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High data rate applications are beginning to push the limits of communication

and computer systems. While there is a need to design good codes and decoders, it is

also important to analyze and optimize the decoding algorithms so that they do not use

up too much resources. Graphical behavioral models of codes and sequential computers

can serve as the common platform for accomplishing both tasks. In this thesis we

use closely related graphical models such as factor graphs and branching programs to

analyze convergence and performance of iterative decoding algorithms and time-space

complexity of functions and decision problems related to codes.

In the first part we look at graph realizations of codes. We give a construction

of an analog coding scheme on graphs with an efficient iterative decoder for any given

bandwidth expansion over unity. This code does not exhibit the well-known threshold
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effect and has a graceful degradation of performance with increasing noise – thus

disproving a widely held belief that no single practical coding scheme can achieve this.

We then analyze the iterative hard-decision decoding scheme of Gallager applied to

arbitrary linear codes, and derive probabilistic necessary and sufficient conditions for

progressive improvement of the codeword estimates. Finally we analyze the iterative

decoding of product codes using bounded distance component decoders and derive the

exact probability of error evolution rules, assuming statistically independent errors.

In the second part we consider the general branching program model for

non-uniform sequential computation – perhaps second in importance only to Turing

machines. We consider the time-space complexity of encoding arbitrary codes on a

time-restricted branching program model and derive a sharpened version of the Bazzi-

Mitter minimum distance bound. Using a probabilistic technique we then obtain a new

quadratic time-space tradeoff for syndrome vector computation of linear codes on a

unrestricted branching program model and use it to prove a conjecture due to Bazzi-

Mitter for self-dual codes. Next we extend our probabilistic techniques to deal with

decision branching programs and derive the first quadratic time-space tradeoff for a

read restricted decision branching program model. The minimum distance bounds

along with deep new connections between properties of some well known properties

of algebraic codes are then used to give tight time-space tradeoffs for computing and

verifying several fundamental operations. These include finite-field multiplication,

integer multiplication, circular convolution, matrix-vector product and discrete Fourier

transform. Many of these tight bounds are new and the rest match the best previous

known bounds.

In the last part we consider the problem of estimating the Bayes risk in multiple

hypothesis testing. We significantly improve the classical equivocation bound due to

Rényi. We also derive a lower bound on equivocation and an upper bound on mutual

information of most capacity achieving codes on memoryless channels using a random

coding argument.
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C H A P T E R 1

Introduction

1.1 Background

Shannon proposed a mathematical theory for communication which introduced

a statistical measure for information in [Sha48]. The Channel Coding Theorem says that

any communication medium supports virtually error free communication whenever

the information rate is less than a threshold called the channel capacity. However no

constructive scheme is known which achieves this in general. Approaching this goal

within a bounded delay and using limited computing resources is the prime objective

of coding theory. This invariably involves a set (code) of cleverly designed messages

(codewords) in some language (over an alphabet, usually a finite field) which can be

easily constructed (encoded) by the sender and interpreted (decoded) efficiently by the

receiver. We will often restrict to linear codes which are roughly speaking, vector spaces

over a finite field.

Most channels are imperfect leading to transmission errors. The code must be

sufficiently resilient to such errors. A measure of such resilience is the minimum distance

of a code which is the minimum number of positions in which any pair of codewords

differ. A family of codes is said to be good if the minimum distance increases linearly

with the codeword length. In most applications good codes are desired along with a

maximum likelihood (ML) decoding algorithm which minimizes the average probability

of a codeword error (post-decoding) at the receiver. On the other hand, it is well known

that ML decoding random codes is computationally infeasible [BMT78] and therefore

there is interest in approximate algorithms. Practical coding schemes are usually a result

of one of the following two approaches:

1
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(a) families of codes are designed using algebraic methods so that they are good. The

hard task is to formulate efficient decoding algorithms for such codes.

(b) decoding algorithms which are computationally efficient are formulated for certain

descriptions of codes. The difficult task in this case is to find good codes amenable to

such descriptions.

1.1.1 Graphical Models in Coding and Computation

A linear code can be described using a basis for its dual space – this is called

its parity check matrix. A Tanner graph [Tan81] for a binary linear code C is a bipartite

graph whose adjacency matrix is the parity-check matrix of C. The Tanner graph model

can be generalized to a factor graph model which is interesting due to the availability of

an efficient iterative decoding algorithm called belief propagation (or message passing).

Although efficient, message passing is only an approximate decoding algorithm when

the factor graph has loops and often converges incorrectly to messages not in the code

called pseudo-codewords. This leads to a finite error floor even when the channel

is relatively error free. Accurately analyzing the performance of iterative decoders is

therefore very crucial before using them in practical systems. This task however appears

to be rather challenging due to a lack of suitable tools. In spite of these shortcomings,

codes and decoders based on factor graph models such as LDPC [Gal63] and turbo

codes [BGT93] are thus far among the few practical capacity approaching schemes.

Coding problems are closely connected to efficiency of computational models

and algorithmic complexity [BMT78, Var97]. A branching program is a fundamental

graphical model for non-uniform computation which conveniently captures both time

and space restrictions simultaneously. It is a powerful generalization [LV99] of the

well known binary decision diagram as well as the trellis model used to represent

codes. There is great interest in the theoretical computer science community in obtaining

fundamental time-space tradeoff bounds for various decision and computation problems

in the branching program model.

It is possible to construct factor graphs and branching programs from one another.
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Trellis models have long been used to describe optimal decoding algorithms for codes

– Viterbi [Vit67] and BCJR [BCJ74] algorithms are well known; yet computationally

inefficient for families of good codes as the number of nodes in the trellis model

increases exponentially with code length [LV95a, LV95b, LV99]. On the other hand, the

branching program model allows a tradeoff between the number of nodes (denoted 2S

and corresponds to memory) and the length of the program (corresponding to time T; as

well as the number of loops in the equivalent factor graph).

In the remaining sections of this chapter, we will give precise definitions of the

fundamental concepts in coding, graphical representation of codes and algorithms on

graphs. We will also give precise definitions of the branching program model. However,

this field of research is already far too large and diverse to be even briefly mentioned in a

few sections. Please see the textbooks by MacWilliams and Sloane [MS77] and Wegener

[Weg00] for a detailed treatment of codes and branching programs respectively.

1.2 Error-Correcting Codes

Let Fq denote the finite field of order q. An error-correcting code C of length

n over Fq is simply a subset of Fn
q . A linear code of dimension k is a k-dimensional

subspace of Fn
q . If C is a linear code, then |C| = qk for an integer k. We shall assume

that |C| = qk throughout, whether C is linear or not. An encoder for C is a one-to-one

and onto (bijective) function EC : Fk
q → C. The Hamming distance between two vectors

in Fn
q is simply the number of positions where they differ. The minimum distance of a

code C is the minimum Hamming distance between any two distinct vectors in C. When

we say that C is an (n, k, d)q code, we mean that C ⊆ Fn
q is such that |C| = qk and the

minimum distance of C is at least d. If the order of the underlying field is either clear

from the context or is not relevant, we will write (n, k, d) instead of (n, k, d)q.

The rate of an (n, k, d) code is k/n and its relative distance is d/n. A set of codes

characterized by a certain property is called a family of codes (e.g., the family of linear

codes). A family of codes F is said to be asymptotically good if it contains an infinite

sequence of codes 1Cq, 2Cq, . . . of increasing length n, such that both the rate and the
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relative distance of all the codes in this sequence are bounded away from zero as n→ ∞.

Let C be an (n, k, d) linear code over Fq. A generator matrix for C is any k × n

matrix whose rows form a basis for C over Fq. The dual code C⊥ is the set of all x∈Fn
q

such that 〈x, c〉 = 0 for all c∈C, where 〈·, ·〉 is the usual inner product over Fq. Clearly,

C⊥ is an (n, n−k, d⊥) linear code. A generator matrix for C⊥ is said to be a parity-check

matrix for C.

An (n, k, d) code C is said to be maximum distance separable (MDS) if its

minimum distance satisfies d = n− k + 1. The well-known Singleton bound implies that

this minimum distance is the largest possible for an (n, k, d) code. For a comprehensive

overview of MDS codes and their properties, see [MS77, Chapter 11].

We will be interested in both multiple-output and decision functions related to

error-correcting codes. A natural choice for a multiple-output function is the encoder

function E defined above. Another multiple-output function of importance is the coset-

identifier function, which gives the coset (with respect to the code, C) to which an input

x∈Fn
q belongs. For a linear code this is equivalent to the syndrome-vector function:

Definition 1.1 If C is an (n, k, d) linear code over Fq, with generator matrix G and parity-

check matrix H, we define the syndrome function fC : Fn
q → Fn−k

q and dual syndrome

function f⊥C : Fn
q → Fk

q as follows: fC(x) = Hxt and f⊥C (x) = Gxt.

The characteristic function (also known as the membership function), defined below

is a natural choice for a decision function:

Definition 1.2 Let C be code of length n over Fq. Its characteristic function is the

function χC : Fn
q → {0, 1} defined by χC(x) = 1 if and only if x∈C.

In our study of decision branching programs we found that a function closely

related to the membership function is particularly convenient:

Definition 1.3. Let G be a generator matrix for an (n, k, d) linear code over Fq, and let γ be

a positive real constant with γ < 1. Then, given an input (x, y)∈ Fn
q ×Fk

q , the syndrome

decision function fG,γ : Fn
q ×Fk

q → {0, 1} evaluates true (that is, fG,γ(x, y) = 1) if at least
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dγke of the k syndrome equations Gxt = yt are satisfied. Otherwise, fG,γ(x, y) evaluates

false.

1.3 Graphical Realizations of Codes

Behavioral theory of dynamical systems was formalized by Willems in [Wil89,

Wil91]. Graphical models for codes are loosely put graphical realizations of behavioral

models of codes. The behavioral realization of a code is given by a finite set of local

constraints. For example, these could be parity check conditions on the codeword

symbols of a linear code. In the rest of the section we only deal with linear codes which

are vector spaces over finite fields.

1.3.1 Tanner Graphs, Factor Graphs and Normal Graphs

From the definition of Tanner graphs for linear codes given earlier they clearly

describe local behavior of codes. The bipartite nature of the graph partitions the nodes

into two disjoint sets with edges between a node in one set to a node in another.

The nodes in one set correspond to code symbols and are called the variable nodes,

while the nodes in the other set correspond to the local constraints and are called check

(function) nodes. There are no degree restrictions. In Figure 1.8a is shown a Tanner graph

corresponding to the (7, 4, 3) binary Hamming code – if the code symbols are given by

{x1, x2, x3, x4, x5, x6, x7}, then the local constraints corresponding to the check nodes are

given by the binary equations:

x1 + x3 + x5 + x7 = 0

x2 + x3 + x6 + x7 = 0

x4 + x5 + x6 + x7 = 0

Wiberg introduced the concept of generalized state realization in his PhD thesis

[WLK95]. This framework allowed the generalization of the Tanner graph model to
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a factor graph model. The factor graph model is powerful enough to encompass a

wide variety of models in addition to Tanner graphs. These include Markov chains and

Markov random fields, trees, trellises and of course branching programs. The important

innovation in Wiberg’s approach was the concept of a generalized (hidden) state. Each of

these hidden states corresponds to a hidden variable node in the corresponding graphical

realization. Just like a Tanner graph, the factor graph is also a bipartite graph with two

sets of nodes, and edges between nodes in these disjoint sets. The symbol variable nodes

together with the hidden variable nodes constitute the set of variable nodes. The local

constraints describe the behavioral model and are represented by the check (function)

nodes.

As mentioned earlier the Wiberg generalization is quite powerful – a conventional

trellis can be represented quite simply as an acyclic (a tree) factor graph. See Figure 1.1

variable nodes check nodes

Figure 1.1 A typical factor graph realization.

for a typical factor graph. A factor graph representation of a repeat accumulate type of

code is presented in Figure 1.2.

Another important general graphical model is a Forney normal graph. Whereas

in a factor graph edges are not labeled, in a normal graph, each edge corresponds to a

variable. Inner edges correspond to hidden state variables while leaf edges correspond

to observable symbol variables. The nodes correspond to the local constraints. Each

hidden variable edge connects two constraint nodes, while each observed symbol edges

are connected to only one constraint node. Normal graphs are as general as factor graphs

- every factor graph representation can be converted to a normal graph and vice versa. A

typical normal graph looks like Figure 1.3.
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Figure 1.3 A typical normal graph realization.
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1.3.2 Message Passing Algorithms

There exist natural “decoding algorithms” associated with each of the above

graph realizations representing a code. This decoding algorithm is variously known as

the generalized distributive law, the sum-product algorithm or simply as the message

passing algorithm. We will briefly describe this algorithm using the factor graph model

as the representation of choice. In fact it is illuminating to note that the term “factor

graph” itself originates from this algorithm.

Before we describe the decoding algorithm, we examine a probability function

which can be represented using a factor graph realization of a code. When a code

is used for communication over a noisy channel, the received messages are typically

distorted versions of the original. The statistical properties of this noisy channel process

is described by a channel likelihood function. We will restrict our attention to discrete

memoryless channels (DMC) for the rest of this section, as this keeps the concepts clear

and simple. Let x = (x1, x2, . . . , xn) denote the transmitted codeword and let y =

(y1, y2, . . . , yn) be the received word. Let f (y|x) be the global channel likelihood function.

For a DMC the channel likelihood function factors into local kernels thus: f (y|x) =

∏n
i=1 fi(yi|xi). An ideal decoder at the receiver would try to minimize the Bayes risk

by selecting that codeword x̃ which maximizes the áposteriori probability (APP) function

p(u|y) = p(u) f (y|u) where p(x) is called the ápriori probability of codeword x. For an

(n, k, d) binary linear code with parity check matrix H = [hi,j], the ápriori is the joint

probability function of local kernels: p(x) ∝ Pr(∩n−k
j=1 [∑i:hi,j 6=0 xi = 0]), where the square

brackets indicate the characteristic function of an event. Each of these local check kernels

are associated with the corresponding check nodes. What the sum-product algorithm

essentially does is to perform a series of local marginalization operations so as to obtain

the (exact or empirically approximate) global APP function. The local marginalization

operations at each node is simplicity itself. There are only two rules, one for a variable

node and the other for a check node.

Let I ,J ⊂ N be two sets which index the symbol variables and local check

equations respectively. We will use the following notation:
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(1) vi denotes the ith variable node. i∈ I

(2) cj denotes the jth check node. j∈J

(3) µvi→cj denotes the message passed from variable node vi to check node cj. This is an

exclusive function in the vi variable.

(4) µcj→vi denotes the message passed from check node vi to variable node cj. This is also

an exclusive function in the vi variable.

(5) η(ν) is the set of all neighbors of node ν. If ν is a variable node, these are all check

nodes, else they are all variable nodes.

(6) ϕcj is the local kernel at check node cj. This may be a function involving any number

of the variables i∈ I such that vi ∈ η(cj).

Then the update rules are,

(1) At the variable nodes:

µvi→cj ∝ ∏
c` ∈ η(vi)\cj

µc`→vi ; ∀ cj ∈ η(vi)

(2) At the check nodes:

µcj→vi ∝ ∑
v 6=vi

ϕcj · ∏
v` ∈ η(cj)\vi

µv`→cj

 ; ∀ vi ∈ η(cj)

The algorithm is named “sum-product” after the algebraic structure of these update

rules.

It is easy to conclude that when the factor graph is a tree these local up-

dates converge to give stable messages from check nodes to variable nodes (and vice-

versa). The equilibrium messages have been shown [Pea88] to be proportional to

the marginalized APP of the symbol and hidden state variables. The sum-product

rule therefore generalizes the BCJR algorithm which is an optimal symbol-wise APP
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Figure 1.4 The messages into and out of a check (function) node.

estimation algorithm for Markov chains (which include conventional trellises). See

Figure 2.11. When the algorithm is generalized to a min-sum or max-product semi-ring

we get the Viterbi algorithm.

While for a tree the sum-product algorithm is exact, the most interesting case is

when the factor graph has many cycles, many of relatively small girth. In this case there

are examples of graphs for which the update rules either do not converge, or converge to

wrong APP estimates. But empirically for many codes the algorithm still does converge

to give very good approximations to the actual APPs. It is an open problem to fully

analyze the behavior of message passing algorithms on factor graphs with relatively

short cycles.

No discussion on iterative decoding algorithms can be complete without men-

tioning about Gallager’s Low Density Parity Check (LDPC) codes and his iterative de-

coding algorithms [Gal63]. The LDPC codes were rediscovered by many during the

1990s [SS96,MN96,MN97], some 40 years after its original publication. It was also shown

that Gallager’s decoding algorithms can be considered to be instances of the sum-product

algorithm. In Appendix A a version of this iterative hard decision decoding algorithms

is given. For much more on iterative algorithms on graphs see [McK03].
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1.4 A Brief Introduction to Branching Programs

We will need several elementary facts and definitions concerning branching

programs. Due to space limitations some of these are discussed only briefly. See

Wegener [Weg00] for a detailed treatment. First we give a formal definition for multiple

output programs and then for single output programs. We will also give some examples

for branching programs, and show how factor graphs and trellises are closely related to

branching programs.

1.4.1 Branching Programs

The branching program (BP) has emerged as the standard general model for

nonuniform sequential computation. This model is of fundamental importance (perhaps,

second only to the Turing machine); it was introduced some 50 years ago by Lee [Lee59]

and has been extended, refined and extensively studied in a number of papers since

then [Kuz76, BC82, Weg87, Abr91, Ajt98, Ajt99, BJS01, BSS03, BST98, BC82, BRS83, Weg00].

The branching program model imposes no structure on the computation and

allows any pattern of access to the input. Nevertheless, this model is strong enough

to efficiently simulate many other models of sequential computation, such as RAMs with

arbitrary instruction sets [BC82]. RAMs of space S and time T with an arbitrary instruction

set can be simulated by BPs of size 2O(S) and time T. This underscores the importance

of establishing lower bounds on time and space (and the tradeoff between them) in the

branching program model. A tremendous amount of research has been devoted to this

problem in the past two decades [Abr91, Ajt99, Ajt98, BM05, BJS01, BSS03, BST98, BV02,

BW01,BC82,BRS83,Ger94,Juk95,Juk02,MNT93,Mor73,Oko91,Oko02,Pag01,Pip78,Pon98,

Raz91,Win67,Yes84], and considerable progress has been made in proving lower bounds

for less and less restricted branching-program models.

Loosely speaking, a branching program B is a finite directed acyclic graph, with

a unique source node and one or more sink nodes. Each non-sink node is labeled by a

variable and the edges out of the node correspond to the possible values of that variable.
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Executing the program on a given input corresponds to following a path from the source

node to a sink node, using the values of the input variables to determine the edges to

follow. We will give a precise definition of branching programs in this section.

1.4.2 Multiple Output Branching Programs

There are many subtly different, yet essentially equivalent, definitions of branch-

ing programs in the literature. When concerned with deterministic multiple-output

branching programs, we will use the following definitions (cf. Ajtai [Ajt98]) throughout.

Definition 1.4 Let D be a finite set, with 0∈D and |D| = q. A q-way deterministic

multiple output branching program B with n input variables y1, y2, . . . , yn and m output

variables z1, z2, . . . , zm is a four-tuple {G, varin, varout, out}, where:

a. G is a finite, edge-labeled, directed acyclic graph, with a unique source node and a

unique sink node;

b. varin is a function defined on the non-sink nodes of G with values in the set

{y1, y2, . . . , yn};

c. varout is a function defined on all the nodes of G with values in the set

{z1, z2, . . . , zm} ∪ {φ};

d. out is a function defined on all the nodes of G with values in the set D;

e. The sink node has out-degree zero, all other nodes have out-degree q. For each non-

sink node v of G, the set of edges starting at v is labeled by the elements of D so that

all the q edges are labeled distinctly.

The branching program B computes a function f : Dn → Dm as follows. Given

x∈Dn, we think of x as an assignment of values to the n input variables y1, y2, . . . , yn. A

computation in B upon input x is the unique path followed from the source node to the

sink node in G according to the following rules. At each node v along the path, including

the source, we read the value of the input variable varin(v) and leave v along the unique

edge whose label is equal to the value of that variable. If varout(v) 6= φ, we also write the
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Figure 1.5 A typical multiple output branching program. This branching program reads
two integer inputs x and y and computes z = x + y. By convention edges
corresponding to a zero transition are to the left. The outputs produced are
marked along the edges.
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output variable varout(v) by assigning varout(v) := out(v). The fact that G is acyclic and

finite guarantees that every computation eventually terminates in the sink node. The

value of f (x) is defined as the assignment of the m output variables that results when

the computation terminates. If for an output variable z no assignment is made during

the computation, then z = 0 is assumed by default. On the other hand, if for an output

variable z more than one assignment is made, the last assignment takes precedence. A

typical multiple-output branching program is shown in Figure 1.5.

1.4.3 Decision Branching programs

When dealing with deterministic single-output branching programs, the following

is the model we will use throughout this paper. The definition below follows Beame,

Saks, Sun, and Vee [BSS03].

Definition 1.5 Let D be a finite set of size q, and let I be a finite subset of Z of size n.

A q-way deterministic decision branching program B on domain D with index set I is a

graph G with the following properties:

a. G is a finite edge-labeled and vertex-labeled directed acyclic graph, with a unique

source node;

b. There are two sink nodes in G, one is labeled by 0 and the other by 1;

c. Each non-sink node v of G is labeled by an index i(v)∈ I ;

d. The sink nodes have out-degree zero, all other nodes have out-degree q. For each

non-sink node v, the set of edges starting at v is labeled by the elements of D so that

all the q edges are labeled distinctly.

For simplicity, we henceforth assume without loss of generality that the index set

I in Definition 1.5 is given by I = [n] and write DI as Dn.

A computation by a decision branching program B on an input x∈Dn starts at

the source node s, reading the value of the variable xi(s) and following the edge labeled

by that value. The process continues until one reaches a sink node. We say that B accepts
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Figure 1.6 A typical Boolean decision BP. This BP takes two integer inputs x and y and
computes yx when y is represented in binary.

an input x if the sink node is labeled with a “1”. Otherwise, we say that B rejects the

input x. We let B−1(1) denote the set of all inputs that B accepts. This subset is called the

acceptance set of B and f , and the acceptance ratio of B and f is defined as |B−1(1)|/qn.

Thus B computes the function f : Dn → {0, 1} defined by f (x) = 1 iff x∈B−1(1).

A typical boolean decision branching program is shown in Figure 1.6.

1.4.4 Some Branching Program Terminology

The total number of nodes in B is called its size and denoted by |B|. The space

of B is then defined by S = logq |B|. The length of a computation in B is the number of

edges in the corresponding path. The time T of B (sometimes also called the length of B)

is defined as the maximum length of a computation in B. Note that not all paths from the

source to the sink in G are (valid) computations. We define the depth of B as the number

of edges on the longest path from the source to the sink in G.

A branching program B is said to be leveled if the set of nodes of G can be

partitioned into an ordered collection of subsets V0, V1, . . . , V`, called levels, such that

the edges of G are always directed from a node at level Vi−1 to a node at level Vi, for
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some i∈ {1, 2, . . . , `}. Pippenger [Pip78] proved that any branching program can be made

leveled without affecting its time T while adding only O(log T) to its space S. The width

of such a leveled branching program is defined as max{|V0|, |V1|, . . . , |V`|}.

A branching program B is said to be oblivious if the input variables are read

in the same order along all possible paths from the source to the sink in G. A read-r

branching program is one in which each input variable is read at most r times along

any path from the source to a sink in G. A q-way branching program with q = 2

is said to be boolean. A useful visualization of a boolean branching program is as a

RAM with 1-bit-wide input registers and a working memory of S bits [Ajt99, BC82]. As

already mentioned in the introduction, proving lower bounds on the time-space tradeoff

is generally considered the most challenging for boolean branching programs. Indeed,

as shown in [Pag01, Proposition 1], a factor of log2 q is lost when converting any space or

time lower bound from a q-way branching program to a boolean branching program.

The expected-time T of B is the mean time of a computation when the input x is

chosen uniformly at random from Dn. The nodes of G can be labeled with the integers

0, 1, . . . , |B|−1 in |B|! different ways. Fix one such labeling. Then, for each input x∈Dn,

the workspace required by B on input x is defined as the logarithm of the largest integer

which occurs as a label of a node in the computation path. The expected-workspace is

the mean workspace obtained when x is uniformly random over Dn. The expected-space

S of B can be now defined as the minimum of the expected-workspace, taken over all

labellings.

We will need a few more definitions when we start analyzing the complexity of

branching programs. These will be given in the chapters where they are actually used.

The candidate functions for deriving time-space tradeoffs for branching programs will

be from coding theory – these functions were defined earlier in Section 1.2.
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1.5 Trellises, Tanner Graphs and Branching Programs

In this section we will briefly describe the relation between a trellis of a code and

a branching program corresponding to its encoding function E. We will also see how

to transform the Tanner graph of a code into a branching program which computes its

syndrome-function fC.

1.5.1 Trellises and Branching Programs

Definition 1.6 A trellis [Var98] T = (V,E, Fq) of depth n is an edge-labeled directed

graph with the following property – the vertex set V can be decomposed as a union of

disjoint subsets

V = V0 ∪ V1 ∪ · · · ∪ Vn

such that every edge in T begins at a vertex of Vi and ends at a vertex of Vi+1, for some

i = 0, 1, . . . , n−1. Let T = (V, E, Fq) be a trellis of depth n. We say that the trellis T

represents a block code C of length n over Fq if the set of all edge-label sequences along

paths of length n in T is equal to the set {x1, x2, . . . , xM} of codewords of C.

Consider the extended binary Hamming code H8 which is a (8, 4, 4) code. A

generator matrix for this code is:

G =


1 1 1 1 0 0 0 0

0 0 1 1 1 1 0 0

0 0 0 0 1 1 1 1

0 1 1 1 0 1 1 0


Shown in Figure 1.7 is a trellis which represents this code.

From the definition of the trellis of a code, it is clear that it is a simple instance of a

branching program. Suppose a sequential computer is used to encode an error correcting

code – we can make the following observation: the conventional trellis associated

with the encoder is a read-once, leveled, oblivious, branching program representing
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Figure 1.7 A trellis for the [8, 4, 4] extended Hamming codeH8

this computation. However since each variable is read at most once in the trellis

representation, it is a much restricted form of a branching program. In particular we

cannot study time-space tradeoffs using the trellis model.

1.5.2 Tanner Graphs and Branching Programs

A Tanner Graph can be unwound to obtain a branching program. The complexity

of message passing decoder increases exponentially with the space S, whereas the

average number of cycles per variable increases polynomially with T
n . The distance

bound we derive in Section 5.2 restricts the simultaneous reduction of both parameters.

Unwinding a Tanner graph can be easily demonstrated using an example. Shown

in Figure 1.8 is the conversion of a Tanner graph corresponding to the (7, 4, 3) binary

Hamming code.

1.6 Summary of the Dissertation

The dissertation is logically partitioned into three distinct yet closely related parts.

Part I deals with construction and analysis of graphical codes and their decoders.
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Figure 1.8 A typical Tanner graph and its conversion to a branching program with T =
O(n2) and S = O(log2n)

In Chapter 2 we consider the problem of communication over a continuous

alphabet channel. A system for transmission of a sequence of real data from a bandwidth-

limited source over bandwidth-limited real alphabet channel which introduces AWGN

noise, seeks to reduce the mean-squared-error (MSE) distortion between the original

and received sequences. Using rate-distortion theory, Shannon proved the existence

of systems which achieve an MSE distortion which decreases exponentially with band

width expansion factor as SNR, denoted as γ increases. However it has been widely

conjectured that no single practical analog coding-decoding scheme can achieve an

MSE distortion performance better than O(γ2). We show that this is not the case by

constructing and analyzing a superposition analog graphical code which can be decoded

efficiently using an iterative decoder. The proposed coding scheme can simultaneously

achieve an MSE distortion which falls with a (negative) SNR exponent as close to

bandwidth expansion factor as desired.

In Chapter 3 we analyze the performance of Gallager A/B iterative hard-decision

decoder when used for decoding a general linear code. We give necessary and
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Table 1.1 New bounds for deterministic branching programs derived in this thesis. C is
an (n, k, d)q code, EC is its encoding function, f⊥C is the dual syndrome-vector
function and fG,γ is the partial verifier for the dual syndrome-vector (code-coset
membership). These are the tightest among all such known distance bounds.

Type of branching program Tradeoff
Computed

function

q-way, multi-output, only
restriction: T = o(n log2 n), any C

d = O
(

T2

k

(
S

k log2 q

) k
2T
)

EC

q-way, multi-output, unrestricted,
linear C

d 6
12T
(

S+log2 T+6
)

k log2 q + 1 f⊥C

q-way, decision, ε-restricted, linear
C, T = o(γn2−ε) d = O( TS

γk ) fG,γ, γ 6 1
q

sufficient probabilistic conditions for successive iterations to produce progressively

better codeword estimates. This has applications in crypt-analysis of McEliece public-

key cryptosystem.

In Chapter 4 we use a Markov chain model to analyze the convergence properties

of a hard-decision product code decoder. We give a complete analysis of the probability

of error evolution with iteration, first for an ideal bounded distance component decoder

with no miscorrections and then for a practical bounded distance component decoder.

This is accomplished by a combinatorial analysis of the miscorrection probability of a

bounded distance decoder.

Part II examines the branching program model for deterministic sequential

computation.

In Chapter 5 we consider multiple output branching programs which implement

the encoding function EC for a code C. We also consider the dual syndrome-vector

computation programs. We derive time-space tradeoffs relating the branching program

parameters to the code parameters such as minimum distance and length. Compiled in

Table 1.1 are the minimum distance bounds derived in that chapter. The exact definitions

of these functions are given in Chapter 5.

One of the fundamental questions in theoretical computer science is:
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“Can the verification of a particular computation be as complex as performing the

computation itself?”

This is what we seek to answer in Chapter 6. In this chapter we construct a partial

verifier for the dual syndrome-vector computation. For this function, we then derive

the first quadratic time-space tradeoffs valid for read restricted q-way decision branch-

ing programs. Several new proof techniques are introduced in deriving these bounds.

Table 1.2 shows the tradeoff results obtained in that chapter. The fundamental operations

listed in the table are defined in a precise manner within the chapter.

Table 1.2 Bounds for some fundamental multiple-output functions derived in this thesis.
All results (except FMUL) match the previously known best bounds. For FMUL
there are no corresponding previous known results. These results are derived
using the distance bounds from Table 1.1.

Type of branching program Tradeoff
Computed

function

Boolean, multi-output, only
restriction: T = o(n log2 n) T = Ω

(
n log (n/S)

log log (n/S)

)
Θ(n)-length FMUL

Boolean, multi-output,
unrestricted

TS = Ω(n2) Θ(n)-length
MVMUL

Boolean, multi-output,
unrestricted

TS = Ω(n2) Θ(n)-length
CONV

Boolean, multi-output,
unrestricted

TS = Ω
(

n2

(log n)2

)
Θ(n)-length IMUL

Boolean, multi-output,
unrestricted

TS = Ω(n2 log n) Θ(n)-point DFT

In Chapter 7 we apply the results of Chapter 5 and Chapter 6 along with the

known minimum distance properties of some algebraic codes to derive time-space

tradeoffs for computing and verifying several fundamental algorithms of practical

interest. In Table 1.3 we have listed the bounds derived in that chapter. The functions

shown are defined in Chapter 7.

Part III considers the general multiple hypotheses testing problem.
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Table 1.3 New bounds for decision branching programs (partially) verifying some
fundamental functions as derived in this thesis. Previous corresponding
non-linear (worst-case) time-space tradeoff results known for ζCONV,γ and
ζMVMUL,γ were for time-restricted branching programs with worst case time,
T = o(n log2 n). No non-trivial corresponding results are known for ζDFT,γ.
These results are derived using the distance bounds from final row of Table 1.1.

Type of branching program Tradeoff
Computed

function

q-way, decision, ε-restricted,
T = o(γn2−ε) TS = Ω(γn2) Θ(n)-length q-ary

ζMVMUL,γ, γ 6 1
q

q-way, decision, ε-restricted,
T = o(γn2−ε) TS = Ω(γn2) Θ(n)-length q-ary

ζCONV,γ, γ 6 1
q

Boolean, decision, ε-restricted,
T = o(γn2−ε) TS = Ω(γn2 log n) Θ(n)-point ζDFT,γ,

γ 6 1
2

In Chapter 8 we derive a new upper bound on the Bayes risk for multiple

hypotheses. This is a significant improvement over the equivocation bound due to

Rényi and its sharpened version by Hellman and Raviv. As with the classical bounds,

our new bound also relates Bayes risk with equivocation. Using the a version of the

random coding argument we also prove a lower bound on equivocation for most capacity

achieving random codes. This also gives an upper bound on mutual information from

first principles.
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C H A P T E R 2

Analog Codes on Graphs

2.1 Introduction

We consider the problem of transmission of a sequence of real data produced by

a band-limited analog source over a band-limited analog channel, which introduces an

additive white Gaussian noise. A similar setting arises in several practical situations.

A traditional approach towards solving this problem is through the application of

Shannon’s source-channel separation principle. This involves the separate design of

optimal (digital) source and channel codes, and using these codes in tandem [MP02].

However by invoking the separation principle, we sacrifice one of the most important

advantages of an analog communication system, namely its ability to perform well under

varying noise levels. In literature, this property has been referred to as “robustness”. By

contrast, a digital communication system employing separate source and channel codes

typically can operate satisfactorily only within a very narrow region around the designed

signal to noise ratio. Another important property of an analog system is the graceful

degradation in performance with an increasing noise level. This property is very valuable

for a good broadcast system. There are several disadvantages to the analog system.

In practice the analog system are complicated to design and maintain, are susceptible

to drift with time and expensive. In addition, practical systems thus far suffer from a

threshold-effect – beyond a certain signal-to-noise ratio, the system performance tends to

either saturate or improve only marginally with more transmit power. In spite of several

shortcomings, analog systems are still rated high in applications such as transmission

and recording of music, due to the lack of granularity which is the result of imperfect

source quantization.

24
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In order to compare various analog systems, it is customary to measure the end

to end distortion in terms of the mean squared error. In an effort to explain the threshold

phenomena in analog communication systems, Ziv [Ziv70], considered a broad class of

well behaved modulation signals which includes all currently employed analog schemes.

He showed that for this class with bandwidth expansion factors over unity, as the SNR

γ increases, the mean squared distortion cannot fall at a rate faster than γ−2. Shamai

et al [SVZ98] demonstrated a joint source-channel coding scheme that is optimal for a

class of sources and channels. In [MP02], Mittal et al, presented several hybrid digital-

analog joint source-channel codes which are shown to be “nearly robust” for the case of

broadcast with two receivers. For the case of broadcast to two receivers, a distortion pair

(D1, D2) is said to be achievable if the first listener achieves D1 and the second listener

D2 simultaneously. In a recent work, Reznic et al [RFZ05] considers the problem of

analog broadcast to two listeners at bandwidth expansion ratios of more than 1. They

prove an lower bound to the achievable rate distortion pairs using information theoretic

arguments. Using their necessary conditions, they show that if a system is optimal at a

certain high enough γ, then its distortion cannot decay at a rate faster than γ−1. Thus

one of the Mittal-Phamdo schemes is seen to be optimal at high signal to noise ratios.

In addition to the hybrid code constructions due to Shamai et al [SVZ98], Mittal et

al [MP02] and Reznic et al [RFZ05], there have been attempts to construct purely analog

coding schemes for the general analog channel with bandwidth expansion factors of

larger than unity. Chen and Wornel [CW98] give an analog code construction based on

chaotic maps for uniformly distributed analog source, along with an efficient decoding

algorithm using estimation techniques. Vaishampayan and Costa [VC03] construct

analog codes using linear dynamical systems and provide efficient decoding algorithms.

Using curves on higher dimensional spheres and topological arguments they show that

their codes have much in common with the Chen et al chaos map codes. In both the

above constructions, the mean square distortion cannot decay at a rate better than γ−3/2.

All these prior results seem to indicate that strong analog coding schemes invari-

ably suffer from the analog threshold effect, further limiting their practical usefulness.
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Shannon’s rate distortion theory on the other hand suggests that mean square distortion

may fall at a rate of γ−N at a bandwidth expansion factor of N. It has been widely

conjectured that no single analog (or hybrid analog-digital) scheme can achieve this rate

of fall with SNR. In this paper, we show that this is not necessarily so. Here we construct

a family of analog codes, using digital component codes. The component codes are used

in a “power-splitting” superposition scheme with an infinite number of levels. This is

similar in principle to the superposition scheme introduced by Cover [Cov72] and related

to the multilevel codes considered by Calderbank and Seshadri in [CS93]. Assuming

unbounded complexity is admissible at both the transmitter and receiver, we analyze

the performance of these codes on an AWGN channel. We then consider some practical

component codes and show that under most practical situations, the codes constructed

herein can give a rate of fall of mean-square-distortion well above γ−2 over a wide range

of SNRs. It must however be noted that our results do not contradict the conclusions

of either Ziv [Ziv70] or Reznic et al [RFZ05]. Instead the class of codes constructed here

do not fall under the type of modulation signals considered by Ziv. The analog codes

described here achieve a fall in distortion proportional to γ−B, where B is an integer such

that 1 6 B 6 bR · Nc, where N is the bandwidth expansion factor and 0 < R < 1.

Moreover though it never achieves any distortion point which is on the lower bound

given by the rate-distortion function, the achievable MSE distortion can be made to fall

almost parallel to the lower bound at high enough SNR.

In the next section, we give the construction of our code, and several practical

examples. We also show why the codes we construct do not fall into the class of

codes considered by Ziv. In the third section, we analyze the performance of our

system assuming use of capacity achieving component binary codes. We also give a

distortion upper bound using the union-bounding technique for hard decision maximum

likely decoding for the component binary codes. We give simulation results for analog

codes constructed using repeat-accumulate codes as the component codes. The analog

decoder used in this case employs the sum-product algorithm decoder along with simple

successive cancellation technique.
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2.2 Theoretical Bound from Rate-Distortion Theory

We consider a discrete time analog source which draws values independently

and uniformly from the interval S = [−
√

3,
√

3). The average source power is thus

constrained to be unity. We may assume that, such a discrete time memoryless source

which outputs at a rate of 2WS samples per second can be constructed from a band-

limited continuous time source by means of appropriate sampling. Let us denote by

s = {st}, the sequence of continuous valued random symbols generated by this source.

We wish to transmit the source output to listeners across a band-limited and

power-limited continuous time analog channel which adds a white Gaussian noise to the

input signal. The channel can also be represented by an equivalent discrete time version

using the Nyquist sampling theorem. The channel is used at the rate of 2WC per second.

Thus if the channel input, output and noise are denoted by yt, rt and vt respectively, then

they are related as rt = yt + vt at time instant t. Without loss of generality, the channel

input is assumed to be subject to the input power constraint EW [y2
t ] = 1.

By rate-distortion theory, for a memoryless uniform source, the rate distortion

function can be obtained as a lower-bound on a difference in differential entropy:

R(D) = h(s)− h(s|ŝ) = −h(s|ŝ) > 1
2 log2 ( 1

2πeD ) (bits/use) = WS log2 ( 1
2πeD ) (bits/s)

Similarly, the capacity of the discrete-time AWGN channel is:

C(σ2) = 1
2 log2 (1 + 1

σ2 ) (bits/use) = WC log2 (1 + 1
σ2 ) (bits/s)

The two relations together give the following lower bound on the achievable mean

squared-error distortion for analog transmission of a uniform source over the discrete

memoryless AWGN channel:

D(σ2) >
1

2πe(1 + 1
σ2 )N

where, N = WC/WS is called the bandwidth expansion factor. We call 1/σ2 the signal to
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noise (power) ratio.

An analog encoder of length n is a block encoder which maps the real source

samples grouped k at a time to a vector of real values of length n. Thus the encoder

Ek is a mapping Ek : Rk 7→ Rn, such that the encoded sequence satisfies the input power

constraint of the channel, 1
n ES[||Ek(S)||2] 6 1, where S represents a block of k source

samples. Similarly, the analog decoder is a mapping Dk : Rn 7→ Rk. The received signal

is Z = W + V where W = Ek(S). A family of analog codes, is a sequence of encoder-

decoder pairs with increasing block-length k, and a fixed “rate” R , k
n . Our objective

is to construct a family of analog codes which achieve sufficiently low mean squared

error distortion in the limit of very large block lengths, D(σ2) = limk→∞
1
k ES[||S− Ŝ||2],

where Ŝ is the vector of estimates produced by the decoder Dk. Below we give our code

construction.

2.3 Construction of the Analog Codes

Let a realization of the source output at time t be denoted as st. Since the source

has mean zero and unit variance uniform pdf, scale the realization to obtain a uniform

distribution in the interval [0, 1) by forming xt = (st +
√

3)/(2
√

3). Now we represent

xt by its terminating binary representation. Let this binary representation be given by

Xt = {X1,t, X2,t, · · · , X`,t, · · · }. It is well known [Res98] that, X`,t are Bernoulli random

variables with p = 1/2. For a fixed integer parameter B, form for each i∈ {1, 2, · · · }
sequences of the form

Ui = { · · · , Xt−1,iB, Xt,(i−1)B+1, Xt,(i−1)B+2, · · · , Xt,iB, Xt+1,(i−1)B+1, Xt+1,(i−1)B+2, · · · , }

Now using component binary codes, encode the sequences Ui for each i separately.

Denote by Wi the resulting sequence of Bernoulli random variables. Each such i is

referred to as the ith encoded (bit) level. By a suitable choice of the component code, it is

always possible to ensure that this sequence is composed of Bernoulli random variables

that are distributed fairly, with p = 1/2. The encoding of the reordered source sample
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bit planes is shown in Figure 2.1.

Now define a mapping fw : {0, 1}∗ → R for a binary sequence b∈ {0, 1}∗ as,

fw(b) ,
∞

∑
i=1

(2bi − 1) · wi (2.1)

where, wi = w
1
2 · (1 − w)

i−1
2 for some w∈ [0, 1). This mapping will be often

referred to as the analog encoding map.

The encoded sequence of bits Wi are now read off vertically as shown in Figure 2.2

and the analog mapping function fw(.) is applied with some fixed weight, w. The real

valued vector y so obtained is the analog code corresponding to the source vector s. The

analog encoding map satisfies the unity input power constraint for the analog channel

and the resulting vector is transmitted over the channel.

As an example, let us take the simplest case, when B = 1. Then, the above code

construction would be equivalent to encoding each one of the ith bit planes at significant

positions i separately, followed by the mapping fw(·) which is invoked at each time

instant. The analog encoder block diagram is depicted in Figure 2.3.

2.4 The main results

The following lemma brings out the self similar, scaled nature of the pdf of the

real random variables, yj produced by the code construction as given in the previous

section.

Lemma 2.1 Let W = {W1, W2, · · · , Wn, · · · } be a sequence of independent identically

distributed Bernoulli random variables taking on values {0, 1} with p = 1/2. Define the

map fw as in (2.1). Then, the random variable y = fw(W) has the following properties:

(i) E[y] = 0

(ii) Var[y] = E[y2] = 1
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Figure 2.3 Block diagram of the Encoder which maps the Analog source output into
the code symbols in R. Where as the code construction is valid for any
countable integer M, due to practical considerations, one may have to limit
implementations to a finite value of M.

(iii) y has a fractal probability measure which draws values from the interval

[−
√

w
(1−
√

1−w)
,

√
w

(1−
√

1−w)
).

(iv) if w = 3/4, then y is distributed uniformly in [−
√

3,
√

3).

Proof.

(i) This is follows because the independent Bernoulli trials are fair.

(ii) Denote α ,
√

w/(1− w) and β ,
√

(1− w). Then, wi = α · βi. Now, observe

that E[y2] = ∑∞
i=1 Exi [(2Wi − 1)2] · w2

i = α2 · ∑∞
i=1 β2i = α2 · β2/(1− β2) = 1. The

contribution to the variance due to the variable X1 is w.

(iii) The interval for y extends symmetrically to a length of ∑∞
i=1 wi = α · ∑∞

i=1 βi =

α · β/(1− β) =
√

w/(1−
√

1− w) about the origin. Now, consider the sequence,

W∗ = {W2, W3, · · · , Wn, · · · } which can be formed from the sequence W by

omitting the first random variable W1. Clearly, the two random variables, y∗ =

fw(W∗) and y = fw(W) have the same probability density function, because Wi are

iid giving, p(y∗,w) = p(y,w). But the probability density function p(y,w) can also be

expressed in terms of p(y∗,w) in a different way. To see this, observe that W1 = 0 or

1 with equal probability, and hence, y = β(y∗ ± α) with equal chance. From these

we get, p(y∗,w)(y) = p(y,w)(y) = (p(y,w)(y/β − α) + p(y,w)(y/β + α))/(2β). This

shows that, the pdf of y is formed from scaled and translated versions of itself. See

Figure 2.4 for an example with w = 0.05.
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Figure 2.4 Histogram showing p(y,w=0.05)(y), with 20000 samples: Self similarity under
scaling is apparent.

(iv) For the case w = 3/4, y∈ [−
√

3,
√

3) from (iii). To prove that y ∼ U([−
√

3,
√

3)),

take W to be the terminating binary representation of x = (z +
√

3)/2
√

3 where,

z ∼ U([−
√

3,
√

3)), then by construction, y = z for all realizations.

We now fix a few notations to be used later. Let us denote by C(pnγ , γ), the

Shannon channel capacity of a soft output, additive noise channel with a noise pdf of

pnγ(n), at an output SNR of γ, when the input alphabet is restricted to be binary. We also

denote by p(y,w), the pdf of y = fw(Y). Define a new random variable, zγ,w = βy + nγ,

where as before β =
√

(1− w). If the random processes y and nγ are independent, then

the three pdfs are related as, pzγ,w(z) = pnγ(n) ~ p(y,w)(y/β)/β, with ~ denoting a linear

convolution.

The bandwidth expansion and the minimum MSE distortion achieved for the

analog codes constructed as in Section 2.3 are related. The scaled nature of the pdf of

the noise contributed by the less significant bits of the binary representation of yj leads

us to a characterization of the performance of the analog codes.

Theorem 2.1 Let a real analog source S draw independently with a uniform distribution

from the interval, S = [−
√

3,
√

3), so that the mean source power is restricted to be unity.
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Let the source outputs be transmitted using a real alphabet, additive noise channel, with

a noise pdf of pnγ(n). Also let the source process be independent of the channel noise

process. Then for any integer B > 1, at a bandwidth expansion factor B/C(pzγ,w , wγ/(1 +

(1 − w)γ)) it is possible to simultaneously achieve for different integers k > 1, MSE

distortions of (1−w)k·B at corresponding SNR of γ/(1−w)k−1, using capacity achieving

channel codes designed for an additive noise memoryless channel with noise pdf given

by zγ,w.

Proof.

The proof makes use of the explicit code construction presented in Section 2.3.

The binary channel encoders used in the construction are chosen, so that they achieve

the capacity C(pzγ,w , wγ/(1 + (1 − w)γ)) over the channel with additive noise of pdf

pzγ,w(z). Recall that, the most significant bit at instant j of the transmitted real symbol yj

was denoted by y0,j. The bit y0,j sees a channel which is equivalent to one with an additive

noise of pdf pzγ,w(z) and an output SNR of wγ/(1 + (1− w)γ), as shown in Figure 2.5.

At the receiver, the received value will be r̂j = W0,j + zγ,w, which can be decoded to form

the original sequence U0 with an arbitrarily small probability of error, due to the capacity

achieving channel coding. This in turn recovers the first B bit planes of the source. The

MSE distortion is then only due to the rest of the bits numbered from B + 1 in the binary

representation Xt of the source symbol st. This is (1− w)B as claimed. The bandwidth

expansion factor is clearly B/C(pzγ,w , wγ/(1 + (1− w)γ)).

y
+ + γ)z(w,b

Var = 1

Var(b) = w

MSB

LSBs

Additive Noise Channel

r ~ p

γn  ~ N(0, 1/   )γy*  ~ p
(y, w)

Var(y*) = (1−w)

(y/   )/β β

Figure 2.5 The presence of weighted less significant coded bits has the effect of an added
noise of variance (1−w) in addition to the AWGN nγ ∼ N (0, 1/γ). Here, b is
a Bernoulli(p = 0.5) random variable taking values from {±

√
w}; y∗ has zero

mean, variance (1− w), and a pdf given by p(y,w)(y/β)/β. From the figure,
the actual SNR for the binary symbol b is, γ′ = wγ/(1 + (1− w)γ) 6 γ.
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From above, for an output SNR greater than γ, a distortion of (1 − w)B is

achievable for a bandwidth expansion factor of N = B/C(pzγ,w , wγ/(1 + (1 − w)γ)).

This code recovers without error, the binary sequence U1. From this sequence, we

can recover by reordering, the binary sequence representation Xj of each symbol of the

source sequence, sj correct up to the first B bits(denoted as ŝj,B). The perfectly recovered

sequence of bits, U1 = {U1} can be re-encoded at the receiver and subtracted from the

received sequence, r , {rj = W1,j + zγ,w}, and then scaled by 1/β, to obtain a new

random variable sequence, r1 , {r1,j = W2,j + z′γ/(1−w),w} by Lemma(2.1). Invoking the

decoder again on r1, and since γ/(1− w)k > γ/(1− w), we can recover W2,j perfectly.

We now proceed by induction on the number of stages of the decoder operation, denoted

by k.

Let S be a source drawing from an alphabet, S with a probability distribution,

pS(s) which allows successive refinement of information [EC91] for a distortion function

d, then similar results may also hold for such sources. Figure 2.6 gives a block diagram

of the receiver structure proposed in the Theorem 2.1.

1

SPA Decoder
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at the
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Figure 2.6 The decoder for the Analog Code, with M decoding stages corresponding to
the M most significant bits. In the figure, rt denotes the real valued channel
output at time t, while Ûj and Ŵj denote the estimates for Uj and Wj (see
Figure 2.3) respectively at the receiver. These estimates Ûj can be reordered
and used to recover an estimate of the analog source output in an obvious
manner.

The D2 versus γ curve given by the Theorem 2.1 falls at a rate proportional to γ−B.

In the limit as the rate of the binary code approaches unity, B → N, and the distortion

falls at a rate proportional to γ−N in the limit. This means that at high enough SNR,

the analog code performance curve can be made parallel to the optimal distortion curve
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for the power limited AWGN channel, given by, D2 > 1
2πe (1 + SNR)−N . Therefore the

analog code presented in this paper can be expected to outperform some other schemes

suggested in literature [CW98, VC03] at large γ.

2.4.1 Discussion and Example
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Figure 2.7 The capacity of the two additive noise binary input, real output channels. One
of the channels is the AWGN channel with normal pdf N (0, σ2). The second
channel has a Gauss-Uniform pdf GU (

√
3

2 , σ2).

In Figure 2.7, the capacity curve for a binary input channel with two inde-

pendent additive noise components, one a uniform noise distributed in the interval

[−
√

3/2,
√

3/2) and the other a Gaussian noise of zero mean and unit variance is shown.

In Figure 2.8 a typical achievable information rate and corresponding SNR are shown.

The noise variance at which a rate of B/ρ is achieved on this channel is denoted by σ2
∗ .

We now restrict our discussion to the simplest case when w = 3/4. In this case, below a

noise variance of σ2
∗ , the first level of encoded bit stream can be decoded with arbitrarily

small error probability when the bandwidth expansion ratio N is at least ρ. Similarly,

the second level of encoded bit stream can be decoded with vanishing error probability

when the noise variance is below σ2
∗/4. In general, the ith level can be decoded when the

noise variance is below σ2
∗/2i−1.
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Figure 2.8 The capacity of a channel with noise pdf GU (
√

3
2 , σ2). A typical achievable rate

point based on the ratio B/ρ and the corresponding SNR, 1/σ2
∗ , where N = ρ

is a particular bandwidth expansion factor.

When w = 3/4, the additive noise due to the lower significant bit planes suffered

by the bits in the first level of encoded bits is distributed uniformly in the interval

[−
√

3/2,
√

3/2). The combined pdf of the additive noise presented to the ith level of

encoded bits is the convolution of the uniform pdf in the interval [−ai, ai) with the

Gaussian pdf N (0, σ2), where ai =
√

3
2i . In the remaining sections, we will call this new

pdf the Gauss-Uniform pdf, and denote it by GU (ai, σ2).

2.5 Analysis of Finite Length Practical Encoders and Hard Decision ML

Component Decoders

We consider the simplest weight factor w = 3
4 . Consider the case of B = 1 and

the simplest setting of all component binary codes being the same. According to the

analog code construction outlined earlier, the different bit planes of the source output are

encoded separately using binary codes of rate R, and then the map fw(.) is applied to

obtain the analog code. The bandwidth expansion factor is then N = 1/R. However the

guaranteed rate of fall of distortion is only (1 + SNR)−1, because B = 1.
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Now consider the case when B = 2 and assume all component binary codes to be

rate R capacity achieving binary codes. Bit level reordering, encoding with component

codes and mapping with fw(.) is shown in the Figure 2.1 and Figure 2.2. The rate of fall

of distortion is (1 + SNR)−2, because B = 2, while the bandwidth expansion factor is

N = 2/R.

Consider the ith level binary encoded sequence Xi. This sequence of coded bits

suffers two independent additive noise components. One is the uniformly distributed

noise due to the lower levels, while the other is the AWGN offered by the channel. Let us

define ai ,
√

3
2i . Then the coded bits are transmitted at ±ai, uniform noise is distributed

in the interval [−ai, ai) and the AWGN is N (0, σ2). The probability of an encoded bit in

the ith level being in error can be calculated as follows:

The combined additive noise pdf due to the uniform pdf and the Gaussian is

given by:

fz(z) =
∫ ai

τ=−ai

1
2aiσ
√

2π
e−

(z−τ)2

2σ2 dτ = erf(
z + ai

σ
√

2
)− erf(

z− ai

σ
√

2
)

which is the pdf of a random variable distributed as GU (ai, σ2).

Assuming equally likely encoded ±ai, the probability of an encoded bit in level i

being in error is given by,

P(i, σ) =
∫ ∞

z=0
fz(z)dz =

1
2aiσ
√

2π

∫ ai

−ai

∫ ∞

ai

e−
(x+t)2

2σ2 dxdt

=
σ(1− e−

2a2
i

σ2 )
2ai
√

2π
+

1
2

erfc(
ai
√

2
σ

)

We can observe that for large SNR, coded bit error probability is dominated by σ, while

for small SNR, it is dominated by the factor (1 − e−2ai/σ2). It is also seen that the

probability depends only on the relative SNR of the ith encoded bit level, which is a2
i /σ2.

Now we consider the case when a systematic binary linear code with parameters

[n, k, d] is used as the component code. The probability of information bit error under

hard-decision ML decoding when the code is used over a BSC with crossover probability
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of p is upper bounded by:

Pe 6
n

∑
m= d−1

2 +1

m
n

(
n
m

)
pm(1− p)n−m (2.2)

Using the expression for P(i, σ) for the crossover probability p, we get, for the ith level,

the information bit error is upper bounded as:

Pe(i, σ) 6
n

∑
m= d−1

2 +1

m
n

(
n
m

)
P(i, σ)m(1− P(i, σ))n−m

The average distortion due to the ith level is given by,

D(i, σ) = 2
B−1

∑
j=0

a2
(Bi−j)Pe(i, σ) = 2

B−1

∑
j=0

(
√

3
2(Bi−j) )

2Pe(i, σ) =
2(4B − 1)

4Bi Pe(i, σ)

the summation above over j was because errors in the ith coded bit level cause errors in

the source bit planes {(Bi− j) : j∈ {0, . . . , (B− 1)}}.

The distortion suffered at each level are independent and add up to the total

distortion. If at the receiver, the analog decoder is limited to decoding the first I levels,

then the corresponding distortion is therefore:

DI(σ) = 2−2BI +
I

∑
i=1

D(i, σ) = 4−BI + 2(4B − 1)
I

∑
i=1

4−BiPe(i, σ)

where the first term is the total distortion due to all source bit planes below level BI.

The performance of the analog codes constructed here can actually be better than

the bound derived above if we use soft decision maximum likelihood decoders for the

individual component codes. In practice, we can replace unbounded length capacity

achieving codes with very good algebraic codes or with graphical codes. In the second

case we have a low complexity near ML decoding algorithm readily available in the form

of the message passing algorithm. Also, we can truncate the number of source bit planes,

I which are actually encoded to a manageable, yet reasonably high value.
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2.6 Discussion and Examples

In this section, we examine two practical encoders and their performance to

demonstrate the effectiveness of the new analog code construction, especially at higher

SNRs.

2.6.1 Perfect Binary Golay Code [23, 12, 7] as Component Code

The rate of this code is R = 23/12. Since the code is perfect, in the bound of (2.2)

equality holds.

We consider the case with B = 2. The bandwidth expansion factor, N = Bn
k =

46
12 = 3.833. In Figure 2.9, the lower bound on the distortion at a bandwidth expansion
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Figure 2.9 Upper bounds on the mean squared distortion of the proposed analog code
constructed using the binary Golay code [23, 12, 7] as the component code and
hard decision ML decoders for the component codes at the receiver.

factor of N = 3.833 and N = B = 2 are shown, along with the upper-bound on distortion

when this particular choice of component code is used along with hard decision ML

decoding for the component codes at the analog decoder. Even with the number of

source bit planes restricted to I = 50, we already see a rate of decline of distortion with

increasing SNR which is proportional to the N = B = 2 case.
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2.6.2 Binary Code [72, 36, 16] as Component Code

This code is taken from [MS77]. When B = 3, the bandwidth expansion factor

is given by N = B/R = 6. From Figure 2.10, we see that the rate of fall in distortion is
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Figure 2.10 Upper bounds on the mean squared distortion of the proposed analog code
constructed using the binary code [72, 36, 16] as the component code and hard
decision ML decoders for the component codes at the receiver.

proportional to the N = B = 3 case.

For both the codes considered in this section, the actual performance can again be

improved if we use soft decision decoders for the component codes.

2.6.3 Repeat Accumulate Codes as Component Codes

As another verification of the code construction and decoding procedure, we

employ the simple yet fairly powerful Generalized Repeat Accumulate (RAm) code

[DJM98], with m = 2 as the binary code to construct an analog code. The random

permuters used were of length 27000. This code choice enabled the use of a factor graph

based Sum-Product Algorithm(SPA) [KFL01] at the decoder. But note that any other

good graph based codes may also be used. Knowing the pdf pzγ,3/4(z), the messages

from the leaf nodes of the Factor Graph (see Figure 1.2, Figure 2.11 and Figure 1.4) can
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Figure 2.11 Forward backward algorithm on the Accumulate code graph. Here, p(u)
stands for the conditional pdf offered by the channel for the output, given an
input symbol. Hence, for the Analog Codes, p(u) = pzγ,w|yi,j

(z|y), which is
known in closed form for w = 3/4. The variables have a binary alphabet.
For the truncated Analog Codes, p(u) is a conditional Gaussian pdf. The
variables in this case are from a 2M-ary alphabet.

be calculated and the message passing algorithm now proceeds through a forward

backward schedule, which is terminated at a previously fixed iteration level. We

simulated the sum-product algorithm for 20 iterations to report the curves of Figure 2.12.

The simulation results are seen to be in excellent agreement with Theorem 2.1. The slope

of the D2(dB) - γ(dB) curve was −B throughout the SNR regime we simulated. The

actual simulation curve is worse than the predicted performance from Theorem 2.1, by an

SNR(dB) value by which the threshold of the (RA2) code under iterative decoding differs

from the Shannon limit for that channel. The decoder complexity increases linearly as the

number of bits of precision, M demanded at the receiver end. In a broadcast scenario,

the transmitter transmits the same code symbols irrespective of the receiver SNR. Since

the receiver knows the SNR, it can decode using the SPA at a resolution which can be

supported by the code at the receiver SNR. Thus, in principle, the receiver can achieve

any of the MSE distortion points predicted by Theorem 2.1. In practice however, the

receiver performance is dictated by the performance of the binary component code.

In particular, at higher SNRs, error floors of the binary codes can result in additional

distortion.
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Figure 2.12 The code performance for bandwidth expansion N = 4 on AWGN channel
SNR. Analog (RA2) codes for (B = 2, R = 0.5) and (B = 3, R = 0.75)
are plotted along with corresponding lower bound for the chaos codes of
[CW98], and the Shannon lower bound, D2 > 1

2πe (1 + SNR)−N for the
AWGN channel. The interleaver was of length 27000.

2.6.4 Bandwidth efficient communication with truncated Analog Codes

The effectiveness of analog codes based on capacity achieving component binary

codes, prompts one to consider truncated versions of these for bandwidth efficient

communication. The modulation codes that we consider first are analog graphical codes

truncated to the M most significant bits. Then for a code rate of R, the bits per channel use

is seen to be 2M · R for a complex AWGN channel. As a simple example, we simulated

with generalized (RA2) code as the component codes for the analog code with B = 1 over

a complex AWGN channel. The channel likelihood messages (see Figure 1.4, Figure 2.11

and Figure 1.2) are easily determined, since the channel conditional pdf is known to be

Gaussian distributed. At the decoder, SPA is again employed (Figure 2.11). The code

alphabet now has 2M symbols. Hence, each message vector is of dimension 2M. At the

end of the stipulated number of iterations, the source symbol with the largest associated

áposteriori probability is selected.

A variation of the truncated analog codes has been found to perform better for

small values of M (at least for M < 4). Here, the Repeat Accumulate codes work on
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Figure 2.13 The performance of (a)Truncated Analog (RA2) codes for (B = 1, R = 0.5)
and M∈ {1, 2, 3, 4} and (b)Z2M(RA2) codes for M 6 4, at BER = 10−5 are
plotted along with corresponding computational cutoff rate for MPSK on a
complex AWGN channel. The interleaver was of length 27000.

the ring Z2M . When M = 1, the resulting codes are the same as the binary (RAm)

codes. The mapper converts the symbols in Z2M to real numbers, using the natural

mapping, scaled to achieve the desired average transmit power. The decoder uses the

SPA( Figure 2.11). Now the component code trellises for the serial concatenation scheme

draw from an alphabet with 2M symbols. Again, for a complex AWGN channel, the

channel conditional pdf is known to be Gaussian distributed, and at the end of the

stipulated number of iterations, the source symbol with the largest associated áposteriori

probability is selected. The results have been plotted in Figure 2.13, along with the

computational cutoff rates of MPSK over complex AWGN channel.

2.7 Comparison with Prior Bounds on Distortion

In this section, we compare the new codes with the class of signals considered by

Ziv. We show that the key condition of boundedness of “stretch-factor” does not hold for

the codes constructed in this paper. Therefore the threshold effect predicted in [Ziv70]

does not necessarily apply to the new codes.
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In [Ziv70] Ziv considers an analog data source which produces a sequence of real

samples, s1, s2, . . . at a rate of 2WS samples per second. The encoder maps a block of

k = 2TWS such source samples, S, using a function, f (t, S) such that the following hold:

[ f (t, S)]2 6 f 2
max < ∞

1
T

∫ T

0
ES[( f (t, S))2]dt 6 1

If we restrict to the uniform analog source considered earlier, then Theorem 2

in [Ziv70] states that given a mapping f (t, S) and positive integers M, α, ∆0 such that for

every j = 1, 2, . . . , k

dj(∆)
de f
=
∫ a

−a

∫
S:Si=si

∫ T

0

|ð f j(t, S, ∆)|2

2a
dsidP(S|si)dt 6 M∆α (2.3)

where

ð f j(t, S, ∆)
de f
= f (t, s1, s2, . . . , sj + ∆, . . . , xk)− f (t, s1, s2, . . . , sj, . . . , xk)

for any ∆ 6 ∆0 6 2a, then for any sufficiently large SNR γ, and a positive real number K,

D >
K(2a− ∆0)
(Mγ)−2/α

The function dj(∆) is called the expected stretch factor, and is assumed to be

bounded by a number proportional to a positive power of ∆. This assumption is valid for

most practical analog communication systems such as FM, where there is a bandwidth

expansion factor. However, for the analog codes constructed in this paper, the stretch

factor is not polynomially bounded as a function of ∆. We will show this by means of

a simple example. Assume that all of the component codes are the binary [7, 3, 4] code,

which is the dual of the [7, 4, 3] Hamming code. This code has the generator matrix given

by: 
1 0 1 0 1 0 1

0 1 0 0 1 1 1

0 0 1 1 1 1 0
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Figure 2.14 The dual Hamming code [7, 3, 4] is used as a component code. The analog
code sequences are shown when x1 alone is changing, while x2 = 0.7095 and
x3 = 0.4289

Figure 2.14 shows the analog code mapping as a function of x1, while x2 is held

fixed at 0.7095 and x3 is fixed at 0.4289. Recall that xj , (sj +
√

3)/2
√

3, where sj are the

samples from a band-limited analog source with a zero mean, unit variance uniform pdf.

A very interesting situation is immediately apparent. For example, compare the map

when x1 = 0.5−∆ and x1 = 0.5. No matter how small the ∆, the entire mapping changes

from one point to the other. This is because all the bits in the binary representation of

0.5 are different from the bits in the binary representation of 0.5 − ∆, forcing all the

component codewords to change. The same situation recurs when x1 approaches all

powers of 1/2. In fact, the mapping is almost everywhere discontinuous as a function

of x1. This is an example of curve which is self-similar under scaling and shifting. Such

forms are well known as fractals [Man82]. Similar observations can be found valid on all

of the other three source dimensions as well.

Therefore, it is clear that the analog codes constructed in this paper do not fall in

the class of modulation signals considered in [Ziv70].

One can also observe that, the proposed analog codes do not touch the corre-

sponding rate-distortion based lower bounds on MSE distortion. Therefore, conclusions
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Figure 2.15 The dual Hamming code [7, 3, 4] is used as a component code. Position
number 7 in the analog code sequence is shown when x1 alone is changing,
while x2 = 0.7095 and x3 = 0.4289

similar to those of Reznic et al of [RFZ05] do not apply as well. Moreover, in [RFZ05],

they consider Gaussian sources, whereas our construction is for a uniform source, though

it may be possible to extend it to any source which admits successive refinement of

information [EC91].

2.8 Summary

We presented a new analog coding scheme, which can achieve a mean-squared

error distortion proportional to (1 + SNR)−B for a bandwidth expansion factor of B/R,

where 0 6 R 6 1 is the rate of individual component binary codes used in the

construction. Thus for large range of SNR values, the newly proposed code will perform

much better than any single previously proposed analog coding system.
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C H A P T E R 3

On the effect of Parity Check Weights in Iterative

Decoding

3.1 Introduction

ML decoding of general binary linear block codes is known to be a hard problem,

either with or without soft information. Recently with the success of Turbo codes,

there has been renewed interest in obtaining near ML solutions with a reasonably

low complexity, with many notable successful instances. These algorithms have been

classified as Message-Passing or Sum-Product algorithms [KFL01]. Codes have to be

specifically designed in the first place to be iteratively decoded with a high probability

of successful decoding. Blindly applying these Message-Passing techniques to a block

code which has been designed using algebraic techniques to be good, more often than

not results in no useful error correction. This phenomenon has been left inadequately

explained. In this paper, we attempt to provide an accurate alternate analysis of

Gallager’s iterative algorithm [Gal63]. Gallager’s algorithm can be thought of as a

simpler yet effective version to the general Message-Passing algorithms, introduced later.

The insights gained from this analysis can be used to advantage in designing better

Message-Passing decoders for general linear binary block codes.

3.2 Parity Check Weight and Message Passing Decoding

In this section, we will see qualitatively what happens when Sum-Product al-

gorithms are applied on a Tanner graph realization of a linear binary code. Consider

49
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an [n, k, d] linear binary block code, C. Let the generator matrix and parity check

matrix of this code be G and H. Let us assume that c = aG was transmitted over a

memoryless channel and was received as the real vector r. Let the ápriori probability

vectors associated with the received vector be denoted by p(0)
0 = [Pr(rj|cj = 0)], and

p(0)
1 = [Pr(rj|cj = 1)] with j∈ [n].

Let the receiver run the Sum-Product Algorithm over the Tanner graph of C. The

function nodes represent a single row of the matrix H. If we represent the messages on

the edge from variable node cj to check node hi of this graph in iteration ` as δ
(`)
cj→hi

in

the Fourier domain (which is the Hadamard transform of the actual probability message

for binary alphabet), we can see that the check node operation can be represented as a

component wise product operation. See for example [For01, RU01].

δ
(`+1)
hi→cj

= ∏
j′ ∈ supp(hi)

j′ 6=j

δ
(`)
cj′→hi

(3.1)

After taking inverse transforms and upon noting that the variable node updates are

component wise products in the probability domain, the estimate for the áposteriori

probabilities as produced by this update may be represented as:

p(`+1)
0,j (cj) =

p(0)
0,j ∏∀i(1 + δ

(`+1)
hi→cj

)

p(0)
0,j ∏∀i(1 + δ

(`+1)
hi→cj

) + p(0)
1,j ∏∀i(1− δ

(`+1)
hi→cj

)

=

p(0)
0,j ∏∀i(1 + ∏j′ ∈ supp(hi)

j′ 6=j

δ
(`)
cj′→hi

)

p(0)
0,j ∏∀i(1 + ∏j′ ∈ supp(hi)

j′ 6=j

δ
(`)
cj′→hi

) + p(0)
1,j ∏∀i(1−∏j′ ∈ supp(hi)

j′ 6=j

δ
(`)
cj′→hi

)
(3.2)

Unfortunately since δ
(`)
cj′→hi

∈ [−1, 1], if we have large weight parity checks, then the

updates fail to change the messages significantly enough in each round of iteration.

Consequently the decoding fails with a high probability, especially if the initial bit

reliabilities were low. This is to be expected, as parity checks involving a large number of

bits represent very weak Single-Parity-Check codes. Although the above analysis gives

us a qualitative picture of the problem associated with large weight parity checks, it fails
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to provide any suggestion as to a range for parity check weights which would result in

successful iterative decoding. The analysis of the next section attempts to fill this gap.

3.3 Dual Code Weight Spectrum and Gallager Algorithm

Consider an [n, k, d] linear binary block code, C. Let the generator matrix and

parity check matrix of this code be G and H. In the ensuing discussion, we shall assume

that c = aG was transmitted and was received as the binary vector y = c⊕ e, where the

uniform error vector, e has a Hamming weight of t.

At the receiver end, we implement the following voting scheme - we pick at

random without replacement a parity check equation h = vH from among a pre-

determined large spanning-subset of the dual code S ⊂ C⊥. Similar use of Generalized-

Parity-Check matrices has been made with limited success for some codes and certain

channels [YCF02]. Now we check if this parity check is satisfied by the received word,

y. If it is, we mark a positive vote on each code position participating in h; otherwise we

mark a negative vote. Now pick another parity check equation at random and repeat the

above till the subset S is exhausted. In the end, all received word positions getting a net

negative-to-positive vote ratio which is above a certain pre-determined threshold-ratio,

are flipped to their complements, while the rest are left unchanged. One may go through

this process in an iterative fashion.

Thus, this scheme can be readily recognized as a somewhat generalized and

simplified version of the Gallager’s Algorithms A and B. The essential difference being

that, while in the Gallager Algorithm, only the parity checks from among the rows of

a given check matrix H are employed in an iterative fashion, in the above scheme, the

parity checks are chosen from a pre-determined subset which spans the dual code. As

we shall see, this gives us sufficient flexibility in choosing a subset S which results in

better decoding.

Next we analyze the above procedure with the intention of obtaining a closed

form expression for the probability of correct detection of an error, Pd in any given
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position. We also obtain the probability of a false-alarm for a non-existent error (a

miscorrection) Pf a in any given position. We will be concerned with only the check-node

updates in what follows.

3.3.1 Calculation of Pd

We denote the outcome of the parity check, yhT by b. Let the parity check h have

a weight of wh. Let us first calculate Pr(b = 1|wt(h)). A parity check equation would

fail iff there are an odd number of errors within its support. Since there are a total of n

positions and t errors in total, we get the following expression by means of counting:

Pb|wh,t = Pr(b = 1|wt(h) = wh, wt(e) = t) =

∑06s6t
s odd

(wh
s )(n−wh

t−s )

(n
t)

 (3.3)

Now let us fix a code vector co-ordinate, j. Let us assume that the jth position is

in error in the received vector, y. The rest of the t − 1 errors are uniformly distributed

among the other n − 1 positions. The check would fail iff there are an even number of

errors within the support of h excluding j. Again by counting we derive the following

expression for Pd.

Pd|wh,t = Pr(b = 1|ej = 1, hj = 1, wt(h) = wh, wt(e) = t) (3.4)

=

∑06s6(t−1)
s even

(wh−1
s )((n−1)−(wh−1)

t−1−s )

(n−1
t−1)

 (3.5)

=

∑06s6(t−1)
s even

(wh−1
s )(n−wh

t−1−s)

(n−1
t−1)

 (3.6)

3.3.2 Calculation of Pf a

Similar to the calculation of Pd, we first fix a codeword position, j. This time we

assume that this position is error free in the received vector, y. So all the t errors are

distributed uniformly at random among the other n− 1 positions. The check would fail
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if there are an odd number of errors caught within the support of h excluding j. This

probability would be

Pf a|wh,t = Pr(b = 1|ej = 0, hj = 1, wt(h) = wh, wt(e) = t) (3.7)

=

∑06s6t
s odd

(wh−1
s )((n−1)−(wh−1)

t−s )

(n−1
t )

 (3.8)

=

∑06s6t
s odd

(wh−1
s )(n−wh

t−s )

(n−1
t )

 (3.9)

0 1
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e
j
:

Figure 3.1 The error state transition diagram for a position j. The state probabilities are
determined by the error weight. Initially Pr(ej = 0) = 1− t

n and Pr(ej = 1) =
t
n .

We can also see that since the error event ej = 1 occurs with a probability of t/n,

Pb, Pd and Pf a are related. The error state diagram for a position j is shown in Figure 3.1.

It can be readily verified that:

Pb|wh,t = Pr(b = 1|hj = 1, wt(h) = wh, wt(e) = t) (3.10)

= Pr(ej = 1) · Pr(b = 1|ej = 1, hj = 1, wt(h) = wh, wt(e) = t)

+ Pr(ej = 0) · Pr(b = 1|ej = 0, hj = 1, wt(h) = wh, wt(e) = t) (3.11)

= Pd|wh,t

(
t
n

)
+ Pf a|wh,t

(
1− t

n

)
(3.12)
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Defining the discrepancy, ∆P|wh,t to be

∆P|wh,t = Pf a|wh,t − Pd|wh,t (3.13)

For a parity check equation h of weight wh, we would like to have the discrepancy to

be non-positive: ∆P|wh,t 6 0. For any given error weight t, we want parity checks such

that their discrepancy is negative for all error weights less than or equal to t. We say that

parity checks with such weights are useful in an average sense.

One may wish to consider the average values of Pd and Pf a over the set S ⊂ C⊥.

One can also marginalize over all possible error weights, if their relative probabilities are

known as a function of the channel noise statistics. This gives:

Pd(S) = ∑
∀t

Pr(t) ∑
h∈ S

(
A⊥S (wh)
|S|

)
Pd|wh,t (3.14)

Pf a(S) = ∑
∀t

Pr(t) ∑
h∈ S

(
A⊥S (wh)
|S|

)
Pf a|wh,t (3.15)

∆P(S) = Pf a(S)− Pd(S) (3.16)

where, A⊥S (wh) denotes the weight spectrum of the dual code vectors within the subset

S .

These average values are now functions of only the particular spanning subset,

S and the channel transition probability. When selecting a spanning subset, we would

ideally like to have the most useful spanning set. That is a set with the least discrepancy,

∆P(S). Thus in particular, the following subset S ⊂ C⊥ is of interest:

Sopt = arg min
∀S⊂C⊥

S spans C⊥

∆P(S) (3.17)

In this context, note that Pd(S) and Pf a(S) can be interpreted as related to the probability

of a reduction in error weight and an increase in error weight in any iteration. If the least

discrepancy ∆P(Sopt) is non-negative, the iterative algorithm described above is unlikely

to produce improving estimates in successive iterations. In most cases, an optimal choice
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is the minimum weight spanning set, as seen in the next section which examines some

specific codes.

3.4 Examples

3.4.1 [23, 12, 7] Perfect Binary Golay Code:

We take the binary triple error correcting perfect Golay code as our first example.

Using Eq(3.6) we plot Pd|wh,t versus the parity check equation weight in Figure 3.2 for

various values of error weights. Pf a|wh,t is plotted in Figure 3.3. Figure 3.4 and Figure 3.5
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Figure 3.2 [23, 12, 7] Golay code - Probability of correct decision Pd|wh,t as a function of
wh for various error weights

show Pb|wh,t and ∆P|wh,t. The weight enumerator for the binary Golay code is x23 +

253x16y7 + 506x15y8 + 1288x12y11 + 1288x11y12 + 506x8y15 + 253x7y16 + y23. From this, the

weight enumerator of its dual can be found to be x23 + 506x15y8 + 1288x11y12 + 253x7y16.

So, the lowest weight non-zero parity checks have a weight of 8. It is interesting to note

that there are no useful parity checks when t > 3. This is because the dual code of the
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Figure 3.3 [23, 12, 7] Golay code - Probability of false alarm Pf a|wh,t as a function of wh
for various error weights
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Figure 3.4 [23, 12, 7] Golay code - Probability of check equation failure Pb|wh,t as a
function of wh for various error weights
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Figure 3.5 [23, 12, 7] Golay code - Discrepancy ∆P|wh,t as a function of wh for various error
weights

Golay code has a minimum distance of 8, and there are no useful vectors of weight more

than 7. This fact is important, because this code is perfect and cannot decode more than

3 iid errors. Another fact is that all parity checks are useful in case there is only a single

error.

3.4.2 Length 63 Binary Code:

Consider a length 63 linear binary code, for example a narrow-sense BCH code.

Figure 3.6 shows the discrepancy ∆P|wh,t. For t = 3, 5, 7 we see that the only useful parity

checks are those with weight less than 28, 23 and 19 respectively.

3.4.3 [1024, 644, > 76] Binary Irreducible Goppa code:

This code is any 38 error correcting binary Goppa code, suggested for use in the

McEliece crypto-system. We have plotted the magnitude of the Discrepancy, |∆P|wh,t| in



58

0 10 20 30 40 50 60 70
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

∆
P|w

 h
, t

 versus w
 h

w
 h

 →

∆ P
|w

 h
, t

 →

t = 1
t = 3
t = 5
t = 7

Figure 3.6 [63, k, d] binary code - Discrepancy ∆P|wh,t for t = 1, 3, 5, 7. Useful parity checks
have weights less than or equal to 63, 27, 22, and 18 respectively.

0 100 200 300 400 500 600 700 800 900 1000 1100
10

−15

10
−10

10
−5

10
0

|∆
P|w

 h
, t

| versus w
 h

 for [1024, 644, > 76] Goppa code

w
 h

 →

|∆
P

|w
 h

, t
| →
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Figure 3.7. The semi-log plot shows in clearer detail the variation in ∆P|wh,t with check

weights. In this case the optimal spanning set, Sopt should have weights less than about

100 to produce successive improvements over iterations with any significant probability.

3.5 Summary

The analysis given in this paper shows that in general only low weight dual

codewords are useful for a given linear binary code. Having parity checks with weights

more than a certain threshold actually lower the probability of successful iterative

decoding, when Gallager Algorithm is used.

Once the probabilities are calculated as in the above discussion, it is possible to

model the iterations on a probabilistic state transition diagram. The states correspond to

the error weights, t and forward and reverse transition probabilities from any state t are

functions of Pf a|t and Pd|t. Using this diagram, the state probabilities after ` iterations of

the algorithm can be calculated.
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C H A P T E R 4

Markovian Analysis of Hard Decision Iterative

Decoding of Product Codes

4.1 Introduction

Under somewhat general assumptions, it is possible to analyze the behavior

of iterative fixed precision soft decision decoders for concatenated block codes. The

analysis uses a Markovian model for the decoding process. When the channel is discrete

memoryless binary symmetric, the interleaver is ideal random and the decoder is fully

characterized (in a sense to be made precise), this analysis can be much simplified and

brings out some of the salient features of the iterative decoding process, and can be

surprisingly accurate when applied in practice. Here, we analyze a block interleaved

product code of two block codes as in Figure 4.1.

4.2 Markovian Analysis Model

The iterative decoding of concatenated codes may be viewed as a Markov process.

Let the source have an alphabetA. A stationary source can then be described as an a-priori

probability distribution over A. In the special case when A is discrete

A = {a0, a1, · · · , aN−1}

this probability distribution can be represented with an N dimensional row vector

σ = (σ0, σ1, · · · , σN−1)

60
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Figure 4.1 The product code of two block codes. An iterative decoder of such a code is
analyzed here.

_ _ ___ π ππ(0) π(1) (m−1) (m)σ

Iterations (1) to (m)

S
o

u
rc

e

Channel Decoder
Decoder

Figure 4.2 A Markovian state evolution model for the iterative decoding process.

Let the channel output be distributed randomly in one of K separate bins. In the case

of fixed precision, which is normally the case in practice, K = 2b−1, where, b bits is the

precision. The soft outputs from the channel are drawn from an alphabet

B = {b0, b1, · · · , bK−1}

have a probability distribution associated with them, which can be represented with a K

dimensional row vector as:

π(0) = (π0(0), π1(0), · · · , πK−1(0))
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A channel at time t may be modeled as:

π(t)(0) = PC(t)(σ(t))

where PC(t)(.) is a time varying vector function. Specifically, a stationary memoryless

channel is fully characterized, once the state transition probability matrix is known:

PC = Pr(y = bj|x = ai)

Now, we have the familiar Markov rule [Nor97]:

π(0) = σPC

Similar to the channel model, each component code decoder may be modeled as a

transformation PD(m)(.) on the probability vectors associated with stage m. Then at the

mth iteration, we have:

π(m) = PD(m)(π(m− 1))

Except in the simplest cases, the transformation PD(m)(.) can be difficult to obtain in a

closed form.

See Figure 4.3 for the channel and decoder state transition diagrams in a general

case, when A and B are discrete. The problem of finding the Symbol Error Rate at the

end of m iterations is then the same as solving for the state probability vectors after stage

m:

π(m) = (
m

∏
`=1

PD(`))(PC(t)(σ(t))) (4.1)

where, ∏` denotes the composition of the transformations.
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Figure 4.3 The state transition diagram for a general iterative decoding with discrete
alphabets.

Observe that since we have the relations:

N−1

∑
i=0

σi = 1 (4.2)

K−1

∑
i=0

πi(`) = 1; ∀` (4.3)

because they are discrete probability densities; (4.1) actually reduces to a system of K− 1

equations. We next consider a few cases in which a solution is possible.

4.3 Binary Input Channels - Ideal Decoders with no Miscorrection

In the special case when the source and channel are symmetric and have a

discrete alphabet, we need to analyze only a limited number of transitions, since they are

symmetric. In the case of a binary source, one may restrict to considering the 0 symbol

transmission case.
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4.3.1 Binary Symmetric Channel

Consider a symmetric binary source which has an equi-probable a-priori. The

Channel is a memoryless BSC, with Gaussian pdf N (0, σ2). Here N = K = 2. The

decoder is assumed to be ideal and consequently does not miscorrect. Thus (4.1) leads to

a scalar recursion equation.

The code rate is R, and the Eb/N0 is γ(dB) where, N0 = σ2/2. Thus, to start with,

the crossover probability is given by:

π(0) =
∫ 0

−∞

1
2πσ2 exp

−(x− 1)2

2σ2 dx (4.4)

=
1
2

(
1− erf(

√
R · 10

γ(dB)
20 )

)
(4.5)

The m in π(m) denotes the iteration number. Assume now that we iterate our decoding

scheme over the rows and columns which represent the inner and the outer code

respectively, in each of the two phases. The interleaver model is a standard block

interleaver. The decoder in the inner code stage is assumed capable of correcting any

number of errors less than ti in a row. The decoder in the outer code stage is assumed

capable of correcting any number of errors less than to in a column. The decoder model

is only approximate, since in practice there will be a small probability of miscorrection.

The Figure 4.4 shows the diagram for a BSC. Let us assume that over any number of

0

1

1−p

p

p

1

0

1−p

Figure 4.4 The state transition diagram for a BSC with crossover probability p.

iterations, the event of a bit position being in error remains uncorrelated to the event of

any other bit position being in error. Under these assumptions; the iterative decoding

dynamics can be analyzed, through a probability density evolution technique as follows:
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4.3.1.1 (m + 1)th Iteration:

Assume we are done with m steps of iterative decoding, each consisting of two

phases; first a pass through the inner code decoder for the rows and then a pass through

the outer code decoder for the columns. We adopt the following notation:

• π(m) is the probability of a bit error after iteration m.

• em
li

is the number of bits in error in column i after m iterations.

• em
bj

is the number of bits in error in row j after m iterations.

1. I Phase:

(Decoding along rows of L bits)

Probability that all errors in row j get corrected:

rj = Pr(em
bj

6 ti) (4.6)

=
ti

∑
e=0

Pr(em
bj

= e) (4.7)

=
ti

∑
e=0

(
L
e

)
π(m)e(1− π(m))(L−e) (4.8)

Average number of errors in a row after passing through the decoder for inner code:

E(m+1)
ave,L =

L

∑
e=ti+1

e
(

L
e

)
π(m)e(1− π(m))(L−e)

Probability of a bit in error after all rows are passed through by the inner code

decoder:

π(m′) =
E(m+1)

ave,L

L
= π(m)−

ti

∑
e=0

e
L

(
L
e

)
π(m)e(1− π(m))(L−e) (4.9)

2. I I Phase:

(Decoding along columns of B bits)
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By exactly similar arguments as for phase I, we derive the bit error probability after

the phase I I of the (m + 1)th iteration, π(m + 1):

π(m + 1) =
E(m+1)

ave,B

B
= π(m′)−

to

∑
f =0

f
B

(
B
f

)
π(m′) f (1− π(m′))(B− f ) (4.10)

Observe that combining (4.9) and (4.10) gives us a recursion for π(m + 1) in terms

of π(m).

4.3.1.2 Special case when both component codes are same

1. Fixed Points

In this case, we see that (4.9) and (4.10) are essentially the same, and the iterative

relation is given by:

x′ = g(x) = x−
t

∑
e=0

e
L

(
L
e

)
xe(1− x)(L−e) (4.11)

This relation at its fixed points, π(∞) = x∗ should satisfy:

t

∑
e=0

e
L

(
L
e

)
xe
∗(1− x∗)(L−e) = 0 (4.12)

The two fixed points are: π(∞) = x∗ ∈ {0, 1}.

2. Decoder Threshold

Using the well known result from analysis [Rud76, Bol90], (4.11) will converge to a

fixed point if the following condition holds:

|g′(x)| = |1−
t

∑
e=1

(e− Lx)
e
L

(
L
e

)
x(e−1)(1− x)(L−e−1)| < 1 (4.13)

If one iteration consists of m similar phases, we have to consider the behavior of

g(m)(x) = g(· · · g(g(x))), the m fold composition of g(·). Let the first derivative

of this nested function be denoted as g(m)′(x). Similar to (4.13) we can say that the

iterative equation (4.11) will converge to a fixed point if the argument, x is in the
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rangeR such that:

|g(m)′(x)| < 1, ∀x∈R (4.14)

Observe also that all the fixed points of the function g(x) will be fixed points of

g(m)(x), but the converse is not necessarily true. So the fixed points of g(m)(x) are

also in {0, 1}.

3. Example - C2(511, 475, 9):

We consider the example of two C(511, 475, 9), L = B = 511, R = ( 475
511 )2

, t = 4 codes

concatenated using a standard block interleaver. The plot of |g′(x)| versus γ = Eb
N0

(dB) is shown in Figure 4.5. From this it is seen that, for γ above≈ 5.7 (dB) we have

|g′(x)| < 1 and the iterative algorithm will converge, provided the bit errors remain

uncorrelated throughout the iterations. This approximation gets more closer to

reality for higher number of iterations as the interleaver length increases.
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| ≈5.7dB

Figure 4.5 Example C2(511, 475, 9) code: g′(x) is shown, as well as the contraction
threshold.
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4.3.1.3 Simulation Results

A bounded distance decoder with no miscorrection was simulated. The results

of the simulation and the analysis are in excellent agreement for the first iteration. But,

as expected, since the errors become correlated after a few iterations, the analysis results

yield only a lower bound on the achievable BER for larger iteration numbers. Figure 4.6

shows the results on a BSC (both simulation and analysis) for iterations up to m = 3.
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m=3, sim

Figure 4.6 Example C2(511, 475, 9) code: BSC Simulation and Analysis. BER vs Eb
No dB for

various iterations.

4.3.2 Binary Input and Quantized Output Channel

Consider Figure 4.3 in this special case. When the channel is symmetric, the

source binary equi-probable and the code is linear, we need to consider only the case

of 0 transmissions. All the dashed edges in the diagram can be ignored if we assume

additionally that the decoder is ideal with no miscorrections and capable of correcting all
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errors as long as the errors are constrained to be within a certain finite set of possibilities,

denoted, K, leading to Figure 4.7.
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Figure 4.7 Transition diagram for Binary Source, Fixed Precision Soft Output Channel
and Soft Input, Hard Output Decoders.

A simple model for the constraint class K, can be as follows. Let out of every

L channel output samples (which are from the alphabet B) received by the decoder

for decoding, let the decoder make a correct decoding decision for the case when

the samples are distributed as (λ0, λ1, · · · , λ(K−1)) within the K bins corresponding to

(b0, b1, · · · , b(K−1)) respectively. If the received samples do not fall in this class K, they

are left unaltered by the ideal decoder (this corresponds to assuming that there are no

miscorrections). Then,

K = {η : η = (λ0, λ1, · · · , λ(K−1)), ∑
i

λi = L, η is a correctable error} (4.15)

Given K, we can express the system of equations (4.1) at any step of iteration as:

K−1

∑
k=0

πk = 1 (4.16)
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and

πi = πi − ∑
η ∈ K

(
λi

L

)(
L

λ0λ1 · · · λ(K−1)

)
K−1

∏
k=0

πk
λk (4.17)

i∈ {1, 2, · · · , (K− 1)}

where
(

L
λ0λ1···λ(K−1)

)
=
(

L!
λ0!λ1!···λ(K−1)!

)
denotes the multinomial coefficient.

Practical decoders are not ideal and cause miscorrections, in which case, the

decoder transition diagrams have additional edges. In certain cases, however it may

still be possible to probabilistically model these transitions leading to a model which

is accurate in the average sense. Another cause of inaccuracy in the model is the

correlations within the errors which increase with the number of iterations, because the

interleaver is of finite length. It may be possible to incorporate the correlation in the

transitions, making the transition weights iteration dependent.

4.3.3 Binary Erasures Channel

This case is a special case of the general scenario discussed before; as also is the the

first example of a BSC. Here, N = 2 and K = 3. See the transition diagram in Figure 4.8.
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Figure 4.8 Transition diagram for the BEC with an ideal decoder.
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So we have a system of two recursive equations:

π1 = g1(π1, π2) = π1 −
t

∑
ν=0

2(t−e)

∑
ρ=0

( ρ

L

)(L
ν

)(
L− ν

ρ

)
(1− π1 − π2)

(L−ν−ρ)π1
ρπ2

ν (4.18)

π2 = g2(π1, π2) = π2 −
t

∑
ν=0

2(t−e)

∑
ρ=0

( ν

L

)(L
ν

)(
L− ν

ρ

)
(1− π1 − π2)

(L−ν−ρ)π1
ρπ2

ν

where the index ν is for errors and ρ is for erasures and the corresponding probabilities

are π2 and π1.

+1+∆−∆−1 0
|

Erasure

Figure 4.9 BEC with additive white Gaussian noise.

For an AWGN BEC channel in Figure 4.9, we have the following relations for

π2(0) and π1(0) as the starting point of the iterations:

π1(0) =
1
2

(
erf((1 + ∆) ·

√
R · 10

γ(dB)
20 )− erf((1− ∆) ·

√
R · 10

γ(dB)
20 )

)
(4.19)

π2(0) =
1
2

(
1− erf((1 + ∆) ·

√
R · 10

γ(dB)
20 )

)

where − ∆ · · ·+ ∆ is the erasure region.

The stability of this dynamic system can be better understood looking at the

Jacobian [Ric00, AV01, SB01] of the system of equations (4.18).

J =

 dg1
dπ1

dg1
dπ2

dg2
dπ1

dg2
dπ2

 (4.20)
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where,

dg1
dπ1

= 1− ∑
ρ,ν∈ K

ρ

L

(
L

ν ρ

)
π

(L−ν−ρ−1)
0 π

ρ−1
1 πν

2(ρ (1− π2)− (L− ν)π1)

dg1
dπ2

= − ∑
ρ,ν∈ K

ρ

L

(
L

ν ρ

)
π

(L−ν−ρ−1)
0 π

ρ
1πν−1

2 (ν (1− π1)− (L− ρ)π2)

dg2
dπ1

= − ∑
ρ,ν∈ K

ν

L

(
L

ν ρ

)
π

(L−ν−ρ−1)
0 π

ρ−1
1 πν

2(ρ (1− π2)− (L− ν)π1)

dg2
dπ2

= 1− ∑
ρ,ν∈ K

ν

L

(
L

ν ρ

)
π

(L−ν−ρ−1)
0 π

ρ
1πν−1

2 (ν (1− π1)− (L− ρ)π2) (4.21)

The stability of the system described by (4.18) is assured if the eigenvalues of J

are within the unit circle. In the limiting case as π1 → 0, the BEC becomes a BSC, and

one of the eigenvalues of J (the largest eigenvalue) then corresponds to the derivative of

g(x) as in the BSC case considered before.

4.4 Binary Channels - Decoders with Miscorrection

All practical bounded distance decoders have a non-zero miscorrection probabil-

ity. Let the decoder be capable of decoding all errors less than t < d. A miscorrection

is said to have occurred when the number of errors is more than t, and there happens

to be a codeword which is less than t distance from the noisy received word. Therefore

the miscorrection probability is much more closely related to the properties of the code

than the probability of error. For codes of sufficiently large minimum distance, the

miscorrection probability is often very small. Miscorrection probability of several classes

of codes have been well studied in terms of their weight spectrum. For example see

[CB04] and [Sof00]. Here, we will look much more closely at binary codes and MDS

codes, with the intention of analyzing the effect of miscorrection in iterative product

code decoders.
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4.4.1 q-ary Product Codes over Binary Channels

The only assumption made to obtain the following result is the independence

of errors over iterations at the iterative product code decoder. This appears to be a

reasonable assumption when the number of iterations is small in comparison to either the

length of the component code, the length of the interleaver or the number of component

codes P in the product code CP.

0 y

x

e > t

c < t+1

w >2t

Figure 4.10 The transmitted codeword 0, the erroneous word y on a row at the beginning
of an iteration and the miscorrected codeword x.

Theorem 4.1 Let C be an (n, k, d) linear code over Fq with a weight enumerator Aw. Let

C be used as the component code in a product block code CP, which is used over a binary

symmetric channel. Let the product code decoder at the receiver iteratively decode CP

using P component decoders which are bounded distance t decoders of C where t < d.

If we assume that the errors across iterations are independent then
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(i) if q = 2, the probability of bit error π evolves according to the following recursion:

π′ = π −
t

∑
e=0

( e
n
) (n

e

)
πe(1− π)(n−e)

+
n

∑
e=t+1

πe(1− π)(n−e)
t

∑
c=0

min {c,n−e}

∑
i=max {0, 2t+c−e

2 }

A2i+e−c

(
c−2i

n

)(2i + e− c
i

)(
n + c− e− 2i

c− i

)
(4.22)

(ii) if q 6= 2, the probability of symbol error π evolves according to the following

recursion:

π′ = π −
t

∑
e=0

( e
n
) (n

e

)
πe(1− π)(n−e)

+
n

∑
e=t+1

πe(1−π)(n−e)

(q−1)e

t

∑
c=0

min {e+c,n}

∑
w=max {e−c,2t+1}

min {c,c+w−e}

∑
i=max {c+w−n, c+w−e

2 }

Aw
( e−w

n
) (w

i

)(
n− w
c− i

)(
i

c + w− e− i

)
(q− 1)c−i(q− 2)2i−c−w+e (4.23)

Proof.

(i) Without loss of generality let us assume that the zero codeword 0 was transmitted.

At the beginning of some iteration let there be a total of e errors in a row of length n. When

e 6 t the component decoder correctly decodes the erroneous word to the 0 codeword.

Assuming independent errors across iterations, this occurs with probability (n
e)πe(1 −

π)(n−e). In all the bit error probability gets reduced by:

t

∑
e=0

( e
n

) (n
e

)
πe(1− π)(n−e)

which is the second term in (4.22).

Now let us assume that e > t errors at the beginning of an iteration. Then either

•there are no codewords within a distance of t from the erroneous word y, or

•there is some codeword within a distance of t from y and the bounded distance

decoder miscorrects y to x.
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Figure 4.11 The actual codeword 0, an erroneous word y of weight e and a miscorrected
codeword x of weight w for binary case.

In the first case, less harm is done as the decoder does not introduce any new

errors. In the second case, the decoder can potentially introduce some new errors. See

the Figure 4.11. The error weight is e and the weight of x is w. Let the decoder make c

corrections in getting x from y. Let i of these corrections be correct in that they correspond

to the actual transmitted bits. Then there are (c− i) miscorrections. The number of ways

in which y could be miscorrected to get an erroneous codeword of weight w is then:

Aw ∑
∀i

(
w
i

)(
n− w
c− i

)
(4.24)

where i, e, c and w are restricted by

t + 1 6 e 6 n

2t + 1 6 w 6 n

0 6 c 6 t

0 6 i 6 w

0 6 (c− i) 6 (n− w) and,

w = (e− i) + (c− i)

There are a total of (n
e) error vectors of weight e. Therefore the probability of c corrections
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given e errors occurred is:

Pc|e =
min {c,n−e}

∑
i=max {0, 2t+c−e

2 }

A2i+e−c
(n

e)

(
2i + e− c

i

)(
n + c− e− 2i

c− i

)

Each time this event happens, i errors get corrected and c− i new errors are introduced.

Moreover, e errors happen with a probability of:

Pe =
(

n
e

)
πe(1− π)(n−e)

In all, miscorrections increase the bit error probability by

n

∑
e=t+1

πe(1− π)(n−e)
t

∑
c=0

min {c,n−e}

∑
i=max {0, 2t+c−e

2 }

A2i+e−c

(
c−2i

n

)(2i + e− c
i

)(
n + c− e− 2i

c− i

)
(4.25)

(ii) The non-binary alphabet codes are analyzed in a very similar manner. Once again

let us assume that the zero codeword 0 was transmitted. At the beginning of an

iteration let there be a total of e symbol errors in a row of length n. When e 6 t the

component decoder correctly decodes the erroneous word to the 0 codeword. Assuming

independent errors across iterations, this occurs with probability (n
e)πe(1−π)(n−e). In all

the bit error probability gets reduced by:

t

∑
e=0

( e
n

) (n
e

)
πe(1− π)(n−e)

which is the second term in (4.23).

If there were e > t errors at the beginning of an iteration, then either

•there are no codewords within a distance of t from the erroneous word y, or

•there is some codeword within a distance of t from y and the bounded distance

decoder miscorrects y to x.

Figure 4.12 shows the various possibilities. The error weight is e and the weight
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Figure 4.12 The actual codeword 0, an erroneous word y of weight e and a miscorrected
codeword x of weight w for general q-ary case.

of x is w. Let the decoder make c corrections in getting x from y. Let i of these corrections

be made on the positions corresponding to the non-zero symbols in x. Among these,

let ` corrections be correct in that they correspond to the actual transmitted symbols,

which are 0s. There are another (c− i) corrections on positions corresponding to the zero

symbols in x, which are also miscorrections. The number of ways in which y could be

miscorrected to get an erroneous codeword of weight w is then obtained for example by

Sofair in [Sof00] as:

Aw ∑
∀i

(
i
`

)(
w
i

)(
n− w
c− i

)
(q− 2)i−`(q− 1)c−i (4.26)

where `, i, e, c and w are restricted by

t + 1 6 e 6 n

2t + 1 6 w 6 n

0 6 c 6 t

0 6 ` 6 i

0 6 i 6 w

0 6 (c− i) 6 (n− w) and,

e = (w− i) + (c− i) + (i− `)
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There are a total of (n
e)(q − 1)e error vectors of weight e. Therefore the probability of c

corrections given e errors occurred is:

Pc|e =
min {c,c+w−e}

∑
i=max {c+w−n, c+w−e

2 }

Aw
(n

e)(q−1)e

(
i
`

)(
w
i

)(
n− w
c− i

)
(q− 2)i−`(q− 1)c−i

Each time this event happens, ` errors get corrected and c− i new errors are introduced.

Moreover, e errors happen with a probability of:

Pe =
(

n
e

)
πe(1− π)(n−e)

Combining all of the above, miscorrections increase the bit error probability by

n

∑
e=t+1

πe(1−π)(n−e)

(q−1)e

t

∑
c=0

min {e+c,n}

∑
w=max {e−c,2t+1}

min {c,c+w−e}

∑
i=max {c+w−n, c+w−e

2 }

Aw
( e−w

n
) (w

i

)(
n− w
c− i

)(
i

c + w− e− i

)
(q− 1)c−i(q− 2)2i−c−w+e (4.27)

where we also used c− i− ` = e− w.

For long codes with good minimum distance, the contribution of miscorrection

to the error probability recursion is very small and can be ignored without much loss in

precision when the number of iterations is small.

In order to apply Theorem 4.1, the weight enumerator of the component code

should be known. The weight enumerator of some families of codes are known. For

example, the weight enumerator of MDS codes (which include the well known Reed-

Solomon codes) is:

Aw =
(

n
w

)
(q− 1)

w−d

∑
j=0

(−1)j
(

w− 1
j

)
qw−d−j

Let q = 2m. Then if the i.i.d. bit error probability is given by p, then the symbol error

probability is given by,

π = 1− (1− p)m
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One can employ Theorem 4.1 to study the evolution of symbol error probability when

Reed-Solomon product codes are used over a BSC.

4.5 Summary

We analyzed the performance of iterative hard-decision product code decoders

using bounded distance component code decoders. We derived exact closed form

solutions for the transformation of probability of error from iteration to iteration when

standard block code interleavers are used. Our analysis assumes the independence of

error locations at the beginning of each iteration.
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Branching Programs

80



C H A P T E R 5

Branching Program Complexity and Minimum

Distance of Codes

5.1 Introduction

It can be easily shown that most Boolean functions have exponential size

branching programs using a simple counting argument as shown in Appendix B. It is

however of interest to obtain time-space tradeoffs for specific functions and computa-

tions. Numerous bounds on the time-space tradeoff in the branching program model are

known today. In particular, Borodin and Cook [BC82] gave an exponential lower bound

on the size of read-k BPs that sort integers. A major step forward was the exponential

lower bound on the size of non-deterministic read-k BPs due to Borodin, Razborov, and

Smolensky [BRS83]; the proof of this result in [BRS83] paved the ground for many of the

current proof methods. More recently, in a series of breakthrough papers, Beame, Jayram,

and Saks [BST98, BJS01], Ajtai [Ajt98, Ajt99], and Beame, Saks, Sun, and Vee [BSS03]

proved exponential lower bounds on the size of general decision branching programs

that are only restricted in the length of their computation. Some of these papers also

provide the first ever lower bounds on the time-space tradeoff for general (unrestricted)

branching programs.

5.1.1 Related Prior Work

Loosely speaking, a trellis for a binary code C ⊆ Fn may be thought of as an

oblivious, leveled, write-once branching program that computes the encoder function

81
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EC : {0, 1}k → C. This connection between trellises and branching programs was

established by Lafferty and Vardy in [LV99]; for much more on trellises (including a

formal definition thereof), see [Var98]. Arguing by partitioning the trellis for an (n, k, d)

binary code C into sections of length d− 1, Lafourcade and Vardy [LV95a] proved some

10 years ago that the logarithm S of the number of vertices in such a trellis is lower-

bounded by

S >
⌈

k(d−1)
n

⌉
(5.1)

Since the “computation time” in any trellis for C is given by T = n, this can be also

viewed as a bound on the minimum distance of C in terms of the space and time of a

trellis that represents C, namely d 6
(
ST/k

)
+ 1.

Recently, inspired by the work of Ajtai in [Ajt98, Ajt99], Bazzi and Mitter [BM05]

established a bound on the minimum distance of a binary code C in terms of the time

and space of a branching program that computes the encoder function for C. Specifically,

Bazzi and Mitter [BM05] proved that if B is a deterministic boolean branching program

that computes the encoder function EC : {0, 1}k → C in time T and space S, then

d = O

(
k
(

T
k

)3(S
k

) k
2T
)

(5.2)

The arguments used for the proof of this bound in [BM05] have a lot in common

with those used in [LV95a] for the proof of (5.1). However, the results of Bazzi and

Mitter [BM05] are much more general and the resulting bound is stronger in many cases.

5.1.2 Our Results

Bazzi and Mitter [BM05] established a connection between the parameters of a

code C and the branching program complexity of encoding the code. Herein, we establish

a connection between the parameters of C and the branching program complexity of

verifying membership in the dual code, namely computing the syndrome with respect to

a generator matrix for C.
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In Section 5.2 we establish a relationship between the minimum distance of a

linear code C and the branching program complexity of computing the syndrome function

for C and/or its dual code C⊥. Specifically, let C be an (n, k, d) linear code over Fq, and

suppose that there is a branching program B that computes the syndrome vector with

respect to the dual code C⊥ in time T and space S. We prove that the minimum distance

of C is then bounded by

d 6
2T
(
S + log2T

)
k log2q

+ 1 (5.3)

We also consider the average-case complexity in the branching program model: we show

that if B computes the syndrome with respect to C⊥ in expected time T and expected space

S, then

d 6
12T

(
S + log2T + 6

)
k log2q

+ 1 (5.4)

Since there are trivial branching programs that compute the syndrome vector with time-

space complexity S T = O(n2 log q), the bound in (5.4) is asymptotically tight.

Our main result is the bound (5.4), which is established in Theorem 5.2. Apart

from the fact that the bound in (5.4) is based on a different function (syndrome

computation vs. encoding), there are several other differences between our results and

those of Bazzi and Mitter [BM05]. We point out that Theorem 5.2 is somewhat less general

than the Bazzi-Mitter bound (5.2) in that it applies to linear codes only, whereas (5.2) is

true for any code. On the other hand, Theorem 5.2 is stronger than (5.2) since it deals with

average-case complexity rather than worst-case complexity: the bound in (5.4) is given

in terms of T 6 T and S 6 S.

Our proofs are based upon the probabilistic method developed by Borodin and

Cook [BC82] and Abrahamson [Abr91]. However, as part of the proof of Theorem 5.2, we

shall considerably simplify and generalize one of the key lemmas of [Abr91, Lemma 3.3].

As a corollary to Theorem 5.2, we also prove, for the special case of self-dual

codes, the conjecture of Bazzi and Mitter [BM05] that a sequence of binary codes whose

encoder function is computable by a branching program with time-space complexity

ST = o(n2) cannot be asymptotically good. In fact, our result is stronger than this, since
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we only require S T = o(n2).

It is well known that trellises can be used for decoding. But so, too, can branching

programs! For example, the trivial branching program that computes the syndrome with

respect to an (n, k, d) linear code C in time O(n2) and constant space can be reduced

to a Tanner graph for C. Other, less trivial, branching programs can offer interesting

tradeoffs between decoding complexity and performance (convergence) of message-

passing decoders. In general, the average number of cycles per variable node increases

at least quadratically with T/n, whereas the complexity of message-passing decoding

increases exponentially with S. Our results restrict the extent to which both of these

parameters can be simultaneously reduced.

Another result of this chapter is given in Section 5.4 where we sharpen (5.2) by

optimizing on the Bazzi-Mitter proof to yield:

d = O

(
k
(

T
k

)2(S
k

) k
2T
)

(5.5)

5.2 A Bound on the Minimum Distance

In this section we derive an upper bound on the minimum distance of linear

codes. For this purpose we investigate time-space tradeoff of branching programs

computing the dual syndrome function f⊥C , defined in Chapter 1.

We will use the probabilistic method developed in [BC82] and [Abr91] to derive

our main result. We point out, however, that the following innocuous lemma greatly

simplifies and generalizes the proof technique of Abrahamson [Abr91].

Lemma 5.1 Let B be a q-way branching program of depth δ. For r = 1, 2, . . . , δ, let

ηr denote the number of computation paths in B which read exactly r different input

variables. Then
δ

∑
r=1

ηrq−r = 1 (5.6)

Proof. Let P denote a specific computation path in B that reads exactly r input
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variables, and assume w.l.o.g. that these variables are y1, y2, . . . , yr. Since P is a

computation path, the labels of the edges of P must be consistent — that is, if v and v′

are different nodes of P that read the same variable, then the edges of P starting at v and

v′ must have the same label. Thus let u1, u2, . . . , ur ∈D denote the labels on the edges of

P that correspond1 to y1, y2, . . . , yr, respectively. Then, the computation of B upon input

x∈Dn follows the path P from the source to the sink iff x1 = u1, x2 = u2, · · · , xr = ur.

Now, suppose that x is chosen uniformly at random from Dn. Then, by the foregoing

discussion, the probability that the computation of B on input x follows the path P is q−r.

Let P denote the set of all computation paths in B. Then

1 = ∑
P∈P

Pr
{

computation on x follows P
}

=
δ

∑
r=1

ηrq−r

since for every x∈Dn, the computation of B upon input x follows exactly one path in

P . Thus we are summing over probabilities of disjoint events that partition the sample

space.

Lemma 5.2. Let G be a k × n generator matrix for an (n, k, d) linear code C. Let a and

b be positive integers with a 6 d− 1 and b 6 k. Then every b× (n−a) sub-matrix G′ of

G is full-rank.

Proof. Since d− 1 6 n− k for any (n, k, d) code by the Singleton bound [MS77, p. 33], we

observe that b 6 n− a. Thus what we need to show is that rank G′ = b. To this end, let

G′′ be the k× (n−a) column sub-matrix of G such that G′ is a row sub-matrix of G′′. We

claim that the k rows of G′′ are linearly independent. Indeed, suppose they are not. Then

by a sequence of elementary row operations, we can transform one of the rows of G′′ into

an all-zero row. The same sequence of elementary operations on the rows of G produces

a codeword of Hamming weight at most a. Since a 6 d− 1, this contradicts the minimum

distance of C. Hence, the k rows of G′′ are linearly independent, as claimed. Since G′ is a

row sub-matrix of G′′, it follows that the b rows of G′ are also linearly independent, and

1Henceforth, we shall say that u1, u2, . . . , ur are the values which the path P enforces on the variables
y1, y2, . . . , yr.
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so rank G′ = b.

Lemmas 5.1 and 5.2 are needed in the proof of Lemma 5.3, which also requires the

following definition, due to Abrahamson [Abr91].

Definition 5.1 Let f : Dn → Dm be a given function, let B be a branching program, and

let c 6 m be a positive integer. Consider a specific computation path P in B and a specific

vector x∈Dn. We say that P will 〈c〉-solve x with respect to f iff

1. The labels of all the edges in P are consistent with x so that P is the computation

path that B follows upon input x.

2. The path P writes (assigns) at least c output variables.

3. The outputs that P writes are correct with respect to f (x). That is, if f (x) =

(s1, s2, . . . , sm) and an output variable zi is assigned a value by P, then this value

must be si.

We say that B will 〈c〉-solve x with respect to f iff the computation path that B follows

upon input x will 〈c〉-solve x w.r.t. f .

In what follows, we assume that the multiple-output branching program is

not allowed to reassign any output that has already been assigned a value on any

computation path. This is an implicit assumption on the branching program model

analyzed by all previous papers on multiple-output programs such as [BC82, Yes84,

Abr91].

Lemma 5.3 Let G be a generator matrix for an (n, k, d) linear code C over Fq and let

f⊥C (x) = Gxt be the associated dual syndrome function. Let B be a branching program of

depth δ < d. Let c 6 k be a positive integer. If x is chosen uniformly at random from Fn
q ,

then Pr
{
B will〈c〉-solve x w.r.t. f⊥C

}
6 q−c.

Proof. Let E be the event that the branching program B 〈c〉-solves x w.r.t. f⊥C .

For each computation path P in B, let EP be the event that P 〈c〉-solves x w.r.t. f⊥C . Then
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clearly

Pr{E} = ∑
P∈P

Pr
{
EP
}

(5.7)

where P denotes the set of all the computation paths in B, as in Lemma 5.1. Now let P

be a specific (fixed) computation path in B and suppose that a) it 〈c〉-solves x w.r.t. f⊥C ,

and b) it reads exactly r input variables, say y1, y2, . . . , yr. The assumption that P will

〈c〉-solve x in particular implies that P is the computation path that B will follow upon

input x. Hence if u = (u1, u2, . . . , ur) is the vector of values that P enforces on the

input variables y1, y2, . . . , yr, then x must satisfy

x1 = u1, x2 = u2, · · · , xr = ur

By assumption, P also produces b > c correct outputs. Each such output, say zi := a,

induces a linear equation a = ∑n
j=1 gi,jxj which x must satisfy. Together, the b correct

outputs induce a system of equations G∗xt = a, where G∗ consists of b distinct rows of

the generator matrix G and at = (a1, a2, . . . , ab) is the vector of (correct) output values

assigned by P. Combining all of the above, we find that x must satisfy the following

system of r + b linear equations:

 Ir 0

G∗


(r+b)×n



x1

x2

...

xn


n×1

=

ut

a


(r+b)×1

(5.8)

where Ir is the r × r identity matrix. Let M be the (r+b) × n matrix in (5.8). Then

rank M = rank Ir + rank G′, where G′ is the b× (n−r) matrix consisting of the last n− r

columns of G∗. Since r 6 δ < d, we conclude that rank G′ = b by Lemma 5.2 and

rank M = r + b. It follows that the linear system (5.8) has exactly qn−b−r distinct solutions

in Fn
q , and so

Pr
{
EP
}

6
qn−b−r

qn 6 q−(c+r) (5.9)



88

Observe that the bound on Pr{EP} in (5.9) depends only on the number r of the input

variables that P reads. Hence

Pr{E} 6
δ

∑
r=1

ηrq−(c+r) 6 q−c

where the first inequality follows from (5.7) and (5.9), while the second inequality follows

from Lemma 5.1.

Theorem 5.1 Let C be an (n, k, d) linear code over Fq. If there is a q-way branching

program B that computes the dual syndrome function f⊥C in time T and space S, then

d− 1 6
T
(
S + log T

)
k log q−

(
S + log T

) 6
2T
(
S + log T

)
k log q

(5.10)

Proof. We begin by making B leveled, using the standard procedure. First, add

q edges labeled by all the elements of D = Fq from the sink node of B to itself. Then,

replicate the resulting graph δ + 1 times, where δ is the depth of B. Such replication

produces the δ + 1 levels V0, V1, . . . , Vδ, with |Vi| = |B| for all i. Now, for i = 0, 1, . . . , δ−1,

redirect all edges from nodes at level Vi to nodes at level Vi+1. Finally, delete all nodes

that are unreachable from the source node at level V0 (here, and hereafter, deleting a

node means also deleting all the edges that are incident upon this node). This produces

a leveled branching program with δ + 1 levels, whose source ϕ is the source node at

level V0 (in fact V0 = {ϕ}) and whose sink φ is the sink node at level Vδ (in fact Vδ =

{φ}). Next, we truncate this branching program to depth T, where truncation to depth

T means deleting all the nodes that are unreachable from the sink node at level VT when

the direction of all edges is reversed. This produces a leveled branching program with

T + 1 levels, which we denote by B′. Observe that B and B′ compute the same function,

while the time and space of B′ are given by T′ = T and S′ 6 S + log T.

Let v be a fixed non-sink node in B′, and let Pv denote the set of all paths of

length d − 1 starting at v (or the set of all paths from v to the sink of B′, if v∈Vi with

i + d− 1 > T). Then Pv is a branching program of depth < d, except that it may have

many sinks — the last nodes of all the paths in Pv. This is just a technicality: we can
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make sure that Pv satisfies the conditions of Definition 1.4 by conceptually collapsing all

such nodes into a single sink. Now, choose x uniformly at random from Fn
q and define

the following events. Let Ev be the event that the computation of B′ on x passes through

the node v, let E ′(v; c) be the event that the branching program Pv 〈c〉-solves x w.r.t. f⊥C ,

and let E(v; c) = Ev ∩ E ′(v; c). Then

Pr
{
E(v; c)

}
6 Pr

{
E ′(v; c)

}
6 q−c (5.11)

by Lemma 5.3. The key point is that if c is sufficiently small, then at least one of the events

E(v; c) must always occur. Specifically, let us henceforth set

b
de f
=
⌈

T
d− 1

⌉
and c

de f
=
⌈

k
b

⌉
(5.12)

Then, for every x∈Fn
q , the computation of B′ upon input x is a path v0, v1, . . . , vT in B′,

and at least one of the b events

E
(
v0; c

)
, E
(
vd−1; c

)
, . . . , E

(
v(b−1)(d−1); c

)
must occur, since otherwise this computation cannot produce all the k outputs, as

required. Hence, we have

1 = Pr
{⋃

v∈B′ E(v; c)
}

6 ∑
v∈B′

Pr
{
E(v; c)

}
6 |B′|q−c

where the last inequality follows from (5.11). Along with the observation that log |B′| 6

S + log T, this establishes (5.10). The bound b 6 T/(d−1) + 1 produces the first

inequality in (5.10), while the second inequality follows from b 6 2T/(d−1).

Theorem 5.2 Let C be an (n, k, d) linear code over Fq. If there is a q-way branching

program B that computes the dual syndrome function f⊥C in expected time T and

expected space S, then

d 6
12T

(
S + log T + 6

)
k log q

+ 1 (5.13)
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Proof. The proof is similar to the proof of Theorem 5.1, with a few additional

twists. Proceeding as in Theorem 5.1, we first level B and then truncate it to depth

T′
de f
=
⌈
(1 + α)T

⌉
6 (2 + α)T (5.14)

where α is a positive real number to be fixed later, and the inequality follows from the

fact that T > 1. Let B′ denote the resulting branching program. We observe two facts

about B′.

First, the probability that B′ computes f⊥C (x) (that is, correctly writes all the k

outputs) on a uniformly random input x is at least α/(1 + α). Indeed, let tx denote the

computation time in B on input x. Then, using Markov inequality, we get

Pr
{

tx > T′
}

6 T/T′ 6 1/(1 + α)

This means that with probability at least α/(1 + α), the computation reaches the sink

by time T′, and so is not affected by the truncation to depth T′. Second, we observe

that the expected space S′ of B′ is at most S + logT′. Indeed, given a labeling of the nodes

of B which minimizes its expected workspace, we define a labeling of the nodes of B′

as follows: if a node v was labeled j in B and appears at level Vi in B′, then its label in B′

is (j−1)T′ + i. This labeling guarantees that for all x in Fn
q , the largest label that occurs in

the computation of x in B′ is at most T′ times the corresponding label in B. From here,

S′ 6 S + logT′ easily follows.

Now let b and c be defined as in (5.12), but with respect to T′ rather than T. For

each node v∈B′, we define the events Ev, E ′(v; c), and E(v, c) exactly as in Theorem 5.1.

Reasoning as in the proof of Theorem 5.1, we conclude that

α

1 + α
6 Pr

{⋃
v∈B′ E(v; c)

}
6 ∑

v∈B′
Pr
{
E(v; c)

}
(5.15)

The sum on the right-hand side of (5.15) is bounded by |B′|q−c, as before. However, we

do not have a relation between |B′| and the expected space S of B, and so proceed as
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follows.

Label the nodes of B′ with the integers 0, 1, . . . , |B′| − 1 in a way that minimizes

the expected workspace. Define the real number B by the property log B = βS′, where

β > 1 is another real constant to be fixed later. With this notation, we write

Pr
{⋃

v∈B′ E(v; c)
}

6
dBe−1

∑
j=0

Pr
{
E(j; c)

}
+ Pr

{⋃
j>dBeEj

}

where, on the right-hand side, we have identified each vertex v∈B′ with its label

j∈ {0, 1, . . . , |B′| − 1}, and used the fact that E(j; c) ⊆ Ej for all j, by definition. The

first term in the sum above is at most Bq−c by Lemma 5.3. To bound the second term,

let wx denote the workspace required by B′ upon input x and observe that if the event

∪j>dBeEj occurs, then wx > βS′ by the definition of B. Hence

Pr
{⋃

j>dBeEj

}
6 Pr

{
wx > βS′

}
6

S′

βS′
=

1
β

where we have, again, used Markov inequality. Combining all of the above with (5.15),

we get

log
(

α

1 + α
− 1

β

)
6 βS′ − c log q (5.16)

Using the fact that S′ 6 S + logT′ while T′ 6 (2 + α)T along with the definition of c, we

find that (5.16) leads to

d− 1 6
2(2+α)T

k log q

(
β log

(
(2+α)T

)
− log

(
αβ−α−1

β+αβ

)
+ βS

)

Although this can be optimized over α and β, the expression in (5.13) follows by simply

taking α =
√

2 and β = 7/4.

5.3 On a Conjecture of Bazzi and Mitter

We first observe that the bound on minimum distance in Theorem 5.2 immedi-

ately implies the following result.
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Corollary 5.1 Let F be a family of linear codes over Fq such that for all codes in F , the

dual syndrome function is computable in the branching-program model with expected

time-space complexity S T = o(n2 log2 q). Then F cannot be asymptotically good.

Note that when we say that the dual syndrome function for C is computable in

the branching-program model with a certain complexity, we mean that there exists some

generator matrix G for C and some branching program B of (at most) the specified

complexity that computes the function f⊥C (x) = Gxt.

Bazzi and Mitter [BM05, p. 2112] conjectured that a similar behavior is true with

respect to the encoder function. Using the results of Section 5.2, we can prove this conjec-

ture for the special case of self-dual codes. Though Bazzi and Mitter [BM05] considered

only worst-case complexity, we can use Theorem 5.2 to establish the (stronger) result in

terms of expected complexity.

Corollary 5.2 Let F be a family of self-dual codes over Fq such that for all codes in F ,

the encoder function is computable in the branching-program model with expected time-

space complexity S T = o(n2 log2 q). Then F cannot be asymptotically good.

Proof. For a self-dual code, d = d⊥. Therefore by Corollary 5.1, for a family F of

asymptotically good self-dual linear codes, a sequence of branching programs computing

the syndrome-function N (·) should satisfy the time-space tradeoff TS = Ω(n2 log2 q).

The columns of any generator matrix and parity-check matrix of a systematic

linear code can be rearranged to the form G = [Ik Pk×(n−k)] and H = [−PT
(n−k)×k In−k].

The encoding-function EC : Fk
q → C computes GTx = c given a k-dimensional input

vector.

The rest of the proof is by contra-positive argument. So let us assume that there

exists a sequence of branching programs which compute the encoding-function EC with

restricted space-time resources TS = o(n2 log2 q) for an asymptotically good family of

systematic self-dual linear codes. Because of the systematic nature of G and H, it is

possible to trivially construct a corresponding sequence of branching programs which

compute the syndrome-vectors with resources also bounded by TS = o(n2 log2 q). But
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by Corollary 5.1, the family cannot be asymptotically good. Hence such a sequence of

efficient branching programs computing the encoding-function EC of the asymptotically

good family F cannot exist.

5.4 Non linear Time-Space complexity lower-bounds for encoding

In this section we take another look at the proof of Bazzi-Mitter theorem. We do

this with two objectives in mind. First to optimize on the proof of (5.2) so as to tighten

the exponent of T
k to 2. Second we would like to see if the proof can be extended to apply

to branching programs calculating the membership function of C.

Theorem 5.3 Let C be an (n, k, d) binary code, and let B be a deterministic boolean

multiple-output branching program that computes the encoder function EC : {0, 1}k → C

in time T and space S. Then

d = O

(
k
(

T
k

)2(S
k

) k
2T
)

5.4.1 Proof of Theorem 5.3

Let B be a q-way branching program computing a function f : Fu
q 7→ Fv

q . Let

B be of time t, depth δ and space S. Note that unlike in [BM05], we do not assume f

to be injective in general, but will make use of that property only in the case of some

specific functions. Let there also exist a hamming distance constraint on a subset Ξ of

either the domain or the range of f . Let |Ξ| = qρu and let the Ξ be a binary code of

minimum distance d. We shall denote by I(Ξ) (resp. O(Ξ)) the subset of input (resp.

output) vectors in the domain (resp. range) of f corresponding to the code Ξ. Later on,

depending on specific computations, it will become apparent whether the constraint is

valid on the input or the output set. Let

t = au and δ = cu (5.17)
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For now let us assume that a and c are absolute positive constants. Before we are

done, we will be able to relax this requirement so that they may be logarithmic functions

of u.

We proceed by dividing the proof into several steps roughly as in [BM05].

However details in various steps will be sufficiently different from [BM05] so that it

easily encompasses single output branching programs. Although the decision branching

programs do not give interesting results using the methods of this section, it will serve as

a motivation for a later section.

I : We efficiently modify B into a leveled branching program evaluating f as in the

proof of Theorem 5.1. The depth and time of the leveled version remains l and t

respectively. Its width is at most 2S, and the size is at most δ2S. We then prune from B all

computation paths which do not correspond to the constraint set Ξ. There are exactly qρu

computational paths in the pruned version of B. The depth, time and width of the DAG

so obtained are still upper bounded by δ, t and 2S respectively. Now on, we refer to this

DAG as B. The new B behaves exactly the same way on I(Ξ) as the old B.

II : Segment B into b roughly equal length blocks each consisting of either

p1
de f
=
⌊

δ

b

⌋
=
⌊ cu

b

⌋
or (5.18)

p2
de f
=
⌈

δ

b

⌉
=
⌈ cu

b

⌉
(5.19)

levels, where b is a parameter which is to be optimized upon later, such that 1 6 b 6 δ.

III : Lemma 5.4 There exist

(a) an absolute constant α > 0, and integer parameters h and r such that h > 1 and

b/2 > r > bcc;

(b) Q′ ⊆ I(Ξ) ⊆ {0, 1}u such that

|Q′| > qρu

(2Sb̃)r
(5.20)
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where b̃ = eb
r ,

(c) a set of blocks T such that

1 6 |T| 6 r; (5.21)

(d) and a sequence {Si}|T|i=1 of states in the lower boundary levels of the blocks in T,

such that for each x in Q′:

(1) the computation of B on x contains {Si}i,

(2) at most

w
de f
=

hp1t
δ

(5.22)

output bits of f (x) are set in each block in T during the computation of B on x,

and

(3) the number of variables in x that are accessed only in the blocks in T during the

computation of B on x is at least (αu)/(b̃r), where b̃ = eb
r

Proof. Consider any input x in I(Ξ).

•Let us arbitrarily choose integer r such that b/2 > r > bcc. Also choose another

integer h so that h > 1. We will be able to later set these parameters more precisely.

•Let Vr
x be the set of input variables that are read in at most r states during the

computation of B on x.

•Let Wx be the set of those blocks such that each of them sets a fixed set of at most

w
de f
=

hp1t
δ

(5.23)

bits of f (x) during the computation on x by B. Denote by VW
x the set of variables

that are read exclusively in the set of blocks Wx.

•Also let Vr,W
x be the subset of input variables in Vr

x that are read only in blocks in Wx

during the computation of B on x. That is, Vr,W
x = VW

x ∩Vr
x .

•In the proof if M is a set, then we use the notation M to denote its complimentary

set.
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We have the following bounds:

•By definition of Vr
x ,

(r + 1)(u− |Vr
x |) 6 δ (5.24)

giving,

|Vr
x | > u

(
1− c

r + 1

)
(5.25)

•By definition of Wx,

(w + 1)(b− |Wx|) 6 t (5.26)

giving,

|Wx| > b− t
w

> b
(

1− 2
h

)
(5.27)

by the definition of w and since p1 = bδ/bc > δ/(2b).

•The number of input variables read in blocks outside of Wx is

|VW
x | 6 (b− |Wx|)p2 6

2bp2

h
6 u

4c
h

(5.28)

since p2 = dcu/be 6 2cu/b. Therefore by definition of Vr,W
x ,

|Vr,W
x | = |VW

x ∩Vr
x | > |Vr

x | − |VW
x | > |Vr

x | − u
4c
h

> u
(

1− c
r + 1

− 4c
h

)
= αu (5.29)

where by choosing r and h large enough we can keep α bounded away from 0,

α
de f
=
(

1− c
r + 1

− 4c
h

)
> 0. (5.30)

and that Wx > 0 by 5.27. So choose r = d2(a− 1)e and h = d16ae. As a > c, we

have that, 1/4 < α < 1. Remember that we still need to ensure that r 6 b/2. We

will verify later that this is indeed the case.

So far, we have fixed an input vector x in I(Ξ) ⊆ {0, 1}u and chosen parameters
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α, h and r while ensuring that,

1 6 |Wx| 6 b and |Vr,W
x | > αu (5.31)

Now consider the r-sets of blocks in Wx, consisting of the class of subsets in Wx of

cardinality at most r. Since |Wx| 6 b, there are at most

r

∑
j=1

(
b
j

)
< 2bH2( r

b ) <

(
e

b
r

)r

= b̃r (5.32)

such r-sets, where b̃
de f
= e

(
b
r

)
. To see how, note that the first inequality above follows

from the Sterling’s formula and definition of the binary entropy function. To obtain the

second inequality, given 1 6 bcc 6 r 6 b/2 we denote ψ
de f
= b/r > 2 and proceed as

follows:

2bH2( r
b ) = (ψ− 1)r

(
ψ

ψ− 1

)ψr

= ψr
(

ψ

ψ− 1

)(ψ−1)r

< (eψ)r (5.33)

which uses the fact that for x > 1 and r > 1,
( x+1

x

)xr
approaches er from below as x

increases.

By the definition of Vr,W
x , each variable in it is read in precisely one such k-set

during the computation of B on x. So, by Proposition C.3, there are at least

|Vr,W
x |
b̃r

>
αu
b̃r

input variables in Vr,W
x that are read in a single such r-set of blocks in Wx during the

computation on x by B. Let Ux be such a set of input variables in Vr,W
x and let Tx be such

a k-set of blocks in Wx satisfying,

1 6 |Tx| 6 r and |Ux| >
αu
b̃r

(5.34)

Associate each x in I(Ξ) with any such Ux and Tx. As there are at most b̃r such Tx, there



98

is a subset Q ⊆ I(Ξ) and a k-set of blocks T such that,

|Q| > qρu

b̃r

and T ≡ Tx for each x in Q.

Now let L1, . . . , L|T| represent the lower boundary levels of the blocks in T,

ordered by level index. There are at most 2Sr state sequences in L1 × . . .× L|T|, and for

each x in Q, the computation of B on x contains such a sequence. Therefore there exists a

state sequence {Si}|T|i=1 in L1 × . . .× L|T| and a subset Q′ ⊆ Q such that,

|Q′| > |Q|
2Sr >

qρu

(2Sb̃)r

and each computational path taken by B for each x in Q′ contains {Si}i. This proves the

lemma.

IV : Now we modify B so that it is forced to pass through the state sequence {Si}i every

time it leaves an outer boundary level of a block in T. This can be done by connecting all

states in the level before Si to Si for each i. The new B so obtained behaves in the same

manner as the old B on any input x in Q′.

V : Obtaining the time-space tradeoff lower bounds

Let Ix be the set of input variables that are read exclusively (or not read at all) within

blocks contained in T during the computation of B on x in I(Ξ). From above lemma, 5.34

we know that,

|Ix| >
αu
b̃r

(5.35)

The existence of a r-set of blocks T for any x in I(Ξ) implies an equivalence relation ∼ on

the inputs from I(Ξ) as follows:

For any two vectors x, y∈ I(Ξ), we say x ∼ y iff

•Ix = Iy and
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•x agrees with y on the input variables outside of Ix.

Let Px denote the set of computational paths associated with such a set of input

variables. The equivalence relation ∼ partitions the set of computational paths into

equivalence classes [Px]. In order to lower bound the size of these equivalence classes,

we observe that each computational path in the equivalence class [Px] has all variables

other than those in Ix fixed. That is, no more than u− |Ix| variables are fixed. Each such

fixed variable results in the number of computational paths being reduced by a factor of

at most q. As there are a total of qρu computational paths in the branching program B,

that leads to the lower bound,

|[Px]| > qρu−(u−|Ix |) > q(
α
b̃r−(1−ρ))u

Denoting by P the set of all such equivalence classes of computational paths, and

noting that there are qρu total number of computational paths in B, it must be that

|P|q(
α
b̃r−(1−ρ))u 6 qρu giving,

|Ω| 6 qρu

q(
α
b̃r−(1−ρ))u

(5.36)

Now if we ensure that

|Q′| > |P|

then it follows by the pigeon hole principle that there exists x1 6= x2 in Q′ such that

[Px1 ] = [Px2 ]. That is we need

q(
α
b̃r−(1−ρ))u > (2Sb̃)r

which is satisfied if we set,

b :=

⌈
(

r
e
) ·

 α

(1− ρ) + ( r(S+log cn)
u log q )


1
r ⌉
− 1

We now relax the condition that a, c be constants. Let a = O(log(n)) and set r = d2ae
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and h = 16a. Then,

α = 1− c
r + 1

− 4c
h

> 1− a
r + 1

− 4a
h

>
1
4

.

which is bounded away from zero as desired.

5.4.2 Applications to functions related to codes

We consider the special case when q = 2. Now in order to bound minimum

distance of binary codes, we need to specify the set Ξ and the function f that B is

computing. We look at the following computations:

(i) f is the encoding function EC which computes an (n, k, d) code C.

We set Ξ := C, u := k and v := n ⇒ |Ξ| = |C| = 2u ⇒ ρ = 1. The hamming distance

restriction is at the output set C = O(Ξ). Since the encoding function is an injective

function, distinct input vectors are mapped to different output vectors. For the inputs

x1 and x2 in Q′ identified at the end of the last section, EC(x1) 6= EC(x2). But EC(x1) and

EC(x2) can disagree only on the output bits set within the blocks in T which are at most

2|T|w. This gives us the upper bound on the minimum distance of the code to be:

d 6 2|T|w 6
2rhau

b
= O

k
(

T
k

)2 (S
k

) k
2T


(ii) f is the membership function χC of an (n, k, d) code C.

Although this will not give us a useful time-space tradeoff for codes with rate bounded

away from unity, it still serves as a motivation to look at more technically involved

methods to obtain tradeoffs for decision branching programs computing membership

function of codes. We set Ξ := C, u := n and v := 1 ⇒ |Ξ| = |C| = 2k ⇒ ρ = k
n .

The hamming distance restriction is at the input set C = I(Ξ). The inputs x1 and x2 in

Q′ identified at the end of the last section are distinct and are such that x1, x2 ∈ χ−1
C

(1).

But x1 and x2 can disagree only on the input bits read within the blocks in T which are at
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most 2|T|p2. This gives us the upper bound on the minimum distance of the code to be:

d 6 2|T|p2 6
4rau

b
= O

T
((

n− k
n

)
+
(

TS
n2

)) n
2T


Because TS = o(n2), this is not very useful when (1− ρ) is bounded away from zero.

In Chapter 6 we use a completely different approach to derive quadratic time-space

tradeoffs for the membership function.

5.5 Summary

We derived minimum distance bounds for codes using the branching program

model for non-uniform sequential computation. The bounds derived in this chapter

are for two types of multiple output functions related to codes. In the first variety, we

look at the encoding complexity of arbitrary codes in the branching program model. We

obtained sharpened version of a minimum distance bound due to Bazzi and Mitter. In

the second variety, we looked at the branching program complexity of computing the

syndrome vector of linear codes. Using this quadratic time-space bound for unrestricted

branching programs, we proved a conjecture due to Bazzi and Mitter for self-dual linear

codes.
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C H A P T E R 6

A Quadratic Time-Space Tradeoff for Read Restricted

Decision Branching Programs

6.1 Introduction

The branching program is a fundamental model of nonuniform computation,

which conveniently captures both time and space restrictions. See Section 1.4.3 for a

formal definition. Proving lower bounds on computational resources (such as time and

space) required to compute a specific (explicit) function in a general computational model

is a notoriously difficult task. Topics of interest in this direction are both the bounds

themselves as well as the methods for obtaining these bounds.

There are many different types of branching programs, and it is important to

distinguish between them. The first major distinction, between decision (single-output)

branching programs and multi-output branching programs, has to do with how the

output of the program is produced. In the case of decision branching programs the

output is a single bit: each sink node is labeled by either 0 or 1, and the output of the

program is simply the value labeling the sink node reached. In the case of multi-output

branching programs, the output is a sequence of m > 1 values, and each node in B is

allowed to assign (write) at most one of these m values. In general, it appears to be

much harder to prove lower bounds on time and space for decision branching programs

than for multi-output branching programs. The second distinction has to do with large

domains versus small (boolean) domains. In the large-domain case, each input variable

takes values from a set whose size grows with the length of the input (the number

of variables). In the small-domain case, the input variables take values in a fixed set

102
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of constant size — the set {0, 1} for boolean domains. Again, it appears to be more

difficult to prove time-space lower bounds for boolean (2-way) branching programs than

for branching programs over large domains. Finally, one distinguishes between general,

unrestricted, branching programs and branching programs that are restricted in some

important way. Common restrictions include read-k (each input variable is accessed at

most k times) and oblivious (input variables are read in the same order along all paths)

branching programs. Obviously, it is much harder to establish lower bounds for the more

powerful, unrestricted, model than for branching programs that are read-k, oblivious, or

otherwise restricted.

For the most difficult case — unrestricted boolean decision branching programs —

the state of knowledge concerning lower bounds on time and space for concrete functions

was rather pathetic until recently. In fact, no such bounds at all were known until the

groundbreaking work of Beame, Jayram, and Saks [BST98,BJS01]. In [BST98] and [BJS01],

the authors extended the techniques of Borodin, Razborov, and Smolensky [BRS83] to

prove the first (barely) nontrivial bound of this kind. They exhibited a problem in

P, based upon quadratic forms over a finite field (cf. [BRS83]), for which any sub-

exponential size branching program requires time at least (1 + ε)n, where n is the input

length and ε > 0 is a constant. In a remarkable breakthrough, Ajtai [Ajt99, Ajt98]

constructed a polynomial-time computable Boolean function (also based on quadratic

forms) for which any sub-exponential size branching program requires super-linear time.

In another breakthrough paper, Beame, Saks, Sun, and Vee [BSS03] improved upon

Ajtai’s results by establishing (for the quadratic-form and element-distinctness boolean

functions), a time-space tradeoff of the form T = Ω
(
n
√

log(n/S)/ log log(n/S)
)
, which

furthermore extends to randomized branching programs with (two-sided) error. In the

last couple of years, there was more work along these lines (see [SW03, Juk02] and other

recent papers). Nevertheless, the number of concrete decision problems for which super-

linear time-space tradeoffs are known in the unrestricted boolean branching program

model remains preciously small. Moreover it should be noted that none of these tradeoff

results are valid when T = Ω(n log n) – therefore all the above mentioned results are for

time-restricted branching programs.
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In Appendix C we extend the proof techniques of [BSS03] to multi-legged embedded

rectangles and derive a general lower bound on the density of such embedded rectangles

for a decision branching program. We also consider decision branching programs which

compute the characteristic function χC of an (n, k, d) code and derive a corresponding

upper bound on rectangle density. However such a pair of upper and lower bounds

are not powerful enough to yield interesting time-space tradeoffs for the membership

function of codes. We will not be concentrating on this approach further in this chapter.

Here we define a class of read restricted decision branching programs which are

called ε-restricted with respect to certain input variables. The restrictions imposed are not

as severe as for a read-r branching program. These are defined precisely in Section 6.2.

We then prove a quadratic time-space tradeoff of the form TS = Ω
( n2

q

)
and valid for ε-

restricted q-way deterministic decision branching programs, where q > 2. This bound is

to our knowledge, the first such to show an exponential size requirement which holds

for T = o(n2−ε/q) and valid for ε-restricted branching programs. Obtaining such a

tradeoff is an open problem even for read-Ω((log2 n)2) decision branching programs.

As mentioned before, previous exponential size tradeoffs for Boolean decision branching

programs were valid for T = o(n log2 n). The branching programs we consider are

related to families of good linear codes. Furthermore, the tradeoff results obtained herein

are order-comparable (when q is a constant) to the tradeoffs obtained in prior work (see

Chapter 5) for corresponding multiple-output branching programs.

We also remark that using the constructive family of Justesen codes which are

asymptotically good, one may also demonstrate a constructive Boolean decision function

which has a quadratic time-space tradeoff in the ε-restricted Boolean deterministic

decision branching program model. Our results also imply the first ever quadratic time-

space tradeoffs for ε-restricted Boolean decision branching programs which partial-verify

circular convolution, matrix-vector multiplication and discrete Fourier transform. A

quadratic tradeoff is the largest possible for all these problems, because trivial programs

can be constructed otherwise. These results are derived in Chapter 7.

In deriving these new bounds we introduce several new bounding techniques.
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These include a particular measure of progress which is specific to the decision function

considered, partitioning the computational paths into disjoint sets and obtaining trade-

offs for each class separately, the concept of partial-verification and extensive use of linear

constraints to obtain probability bounds.

6.2 More branching program terminology

Let B be a decision branching program on domain D with n variables X1, X2,

. . . , Xn, and let G be the underlying graph. A path in B from a starting node v to a

terminal node u is a connected sub-graph P of G such that the in-degree and the out-

degree of every node in P is one, except for the in-degree of v and the out-degree of u

which are both zero. The path P inherits from G the labels of all its edges and vertices. If

P is a path from the source node of B to a sink node of B, and we wish to emphasize this

fact, we say that P is a global path in B. If there is an x∈Dn such that P is the path that

B follows upon input x, we say that P is a computation path. Thus a computation path

is always a global path. If P is not necessarily a global path, but there is a computation

path P′ that contains P as a sub-graph, we say that P is a partial computation path. Thus

a partial computation path could be a global path in B, but it does not have to be.

Suppose that a partial computation path P reads exactly r input variables and

assume w.l.o.g. that these variables are X1, X2, . . . , Xr. Observe that the labels of the

edges of P must be consistent — that is, if v and v′ are different nodes of P that read

the same variable, then the edges of P starting at v and v′ must have the same label. Thus

let z1, z2, . . . , zr ∈D denote the labels on the edges of P that correspond to the variables

X1, X2, . . . , Xr, respectively. Then, if the computation in B upon input x∈Dn follows the

path P (contains P as a sub-graph), it must be the case that x1 = z1, x2 = z2, · · · , xr = zr.

We shall say that z1, z2, . . . , zr are the values which the path P enforces on the variables

X1, X2, . . . , Xr.

If P1 and P2 are two paths in B, then their union P1 ∪ P2 is defined as the

union of the corresponding sub-graphs of G. That is, if P1 and P2 share edges and/or

vertices, then such edges and/or vertices appear only once in their union. Given a set
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{P1, P2, . . . , Pm} of distinct paths in B, their union P1 ∪ P2 ∪ · · · ∪ Pm is defined in the

same way.

Definition 6.1. Let B be a q-way decision branching program and let G be the underlying

graph. Let H be a sub-graph of G which inherits from G the labels of all its edges and

vertices, except for those vertices that have out-degree zero in H. Then H is said to be a

branching sub-pro- gram of B if it satisfies the properties P1 and P4 of Definition 1.4.

Note that if H is a branching sub-program of B, then it must have a unique node of in-

degree zero (inH), called the source node ofH, and one or more nodes of out-degree zero

(in H), called the sink node(s) of H. Observe also that, upon labeling the sink node(s) of

H by 0 and 1, it becomes a q-way decision branching program in its own right (except that

it may have a single sink node, in which case the function it computes is either tautology

or contradiction).

The total number of nodes in a q-way branching program B is called its size and

denoted by |B|, while S = log2 |B| is called the space of B. The time of a computation

in B is the number of edges in the corresponding computation path. The time T of B

is the maximum time of a computation in B. Note that not all global paths in B are

computation paths. We define the depth of B as the number of edges in the longest path

from the source node to a sink node of B. We say that B is leveled if the nodes of G can

be partitioned into an ordered collection of sets, called levels, such that all the edges in G

are between nodes in consecutive levels.

Now consider a q-way decision branching program B on domain D = Fq that

computes the syndrome decision function fG,γ introduced in Definition 1.3. Because the

input variables in this case can be naturally partitioned into two sets (with very different

meaning), we shall digress slightly from Definition 1.4. Namely, we shall think of B as a

branching program with n + k input variables, denoted X1, X2, . . . , Xn and Y1, Y2, . . . , Yk.

An input to B will be denoted (x, y), where x∈Fn
q and y∈Fk

q , with the understanding

that x is an assignment of values to the variables X1, X2, . . . , Xn while y is an assignment

of values to the variables Y1, Y2, . . . , Yk. Whenever we adopt this point of view, we shall
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specifically indicate that B is a branching program that computes a syndrome decision

function fG,γ.

Definition 6.2. Let B be a branching program that computes a syndrome decision

function fG,γ, let P be a path in B, and let c 6 k be a positive integer. We say that P

correctly enforces at least c of the Y-variables upon input (x, y) if the following three

conditions are satisfied.

C1. The computation path that B follows upon input (x, y) contains P as a sub-graph.

C2. The path P reads some b > c of the k variables Y1, Y2, . . . , Yk, say Yi1 , Yi2 , . . . , Yib .

Let z1, z2, . . . , zb be the values that the path P enforces on the variables Yi1 , Yi2 , . . . , Yib that

it reads. Let g1, g2, . . . , gk denote the k rows of G, and let 〈·, ·〉 be the inner product in Fq.

C3. The values z1, z2, . . . , zb satisfy at least c of the b equations

〈gij , x〉 = zj for j = 1, 2, . . . , b (6.1)

The enforcement efficiency of P upon input (x, y) is defined to be the ratio µP(x, y)
de f
= c/b.

A path P is said to be an efficient enforcer upon input (x, y) if µP(x, y) > 1/q.

Now let P be a branching sub-program of B, and let v be the source node of P .

We say that P correctly enforces at least c of the Y-variables upon input (x, y) if there is

a path P starting at v and ending in one of the sink nodes of P that satisfies the conditions

C1, C2, C3 above. The enforcement efficiency of P upon input (x, y) is defined to be the

ratio µP (x, y)
de f
= µP(x, y), where P is the same path as before. P is said to be an efficient

enforcer upon input (x, y) if µP (x, y) > 1/q.

Definition 6.3. Let B be a branching program that computes a syndrome decision

function fG,γ and let ε < 1 be a positive integer. We say that B is (locally) ε-restricted

with respect to the Y-variables if every partial computation P in B of length ` reads at

most `ε distinct Y-variables.
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6.3 A quadratic time-space tradeoff

We begin with a series of lemmas and corollaries that are needed to establish the

main results of this section, which are then proved in Theorem 6.1 and Corollary 6.3.

Lemma 6.1 The acceptance ratio α
de f
=

| f−1
G,γ(1)|
qn+k is given by α = Vq(k,b(1−γ)kc)

qk , where

Vq (N, r) is the volume of an N-dimensional q-ary Hamming ball Bq (N, r) of radius r.

The asymptotic acceptance ratio is:

(i) lim
k→∞

logq α

k = Hq (1− γ)− 1, if 1
q < γ 6 1,

(ii) lim
k→∞

logq (1−α)
k = Hq (1− γ)− 1, else,

where Hq(·) denotes the q-ary entropy function.

Proof. Consider an input (x, y)∈Fn
q ×Fk

q . By Definition 1.3, it is accepted iff ∃ an index set

N ⊂ [k] such that |N | > dγke and GNxt − IN yt = 0t. This happens when dH(yt, GNxt) 6

b(1 − γ)kc, where dH(., .) denotes the Hamming distance between two q-ary vectors.

Since there are a total of qn such x we have | f−1
G,γ(1)| = qnVq (k, b(1− γ)kc) and the result

follows.

It can be shown that (k
i)(q − 1)i < ( k

i+1)(q − 1)(i+1) as long as i < (q−1)k
q − 1

q ;

beyond this, the inequality gets reversed.

(i) Here 1
q < γ 6 1. Therefore αqk = ∑b(1−γ)kc

i=0 (k
i)(q− 1)i can be bounded as

(
k
i0

)
(q− 1)i0 6 αqk 6 (1 + i0)

(
k
i0

)
(q− 1)i0

where i0 = b(1− γ)kc. Now take logarithms and then the limit as k→ ∞.

(ii) In this case, 0 6 γ 6 1
q . Therefore (1 − α)qk = ∑k

i=b(1−γ)kc+1 (k
i)(q − 1)i can be

bounded as

(
k
i0

)
(q− 1)i0 6 (1− α)qk 6 (k− i0 + 1)

(
k
i0

)
(q− 1)i0

where i0 = b(1− γ)kc+ 1. Taking logarithms and limit the result follows.
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The following result is related to Lemma 5.1:

Corollary 6.1. Let B be a q-way branching program and let P be a branching sub-

program of B of depth δ. For r = 1, 2, . . . , δ, let η′r denote the number of partial

computation paths in B that read exactly r input variables, start at the source node of

P , and end in a sink node of P . Then

δ

∑
r=1

η′rq−r 6 1 (6.2)

Proof. Observe that P is a branching program of depth δ, and apply Lemma 5.1 to P in

order to obtain ∑δ
r=1 ηrq−r = 1, where ηr denotes the number of computation paths in

P that read exactly r input variables. The inequality in (6.2) follows from the fact that

ηr 6 η′r, since not every computation path in P is necessarily a partial computation path

of B.

Lemma 5.2 will be used to prove the following result:

Lemma 6.2. Let B be a branching program that computes a syndrome decision func-

tion fG,γ, let c 6 k be a positive integer, and let P be a branching sub-program of B

of depth δ < d + c. Let an input (x, y) be chosen uniformly at random from the set

B−1(1) and letP be an efficient enforcer upon (x, y). Then the probability that P correctly

enforces at least c of the Y-variables upon this input (x, y) is at most q−c(1−Hq(1−µ))/µ

α(k,γ) where

µ
de f
= µP(x, y).

Proof. Let E denote the event that P correctly enforces at least c of the Y-variables upon

input (x, y). Let P denote the set of all partial computation paths in B that start at the

source node of P and end in a sink node of P . For each path P in P , let EP be the event

that P correctly enforces at least c of the Y-variables upon input (x, y). Then

E =
⋃

P∈P

EP and Pr{E} = ∑
P∈P

Pr
{
EP
}

(6.3)

Both equalities in (6.3) follow from condition C1 of Definition 6.2. If there is a path P

from the source node of P to a sink node of P that is not in P (that is, it is not a partial
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computation path of B), then P clearly does not satisfy C1. This establishes the first

equality in (6.3). The second equality then follows from the fact that the events EP are

disjoint, again by condition C1.

Consider a specific path P in P , and assume that it reads exactly r input variables,

of which b are Y-variables and r − b are X-variables. We can further assume that b > c

since otherwise Pr{EP} = 0 by condition C2. For convenience of notation, let us also

assume w.l.o.g. that the variables that P reads are X1, X2, . . . , Xr−b and Y1, Y2, . . . , Yb. Let

w1, w2, . . . , wr−b and z1, z2, . . . , zb denote the values that P enforces on X1, X2, . . . , Xr−b

and Y1, Y2, . . . , Yb, respectively. Set w = (w1, w2, . . . , wr−b) and z = (z1, z2, . . . , zb). Now

let (x, y) be an input for which the event EP occurs. We wish to derive an upper bound

on the number of such inputs.

To this end, note that (x1, x2, . . . , xr−b) = w and (y1, y2, . . . , yb) = z. Moreover, at

least c of the b equations in (6.1) must be satisfied. Thus if G = [gi,j], then x and y must

satisfy yi = ∑n
j=1 gi,jxj for at least c of the i∈ {1, 2, . . . , b}. Writing all this in matrix form,

we find that x and y satisfy the following system of r + b linear equations:



Ir−b 0
(r−b)×(n−r+b)

0
(r−b)×k

0
b×n

Ib 0
b×(k−b)

G∗ −Ib 0
b×(k−b)





x1

x2
...

xn

y1

y2
...

yk



=



wt

zt

ut


(6.4)

where Im denotes an m×m identity matrix, and G∗ is the b× n matrix consisting of the

first b rows of G. The vector u is some q-ary vector of length b and weight at most b− c.

Let M be the (r + b)× (n + k) matrix in (6.4). Then

rank M = rank Ir−b + rank Ib + rank G′ = r + rank G′
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where G′ is the b× (n− r + b) sub-matrix of G consisting of the last n− r + b columns

of G∗. Since b > c and r < d + c by assumption, we find that G′ satisfies the conditions

of Lemma 5.2. Hence rank G′ = b and rank M = r + b, which implies that for each u, the

linear system (6.4) has exactly qn+k−r−b distinct solutions in Fn
q ×Fk

q . Moreover, there are

exactly ∑b−c
i=0(

b
i)(q− 1)i such u. Thus qn+k−r−b ∑b−c

i=0(
b
i)(q− 1)i is an upper bound on the

number of inputs (x, y) that belong to the event EP, and therefore

Pr
{
EP
}

6
qn+k−rq−b(1−Hq(1− c

b ))

|B−1(1)| 6
q−r−c(1−Hq(1−µ))/µ

α(k, γ)
(6.5)

The inequalities are due to Lemma D.1 and µ > 1/q. Observe that the bound on Pr{EP}

in (6.5) depends only on the number r of the input variables that the path P reads.

Combining this with (6.3), we obtain

Pr{E} 6
q−c(1−Hq(1−µ))/µ

α(k, γ)

δ

∑
r=1

η′rq−r 6
q−c(1−Hq(1−µ))/µ

α(k, γ)
(6.6)

as claimed, where the first inequality follows from (6.5), while the second inequality

follows from Corollary 6.1. Observe that not all of the inputs (x, y) counted in qn+k−r−b

are necessarily in B−1(1), and those that are in B−1(1) are not necessarily in EP since

there is no guarantee that the computation of B upon such input (x, y) reaches the source

node of P . However, since we are interested in an upper bound on Pr{E}, we can ignore

these additional constraints.

Lemma 6.3. Let B be a branching program that computes a syndrome decision func-

tion fG,γ. Let (x, y) be an arbitrary input in B−1(1), and let P(x, y) denote the computation

path that B follows upon this input. Then P(x, y) correctly enforces at least dγke of the

Y-variables.

Proof. We need to verify conditions C1, C2, C3 of Definition 6.2. Condition C1 holds

trivially in this case. In order to show that P(x, y) satisfies condition C2, let b denote the

number of Y-variables that P(x, y) reads, and assume to the contrary that b < dγke. Then

we can change those Y-variables that P(x, y) does not read so as to produce an input (x, y′)

which is no longer in the acceptance set of B. Specifically, if P(x, y) reads the variables
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Y1, Y2, . . . , Yb, we can set

y′ =
(

y1, y2, . . . , yb, 1 + 〈gb+1, x〉, 1 + 〈gb+2, x〉, . . . , 1 + 〈gk, x〉
)

(6.7)

where gi denotes the i-th row of G, as in Definition 6.2. If b < dγke, then fG,γ(x, y′) =

0 according to Definition 1.3. Yet, since P(x, y) does not read the variables we have

changed in order to transform (x, y) into (x, y′), the computation in B upon input (x, y′)

will follow the same path P(x, y′) = P(x, y), eventually reaching an accepting node. This

is a contradiction and, hence, the path P(x, y) does satisfy condition C2, as claimed. The

fact that P(x, y) also satisfies condition C3 follows by a similar argument. Assume to the

contrary that b > dγke but P(x, y) enforces correctly less than dγke of the Y-variables that

it reads. Consider an input (x, y′), where y′ is, again, given by (6.7). Then we again have

fG,γ(x, y′) = 0, and yet Bwill follow the path P(x, y′) = P(x, y) on input (x, y′), eventually

reaching an accepting node.

Corollary 6.2. Let B be a branching program that computes a syndrome decision

function fG,γ. Let T denote the time of B, and let δ 6 T be a positive integer. Then for

every input (x, y) in B−1(1), there exists in B a partial computation path P′(x, y) of length

at most δ which correctly enforces at least dγk/se of the Y-variables, where s = dT/δe.

Proof. The computation path P(x, y) that B follows upon input (x, y) has length at most T.

Let us partition P(x, y) into at most s = dT/δe segments such that each segment has

length at most δ. By Lemma 6.3, the path P(x, y) correctly enforces at least dγke of the

Y-variables. Hence, at least one of its segments must correctly enforce at least dγk/se of

the Y-variables.

Lemma 6.4. Let B be a branching program that computes a syndrome decision func-

tion fG,γ, and let T denote the time of B. Then T > d + dγke.

Proof. Pick an arbitrary input (x, y) in B−1(1), and let P(x, y) denote the computation

path that B follows upon this input. Lemma 6.3 already shows that P(x, y) reads at least

dγke of the Y-variables. Thus it would suffice to prove that P(x, y) also reads at least d
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of the X-variables. This follows from an argument similar to the one used in the proof

of Lemma 6.3. Let a denote the number of X-variables that P(x, y) reads, and assume

to the contrary that a 6 d − 1. Then the k × (n − a) sub-matrix of G whose columns

correspond to the X-variables that P(x, y) does not read is full-rank by Lemma 5.2. It

follows that for any given z∈Fk
q , we can create an input (x′, y) such that Gx′t = zt while

the difference between (x′, y) and (x, y) involves only those variables that P(x, y) does

not read. Setting z = y + (1, 1, . . . , 1), we find that the input (x′, y) does not satisfy any of

the syndrome equations and yet the corresponding computation path P(x′, y) = P(x, y)

reaches an accepting node of B.

Theorem 6.1. Let G be a generator matrix for an (n, k, d) linear code over Fq, and let γ

and ε be positive real constants such that γ, ε < 1. Let B be a q-way decision branching

program computing the corresponding syndrome decision function fG,γ and ε-restricted

with respect to the Y-variables. Let B have time T and space S, then

T
(

S + log2T − log2(α(k, γ)/3)
)

>
γkd(d + γk)

2d + γk
log2 q >

γkd
2

log2 q (6.8)

whenever T 6 τ(k, d, γ)n2−ε. Here τ(k, d, γ)
de f
= γkd1−ε(d+γk)

n2(2d+γk) .

Proof. We begin by making B leveled, using the standard procedure [Pip78]. First,

replicate the underlying graph T + 1 times, where T is the time of B. Such replication

produces the T + 1 levels, denoted by V0, V1, . . . , VT, with |Vi| = |B| for all i. Now,

for i = 0, 1, . . . , T−1, redirect all edges from nodes at level Vi to nodes at level Vi+1.

Then, delete all non-sink nodes at level VT (here, and hereafter, deleting a node means

also deleting all the edges that are incident upon this node). Next, delete all the nodes

that are unreachable from the source node at level V0, which makes this source node

the unique node of in-degree zero in the resulting graph. Finally, delete all the non-sink

nodes that are unreachable from any of the sink nodes when the direction of all edges is

reversed. This procedure produces a leveled branching program with T + 1 levels, which

we denote by B′. Observe that B and B′ compute the same function, while the time and

space of B′ are given by T′ = T and S′ 6 S + log2T.
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For each non-sink node v in B′, let Pv denote the union of all paths of length at

most d starting at v. Then Pv is a branching sub-program of B′ of depth δ 6 d. Indeed, it

is easy to see that Pv satisfies properties P1, P4 of Definition 1.4, with v being the unique

source node of Pv. Now, choose the input (x, y) uniformly at random from B−1(1) and

let Ev be the event that Pv correctly enforces at least c of the Y-variables upon this input,

where c is a positive integer to be fixed later. Let µ
de f
= µP (x, y). Assume for now that P

is an efficient enforcer upon (x, y) and in fact that µ = 1. We will show later how this

can be ensured. Since δ < d + c, Lemma 6.2 implies that Pr{Ev} 6 q−c/α(k, γ). The key

point is that if c is sufficiently small, then at least one of the events Ev must always occur.

Specifically, let us set s = dT/de and

c =
⌈

γk
s

⌉
=
⌈

γk
dT/de

⌉
(6.9)

Then by Lemma 6.3 and Corollary 6.2, for every input (x, y) in B−1(1), there exist in B′

a computation path P(x, y) and a partial computation path P′(x, y) with the following

properties:

• P′(x, y) correctly enforces at least c of the Y-variables,

• P′(x, y) is a segment of P(x, y) of length at most d.

Let v be the node of B′ at which P′(x, y) starts. Then, since the length of P′(x, y) is at

most d, this path belongs to (is contained as a sub-graph in) the branching sub-program

Pv. The problem is that P′(x, y) does not necessarily end in a sink node of Pv. However,

in this case, we can always extend P′(x, y) along the computation path P(x, y) until we

reach a sink node of Pv. Hence, for c given by (6.9), at least one of the events Ev always

occurs, and we have

1 = Pr
{⋃

v∈B′ Ev

}
6 ∑

v∈B′
Pr
{
Ev
}

6
|B′|q−c

α(k, γ)
(6.10)

Taking logarithms in (6.10), we obtain S′ > c log2 q + log2 α(k, γ). Observe that S′ 6

S + log2T while c > γkd(d + γk)/(2d + γk)T. The latter inequality follows from (6.9)

along with the fact that T > d + γk by Lemma 6.4.
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It remains to show that P′(x, y) and hence P are efficient enforcers upon input

(x, y) and that µP (x, y) = 1. If T < τ(k, d, γ)n2−ε add τ(k, d, γ)n2−ε − T new layers at the

beginning, which read superfluous variables so that T = τ(k, d, γ). The space is increased

to at most S′′ 6 3S′. Let P′(x, y) read b′ > c Y-variables and correctly enforce c′ > c of

them. We have

1 >
c′

b′
>

c
dε

>
γkd(d + γk)
dε(2d + γk)T

= 1

which means µP (x, y) = 1.

Henceforth, for the sake of simplicity, we focus on binary linear codes, for

which the syndrome decision function fG,γ is a Boolean function. A decision branching

program that computes fG,γ is thus 2-way (that is, q = 2); such branching programs are

usually said to be Boolean.

Many asymptotically good families of binary linear codes are known [MS77]. For

example, the family of all binary linear codes is asymptotically good. In fact, if we fix

any real number R in the range 0 < R < 1 and generate an dRne × n binary matrix

G by flipping a fair coin to determine each of its entries, then the binary linear code

spanned by the rows of G has rate at least R and relative distance d/n = H−1
2 (1− R)

with probability→ 1 as n→∞. The problem with most asymptotically good families of

codes is that they are nonconstructive. For example, if we wish to actually write-down a

k× n matrix which generates a binary linear code of rate R = k/n and minimum distance

d = nH−1
2 (1− R), then there is no known algorithm that can accomplish this in time

that is bounded by a polynomial in n. However, certain asymptotically good families

of codes are constructive. The first such family was exhibited by Justesen in 1972. The

following theorem summarizes his main result; its proof may be found either in [Jus72]

or in [MS77, pp. 306-311] (the latter being a more accessible treatment).

Theorem 6.2. For all sufficiently large integers m and for all positive K 6 2m − 1,

there exists an (n, k, d) binary linear code C with n = 2m(2m − 1), k = mK, and

d = 0.11n(1− 2R), where R = k/n is the rate of C. Moreover, a k× n generator matrix G

for C can be written down in time and space that are both bounded by a polynomial in n.
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We shall refer to the codes exhibited in Theorem 6.2 as Justesen codes. The

key property of Justesen codes is that the corresponding syndrome decision function

fG,γ(x, y) can be computed in polynomial time for any input (x, y)∈ {0, 1}n+k. Today,

much better constructions of asymptotically good codes are known [VKT84, Var97].

However, since we are not interested in optimizing the constants in (6.8), Justesen codes

will suffice for our purposes.

Corollary 6.3. There is an infinite sequence f1, f2, . . . of Boolean functions with the

following properties. For all i = 1, 2, . . ., the number of variables of fi+1 is strictly greater

than the number of variables of fi. The functions f1, f2, . . . can be computed (for any

given input) in time and space that are bounded by a polynomial in the number of

variables. For each i = 1, 2, . . ., if N denotes the number of variables of the function

fi, then for all Boolean decision branching programs that compute fi in time T and space

S, and are ε-restricted with respect to the Y-variables, we have TS > 0.001N2 whenever

T 6 0.0015N2−ε.

Proof. This follows from Theorem 6.1 upon some straightforward counting. Let us select

the constants as follows. Set R = 1/4 in Theorem 6.2, in which case k = n/4 and d =

0.11n/2. The corresponding syndrome decision function fG,γ then has N = n + k = 5n/4

variables, and Theorem 6.1 implies that when T 6 τ(k, d, γ)n2−ε,

T
(

S + log2T − log2(α(k, γ)/3)
)

>
γkd(d + γk)
n2(2d + γk)

=
0.44γ(γ + 0.22)

25(γ + 0.44)
N2 (6.11)

where τ(k, d, γ) = γkd1−ε(d+γk)
2d+γk . Next, we need to lower bound the acceptance ratio α(k, γ)

of fG,γ. To this end, we will choose γ in such a way that b(1−γ)kc > bk/2c. Then

it follows from Lemma 6.1 that α(k, γ) > 2
3
√

k
where the inequality which holds for all

k > 1 follows by a simple application of Stirling’s formula, and is proved in Lemma D.2.

Finally, we observe that S > log2T > log2 d by Lemma 6.4, while d = 0.22k > 9
√

k
2 for all

k > 419. It follows that S + log2 T − log2 (α(k, γ)/3) 6 3S, and therefore

TS >
0.44γ(γ + 0.22)

75(γ + 0.44)
N2 (6.12)
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in view of (6.11). It remains to choose the value of γ, subject to the constraint that γ 6 1/2

which is required in Lemma D.2. We solve the quadratic equation which results by setting

the fraction in (6.12) equal to 0.001, and obtain γ =
(√

1463881− 109
)
/4400 ' 0.2502.

Moreover since n = 4N/5,

τ(k, d, γ)(
n
N

)2−ε =
γkd1−ε(d + γk)

n2(2d + γk)
(

4
5
)2−ε > 0.0015

6.4 Summary

We derived minimum distance bounds for codes using the branching program

model for non-uniform sequential computation of decision functions related to codes. We

looked at the branching program complexity of verifying the syndrome vector of linear

codes. We derived the first ever quadratic time-space bounds for ε-restricted decision

branching programs.
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C H A P T E R 7

Branching Program Complexity of Fundamental

Operations Related to Codes

7.1 Introduction

We develop a general method for proving lower bounds on the complexity of

branching programs. The proposed proof technique is based on a connection between

branching programs and error-correcting codes and makes use of certain classical

results in coding theory. Specifically, lower bounds on the complexity of branching

programs computing certain important functions follow directly from lower bounds on

the minimum distance of several well-known families of algebraic codes.

In order to establish a connection between the two domains, we “invert” either

the recent results of Bazzi and Mitter which are, in turn, based upon Ajtai’s new proof

techniques for the branching program model or our new upper bound on minimum

distance of linear codes, which is proved using the probabilistic techniques introduced

by Borodin-Cook and Abrahamson. Inverting our new upper bounds works for both

multi-output and decision branching programs using the appropriate bound proved in

either Chapter 5 or Chapter 6.

Using the proposed method, we obtain lower bounds for deterministic boolean

multiple-output branching programs that compute several fundamental operations, such

as finite-field multiplication, cyclic convolution, integer multiplication, matrix-vector

multiplication, and the discrete Fourier transform (DFT). In all the cases, our lower

bounds match the best previously known results.

118
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For ε-restricted deterministic decision branching programs, we obtain the first

known quadratic time-space tradeoff results for verifying fundamental operations, such

as cyclic convolution, matrix-vector multiplication, and the discrete Fourier transform

(DFT). Moreover these tradeoffs are order comparable (when q is a constant) to the

previously known tight tradeoffs for the corresponding multiple-output branching

programs. These new results show that for deterministic branching programs, there exist

functions computable using polynomial time and space resources which are at least as

hard to verify as they are to compute.

Apart from proving lower bounds for the most general BP model possible, it

is also of interest to derive such bounds for branching programs that compute a large

class of functions, preferably practically important ones. It is possible to connect the

parameters of an error correction code to either the branching program complexity of

encoding the code or for a linear code, the complexity of computing the syndrome

vector. It is also possible to relate minimum distance to the complexity of verifying

code membership. The techniques used for proving a lower bound are just as interesting

as the lower bounds themselves. The proof method often provides new insights to the

function at hand. In this paper, we will derive lower bounds for the branching program

computation of a number of fundamental operations, using a deep connection to some

well known families of algebraic codes which have good distance properties.

7.1.1 Relevant prior work

The new method gives us bounds which match the best known lower bounds

previously known [Abr91] for circular convolution, matrix vector multiplication and dis-

crete Fourier transform. These bounds are already the tightest possible for deterministic

branching programs as trivial programs can be constructed to achieve this bound in all

these cases. For the finite field multiplication operation, the previous best bounds we

know of were obtained in [SW03], and our bound matches this result.

For deterministic boolean decision branching programs, the results we report

here appear to be the best known. The previous best results for convolution and matrix
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vector product are reported in [SW03], which are valid only so long as T = o(n log2 n).

We are not aware of previous non-trivial bounds for verifying the discrete Fourier

transform. On the other hand our results show a quadratic time-space tradeoff for all

these functions and are valid for unrestricted boolean decision branching programs for

all T = O(n2).

7.2 Coding Theoretic Lower Bounds for Performing Fundamental Algebraic

Operations

7.2.1 Minimum Distance and Complexity

In this section we briefly describe the tools developed in prior literature and

earlier sections which will help us obtain the desired tradeoff results for fundamental

operations of interest. First we describe the bounds for multi-output branching programs

and later the bounds for decision branching programs

7.2.1.1 Multiple Output Branching Programs

Loosely speaking, a trellis for a binary code C ⊆ {0, 1}n may be thought of as an

oblivious, leveled, read-once/write-once branching program that computes the encoder

function E : {0, 1}k → C. For a trellis of an (n, k, d) binary code C, Lafourcade and

Vardy [LV95a] proved that the logarithm S of the number of its nodes is lower-bounded

by S >
⌈

k(d−1)
n

⌉
. Inspired by Ajtai’s proof [Ajt98] of time-space complexity tradeoffs

for the HAMMING DISTANCE problem, it was shown by Bazzi and Mitter [BM05] that the

minimum distance of an (n, k, d) binary code C is related to the time-space complexity of

a boolean branching program that computes the encoder function for C. They proved

that if B is a deterministic boolean branching program that computes the encoder

function E : {0, 1}k → C in time T and space S, then

d = O

(
k
(

T
k

)3(S
k

) k
2T
)

(7.1)
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In Section 5.4 we optimized on the proof of (7.1) and improved it by tightening the

exponent of T
k to 2.

A drawback of the above bound is that it is valid only as long as T = o(n log n).

In Section 5.2 we considered the problem of computing f⊥C , the syndrome-vector with

respect to the dual code of a q-ary linear code Cq[n, k, d]. There (also reported in [SV06])

using a probabilistic method, we proved a new upper bound on the minimum distance of

codes which is in terms of expected time-space complexity and is valid for any T. If B is

a q-way branching program which computes f⊥C in expected-time T and expected-space

S then it is shown that,

d 6
12T

(
S + log2T + 6

)
k log2q

+ 1 (7.2)

Using (7.2) we then conclude that, if F is a family of systematic linear codes over Fq such

that d⊥ = d, and its encoding-function E is computable in the q-way branching program

model with expected space-time complexity

TS = o(n2 log q) (7.3)

then it cannot be asymptotically good.

7.2.1.2 Decision Branching Programs

In Section 6.3 we considered the problem of computing fG,γ to partially verify the

dual syndrome-vector of a q-ary linear code Cq[n, k, d] with respect to a particular basis

given by the matrix G. We showed that any q-ary branching program computing fG,γ

and ε-restricted with respect to the Y-variables must satisfy the time-space tradeoff:

TS = Ω(γkd) (7.4)

when γ 6 1
2 and T = o(γn2−ε).

For a family of asymptotically good codes, branching programs which compute
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fG,γ must satisfy the asymptotic time-space tradeoff:

TS = Ω(γn2) (7.5)

when γ 6 1
2 and T = o(γn2−ε).

7.2.2 Coding theoretic lower bounds

We use the minimum distance upper bounds listed above to derive lower bounds

on the time-space resources required for several fundamental operations in the branching

program model. Target functions considered are: finite-field multiplication, integer

multiplication, cyclic convolution, matrix-vector multiplication, and the discrete Fourier

transform. These are defined precisely below.

Definition 7.1 Let n = 2m. For an element α of Fn, let 〈α〉2 denote the binary represen-

tation of α with respect to a fixed basis for Fn over F2. Given a fixed element β∈Fn,

the n-bit finite-field multiplication function FMULβ : {0, 1}n→{0, 1}n is defined by

FMULβ

(
〈α〉2

)
= 〈α ? β〉2, where ? denotes multiplication in Fn.

Definition 7.2 For an integer a∈ {0, 1, . . . , 2n−1}, let 〈a〉2 ∈ {0, 1}n denote the usual

(positional) radix-2 representation of a. Given a fixed integer b∈ {0, 1, . . . , 2n−1}, the n-

bit integer multiplication function IMULb : {0, 1}n→ {0, 1}2n is defined by IMULb
(
〈a〉2

)
= 〈a · b〉2, where · denotes integer multiplication.

Definition 7.3 Let 〈a(X)〉2 denote the binary vector of length n representing the detached

coefficients of a polynomial a(X) in the ring F2[X]/(Xn− 1). Given a fixed polynomial

b(X) in this ring, the n-bit convolution function CONVb(X) : {0, 1}n → {0, 1}n is defined

by CONVb(X)
(
〈a(X)〉2

)
= 〈a(X)� b(X)〉2, where � denotes polynomial multiplication

over F2 modulo Xn− 1.

Definition 7.4 Let Mn,n denote the set of all n× n binary matrices. Given a fixed binary

matrix B∈Mn,n, the n-bit matrix-vector product function MVMULB : {0, 1}n → {0, 1}n
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is defined by MVMULB(x) = xB, where xB denotes the usual (row) vector-matrix product

operation over F2.

Definition 7.5 Let n = 2m. For a vector x = (x0, x1, . . . , xn−2) over Fn, let 〈x〉2 denote

the binary vector of length mn obtained by concatenating the binary representations of

x0, x1, . . . , xn−2 with respect to a fixed basis for Fn over F2. Given a primitive element

α of Fn and a fixed fraction ρ = k/(n − 1) in (0, 1), the k-point DFT function DFTρ,α :

{0, 1}m(n−1) → {0, 1}ρm(n−1) is

DFTρ,α

(
〈x〉2

)de f
=
〈(n−2

∑
i=0

xi,
n−2

∑
i=0

xiα
i, . . . ,

n−2

∑
i=0

xiα
ji, . . . ,

n−2

∑
i=0

xiα
(k−1)i)〉

2

Our results for multiple-output boolean branching programs computing these functions

are summarized in the following theorem and in Table 1.2.

Theorem 7.1 Let B be a deterministic boolean branching program that computes one of

the functions FMUL, IMUL, CONV, MVMUL, or DFT in worst-case time T and space

S. Let its expected time be T and expected space S. Then depending on the function, B

satisfies the following time-space tradeoffs:

(i) FMUL : If T = o(n log n), then T = Ω (n log (n/S)/ log log (n/S))

(ii) MVMUL and CONV : TS = Ω(n2)

(iii) IMUL : TS = Ω
(
( n

log n )2
)

(iv) DFT: TS = Ω(n2 log n)

Sketch of Proof. For the function FMUL, we construct a binary code C such that the

corresponding encoder function E : {0, 1}k → C is closely related to the target function

FMUL. We modify a branching program which performs FMUL so as to encode this

code. We then prove a lower bound on the minimum distance d of C and apply the

upper bound from (7.1). For all the other functions, we construct a binary code C such

that the corresponding syndrome calculation function f⊥C is closely related to the target



124

function MVMUL, CONV, IMUL or DFT. We then prove a lower bound on the minimum

distance d of C and apply the upper bound from (7.2).

In the remaining part of this section, we examine each of these functions

separately. We associate a family of codes with each operation and then show that each

family achieves a minimum distance lower bound. This will give us the desired time-

space tradeoffs. It may be noted that the bound for FMUL is weaker than that for the

other functions. This is because it relies on (7.1) which uses different proof techniques

compared to (7.2).

7.2.3 Complexity of finite-field multiplication

Theorem 7.2 A deterministic boolean branching program B computing FMUL satisfies

the time-space tradeoff: If T = o(n log n), then T = Ω (n log (n/S)/ log log (n/S))

Proof. First we construct a family of binary codes using linear operations in an extension

field. The binary codes are systematic rate one-half, parametrized by an element

β∈GF(2n). This family which we denoted asWβ is known as the Wozencraft ensemble.

Given any integer n > 0 and β∈GF(2n), a (2n, n, d) binary code from the family

of codesWβ is defined by the following mapping:

i 7→ c = [i | i ? β]

where i is a n-dimensional binary information vector and ? denotes the FMUL operation

in GF(2n). These codes were used as the inner codes by Justesen [Jus72] in his family of

concatenated codes. It is known [Mas63] that this family includes codes which meet the

binary Gilbert-Varshamov bound.

We use a modified branching program and a contra-positive argument. Let us

suppose that for any boolean branching program B computing FMUL,

(
T
n

)3 (S
n

) n
2T

6= Ω(1) (7.6)
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We can then construct another branching program B′ to encode any code Wβ within

the same space-time complexity bounds as follows: Upon reading any bit ij in the

information vector i, B′ writes out ij and performs the same state transition as B

would. While B writes n variables, B′ writes 2n variables. The maximum time for any

computation path of B′ is at most a constant factor larger than the maximum time for any

computation path of B.

By Equation (7.1), this would imply that the family of codesWβ parametrized by

β is asymptotically bad. But we know that this not true. A careful rewrite of the lower

bound implied by (7.6) results in the claimed time-space tradeoff. Notice that from the

sharpened bound derived in Section 5.4, we could use 2 as the exponent of T
n in (7.6).

However the asymptotic form of the bound will remain unchanged.

7.2.4 Complexity of CONV, MVMUL, and IMUL

An (mn0, mk0) linear code is said to be quasi-cyclic with basic block length n0 if

every cyclic shift of a code word by n0 symbols yields another code word. In order to

prove lower bounds on the complexity of these operations, we make use of an old result

from coding theory which says that the family of quasi-cyclic rate half binary codes is

asymptotically good. Then we apply (7.3).

Theorem 7.3 A deterministic boolean branching program B computing either CONV or

MVMUL in expected time T and expected space S satisfies: TS = Ω(n2)

Proof. Let C(2n, n, d) be a rate half systematic quasi-cyclic code with generator matrix of

the form G = [In | C], where C is a square n× n circulant matrix. A result due to Chen,

Peterson and Weldon [CPW69] and to Kasami [Kas74] says that the family of rate half

quasi-cyclic codes achieve the binary GV bound. Moreover they show that this occurs

when the polynomial associated with the first row of C is relatively prime to (xn − 1).

It is also clear that the columns of the parity check matrix can be rearranged to get G.

Therefore C⊥ is equivalent to C and we can employ the (7.3).
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Let the binary polynomial associated with the circulant matrix C be g(x). The

encoding of a binary information polynomial i(x)∈GF(2)[x]/(xn − 1) can then be

represented in the following form:

i(x) 7→ c(x) = (i(x) , i(x)� g(x))

where � represents CONV operation. The proof of the theorem now follows by a

similar argument as the FMUL operation. Furthermore, it is clear from the proof that

a particularly difficult case of convolution is when one of the polynomials is relatively

prime to (xn − 1).

To obtain the lower bound for MVMUL, consider the problem of computing Gx,

given an input vector x, where G represents the generator matrix of a random linear code.

As the family of linear codes is asymptotically good, by (7.2), we get a lower bound for

MVMUL.

A lower bound for IMUL can be obtained using the standard reduction method.

Corollary 7.1 A deterministic boolean branching program B computing IMUL in ex-

pected time T and expected space S satisfies: TS = Ω
(
( n

log n )2
)

Proof. We perform a reduction from the CONV operation using a standard encoding

scheme similar to [Abr91]. The reduction is given below for completeness.

Let a = (a0, . . . , ak−1) and b = (b0, . . . , bk−1) represent the detached coefficients

of any two polynomials in the ring GF(2)[x]/(xk − 1). Similarly let c = (c0, . . . , ck−1)

be the detached coefficient vector of the result of the CONV operation c(x) = a(x) �

b(x). We now encode a and b to obtain A and B of dimensions 2kdlog ke and kdlog ke

respectively as follows. Each original bit is post-fixed with dlog ke − 1 zeros. Only for

the encoding of a, repeat the entire bit string produced by the padding procedure once.

Now treat A and B as two 2kdlog ke bit numbers in the 2-adic representation and perform

the integer multiplication operation to get C = A ∗ B. Padding with zeros prevents the

propagation of carry and repetition mimics the wrap around in circular convolution. It

is easily verified that c = (c0, . . . , ck−1) = (Cjdlog ke+2k|j∈ {0, 1, . . . , k− 1}.
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So 2kdlog ke bit IMUL is at least as complex as k bit CONV. Define n = 2kdlog ke,

giving log k < log n < 2 log k for sufficiently large k. Substituting for k the equivalent

expressions involving n in Theorem 7.3 we get the corollary.

7.2.5 Complexity of discrete Fourier transform

In this section, we make use of the properties of Reed-Solomon codes to conclude

about the time-space tradeoff for branching programs computing the DFT.

Theorem 7.4 Let n = 2m be an integer. Let 0 < ρ < 1 be a fixed fraction and let k =

ρ(n− 1). A deterministic boolean branching program B computing the k-point DFT in

expected time T and expected space S satisfies: TS = Ω(n2 log n)

Proof. Consider a length (n− 1), dimension k Reed-Solomon code C. Let the roots of its

generating polynomial in F2m be the (n− 1) consecutive powers αj of a primitive element

α∈F2m . Both C and C⊥ are MDS codes and have fixed rates. The syndrome computation

for C⊥ is precisely the computation of a k-point DFT.

Applying (7.2) with q = n for the MDS distance d = n− k of C, we get the desired

result.

7.3 Quadratic Time-Space Tradeoffs for Verifying Algebraic Functions

In this section we will use the minimum distance properties of some well known

families of codes to prove time-space tradeoff results for boolean decision branching pro-

grams verifying some of algebraic functions defined in Section 7.2.2. These functions

are MVMUL (matrix-vector product), CONV (circular convolution) and DFT (discrete

Fourier transform).

The following definition fixes the notion of partial verification of a vector valued

function:

Definition 7.6 LetD be a finite domain. Consider a vector valued function f : Dn → Dk.

Let γ be an absolute real constant such that 0 < γ < 1. For an input (x, y)∈Dn × Dk
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the decision function ζ f ,γ : Dn ×Dk → {0, 1} evaluates true, namely ζ f ,γ(x, y) = 1 if and

only if at least a fraction γ of the k equations fi(x) = yi are satisfied. Here fi(·) denotes

the ith coordinate of the evaluated function.

Our results for unrestricted boolean decision branching programs partially veri-

fying fundamental operations are summarized in Table 1.3. The detailed proofs are given

below. We have the following results:

Theorem 7.5 Let γ be an absolute real constant such that 0 < γ 6 1
2 . A deterministic

boolean decision branching program B computing either ζCONV,γ or ζMVMUL,γ in time

T and space S and ε-restricted with respect to the Y-variables satisfies: TS = Ω(γn2)

whenever T = o(γn2−ε).

Proof. Let C(2n, n, d) be a rate half systematic quasi-cyclic code with generator matrix of

the form G = [In | C], where C is a square n× n circulant matrix. As noted earlier in the

chapter, this family of rate half quasi-cyclic codes achieves the binary Gilbert-Varshamov

bound.

Let T = o(γn2−ε). So as to arrive at a contradiction, let us suppose that ζCONV,γ

has a time-space tradeoff given by TS = o(γn2) in the branching program model. A

trivial modification of such a branching program will compute f⊥C in TS = o(γn2). To

see how, consider an input (x, y)∈F2n
q ×Fn

q and observe that gi · x = xi + c̃i · x̃, where gi is

the ith row of the generator matrix G and ci is the ith row of the circulant matrix C. Here x̃

denotes the vector in Fn
q formed by taking only the last n coordinates of x. The term c̃i · x̃

forms a part of the CONV operation. This means f⊥C can be implemented using ζCONV,γ

which operates on (x, y− x̂), where x̂ denotes the vector in Fn
q formed by taking only the

first n coordinates of x. Finally, since by (7.5), f⊥C computation satisfies TS = Ω(γn2) in

the branching program model, so should ζCONV,γ.

To obtain the time-space lower bound for ζMVMUL,γ, consider the problem of

computing Gx, given an input vector x, where G represents the generator matrix of a

random linear code. As the family of linear codes is asymptotically good, by (7.5), we get

a time-space tradeoff for ζMVMUL,γ.
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Theorem 7.6 Let γ be an absolute real constant such that 0 < γ 6 1
2 . Let n = 2m be an

integer. Let 0 < ρ < 1 be a fixed fraction and let k = ρ(n− 1). A deterministic boolean

decision branching program B which partially verifies a k-point DFT by computing

ζDFT,γ in time T, space S and is ε-restricted with respect to the Y-variables satisfies:

TS = Ω(γn2 log2 n) whenever T = o(γn2−ε).

Proof. As in the proof of Theorem 7.6, consider a length (n − 1), dimension k Reed-

Solomon code, R. Let the roots of its generating polynomial in F2m be the (n − 1)

consecutive powers αj of a primitive element α∈F2m . Both R and R⊥ are MDS codes

and have fixed rates. The syndrome computation for R⊥ is precisely the computation of

a k-point DFT.

Now take the binary image code of R, which we denote by C. C is a ((n −

1)m, km, n − k) linear binary code and ζDFT,γ is precisely fG,γ. The result follows on

applying (7.4).

7.4 Summary

We used the bounds derived in earlier chapters to obtain the first ever time-space

tradeoffs for ε-restricted decision branching programs verifying several fundamental

operations. We also derived time-space tradeoffs for computing numerous fundamental

operations on the unrestricted branching program model – these results match the

previously known best results. All these results are derived making use of deep

new connections between the properties of certain algebraic codes and fundamental

algorithms.
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C H A P T E R 8

On an Improvement over Rényi’s Equivocation

Bound

8.1 Introduction

In his celebrated paper of 1948, Shannon proved the Channel Coding Theorem.

This theorem essentially states that the ensemble of long random block codes (and

thus some specific code) in the limit of very large block lengths, achieves an arbitrarily

low probability of error under decoding by jointly typical decision rule, when used

over a given channel at information rates below a limit called the channel’s Shannon

capacity. It is well known that for minimizing the Bayes risk, the optimal decision rule

is the Maximum Áposteriori Probability (MAP) decision rule. Shannon uses jointly typical

decision rule in his analysis because, asymptotically the decision rule is optimal and it

simplifies the analysis considerably. The strong converse to the channel coding theorem

based on Fano’s inequality states that the probability of error under any decision rule

approaches 1 exponentially as block length increases when rate is above capacity.

The Shannon capacity of a discrete memoryless channel (DMC) is given by,

C = max
px(.)

I(X; Y)

where I(X; Y) is the mutual information between the channel input X and channel output

Y. The mutual information is given in terms of entropy function as,

I(X; Y) = H(X)− H(X|Y) = ∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
(8.1)

131
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The source entropy H(X) is a function of the source statistics. The function

H(X|Y) is called the conditional entropy or equivocation. Equivocation is dependent

on the channel statistics as well as the properties of the channel code employed. For

most non-trivial channels, computation of capacity is infeasible due to the optimization

required over the input probability distribution of a highly nonlinear function. Good

upper and lower bounds to capacity which are easy to compute are therefore of interest.

A useful lower-bound on capacity is clearly the mutual information for some arbitrary

p(x). Upper bounds usually require other formulations.

The decoding problem for codes is an instance of the more general problem of

multiple hypothesis testing which appears in some form in most fields of science. It is

intuitive to say that the probability of error under the Bayes decision rule is a function of

equivocation. That this is true was proved rigorously by Rényi in [R66]. Among other

things, he showed that Pe 6 H(X|Y). Hellman and Raviv later improved on this result

in [HR70] and showed that in fact, Pe 6 1
2 H(X|Y). It is immediately clear that even this

improved bound is extremely loose when the equivocation is over unity.

In this paper we first look at several tight classical bounds on the Bayes risk in

the general multi-hypothesis testing problem. While these bounds where available in

the literature, they have not found widespread application in communication theory. We

give a simple binary hypothesis testing problem where such bounds will be very helpful

in analyzing the optimal decision rule. We then derive a new upper bound on probability

of error in multi-hypothesis testing of the form

Pe 6 1− 2−H(X|Y) (8.2)

which like the equivocation bound [R66, HR70] relates Pe to the conditional entropy. But

unlike the classical equivocation bounds, the new bound is always bounded below 1 and

never gets too loose to be uninformative.

Next we use these bounds and a random coding [Gal65, SGB67] argument to

obtain a sphere packing lower bound on probability of error under MAP of the ensemble

of random codes for any channel in a subsequent section. Then we specialize it to the
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case of a memoryless channel to obtain a lower bound on equivocation for most random

codes,

H(X|Y) > N
2 (R− ρ) (8.3)

where N is the block length of a rate R code and ρ is a function of the ápriori input

probability distribution and the channel likelihood function. For a discrete memoryless

channel,

ρpx(.)
de f
= 2 log2

(
∑

j∈ J

√
∑

k∈ K
px(k)py|x(j|k)2

)

where the DMC channel transition function given by py|x(.), while px(.) is some

probability distribution on the input alphabet and K and J are the input and output

alphabets respectively. This also leads us to an upper bound on the mutual information

and hence the capacity of such channels. For a discrete memoryless channel C 6

maxpx(.)

{
ρpx(.)

}
.

In the next section, we derive some tight bounds on the probability of error under

MAP. Some of these bounds are well known [Vaj68, Tou72, Dev74].

8.2 Bounds on Error Probability under MAP Criterion

Consider a M-ary hypothesis testing problem. Let our M hypotheses be denoted

as {hi : i∈ {1, 2, . . . , M}} and their corresponding ápriori probabilities be given by {πi :

i∈ {1, 2, . . . , M}}. Also let the noisy observation be y. For MAP decision decoding, the

conditional probability of error is,

Pe|y = 1− max
i∈ {1,2,...,L}

P(hi|y), where ∑
i

P(hi|y) = 1
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8.2.1 Bounds on Probability of error for binary hypothesis testing

We begin by looking at the binary hypothesis problem. If we use the MAP

criterion, the average probability of error is given by [HR70],

Pe = Ey[1− max
i∈ {1,2}

P(hi|y)] = Ey[ min
i∈ {1,2}

P(hi|y)]

for the two hypothesis case. By an application of the well known weighted geometric

mean inequality, we immediately obtain the upper bound:

Pe = Ey[ min
i∈ {1,2}

P(hi|y)] 6 min
06α61

Ey[P(h1|y)αP(h2|y)(1−α)]

which is the popular Chernoff bound [Che52]. For the special case of α = 1/2, this

reduces to the Bhattacharyaa bound [Kai67]. The Chernoff bound is not particularly

convenient to use due to the required optimization outside the expectation, while the

Bhattacharyaa bound is very loose.

Using the negative power mean inequalities, we can do much better. We have for

any β < 0,

Pe = Ey[ min
i∈ {1,2}

P(hi|y)] 6 2−1/βEy[(P(h1|y)β + P(h2|y)β)1/β]

While the bound gets tighter as β→ −∞, for most practical purposes, we can limit to the

case β = −1, which corresponds to the harmonic mean. After simplifications, we have,

HM(P(h1|y), P(h2|y)) = 2P(h1|y)P(h2|y) = 1− P(h1|y)2 − P(h2|y)2

where HM denotes the harmonic mean. So, we have the following pair of upper and

lower bounds on the conditional probability of error, Pe|y:

P(h1|y)P(h2|y) 6 Pe|y 6 2P(h1|y)P(h2|y)
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and for Pe:

PLB 6 Pe 6 2PLB (8.4)

where PLB
de f
=
∫

y
Pr (h1) Pr (h2)P(y|h1)P(y|h2)

Pr (h1)P(y|h1)+Pr (h2)P(y|h2)
dy. It should be noted that we also obtained a

convenient lower-bound on P(e), which is one half the upper-bound, by making use of

the properties of harmonic means. We will refer to this pair as the harmonic bound. The

factor of 2 guarantee in tightness between upper and lower bounds in the probability

of error is usually enough for most practical applications. Given in Appendix E.1 is

an example of a binary hypothesis testing problem where the exact performance of the

optimal decision rule is difficult to determine and bounds are useful.

One may ask if there are M-ary extensions to the harmonic bound. It turns out

that this is indeed the case. Though motivated due to other reasons, such bounds are

well known in the literature [Vaj68, Tou72, Dev74], with suggested applications in multi-

hypothesis pattern recognition. We look at some of these extensions in the next two

sections. We will also derive a new inequality and upper bound during the process.

8.2.2 Some Inequalities for bounded positive sequences

In this section we first consider a few well known inequalities for bounded

positive valued sequences. We then derive a new (to the authors) inequality. In the rest

of the section, {ai : i∈ {1, 2, . . . , M}} is assumed to be a discrete probability distribution.

M is either finite or countably infinite.

We will need some well known inequalities [BB61, Vaj68, Tou72, Dev74] for

proving our main results. For the sake of completeness a proof of Lemma 8.1 is given

in Appendix E.2.

Lemma 8.1

(i) maxi {ai} 6
√

∑i a2
i

(ii) maxi {ai} > ∑i a2
i
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(iii) 2(1−
√

∑i a2
i ) > (1−∑i a2

i )

The following inequality is new to the author. Motivated by continuity consider-

ations, the convention 0 log2(0) = 0 and 00 = 1 is adopted.

Lemma 8.2 ∑i a2
i > 2−H(a) = ∏i aai

i

Proof. We use induction.

(1) M = 1: a1 = 1 is the only possibility and claim holds.

(2) M = m + 1: We prove the M = (m + 1) case assuming that the claim is true for

M = m. Consider the normalized sequence, a′i = ai
∑m

i=1 ai
= ai

1−am+1
. One may take

am+1 6= 1, for otherwise, the claim is trivially true. By induction hypothesis,

m

∑
i=1

(a′i)
2 > ∏

i
(a′i)

a′i

After some algebra, we get

m

∑
i=1

a2
i > (1− am+1)

(
∏

i
aai

i

) 1
(1−am+1)

We are done if we show that x2 + (1− x)y
1

(1−x) > xxy when 0 6 x, y < 1. To see that

this is true, let us fix 0 6 x = α < 1 and consider the function f (y) , α2 + (1−

α)y
1

(1−α) − ααy.

Taking derivatives, f ′(y) = y
1

(1−α)−1 − αα and f ′′(y) =
(

1
(1−α) − 1

)
· y

1
(1−α)−2 > 0

because 0 6 α < 1. So f (y) is a convex ∪ function of y and has a global minimum of

0 at y = α1−α.

This completes the proof.
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8.2.3 Tight Bounds on probability of error in multi-hypothesis testing

One can substitute P(hi|y) for ai in the inequalities derived in the previous section.

Then we have the following:

1−
√

∑
i

P(hi|y)2 6 Pe|y 6 2− 2
√

∑
i

P(hi|y)2 (8.5)

A related pair of bounds

1
2 −

1
2 ∑

i
P(hi|y)2 6 Pe|y 6 1−∑

i
P(hi|y)2 (8.6)

was first discussed in [Vaj68] in the context of Vajda’s quadratic entropy and later

by Toussaint [Tou72] who proposed the quadratic mutual information and by Devijver

[Dev74], who popularized a closely connected measure called the Bayesian Distance in

pattern recognition. Devijver also mentions the lower bound in (8.5). The later pair (8.6)

can be thought of as an M-ary extension to the harmonic mean bound.

8.2.4 An Improvement over Rényi’s Equivocation Bound

Now we consider upper bounds relating Pe with the equivocation. In [R66], Rényi

derived the bound:

Pe|y 6 H
(

P(h|y)
)

(8.7)

Hellman and Raviv later improved this bound in [HR70] to:

Pe|y 6 1
2 H
(

P(h|y)
)

(8.8)

These relations are not bounded and can get very loose when there are many hypotheses

with roughly equal áposteriori probabilities. Using the new inequality from Lemma 8.2

we get:

Pe|y 6 1−∑
i

P(hi|y)2 6 1− 2−H(P(h|y)) (8.9)
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where H(.) denotes the usual entropy function. Since H(X|Y)
de f
= Ey

[
H
(

P(h|y)
)]

,

Pe 6 1− Ey

[
2−H(P(h|y))

]
6 1− 2−H(X|Y) (8.10)

where we used the fact that 2−z is a convex ∪ function of z and the Jensen’s inequality.

This is a new bound which relates equivocation to the Bayes risk. It is also an

improvement over the Rényi and Hellman-Raviv bounds. Expanding the bound in (8.10)

as a power series,

Pe 6 1− 2−H(X|Y) =
∞

∑
n=1

(−1)n+1 (H(X|Y) ln 2)n

n!
(8.11)

which is always better than the Rényi bound and at most a factor of ln 4 < 1.4 worse

than the Hellman-Raviv equivocation bound – this is quite acceptable for most purposes.

While for the binary hypothesis case the new bound of (8.10) is not as tight as the

equivocation bound of (8.8), as the number of hypothesis increases the equivocation can

far exceed 1. This makes both the Rényi and Hellman-Raviv bounds very loose. For

example when P(hi|y) = 1
M , the Hellman-Raviv equivocation bound is not informative

at a loose log2

√
M, while the new bound gives a tight 1− 2− log2 M = M−1

M .

Comparing the various bounds, the Bayesian distance based bounds of (8.5) and

(8.6) are far tighter than both the conditional entropy based bounds (8.10, 8.8) and the

well known union bound using only pairwise error event probabilities. In Figure 8.1, we

can see the various bounds discussed above for the binary hypothesis case.

There are many instances of M-ary hypothesis testing in communication theory

where the bounds discussed in this section can be valuable fundamental analysis tools.

The rest of the paper uses only the bounds given by (8.5) and (8.10).

8.3 A Random Coding Sphere Packing Lower Bound on Pe and Equivocation

In this section, we wish to apply the random coding argument [Gal65, SGB67], to

obtain a lower bounds on the ensemble average of expected probability of error under
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Figure 8.1 Probability of error Pe and various bounds on it for binary hypothesis testing.

MAP decoding for any channel.

We have,

Pe = Ey[Pe|y] > Ey

[
1−

√
∑

i
P(hi|y)2

]

Now consider the ensemble of random codes. Each codeword in a random code

in this ensemble is chosen independently and at random from the set of all possibilities

with a probability of P(x). We will use the overbar to denote the ensemble average. The

following is immediately obtained

Pe > 1− Ey

[√
∑

i
P(hi|y)2

]
(8.12)

where we made use of the linearity property of expectation. There is also a corresponding

upper bound:

Pe 6 2− 2Ey

[√
∑

i
P(hi|y)2

]

In this paper, we will not be further concerned with the above upper bound on Pe. Instead

we concentrate on inequality (8.12).
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The inequality in (8.12) can be further simplified when expanded out in terms

of the input and output probability distributions and the channel likelihood function as

follows:

Pe > 1− Ey

[√
∑

i
P(hi|y)2

]

= 1−∑
y

P(y) ·
√

∑
i

P(hi|y)2

= 1−∑
y

P(y) ·

√√√√∑
i

(
P(hi) · P(y|hi)

P(y)

)2

= 1−∑
y

√
∑

i
P(hi)2 · P(y|hi)2

= 1−∑
y

√
∑

i
P(hi)2 · P(y|hi)2 (8.13)

where we used linearity of expectation in the last step.

Due to the tightness of the bound on Pe|y which we used initially, the ensemble

average lower bound of (8.13) is also tight within a factor of 2. However, the expression is

not easily amenable to further simplification. We now apply Jensen’s inequality to obtain

a looser yet considerably simpler lower bound:

Pe > 1−∑
y

√
∑

i
P(hi)2 · P(y|hi)2

> 1−∑
y

√
∑

i
P(hi)2 · P(y|hi)2 (8.14)

Here we used the fact that
√

x is a concave ∩ function of x. Then by Jensen’s inequality,

Ex[
√

f (x)] 6
√

Ex[ f (x)].

Let us also assume without loss of generality that our hypothesis (codeword) hi

occurs with an ápriori probability πi. In particular for the equi-probable case, πi = 1
M ,
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where M is the total number of codewords in the code under consideration. We get,

Pe > 1−∑
y

√
∑

i
π2

i · P(y|hi)2

= 1−∑
y

√
∑

i
π2

i · P(y|hi)2

= 1−
√

∑
i

π2
i ·∑

y

√
∑
x

P(x)P(y|x)2 (8.15)

as the ensemble average is independent of the particular hypothesis (transmitted code-

word). In the above equation, x is a random vector drawn from the ensemble according

to a probability distribution P(x).

Ideally, we would like to optimize on the codeword ápriori probabilities subject

to certain constraints:

Minimize −∑
i

π2
i subject to,

−∑
i

πi log2 πi = NR

∑
i

πi = 1 and

πi > 0, ∀i

(8.16)

where, N is the block-length of the code and R is its information rate in (bits/use). If we

set NR = log2 M, the only feasible solution is πi = 1
M . This choice of ápriori is also

justified by the Channel Coding Theorem for DMC, where an equally likely selection of

codewords is shown to achieve channel capacity for an ensemble of random codes. With

this setting, we get:

Pe > 1− 1√
M
·∑

y

√
∑
x

P(x)P(y|x)2 (8.17)

We now specialize (8.13) to the case of a discrete memoryless channel. Recall that,

for a discrete memoryless channel which is discrete in time,

P(y|x) = ∏
n

py|x(yn|xn)
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By the proof of the Channel Coding Theorem [Sha48], we know that for random

ensembles of codes where codewords are chosen such that each symbol is chosen

independently of each other using a probability distribution given by px(.), the ensemble

average probability of decoding (under the suboptimal jointly typical decoding) tends to

zero as block-lengths tend to infinity. We will also likewise specialize to such an ensemble

of codes, without any loss of generality. For this special class of codes, P(x) = ∏n px(xn).

So,

Pe > 1− 1√
M
·∑

y

√
∑
x

∏
n

px(xn)py|x(yn|xn)2

= 1− 1√
M
·∑

y

√
∏

n
∑

xn ∈ K
p(xn)p(yn|xn)2

= 1− 1√
M
·∏

n
∑

yn ∈ J

√
∑

xn ∈ K
p(xn)p(yn|xn)2

= 1− 1√
M

(
∑

j∈ J

√
∑

k∈ K
px(k)py|x(j|k)2

)N

(8.18)

whereK and J are the input and output alphabets respectively. In performing the above

simplifications, we made repeated use of interchanging summation and product.

Let us define a parameter ρ as follows:

ρ , 2 log2

(
∑

j∈ J

√
∑

k∈ K
px(k)py|x(j|k)2

)
(8.19)

8.3.1 Continuous Alphabet channels

It is usual to define [McE02] a continuous alphabet channel to be memoryless

when for any finite quantization of input and output alphabet, the quantized discrete

channel is memoryless. Under this definition and if we assume that the associated

probability measures are regular [Fel70], then the corresponding result holds for any

memoryless channel, where the summations are replaced by appropriate Riemann
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integrations. So for well behaved continuous alphabet memoryless channels,

Pe > 1− 1√
M

 ∫
β∈ J

√√√√ ∫
α∈ K

p(α)p(β|α)2 dα dβ


N

(8.20)

Here we define ρ as follows:

ρ , 2 log2

 ∫
β∈ J

√√√√ ∫
α∈ K

px(α)py|x(β|α)2 dα dβ

 (8.21)

8.3.2 A Lower Bound on Equivocation

Earlier we chose M = 2NR. Thus for either a discrete alphabet or a well behaved

continuous alphabet memoryless channel,

Pe > 1− 2−
N
2 (R−ρ) (8.22)

Using Jensen’s inequality and (8.10) we get:

Pe 6 1− 2−H(X|Y) (8.23)

On combining (8.22) and (8.23) we have proved:

Theorem 8.1 Most codes in the ensemble of capacity achieving random codes considered

in this section when used over a memoryless channel satisfy the lower bound on

equivocation:

H(X|Y) >
N
2

(R− ρ) (8.24)

Another application of (8.22) is in upper bounding the capacity of memoryless

channels. In Appendix E.3 this is explored further. Several simple examples are also

provided.
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8.4 Summary

We considered the problem of estimating the probability of error in multi-

hypothesis testing when MAP criterion is used. This probability, which is also known as

the Bayes risk is an important measure in many communication and information theory

problems. In general, the exact Bayes risk can be difficult to obtain. Many upper and

lower bounds are known in literature. One such upper bound is the equivocation bound

due to Rényi which is of great philosophical interest because it connects the Bayes risk to

conditional entropy. In this chapter we gave a simple derivation for a significantly better

equivocation bound.

We then gave some typical examples of problems where these bounds can be

used. In Appendix D we considered a binary hypothesis testing problem for which the

exact Bayes risk is difficult to derive. In such problems bounds are often the only tools

available. Using the bounds on Bayes risk derived in this chapter and a random coding

argument, we also proved in Appendix D a lower bound on equivocation valid for most

random codes over memoryless channels.
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Conclusions and Future Directions

As the use of Internet matures, there is a need for very high bandwidth

communication links which are highly reliable. Strong error correction codes will be

needed to achieve this goal. Similarly development of new decoding algorithms and

analysis techniques will be important in applications which require very low error

rates such as optical communication, data storage, critical (such as medical, military)

instrumentation and precision computing.

Many of the combinatorial hard problems in coding and computation arise in

the context of discrete dynamical systems. Analysis of the complexity of computer

algorithms using standard models such as the branching program is crucial in improving

our understanding of complex communication systems and networks. The importance

of a unified approach to behavioral modeling of dynamical systems using graphical re-

alization cannot therefore be understated. For example, describing decoding algorithms

on branching programs is likely to allow us to conveniently tradeoff complexity and

accuracy. Moreover this is perhaps a more desirable setting because of the rich set of

tools available to us to analyze time-space tradeoffs on such models.

As a first step in this direction this dissertation examined some of the more

general graphical models in use in coding theory and theoretical computer science.

These models include the Tanner graph, factor graph, Forney normal graph, trellis, trees,

ordered binary decision diagrams and branching programs.

The first part of the thesis examined the factor graph model for code represen-

tation and iterative decoding algorithms based on such representations. This part was

divided into three chapters.

145
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In Chapter 2 we considered the problem of constructing and decoding analog

codes for bandwidth limited communication over noisy real alphabet channels. We

demonstrated an analog code construction and an iterative graphical decoder which

achieves a graceful degradation of performance with noise and exhibits no threshold

effect when bandwidth expansion is above unity. This disproves a widely held common

belief that such codes are impractical.

The iterative decoder for the analog code works using individual component

discrete code decoders. A future goal would be use an all analog estimation algorithm

which could substantially reduce the overall decoder complexity even further.

In Chapter 3 we considered the performance analysis of Gallager’s iterative

hard-decision algorithm when applied to arbitrary binary codes (as opposed to LDPC

codes). We gave probabilistic necessary and sufficient conditions for progressively better

iterative codeword estimates.

In Chapter 4 we examined the iterative decoding of product codes concatenated

using a standard block interleaver. The iterative decoding uses bounded distance

component code decoders. We derive closed form solutions for the probability of symbol

and bit error at each iteration. Our analysis is exact assuming independence of errors

across iterations.

For keeping the analysis tractable, in both Chapter 3 and Chapter 4, we assume

the errors to be independently distributed at the start of each iteration. Theoretically,

this is only true for the first iteration. However this is empirically very close to the real

scenario for very large block lengths and small number of iterations. A research objective

for future is to understand and incorporate the effect of statistical dependence of error

patterns introduced during iterative decoding. Incorporating this dependence behavior

will give a complete and accurate picture of the iterative decoding process.

In the second part of the thesis we examined the branching program model

for computation. We sought to connect coding theory to computational complexity of

algorithms through this model. We introduced several new techniques for analyzing the

time-space complexity of algorithms on branching programs in material spread out in
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three distinct chapters.

In Chapter 5 we considered the encoding and dual syndrome-vector computation

functions of codes. This chapter only dealt with multiple-output branching programs.

We derived several tight time-space bounds on the minimum distance of codes. Our

analysis of encoding complexity applied to the most general unrestricted branching

program model, and are for both worst-case complexity. However in the analysis

of dual syndrome-vector computation function, we assume that the multiple-output

branching program is not allowed to reassign any output that has already been assigned

a value on any computation path. This is an implicit assumption on the branching

program model analyzed by all previous papers on multiple-output programs such as

[BC82, Yes84, Abr91]. It is however not clear whether programs without this restriction

are any more powerful. Obtaining similar tradeoffs for multiple-output programs which

are allowed to reassign outputs along a computation path, seems to be a reasonable goal

for future research.

In Chapter 6 we considered the problem of verifying the syndrome-vector compu-

tation of linear codes using q-way decision branching programs, where q > 2. We derived

time-space bounds on minimum distance of linear codes using the decision branching

program model. This chapter was concerned with one of the fundamental questions in

theoretical computer science which seeks to answer whether the complexity of verifying

a function can be the same as computing it. The results reported in this chapter are

the first quadratic time-space tradeoff bounds for boolean branching programs valid

over most time and space regimes of interest. We obtain our results for a type of read-

restricted decision programs called ε-restricted with respect to certain input variables.

Furthermore, the time-space tradeoffs derived in this chapter are order-comparable to

the known corresponding results for multiple output branching programs.

In Chapter 7 we applied the new bounds derived earlier in this part to prove

tradeoff results for some fundamental mathematical operations which are widely used.

The operations we considered included integer multiplication, finite field multiplication,

circular convolution, matrix-vector multiplication and discrete Fourier transform. The
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techniques we introduced are new and based on a deep new connection between certain

algebraic codes and these fundamental operations. Many of the bounds in this section

are the best known and the rest match the previously best-known bounds. The tradeoffs

obtained are order-comparable to the known tradeoffs for the corresponding multiple

output branching programs.

It is interesting to note that except for the sharpened Bazzi-Mitter bound, the rest

of the bounds in this part were derived using properties of the dual code. It appears to be

very difficult to improve the techniques introduced by Beame et al [BST98, BJS01, BSS03]

and Ajtai [Ajt99, Ajt98] to obtain quadratic time-space tradeoffs for unrestricted-time

decision branching programs. These techniques use distance properties on the original

code itself. This is in contrast to the successful derivation of an quadratic tradeoff

using the dual code properties as in Chapter 6 and Chapter 7 for ε-restricted programs.

Obtaining comparable results for unrestricted decision programs, and in the code

domain itself appears to be a major milestone for the future. In addition it will also

be interesting to extend the results of Chapter 6 and Chapter 7 to non-deterministic and

randomized programs.

In the last part of the dissertation we looked at the problem of estimating the

Bayes risk in multiple hypotheses testing. We considered several classical bounds

on the Bayes risk and derived a new fundamental inequality concerning discrete

probability distributions. We also presented a significantly sharpened version of Rényi’s

equivocation bound. Also presented in this section are lower bounds on equivocation of

random codes and an upper bound on mutual information.

It would be interesting to see if the techniques introduced in this chapter can

be applied to show a tightness guarantee on the derived upper bound on mutual

information. It also looks likely that similar techniques can be used to derive error

exponents of the Gallager type for random codes on practical channels.
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Iterative Decoding Algorithm (Gallager A/B)

Table A.1 The Gallager A/B algorithm.

Let S ⊂ C⊥ be a spanning-subset of the dual code, L be the maximum number
of iterations and 0 < ρ be a prescribed threshold.

À Set `← 1 and i← 1

Á Apply a parity-check hi ∈S to the received word y

Â For each j∈ supp(hi), assign a positive-vote if y
satisfies the parity-check, and a negative-vote
otherwise

Ã Set i← i + 1. If i 6 |S|, goto Á

Ä For each j∈ [n] if the negative-positive-vote-ratio is
above threshold ρ, then yj is flipped, producing a new
version of the ‘‘received word’’ y

Å Set `← ` + 1. If ` 6 L, set i← 1 and goto Á.
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Almost all Functions have Exponential Size

Branching Programs

In his seminal paper on switching networks, Shannon [Sha49] proved that almost

all Boolean functions require circuits with exponential number of gates. Using a similar

counting argument, it is possible to easily prove the corresponding result for space

complexity of branching programs:

Theorem B.1 Let η(k) = Ω(1) and let f (x) be a real polynomial of finite degree.

Then almost all Boolean functions from GF(2k) to GF(2η(k)) require Boolean Branching

Programs of size exponential in k when time is restricted to O ( f (k)).

Proof. The total number of distinct Boolean functions from k input variables to η(k)

output variables is 2η(k)2k
.

Without loss of generality, we restrict ourselves to leveled BPs. Since we are only

interested in proving the existence of such functions, it is enough to get a very loose

upper bound on the number of all possible 2-way BPs. Let the width of the branching

program be Wt at time t. Each non-terminal state is labeled with one of the k input

variables. There are two associated outgoing directed edges, one corresponding to the

input variable being 0 and other with it being 1. Similarly each state which is not the

start-node is labeled with at most one (or none) of the η(k) output variables, with an

associated assignment of 0 or 1. Neglecting the presence of cycles, we can count the

number of possible branching programs. An upper bound on the number of distinct

branching programs in time T and space S is therefore given by:
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T−1

∏
t=0

(
((2η(k) + 1)Wt+1)kWt

)2
6 22kT(S+lg(2η(k)+1))2S

where we used the upper bound of 2S for Wt.

Now if one assumes that S = o(k), η(k) = Ω(1) and T = O ( f (k)), then

22kT(S+lg(2η(k)+1))2S

2η(k)2k

k→∞−−→ 0
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Multileg Rectangle Density Bounds

We extend the ideas of [Ajt99,Ajt98,BST98,BSS03,SW03] to the case of embedded

combinatorial “rectangles” with many legs. Our analysis follows the exposition in

[BSS03] very closely, and gives a general lower bound on the density of such multi-legged

rectangles. We then prove an upper bound on the density of multi-legged rectangles in a

q-way branching program which computes the characteristic function of an (n, k, d)q error

correcting code C. Even though the upper bound thus obtained is tight, it is not sufficient

to show an interesting time-space tradeoff for codes. In Chapter 6 we use a completely

different and powerful approach to derive such a tradeoff result.

The results derived in [Ajt99, Ajt98, BSS03] (and in several earlier papers [BRS83,

Oko91, BST98, BJS01]) are based on the notion of an embedded combinatorial rectangle. Let

D be a finite set, and consider a function f : Dn → {0, 1}. Further, let A1 and A2 be

disjoint subsets of [n] = {1, 2, . . . , n} of size m1 and m2, respectively. Then a rectangle

R(A1, A2) embedded in Dn is a subset B ⊆ Dn such that (a) the projection of B on the

set [n]− (A1 ∪ A2) consists of a single vector σ∈Dn−m1−m2 , and (b) for all τ1 ∈ BA1 and

τ2 ∈ BA2 (where BAi is the projection of B on the set of indices in Ai), the concatenated

vector τ1τ2σ belongs to B. The set B is called the body of R, the sets A1, A2 are its feet, and

the sets BA1 , BA2 are its legs. The basic idea in [Ajt99, Ajt98, BSS03, BRS83, BST98, BJS01]

was to show that a branching program of “small” size and length must accept a subset of

inputs that form a “large” embedded rectangle, and then exhibit concrete functions that

accept no large embedded rectangles.

We extend the ideas of [Ajt99,BSS03,SW03] to the case of embedded combinatorial

“rectangles” with many legs. First let us give a precise definition of such rectangles:
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Definition C.1 Let D be a finite set of size q, let n be a positive integer, and let

[n]
de f
= {1, 2, . . . , n}. Then, given L disjoint subsets A1, A2, . . . , AL of [n], an L-legged rect-

angle R(A1, A2, . . . , AL) embedded in Dn is a set B ⊆ Dn, such that:

1. The projection of B on the set [n]−⋃L
j=1 Aj consists of a single vector σ∈Dn−µ(R);

2. If τj ∈ BAj for all j∈ {1, 2, . . . , L}, then the concatenated vector τ1τ2 · · · τLσ belongs

to B,

where BAj denotes the projection of B on Aj, and µ(R)
de f
= ∑L

j=1 |Aj|. The set B is called

the body of R, the vector σ is its spine, the sets BA1 , BA2 , . . . , BAL are its legs, and the sets

A1, A2, . . . , AL are its feet. The ratio α(R) = |B|/qµ(R) is the density of R. The integer

mj(R) = |Aj| is the foot size of the j-th foot. The integers m(R), M(R) are defined by

m(R) = minj∈{1,2,...,L} mj(R) and M(R) = maxj∈{1,2,...,L} mj(R).

The following result is derived by extending the techniques used by Beame, Saks,

Sun, and Vee in [BSS03] to establish large leg-density lower bounds for rectangles with

two legs. Henceforth, all logarithms are base 2.

Lemma C.1 Let p and ζ be real numbers in the open interval (0, 1). Further, let n, r, k, L

be positive integers, such that

L > 2, p 6
1

2Lk
, and n > r >

48Lk2

ζ p2k2 > k > 8

Let D be a finite set of size q, and let B be any q-way deterministic decision branching

program with n input variables on domainD, whose length is at most (k−2)n and whose

size is at most 2S. Then there is a family R of L-legged rectangles embedded in Dn, such

that:

(1) For all R∈R, the body of R is a subset of B−1(1).

(2) The size of the union of all the rectangles inR is at least (1− ζ
2 )|B−1(1)|.

(3) No vector in Dn belongs to more than (2k− 1) rectangles ofR.



154

(4) The foot sizes of all the rectangles R inR satisfy

1
2 np2k2

6 mj(R) 6 min
{

3m(R), 3
2 np2} for j = 1, 2, . . . , L

while their densities are bounded by

α(R) >
2−β(L,k,p,ζ)µ(R)− Sr + log

ζ
4

32k2 · |B
−1(1)|
qn (C.1)

where

β(L, k, p, ζ)
de f
=

120Lkp
ζ

· log
(

eζ

60Lkp2k2+1

)
(C.2)

Sketch of proof: Our proof closely follows the extension of Ajtai’s result for boolean

programs to rectangles with two legs, as given in [BSS03]. The main differences in our

proof are two fold. First, the lower-bounds are derived for the whole rectangle and not

for a single leg, which turns out to be tighter when the number of legs grows with n and

when the acceptance set is of relatively small size. Secondly, the upper bound calculation

of numrects(ρ,J ) is derived in a slightly different manner. For the full proof, see Sec-

tion C.1.

Corollary C.1 Let k be a positive integer and let ζ be a real number in (0, 1), such that

k = o
(√

log n
log log n

)
and ζ > 4/(log n)2. Let D be a finite set of size q, and let B be any

deterministic decision branching program with n input variables on domain D, of length

at most (k−2)n and size at most 2S. Then there is a family R of L-legged rectangles

embedded in Dn that satisfy conditions (1)–(3) of Lemma C.1, such that for all R∈R,

the density of R is lower-bounded by

α(R) > 2−
µ(R)
log n − Sr− 2 log log n · |B

−1(1)|
qn (C.3)

Proof. Set the parameters in Lemma C.1 as follows: L = (log n)3, p = 1
240Lk(log n)4 ,

and r = (log n)15k2
. The corollary then follows immediately from (C.1) and (C.2).
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C.1 Density lower bounds for embedded rectangles with many legs

In this section we extend the techniques used in [BSS03] to derive large leg-

density lower bounds for embedded rectangles with two legs. We will modify the

technically involved proof only in the relevant sections to derive lower-bounds for the

density of embedded rectangles with many legs. The modifications we introduce are

two-fold: (i) our lower bounds are derived for the density of the whole rectangle, and

not for a single leg (ii) the lower-bounds derived are valid for rectangles with many more

than two legs. These modifications are essential to derive some of the tightest possible

lower bounds on the densities.

In addition to the concept of L-legged embedded rectangles, we need the notion

of a decision forest.

Definition C.2 Let D be a finite domain, n, r be integers and λ > 0. An n-variate (r, λ)-

decision forest (or (r, λ)−decision program) F over D is a collection of at most r decision

trees over domain D such that T ∈ F has height at most λn. The decision forest computes

the decision function F(x) =
∧

T∈ F T(x) for x∈Dn. On every input x∈Dn if there exists

a T ∈ F which reads xi for each i∈ [n] then the decision forest is said to be inquisitive.

We will need the following lemma which was proved in [BSS03].

Lemma C.2 Let k, S∈R and n∈N and D be a finite set. Let B be an n-variate decision

branching program over domain D having length at most kn and size at most 2S. Then

for any integer r∈ [kn], the function f computed by B can be expressed as:

f =
u∨

i=1

Φi

where u 6 2Sr, each Φi is an inquisitive
(

r, k+2
r

)
-decision forest, and the sets Φ−1

i (1)

disjointly cover the inputs in f−1(1).

Let L > 2 be an integer and let {F1, F2, . . . , FL} be sub-forests of an
(

r, k
r

)
-

decision forest F. Up to 2Sr such decision forests can be obtained from a length (k− 2)n
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branching program using Lemma C.2. For a parameter p∈ (0, 1
L ], let {Fj}j be chosen by

independently assigning each decision tree T ∈ F to some Fj according to a probability

distribution Ψp defined as follows:

T ∈


Fj with probability p, ∀j∈ [L],

F−⋃L
j=1 Fj with probability 1− Lp.

(C.4)

Given such an L-tuple of sub-forests of F, and an x∈Dn, we can define the following

• Let I ⊆ [n] and let ρ = x|I be a partial input. Then fixed(ρ)
de f
= I and

unfixed(ρ)
de f
= [n] − I. The set of all extensions of the partial input ρ in Dn is

denoted by Dn(ρ)
de f
= {x∈Dn : x|fixed(ρ) = ρ}.

• core(x, Fj) is the set of variable indices in [n] which are read exclusively by some

T ∈ Fj when Fj is presented with input x.

• stem(x, Fj) = x|[n]−core(x,Fj) is the Fj stem of x.

• stems(Fj) =
⋃

x∈ Dn stem(x, Fj)

• stem(x, {Fj}L
j=1) = x|[n]−⋃L

j=1 core(x,Fj)

• stems({Fj}L
j=1) =

⋃
x∈ Dn stem(x, {Fj}L

j=1)

Using the symmetry of the distribution Ψp, let µ(x, p)
de f
= E[|core(x, Fj)|]. Follow-

ing [BSS03] it can be shown that:

Lemma C.3 Let n > r > k and let F be an n-variate inquisitive
(

r, k
r

)
-decision forest.

Let x∈Dn be any input. For any ε∈ (0, 1] and some p∈ (0, 1
L ], if (F1, F2, . . . , FL) is chosen

according to Ψp, then:

(a) µ(x, p) 6 pn.

(b) µ(x, p) > pkn.

(c) For each j∈ [L], Pr
[
|core(x, Fj)| /∈

[
(1− ε)µ(x, p), (1 + ε)µ(x, p)

] ]
6 k2

ε2rpk .
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Proof.

(a) For i∈ [n], let t(i) denote the number of trees that access variable i on input x. Then

E[|core(x, Fj)|] = ∑
i

Pr[i∈ core(x, Fj)] = ∑
i

pt(i) 6 ∑
i

p = pn.

The inequality was because the forest is inquisitive. It can be easily observed that this

upper bound can be lowered to npk for a length kn branching program by ensuring

that each variable is read at least k times. This doubles the length of the program and

pushes down the lower bounds to np2k. So even in this case, the lower bounds for
µ(x,p)

n is the square of the corresponding upper bounds. Therefore we will be content

with the above result for the rest of the proof.

(b) Proof given in [BSS03].

(c) Proof given in [BSS03] assumes ε = 1
2 .

We will classify inputs into embedded rectangles based on the reading patterns

of the decision sub-forests. Let x, y∈Dn. The definitions and properties below will be

used extensively:

• x, y∈ F−1(1) are said to be (F1, F2, . . . , FL) equivalent iff

core(x, Fj) = core(y, Fj), ∀j∈ [L] and stem(x, {Fj}j) = stem(y, {Fj}j).

This induces a partition of F−1(1) into disjoint equivalence classes.

• For x∈ F−1(1), R(x, {Fj}j) denotes the equivalence class containing x.

• R({Fj}j) is defined as the set of all such (F1, F2, . . . , FL) equivalence classes.

• It can be easily shown that R = R(x, {Fj}j) is an L-legged embedded rectangle con-

sisting of a set of inputs x∈ F−1(1) which have common core(x, Fj), ∀j∈ [L] and

stem(x, {Fj}j), denoted conveniently by core(R, Fj), ∀j∈ [L] and stem(R, {Fj}j)

respectively. The embedded rectangle R has core(R, Fj), ∀j∈ [L] as its L-legs

and stem(R, {Fj}j) as its spine. Moreover R({Fj}j) partitions F−1(1) into disjoint

embedded rectangles.
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We are interested in the density of embedded rectangles with many more than

two legs. When applying the density results, one can optimize on the parameter L and

even choose it to grow with n. In order to get the desired results, we proceed in a similar

manner as in [BSS03] modifying the technically involved proof only in the relevant sub

sections. Although the general proof technique is similar, the resulting lower bound is

tighter when L is large. It seems likely that results in this section can be further optimized

by carefully analyzing each step.

For some inquisitive forest F and a p∈ (0, 1
L ] to be fixed later, let us choose an

L-tuple (F1, F2, . . . , FL) of sub-forests of F as in Lemma C.3. For many applications, the

embedded rectangles will be very sparse. Therefore in order to obtain tightest possible

time-space tradeoffs, it is desirable to obtain tight lower-bounds on the density of the

whole rectangle with many legs rather than a bound on density of an individual leg

as obtained in [BSS03]. We will proceed using the techniques introduced in [BSS03]

and obtain a lower bounds on the density α(R) of the L-legged embedded rectangles

R∈R({Fj}j). Note that

Lemma C.4 Let ρ∈ stems({Fj}j). Then

(i) ∀x∈Dn(ρ), stem(x, {Fj}j) = ρ and
⋃

j core(x, Fj) = unfixed(ρ).

(ii) Let R∈R({Fj}j) satisfy R ∩Dn(ρ) 6= ∅.

Then α(R) = |R ∩Dn(ρ)|/Dn(ρ).

(iii) {Dn(ρ) : ρ∈ stems({Fj}j)} is a partition of Dn.

Proof.

(i) Since ρ∈ stems({Fj}j), ∃ input y such that ρ = stem(y, {Fj}j)
de f
= y|[n]−⋃j core(y,Fj).

Therefore fixed(ρ) = [n]−⋃j core(y, Fj).

Now consider x∈Dn(ρ). The rest of the forest F other than our chosen set of L-

sub-forests act on x and y in the same manner. That is, trees in F − {Fj}j read the
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variables corresponding to fixed(ρ). So, [n]−⋃j core(x, Fj) = fixed(ρ). Therefore⋃
j core(x, Fj) = unfixed(ρ) and stem(x, {Fj}j) = ρ.

(ii) Let ρ and R be as given. Also let R have A1, A2, . . . , AL as feet, σ as spine and

Y1, Y2, . . . , YL as its legs. For an input x in the set R ∩ Dn(ρ), let τj = x|Aj . By

definition of spine, σ = x|[n]−∪j Aj
= ρ. Also τj ∈Yj. But R = {τ1τ2 · · · τLσ : τj ∈Yj}.

Therefore, it must be that R ∩ Dn(ρ) = {τ1τ2 · · · τLρ : τj ∈Yj} and |R ∩ Dn(ρ)| =

∏L
j=1 |Yj| = α(R)|D∑j |Aj|| = α(R)|Dn(ρ)|.

(iii) Consider any x∈Dn, then ∃ρ∈ stems({Fj}j) such that x∈Dn(ρ). Also any

x∈Dn(ρ) is a valid string in Dn. So
⋃

ρ∈ stems({Fj}j)D
n(ρ) = Dn. By Section i, if

ρ1, ρ2 ∈ stems({Fj}j), such that ρ1 6= ρ2, then Dn(ρ1) ∩Dn(ρ2) = ∅.

Let λ : [n] → [0, 1] be an arbitrary function and let Q be the set of λ-sparse

rectangles R∈R({Fj}j), with α(R) < λ(∑L
j=1 mj(R)). Let J ⊆ F−1(1), so that we would

like the set of points in J which fall in Q to be quite small in comparison to the total set

of points in J. Therefore we want to upper bound |Q ∩ J| = ∑R∈ Q |R ∩ J|. Defining the

following terms for convenience

numrects(ρ, J)
de f
= |{R∈R({Fj}j) : R ∩ J ∩Dn(ρ) 6= ∅}|

where ρ∈ stems({Fj}L
j=1)

Pm
de f
= {ρ∈ stems({Fj}j) : |unfixed(ρ)| = m} where m∈ [n]

and proceeding, we have

Lemma C.5 Let F be an n-variable inquisitive decision forest on domain D, and let

{Fj}L
j=1be sub-forests of F with J ⊆ F−1(1). Let η ∈ [0, 1], and for each m∈ [n] such that

Pm 6= ∅, if λ : [n]→ [0, 1] satisfies

λ(m) =
η

maxρ∈ Pm numrects(ρ, J)

then λ-sparse rectangles R∈R({Fj}j) together cover at most η|D|n points of J.
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Proof.

η|Dn| = ∑
R∈ Q

|R ∩ J|

= ∑
ρ∈ stems({Fj}j)

∑
R∈ Q

|R ∩ J ∩Dn(ρ)|

6 ∑
ρ∈ stems({Fj}j)

∑
R∈ Q

R∩J∩Dn(ρ) 6=∅

|R ∩Dn(ρ)|

= ∑
ρ∈ stems({Fj}j)

∑
R∈ Q

R∩J∩Dn(ρ) 6=∅

α(R) · |Dn(ρ)|

< ∑
ρ∈ stems({Fj}j)

|{R∈R({Fj}j) : R ∩ J ∩Dn(ρ) 6= ∅}|

· λ(|unfixed(ρ)|) · |Dn(ρ)|

= ∑
ρ∈ stems({Fj}j)

numrects(ρ, J) · λ(|unfixed(ρ)|) · |Dn(ρ)|

6 max
ρ∈ stems({Fj}j)

{numrects(ρ, J) · λ(|unfixed(ρ)|)}

· ∑
ρ∈ stems({Fj}j)

|Dn(ρ)|

= max
ρ∈ stems({Fj}j)

{numrects(ρ, J) · λ(|unfixed(ρ)|)} · |Dn|

= max
m,Pm 6=∅

{
λ(m) ·

(
max

ρ∈ Pm

numrects(ρ, J)
)}
· |Dn|.

In order to obtain an upper bounds on numrects(ρ, J) observe,

Proposition C.1 Let J be a subset of F−1(1). Let {Fj}L
j=1be a fixed L number of sub-

forests of F. For ρ∈ stems({Fj}j), numrects(ρ, J) is equal to the number of L-tuples

(C1, C2, . . . , CL) where Cj ⊆ [n] are such that there is an x∈ J with stem(x, {Fj}j) = ρ

and core(x, Fj) = Cj.

Proof.

For x∈Dn(ρ), stem(x, {Fj}j) = ρ and unfixed(ρ) =
⋃L

j=1 core(x, Fj). We know that if

j′ 6= j then core(x, Fj)∩ core(x, Fj′) = ∅ for any input x. By definition of the equivalence

class of embedded rectangles, for x, y∈Dn(ρ) ∩ J, R(x, {Fj}j) = R(y, {Fj}j) iff the cores

satisfy core(x, Fj) = core(y, Fj), ∀j.
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Similar to the condition in [BSS03],

Proposition C.2 Let C be a collection of subsets such that for any two sets A, B∈C, the

symmetric difference A∆B has size at most d, then |C| 6 ∑w6d (n
w).

Proof. The members of C are subsets of [n]. Any subset of [n] can be represented

using a binary characteristic vector of length n. Therefore the maximum size of C is given

by the total number of binary vectors of weight at most d.

Lemma C.6 For j∈ [L] let dj be an upper bounds to |core(x, Fj)∆core(y, Fj)|, where x, y

∈ stems(
⋃

j′ 6=j Fj′). Then numrects(ρ, J) 6 ∏j ∑w6dj
(n

w) 6 ∏j

(
en
dj

)dj

Proof. Let (C1, C2, . . . , CL) be an L-tuple of collections of subsets of [n], satisfying

Proposition C.1. Let us fix one subset of [n] out of each collection Cj′ 6=j as core(x, Fj′). For

x∈Dn(ρ), define ρj
de f
= x|[n]−⋃j′ 6=j core(x,Fj′ ). Then x∈Dn(ρj), where ρj ∈ stems(

⋃
j′ 6=j Fj′).

Moreover if some subset of [n] in Cj is fixed as core(x, Fj) then for an x∈Dn(ρ),

x|[n]−⋃j core(x,Fj) = ρj|core(x,Fj) = ρ. The conclusion follows upon applying Proposition C.2

with C := Cj and d := dj = |core(x, Fj)∆core(y, Fj)| for each j. The product

of the individual upper bounds for |Cj| then gives us the desired upper bounds on

numrects(ρ, J). The second inequality follows because ∑w6dj
(n

w) 6
(

en
dj

)dj
.

We now need a tight upper bounds for dj = |core(x, Fj)∆core(y, Fj)|, one which

is much smaller in comparison to |core(x, Fj)|. The techniques used to prove lemmas

4.10 and 4.11 of [BSS03] can be used to give:

Lemma C.7 Let n > r > k > 3. Let {Fj}jbe L sub-forests of an n-variable inquisitive

r, k/r-decision forest F. For j∈ [L] let us collect these sub-forests in two sub-forests of F,
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Φ1 := Fj and Φ2 :=
⋃

j′ 6=j Fj′ . We define

vset(x, `) = {i∈ [n] : on input x, i is read in exactly ` trees of F}

Bj(x, `) = core(x, Fj)− vset(x, `)

B′j(x, `) = {i∈ [n] : on input x, i is read in exactly ` trees of Fj,

at least one tree of
⋃
j′ 6=j

Fj′ and

in no trees of F−
⋃
j′

Fj′}

then,

(i) Let ` be a positive integer.

For inputs x, y∈Dn such that stem(x,
⋃

j′ 6=j Fj′) = stem(y,
⋃

j′ 6=j Fj′) we have

core(x, Fj)∆core(y, Fj) ⊆ Bj(x, `) ∪ B′j(y, `) ∪ Bj(y, `) ∪ B′j(x, `)

(ii) Let L > 2 and p1 6 1
2Lk . For every input x, there is a pair of integers `(x) =

`∈ {1, . . . , k} and b(x) = b∈ {2, . . . , 2k}, so that the sub-forests {Fj}L
j=1chosen

according to Ψpb
1

satisfies,

(a) E[|Bj(x, `)|] 6 4p1µ(x, pb
1)

(b) E[|B′j(x, `)|] 6 2kp1µ(x, pb
1)

for every j∈ [L]

An upper bounds for α(R) follows on applying Lemma C.7:

Lemma C.8 Let n > r > k > 8 and let F be an n-variate inquisitive (n, k/r)-decision

forest. Let L > 2 and let p1 6 1
2Lk . Let b∈ {2, . . . , 2k} and let pb = pb

1. Let

I ⊆ Cb
de f
=
⋃k

`=1{x∈ F−1(1) : `(x) := `, b(`) := b}. Let γ, δ > 0, ε∈ (0, 1) and

r > k2

ε2γpk
b
. Then there is an L-tuple of sub-forests {Fj}L

j=1and a subset I′ of I with

|I′| > |I|(1 − 3Lγ) − 2δ|D|n such that for each x∈ I′ the rectangle R = R(x, {Fj}j)
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satisfies:

mj(R) ∈
[
(1− ε)µ(x, pb), (1 + ε)µ(x, pb)

]
, where j∈ [L]

α(R) > δ
k · 2

−β1(k,p1,b,ε,γ)·∑j mj(R),

where β1(k, p1, b, ε, γ) = 5kp1
(1−ε)γ

· log eγ

5kpbk+1
1

Proof. The sub-forests {Fj}L
j=1are selected according to Ψpb . Consider an input

z∈ I and let ` = `(z) as chosen in Lemma C.7. Consider the event

E
de f
=

L⋃
j=1

{
|core(z, Fj)| ∈

[
(1− ε)µ(z, pb), (1 + ε)µ(z, pb)

]}
We have,

(i) Pr[E] > (1− Lγ)

Proof. As an immediate consequence of Lemma C.3 and our choice for r, each event

inside the union happens with a probability of at least (1− γ).

(ii) Pr
[⋃L

j=1

{
|Bj(z, `)| 6 4p1|core(z,Fj)|

(1−ε)γ

} ∣∣∣ E
]

> (1− Lγ)

Proof. By Markoff’s inequality, if x is a non-negative random variable with finite

mean, then for a > 0, Pr[x 6 a] > 1− Ex(x)
a . Therefore,

Pr
[
|Bj(z, `)| 6

4p1|core(z, Fj)|
(1− ε)γ

∣∣∣ E
]

>

(
1−

(
4p1µ(z,pb

1)
)( 4p1 |core(z,Fj)|

(1−ε)γ

)) ∣∣∣
E

> (1− γ)

where the first inequality is due to Lemma C.7 and the last inequality is a conse-

quence of conditioning on events in E.

(iii) Pr
[⋃L

j=1

{
|B′j(z, `)| 6 2kp1|core(z,Fj)|

(1−ε)γ

} ∣∣∣ E
]

> (1− Lγ)

Proof. Similar to section (ii).
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Therefore we can conclude that there is a set of sub-forests {Fj}L
j=1chosen according to

Ψpb , and a subset of inputs I” in F−1(1) of size at least |I|(1− 3Lγ) such that for each

element of I”, each of the above three probability bounds hold.

Consider an arbitrary `∈ [k]. Let I`”
de f
= {x∈ I” : `(x) = `}. For each j∈ [L], and

x, y∈Dn(ρj) ∩ I`” where ρj ∈ stems(
⋃

j′ 6=j) we have by Lemma C.7,

|core(x, Fj)∆core(y, Fj)| =
(4k + 8)p1

(1− ε)γ
|core(x, Fj)| 6

5kp1

(1− ε)γ
|core(x, Fj)|

The inequality was because k > 8. Denote these upper bounds by dj for each j. Because

x∈ I” satisfy events in E by Lemma C.3, we also have

dj >
5kp1

γ
npbk

1

and

∑
j

dj = ∑
j

5kp1

(1− ε)γ
|core(x, Fj)| =

5kp1

(1− ε)γ
|unfixed(ρ)|

Now let ρ∈ stems({Fj}j), and apply Lemma C.6 to get,

numrects(ρ, I`”) 6 ∏
j

(
en
dj

)dj

6 ∏
j

(
eγ

5kpbk+1
1

)dj

= 2β1(k,p1,b,ε,γ)·|unfixed(ρ)|

Now apply Lemma C.5 with η = δ/k and λ(m) = η2−β1(k,p1,b,ε,γ)·m. By the conclusion of

Lemma C.5, for every `∈ [k], ∃I′` ⊆ I`” such that |I′`| > |I`”| −
δ
k |Dn|; and for every x∈ I′`,

the rectangle R = R(x, {Fj}j) has density at least δ
k · 2

−β1(k,p1,b,ε,γ)·∑j mj(R). Finally we set

I′ =
⋃k

`=1 I′`, so that |I′| > ∑k
`=1 |I`”| − δ

k |Dn| = |I”| − δ|Dn| > |I|(1− 3Lγ)− δ|Dn|.

Lemma C.9 Let n > r > k > 8 and let F be an n-variate inquisitive (n, k/r)-decision

forest. Let L > 2 and let p1 6 1
2Lk . Let γ, δ > 0, ε∈ (0, 1) and r > 3Lk2

ε2γ′pk
b
. Then there is a

familyR of L-legged embedded rectangles each contained in F−1(1), and satisfying:

(1)
⋃

R∈R R covers at least |F−1(1)|(1− γ′)− δ′|Dn| of the inputs in F−1(1).
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(2) R can be partitioned into (2k − 1) sub-collections {Rb : b∈ 2, . . . , 2k}. Each Rb

consists of disjoint rectangles R∈Rb with foot sizes and densities satisfying:

(1− ε)npbk
1 6 m(R) 6 mj(R) 6 M(R)

6 min
{( (1+ε)

(1−ε)

)
m(R), (1 + ε)npb

1
}

, ∀ j∈ [L]

and,

α(R) > γ′δ′

2k2 · 2−β2(L,k,p1,b,ε,γ′)·∑j mj(R) ,

where β2(L, k, p1, b, ε, γ′) = 15Lkp1
(1−ε)γ′ · log eγ′

15Lkpbk+1
1

Proof. Apply Lemma C.8 for each b∈ {2, . . . , 2k}, with I = Cb, δ = δ′

2k and γ = γ′

3L .

For each b, let {Fj}b
j be the corresponding set of L sub-forests and let Jb be the input set

I′ covered by the rectangles of desired density and feet size obtained as a result. Let this

set of rectangles be denoted by Rb = {R(x, {Fj}b
j ) : x∈ I′b}. Now consider the union of

these inputs J =
⋃2k

b=2 and rectangles R =
⋃2k

b=2Rb. We know that
⋃

b Cb = F−1(1).

Therefore, |J | = ∑b |Jb| > ∑b

(
|Cb|(1− γ′)− δ′

2k |Dn|
)

= |F−1(1)|(1− γ′)− δ′|Dn|. Let

the minimum foot size of some rectangle R∈R be m(R) and let the maximum foot size

be M(R). Then applying Lemma C.8, M(R) 6 (1+ε)
(1−ε) m(R). The other bounds on mj(R)

are a simple consequence of Lemma C.8 and Lemma C.3.

Lemma C.10 Let p∈ (0, 1), ζ ∈ (0, 1) be real parameters and n, r, k, L be integers such that

(i) r > L > 2

(ii) p 6 1
2Lk

(iii) n > r > 48Lk2

ζ p2k2 > k > 8

Let B be a |D|-way decision branching program of length at most (k − 2)n and size 2S.

Then there is a familyR of L-legged embedded rectangles satisfying:

(1) R∈R are such that R ⊆ B−1(1)



166

(2) |⋃R∈R R| > (1− ζ
2 ) · |B−1(1)|

(3) No input belongs to more than (2k− 1) rectangles ofR

(4) The foot sizes and densities of each rectangle R∈R satisfy:

1
2 · np2k2

6 m(R) 6 mj(R) 6 M(R) 6 min
{

3m(R), 3
2 · np2}, ∀ j∈ [L],

and

α(R) > 1
32k2 · 2−β(L,k,p,ζ)·∑j mj(R)−Sr+log

ζ
4 · |B

−1(1)|
|Dn| ,

where β(L, k, p, ζ) = 120Lkp
ζ · log eζ

60Lkp2k2+1

Proof. By Lemma C.2, the decision branching program B can be decomposed into a

disjunction of at most 2Sr inquisitive (r, k/r)-decision forests. Therefore let B =
∨

F∈ S F

so that {F−1(1) : F∈S} partitions B−1(1). Now simply apply Lemma C.9 for each F∈S

with p1 = p, ε = 1/2, γ′ = ζ/4 and δ′ = ζ
4 ·
|B−1(1)|
2Sr |Dn| , to obtain a family of rectangles RF

with large enough feet sizes and densities.

Let R =
⋃

F∈ S RF. Since R∈RF are such that R ⊆ F−1(1) ⊆ B−1(1), the first

claim is verified. Furthermore, no input in F−1(1) is covered by more than (2k − 1)

rectangles in RF, each corresponding to a particular value of b in the earlier lemma. But

F−1(1) is disjoint for distinct F∈S , verifying third claim. Each of the RF covers at least

(1− ζ
4 ) · |F−1(1)| − ζ

4 · 2−Sr|B−1(1)|inputs in F−1(1). Therefore the collection of at most

2Sr decision forests would cover at least a (1− ζ
2 ) fraction of B−1(1), thus verifying the

second claim.

The feet sizes of the rectangles R∈RF satisfy the conditions of Lemma C.9, with

2 6 b 6 2k. Using the upper and lower bounds on b, we get the extreme bounds on

mj(R). Similarly, β2(L, k, p, b, ε, γ′) 6 β(L, k, p, ζ)
de f
= 120Lkp

ζ · log eζ

60Lkp2k2+1
.

Corollary C.2 Let k be a positive integer and let ζ be a real number in (0, 1), such that

k = o
(√

log n
log log n

)
and ζ > 4/(log n)2. Let D be a finite set of size q, and let B be any



167

deterministic decision branching program with n input variables on domain D, of length

at most (k−2)n and size at most 2S. Then there is a family R of L-legged rectangles

embedded in Dn that satisfy conditions (1)–(3) of Lemma C.10, such that for all R∈R,

the density of R is lower-bounded by

α(R) > 2−
µ(R)
log n − Sr− 2 log log n · |B

−1(1)|
qn

Proof. Let k = o
( √

log n
log log n

)
and |D| = q be as hypothesized. Set L = (log n)3,

p = 1
240Lk(log n)4 , r = (log n)15k2

and 1 > ζ > 4
(log n)2 in Lemma C.10.

Then it may be verified that,

(i) n > r > 48Lk2

ζ p2k2 > L > 2, Lp 6 1, p 6 1
2Lk and 1

2 · np2k2
> 1;

(ii) eζ

60Lkp2k2+1
< n ⇒ β(L, k, p, ζ) 6 120Lkp log n

ζ 6 1
2 log n

n→∞−−−→ 0

(iii) log ζ
4 > −2 log log n and finally,

(iv) 32k2 6 Lp2k2
n

2 log n 6
∑j mj(R)

2 log n

⇒ α(R) > 2−
1

log n ·µ(R)−Sr−2 log log n · |B
−1(1)|
qn .

C.2 Multi-leg Rectangle Density Upper Bounds for Branching Programs

Computing Characteristic Functions Codes

In this section we derive a relatively simple and very tight upper bound on the

multi-leg embedded rectangle density in decision branching programs computing the

membership function of a code. In deriving this bound will use the well known mean

inequality:

Proposition C.3 Given a finite set of N non-negative real numbers, {xi}N
i=1, we have

max
i
{xi}i >

∑i xi

N
>

(
∏

i
xi

)1/N

>
N

∑i
1
xi

> min
i
{xi}i
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We have the following upper bound on the density of rectangles for the case of

codes with sufficiently large minimum distance:

Lemma C.11 Let D be a finite set and let B be a |D|-way decision branching program

computing the characteristic function of an (n, k, d) error correcting code C on alphabet

D. Let L > 2 be an integer and let R be an L-legged embedded rectangle contained in

B−1(1) with foot sizes denoted by mj(R), j∈ [L]. Let the maximum feet size be M(R)

and let d > M(R). Then the embedded rectangle R is either empty or contains a single

member from B−1(1) and its density satisfies α(R) 6 |D|−∑j mj(R).

Proof. Let R = (B, A1, A2, . . . , AL), where B is the body of the rectangle and Aj

are its feet. BAj are the legs of R. An input x∈B−1(1) which is a member of R can be

represented as x = τ1τ2 . . . τLσ, where τj ∈ BAj and σ is the spine of R. By hypothesis

d > mj(R) for each j∈ [L]. Consider any two inputs x, y in R. Then x and y differ in

their restriction on at least two different Aj. Thus R induces the definition of a length

L code CI with |B| vectors and minimum distance at least 2. Let j′ ∈ [L] be such that

|BAj′
| > |BAj |, ∀j 6= j′. That is, j′ is the thickest leg. Puncture the induced code CI at j′,

giving a new code with the same number of codewords and with minimum distance at

least 1, so that the codewords are all distinct. But,

|B| 6 ∏
j 6=j′
|BAj | =

∏j |BAj |
|BAj′
|

de f
=

|B|
maxj |BAj |

6
|B|

|B|
1
L

The last inequality is a consequence of Proposition C.3. Therefore |B| ∈ {0, 1}. The upper

bound on density α(R) follows immediately.

C.3 Inadequacy of the Leg Density Bounds for Characteristic Function Trade-

offs

Using the results from Corollary C.2 and Lemma C.11 we obtain the following

tradeoff:

2−
µ(R)
log n − Sr− 2 log log n · |B

−1(1)|
qn 6 α(R) 6 q−µ(R)
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For a constant rate code, the acceptance ratio decreases exponentially with length

n. Therefore meaningful tradeoffs are not obtained using the leg-density bounds for

the characteristic function of codes derived in this appendix. In Chapter 6 we use a

completely different approach to derive quadratic time-space tradeoffs for a decision

function which is closely related to the characteristic function.
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Some Bounds Concerning Hamming Spheres

D.1 Hamming Sphere Volume Bound

Lemma D.1 Let q > 2 be an integer. Let 0 6 λ 6 1− 1
q . Then,

Vq(n, bλnc) de f
=
bλnc

∑
i=0

(
n
i

)
(q− 1)i 6 qnHq(λ) (D.1)

where Hq(·) is the q-ary entropy function.

Proof. For simplicity let us assume that λn is an integer.

1 = (λ + (1− λ))n (D.2)

>
λn

∑
i=0

(
n
i

)(
λ

q− 1

)i

(1− λ)n−i(q− 1)i (D.3)

>
λn

∑
i=0

(
n
i

)
(q− 1)i

(
λ

(q− 1)(1− λ)

)λn

(1− λ)n (D.4)

= q−nHq(λ)
λn

∑
i=0

(
n
i

)
(q− 1)i (D.5)

where the second inequality is because 0 6 λ 6 1− 1
q .

D.2 Acceptance Ratio Bound

The acceptance ratio is defined as αq(k, γ)
de f
=
| f−1

G,γ(1)|
qn+k . It is given by αq(k, γ) =

q−k ∑b(1−γ)kc
i=0 (k

i)(q− 1)i.
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Lemma D.2 Let k be a positive integer multiple of q and let 0 < γ 6 1
q . Then αq(k, γ) >

2
3
√

k
.

Proof. As k is an integer multiple of q, (1− 1
q )k is an integer. Since γ 6 1

q ,

b(1−γ)kc

∑
i=0

(
k
i

)
(q− 1)i >

(
k

(1− 1
q )k

)
(q− 1)

(1− 1
q )k

(D.6)

From [Rob55], we know that,

√
2πn nn e−n+ 1

12n+1 6 n! 6
√

2πn nn e−n+ 1
12n

Therefore when 0 < λk < k is a positive integer,

(
k

λk

)
(q− 1)λk >

1√
2πλ(1− λ)k

(q− 1)λk

λλk(1− λ)(1−λ)k
e
− 1

12λ(1−λ)k (D.7)

>
1√

2πλ(1− λ)k
q−kλ logq λ−k(1−λ) logq (1−λ)−kλ logq (q−1)e−

1
6 (D.8)

>
1

3
√

λ(1− λ)k
qkHq(λ) (D.9)

>
2

3
√

k
qkHq(λ) (D.10)

where (D.8) is got observing that the smallest of λk and (1− λ)k is a positive integer at

least equal to 1 and that the larger of λ and (1− λ) is at least 1
2 . (D.9) is the result of

the observation that e−
1
6√

2π
> 1

3 and the definition of Hq(·). Finally, (D.10) is obtained by

observing that 1√
λ(1−λ)

> 2.

Using the above result (D.10) with λ = (1− 1
q ) in (D.6) we get,

αq(k, γ) >
2

3
√

k
q

kHq(1− 1
q )

q−k

Now observe that Hq(1− 1
q ) = 1 and the claim follows.
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Multiple Hypothesis Testing

E.1 A Binary Hypothesis Testing Problem

Example E.1 Consider the following binary hypothesis testing problem:

h1 : y = n1

h2 : y = n2

where n1 is distributed with a pdf given by

P(y|h1) = fn1(z) = 2
3 (cos (t/2))2e−|t|

having unit variance and n2 has a Gaussian pdf given by

P(y|h2) = fn2(z) =
√

γ

π
e−γz2

and the ápriori probabilities are Pr(hi) = 1
2 .

From Figure E.1, we can see that the optimum decision region for this problem is very

difficult to compute in general. As a result the exact Bayes risk is also difficult to obtain,

and tight bounds on Pe are of interest. There are no tightness guarantees for either the

Bhattacharyaa or Chernoff bound, while the harmonic bound of (8.4) is very tight as can

be observed in Figure E.2.
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Figure E.1 The áposteriori probabilities corresponding to the two hypothesis when γ =
1
8 . The decision region boundaries are marked by the crossings of the two
plots.
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Figure E.2 Bounds on Bayes risk in the two hypothesis testing problem.



174

E.2 Proof of Lemma 8.1

(i) Our proof is by mathematical induction.

(1) M = 1: a1 = 1 is the only possibility, and claim is obvious.

(2) M = m + 1: Let us hypothesize that the claim is true for M = m. We now prove

the M = (m + 1) case. Let us use the notation, µ`(a) , max`
i=1 {ai}.

µm+1(a) = max {µm(a), am+1}

Consider the normalized sequence, a′i = ai
∑m

i=1 ai
= ai

1−am+1
. We can safely take

am+1 6= 1, for otherwise, the claim is trivially true. By induction hypothesis,

µm(a′) 6

√
m

∑
i=1

(a′i)2

This gives us µm(a) 6
√

∑m
i=1 a2

i . So we are done if we prove that,

max

{√
m

∑
i=1

a2
i , am+1

}
6

√√√√m+1

∑
i=1

a2
i

But we know that x, y 6 max {x, y} 6
√

x2 + y2 by considering each case

separately.

(ii) Clearly, maxi {ai} = maxi {ai} ·∑i ai > ∑i a2
i .

(iii) We need to only observe that 2(1− x) > 1− x2.

E.3 An Upper Bound on Mutual Information and Capacity

By observing the bound of (8.22), we see that the bound is trivial whenever R 6 ρ.

However, when R > ρ, Pe → 1 exponentially. On the other hand, for the ensemble of

codes we considered, the Channel Coding Theorem says that the ensemble probability of

error can be made arbitrarily small, using even the suboptimal jointly typical decoding
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algorithm at the decoder whenever rate R is below the mutual information between

channel input and output. Therefore we have proved the following upper bound on

mutual information (and hence the capacity) of a memoryless channel:

I(X; Y) 6 ρpx(.) (E.1)

C = max
px(.)
{I(X; Y)} 6 max

px(.)

{
ρpx(.)

}
(E.2)

where ρ is given by either equation (8.19) or equation (8.21).

E.3.1 Discussion and Some Examples

The practical usefulness for the derived upper bound depends on two factors,

namely the tightness of the bound and the ease of computation. In the derivation of the

upper-bound for mutual information, the only loss in tightness is in the use of Jensen’s

inequality during the ensemble averaging process. The function ρ has to be maximized

over all possible input distributions px(.) to obtain the upper bound. The required

optimization can make the computation of the bound difficult. However, the expression

is considerably simpler than the expression for mutual information and may be easier to

deal with for some particular channel.

Below, results are presented for some very common channels. The tightness of

the upper bound on capacity is found to be acceptable.

E.3.1.1 Binary Symmetric Channels

For a BSC with crossover probability p, using the capacity achieving input

distribution we get, ρ = 1 + log2

(
p2 + (1− p)2) and the capacity is well known to be

C = 1− H2(p), where H2(.) is the binary entropy function. See Figure E.3.
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Figure E.3 BSC with crossover probability of p.
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Figure E.5 Binary input, AWGN, soft output channel. The binary inputs are (±1 ) and
AWGN has the distribution, N (0, N0

2 )

E.3.1.2 Binary Erasure Channels

For a BEC with probability of erasure ε, again using the capacity achieving input

distribution we get ρ = 2 log2

(√
2− (

√
2− 1)ε

)
whereas, the capacity is given by C =

1− ε. Both are shown in Figure E.4.

E.3.1.3 Binary Input – zero-mean AWGN – Soft Output Channel

For a memoryless channel with binary input (±1 ) and soft output and affected

by additive white Gaussian noise of zero-mean, using the capacity achieving input

distribution of [ 1
2 , 1

2 ] probability, we get,

ρ = − log2 4πσ2 + 2 log2

 ∞∫
y=−∞

√
e−

(y−1)2

σ2 + e−
(y+1)2

σ2 dy
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and the capacity is given by:

C = −1
2

log2 (2πeσ2)−
∞∫

y=−∞

 e−
(y−1)2

2σ2

2
√

2πσ2
+

e−
(y+1)2

2σ2

2
√

2πσ2

 · log2

 e−
(y−1)2

2σ2

2
√

2πσ2
+

e−
(y+1)2

2σ2

2
√

2πσ2

 dy

where, the noise is distributed as N (0, σ2) with variance σ2 = N0
2 . In this case, the

numerical integration required for computing the capacity is unstable at very low Eb/N0,

due to the presence of the log(·) function in the integrand. However, the upper bound

integration remains stable up to a much lower Eb/N0. See Figure E.5.

The definition of capacity or mutual information was not needed in the derivation

of the capacity bound in this section because of the use of the random coding argument.

It was pointed out by Prof. Shlomo Shamai (Shitz) that it is possible to derive the above

bound using only the functional definition of mutual information (8.1) and Jensen’s

inequality. For most practical applications, a tightness guarantee is also desirable.

E.4 Acknowledgments

The authors wish to thank Prof. Shlomo Shamai (Shitz) for pointing out a simple

alternate derivation of the capacity bound.



B I B L I O G R A P H Y

[Abr91] K. ABRAHAMSON. “Time-space tradeoffs for algebraic problems on general
sequential machines,” Journal of Computer and System Sciences, 43:269–289,
1991.

[Ajt98] M. AJTAI. “A nonlinear time lower bound for boolean branching programs,”
In Proceedings of the 40-th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 60–70, New York, NY, October 1998.

[Ajt99] M. AJTAI. “Determinism versus non-determinism for linear time RAMs with
memory restrictions,” In Proceedings of the 31-st Annual ACM Symposium on
Theory of Computing (STOC), pp. 632–641, Atlanta, GA, May 1999.

[AV01] D. AGRAWAL AND A. VARDY. “The turbo decoding algorithm and its phase
trajectories,” IEEE Transactions on Information Theory, IT-47:699–722, February
2001.

[BB61] E. F. BECKENBACH AND R. BELLMAN. Inequalities. Springer–Verlag, Berlin,
1961.

[BC82] A. BORODIN AND S. A. COOK. “A time-space tradeoff for sorting on a general
sequential model of computation,” SIAM Journal on Computing, 11:287–297,
1982.

[BCJ74] L. R. BAHL, J. COCKE, F. JELINEK, AND J. RAVIV. “Optimal Decoding
of Linear Codes for minimizing symbol error rate,” IEEE Transactions on
Information Theory, IT-20:284–287, March 1974.

[BGT93] C. BERROU, A. GLAVIEUX, AND P. THITIMAJSHIMA. “Near Shannon limit
error-correcting coding and decoding: Turbo codes,” In Proceedings of the
IEEE International Conference on Communications (ICC), pp. 1064–1070, Geneva,
Switzerland, May 1993.

[BJS01] P. BEAME, T. S. JAYRAM, AND M. SAKS. “Time-space tradeoffs for branching
programs,” Journal of Computer and System Sciences, 63:542–572, 2001.

[BM05] L. M. J. BAZZI AND S. K. MITTER. “Encoding complexity versus minimum
distance,” IEEE Transactions on Information Theory, IT-51:2103–2112, June 2005.

179



180

[BMT78] E. R. BERLEKAMP, R. J. MCELIECE, AND H. VAN TILBORG. “On the inherent
intractability of certain coding problems,” IEEE Transactions on Information
Theory, IT-24:384–386, 1978.
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