of Node B in Figure 6.2 is represented by 〈Node-B, RX, TW0,

TS1〉.

It is important to note that the playback process in SimVal is significantly simpler

than performing a real simulation because for SimVal the actual simulation work is

already done and the results are represented as events in the ideal-trace. For instance,

the transmission of Node A in Figure 6.1 is represented by the TX event in the ideal-

trace of Figure 6.2. SimVal does not need to know why there is a TX event at TS1 since

83

it is the output of the original simulation from which the ideal-trace is constructed. In

addition, it is significantly easier to use SimVal to evaluate different tradeoffs and speedup

techniques for distributed simulations because we can change their effects on resource-

contention-time and causality-preservation-time easily during the playback process. For

instance, a commonly used technique to reduce state saving overhead and memory usage

in optimistic simulations is to save the incremental changes from the previous saved state

rather than the entire new state. However this increases the rollback overhead since the

state to rollback to has to be recovered from the incremental changes. With SimVal,

we can quickly prototype and study this tradeoff by just changing the corresponding

overhead numbers in the optimistic playback process. Similarly, we can use SimVal to

evaluate simulation performance over different hardware architectures such as SMPs or

clusters.

6.2.1 Ideal-Trace

Ideal-traces cannot be collected directly from an actual simulation because un-

avoidably all simulation approaches would introduce overhead times due to resource-

contention or causality-preservation. However, we can construct an ideal-trace from

a normal simulation trace by removing the resource-contention-time as well as the

causality-preservation-time from the wallclock time of the events in the normal trace.

For example, a normal trace for simulating the scenario in Figure 1.1 can be collected by

logging the simulation events of each node as they occur in an actual simulation using the

conservative approach. From this normal trace, we know that Node B waits for Node A

from Tw0 to Tw1 and that time can be removed from the wallclock time of all the future

events of Node B when building the ideal-trace. Normal traces can be collected using

any distributed or sequential simulation approaches as long as we can keep track of the

resource-contention-time and the causality-preservation-time in a simulation. For exper-

iments in this chapter, normal traces are collected with distributed PolarLite simulator

[JG08, JG09a]. However, with appropriate loggings, we could also collect normal traces

using sequential simulators such as TOSSIM [LLWC03]. This is discussed in detail in

Section 6.4.

Only certain types of events are required in an ideal-trace for evaluating the

performance of the conservative and optimistic approaches in simulating WSNs. This

is because for WSNs, nodes only interact with each other via radio messages. In other

84

words, causality only occurs when a node reads from or writes to the wireless channel.

Therefore, for evaluating WSN simulators, we only need to log channel read (RX), chan-

nel write (TX) and channel switch events in a simulation run besides keeping track of

events that correspond to resource-contention-time and causality-preservation-time.

6.3 SimVal

The core of SimVal is a scheduler that drives the event playback process. The

SimVal playback-scheduler works in two separate steps: schedule nodes onto virtual

CPUs and schedule events of the nodes running on the virtual CPUs. A virtual CPU

has no correlations to the CPUs on which SimVal is executed. It is just a program-

ming construct in the SimVal scheduler that represents a CPU on which the sensor

nodes are simulated. The number of virtual CPUs is specified before a playback starts

and the nodes and events are scheduled the same way as in a real simulation. When

scheduled events are processed, overhead times due to resource-contention and causality-

preservation are introduced and new events are created according to the specific simula-

tion approach and algorithms under evaluation. Once all currently scheduled events are

processed, the SimVal playback-scheduler is invoked again to schedule the future events,

including the newly created ones, for processing. This process continues until all events

are scheduled and processed. We describe how the SimVal playback-scheduler works for

the conservative and optimistic approaches separately in Sections 6.3.1 and 6.3.2 using

the following notations:

• W : Wallclock time. W10 means at wallclock time 10.

• S: Simulation time. S10 means at simulation time 10.

• O: Overhead time from resource-contention or

causality-preservation. O10 means 10 units of overhead time.

• N(w, s): Node N at wallclock time w and simulation time s.

• N(w, s, o): Node N at wallclock time w, simulation time s and with o units of

overhead time to be introduced.

85

6.3.1 Conservative Playback

The conservative scheduling algorithm of SimVal is presented in Algorithm 3.

With the conservative simulation approach, a simulated node can be in one of four

states: running, waiting, runnable and terminated. A node is in the running state if

it is actively being simulated on a CPU. A waiting node is a node that is waiting for

outputs from other nodes due to the causality constraints. In other words, a waiting node

cannot be simulated any further until the conditions that it is waiting for are satisfied.

A runnable node is a node that is not in the waiting state but cannot be simulated due

to the lack of physical resources such as CPUs. A terminated node is a node that no

longer needs to be simulated.

Algorithm 3: SimVal Conservative Playback-Scheduler

Require: nl /*a list of nodes*/

Require: cl /*a list of virtual CPUs*/

1: while ∃ unterminated nodes in nl do

2: for every freeCPU in cl do

3: if ∃ a runnableNode in nl then

4: Schedule runnableNode to freeCPU

5: end if

6: end for

7: /*Find the events to schedule next*/

8: st = MIN /*set schedTime to the min*/

9: for every running node

N(wcur, scur, ocur)→(wnext, snext, onext) in nl do

10: if st < (wnext − wcur + ocur) then

11: st = wnext − wcur + ocur

12: end if

13: end for

14: /*Advance running nodes and schedule events*/

15: for every running node

N(wcur, scur, ocur)→(wnext, snext, onext) in nl do

16: if st == (wnext − wcur + ocur) then

17: Add events at N(wnext, snext, onext) to N.processQueue

18: else

86

RX(S5)

TX(S5)

Node B

Node A

W2 W8
Wallclock Time

RX(S6)

W6

TX(S10)

W11

RX(S9)

W9

Figure 6.3: The trace of simulating a wireless sensor network with two nodes that are

in direct communication range of each other.

19: Advance N to

20: N(wcur + st, scur, ocur)→(wnext, snext, onext)

21: end if

22: end for

23: /*Process scheduled events*/

24: for every running node N with scheduled events do

25: for every event e in N.processQueue do

26: Advance N to e

27: Process e

28: end for

29: end for

30: end while

Similar to the scheduler in a conservative simulator, the SimVal conservative

playback-scheduler assigns one runnable node to each virtual CPU at the beginning of

the playback process. After that, it performs a new assignment whenever a node enters

into the waiting or terminated state and there are runnable nodes left. The specific order

on which the nodes are assigned to the virtual CPUs depends on the specific scheduling

policy under evaluation [SMB00]. Once nodes are assigned to the virtual CPUs, the

events of the running nodes are scheduled and processed. The details of how the events

are scheduled and processed can be best described using the so-called playback-state.

87

The playback-state of a simulated Node N consists of two sub-states: the current

state N(wcur, scur, ocur) and the next state N(wnext, snext, onext). The current state is

the latest state of a node in the playback process while the next state is where the node

will advance to next. The states are driven by the events in the input ideal-trace as well

as new events created during the playback. For example, if we denote a playback-state

with N(wcur, scur, ocur)→N(wnext, snext, onext), then at the beginning of playing back the

ideal-trace in Figure 6.3, the initial playback-states of nodes A and B are A(0, 0, 0)→

A(8, 5, 0) and B(0, 0, 0)→B(2, 5, 0) respectively. A(0, 0, 0) and B(0, 0, 0) are the default

beginning states while A(8, 5, 0) and B(2, 5, 0) represent the first events of the two nodes

in Figure 6.3 and are where the nodes will advance to next.

Once the initial playback-states are established, the events to schedule next

are determined by the playback-states of the running nodes that have the minimum

advanceT ime, which is defined as wnext − wcur + ocur, among all running nodes. In

other words, the earliest events of the running nodes are scheduled next and multiple

events can be scheduled at the same time. It is important to note that the difference of

the wallclock time wnext − wcur represents the actual time (wallclock) it takes in a real

simulation to process the current event and advance to the next event. In other words, it

represents the real-work-time as defined in Section 6.2. The wallclock times of events are

never used alone because individually they carry no meaning in the context of playback.

The ocur part of advanceT ime is used to introduce overhead times and we will discuss

that later in this section. This process is repeated to schedule remaining events once all

currently scheduled events are processed.

Scheduled events are processed on line 27 of Algorithm 3. The event processing

step injects simulation overheads into the playback process by creating new events ac-

cording to the specific event under processing as well as the specific simulation approach

and algorithms under evaluation. Since the event processing step is an integral part of

the event scheduling process, we describe it along with the event scheduling steps using

a concrete example.

For example, when we play back the ideal-trace in Figure 6.3 with a conser-

vative playback-scheduler on two virtual CPUs, Nodes A and B are scheduled onto

the CPUs as running nodes at first and the initial playback-states are initialized to

A(0, 0, 0)→A(8, 5, 0) and B(0, 0, 0)→ B(2, 5, 0) accordingly. Then according to the min-

imum advanceT ime which is 2, the RX event at B(2, 5) is scheduled first and the nodes

88

advance to A(2, 0, 0)→ A(8, 5, 0) and B(2, 5, 0)→B(6, 6, 0) to process the RX event. Ac-

cording to the conservative approach, after processing the RX event at B(2, 5), Node B

needs to synchronize with Node A (to avoid deadlock) by sending its simulation time

to Node A and wait at S5 (to preserve causality) until the simulation time of Node A

reaches S5. To model this, when the RX event is processed, the SimVal conservative

playback process first injects the synchronization overhead time (syncT ime), the time it

takes for Node B to perform a synchronization, into the playback process. This is done by

creating a new synchronization-completion event at B(2 + syncT ime, 5, syncT ime) and

updating the playback-state of Node B to B(2, 5, 0)→B(2 + syncT ime, 5, syncT ime).

Let us assume without loss of generality that syncT ime equals 1 unit of time,

then the next event to schedule is at B(3, 5, 1) and the running nodes advance to

A(3, 0, 0)→A(8, 5, 0) and B(3, 5, 1)→B(6, 6, 0) to process the synchronization completion

event of Node B. When the synchronization completion event is processed, the SimVal

conservative playback process creates a new synchronization event and adds that to the

event list of Node A. This new event contains the current simulation time of Node B and

the current wallclock time of Node A so Node A can process the event later on as if it

is in a real simulation. Additional overhead times and events could be introduced simi-

larly, e.g., the overhead time that Node A needs to process a synchronization message.

A complete list of overhead times supported by SimVal can be found in Section 6.4.

Assume, for ease of explanation, that no other overhead times are introduced and

therefore Node B is put into the waiting state right away as a result of finishing processing

the synchronization completion event at B(3, 5, 1). Then the next event to schedule is

the TX event at A(8, 5) and the running node advances to A(8, 5, 0)→A(11, 10, 0) while

the waiting node remains at B(3, 5, 1)→B(6, 6, 0). After processing the TX event, let

us assume again for ease of explanation that without any extra overheads, Node B is

activated right away. Then the next event to schedule is the TX event at A(11, 10).

The RX event at B(6, 6) is not scheduled because it has an advanceT ime of 4 due to

the 1 unit of overhead time from performing the synchronization. The overhead time

is crucial in calculating the advanceT ime as the physical time to reach the next event

is delayed by that amount. To process the TX event at A(11, 10), the running nodes

advance to A(11, 10, 0)→ A(end, end, 0) and B(6, 5, 1)→ B(6, 6, 0), and the simulation of

Node A is terminated. After that, the active node will advance to B(6, 6, 0)→B(9, 9, 0).

The overhead time is cleared once an event from the ideal-trace is processed. This is

89

because the next events to schedule are determined by the physical time difference from

the current event rather than the absolute physical time of the next event. Finally, Node

A advances to B(9, 9, 0)→B(end, end, 0) and terminates.

Once the entire playback process is over, we can find how much wallclock time has

advanced for each node and the largest one is the estimated execution time. Execution

time is the amount of time that it takes to complete the simulation using the specific

simulation approach and algorithms under evaluation.

6.3.2 Optimistic Playback

The SimVal optimistic scheduling algorithm is similar to the conservative one

in Algorithm 3. In fact, we could use the same playback-scheduler to evaluate the

performance of the optimistic approach by changing the event processing step on line 27

of Algorithm 3 to introduce overhead times and new events according to the optimistic

approach and algorithms. However, the optimistic playback scheduler generally needs

to support a more sophisticated scheduling algorithm in assigning Nodes to CPUs. This

is because with the optimistic approach, simulated nodes do not need to wait for each

other due to causality constraints and therefore can only be in one of 3 states: running,

runnable and terminated. If there are more nodes than the number of CPUs and some

nodes are simulated first, it becomes important for performance reasons to prevent the

simulation time of the nodes from falling far apart. Otherwise, incorrect paths can be

simulated in places of correct ones causing large number of rollbacks. For instance, when

we simulate the scenario in Figure 6.4 on two CPUs and pick Nodes A and B to simulate

first, if Nodes A and B are simulated all the way to the end, both A and B will be rolled

back to the very beginning once Node C is simulated to C(2, 4). A common scheduling

policy to reduce such rollbacks is to simulate in a round robin fashion each node for a

certain amount of events or time [Fuj99b].

Rollbacks can occur under two conditions in optimistic simulations of WSNs.

The first condition is when a node receives a transmission from the past (in simulation

time) and the node, in RX mode at the transmission time, did not guess correctly

the occurrence or the content of the transmission. When that happens, the node may

need to roll back to a saved state with a simulation time stamp that is less or equal

to the simulation time of the transmission and this type of rollback is called primary-

rollback [Fuj99b]. The second condition happens after a primary-rollback. If a node has

90

RX(S5)

TX(S5)
Node B

Node A

W4 W8

Wallclock Time

RX(S10)

W6

TX(S10)

W15

Node C

RX(S4)

W17

Guess

TX(S4)

W2

Figure 6.4: The ideal-trace of simulating a wireless sensor network with three nodes

that are in direct communication range of each other.

made transmissions in the future of the rollback time, all other nodes that have received

the transmissions may also need to roll back and this type of rollback is referred as

secondary-rollback [Fuj99b]. In other words, if a node makes a wrong guess at time Sx,

the node eventually has to roll back to Sx regardless of what path the node has taken

and withdraw all the messages it has transmitted over that wrong path. This is the

key that we can use the ideal-trace to evaluate the optimistic approach without knowing

the wrong paths. For example, if we play back the trace of Figure 6.4 optimistically

on 1 CPU and pick Nodes B to simulate first, Node B will make a guess at B(6, 4). If

the guess at B(6, 4) is wrong, then Node B will have different internal states and follow

a different path. However, regardless of what has happened over that path, once the

transmission at C(4, 2) is received, Node B must roll back to B(6, 4) and withdraw all

the transmissions it has made over the wrong path.

Transmissions or messages are typically withdrawn by sending anti-messages

[Jef85]. An anti-message is identical to the message it is supposed to withdraw except it

contains an extra field indicating that it is for cancellation purposes. After receiving an

anti-message, a node either deletes the original message if it has not been processed or

rolls back to a saved state with simulation time non-greater than the simulation time of

the message that needs to be withdrawn.

91

The number of messages that need to be withdrawn after a wrong guess largely

depends on the sensor node programs under simulation and what optimization tech-

niques, such as lazy cancellation [Gaf88, Fuj99b], are used. It is important to note that

the messages that need to be withdrawn come from simulation artifacts and a special

mechanism has to be provided in an optimistic simulator to deal with unhandled errors

of nodes when unexpected messages are received. Since a receiver of the messages only

needs to roll back to one of the messages that has the smallest time stamp if a rollback is

required, we abstract the message-withdraw-probability as an input to the SimVal play-

back process. Specifically, the message-withdraw-probability of a node is represented in

SimVal as the probability that the node will withdraw a message one look-ahead time

after the rollback time. This not only allows us to fine tune SimVal for different simu-

lation scenarios but also enables us to evaluate any speedup techniques that effectively

reduce the number of messages need to be withdrawn.

6.4 Implementation

The trace collection process is implemented in PolarLite [JG08, JG09a], a con-

servative distributed simulation framework developed based on the Avrora simulator

[TLP05] as described in Chapter 3. PolarLite provides the same level of cycle accurate

simulation as Avrora but uses a distributed synchronization engine instead of Avrora’s

centralized one.

Like any other discrete event driven simulators, PolarLite is driven by events and

each event is processed by a handler (function) that is specific to that event. This makes

trace collection straightforward since we only need to add logging code to the beginning

or end of the handlers that process the events of interest. The exact same technique

can be used to collect traces from any other event driven simulators such as TOSSIM

[LLWC03]. TOSSIM is a sequential simulator but from the trace collection point of

view, the only difference between PolarLite and TOSSIM is that events in PolarLite are

dispatched from multiple event queues (one for each note) but from a single shared global

queue in TOSSIM. For sequential simulators, we do not need to collect synchronization

overheads since events are synchronized naturally by the shared global queue.

The types of simulation events collected from PolarLite as normal traces are

listed in Table 6.1. Each event is represented in the traces by a 4-tuple as described in

Section 6.2. The radio-TX/RX-on events in Table 6.1 are collected for evaluating certain

92

Table 6.1: Trace events

Event type Description

Trace start/stop Start and stop of a trace

Channel read/write Channel access

Radio TX on/off Radio in/out of TX mode

Radio RX on/off Radio in/out of RX mode

Sync start/stop The beginning and end
of a synchronization

Wait start/stop The beginning and end of
a waiting period

Safe-time update The beginning and end of
start/stop updating the earliest input time

Table 6.2: Supported conservative overheads

Overhead Type Description

Sync send Overhead time in
overhead sending a sync message

Sync receive Overhead time in
overhead processing a sync message

Context switch Overhead time of putting a
overhead running node into sleep and

scheduling a waiting node to run

Safe-time update Overhead time of updating
overhead the earliest input time

speedup techniques [JG09a] but are not used in our current implementation. The safe-

time-update events occur when a node needs to update the earliest input time which

is the node’s latest view of the earliest simulation time of the neighboring nodes. The

safe-time is used to check if it is safe to read the wireless channel without causing any

causality violations.

With trace-enabled PolarLite, normal simulation trace of each node is collected

separately and kept in memory during a simulation. They are written to the disk in a

single file once the simulation is completed. When a playback starts, we check if the

input file contains a normal simulation trace and if so construct an ideal-trace from that.

Ideal-traces are constructed in SimVal by removing the synchronization and wait-

ing time from the events in our normal traces. Note that resource-contention-time,

which is a part of the waiting time, is calculated from the trace-start-time and wait-

93

Table 6.3: Supported optimistic overheads

Overhead Type Description

Anti-Message Overhead time in sending
send overhead an anti-message

Anti-Message Overhead time in
receive overhead processing an anti-message

State saving Overhead time in
overhead performing a state saving

Rollback Overhead time in
overhead performing a rollback

Context switch Overhead time of putting a
overhead running node into sleep and

scheduling a waiting node to run

start/stop-time in Table 6.1. The average overhead time of logging an event is measured

experimentally and removed as well when the ideal-traces are constructed.

The playback process of SimVal is implemented in a separate program called

AnTrace. AnTrace reads in an ideal-trace, performs the playback according to the speci-

fied inputs such as the type of simulation approach and the number of virtual CPUs and

reports the estimated simulation speed once the playback is completed. In the current

implementation, the types of overheads that are introduced into the SimVal playback

process are listed in Table 6.2 and 6.3 for the conservative approach and the optimistic

approach respectively. Note that we combine the context-out overhead, the schedul-

ing overhead and the context-in overhead into the context switch overhead since the

corresponding events almost always occur in sequence. For optimistic simulations, the

safe-time is mainly used by some speedup techniques and we do not yet support the

safe-time-update-overhead in the optimistic playback process. The current conservative

scheduler for assigning nodes to virtual CPUs is implemented as in Algorithm 3. Its

optimistic counterpart is implemented as a round-robin scheduler.

Besides supporting the classic conservative simulation protocol [CM81], we also

implement in AnTrace a speedup technique called LazySync which can significantly im-

prove the speed of conservative WSN simulators by reducing the number of synchroniza-

tions [JG09b]. This allows us to evaluate the performance of the conservative approach

with or without a speedup technique. The implementation of the LazySync algorithm is

straightforward in SimVal since SimVal is sequential by nature and therefore one does

94

not need to worry about the complexity of writing actual parallel programs. Running

in sequential does not slow down SimVal significantly since by using ideal-trace, Sim-

Val does not need to perform the actual simulation work like a real simulator does as

described in Section 6.2.

We also implement a classic optimistic simulation protocol [Jef85] in AnTrace

to evaluate the performance of the optimistic approach. In the current implementation,

a state saving is performed for each channel read event (RX). In addition, a node al-

ways assumes no transmissions when it needs to guess because otherwise it has to guess

the content of a transmission as well, which is difficult. No speedup techniques are im-

plemented for the optimistic approach since we can model many of the techniques by

adjusting the overhead times or controlling certain inputs to the playback process such

as the message-withdraw-probability.

6.5 Evaluation

In this section, we conduct a series of experiments to evaluate SimVal and use

SimVal as the tool to study the performance of both the conservative and optimistic

approaches in simulating WSNs. For these experiments, simulation traces for different

types of WSNs are collected first by simulating them with trace-enabled PolarLite on 2 of

the 8 processors (Intel Xeon 2.0GHz) of a SMP server. The 2-CPU simulation traces are

subsequently given to SimVal as inputs to estimate the performance of the conservative

and optimistic approaches with various speedup techniques and on different numbers of

CPUs.

Actual performance results for the conservative approach are also collected by

simulating the same WSNs with non-trace-enabled PolarLite on the same server using

different numbers of physical CPUs (cores). These actual measurements are used to

validate the corresponding estimations from SimVal. The server runs Linux 2.6.31 with

8GBytes of RAM. Sun’s Java 1.6.0 is used to execute both PolarLite and AnTrace.

Simulation speed in units of MHz is calculated with Equation (6.1).

Speed =
total number of simulated clock cycles/106

(execution time)× (number of nodes)
(6.1)

The simulation overheads used to evaluate the conservative approach in the ex-

periments (Table 6.2) are based on the average of those collected from real simulation

95

runs of non-trace-enabled PolarLite. Overheads beyond 8 CPUs cannot be collected di-

rectly since the server has only 8 CPUs. We instead collect the overheads using 1 to 7

CPUs and based on that linearly extrapolate the rest. The overheads for 8 CPUs are

not collected since the process is likely to be interfered by other running processes. The

overheads are presented in detail with the experiments.

For fair evaluations, the same overheads are also used to evaluate the optimistic

approach when applicable. The overhead for sending or receiving an anti-message is set

to be the same as sending or receiving a sync message since the two messages are very

similar in size. We choose the state saving overhead and the rollback overhead to be the

same as the context switch overhead because similar to a context switch, necessary states

are saved or restored. For instance, a state saving would need to read the current state

and save (write) it to memory. Note that in an actual optimistic simulation, memory

occupied by safe state has to be released so new states can reuse them. We amortize

those overheads into each state saving and rollback overhead.

If there are more nodes than the number of virtual CPUs in evaluating the op-

timistic approach, the round-robin scheduler is configured to simulate each node for

8000000ns of wallclock time before swapping in other nodes. This provides very good

performance based on our experiments. Note that similar experiments have to be done

in real optimistic simulations as well to find an interval that provides good performance.

The message-withdraw-probability for non-transmitting nodes is set to be 0%. We also

apply a 0% message-withdraw-probability to all the nodes throughout the experiment to

provide reference points. For nodes that transmit packets, we experiment with message-

withdraw-probabilities of 50% and 25%. This would give us a range of performance

for cases where speedup techniques such as lazy cancellation are used to control such

probabilities. We use the CountSend (sender) and CountReceive (receiver) programs

from the TinyOS 1.1 distribution for our experiments. CountSend broadcasts the value

of a continuously increasing counter at a fixed interval. CountReceive listens for trans-

missions from CountSend and displays the last received value on LEDs. These pro-

grams are similar to what other WSN simulators use in evaluating their performance

[LLWC03, TLP05, WWM07]. Simulations are carried out by executing the programs

on simulated Mica2 nodes [Cro08] and the starting time of each node is separated 10

clock cycles (ATMega128L microcontroller [Atm03]) apart. All simulations are run for

10 seconds of simulation time.

96

1 2 3 4

Number of CPUs

10

15

20

25

30

35

S
im

u
la
ti
o
n
S
p
e
e
d
(M

H
z
)

Actual (PolarLite)

Estimate (SimVal)

Figure 6.5: Actual and estimated simulation speed with the conservative approach on

different numbers of CPUs (1 hop, 3 receivers and 1 sender)

6.5.1 Accuracy of SimVal

In this section, we conduct two sets of experiments to evaluate the accuracy of

SimVal. In the first set of experiments, we simulate a WSN of 4 nodes. The 4 nodes

consist of 1 sender and 3 receivers and all the nodes are within direct communication

range of each other. The sender transmits a packet every 250ms and receivers are

modeled as sink nodes that never transmit.

Figure 6.5 shows the actual measured speeds of simulating the WSN with non-

trace-enabled PolarLite on 1 to 4 CPUs, as well as the estimated simulation speeds

reported by SimVal using the conservative approach and the same numbers of virtual

CPUs. As described earlier in this section, SimVal estimates the simulation speeds

using a simulation trace collected from simulating the 4-node WSN with trace-enabled

PolarLite on 2 CPUs. The overheads used for the estimation are shown in Figure 6.6.

These overheads are based on actual measurements as described before and we notice

that there is a significant increase of context-switch overhead from 1 to 2 CPUs. This

is because when there is more than one CPU (core), threads may get moved across the

CPUs during context switches. We also see in Figure 6.6 significant increases of sync-

97

1 2 3 4

Number of CPUs

0

5000

10000

15000

20000

25000

30000

35000

40000

O
v
e
rh

e
a
d
T
im

e
(n

S
)

Sync receive

Sync send

Context switch

Safe-time update

Figure 6.6: Simulation overheads on different numbers of CPUs (1 hop, 3 receivers and

1 sender)

1 2 3 4

Number of CPUs

340000

360000

380000

400000

420000

440000

460000

480000

500000

520000

T
o
ta
l
N
u
m
b
e
r
o
f
S
y
n
ch

ro
n
iz
a
ti
o
n
s

Actual (PolarLite)

Estimate (SimVal)

Figure 6.7: Actual and estimated total number of synchronizations with the conserva-

tive approach on different numbers of CPUs (1 hop, 3 receivers and 1 sender)

98

1 2 3 4

Number of CPUs

0

10000

20000

30000

40000

50000

60000

70000

80000

T
o
ta
l
N
u
m
b
e
r
o
f
C
o
n
te
x
t
S
w
it
c
h
e
s

Actual (PolarLite)

Estimate (SimVal)

Figure 6.8: Actual and estimated total number of context switches with the conserva-

tive approach on different numbers of CPUs (1 hop, 3 receivers and 1 sender)

receive and sync-send overheads from 3 to 4 CPUs. This is due to the fact that sending

and receiving messages in PolarLite requires atomic access to shared variables (memory).

With 4 CPUs, all 4 nodes can run in parallel and the probability for them to wait for

the shared accesses increases. Similarly, the safe-time-update overhead also increases

significantly from 3 to 4 CPUs. Figure 6.7 and Figure 6.8 correspond to Figure 6.5 and

show the actual and estimated total number of synchronizations and total number of

context switches respectively. We can see that the estimated numbers match well with

the actual ones.

The second set of experiments is similar to the first one except that we simulate

a more sophisticated WSN with 12 senders and 12 receivers. The senders and receivers

are configured to be the same as the ones in the first set of experiments and all nodes

are within direct communication range of each other. The actual and estimated speeds

of simulating this WSN with the conservative approach on different numbers of CPUs

are shown in Figure 6.9. We can see that the estimated results match closely with the

actual ones and the largest estimation error is around 5.8% under 7 CPUs. The actual

simulation speeds in Figure 6.9 are collected by using up to 7 out of a total of 8 CPUs of

99

2 3 4 5 6 7 8
Number of CPUs

0

1

2

3

4

5

Si
m

ul
at

io
n

Sp
ee

d
(M
H
z)

Actual (PolarLite)
Estimate (SimVal)

Figure 6.9: Actual and estimated simulation speed with the conservative approach on

different numbers of CPUs (1 hop, 12 receivers and 12 senders)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Number of CPUs

0

10000

20000

30000

40000

50000

O
ve

rh
ea

d
Ti

m
e

(n
S
)

Sync receive
Sync send
Context switch
Safe-time update

Figure 6.10: Simulation overheads on different numbers of CPUs (1 hop, 12 receivers

and 12 senders)

100

2 3 4 5 6 7
Number of CPUs

0

20

40

60

80

100

D
iff

er
en

ce
 (
%

)

Difference of the total number of synchronizations
Difference of the total number of context switches

Figure 6.11: The percentage difference of the actual and estimated total number of syn-

chronizations and context switches with the conservative approach on different numbers

of CPUs (1 hop, 12 receivers and 12 senders)

the server. Not all the CPUs are used to avoid the interference of other running processes

to the experiments. The overheads for simulating the WSN are shown in Figure 6.10.

For this experiment, only those overheads for 2 to 7 CPUs are used and they are based

on actual measurements. Compared to the overheads in the first set of experiments

(Figure 6.6), we see an increase of the context switch overhead. This is due to the

increased cost of thread scheduling which is performed via a shared semaphore (FIFO)

in PolarLite. This is also caused by the increased overhead in moving threads across the

boundary of the two physical processors (4 cores each) on the server when the number

of the CPUs used in the experiments is more than 4.

Figure 6.11 corresponds to Figure 6.9 and shows the percentage differences of the

actual and estimated total numbers of synchronizations and context switches with the

conservative approach on different numbers of CPUs. We can see that with an error of

less than 4.3%, the estimation for the total number of synchronizations is very accurate.

The estimation for the total number of context switches has a maximum error of 13.2%

under 6 CPUs. We believe this is because the total number of context switches in the

experiments is more sensitive to the order the nodes are simulated when there are more

nodes than the number of CPUs. In SimVal, the nodes are scheduled strictly following

101

the ascending order of the Node IDs but in real simulations the order can change due to

concurrent events. For instance, two waiting nodes can be awoken at the same time by

some different running nodes but only one of the awoken ones can be scheduled to run

due to the lack of CPUs. In such a case, SimVal always schedules the node with a smaller

ID first. However, in a real simulation, any one of the nodes can be selected to simulate

first. It is important to note that simulation speed is not just affected by the number of

context switches or synchronizations. It is also determined by how efficiently the CPUs

are used for parallel simulations. In the worst case scenario, a node may become the

bottleneck causing all other nodes to wait for it. As a result, only one CPU is actively

used at that time.

6.5.2 Conservative vs. Optimistic in Simulating Single-hop WSNs

In this section, we use SimVal as a tool to study the performance of the conser-

vative and optimistic approaches in simulating single-hop WSNs. The setup of our first

experiment is the same as the last experiment in Section 6.5.1 (Figure 6.9). Basically,

we evaluate the performance of simulating a WSN of 24 nodes that are within direct

communication range of each other. The WSN consists of 12 senders and 12 receivers.

Each sender transmits a packet every 250ms and receivers are modeled as sink nodes

that never transmit.

Figure 6.12 shows the estimated speeds, reported by SimVal, in simulating the

WSN with both the conservative and optimistic approaches on 2 to 24 CPUs. The actual

measured simulation speeds with the conservative approach using 2 to 7 CPUs are also

shown in Figure 6.12 as references. As shown in Figure 6.12, the optimistic approach is

significantly more scalable over the number of CPUs than the conservative one. In other

words, the optimistic approach can better take advantage of the increased parallelism

in the simulation when the number of CPUs increases. The parallelism in a distributed

simulation increases with the number of CPUs because more nodes can be simulated in

parallel on the CPUs, as long as the number of CPUs is less than the number of nodes.

However, the conservative approach, especially with the LazySync speedup technique,

provides faster simulation speed when the number of CPUs is small. This suggests if

there are not enough number of CPUs to simulate nodes in parallel, or in other words, the

ratio of the number of nodes over the number of CPUs is high, the conservative approach

can provide a better performance in terms of simulation speed. The overheads used by

102

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Number of CPUs

0

5

10

15

20

25

Si
m

ul
at

io
n

Sp
ee

d
(M
H
z)

Conservative (Actual)
Conservative (Estimate)
Conservative with LazySync (Estimate)
Optimistic with 0% withdraw probability for senders
Optimistic with 25% withdraw probability for senders
Optimistic with 50% withdraw probability for senders

Figure 6.12: Estimated simulation speeds with the conservative and optimistic ap-

proaches (1 hop, 12 receivers and 12 senders)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Number of CPUs

0

5

10

15

20

25

Si
m

ul
at

io
n

Sp
ee

d
(M
H
z)

Conservative (Actual)
Conservative (Estimate)
Conservative with LazySync (Estimate)
Optimistic with 0% withdraw probability for senders
Optimistic with 25% withdraw probability for senders
Optimistic with 50% withdraw probability for senders

Figure 6.13: Estimated simulation speeds with the conservative and optimistic ap-

proaches (1 hop, 6 receivers and 18 senders)

103

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Number of CPUs

0

10000

20000

30000

40000

50000

O
ve

rh
ea

d
Ti

m
e

(n
S
)

Sync receive
Sync send
Context switch
Safe-time update

Figure 6.14: Simulation overheads on different number of CPUs (1 hop, 6 receivers

and 18 senders)

SimVal for these evaluations are shown in Figure 6.10. Among them, the overheads for

8 or more CPUs are linearly extrapolated from the overheads of 5 to 7 CPUs. To keep

the overheads consistent, we also ensure that the sync-send overhead never exceeds the

sync-receive after the linear extrapolations.

Our second set of experiments is similar to the first one in this section except

that we increase the number of senders in the WSN to 18 and reduce the number of

receivers to 6. This allows us to study the performance of the conservative and optimistic

approaches in a busier WSN, a network that has more transmissions. The estimated

simulation speeds for this WSN are shown in Figure 6.13. Compared to Figure 6.12, we

can see that the optimistic approach has worse performance in a busier network but can

still outperform the conservative approach if the ratio of the number of nodes over the

number of CPUs is high enough to allow sufficient parallelism in the simulation. On the

other hand, the performance of the conservative approach is not affected by the increased

transmissions. The overheads used for evaluating the WSN are shown in Figure 6.14.

They are comparable to the ones in Figure 6.10.

104

6.5.3 Conservative vs. Optimistic in Simulating Multi-hop WSNs

In the multi-hop experiments, we use SimVal to study the performance of the

conservative and optimistic approaches in simulating a WSN service that floods data to

every node in a multi-hop WSN. This service works by having every node in the WSN

relay, by broadcasting, messages it receives. To avoid sending duplicate messages, a relay

node only forwards messages with IDs greater than the largest IDs of the messages it

has already sent.

For experiments in this section, we modify CountReceive to relay messages the

way we just described. The WSN we simulate has 25 nodes laid 10 meters apart on

a 5 by 5 grid. A corner node is configured as the sender and the rest of nodes are

configured as relaying nodes (forwarders) running the modified CountReceive program.

The sender transmits a new packet every 500ms with an increasing ID. All radios are

duty cycled by setting the B-MAC radio-level duty cycling mode [PHC04] to 4 (185ms).

The transmission range of all nodes is set to 19 meters.

Based on the estimated simulation speeds from SimVal, Figure 6.15 compares

the performance of the conservative and optimistic approaches in simulating the WSN

with 2 to 24 CPUs. We can see that in the multi-hop scenario, the optimistic approach is

also more scalable over the number of CPUs than the conservative one. Unlike the cases

in the previous single-hop experiments, the performance of the optimistic approach is

very close to the conservative one when the number of CPUs is small. This suggests that

the optimistic approach can naturally take advantage of the duty cycling latency in the

network. However, with LazySync, the conservative approach also scales well with the

number of CPUs in this experiment and outperforms the optimistic approach when the

number of CPUs is less than 16. In addition, the conservative approach can also benefit

from the delays using the speedup techniques proposed in [JG09a]. Figure 6.15 also

shows that the message-withdraw-probability has little effect toward the performance of

the optimistic approach in this experiment. This is because compared to the previous

single-hop experiments, there are a smaller number of transmissions in this WSN due

to increased transmission interval and duty cycling. This leads to a smaller number

of rollbacks in the optimistic simulations. The overheads used for this experiment are

comparable to the ones in Figure 6.10.

To study the performance of the conservative and optimistic approaches over

a quieter multi-hop network, we increase the sender’s transmission interval in the pre-

105

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Number of CPUs

0

5

10

15

20

25

30

35

40

Si
m

ul
at

io
n

Sp
ee

d
(M
H
z)

Conservative (Actual)
Conservative (Estimate)
Conservative with LazySync (Estimate)
Optimistic with 0% withdraw probability for all nodes
Optimistic with 25% withdraw probability for all nodes
Optimistic with 50% withdraw probability for all nodes

Figure 6.15: Estimated simulation speeds with the conservative and optimistic ap-

proaches (multi-hop, 24 forwarders and 1 sender, 500ms transmission interval)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Number of CPUs

0

5

10

15

20

25

30

35

40

Si
m

ul
at

io
n

Sp
ee

d
(M
H
z)

Conservative (Actual)
Conservative (Estimate)
Conservative with LazySync (Estimate)
Optimistic with 0% withdraw probability for all nodes
Optimistic with 25% withdraw probability for all nodes
Optimistic with 50% withdraw probability for all nodes

Figure 6.16: Estimated simulation speeds with the conservative and optimistic ap-

proaches (multi-hop, 24 forwarders and 1 sender, 1000ms transmission interval)

106

vious experiment to 1000ms and the results are shown in Figure 6.16. Compared to

Figure 6.15, we can see that the increase of transmission interval further improves the

relative performance of the optimistic approach and the improvements are consistent

over the entire CPU range. We can also see that the performance of the conservative ap-

proach improves as well and with LazySync the conservative approach still outperforms

the optimistic one when the number of CPUs is less than 16. The overheads used for

this experiment are also comparable to the ones in Figure 6.10.

6.6 Related Work

The trace based evaluation technique of SimVal is similar in concept to trace-

driven simulations [UM97]. Trace-driven simulations are commonly used to study the

performance of various algorithms or techniques based on traces collected from real sys-

tems. For example, a trace-driven memory simulation collects memory access traces

from real computers and uses that to evaluate the performance of different cache proto-

cols. Similarly, with SimVal, traces of various simulation events are collected from actual

simulations and used to evaluate the performance of different simulation approaches and

algorithms.

There is a large body of research on evaluating the performance of the conserva-

tive and optimistic approaches in simulating many different types of applications. They

are either based on direct comparisons [QB95, Fuj99b] or rely heavily on analytic meth-

ods [ACD+92, Nic93, TTA98, Son01]. For example, the experiments in [QB95] directly

compare the performance of the conservative and optimistic approaches on simulating

the memory hierarchies of some multiprocessor systems using 12 CPUs and show that

the performance of the optimistic approach is slightly better. The author in [Nic93]

analyzes the performance of the conservative approach based on a stochastic model and

shows that a great deal of work can be done in parallel if there is a great deal of concur-

rent activity in the simulation models. Analytical approaches generally require a deep

understanding of the application under simulation so important properties can be ex-

tracted to construct the appropriate analytical models. However, this is not easy in the

case of simulating WSNs due to the complexity of the simulation models, the intricate

interactions of a large number of sensor nodes, and the fact that there exist significant

amounts of diversity in WSNs and their applications. In addition, the performance of

the optimistic approach is very difficult to analyze and even most advanced analytical

107

models are limited to certain simulation schemes [TTA98].

6.7 Summary

In this chapter, we have presented a technique to evaluate the performance of

the conservative and optimistic simulation approaches based on simulation traces. The

technique is independent of the trace collection process and separates the simulation

overheads from the actual simulation algorithms. This makes it possible to use the same

traces to quickly prototype and study the performance of both approaches with any

design tradeoffs, speedup techniques and optimizations. In addition, this technique can

be used to evaluate simulation performance on any simulation platforms or any number

of CPUs without using real hardware.

The trace-based evaluation technique is developed in the SimVal framework and

the trace collection process is implemented as a part of the PolarLite simulator. Using

these tools, we conducted extensive experiments to evaluate the technique and study the

performance of the conservative and optimistic approaches in simulating WSNs. The

experimental results show that the technique is accurate and the optimistic approach is

more scalable over the number of CPUs than the conservative one in simulating WSNs.

The results also show that the conservative approach has better performance if the ratio

of the number of nodes to the number of CPUs is large. This suggests that a unified

approach that supports both the conservative and optimistic approaches at the same

time during a simulation is most suitable for simulating WSNs. Protocols such as the

one in [JB94] have been proposed for exactly such purposes. SimVal is an ideal tool

to quickly prototype and study such protocols for simulating WSNs before the actual

implementation of a new unified WSN simulator.

Acknowledgements: Chapter 6, in part, has been submitted for publications as “A

Framework for Evaluating the Performance of Conservative and Optimistic Approaches

in Simulating Sensor Networks” by Zhong-Yi Jin and Rajesh Gupta. The dissertation

author was the primary investigator and author of this paper.

Chapter 7

Conclusions and Future Work

To meet the large computational requirements for simulating wireless sensor net-

works with high fidelity, wireless sensor network simulators employ distributed simulation

techniques to leverage the combined resources of multiple processors or computers. This

technique is becoming increasingly popular due to the emergence of low cost multi-core

processors and the wide availability of cloud-computing infrastructures. Distributed

sensor network simulators are essentially sequential discrete event simulators running

in parallel on multiple processing elements. The fundamental challenge in these multi-

simulation frameworks is how individual simulators coordinate and control temporal

advances in the simulation models on local simulations. Errors in this process may lead

to causality violations which occur when a simulator temporally gets too far ahead in

evaluating local events before the causative events from other simulators are incorporated

into the simulation.

Distributed sensor network simulators can be designed based on two different

approaches: conservative and optimistic. These two approaches are fundamentally dif-

ferent in how they preserve causality relations in simulations. The conservative approach

seeks to achieve this by advancing local simulation time to the extent that the simulation

is provably correct and guaranteed to be free of causality violations. On the other hand,

the optimistic approach is more aggressive and may actually advance local time without

taking into account all causality constraints. To recover from causality violations, opti-

mistic simulators feature mechanisms such as anti-messages to roll back simulations as

needed.

The large overheads in preserving causality during distributed simulations of

108

109

WSNs result in a significant increase in simulation time. Given that existing WSN sim-

ulators are based on the conservative approach, in this dissertation, we have developed

and generalized three lookahead-time-based techniques that improve the performance

of the conservative approach in simulating WSNs by minimizing the number of sensor

node synchronizations and increasing parallelism during simulations. We have also de-

veloped LazySync, a synchronization scheme that further improves the performance of

the conservative approach by identifying and eliminating unnecessary synchronizations

during simulations. Using these techniques, we have developed the PolarLite simulator

[JG08] which is a fully functional cycle accurate distributed simulation framework built

on top of the Avrora simulator [TLP05] from UCLA. Based on extensive experiments,

we have demonstrated that PolarLite provides better simulation performance in terms

of simulation speed and scalability than any other existing WSN simulators of similar

accuracy.

Since events are handled fundamentally differently across conservative and opti-

mistic simulators and there exist a large number of design tradeoffs, potential speedup

techniques and optimizations for each of the approaches, it is difficult to choose an ap-

proach for a specific sensor network and its applications. In addition, a simulator is

usually implemented and optimized for a specific hardware architecture such as sym-

metric multiprocessors (SMPs) or clusters, making it challenging to compare simulation

performance over different hardware architectures. Finally, a direct performance com-

parison is limited to the specific computing platforms or the number of CPUs that are

available. In this dissertation, we have presented SimVal, a framework that evaluates

the performance of the approaches accurately using simulation traces. SimVal separates

simulation overheads from actual simulation algorithms and allows one to use the same

traces to evaluate both approaches with any design tradeoffs, speedup techniques and

optimizations on virtual computers with any number of CPUs. We have implemented

SimVal and use it to compare the performance of the two approaches in simulating

WSNs. Our evaluations show the conservative approach has better performance when

the ratio of the number of nodes over the number of simulation CPUs is high and the gain

is especially significant in simulating busy networks. The optimistic approach is much

more scalable over a large number of CPUs and performs better in quieter networks.

Based on the study of the relative performance of the conservative and opti-

mistic approaches in this dissertation, we have shown that a unified simulator that

110

supports both of the approaches at the same time during a simulation is most suitable

for simulating WSNs. There are many interesting problems that associate with using the

unified approach, for example, how nodes should be partitioned so different simulation

approaches can be used on different nodes. SimVal is an ideal tool for quickly prototyp-

ing and studying the solutions of such problems before the actual implementation of a

new unified WSN simulator.

Another interesting direction to explore as future work is to automatically identify

the performance bottleneck in a simulation and enable appropriate techniques to address

the problems. This could be a natural extension of SimVal.

In this dissertation, SimVal is used to evaluate the performance of WSN simula-

tors but the basic trace-based evaluation technique is general. It can be used to evaluate

simulation performance in other application areas as well. For example, it can be used to

evaluate the performance of SystemC simulations for system-level modeling [SSG05]. In

fact, since an ideal-trace completely separates domain specific knowledge about how to

model and simulate a specific application from the basic simulation algorithms, SimVal

can potentially be extended to evaluate the performance of any kinds of simulations. We

also plan to support in SimVal the capability to evaluate simulation performance on het-

erogeneous CPUs of different speeds. This can be achieved by scaling the real-work-times

in the playback process.

Bibliography

[ACD+92] Ian F. Akyildiz, Liang Chen, Samir R. Das, Richard M. Fujimoto, and
Richard F. Serfozo. Performance analysis of “time warp” with limited
memory. SIGMETRICS Perform. Eval. Rev., 20(1):213–224, 1992.

[Atm03] Atmel. ATMega128L Datasheet, 2003.

[BCD+05] Shah Bhatti, James Carlson, Hui Dai, Jing Deng, Jeff Rose, Anmol Sheth,
Brian Shucker, Charles Gruenwald, Adam Torgerson, and Richard Han.
Mantis os: an embedded multithreaded operating system for wireless mi-
cro sensor platforms. Mob. Netw. Appl., 10(4):563–579, 2005.

[CBMPS04] G. Chen, J. Branch, L. Zhu M. Pflug, and B. Szymanski. SENSE: A
Wireless Sensor Network Simulator. Advances in Pervasive Computing
and Networking. Springer, New York, NY, 2004.

[Cha99] Xinjie Chang. Network simulations with opnet. In Simulation Conference
Proceedings, 1999. Winter, volume 1, pages 307–314, 5-8 Dec. 1999.

[CLZ06] Elaine Cheong, Edward A. Lee, and Yang Zhao. Viptos: A graphical
development and simulation environment for tinyos-based wireless sen-
sor networks. Technical Report UCB/EECS-2006-15, EECS Department,
University of California, Berkeley, Feb 2006.

[CM79] K.M. Chandy and J. Misra. Distributed simulation: A case study in
design and verification of distributed programs. IEEE Transactions on
Software Engineering, SE-5(5):440–452, Sept. 1979.

[CM81] K. M. Chandy and J. Misra. Asynchronous distributed simulation via a
sequence of parallel computations. Commun. ACM, 24(4):198–206, 1981.

[Cro08] Crossbow. MICA2 Datasheet, 2008.

[Den82] Monty M. Denneau. The yorktown simulation engine. In DAC ’82: Pro-
ceedings of the 19th Design Automation Conference, pages 55–59, Piscat-
away, NJ, USA, 1982. IEEE Press.

[FKM92] David Filo, David C. Ku, and Giovanni De Micheli. Optimizing the
control-unit through the resynchronization of operations. Integr. VLSI
J., 13(3):231–258, 1992.

111

112

[Fuj99a] Richard M. Fujimoto. Parallel and distributed simulation. In WSC ’99:
Proceedings of the 31st conference on Winter simulation, pages 122–131,
New York, NY, USA, 1999. ACM.

[Fuj99b] Richard M. Fujimoto. Parallel and Distribution Simulation Systems. John
Wiley & Sons, Inc., New York, NY, USA, 1999.

[Gaf88] A. Gafni. Rollback mechanisms for optimistic distributed simulation sys-
tems. In SCS Multiconference on Distributed Simulation, volume 19, pages
61–67, July 1988.

[GEC+04] Lewis Girod, Jeremy Elson, Alberto Cerpa, Thanos Stathopoulos, Nithya
Ramanathan, and Deborah Estrin. Emstar: a software environment for
developing and deploying wireless sensor networks. In Proceedings of the
2004 USENIX Technical Conference, Boston, MA, 2004. USENIX.

[GLvB+03] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer,
and David Culler. The nesc language: A holistic approach to networked
embedded systems. In PLDI ’03: Proceedings of the ACM SIGPLAN 2003
conference on Programming language design and implementation, pages
1–11, New York, NY, USA, 2003. ACM Press.

[GSR+04] Lewis Girod, Thanos Stathopoulos, Nithya Ramanathan, Jeremy Elson,
Deborah Estrin, Eric Osterweil, and Tom Schoellhammer. A system for
simulation, emulation, and deployment of heterogeneous sensor networks.
In Proceedings of the Second ACM Conference on Embedded Networked
Sensor Systems, Baltimore, MD, 2004. ACM.

[HC02] Jason L. Hill and David E. Culler. Mica: A wireless platform for deeply
embedded networks. IEEE Micro, 22(6):12–24, 2002.

[Hen08] Tom Henderson. NS-3 Overview, 2008.

[HSW+00] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and
Kristofer Pister. System architecture directions for networked sensors.
SIGPLAN Not., 35(11):93–104, 2000.

[Hug89] J. Hughes. Why functional programming matters. Comput. J., 32(2):98–
107, 1989.

[JB94] Vikas Jha and Rajive L. Bagrodia. A unified framework for conservative
and optimistic distributed simulation. SIGSIM Simul. Dig., 24(1):12–19,
1994.

[JBW+87] D. Jefferson, B. Beckman, F. Wieland, L. Blume, and M. Diloreto. Time
warp operating system. SIGOPS Oper. Syst. Rev., 21(5):77–93, 1987.

[Jef85] David R. Jefferson. Virtual time. ACM Trans. Program. Lang. Syst.,
7(3):404–425, 1985.

113

[JG08] ZhongYi Jin and Rajesh Gupta. Improved distributed simulation of sensor
networks based on sensor node sleep time. In DCOSS ’08: Proceedings
of the 4th IEEE International Conference on Distributed Computing in
Sensor Systems, pages 204–218, Santorini Island, Greece, 2008.

[JG09a] ZhongYi Jin and Rajesh Gupta. Improving the speed and scalability of
distributed simulations of sensor networks. In IPSN ’09: Proceedings of
the 2009 International Conference on Information Processing in Sensor
Networks, pages 169–180, San Francisco, California, USA, 2009.

[JG09b] ZhongYi Jin and Rajesh Gupta. Lazysync: A new synchronization scheme
for distributed simulation of sensor networks. In DCOSS ’09: Proceedings
of the 5th IEEE International Conference on Distributed Computing in
Sensor Systems, pages 103–116, Marina del Rey, California, USA, 2009.

[JG09c] ZhongYi Jin and Rajesh Gupta. Rssi based location-aware pc power
management. In HotPower 09, 2009.

[JSG07] ZhongYi Jin, Curt Schurgers, and Rajesh Gupta. An embedded platform
with duty-cycled radio and processing subsystems for wireless sensor net-
works. In International Workshop on Systems, Architectures, Modeling,
and Simulation (SAMOS), 2007.

[JSG09] ZhongYi Jin, Curt Schurgers, and Rajesh K. Gupta. A gateway node with
duty-cycled radio and processing subsystems for wireless sensor networks.
ACM Trans. Design Autom. Electr. Syst., 14(1), 2009.

[KP82] E. Kronstadt and G. Pfister. Software support for the yorktown simu-
lation engine. In DAC ’82: Proceedings of the 19th Design Automation
Conference, pages 60–64, Piscataway, NJ, USA, 1982. IEEE Press.

[LAW08] Olaf Landsiedel, Hamad Alizai, and Klaus Wehrle. When timing matters:
Enabling time accurate and scalable simulation of sensor network applica-
tions. In IPSN ’08: Proceedings of the 2008 International Conference on
Information Processing in Sensor Networks, pages 344–355, Washington,
DC, USA, 2008. IEEE Computer Society.

[Lev06] Philip Levis. TinyOS Programming, June 2006.

[LGH+05] P. Levis, D. Gay, V. Handziski, J.-H.Hauer, B.Greenstein, M.Turon,
J.Hui, K.Klues, C.Sharp, R.Szewczyk, J.Polastre, P.Buonadonna,
L.Nachman, G.Tolle, D.Culler, and A.Wolisz. T2: A second generation os
for embedded sensor networks. Technical Report TKN-05-007, Telecom-
munication Networks Group, Technische Universität Berlin, November
2005.

[LLWC03] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. Tossim: accu-
rate and scalable simulation of entire tinyos applications. In SenSys ’03:
Proceedings of the 1st international conference on Embedded networked
sensor systems, pages 126–137, New York, NY, USA, 2003. ACM Press.

114

[LN02] Jason Liu and David M. Nicol. Lookahead revisited in wireless network
simulations. In PADS ’02: Proceedings of the sixteenth workshop on Paral-
lel and distributed simulation, pages 79–88, Washington, DC, USA, 2002.
IEEE Computer Society.

[MSK+05] C. Mallanda, A. Suri, V. Kunchakarra, S.S. Iyengar, R. Kannan, and
A. Durresi. Simulating wireless sensor networks with omnet++. Sensor
Network Research Group, Department of Computer Science, Louisiana
State University, Baton Rouge, LA., 2005.

[Nes] NesCT.

[Nic93] David M. Nicol. The cost of conservative synchronization in parallel dis-
crete event simulations. J. ACM, 40(2):304–333, 1993.

[Nic98] David M. Nicol. Scalability, locality, partitioning and synchronization
pdes. SIGSIM Simul. Dig., 28(1):5–11, 1998.

[NS2] The ns-2 Manual.

[OAVRHR05] E. Ould-Ahmed-Vall, G.F. Riley, B.S. Heck, and D. Reddy. Simulation of
large-scale sensor networks using gtsnets. In Modeling, Analysis, and Sim-
ulation of Computer and Telecommunication Systems, 2005. 13th IEEE
International Symposium on, pages 211–218, 27-29 Sept. 2005.

[ODE+06] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt. Cross-
level sensor network simulation with cooja. In Local Computer Networks,
Proceedings 2006 31st IEEE Conference on, pages 641–648, Nov. 2006.

[PBM+04] J. Polley, D. Blazakis, J. McGee, D. Rusk, and J.S. Baras. Atemu: a
fine-grained sensor network simulator. In Sensor and Ad Hoc Commu-
nications and Networks, 2004. IEEE SECON 2004. 2004 First Annual
IEEE Communications Society Conference on, pages 145–152, 4-7 Oct.
2004.

[Pfi86] G.F. Pfister. The ibm yorktown simulation engine. Proceedings of the
IEEE, 74(6):850 – 860, june 1986.

[PHC04] Joseph Polastre, Jason Hill, and David Culler. Versatile low power media
access for wireless sensor networks. In SenSys ’04: Proceedings of the 2nd
international conference on Embedded networked sensor systems, pages
95–107, New York, NY, USA, 2004. ACM.

[PN02] L.F. Perrone and D.M. Nicol. A scalable simulator for tinyos applications.
In Simulation Conference, 2002. Proceedings of the Winter, volume 1,
pages 679–687, 8-11 Dec. 2002.

[PSC05] Joseph Polastre, Robert Szewczyk, and David Culler. Telos: Enabling
ultra-low power wireless research. In the Fourth International Conference
on Information Processing in Sensor Networks, 2005.

115

[PSS00] Sung Park, Andreas Savvides, and Mani B. Srivastava. Sensorsim: a
simulation framework for sensor networks. In MSWIM ’00: Proceedings of
the 3rd ACM international workshop on Modeling, analysis and simulation
of wireless and mobile systems, pages 104–111, New York, NY, USA, 2000.
ACM Press.

[PSS01] Sung Park, A. Savvides, and M.B. Srivastava. Simulating networks of
wireless sensors. In Simulation Conference, 2001. Proceedings of the Win-
ter, volume 2, pages 1330–1338, 9-12 Dec. 2001.

[QB95] Xiaohan Qin and J.-L. Baer. A comparative study of conservative and
optimistic trace-driven simulations. In SS ’95: Proceedings of the 28th
Annual Simulation Symposium, page 42, Washington, DC, USA, 1995.
IEEE Computer Society.

[RAF+04] George F. Riley, Mostafa H. Ammar, Richard M. Fujimoto, Alfred Park,
Kalyan Perumalla, and Donghua Xu. A federated approach to distributed
network simulation. ACM Trans. Model. Comput. Simul., 14(2):116–148,
2004.

[SCH+05] Ahmed Sobeih, Wei-Peng Chen, Jennifer C. Hou, Lu-Chuan Kung, Ning
Li, Hyuk Lim, Hung-Ying Tyan, and Honghai Zhang. J-sim: A simulation
environment for wireless sensor networks. In ANSS ’05: Proceedings of
the 38th annual Symposium on Simulation, pages 175–187, Washington,
DC, USA, 2005. IEEE Computer Society.

[SCH+06] Ahmed Sobeih, Wei-Peng Chen, Jennifer C. Hou, Lu-Chuan Kung, Ning
Li, Hyuk Lim, Hung-Ying Tyan, and Honghai Zhang. J-sim: A simu-
lation and emulation environment for wireless sensor networks. Wire-
less Communications, IEEE [see also IEEE Personal Communications],
13:104–119, 2006.

[SG08] Ryo Sugihara and Rajesh K. Gupta. Programming models for sensor
networks: A survey. ACM Trans. Sen. Netw., 4(2):1–29, 2008.

[SHrC+04] Victor Shnayder, Mark Hempstead, Bor rong Chen, Geoff Werner Allen,
and Matt Welsh. Simulating the power consumption of large-scale sensor
network applications. In SenSys ’04: Proceedings of the 2nd international
conference on Embedded networked sensor systems, pages 188–200, New
York, NY, USA, 2004. ACM.

[SMB00] Ha Yoon Song, Richard A. Meyer, and Rajive Bagrodia. An empirical
study of conservative scheduling. In PADS ’00: Proceedings of the four-
teenth workshop on Parallel and distributed simulation, pages 165–172,
Washington, DC, USA, 2000. IEEE Computer Society.

[SML+04] Gyula Simon, Miklós Maróti, Ákos Lédeczi, György Balogh, Branislav
Kusy, András Nádas, Gábor Pap, János Sallai, and Ken Frampton. Sen-
sor network-based countersniper system. In SenSys ’04: Proceedings of

116

the 2nd international conference on Embedded networked sensor systems,
pages 1–12, New York, NY, USA, 2004. ACM.

[SMP+04] Robert Szewczyk, Alan Mainwaring, Joseph Polastre, John Anderson, and
David Culler. An analysis of a large scale habitat monitoring application.
In SenSys ’04: Proceedings of the 2nd international conference on Em-
bedded networked sensor systems, pages 214–226, New York, NY, USA,
2004. ACM Press.

[Son01] Ha Yoon Song. A probabilistic performance model for conservative sim-
ulation protocol. In PADS ’01: Proceedings of the fifteenth workshop
on Parallel and distributed simulation, pages 200–207, Washington, DC,
USA, 2001. IEEE Computer Society.

[SOP+04] Robert Szewczyk, Eric Osterweil, Joseph Polastre, Michael Hamilton,
Alan Mainwaring, and Deborah Estrin. Habitat monitoring with sensor
networks. Commun. ACM, 47(6):34–40, 2004.

[SPMC04] Robert Szewczyk, Joseph Polastre, Alan M. Mainwaring, and David E.
Culler. Lessons from a sensor network expedition. In EWSN, pages 307–
322, 2004.

[SSG05] N. Savoiu, Sandeep Shukla, and Rajesh Gupta. Improving systemc simu-
lation through petri net reductions. In MEMOCODE ’05, pages 131–140,
Washington, DC, USA, 2005. IEEE Computer Society.

[TA] TinyOS-Alliance. Tinyos 1.1.15.

[TLP05] Ben L. Titzer, Daniel K. Lee, and Jens Palsberg. Avrora: scalable sen-
sor network simulation with precise timing. In IPSN ’05: Proceedings
of the 4th international symposium on Information processing in sensor
networks, pages 477–482, Piscataway, NJ, USA, 2005. IEEE Press.

[TTA98] Seng Chuan Tay, Yong Meng Teo, and Rassul Ayani. Performance analysis
of time warp simulation with cascading rollbacks. SIGSIM Simul. Dig.,
28(1):30–37, 1998.

[UM97] Richard A. Uhlig and Trevor N. Mudge. Trace-driven memory simulation:
a survey. ACM Comput. Surv., 29(2):128–170, 1997.

[Var01] A. Varga. The omnet++ discrete event simulation system. In European
Simulation Multiconference, Prague, Czech Republic, June 2001.

[VXSB07] Maneesh Varshney, Defeng Xu, Mani Srivastava, and Rajive Bagrodia.
Senq: a scalable simulation and emulation environment for sensor net-
works. In IPSN ’07: Proceedings of the 6th international conference on
Information processing in sensor networks, pages 196–205, New York, NY,
USA, 2007. ACM Press.

117

[WALJ+06] Geoff Werner-Allen, Konrad Lorincz, Jeff Johnson, Jonathan Lees, and
Matt Welsh. Fidelity and yield in a volcano monitoring sensor network.
In OSDI ’06: Proceedings of the 7th USENIX Symposium on Operating
Systems Design and Implementation, pages 27–27, Berkeley, CA, USA,
2006. USENIX Association.

[WGC+06] Ye Wen, S. Gurun, N. Chohan, R. Wolski, and C. Krintz. Simgate: Full-
system, cycle-close simulation of the stargate sensor network intermediate
node. In Embedded Computer Systems: Architectures, Modeling and Sim-
ulation, 2006 International Conference on, pages 129–136, July 2006.

[Wor05] Tinyos 2.0. In SenSys ’05: Proceedings of the 3rd international conference
on Embedded networked sensor systems, pages 320–320, New York, NY,
USA, 2005. ACM.

[WS06] Georg Wittenburg and Jochen Schiller. Running real-world software on
simulated wireless sensor nodes. In Proceedings of the ACM Workshop
on Real-World Wireless Sensor Networks (REALWSN’06), pages 7–11,
Uppsala, Sweden, June 2006.

[WWM07] Ye Wen, Rich Wolski, and Gregory Moore. Disens: scalable distributed
sensor network simulation. In PPoPP ’07: Proceedings of the 12th ACM
SIGPLAN symposium on Principles and practice of parallel programming,
pages 24–34, New York, NY, USA, 2007. ACM Press.

[YHE02] Wei Ye, John Heidemann, and Deborah Estrin. An energy-efficient mac
protocol for wireless sensor networks. In Infocom ’02,, pages 1567–1576,
New York, NY, 2002.

