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Professor Mohammad A. Al Faruque
Professor Pai Chou

2017



c© 2017 Zhongqi Cheng



DEDICATION

To,
My parents

ii



TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vi

ACKNOWLEDGMENTS vii

ABSTRACT OF THE THESIS viii

1 Introduction 1
1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Bitcoin miner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Proof of work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 SHA-256 algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 SystemC simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.1 Discrete event simulation (DES) . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Parallel discrete event simulation (PDES) . . . . . . . . . . . . . . . 7
1.3.3 Out-of-order parallel discrete event simulation (OoO PDES) . . . . . 8

1.4 RISC compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Single instruction, multiple data (SIMD) . . . . . . . . . . . . . . . . . . . . 10

1.5.1 Advantages of SIMD . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5.2 Limitations for SIMD . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Xeon PhiTM many-core coprocessor . . . . . . . . . . . . . . . . . . . . . . . 12
1.7 Goals and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Sequential Bitcoin Miner Model 15
2.1 Solo Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Design of dispatcher for sequential Bitcoin miner . . . . . . . . . . . . . . . . 16
2.3 Design of scanner for sequential Bitcoin miner . . . . . . . . . . . . . . . . . 17
2.4 Test bench and benchmark configuration . . . . . . . . . . . . . . . . . . . . 17

3 Thread-Level Parallel Bitcoin Miner Model 19
3.1 Parallel Bitcoin miner design . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Communication via sc fifo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Design of dispatcher for parallel Bitcoin miner . . . . . . . . . . . . . . . . . 21
3.4 Design of scanner for parallel Bitcoin miner . . . . . . . . . . . . . . . . . . 22

iii



3.5 Design of synchronizer for parallel Bitcoin miner . . . . . . . . . . . . . . . . 24
3.6 Design of receiver for parallel Bitcoin miner . . . . . . . . . . . . . . . . . . 24
3.7 Shortcomings of current model . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.8 Optimized parallel Bitcoin miner . . . . . . . . . . . . . . . . . . . . . . . . 26

3.8.1 Main controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.8.2 User-defined channel for synchronization . . . . . . . . . . . . . . . . 27
3.8.3 Optimized scanner . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Data-level parallel Bitcoin miner model 31
4.1 Basic idea for applying DLP . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Intrinsics and SIMD pragma . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Design of data-level parallel scanner . . . . . . . . . . . . . . . . . . . . . . . 35

5 Evaluation 38
5.1 Benchmark setup and reproducibility . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Processor specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Experiments on 4-core host . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4 Experiments on 16-core host . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.5 Experiments on 60-core host . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Conclusion 46

Bibliography 48

iv



LIST OF FIGURES

Page

1.1 Flow graph for proof of work . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Flow graph for SHA-256 algorithm [6] . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Discrete event simulation algorithm [20] . . . . . . . . . . . . . . . . . . . . 6
1.4 Parallel discrete event simulation algorithm [20] . . . . . . . . . . . . . . . . 7
1.5 Out-of-order parallel discrete event simulation algorithm [19] . . . . . . . . . 9
1.6 RISC compiler and simulator for OoO PDES of SystemC [25] . . . . . . . . 9
1.7 Architectural overview of an Intel R© Xeon PhiTM core [29] . . . . . . . . . . 13

2.1 Block diagram for solo Bitcoin miner . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Flow graph for reference dispatcher block . . . . . . . . . . . . . . . . . . . . 16
2.3 Flow graph for reference scanner block . . . . . . . . . . . . . . . . . . . . . 17

3.1 Parallel Bitcoin miner model with two scanners . . . . . . . . . . . . . . . . 20
3.2 Dispatcher for parallel Bitcoin miner . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Illustration of parallel scanning . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Scanner for parallel Bitcoin miner . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Synchronizer for parallel Bitcoin miner . . . . . . . . . . . . . . . . . . . . . 24
3.6 Optimized Parallel Bitcoin miner with two scanners . . . . . . . . . . . . . . 26
3.7 Optimized main controller for parallel Bitcoin miner . . . . . . . . . . . . . . 27
3.8 Optimized scanner for parallel Bitcoin miner . . . . . . . . . . . . . . . . . . 30

4.1 Comparison between scalar and SIMD scanners . . . . . . . . . . . . . . . . 32

5.1 Speedup on 4-core host with 4 SIMD lanes . . . . . . . . . . . . . . . . . . . 42
5.2 Speedup on 16-core host with 4 SIMD lanes . . . . . . . . . . . . . . . . . . 43
5.3 Speedup on 60-core host with 16 SIMD lanes . . . . . . . . . . . . . . . . . . 45

v



LIST OF TABLES

Page

2.1 Configuration of the Bitcoin miner . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Test case results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.1 Benchmark setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Processor specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Results on 4-core host with 4 SIMD lanes: runtime(secs)/speedup . . . . . . 41
5.4 Results on 16-core host with 4 SIMD lanes: runtime(secs)/speedup . . . . . 43
5.5 Results on 60-core host with 16 SIMD lanes: runtime(secs)/speedup . . . . . 44

vi



ACKNOWLEDGMENTS

I would first like to express my gratitude to my thesis advisor Professor Rainer Dömer. This
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ABSTRACT OF THE THESIS

Design and Evaluation of a Bitcoin Miner SystemC Model with Thread and Data-Level
Parallelism

By

Zhongqi Cheng

MASTER OF SCIENCE in Electrical and Computer Engineering

University of California, Irvine, 2017

Professor Rainer Dömer, Chair

SystemC based Electronic System Level (ESL) design is one of the most efficient approaches

for modeling, simulating, and validating of embedded system models. However, the rapid

growing design complexity has become a big obstacle and dramatically increased the time

required for simulation. This thesis focuses on exploiting different level of parallelism in-

cluding data and thread-level parallelism to accelerate the simulation of SystemC based ESL

design.

Bitcoin miner is chosen as a benchmark because of its high potential for parallel execution

and computational complexity. The experiments are performed on two multi-core proces-

sors and one many-core Intel R© Xeon PhiTM Coprocessor. Our results show that with the

combination of data and thread-level parallelism, the peak simulation speed improves by

over 11x on a 4-core host, 50x on a 16-core host, and 510x on a 60-core host respectively.

The results confirm the efficiency of combining data and thread-level parallelism for higher

SystemC simulation speed, and can serve as a benchmark for future optimization of system

level design and modeling.
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Chapter 1

Introduction

SystemC [36] is a widely used modeling language for Electronic System Level (ESL) design

and also provides a simulation framework for validation and verification [19]. With the rapid

growing complexity of embedded systems, a tremendous challenge is imposed on the simu-

lation time, which is a crucial factor affecting the time-to-market and thus the commercial

success. Various studies have been proposed to accelerate the SystemC simulator, and par-

allelization is often the most common approach.

With the development of computer architecture, the parallelism mainly takes three forms

[23], namely instruction-level parallelism (ILP), data-level parallelism (DLP) and thread-

level parallelism (TLP). ILP is implicit. It is exploited automatically by the compiler and

processor, without the interaction or awareness of the software developer. In contrast, DLP

and TLP are explicit. The programmers are required to write parallel code and pragmas

manually. In the SystemC based ESL design, TLP is achieved by the simulator, specifically,

the parallel discrete event simulator. It can issue and run multiple simulation threads in

parallel. On the other hand, exploiting DLP for faster SystemC simulation is a novel idea.

It is first proposed in 2017 [34].

In this paper, we exploit different level of parallelism, including TLP, DLP and the combina-
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tion of both to accelerate SystemC simulation. ILP is not considered in our thesis because

it is invisible to the programmers and automatically applied at the hardware level. Bitcoin

miner is used as a case study due to its high potential for parallel execution.

1.1 Related work

Various approaches have been proposed to speedup the simulation of SystemC models. Par-

allel discrete event simulation (PDES) is well studied in [24] and [21]. It is a very big step

from the traditional discrete event simulation [22], where only one simulation thread can run

at the same time. However, the absolute temporal barrier is still an obstacle towards highly

parallel simulation.

Distributed parallel simulation [40][18] is an extension from the PDES. SystemC models

are broken into small executable units and distributed to different host machines to run in

parallel. This still suffers from the previously mentioned temporal barrier, and the network

speed is another bottleneck limiting the performance.

Time-decoupling [15] is an appealing approach for fast SystemC simulation. With parts of

the model executing in an unsynchronized way, simulation gets much faster. However, this

technique cannot guarantee an accurate simulation result. In other words, it is a trade-off

between accuracy and simulation speed. [39] parallelizes the temporal decoupling approach,

but some human efforts are required to manually partition and instrument the model.

Out-of-order parallel discrete event simulation (OoO PDES) [19] localizes the simulation

timestamp to each individual thread, and handles event deliveries and data conflicts care-

fully with the use of segment graph infrastructure. This approach achieves a 100% accurate

simulation result. However, pointers cannot be effectively analyzed for data conflicts.

SystemC simulations on specialized hardwares are also studied. [35] presented a FPGA

board based SystemC simulation approach, and [32] proposed a multi-threading SystemC
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simulation on GPU. Such approaches all faces the difficulty of model partitioning to fit the

heterogeneous simulator.

In contrast to these approaches, we exploit data-level parallelism in the SystemC model to

speedup the simulation without lose of any accuracy.

1.2 Bitcoin miner

Bitcoin is a new peer-to-peer digital asset and a decentralized payment system introduced

by Satoshi Nakamoto in 2009 [31]. Without a third party, the transactions of Bitcoin are

verified by the network nodes running the Bitcoin software, and are recorded into a public

ledger, which serves to avoid the double-spending problem. The ledger is made up of Bitcoin

blocks, where each Bitcoin block contains the validated transactions. Formally, the ledger

is called block chain. The maintenance of the block chain is also performed by the network

nodes.

1.2.1 Proof of work

To prevent malicious nodes from modifying the past blocks in the block chain, Bitcoin system

requires each node to prove that it has invested a significant amount of work in its creation

of the candidate Bitcoin block. This behavior is called proof of work. Once a new block is

accepted by the Bitcoin network and is appended to the block chain, new Bitcoins will be

created and paid as a reward together with some transaction fees to the node which found

the block.

The proof of work in the Bitcoin system is implemented with a cryptographic hash algorithm.

Each computation node is required to find a number called nonce, such that when the block
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header (the compression of the whole block content) is hashed using the SHA-256 algorithm

along with the nonce, the result is numerically smaller than the network’s difficulty target.

The difficulty target is a 256-bit value shared in the global network. Figure 1.1 demonstrates

the workflow for proof of work of an individual node.

Figure 1.1: Flow graph for proof of work

1.2.2 SHA-256 algorithm

SHA-256 [6] is a member of the SHA-2 family, which is a set of cryptographic hash functions

designed by the National Security Agency (NSA). The SHA-256 function computes with

32-bit words, and has a digest size of 256 bits. Considering its collision-resistant properties,

such function are often used is digital signatures and password protection [11], and its com-

putational complexity fits well the demands of proof of work for the Bitcoin system.

The SHA-256 algorithm is briefly described as follows. It first performs the preprocessing,

which pads the input message into a new message M with the length of a multiple of 512

bits, then parses M into N 512 bit blocks. The SHA-256 algorithm consists mainly of a loop,

as shown in Figure 1.2. In each step, the 8 intermediate values are updated, and after 64

iterations, a result is generated by cascading them together. Details of the whole algorithm

4



can be found in [6].

Figure 1.2: Flow graph for SHA-256 algorithm [6]

1.3 SystemC simulation

SystemC [36] is an Electronic System-Level (ESL) Design language and simulation frame-

work which is widely used to facilitate the modeling and verification process in hardware

and system design at the abstract specification level.

In this section, three popular simulation approaches are presented, namely discrete event

simulation (DES), parallel discrete event simulation (PDES) and out-of-order parallel dis-

crete event simulation (OoO PDES).

1.3.1 Discrete event simulation (DES)

Discrete event simulation [22] is the inherent simulation approach for the SystemC language

[16]. It utilizes a central scheduler to manage multiple concurrent threads, which results in

temporal barriers (namely time and delta cycle) in the SystemC simulation [20]. According

to the cooperative multitasking semantics of the SystemC standard IEEE 1666-2011 [16],
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most SystemC simulator implementations have only one thread active at the same time and

thus cannot utilize the parallel computing resources available on multi-core (or many-core)

processor hosts. This significantly limits the execution speed of SystemC simulation.

Figure 1.3 shows the algorithm for the traditional discrete event simulator [20]. The simula-

tion is driven by events and time advances. At any time, the simulator runs a single thread

from the ready queue. Once the ready queue is empty, the simulator walks through the wait

queue to move the threads that should be waken up to the ready queue. If the ready queue

is still empty after event delivery, time will be advanced and corresponding threads in the

waitfor queue are moved to the ready queue. If the ready queue is still empty, then the

simulation reaches the end.

Figure 1.3: Discrete event simulation algorithm [20]
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1.3.2 Parallel discrete event simulation (PDES)

In order to provide faster simulation and due to the inexpensive availability of parallel pro-

cessing on todays multi-core (and many-core) processors, parallel discrete event simulation

(PDES) has recently gained again significant attentions [24][21]. The PDES simulator is-

sues multiple threads (i.e. SC METHOD, SC THREAD and SC CTHREAD) at the same

time and dispatches them onto the available cores in parallel. In turn, the simulation speed

increases significantly. The scheduler in the parallel simulator works the same way as the

sequential simulator with one exception. The main difference is that it picks multiple threads

from the ready queue in each cycle, and runs them in parallel. The algorithm is shown in

Figure 1.4.

Figure 1.4: Parallel discrete event simulation algorithm [20]
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1.3.3 Out-of-order parallel discrete event simulation (OoO PDES)

In the regular synchronous PDES, time advance happens globally. That is, earlier completed

threads have to wait until all other running threads reach the simulation cycle barrier, even

if they do not have any conflicts with each other in the future. The strict total order of time

imposed by the synchronous PDES is still a limit to high performance parallel simulation. To

solve this problem, out-of-order parallel discrete event simulation (OoO PDES) is proposed

[19].

In the OoO PDES, the simulation time is local to individual threads and event delivery is

carefully handled. With the partial order of time, the system model can be simulated without

loss of accuracy and increases the utilization of the parallel computation infrastructure.

Figure 1.5 depicts the algorithm of OoO PEDS. The RISC simulator [33] used in this work

implements OoO PDES as its scheduling algorithm.

1.4 RISC compiler

The Recoding Infrastructure for SystemC (RISC) [33] is essential to realize the OoO PDES

approach. Figure 1.6 shows the design flow using the RISC compiler and simulator. As

shown in this figure, the input SystemC model file is sent to the RISC compiler, and the

RISC compiler generates an instrumented intermediate model. Then this model is linked

against the parallel RISC SystemC library by the target compiler (a regular C++ compiler)

to produce the final executable file [25].
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Figure 1.5: Out-of-order parallel discrete event simulation algorithm [19]

Figure 1.6: RISC compiler and simulator for OoO PDES of SystemC [25]
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1.5 Single instruction, multiple data (SIMD)

Single Instruction, Multiple Data (SIMD) is a parallel execution model that performs the

same instructions over a vector of input data points simultaneously, whereas traditional

scalar operations only take a scalar value and yield a scalar result [28]. The most important

feature of SIMD is that it exploits data level parallelism, but not concurrency, meaning that

the computations are parallel but only one instruction is given at the same time. Thus,

for all the input data points, the operations performed on them are exactly the same. For

instance, if the SIMD system works by loading four data points at a time, the same vector

operation will be applied to all the four values at once. Nowadays, most modern CPUs

introduce special instruction sets to support the SIMD feature to improve the performance

of computations. Common examples of such instruction sets include [28]

• Intel MMX (64 bit registers, since 1996)

• AMD 3DNow! (128 bit registers, since 1998)

• Intel Streaming SIMD Extensions (SSE, 128 bit, since 1999)

• Freescale/IBM/Apple AltiVec (also VMX, 128 bit, since 1999)

• ARM NEON (128 bit, since 2005)

• Intel Advanced Vector Extensions (AVX, 256 bit, since 2011)

• Intel Larrabee New Instructions (LRBni, 512 bit, since 2013)

• Intel AVX-512 (512 bit, since 2015)

10



1.5.1 Advantages of SIMD

Although compared with the scalar instructions, SIMD instructions operate on more regis-

ters, the execution time is approximately the same as its scalar counterpart. That is to say

that, SIMD instructions can achieve a much higher throughput over the same time interval.

So if the SIMD instructions are used properly, they can greatly increase the performance of

the applications. Another benefit of the SIMD model is regarding energy efficiency, because

it only requires one instruction fetch and decode phase for multiple data operations. [28]

The SIMD width defines the number of inputs that an SIMD instruction can process in par-

allel. It is derived from the number of values that can be stored in a single SIMD register.

For instance, in the Intel R© Xeon E3-1240 multi-core processor used in this thesis, the vector

registers are 256-bit long each [34]. That is to say that the SIMD registers for this processor

have four double-precision SIMD lanes, and thus the SIMD instructions on double values

can operate on the four lanes in parallel.

1.5.2 Limitations for SIMD

Loops are often the most interesting part for vectorization in algorithms. However, SIMD

instructions are not always easily applied to loops. [17] demonstrates the various limitations

that exist to vectorize a loop.

First, each lane in the vectorization unit must perform the same operation. The control flow

for each loop should not change. That is to say, jump and switch statements are not allowed.

However, on the other hand, if-then-else statements are allowed depending on whether it can

be transfered to a masked assignment.

Second, a loop can only be vectorized when the iterations of the loop is countable. This

is because vectorization is often achieved through loop unrolling. Furthermore, the index
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variable should not be modified in the loop body. And, no data-dependent exit conditions

are allowed.

Finally, no backward carried data dependencies (e.g. A[i] = A[i− 2] + 2) can be in the loop

body. This allows consecutive iterations of the original loop to be executed simultaneously

in a single iteration of the unrolled, vectorized loop.

1.6 Xeon PhiTM many-core coprocessor

The Intel R© Xeon PhiTM Coprocessor is a bootable host processor that delivers massive

parallelism and vectorization to support the most demanding high-performance computing

applications. It is based on the Intel R© Many Integrated Core (Intel R© MIC) architecture

[9], which scales with many small cores. Each contains a powerful 512-bit vector processing

unit (SIMD unit).

In our thesis, we are using the Xeon PhiTM 5110P Coprocessor, which has the following

specifications. [38]

• 60 cores, 240 threads (4 threads/core)

• 1.053 GHz clock frequency

• 1 TeraFLOP double precision theoretical peak performance

• 8 GB memory with 320 GB/s bandwidth

• 512-bit wide SIMD vector engine

• 32 KB L1, 512 KB L2 cache per core

• Fused Multiply-Add (FMA) support

12



The overall architecture is shown in Figure 1.7 [29]. With the 512-bit vector unit, the Xeon

PhiTM Coprocessor can process 16 single precision or 8 double precision data values using

only one SIMD instruction. However, because of the low clock frequency, even a small

amount of sequential work may cause a performance bottleneck. In order to achive high

performance on the Xeon PhiTM Coprocessor, applications need to efficiently exploit a high

degree of thread level parallelism and use the wide SIMD registers [38].

Figure 1.7: Architectural overview of an Intel R© Xeon PhiTM core [29]

1.7 Goals and contributions

This thesis aims to make the following contributions:

• We rewrite the reference C++ Bitcoin miner project into an appropriate SystemC

model. Considering its high parallel potential and computational complexity, Bitcoin

13



miner is a very good test bench for evaluating parallel SystemC models.

• We evaluate the performance of thread-level parallelism in the context of the RISC

simulator. We expect the speedup ratio to increase linearly with more simulation

threads.

• We exploit data-level parallelism on top of thread- level parallelism for a fast SystemC

simulation. SIMD pragmas are expected to effectively vectorize loops and functions.

• We analyze the scalability of the parallel SystemC simulation on a many-core Xeon

PhiTM Coprocessor. Considering the low performance of a single node in the MIC

architecture, scalability becomes the most critical factor for high PDES speed.

14



Chapter 2

Sequential Bitcoin Miner Model

In this section, we first develop the implementation of a sequential Bitcoin miner in SystemC,

which serves as a reference model of Bitcoin miner application and as an introduction to the

two modules: dispatcher and scanner.

2.1 Solo Mining

Bitcoin mining today takes on two forms, solo mining and pooled mining. In this paper, the

Bitcoin miner performs solo mining and is based on the reference implementation: CPUminer

[27]. As shown in Figure 2.1, solo miner contains two parts. The software (dispatcher) is

responsible for data transfer and the hardware (scanner) includes all the hashing computa-

tions.

15



Figure 2.1: Block diagram for solo Bitcoin miner

2.2 Design of dispatcher for sequential Bitcoin miner

In our design, the software part is implemented in the dispatcher module. It sends the block

header and the difficulty target to the hardware part, that is, the scanner. Since the main

purpose of our research is to analyze and exploit the parallelization potential of computation,

we design the dispatcher in a simple way, where the block header is generated as a fixed value,

instead of packing the transactions and deriving the merkle root hash [4]. This change is

valid because the transactions are all unknown and independent, making the block header

random to the scanner. The difficulty target is also user-defined, rather than obtaining it

from the Internet.

Figure 2.2 depicts the implementation of the dispatcher block. In the loop, the dispatcher

first sends the block header together with the difficulty target to the scanner via the output

FIFO. Then it is blocked on the input FIFO for the result from the scanner. In conclusion,

the dispatcher works both as the stimulus and the monitor in our model.

Figure 2.2: Flow graph for reference dispatcher block
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2.3 Design of scanner for sequential Bitcoin miner

The scanner module is the most computational part for the Bitcoin miner. As depicted in

Figure 2.3, it receives the block header and difficulty target as the input, and then iterates

through every possible value of the nonce and generates the corresponding hash. If the hash

value is below the difficulty target, the the scanner sends the nonce together with the hash

to the dispatcher.

Figure 2.3: Flow graph for reference scanner block

2.4 Test bench and benchmark configuration

The execution time is determined by two parameters in the model. The first is the number

of total jobs dispatched to the scanner. The second is the difficulty target. Nonce range and

block header have nothing to do with the simulation speed, but they are another two critical

parameters in the model. In order to make the experiments reproducible, the four values

17



are fixed on each machine, as shown in Table 2.1. The difficulty target in our model is a

256-bit value, starting with 24-bit 0s and followed by 232-bit 1s. The block header is 80-bit

wide. To be noticed, the numbers of total jobs dispatched are 50/100/20 respectively on the

three different host processors. This is because of their different CPU clock frequencies. If

we were using the same number of jobs, either would one machine finish too early or another

run for too long. Besides, the comparison of simulation speed on different host processors

is not the focus of this work, so it is only necessary to fix the total number of jobs on each

individual machine.

Table 2.1: Configuration of the Bitcoin miner

total number of jobs 50/100/20
difficulty target (256 bits) 0x000000FF FFFFFFFF ... FFFFFFFF

nonce range 0x00000000 - 0xFFFFFFFF
block header (80 bits) 0x80000000 00000000 ... 00000280

Table 2.2 lists some results of the simulation. As we can see, the resulting hash values are

all smaller than the difficulty target. Furthermore, the C++ reference model also gets the

same results. In conclusion, the correctness of our SystemC based Bitcoin miner model can

be confirmed.

Table 2.2: Test case results

#iterations hash value
4044822 0x000000bcbe45bba7e39b5ef7bc9c839f1217c69736c476a681c0fbb0038768fa
589033 0x000000ebc7a887f9a1f5851ff961e030cd5e807ad9541bfb8227597b77453935
9311051 0x000000d627c0a1fdccc7d18d2ea4698c52d415aed798cf8aaa68a4b6eeec8e52
6316947 0x000000872acb7cc530f0f212aa961db20c77ba633f0d099093c6b20f9b57f663
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Chapter 3

Thread-Level Parallel Bitcoin Miner

Model

Bitcoin mining compromises three stages: work dispatching, scanning and result receiving.

In the reference implementation in Chapter 2, only one thread is running at the same time,

which largely wastes the computation power of the multi- and many-core modern processor.

In this chapter, we will propose our parallel Bitcoin miner design. Thread level parallelism

is exploited by taking the advantage of the state-of-art RISC simulator.

3.1 Parallel Bitcoin miner design

Based on the observation that the scanner module is the most complex, time-consuming,

and computational intensive block, its optimization is the main concentration in our parallel

implementation. In Figure 3.1, the parallel Bitcoin miner block diagram is shown. For simple

illustrative purpose, only two scanners are in this figure. It is worth noting that the overall

architecture is similar to the reference one, except that there are multiple scanners and an
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additional synchronizer module. However, going more deeply into these blocks, important

differences arise due to the essential synchronization behaviors among scanners. That is,

when one scanner succeeded in finding a hash value below the given difficulty target, other

scanners can abort their current scanning job and start with a new one.

Figure 3.1: Parallel Bitcoin miner model with two scanners

3.2 Communication via sc fifo

In SystemC based ESL design, communication between different blocks is performed via

channels. In our parallel Bitcoin miner design, sc fifo channels are used.

The sc fifo is a predefined SystemC primitive channel designed to model the behavior of a
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FIFO, that is, a first-in first-out buffer [5]. Each FIFO has a number of slots for storing data

values. The number of slots is fixed when the channel is constructed. Default slots size is

16. In our implementation, the number is set to one because there is always no more than

one value in the buffer.

3.3 Design of dispatcher for parallel Bitcoin miner

The block diagram for the dispatcher module is illustrated in Figure 3.2. It has multiple

outgoing ports and one incoming port. Each output port is connected to a single scanner,

and the input port is bound to the synchronizer. The functionality of the dispatcher is

quite similar to the one in the sequential reference design. The main difference is that the

dispatcher now assigns to the scanners as well a starting point for scanning, so the scanners ’

work will not overlap with each other. After job dispatching, the dispatcher block waits on

the input port until the synchronizer block wakes it up.

Figure 3.2: Dispatcher for parallel Bitcoin miner
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3.4 Design of scanner for parallel Bitcoin miner

With thread level parallelism, multiple scanners can work simultaneously. As mentioned

previously, the starting points for the scanning of different scanners are different. For in-

stance, we consider the case that there are four scanners. Then the entire scanning range

will be partitioned into four equal pieces, with the first scanner starting from 0x00000000,

the second from 0x40000000, the third from 0x80000000 and the last one from 0xC0000000,

as illustrated in Figure 3.3. To show the effectiveness of our design, we can assume that the

successful nonce values (the nonce which would result in a hash value below the difficulty

target when hashed together with the block header) distribute uniformly across the entire

range. Based on this assumption, it is obvious that the probability of finding a successful

nonce becomes N times larger with N scanners, because each scanner is independent.

Synchronization is another important issue in the parallel scanner design. When one scanner

succeeds in finding the nonce, others have to stop because further scanning on the current

proof-of-work becomes meaningless. In order to solve this problem, the scanners are syn-

chronized after every scanning step. After each scanning step, a Boolean value representing

whether or not a successful nonce is found is sent to the central synchronizer, and then the

scanner waits for a response. The flow graph for each scanner is illustrated in Figure 3.4.

When a scanner succeeds in finding the nonce, the result hash value is sent to the receiver

module via another FIFO channel.

Figure 3.3: Illustration of parallel scanning
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Figure 3.4: Scanner for parallel Bitcoin miner
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3.5 Design of synchronizer for parallel Bitcoin miner

The synchronizer module serves as the central control block for synchronizing the multiple

scanners. A loop in this module repeatedly checks the status of each scanner, as shown

in Figure 3.5. With the use of sc fifo’s blocking read, it is guaranteed that only when all

the scanners are checked will the synchronizer generate a response back. Depending on the

response, the scanners can decide to continue their current work or to start a new search.

Figure 3.5: Synchronizer for parallel Bitcoin miner

3.6 Design of receiver for parallel Bitcoin miner

The receiver block contains a busy waiting loop. On every loop step, one input port is

checked to see if there is any value stored. Listing 3.1 shows the logic for the receiver mod-

ule.
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1 #define M(n) r e su l t f r om s canne r##n

2 for ( int i =0; i<N; i++){

3 i f (M( i ) . num avai lab le ( ) ) M( i ) . read ( r e s u l t ) ;

4 }

Listing 3.1: Busy waiting loop for receiver module

3.7 Shortcomings of current model

Although the implementation described previously can basically perform parallel mining, it

still suffers from a few shortcomings.

Firstly, there are too many FIFO channels, approximately four FIFOs per scanner, which

makes the model complicated. On the other hand, it is a waste of memory to instantiate too

many FIFO channels.

Secondly, the hard barrier introduced by synchronizing slows down the simulation. Each

scanner is hung up after every iteration step, and can only continue when all the scanners

have reached the barrier. Besides, the frequent context switching places a very high overhead

on the simulation speed.

Thirdly, since the receiver block contains a busy waiting loop, one hardware thread is always

assigned to it, which largely wastes the processors computation power. Furthermore, this

does not simulate in discrete event SystemC simulator.

To solve the first two problems, the synchronization pattern is optimized, which includes

modification of the scanner and the synchronizer module. A user-defined channel is imple-

mented to solve the third problem.
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3.8 Optimized parallel Bitcoin miner

In this section, an optimized parallel Bitcoin miner is proposed to overcome the three short-

comings mentioned previously. The block diagram for the optimized design is shown in

Figure 3.6. We introduce a user-defined channel, namely result submission channel to re-

place the synchronization FIFOs. The details about each block are described in the following

sections.

Figure 3.6: Optimized Parallel Bitcoin miner with two scanners

3.8.1 Main controller

In the optimized design, the dispatcher, receiver and synchronizer modules are combined

into a new one, named main controller. This is based on the observation that dispatcher will

never run in parallel with the other two. The synchronizer and the receiver both perform

polling to check the status of the scanners. In other words, their functionalities overlap with

each other.

Figure 3.7 illustrates the main controller. In the first part, it sends the required data to the
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Figure 3.7: Optimized main controller for parallel Bitcoin miner

scanners through FIFOs. Then it waits on the result submission channel for result. The

channel is described in detail in the next section.

3.8.2 User-defined channel for synchronization

We define an N-to-one channel to which all the scanners are writers whereas the main con-

troller is the reader. The channel is for the purpose of non-blocking write and blocking read,

and is named result submission channel in our design.

The implementation of the channel is shown in Listing 3.2. Inside the channel there is an

array of length N, where N is the total number of scanners. When a scanner invokes the

write result function, it puts the value into the corresponding bucket of the array, such that

the ith scanner writes to the ith bucket. Besides, it also sets the member variable pos to

i, and result empty to 0 so that when the main controller reads from the channel, it can

determine which bucket to read. When result empty is 1, meaning that the channel is empty,

the read result function will be blocked, until the event result written event is notified.
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1 void r e a d r e s u l t (SCANWORK& Y)

2 {

3 i f ( r e su l t empty==1){

4 wait ( r e s u l t w r i t t e n e v e n t ) ;

5 }

6 Y=r e s u l t b u f [ pos ] ;

7 re su l t empty=1;

8 }

9

10 void wr i t e r e s u l t (SCANWORK X, int n)

11 {

12 r e s u l t b u f [ n]=X;

13 pos=n ;

14 re su l t empty=0;

15 r e s u l t w r i t t e n e v e n t . n o t i f y (SC ZERO TIME) ;

16 }

Listing 3.2: read result and write result functions in the result submission channel

3.8.3 Optimized scanner

Figure 3.8 shows the implementation of the optimized scanner. One of the main differences

is that synchronization is performed every LOOP LENGTH scanning steps. The choice of

LOOP LENGTH ’s value is a trade-off between the CPU utilization and the non-effective

computations. On one hand, if LOOP LENGTH is too small, more CPU time will be spent

on context switchings and synchronizations. On the other hand, if LOOP LENGTH is too

large, when one scanner has succeeded, other scanners cannot get notified in time because
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synchronization happens late, which leads to a waste of computation power. Based on the

observation that with the choices of the four values in Table 2.1, a successful nonce is of-

ten found after millions of iteration steps in our implementation, LOOP LENGTH is set to

10000 in our design.

Secondly, in order to remove the unnecessary timing barriers, synchronization is performed

in another way. In the old design, synchronization comprises a blocking write and a blocking

read. In the optimized implementation, the blocking write is removed, and the blocking read

is replaced with a non-blocking one. When it detects that there is a new job in the input

port, it aborts the current search and starts a new one. These changes reduce the number

of the FIFO channels and the model complexity.
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Figure 3.8: Optimized scanner for parallel Bitcoin miner
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Chapter 4

Data-level parallel Bitcoin miner

model

In this chapter, the data-level parallelism (DLP) is applied to the parallel Bitcoin miner

model to further improve the performance.

4.1 Basic idea for applying DLP

The scanner block is made up of three stages: work receiving, scanning loop and synchro-

nization. In the reference and the thread-level parallel Bitcoin miner, one scanner instance

only executes a single lane of the scanning iteration at the same time. In order to improve

the performance, SIMD technique is exploited to execute multiple scanning lanes simultane-

ously. A comparison between the reference scanner module and the SIMD scanner module

is shown in Figure 4.1. This idea is based on the observation that the computation of the

hash value inside each iteration step is independent with others. The hashing computation

is performed on a constant block header value and an increasing nonce. The nonce value
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Figure 4.1: Comparison between scalar and SIMD scanners

only relies on the loop index. However, because of the if and break statements in the scan-

ning loop, the control graph becomes divergent, which makes the implementation of SIMD

difficult [28].

4.2 Intrinsics and SIMD pragma

A common approach to exploit SIMD on the Intel architecture is to use the Intel intrinsics

[14]. The intrinsics are a set of functions known by the Intel compiler that are mapped to a

sequence of assembly instructions. With the friendly C/C++ interface to assembly instruc-

tions, the use of processor-specific enhancements becomes easier for the software developers

[10]. Another advantage is that with the intrinsics, the compiler can manage things that the

user would normally have to be concerned with, such as register names, register allocations,

and memory locations of data.

However, the conversion of a scalar code into its SIMD counterpart is still quite complicated.

Listing 4.1 shows an example code of a for loop [13]. In each iteration step, it performs an

add and a masked if operation, which can be considered a simplified version of the scanning

loop (by replacing the hash() function with an add operation). The vectorized function using
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intrinsics is shown in listing 4.2.

1 #define SIZE 128

2 short int aa [ SIZE ] , bb [ SIZE ] , cc [ SIZE ] , dd [ SIZE ] ;

3 void Branch Loop ( short int g )

4 {

5 int i ;

6 for ( i =0; i<SIZE ; i++)

7 {

8 aa [ i ] = (bb [ i ]>0) ?( cc [ i ]+2) : ( dd [ i ]+g ) ;

9 }

10 }

Listing 4.1: Scalar for loop [13]

1 #define SIZE 128

2 #include <emmintrin . h>

3 #define TOVectorAddress ( x ) ( ( m128i ∗)&(x ) )

4

5 void Branch Loop ( short int g )

6 {

7 m128i a , b , c , d , mask , zero , two , g broadcas t ;

8 int i ;

9 ze ro = mm set1 epi (16) ;

10 two = mm set1 epi16 (2 ) ;

11 g broadcas t = mm set1 epi16 ( g ) ;

12

13 for ( i =0; i<SIZE ; i+=8)

14 {

15 b = mm load si128 ( ToVectorAddress (bb [ i ] ) ) ;

16 c = mm load si128 ( ToVectorAddress ( cc [ i ] ) ) ;

17 d = mm load si128 ( ToVectorAddress (dd [ i ] ) ) ;

18 c = mm add epi16 ( c , tw0 ) ;
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19 d = mm add epi16 (d , g broadcas t ) ;

20 mask = mm cmpgt epi16 (b , ze ro ) ;

21

22 a = mm and si128 ( c , mask ) ;

23 mask = mm andnot epi16 (mask , d) ;

24 a = mm or si128 (a , mask ) ;

25 mm store s i128 ( ToVectorAddress ( aa [ i ] ) , a ) ;

26 }

27 }

Listing 4.2: Vectorized for loop using intrinsics [13]

This example shows the complexity of using intrinsics. Variables are first loaded explicitly

to SIMD registers, and then SIMD instructions are applied to the registers. The results are

stored back at the end. The code length grows around 2.5 times compared to the scalar

function. Considering the over 500 lines of code in the Bitcoin scanning loop, it would be

very time consuming and overwhelming to implement SIMD via the use of intrinsics.

Nowadays, the SIMD pragma extension proposed by Tian et al. in 2012 [37] is becoming more

and more popular in C/C++ compilers: it performs automatic loop vectorization and can

vectorize functions as well. Listing 4.3 shows the SIMD implementation with SIMD pragma

statements for the same function in Listing 4.1. In order to vectorize the loop, the only

modification is to place the #pragma simd statement in front of the for loop. This simple

example demonstrates the effectiveness and efficiency of using the SIMD pragma extension

for SIMD implementation. Thus, in our approach, instead of using intrinsics to rewrite the

scanning loop, we use SIMD pragmas to vectorize the loop and the hash() function.

1 #define SIZE 128

2 short int aa [ SIZE ] , bb [ SIZE ] , cc [ SIZE ] , dd [ SIZE ] ;

3 void Branch Loop ( short int g )

4 {

5 int i ;
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6 #pragma simd

7 for ( i =0; i<SIZE ; i++)

8 {

9 aa [ i ] = (bb [ i ]>0) ?( cc [ i ]+2) : ( dd [ i ]+g ) ;

10 }

11 }

Listing 4.3: Vectorized for loop using SIMD pragma

4.3 Design of data-level parallel scanner

In the SIMD scanner design, we use SIMD pragma to vectorize the scanning loop and the

function calls inside the loop, which are hash() and isSmaller().

The first step is to vectorize the hash() function. This function contains the SHA256 algo-

rithm and some data padding operations. In its scalar implementation, it can only hash one

data point at one time. In the vectorized loop, it is required to hash multiple data points

simultaneously, and thus an efficient vectorization is critical to the overall performance.

In our first approach, nothing is changed except a #pragma simd declare statement is placed

in front of the hash() function declaration. However, the result is not as expected. Vector-

ization is very inefficient. The run time for the Bitcoin miner doubles compared to the scalar

one. The reason for that is because this function is too long for the compiler to automatically

inline it in the scanning loop. To solve this problem, we manually inlined this function, as

shown from line 5 to line 7 in listing 4.5.

For the isSmaller() function call, since it only contains some comparison instructions, which

is very short in length, the compiler can inline it automatically, and thus no manual modifi-

cation is needed, except for adding the SIMD pragma in front.

The second step is to vectorize the scanning loop. Listing 4.4 shows the scalar scanning loop.

According to the restriction for vectorization of loops described in Section 1.5.2, the loop
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should not contain any break statements, and should not modify the same variable (nonce,

result, found) on different steps of iteration. In order to solve this problem, an auxiliary

bit array flag array is introduced to replace the flag variable. The length of the array is

equal to the scanning loop length LOOP LENGTH. A corresponding bit in the array is set

if a successful nonce is found on that iteration step, and is not set otherwise. The result

variable is also changed to a temporary variable belonging to the loop. The break statement

is removed as well. As shown in listing 4.5, now the operations performed in every iteration

steps are the same, and the loop can be easily vectorized by #paragma simd. After the

scanning loop, the bit array is checked to find if there is any bit set to true. If so, it means

that the scanning loop has successfully found a hash value smaller than the target. The

result variable is recalculated based on the position of the set bit.

1 for ( int i =0; i<LOOP LENGTH; i++){

2 nonce=nonce+i ;

3 r e s u l t=hash ( scan work . header , nonce ) ;

4 i f ( i s Sma l l e r ( r e su l t , scan work . t a r g e t ) ) {

5 found=true ;

6 break ;

7 }

8 }

9 synchron ize ( r e su l t , found ) ;

Listing 4.4: Scalar scanning loop

1 #pragma simd

2 for ( int i =0; i<LOOP LENGTH; i++){

3 unsigned int∗ r e s u l t ;

4 n=nonce+i ;

5 /∗ i n l i n e d hash func t i on s t a r t ∗/

6 . . . 5 5 7 l i n e s o f code here . . .

7 /∗ i n l i n e d hash func t i on end ∗/

8 i f ( i s Sma l l e r ( r e su l t , scan work . t a r g e t ) ) {

36



9 found array [ i ]=true ;

10 }

11 }

12 nonce=nonce+LOOP LENGTH;

13 for ( int i =0; i<LOOP LENGTH; i++){

14 i f ( found array [ i ] ) found=true ;

15 }

16 unsigned int∗ r e s u l t=hash ( scan work . header , i ) ;

17 synchron ize ( r e su l t , found ) ;

Listing 4.5: Vectorized scanning loop
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Chapter 5

Evaluation

In this chapter, we present a thorough evaluation of our proposed parallelization approaches

on three different host processors. For the experimental setup, we first describe the compila-

tion options and then show the target processor specifications in detail. Finally, we present

and evaluate our experimental results on the different processor platforms.

5.1 Benchmark setup and reproducibility

Four versions of the Bitcoin miner model have been implemented with different parallelization

techniques, referred to as sequential (SEQ), thread-level parallel (TLP), data-level parallel

(DLP) and the combination of TLD and DLP (TLP+DLP), respectively. In order to evalu-

ate all the implementations under the same conditions, we are using the same source file for

the different designs. The number of scanners and the SIMD operations are controlled by

compile-time macros. The source code is first instrumented by the Recoding Infrastructure

for SystemC (RISC) compiler [33], and then compiled with Intel R© C++ compiler (ICPC)

[3], under optimization level -O3.
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Execution time is measured with /usr/bin/time. In our CentOS 6.8 64-bit Linux environ-

ment, this is a very precise time measuring tool, which can provide information regarding

the system time, the user time, the elapsed time.

Our experiments are conducted on idle host processors with CPU frequency scaling turned

off. File I/Os (i.e. printf()) are also disabled. These settings ensure the accuracy and repro-

ducibility of the measurements. Hyper-threading is turned on so as to maximize parallelism.

The setups are shown in Table 5.1.

Table 5.1: Benchmark setup

Linux host OS CentOS 6.8 64-bit
Compile option -O3 -DNDEBUG

Time measurement /usr/bin/time

File I/O disabled
CPU frequency scaling disabled

Work load of other users 0
Hyper-threading on

5.2 Processor specifications

The evaluations are performed on three different platforms, respectively the E3-1240 proces-

sor (4-core host), the E5-2680 processor (16-core host), and Intel R© Xeon PhiTM Coprocessor

5110P (60-core host). Specifications of these processors are listed in Table 5.2. Here, the

peak parallelism is calculated as #processors×#physical cores×#SIMD lanes.

Hyper-threading is not in this equation because two hyper-threads on the same physical core

only duplicate the status registers, but still share the main execution resources [1]. Our Bit-

coin miner application is computational intensive (with integer operations) and has minor

communications, making hyper-threading’s advantages (reduced core idle time and efficient

inter-thread communication) less useful for our application. The experimental results dis-

39



cussed below confirm this observation. Hyper-threading is not effective for Bitcoin mining.

The number of SIMD lanes is calculated as SIMD register width/Operand data width. In

our Bitcoin miner application, all data types are unsigned int which is 32-bit wide. #pragma

simd vectorlengthfor(unsigned int) statement is used explicitly to set the SIMD data type to

unsigned int. In the AVX instruction set, the integer SIMD register width is 128-bit wide

[2], and thus the number of SIMD lanes of the 4-core and 16-core host is 4. On other hand,

the 60-core host uses 512-bit SIMD registers and thus has 16 integer SIMD lanes.

Table 5.2: Processor specifications

omicron phi mic0
processor type E3-1240 E5-2680 Xeon PhiTM Coprocessor 5110P

#cores 4 8 60
#processors 1 2 1
#total cores 4 16 60

#threads per core 2 2 4
SIMD instruction set AVX AVX AVX-512

integer SIMD register width 128 bits 128 bits 512 bits
#integer SIMD lanes 4 4 16

peak parallelism 16 64 960

5.3 Experiments on 4-core host

Table 5.3 shows the experimental results with different parallelism techniques on the Xeon

E3-1240 processor.

The run time of sequential scalar Bitcoin miner TSEQ is used as the reference for speedup

measurements. On thing we noticed is that the absolute execution time of the sequential

model is different with different number of scanners. This is because of the random nature

of Bitcoin mining, as discussed in Section 3.4. However, with the same number of scanners,

the four models (SEQ, DLP, TLP and DLP+TLP) perform the same amount of work.
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The DLP speedup SDLP is stable and approximately 2.96. This value is smaller than the

naively expected maximum value 4 due to two reasons. One is the needed overhead for

SIMD lanes packing and unpacking. The other one is that there are still some sequential

operations that cannot be vectorized, such as data padding and communications. According

to Amdahl’s law, the speedup of 2.96 is reasonable.

The TLP speedup STLP is naively expected to be equal to the maximum of #physical cores

and N , where N is the number of scanners in the Bitcoin miner model. As shown in Table

5.3, STLP is always smaller than the expected maximum. The maximum cannot be reached

because of the synchronizations and the context switchings between threads. As we can see

in Figure 5.1, STLP reaches a maximum of 3.71 when N equals to 4, and then stops increas-

ing because of the limited number of physical cores in the host processor. It even decreases

slightly because of the increasing contentions between threads. This also confirms our ex-

pectation that hyper-threading technology does not help in our Bitcoin miner application,

as discussed in Section 5.2.

Finally, by combining TLP and DLP together, we get a maximum speedup of over 11x on

the 4-core machine with 4 SIMD lanes. This is an impressive result. Our results confirm

the orthogonality of DLP and TLP, and achieve the speedup SDLP+TLP = SDLP × STLP as

proposed in [34], which shows that the combination of thread and data-level parallelism can

be very efficient to accelerate the SystemC simulation.

Table 5.3: Results on 4-core host with 4 SIMD lanes: runtime(secs)/speedup

#scanner SEQ DLP TLP DLP+TLP
1 361.68 / 1 122.06 / 2.96 361.69 /1.00 121.50 / 2.97
2 331.96 / 1 112.01 / 2.96 170.90 / 1.94 57.53 / 5.77
4 382.00 / 1 128.30 / 2.97 103.08 / 3.70 34.68 / 11.01
8 362.50 / 1 121.33 / 2.98 99.91 / 3.62 31.39 / 11.22
16 529.25 / 1 177.89 / 2.97 146.49 / 3.61 46.37 / 11.41

Figure 5.1 gives an graphical overview of the three speedups. It can be seen that SDLP
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Figure 5.1: Speedup on 4-core host with 4 SIMD lanes

is constant all the time, and STLP and SDLP+TLP first increase and then become almost

constant when reaching the upper limit of #physical cores. From this figure, it is obvious

that combining DLP and TLP together results in a very large improvement on the speedup.

5.4 Experiments on 16-core host

The same models are simulated also on a 2 × 8-core host, and similar results are achieved,

as shown in Table 5.4.

First, SDLP has a constant value, which agrees with the results on the 4-core host. However,

the speedup value of 3.66 is higher. The difference should be because of the different CPU

architectures of the two host machines [7][8]. The 16-core host is advanced in this aspect.

Second, STLP increases with N , and is limited by the total number of physical cores. A

maximum of over 13.7 is reported from the table.

Finally, SDLP+TLP is approximately the product of STLP and SDLP , which agrees with the

previous results on the 4-core host. This again confirms the effectiveness of combining DLP

and TLP for faster SystemC simulation.
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One thing to be noticed is that, as shown in Figure 5.2, the value of STLP at N = 16 is lower

than expected. From Table 5.4 we can see that it has a value of 11.82, which is only 73.85%

of the upper limit. We suspect that this is because there are two separate processors in

this host machine, and the communication overhead between them is much higher than that

of the intra-processor communication [30]. With the increase of communication overhead,

speedup will decrease. For the same reason, SDLP+TLP is also lower than expected.

Table 5.4: Results on 16-core host with 4 SIMD lanes: runtime(secs)/speedup

#scanner SEQ DLP TLP DLP+TLP
1 1100.74 / 1 299.98 / 3.66 1098.36 / 1.00 305.57 /2.97
2 993.03 / 1 270.73 / 3.66 506.59 / 1.96 137.67 /5.77
4 1155.46 / 1 314.55 / 3.67 301.64 / 3.83 83.25 /11.01
8 1261.42 / 1 345.51 / 3.65 179.19 / 7.04 50.10 /11.22
16 1617.65 / 1 443.12 / 3.65 136.76 / 11.82 55.9/28.93
32 1954.14 / 1 535.79 / 3.64 146.30 / 13.38 38.21/51.13
64 3037.19 / 1 833.49 / 3.64 234.33 / 12.97 64.62/46.99
128 5030.56 / 1 1370.10 / 3.67 366.35 / 13.74 99.26/50.67

Figure 5.2: Speedup on 16-core host with 4 SIMD lanes
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5.5 Experiments on 60-core host

Finally, we simulated our Bitcoin miner model on the many-core Xeon PhiTM Coprocessor

host. The results are shown in Table 5.5. With the use of the 512-bit wide vector registers,

a constant DLP speedup SDLP of 9.7 is achieved. On the other hand, TLP speedup STLP

reaches a maximum of 61.73 on the 60-core machine. The upper limit is exceeded in this

case. Such phenomenon is often referred to as super-liner speedup [26]. This happens when

the working set of a problem is greater than the cache size when executed sequentially, but

can fit nicely in each available cache when executed in parallel [12].

Finally, by combining both DLP and TLP techniques together, an impressive speedup of

more than 516.6 is reported. However, with N = 256, SDLP × STLP = 600.52, which is

approximately +15% higher than SDLP+TLP = 516.6. This is because of the well-known

memory bandwidth bottleneck for Xeon PhiTM Coprocessor [30]. Overall, these results show

the good scalability of parallel simulation on the many-core processor, and confirm the

advantage of combining DLP and TLP for SystemC simulation.

Table 5.5: Results on 60-core host with 16 SIMD lanes: runtime(secs)/speedup

#scanner SEQ DLP TLP DLP+TLP
1 2669.42 / 1 274.23 / 9.73 2540.91 / 1.05 273.75 / 9.75
2 2383.14 / 1 245.13 / 9.72 1245.76 / 1.91 124.66 / 19.12
4 3321.10 / 1 341.46 / 9.73 838.19 / 3.96 86.68 / 38.31
8 1911.22 / 1 196.38 / 9.73 238.76 / 8.00 30.81 / 62.03
16 3501.69 / 1 359.63 / 9.74 217.97 / 16.06 23.20 / 150.93
32 4843.24 / 1 498.15 / 9.72 160.52 / 30.17 16.51 / 293.35
64 6774.88 / 1 696.40 / 9.73 113.55 / 59.66 14.27 / 474.76
128 11252.35 / 1 1156.35 / 9.73 184.71 / 60.92 21.84 / 515.22
256 18744.61 / 1 1926.87 / 9.73 303.65 / 61.73 36.28 / 516.67
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Figure 5.3: Speedup on 60-core host with 16 SIMD lanes

45



Chapter 6

Conclusion

In this thesis, we exploit different levels of parallelism to accelerate the simulation of Sys-

temC based on a Bitcoin miner model. Our approaches include thread-level parallelism

(TLP), data-level parallelism (DLP) and the combination of both. The Bitcoin miner is

investigated as a case study due to its high parallel potential and computational complexity.

We demonstrate our experiments on a 4-core Intel R© E3-1240 processor, a 16-core Intel R©

E5-2680 processor and a 60-core Intel R© Xeon PhiTM Coprocessor. With the combination

of DLP and TLP, we achieve a speedup of more than 11x, 50x and 510x, respectively, on

the three hosts. These results confirm the advantage of accelerating SystemC simulation

through the combination of thread and data-level parallelism. Moreover, our results also

confirm that SDLP+TLP = SDLP × STLP , as recently published in [34].

In summary, we made the following contributions in this thesis:

• We have changed the reference C++ Bitcoin miner project into an appropriate Sys-

temC model, which can serve as a very good test bench for evaluating parallel SystemC

models.

• We have evaluated the performance of thread-level parallelism in the context of the
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RISC simulator. Our results show that the speedup of the RISC simulator compared

to the reference sequential simulator was proportional to the number of simulation

threads. This confirms that RISC is an effective framework for parallel SystemC sim-

ulation.

• We have exploited data level parallelism on top of thread level parallelism for fast

SystemC simulation. SIMD pragmas are used to vectorize loops and functions. The

results show that with the combination of DLP and TLP, a speedup of the magnitude

of N×M is achieved, where N and M denote the thread and data-level speedup factors

[34], respectively. This finding is of help to the performance optimization of SystemC

simulation.

• We have analyzed the scalability of the parallel SystemC simulation on a many-core

Xeon PhiTM Coprocessor. A speedup of over 510x is attained. The results demonstrate

that simulation of Bitcoin miner using the RISC simulator scales well on the Xeon

PhiTM Coprocessor.

In future work, we plan to investigate these three parallel SystemC simulation techniques

(DLP, TLP, DLP+TLP) on more SystemC models as well as other hardware platforms.
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[30] G. Liu, T. Schmidt, R. Dömer, A. Dingankar, and D. Kirkpatrick. Optimizing thread-
to-core mapping on manycore platforms with distributed Tag Directories. In The 20th
Asia and South Pacific Design Automation Conference, pages 429–434, Jan 2015.

[31] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[32] M. Nanjundappa, H. D. Patel, B. A. Jose, and S. K. Shukla. SCGPSim: A fast SystemC
simulator on GPUs, year=2010. In 2010 15th Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 149–154.
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