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ABSTRACT OF THE DISSERTATION 

 

 

Factors Influencing Likelihoods and Priors in Multisensory Perception 

 

 

By 

 

 

Brian Andrew Odegaard 

Doctor of Philosophy in Psychology 

University of California, Los Angeles, 2015 

Professor Ladan Shams, Chair 

 

 

GOAL:  The goal of this dissertation is to investigate several factors influencing multisensory 

processing using a well-established Bayesian computational framework.    Specifically, this 

project explores how systematic biases in human spatial perception, recalibration of the tendency 

to integrate sensory signals, and selective attention may (or may not) influence both likelihoods 

and priors in Bayesian models that can account for human performance quite well in a number of 

sensory tasks.  These explorations are motivated by the following aims: 
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AIM 1:  Exploring computational mechanisms underlying spatial biases in human visual, 

auditory, and audiovisual perception of space.  Many investigations over the past twenty years 

have shown that human localizations along azimuth in both the visual and auditory modalities 

are often biased away from the true locations of the sensory stimulus.  However, these 

investigations have often used small sample sizes and suboptimal paradigms to explore the 

nature of these spatial biases.  In the first study of this dissertation, a dataset of unprecedented 

size (384 subjects) is used to explore the presence, magnitude, and direction of biases in humans’ 

visual, auditory, and audiovisual perception.  Following this behavioral exploration, several 

versions of a Bayesian causal inference model are tested to see whether these spatial biases are 

best accounted for by biases in sensory representations of space (i.e. likelihoods), pre-existing 

biases for localization (i.e. priors), or a combination of these mechanisms.  The best-fitting 

model from this investigation is then used as a computational tool in subsequent investigations. 

 

 

AIM 2:  Investigating how to recalibrate the tendency to integrate multisensory signals.  It has 

previously been demonstrated in several multisensory investigations that human perception of 

auditory space can shift based on previous multisensory experiences, and that this effect can be 

computationally accounted for in a shift in the auditory likelihood distributions.  However, little 

(if any) evidence has shown whether or not the a priori tendency to integrate multisensory 

signals can be recalibrated by previous sensory experiences.  In regards to this second aim, six 

experiments are conducted to determine (1) whether the tendency to integrate can change to due 

simple, brief (10-minute) exposure tasks, and if so, (2) what the spatial and temporal rules are 

that the brain uses to update its tendency to bind.   
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AIM 3: Examining the effects of selective and divided attention on sensory integration.   

While the phenomenon of selective attention has been explored extensively by previous research, 

little consensus exists regarding the mechanism that enables enhanced perception for an attended 

stimulus.  In this investigation, several experiments are conducted requiring subjects to allocate 

attention either selectively to one modality (vision or audition), or to divide attention across 

modalities, while performing either (1) a spatial task, or (2) a numerosity task.  Data from both 

the spatial and temporal tasks are modeled to determine whether selective attention impacts the 

tendency to integrate multisensory stimuli, the sensory representations, or spatial priors.  Leaving 

behind the antiquated idea of attention simply serving as a Bayesian prior, this series of studies 

demonstrates that attention primarily impacts sensory representations, and does not significantly 

impact the tendency to integrate multisensory stimuli.  
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VI.  
 

GENERAL INTRODUCTION 
 

 
In order to survive in a complex and changing world, an organism’s perceptual estimates 

about events occurring in a particular region of space and at a particular point in time must be 

sufficiently accurate to avoid harmful predators, find plentiful sources of food, and identify 

potential mates to ensure long-term success for the species.  In humans, various sensory 

modalities have evolved to be particularly adept at representing these vital types of information.  

Vision, for example, has the most refined capacity to encode spatial information from the 

surrounding environment; audition provides precise temporal information about when events 

occurred; modalities such as olfaction and gustation provide less reliable information about the 

dimensions of space and time, but can be particularly useful when determining whether or not a 

food source is something you would want to ingest.  Every sensory system appears to have 

adapted to be particularly skilled at providing at least one type of information critical for 

navigating and acting in a dangerous world.   

Considering each modality’s specific capacities, it might seem reasonable to assume that 

the neural systems in the brain comprising each sensory system operate in isolation from one 

another.  Indeed, for decades in twentieth century neuroscience, studies focused on investigating 

single sensory modalities in simple experimental paradigms.  In the last twenty-five years, 

however, there has been a renaissance in investigations probing how our senses influence and 

interact with one another in terms of processing and storing information (Chen & Vroomen, 

2013; Ernst & Bülthoff, 2004; Stein & Meredith, 1993; Stein & Stanford, 2008).  When 

considering how spatial and temporal information is represented in the brain, particularly under 

noisy or ambiguous conditions, it has become clear that the auditory and visual senses 
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substantially interact with one another in an attempt to provide the most reliable estimate of the 

surrounding world. 

For instance, when briefly presented audiovisual stimuli are presented synchronously 

with varying amounts of spatial discrepancy, it is now well established that the estimate of the 

auditory stimulus can be influenced by the location of the visual stimulus (Bertelson & 

Aschersleben, 1998; Bertelson & Radeau, 1981; Chen & Vroomen, 2013; Hairston et al., 2003; 

Slutsky & Recanzone, 2001).  This illusion, commonly called the “Ventriloquist Illusion” (Pick, 

Warren, & Hay, 1969; Rock & Victor, 1964), has been shown to be modulated by the spatial and 

temporal relationships between the auditory stimuli (Wallace et al., 2004).  Similarly, when 

briefly presented audiovisual stimuli are presented with varying amounts of temporal 

discrepancy, estimates about when, how many, or the rate at which visual stimuli occurred in the 

environment can be influenced by the presence of auditory stimuli (Morein-Zamir, Soto-Faraco, 

& Kingstone, 2003; Scheier, Nijhawan, & Shimojo, 1999; Shams, Kamitani, & Shimojo, 2000).  

These findings indicate that the modality that with the higher degree of resolution for 

representing information in a given dimension exerts an influence over noisier estimates from 

other modalities, and opens several critical questions which need to be answered by future 

research: what are the computational principles underlying how our sensory modalities interact 

to represent spatial and temporal information from the surrounding world?  Are these principles 

static, or can they be modified based on previous sensory experiences?  And can these principles 

change based on how we selectively attend to features of stimuli in the environment?   
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A. Computational Models of Multisensory Integration: Towards a Complete Theoretical 

Account 

 

 Numerous behavioral demonstrations of interactions between the auditory and visual 

senses have led to the development and creation of several theoretical and computational 

accounts of the principles governing how modalities exert influences over one another in space 

and time.  One oft-cited example is Welch and Warren’s description of the modality 

appropriateness or modality precision hypotheses (1980).  According to their account, 

discrepancies between senses are resolved by relying on either the more appropriate or more 

precise sensory modality in a given dimension.  This idea offered an intriguing hypothesis about 

the underlying principles governing sensory integration, but one question that remained is what 

the goal of integrating sensory information should be in the first place.     

 As noted by the famous Vision scientist David Marr, any sensory modality could 

potentially be thought of as an information processing system, and thus there are three levels of 

analysis that must be investigated to fully understand the system: the computational level 

specifies what problem needs to be solved, what the system accomplishes and why it does certain 

things; the representational/algorithmic level specifies the processes and manipulations of 

representations that must be implemented, and the physical level specifies how the computations 

and algorithms are physically realized in the existing system (Marr, 1982).  In terms of the 

combination of sensory systems, according to Ernst and Bülthoff, one possible computational 

goal is to minimize the overall variance of the combined bisensory estimate (2004).  This 

process, known commonly as “Maximum Likelihood Estimation” (MLE), assumes that each 

sensory modality is estimated with a certain amount of precision, and that the combined estimate 
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weights each individual cue by the inverse of its variance (Cuppini, Magosso, Bolognini, Vallar, 

& Ursino, 2014).  Previous behavioral studies have indeed shown that when sensory cues are 

presented with small amounts of discrepancy, these MLE computational models account for 

human observers’ behaviors quite well (Alais & Burr, 2004; Battaglia, Jacobs, & Aslin, 2003; 

Ernst & Banks, 2002).  However, these models failed to account for conditions with increased 

discrepancy between modalities in a given dimension, leaving a need for more advanced 

computational models to be developed to provide a more complete account of the statistical 

principles underlying multisensory processing. 

 In pursuit of this goal, Körding et al. (2007) developed a model that not only specified the 

equations for the optimal integration and segregation of sensory information, but also formalized 

the process of inference about whether sensory signals come from one or two sources.  Utilizing 

Bayes’ Rule, the posterior probability of a single cause could be inferred based on a combination 

of the sensory likelihoods from the visual and auditory modalities, multiplied by a prior 

probability for inferring a single cause of sensory information.  This inferred posterior could then 

be used to weight the optimal estimates for inferring one or two causes, and this strategy of 

model averaging was shown to more effectively account observers’ audiovisual localization 

behaviors than any other previous attempts, including Maximum Likelihood Estimation.  

Extensions of this framework have been developed to account for multisensory numerosity 

judgments (Wozny, Beierholm, & Shams, 2008), observers’ capacities to localize stimuli of 

various intensities (Beierholm, Quartz, & Shams, 2009), different perceptual strategies used by 

observers when localizing multisensory stimuli (Wozny, Beierholm, & Shams, 2010), and well-

known aftereffects produced by successively-presented audiovisual stimuli (Wozny & Shams, 

2011).  One recent study has even demonstrated that various computational elements in this 
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Bayesian Causal Inference model are encoded in distinct regions of the brain, providing evidence 

for the involvement of several brain areas implementing the hierarchical computations 

underlying sensory integration (Rohe & Noppeney, 2015). 

 Considering the increasing consensus about Bayesian Causal Inference underlying the 

computations governing multisensory integration in the brain, it becomes an open question how 

far this framework can extend its explanatory power. On the one hand, it is always good to keep 

a reasonable degree of skepticism regarding the full efficacy of any specific computational 

account of a given process.  As noted by the statistician George E.P. Box, “essentially, all 

models are wrong, but some are useful” (Box & Draper, 1987, p.424), and currently, much is still 

unknown regarding how Bayesian Causal Inference may be implemented at the level of neural 

circuits (Pouget, Beck, Ma, & Latham, 2013).  However, considering the ability of this Bayesian 

Causal Inference framework to account for human multisensory behaviors across a wide range of 

tasks and conditions, it becomes an intriguing tool to exploit in pursuit of providing new insights 

into elusive neuroscientific phenomena. Thus, further exploration using this modeling framework 

is warranted to provide additional computational insights about how the brain constructs a 

coherent multisensory representation of the surrounding world. 

 

B. Dissertation Overview 

 

This dissertation is divided into three core chapters, which explore factors influencing 

likelihoods and priors in the aforementioned Bayesian Causal Inference framework.  The first 

chapter is a behavioral and computational exploration of the nature of human spatial perception 

in the visual and auditory modalities.  It begins with a review of relevant behavioral literature 
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from the past twenty years, which has demonstrated how humans’ perception of space in the 

visual and auditory modalities is often biased and inaccurate.  Interestingly, many studies show 

that the two modalities are biased in opposite directions: vision is biased towards the center of 

space, while audition is biased towards the periphery (Adam, Davelaar, Gouw, & Willems, 2008; 

Cui, Razavi, O’Neill, & Paige, 2010; Fortenbaugh & Robertson, 2011; Lewald & Ehrenstein, 

1998; Müsseler, Heijden, Mahmud, Deubel, & Ertsey, 1999; Parise, Spence, & Ernst, 2012). The 

direction and extent of these spatial biases, however, can depend on the specific paradigm used 

(i.e. whether the response mechanism was visible at all times, whether the eyes were free to 

move, whether accuracy or speed was emphasized, etc.). To provide a more definitive account of 

these potential biases, the chapter proceeds to describe a spatial localization task that was 

implemented to assess the accuracy of visual, auditory, and audiovisual localizations along 

azimuth in a dataset of unprecedented size (384 subjects).  Subjects’ accuracy and precision in 

the visual and auditory modalities were quantified, and the reported results again provide 

evidence that spatial perception is, on average, biased away from the true location of the stimulus 

in both the visual and auditory modalities. 

As mentioned previously, it has been shown that human observers’ unisensory and 

multisensory localizations along azimuth are well accounted for by a Bayesian Causal Inference 

model.  However, earlier versions of this model do not attempt to account for the aforementioned 

spatial biases, and in a Bayesian framework, these inaccuracies could potentially be due to either 

biases in the sensory representations (i.e. likelihood distributions) or a priori biases over space 

(i.e. priors).  Thus, to conclude this chapter, six different models are applied to our large dataset 

to determine whether spatial biases are best accounted for by changes in likelihoods, changes in 

priors, or a combination of these two potential mechanisms. 
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 Following this methodological innovation, the second chapter explores the underlying 

spatial and temporal principles that govern sensory recalibration.     Previous research has shown 

that when visual and auditory signals are repeatedly presented at the same point in time but at 

different locations in space, subsequent auditory judgments can be pulled in the direction of 

where the visual stimulus occurred (Bertelson, Frissen, Vroomen, & de Gelder, 2006; Frissen, 

Vroomen, de Gelder, & Bertelson, 2003, 2005; Kopco, Lin, Shinn-Cunningham, & Groh, 2009; 

Lewald, 2002; Recanzone, 1998; Slutsky & Recanzone, 2001).  Research implementing 

Bayesian models has demonstrated that this effect can be accounted for be a shift in the auditory 

likelihoods (Sato, Toyoizumi, & Aihara, 2007; Wozny & Shams, 2011).  Here in our study, we 

modify the standard paradigm to adapt observers to visual-auditory spatial discrepancies in two 

different directions during an exposure task, and note a surprising change: this effect is not 

accounted for by shifting auditory representations of space, but instead in a change in the prior 

for binding sensory information.  By conducting further experiments testing varying degrees of 

spatial and temporal discrepancies during the exposure task, we discover that the brain updates 

this prior for binding when sensory information is (1) spatially discrepant, and (2) related (either 

congruent or correlated) in time.  We discuss the implications of this finding in the context of a 

predictive coding framework (Friston, 2010; Klemen & Chambers, 2012; Talsma, 2015). 

  The final chapter again utilizes this updated Bayesian Causal Inference Model to explore 

how conditions of selective and divided attention influence its various computational 

components (i.e. parameters).  In this context, “selective attention” refers to conditions requiring 

the allocation of endogenous (volitional) attention to one sensory modality (either vision or 

audition) in a multisensory environment, and “divided attention” refers to allocating attention in 

a bisensory manner, across the visual and auditory modalities.  Experiments probed subjects’ 
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abilities to make spatial localization judgments and numerosity judgments while allocating 

attention in these two manners, and investigated whether attention influences the prior 

probability of inferring a single source of sensory information, the sensory representations (i.e. 

likelihoods), or any other a priori biases over space or time.  Results suggest that the “rich get 

richer,” as sensory representations that have a certain amount of reliability are enhanced by 

selective attention, but extremely noisy sensory representations fail to see any benefit with 

selective processing.  Interestingly, the prior capturing the tendency to integrate is not altered by 

selective attention, providing evidence that integration processes operate independently from 

attentional processes in the brain.  Theoretical implications of these findings, and how they build 

upon previous models of attention, are discussed in the chapter’s conclusion. 
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VII. 
 

Biases in Visual, Auditory, and Audiovisual Perception of Space 
 
 
Abstract 
 

Localization of objects and events in the environment is critical for survival, as many 

perceptual and motor tasks rely on estimation of spatial location. Therefore, it seems reasonable 

to assume that spatial localizations should generally be accurate.  Curiously, some previous 

studies have reported biases in visual and auditory localizations, but these studies have used 

small sample sizes and the results have been mixed.  Therefore, it is not clear (1) if the reported 

biases in localization responses are real (or due to outliers, sampling bias, or other factors), and 

(2) whether these putative biases reflect a bias in sensory representations of space or a priori 

expectations (which may be due to the experimental setup, instructions, or distribution of 

stimuli). Here, to address these questions, a dataset of unprecedented size (obtained from 384 

observers) was analyzed to examine presence, direction, and magnitude of sensory biases, and 

quantitative computational modeling was used to probe the underlying mechanism(s) driving 

these effects.  Data revealed that, on average, observers were biased towards the center when 

localizing visual stimuli, and biased towards the periphery when localizing auditory stimuli. 

Moreover, quantitative analysis using a Bayesian Causal Inference framework suggests that 

while pre-existing spatial biases for central locations exert some influence, biases in the sensory 

representations of both visual and auditory space are necessary to fully explain the behavioral 

data. How are these opposing visual and auditory biases reconciled in conditions in which both 

auditory and visual stimuli are produced by a single event? Potentially, the bias in one modality 

could dominate, or the biases could interact/cancel out. The data revealed that when integration 

occurred in these conditions, the visual bias dominated, but the magnitude of this bias was 
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reduced compared to unisensory conditions.  Therefore, multisensory integration not only 

improves the precision of perceptual estimates, but also the accuracy.  

 
Author Summary 
 

Almost all daily tasks performed by humans require localizing objects and events. Since 

spatial localization is critical for survival, it is expected that the brain performs this task 

accurately. We tested the accuracy of localizing simple sounds and sights in hundreds of human 

observers. We found that, on average, localizations of sounds and sights were not accurate, and 

observers made systematic errors: flashes of light were perceived to be nearer the center of the 

visual field than they actually were, and bursts of noise were perceived farther away from center. 

Surprisingly, computational analyses revealed that these biases in perceived location of sounds 

and sights are at least partly due to a bias in how sights and sounds are encoded by the sensory 

systems; the visual representation of the world is compressed towards the center and the auditory 

representation is expanded away from the center. When flashes and noise bursts were presented 

at the same location simultaneously and the observers perceived a common source for both 

stimuli, the bias in the perceived location was smaller, showing that synthesizing information 

across modalities helps increase accuracy in the perceived location of objects and events, 

compared to when only one sensation is available.  
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Introduction 
 
Nearly every function critical for human survival depends directly on accurate 

localization of objects and events in the environment.  For example, our capacity to locate food, 

find potential mates, avoid predators, navigate new terrain, avoid obstacles, act upon objects, and 

orient towards sudden sounds requires a skilled aptitude to detect stimuli in the surrounding 

world.  Spatial localization is thus a fundamental task that the brain has to solve at any given 

moment, and evolution has had millions of years to refine this function. Therefore, one would 

expect that the representation of space in all sensory modalities is generally accurate.  However, 

the existing literature on human spatial localization contains several findings that are at odds 

with this assumption: not only do representations of space in different sensory modalities appear 

to be biased, but different sensory modalities exhibit different biases in how they encode spatial 

information. 

For instance, many studies investigating localizations of simple visual stimuli along 

azimuth have shown that visual localizations often show a bias towards the center of visual space 

(Adam, Davelaar, Gouw, & Willems, 2008; Fortenbaugh & Robertson, 2011; Mateeff & 

Gourevich, 1983; Müsseler, Heijden, Mahmud, Deubel, & Ertsey, 1999; Osaka, 1977; Parise, 

Spence, & Ernst, 2012), but one recent investigation showed that either a central or peripheral 

bias may emerge, depending on the eccentricity of the target (Dobreva, O’Neill, & Paige, 2012). 

In the auditory domain, findings of various studies have been even more mixed: some indicate 

that, on average, auditory localizations are often biased increasingly farther away from center as 

eccentricity increases (Cui, O’Neill, & Paige, 2010; Lewald & Ehrenstein, 1998; Parise et al., 

2012; Razavi, O’Neill, & Paige, 2007), while others have reported central biases for average 

auditory localizations (Dobreva et al., 2012; Zahn, Abel, & Dell’Osso, 1978). Thus, research has 
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often shown central biases in the visual modality, but previous results on auditory spatial biases 

are mixed. 

The previous investigations on spatial localization have used relatively small sample 

sizes, and consequently, variability in the reported findings could be due to sampling bias and/or 

the undue influence of outliers. Similar issues also apply to the previous reports of precision of 

spatial localization.  Several earlier studies have reported that visual precision decreases with 

increasing eccentricity of transient visual targets (Dobreva et al., 2012; Hairston et al., 2003). In 

the auditory domain, findings have been mixed.  One study reported that the standard deviation 

of auditory localizations remains relatively consistent across peripheral regions in space 

(Hairston et al., 2003), but two recent investigations found that auditory precision declines for 

peripheral targets (Charbonneau, Véronneau, Boudrias-Fournier, Lepore, & Collignon, 2013; 

Dobreva et al., 2012).  

Here, we present findings from an extraordinarily large dataset (384 subjects) to obtain 

more definitive answers regarding not only the direction and magnitude of biases in both the 

visual and auditory modalities, but also the precision in spatial localizations over a range of 

spatial positions. By analyzing responses from our immense dataset, we aim to clarify discrepant 

results in the literature regarding the accuracy and precision of both visual and auditory 

localizations. 

Additionally, while previous studies on unisensory biases and variances have enhanced 

an overall understanding of how the senses process information from the surrounding world, in 

real-world settings, objects usually produce signals that simultaneously stimulate multiple 

sensory modalities.  In conditions where auditory and visual stimuli co-occur in close spatial 

proximity, it has been well-documented that auditory localizations are often pulled in the 



! #&!

direction of a visual stimulus (Bertelson & Aschersleben, 1998; Bertelson & Radeau, 1981; 

Hairston et al., 2003; Lewald & Guski, 2003; Slutsky & Recanzone, 2001; Wallace et al., 2004).  

Known as the “Ventriloquist illusion” (Pick, Warren, & Hay, 1969; Rock & Victor, 1964), this 

effect has been demonstrated in many experiments, lending support to the idea that the most 

reliable sense in a given dimension exerts a strong influence over other noisier senses as 

estimates about the world are produced (Welch & Warren, 1980).   

While many studies have focused on how far this “spatial window” of audiovisual 

integration extends (Chen & Vroomen, 2013), one important question remains: when visual and 

auditory stimuli co-occur at the same spatial location (which is generally the case when an event 

produces both visual and auditory stimulation), which modality’s bias emerges during 

localization?  Is it the auditory bias, the visual bias, or something else? If indeed visual 

localization is biased towards the center, and auditory localization is biased towards the 

periphery, three possibilities exist: vision dominates on most trials, and a central bias emerges; 

the auditory bias dominates, and a peripheral bias emerges; the biases interact, and a hybrid bias 

emerges in the bimodal localizations. It has been shown previously that even when the stimuli 

are congruent in both space and time, they may be perceived to have a common cause or 

independent causes. Therefore, it is also important to explore whether the nature and presence of 

bias in multisensory conditions is influenced by the inference of common cause.  

Finally, another important question that has not been previously explored is the 

following: if indeed the visual and/or auditory localization of stimuli in space is biased and 

inaccurate, what underlies this bias?  Is this bias in localization a result of bias in the sensory 

representation of the space, a result of general a priori expectation of location of events in the 

world, or the result of a combination of these two possibilities? In the former case, the sensory 
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encoding of the stimuli is compressed towards the center of the visual space, and this early 

sensory bias leads to a mislocalization of stimuli towards the center without any effect of prior 

expectations for the location of the stimuli. In the latter case, the sensory representation of the 

visual space may be perfectly accurate and unbiased, but due to the task demands or expectations 

about the location of the stimuli (in this task or in general), the localization may be biased 

towards the center. The third possibility is that the localization bias stems from a combination of 

both of these mechanisms. Teasing apart these three different scenarios requires quantitative 

computational modeling of the data, as explained below.  

The behavioral findings in this study showed that both visual and auditory localizations 

were indeed biased, with visual localizations on average biased towards the center and auditory 

localizations on average biased away from the center. To address whether these biases in spatial 

perception stem from a bias in sensory representations or from a prior expectation of location, we 

employed the causal inference model of multisensory perception (Körding et al., 2007; Wozny, 

Beierholm, & Shams, 2010; Wozny & Shams, 2011a) to quantitatively characterize both sensory 

representations and prior expectations of each individual observer. This model has been very 

successful in accounting for human observers’ data in a variety of multisensory tasks 

(Beierholm, Quartz, & Shams, 2009; Körding et al., 2007; Samad, Chung, & Shams, 2015; 

Wozny, Beierholm, & Shams, 2008; Wozny et al., 2010; Wozny & Shams, 2011a) and a recent 

brain imaging study has provided further support for the brain utilizing this computation in the 

spatial localization task that is used in this study (Kayser & Shams, 2015; Rohe & Noppeney, 

2015). Importantly, this model can reliably provide a quantitative estimate of several components 

of perceptual processing for each individual observer.  
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In a Bayesian framework, the final perceptual estimate is based upon a combination of 

the sensory representation (i.e. likelihood distribution) and pre-existing expectation (i.e. prior).  

Fig. 1 shows different kinds of underlying mechanisms that could produce biases similar to those 

shown by most subjects in our localization task.  In the visual domain, either (1) an a priori bias 

for center in expectation of location of visual stimuli (Fig. 1a), or (2) a bias in the sensory 

representation of visual stimuli towards the center (the likelihood means shifted towards center 

with the amount of shift being proportional to the degree of stimulus eccentricity) could account 

for biased perception (Fig. 1b).  In the auditory domain, either (1) an a priori bias towards 

periphery (Fig. 1c), or (2) a bias away from the center in sensory representations (Fig. 1d; shifts 

of likelihood means away from the center with the degree of shift proportional to stimulus 

eccentricity) could account for participants’ behavior.  The exhibited behavioral biases may also 

be due to a combination of biased likelihood and biased priors. To investigate which of these 

options is indeed the mechanism underlying the observed biases, we implemented all three types 

of mechanisms (biased likelihoods, bias priors, a combination of the two) into a Bayesian Causal 

Inference model and performed quantitative model comparisons to determine which 

computational mechanism best accounts for the behavioral data. 
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Fig. 1.  Possible underlying mechanisms for the biases observed in subjects’ localization responses. Zero on the x-
axis represents the center.   In panels (B) and (D), the likelihood and posterior functions are overlapping and are 
shown in blue. In the visual domain, (A) a prior distribution located at the center of visual space could draw 
localization estimates towards the center, or (B) the likelihood distributions themselves could be biased, drawing 
sensory estimates towards a central location.  In the auditory domain, (C) a prior bias for periphery could push 
perception of peripheral target estimates further away from the center of space, or (D) the likelihood distributions 
themselves maybe biased away from the center.  Various combinations of these computational mechanisms were 
tested in the different proposed models (see Model Comparisons section). 

 
All previous models of multisensory spatial localization assume that sensory 

representations are unbiased, and that the main benefit in integrating stimuli is improvement in 

the overall precision of the combined estimate.  For example, maximum likelihood estimation 

models have proposed that auditory and visual signals can be represented by distributions 

centered at the true location of each stimulus, with the combined audiovisual estimate exhibiting 

a smaller variance than the unisensory estimates (Alais & Burr, 2004; Battaglia, Jacobs, & Aslin, 

2003; Ernst & Banks, 2002).  The reduced variance of the combined estimate has been 
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considered to be the main reason why it may be advantageous for the brain to integrate redundant 

sensory information in a complex world (Ernst & Bülthoff, 2004; Ghahramani, 1995). Here, we 

explore the effect of integration on the bias of the estimates and examine whether localization 

estimates become less biased, more biased or remain the same as a result of integration as 

compared to unisensory conditions.  

In order to address all of these questions, we analyzed psychophysical data and 

quantitatively characterized the perceptual components involved in the spatial perceptual process 

using computational modeling. Specifically, the study had five aims: (1) to quantify unisensory 

spatial biases and variances in the visual and auditory modalities using a large dataset, (2) to 

investigate how biases are reconciled when subjects localize spatially congruent bisensory 

stimuli, (3) to determine whether the biases that emerge in spatially congruent bisensory trials 

depend on an observer’s inference about a common cause, and (4) to determine whether the 

biases in spatial localization are due to a bias in the sensory representations, prior expectations, 

or both, and (5) to examine how the biases in bisensory conditions compare with biases in 

unisensory conditions.  

 
Methods 
 
Participants 
 
 A total of 412 subjects (ages 18-55) participated in our experiment; since our 

measurement of localization biases are means that can be influenced by extreme outliers, 28 

subjects were excluded because their responses for each of the five unisensory conditions in 

either the visual or auditory modalities were more than three times the inter-quartile standard 

deviation for the tested location.  This exclusion criterion ensured that we would avoid analyzing 

data that may have been due to sloppiness or negligence with the response device.   All 
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participants verbally reported that they did not have a history of any neurological conditions 

(seizures, epilepsy, stroke), had normal or corrected-to-normal vision and hearing, and had not 

experienced head trauma.  Each subject also signed a consent form approved by the UCLA IRB.   

 
Apparatus and Stimuli 
 

Eligible participants sat at a desk in a dimly lit room with their chins positioned on a 

chinrest 52cm from a projection screen. The screen was a black, acoustically transparent cloth 

subtending much of the visual field (134° width ° x 60° height).  Behind the screen were 5 free-

field speakers (5 x 8 cm, extended range paper cone), positioned along azimuth 6.5° apart, 7° 

below fixation. The middle speaker was positioned below the fixation point, and two speakers 

were positioned to the right and two to the left of fixation. The visual stimuli were presented 

overhead from a ceiling mounted projector set to a resolution of 1280 x 1024 pixels with a 

refresh rate of 75 Hz. 

Prior to the presentation of any stimuli in the experiment, participants were required to 

have their gaze centered on the central fixation point.  To ensure that participants’ gaze for each 

trial was starting from the same location, gaze position and fixation time were recorded at 60Hz 

with a ViewPoint eye tracker (Arrington Research, Scottsdale, AZ) fixed to the chinrest and PC-

60 software (version 2.8.5,000).  Stimuli were not displayed until the recorded gaze angle was 

within 3.0° of the fixation point and the fixation time was greater than 250 ms. Viewing of the 

stimuli was binocular, although only movements of the right eye were tracked.  The eye tracker 

was adjusted for each participant before the test session to ensure that the entire eye was being 

monitored, and a calibration task was performed before trials for the experiment began. A 

separate computer controlled presentation of stimuli and recorded behavioral responses using 
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MATLAB (version 7.6.0, R2008a).  A wireless mouse was used to record the behavioral 

responses.    

The visual stimuli used in the experiments were white-noise disks (.41 cd/m2) with a 

Gaussian envelope of 1.5° FWHM, presented 7° below the fixation point on a black background 

(.07cd/m2), for 35 ms. The center of visual stimuli overlapped the center of one of the five 

speakers behind the screen positioned at -13°, -6.5°, 0°, 6.5°, and 13°. Auditory stimuli were 

ramped white noise bursts of 35 ms measuring 59 dB(A) sound pressure level at a distance of 52 

cm. The speaker locations were unknown to all of the participants in the experiment. 

 
Procedure 
 

While several previous studies have reported a bias towards center in visual localization 

(Adam et al., 2008; Fortenbaugh & Robertson, 2011; Hubbard & Ruppel, 2000; Kerzel, 2002; 

Sheth & Shimojo, 2001), a few studies have reported peripheral biases, or in one study, veridical 

perception (O. Bock, 1986; Otmar Bock, 1993; Bruno & Morrone, 2007; Henriques, Klier, 

Smith, Lowy, & Crawford, 1998).  Speculations about the source of the variability in findings 

regarding the presence and direction of bias has focused on the specifics of the experimental 

paradigms, including the role of visibility of response location (Uddin, 2006), the visibility of 

external boundaries (Fortenbaugh, Sanghvi, Silver, & Robertson, 2012), the memory demands of 

the task as related to the time before response (Sheth & Shimojo, 2001) and other factors.  Given 

that peripheral localization error in paradigms in which the response mechanism is not visible 

could be due to motor error, and that this study is not interested in motor error, we implemented 

a paradigm where the response cursor was visible at all times. 

 Participants began each session with 10 practice trials requiring localization of 

unisensory auditory stimuli.  This practice session ensured that participants were using the mouse 
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properly, understood the instructions, and were fulfilling the fixation requirements for each trial. 

Each trial started with the fixation cross, followed after 750 ms (if the subject was fixating 

properly) by the presentation of stimuli. 450 ms after the stimuli, fixation was removed and a 

cursor appeared on the screen vertically just above the horizontal line where the stimuli were 

presented at a random horizontal location in order to minimize response bias. The cursor was 

controlled by the trackball mouse placed in front of the subject, and could only be moved in the 

horizontal direction. Participants were instructed to “move the cursor as quickly and accurately 

as possible to the exact location of the stimulus and click the mouse.” This enabled the capture of 

continuous responses with a resolution of 0.1 degree/pixel.  No feedback about the correctness of 

responses was given.  Participants were allowed to move their eyes as they made their response, 

so the fixation requirement was dropped following the presentation of the stimuli. 

Following the brief practice session, participants began the localization session, which 

consisted of 525 trials of interleaved auditory, visual, and audiovisual stimuli presented in 

pseudorandom order.  The stimulus conditions included 5 unisensory auditory locations, 5 

unisensory visual locations, and 25 combinations of auditory and visual locations (bisensory 

conditions), for a total of 35 stimulus conditions, shown in Fig. 2 below. Fifteen trials of each of 

the 35 conditions were presented in pseudorandom order, lasting about 45 minutes, including 

breaks.  

 

 
Fig. 2.  The spatial localization paradigm.  Stimuli could be presented from one of five locations, ranging from -13 
to +13 degrees.  White lines indicate all 25 spatial combinations of bimodal stimuli.  
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Bayesian Causal Inference Model 
 

The Bayesian causal inference model has been shown in multiple studies to account for 

the human multisensory spatial perception very well (Beierholm et al., 2009; Körding et al., 

2007; Wozny et al., 2010; Wozny & Shams, 2011a) and it has been shown to outperform other 

proposed models of multisensory spatial perception (Körding et al., 2007).  Moreover, a human 

neuroimaging study recently provided further support for the Bayesian Causal Inference being 

carried out in human brain in the spatial localization task, using the same task used in current 

study (Rohe & Noppeney, 2015). Therefore, we used this model to investigate the characteristics 

and perceptual components of human spatial processing in our localization task.  In previous 

formulations of this model it had been assumed that (1) the likelihood distributions of sensory 

stimuli are unbiased (centered at the true locations of stimuli in the world), (2) visual and 

auditory localizations are both impacted by a meta-modal central prior over space, and (3) the 

variance of sensory representations (likelihood functions) is uniform across azimuth.  

Considering our behavioral results, which reveal non-zero biases of differing direction and 

magnitude in the visual and auditory modalities, it appears that these simplifying assumptions are 

not quite warranted, and the model would need to be enhanced to allow flexibility in the 

representation of likelihoods and/or priors. 

The nervous system does not have access to the true events s in the world.  Instead, it 

only has access to the noisy sensory representations, xv and xa (denoting visual and auditory 

sensations, respectively).  Taking into account both the noisy sensory representations 

(likelihoods) and prior knowledge of the world (priors), the brain makes an inference about 

whether the sensory signals come from the same source (C=1) and should be integrated or the 

signals come from different sources (C=2) and should be segregated (Fig. 3). 
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Fig. 3. The Causal Inference Model (figure from Wozny & Shams, 2011a).  One cause, s, could produce both the 
auditory and visual signals, or two distinct causes, sV and sA , could produce the auditory and visual signals.  
Subjects only have access to the noisy signals xV and xA, and thus must infer the causal structure, C, that produced 
the sensations on a given trial. 

!
Thus, the posterior probability of an event s is conditioned on the causal structure of the 

stimuli (C=1 or C=2): 
!

! 

p(s | xA ,xV ;C =1) =
p(xA | s)p(xV | s)p(s)

p(xA ,xV )
!! ! ! ! ! ! ,#-!

!

! 

p(sA | xA ;C = 2) =
p(xA | sA )p(sA )

p(xA )
! ! ! ! ! ! ! ,%-!

!

! 

p(sV | xV ;C = 2) =
p(xV | sV )p(sV )

p(xV ) ! ! ! ! ! ! ! ,&-
!

!
! The estimate of the location of the stimuli will be based on these posterior probabilities.  

However, since the causal scenario is not known by the nervous system, this also must be 

inferred based on the available sensory evidence and prior information.  This can also be 

computed using Bayes’ Rule: 

!

! 

p(C | xA ,xV ) =
p(xA ,xV |C)p(C)

p(xA ,xV )
! ! ! ! ! ! ! ,'-!

!
Therefore, 
!

! 

p(C =1 | xA ,xv ) =
p(xA ,xV |C =1)pc

p(xA ,xV |C =1)pc + p(xA ,xV |C = 2)(1" pc )
! ! ! ,(-!
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!
where Pc is the prior probability of a common cause, and the likelihood terms can be computed 

by integrating over the latent variable s: 

!

! 

p(xA ,xV |C =1) = p(xA | s)p(xV | s)p(s)ds" ! ! ! ! ! ! ,)-!

! 

p(xA ,xV |C = 2) = p(xA" | sA )p(sA )dsA # p(xV | sV )p(sV" )dsV ! ! ! ,*-! !
!
The posterior probability of independent causes is computed as follows: 
!

! 

p(C = 2 | xA ,xV ) =1" p(C =1 | xA ,xV ) ! ! ! ! ! ! ,+-!
!
Having calculated the probabilities of each causal structure, and having calculated the optimal 

estimates for spatial localization under each causal structure, we now need to obtain estimates 

given uncertainty about the causal structure.  Previously it has been shown (Wozny et al., 2010) 

that the vast majority of observers use a probability matching strategy as follows: 

 

!
!
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!
!

! !

Therefore, here we used this strategy to model the observers’ data. We used a generative 

model to simulate 10,000 xA’s and xV’s for each experiment condition (35 total) using the 

preceding equations.  Trial-to-trial variability is introduced by sampling the likelihoods from a 

normal distribution centered at the true sensory location, plus a bias term that scales linearly with 

eccentricity of the stimulus. Thus, if subjects’ sensory representations are not centered at the true 
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locations, this bias term could potentially reflect this systematic shift in the likelihoods. The 

variability in the normal distribution from which the likelihoods are sampled scales with 

eccentricity of the stimulus. The prior described in the above equations changes depending on 

the model version, and can either be the biased central prior, the biased peripheral prior, or both, 

(see Fig. 1).  

 We quantitatively compared six models to determine which model could best account for 

participants’ data.  Different mechanisms were incorporated in the different models, resulting in 

different combinations of free parameters. All of these parameters are shown in Table 1, with a 

brief description of their corresponding mechanism. 

Parameter Description 
Pc The prior probability of integrating visual and auditory signals; the tendency to bind 

!V Standard deviation of the visual likelihood; the noise in the visual sensory representation 

!A Standard deviation of the auditory likelihood; noise in the auditory sensory representation 
"xV The shift in the center of the visual likelihood; the bias in the visual representation 

"xA The shift in the center of the auditory likelihood; the bias in the auditory representation 
"!V The increase in visual likelihood std dev with each increase in eccentric position 

!P Standard deviation of the metamodal spatial prior  

xP The mean of the metamodal spatial prior 
!VP Standard deviation of the visual spatial prior 

xVP The mean of the visual spatial prior 
!AP Standard deviation of the auditory spatial prior 

xAP The mean(s) of the auditory spatial prior 
Table 1.  Glossary table of all potential parameters. !

 
Three parameters were included in every model: the prior probability of a common cause 

(Pc), the standard deviation of the visual likelihood (!V), and the standard deviation of the 

auditory likelihood (!A).  Two models incorporated the biased likelihood mechanisms, including 

a symmetric shift in the visual likelihood mean that increases with eccentricity ("xV), a 

symmetric shift in the auditory likelihood mean that increases with eccentricity ("xA); one of 

these models included a change in the visual likelihood variance which increases with 
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eccentricity ("!V), while the other did not.  Two models incorporated the biased prior 

mechanisms, including a visual central prior to capture a central bias (!VP, xVP) and a peripheral 

spatial prior to capture a peripheral auditory bias (with the mean and variance, !AP, xAP, reflecting 

the symmetric aspects of each part of the bimodal distribution); one of these included an 

additional metamodal spatial prior, while the other did not.  We also included the original model 

(Körding et al., 2007), which does not include either the biased likelihood nor the biased prior 

mechanisms, as the baseline for comparison. Finally, we included a hybrid model that 

incorporated all biased likelihood mechanisms ("xV , "xA , "!V) as well as a metamodal spatial 

prior. These models are summarized in the results section.  Since the different models have 

different numbers of free parameters, in addition to reporting their model fits (in log likelihood) 

we also report the BIC value of each model, which is a measure of goodness of fit that penalizes 

models with larger number of free parameters. The six models described above were applied to 

the data from each of the 384 observers, and log likelihood and BIC values were computed for 

each model’s fit to each observer. 

 
Results 
 

The trials in which only a visual stimulus or only an auditory stimulus was presented 

were analyzed for characterizing localization in “unisensory” conditions. The trials in which both 

visual and auditory stimuli were presented and occurred in the same location (congruent 

audiovisual trials) were used to characterize the localization behavior in the “bisensory” 

condition.  

Accuracy of localization in unisensory conditions 
 

 For each observer, the average error in localization (across 15 trials) in the unisensory 

trials was calculated for each spatial position and for each modality. The mean and distribution 
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of these biases across observers are shown in Fig. 4.  Participants’ average localizations for 

unisensory visual stimuli exhibited a bias for localizing peripheral stimuli closer to the center of 

visual space.  Analysis of unisensory-visual trials showed that 63% of subjects (242) exhibited 

central biases for all four peripheral locations of visual stimuli, and 84% of subjects (319) 

exhibited central biases for three out of the four peripheral locations.  This trend for a central bias 

tended to increase as the eccentricity of the visual stimulus increased. In the auditory domain, 

subjects’ average localizations for each location revealed the opposite trend: average 

localizations for eccentric stimuli exhibited a peripheral bias for localizing the stimuli (Fig. 4a,c).  

However, further analysis revealed heterogeneity among subjects for this trend: 25% of the 

subjects exhibited consistent peripheral biases for all four eccentric locations, but 15% of 

participants exhibited consistent central biases.  Overall, though, 45% of the participants 

exhibited a peripheral bias for three out of the four locations, indicating that a substantial 

proportion of subjects localized eccentric auditory stimuli further away from the true locations of 

the sounds. 

Bonferonni-corrected one-sample t-tests for all peripheral localizations in both modalities 

were all highly significant (p < .0001), indicating the responses in both the visual and auditory 

modalities for peripheral locations were biased away from the true location of the stimulus.   For 

the central (0°) localizations, there was no bias in the visual modality (t(383) = 1.5, p > .05), but 

a small bias to the left for the auditory modality was observed (t(383) = -2.9, p = .0042).  

Previous research has indicated that participants often display an auditory localization bias 

contralateral to the preferred hand (Ocklenburg, Hirnstein, Hausmann, & Lewald, 2010), so this 

slight bias could be explained by the near certain-assumption that the majority of our participants 

were right-handed. 
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Fig. 4.  Biases present in localizations on unisensory trials. A) Average biases across subjects. B) The distribution of 
subjects’ individual biases (based on each subjects’ mean across 15 trials) for each location.  Visual biases are 
shown in blue, and auditory biases are shown in red. C) Positive numbers indicate rightward biases, and negative 
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numbers indicate leftward biases.  SEM bars (computed over all subjects) are shown around the mean bias in each 
modality for each location.  !

Accuracy of localization in bisensory conditions 
 
 Given that the average biases in the visual and auditory modalities are in opposite 

directions, an intriguing question arises: in which direction is this conflict resolved when 

auditory and visual stimuli co-occur at the same location? Analysis of congruent bisensory trials 

(i.e., trials on which the visual and auditory stimulus co-occurred at the same spatial location) 

revealed that on average, both the visual and auditory modality exhibited central biases (Fig. 5).  

However, as shown in Fig. 6, further analysis of these trials revealed that the bias that emerged in 

the auditory modality was dependent on whether the observer inferred a common cause or 

distinct causes for the stimuli.   

 

 
Fig. 5.  Visual and auditory biases on spatially congruent bisensory trials. First, each subject’s average bias (over 15 
trials) was computed for each of the five locations. Then, the mean across 384 subjects was calculated.  Error bars 
represent standard error of the mean across subjects’ averages.  !
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 Previous research investigating auditory localizations has shown that the bias that 

emerges in the auditory domain is contingent upon whether observers perceive a simultaneous 

visual stimulus as unified with or independent from the auditory stimulus (see fig. 5 in Wallace 

et al., 2004).  Observers’ explicit reports indicate that even with spatially and temporally 

congruent flashes and sound bursts, sometimes a common cause is perceived, but at other times 

discrepant causes are perceived, and this inference can affect the amount of bias that emerges 

during the localization task.  This phenomenon has been explained quantitatively by a Bayesian 

causal inference model (Körding et al., 2007). Furthermore, recalibration of auditory space by 

vision has been shown to strongly depend on whether or not a common cause is perceived for the 

two stimuli (Wozny & Shams, 2011b). 

 Therefore, we investigated whether the inference of a common cause influences the bias 

in bisensory conditions.  As in Wozny & Shams (2011b), we classified the congruent bisensory 

trials into “common-cause” and “independent-cause” trials based on the observer’s responses.  If 

the visual and auditory localizations were within two degrees of each other, we considered the 

trial as a common-cause trial (as the stimuli are perceived to have the same location, thus 

reflecting the inference of a common cause).  If the visual and auditory localizations were more 

than five degrees apart, we considered the trial to be generated by independent causes (as this 

degree of discrepancy between the two percepts is inconsistent with the inference of a common 

cause, and is unlikely to be due to motor error).  Trials in which the discrepancy between visual 

and auditory responses were in between 2 and 5 degrees were excluded from analysis (due to 

uncertainty about the inference of causal structure). The results are shown in Fig. 6. 
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Fig.  6.  Bisensory trials, classified by inferring one common cause, or two independent causes. Panel A shows 
average biases and panel B displays the distribution of subjects’ individual biases for each location.  In Panel C, 
positive numbers indicate rightward biases, and negative numbers indicate leftward biases.  SEM bars are shown 
around the mean bias in each modality for each location. 

!
 As can be seen in Fig. 6c, on “common cause” trials both modalities show a considerable 

central bias, which increases as eccentricity of the target increases.  Interestingly, comparing 

these common cause trials with the corresponding unisensory trials in each modality reveals an 

important effect: when trials are integrated, the amount of bias decreases in each modality, and 

the localizations become closer to the veridical location of the stimulus (p < .005 for t-tests for 

.!

/!

0!
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all eccentric locations).  For example, in the visual modality, unisensory localizations at the -13 

degree location exhibited a bias towards the center of 1.53 degrees, but when visual localizations 

are integrated with an auditory stimulus at this location, the bias decreases to 1.24 degrees.  This 

reveals an important new finding: multisensory integration not only increases precision in the 

final spatial estimates of stimuli (which was previously well-established), but also increases the 

accuracy of the estimates by reducing biases and bringing the final estimates closer to the true 

stimulus location. 

  Localizations on trials where independent causes were inferred are much more variable: 

while the visual modality shows a central bias that appears to increase as eccentricity increases, 

the bias that emerges in the auditory modality is irregular, and the trend less clear.  This 

variability is apparent in Fig. 6c, where the irregularity in auditory localizations on trials where 

independent causes were inferred is evident.  Thus, to summarize: in spatially congruent 

audiovisual trials in which a common cause is perceived, the visual bias dominates, however, the 

degree of bias is smaller relative to unisensory trials. In contrast, on segregated trials, while the 

visual modality still exhibits a central bias, auditory biases are extremely variable. 

 
Precision of localization 
 
 Analysis of the variability in unisensory trials (Fig. 7) showed the following: the standard 

deviation of visual localizations was not equivalent across conditions (F(4,1532) = 39.467, p < 

.001), and increased as the eccentricity of the stimulus increased (p < .001 for all paired-samples 

t-tests between adjacent conditions).  The standard deviation of auditory localizations also 

revealed differences contingent on stimulus eccentricity (F(4, 1532) = 16.32, p < .001), but in a 

different way.  That is to say, variability in the two auditory standard deviations surrounding the 

zero-degree location (+6.5 and -6.5) degrees) were not significantly different from the variability 
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at the central location (p > .05 for both paired-samples t-tests), but variability in the peripheral 

locations (-13 and +13 degrees) were significantly different from the variability in localizations 

at the spatially adjacent neighbors (p < .001 for both paired-samples t-tests). 

We also evaluated the precision in visual and auditory localizations on trials where the 

visual and auditory stimuli co-occurred at the same locations in space.  In the visual modality, 

similar to the unisensory trials, the standard deviations for visual localizations increased as 

eccentricity increased (F(4,1532) = 29.89, p < .001)).  In the auditory modality, although a 

significant effect emerged (F(4,1532) = 22.73, p < .001), none of the peripheral locations were 

significantly different from one another, and the only significant difference was that variance in 

peripheral locations was larger than that of the center (p < .001 for all paired-samples t-tests).  

 
Fig. 7.  Standard deviations for all five stimulus positions for (A) unisensory visual (blue) and unisensory auditory 
(red) localizations, and (B) bisensory visual (blue) and bisensory auditory (red) localizations for each modality. 
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Model Comparisons 
 

Table 2 shows the results of model fits for each of the 6 models. The first two columns 

describe each model, and columns 3 and 4 show the average of goodness of fits for each model 

averaged across all observers. The lower the log likelihood, the better the fit to the data. As can 

be seen, the 8-parameter model accounts for the observers’ data the best, as it has the lowest 

average log likelihood value, and also has the lowest average BIC value (i.e. the best account of 

the data even after penalizing it for having larger number of free parameters than some of the 

other models).! 

Model Description Model Parameters  Log Likelihood  BIC 
4-Param Original Model  
(Körding et al., 2007) 
Meta-modal Central Bias prior 

Pc, !V, !A, !P -2416.0 4857.1 

5-Param Likelihood Model 
Shift in Likelihood Means 

Pc, !V, !A, "xV, 
"xA 

-2357.9 
 
 

4747.2 

6-Param Likelihood Model 
Shift in Likelihood Means, 
Variable Visual Likelihood 
Variance  

Pc, !V, !A, "xV, 
"xA, "!V 

-2333.9 
 

4705.3 

8-Param Hybrid Model 
Shift in Likelihood Means, 
Variable Visual Likelihood 
Variance, Meta-Modal Central 
Bias Prior 

Pc, !V, !A, "xV, 
"xA, "!V, !P, xP 

-2311.8 
 

4673.7 

7-Param Prior Model 
Visual Central Prior & Auditory 
Peripheral Prior 

Pc, !V, !A, !VP, 
xVP , !AP, xAP 

-2352.3 
 

4748.4 

9-Param Prior Model 
Visual Central Prior, Auditory 
Peripheral Prior, & General 
Spatial Prior  

Pc, !V, !A, !VP, 
xVP , !AP, xAP, !P, 
xP 

-2351.7 4765.7 

Table 2.  Average log likelihood and BIC values for all models that were tested.!

! !
A one-way repeated-measures ANOVA applied to the BIC values (Sato & Kording, 

2014) showed that the model fits were significantly different from one another (F(5) =248.1, p < 

.001).  Furthermore, a post-hoc t-test between the two best models (the 6-parameter and 8-
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parameter model) showed that the 8-parameter model was significantly superior (t(383) = 10.2, 

p=.001).  Thus, a model that incorporates biases in the sensory representations and a general 

(metamodal) prior bias for center best captures observers’ performance in our multisensory 

localization task.  Comparing the 6-parameter likelihood model with the 7-parameter and 9-

parameter prior models shows that the likelihood models outperform the prior models despite 

having smaller number of parameters. Therefore, it appears that a shift in the likelihood centers, 

(i.e. a sensory representation bias) is critical in explaining the data.  !

In the winning hybrid model (8 parameters), the optimized value of the mean for the 

general meta-modal prior was almost zero, reaffirming the central bias that had been assumed in 

the original 4-parameter model (Körding et al., 2007; Wozny et al., 2010).  Therefore, the only 

difference between the winning model and the original 4-parameter model is in the bias in visual 

and auditory sensory representations, and the increase in visual likelihood variance as a function 

of eccentricity.  

!
Discussion 
 
Auditory and visual perception of space is indeed biased 
  

Previous studies have suggested that humans’ visual and auditory spatial  

localizations of space are biased and inaccurate (Adam et al., 2008; Cui et al., 2010; Fortenbaugh 

& Robertson, 2011; Razavi et al., 2007). Why should such a fundamental function that is critical 

to our survival be inaccurate? If such biases are truly present in human perception of space, they 

would pose a riddle and warrant further investigation into their characteristics and function. 

However, the previous studies have been based on relatively small sample sizes that render the 

results prone to outliers and other statistical irregularities. To examine whether these biases are 

real (or reflect noise or other phenomena), we used a very large sample size (384 subjects) and 
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an experimental design minimizing the potential for induction of any perceptual or response 

biases. The experiment consisted of a large variety of unisensory and bisensory stimulus 

conditions presented in pseudo-random order with a uniform distribution across space, and a 

fairly large number of trials per condition. Furthermore, the positions of the auditory and visual 

sources were unknown to the observers, no feedback was provided, and the initial position of the 

response cursor was randomized. Thus, the experimental design could not induce any perceptual 

or response bias for any given position in space. By using rigorous experimental design and 

acquiring a large dataset, we aimed to obtain a more definitive answer to the question of the 

existence and nature of any biases in the visual and auditory perception of space along azimuth.   

The results demonstrated that when observers were asked to localize briefly presented 

visual and auditory targets along azimuth, on average, localizations of unisensory visual targets 

displayed a central bias that increased with eccentricity, and localizations of unisensory auditory 

targets displayed a peripheral bias that increased with eccentricity. Our finding of a central bias 

in visual localization is consistent with most studies in this area, especially those in which the 

cursor was visible during response (which thus minimizes motor error) (Adam et al., 2008; Cui 

et al., 2010; Parise et al., 2012; Razavi et al., 2007). While the vast majority of observers in our 

sample showed a clear and consistent bias towards center in vision, the biases exhibited by 

observers in the auditory modality were more variable and less consistent, but still on average 

displayed a peripheral bias. This finding is also consistent with those of several previous studies 

of auditory spatial localizations (Cui et al., 2010; Lewald & Ehrenstein, 1998; Parise et al., 

2012).  

 Localizations for spatially congruent bisensory stimuli exhibited biases that were 

contingent upon the subject’s inference of the causal structure of stimuli: when a common cause 
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was inferred, the visual bias dominated.  When independent causes were inferred, vision 

continued to exhibit a bias towards the center of space, but the auditory modality on average 

showed a peripheral bias (as in the unisensory auditory condition).  These findings are quite 

consistent with research requiring explicit judgments of unity or discrepancy (Wallace et al., 

2004), indicating that sensory systems implicitly perform inference processes, and that the biases 

that emerge are contingent upon whether or not sensory signals were integrated or segregated.  

Interestingly, on trials for which a common cause was perceived, the opposing biases were 

reconciled in the following manner: the visual bias dominated, although its magnitude was 

reduced. This finding strongly suggests that the observed biases in the unisensory conditions 

stem from a bias in sensory representations. Because visual representations are significantly 

more precise (and reliable) than the auditory representations, in bisensory conditions the visual 

signals dominate, and therefore, the visual bias dominates the auditory bias. However, in 

principle, any bias in perception could originate from either a bias in sensory representations 

(modeled by likelihood functions) or a bias in the expectations or model of the world (prior).  

 
The biases in localization largely reflect biases in sensory representations 
 

While the findings discussed above suggest that biases in bisensory conditions are more 

consistent with a bias in the sensory representations, to address this question rigorously, one 

needs to quantitatively model these scenarios and perform model comparisons to determine 

which mechanism(s) account for the behavioral data the best.   To do this, we used the Bayesian 

Causal Inference model that has been shown to account for human observers’ multisensory 

perception quite effectively (Beierholm et al., 2009; Körding et al., 2007; Rohe & Noppeney, 

2015; Samad et al., 2015; Wozny et al., 2008, 2010; Wozny & Shams, 2011a).  We compared 

models incorporating a bias in likelihoods to those incorporating a bias in prior expectations, and 
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also tested one model that incorporated both mechanisms. We fitted the model parameters to 

each observer’s data, and compared the models based on data from 384 observers. Consistent 

with the qualitative observation discussed above, the quantitative model comparison results 

revealed that indeed a bias in auditory and visual spatial sensory representations is necessary to 

account for the participants’ data. But over and above these sensory biases, a general 

(metamodal) prior bias for center appears to also exist in perception of space.  

 
Why do biases exist? 
 
 Why should the visual system be biased in perceiving locations towards the center? 

Several possibilities exist; one plausible hypothesis is that this bias is an epiphenomenon of the 

superior acuity in the fovea. Due to the much larger number of neurons representing the fovea 

compared to peripheral regions (Connolly & Van Essen, 1984), the representation of space may 

be skewed in that direction if spatial representation involves a population code (Fischer & Peña, 

2011).  In our task, since we enforce fixation at a central point, it seems plausible that this 

cortical magnification effect may skew visual localizations towards the center.  Another possible 

explanation is that an uneven distribution of attention across the visual field causes the biases. 

Evidence for this idea has been demonstrated in previous experiments (Fortenbaugh & 

Robertson, 2011), and these authors note that distributed attention across an axis “leads to focal 

baseline changes at the point of fixation that dissipate with increased eccentricity” (p. 826).  

Additionally, a recent review (Anton-Erxleben & Carrasco, 2013) describes neural models 

accounting for spatial biases caused by attention (see Box 3), and particularly relevant for our 

study is a model (Compte & Wang, 2006) which incorporates attention’s spatial modulation of 

receptive fields in visual cortex (see Fig. 1 and Fig. 3).  Thus, while we can only speculate on the 
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neural mechanisms underlying bias in the visual modality, future neurophysiological studies 

should investigate the origin of this phenomenon. 

The findings regarding peripheral auditory biases also raise the question of why these 

biases should exist in the first place. As noted by Razavi et al. (2007), prolonged fixation in an 

eccentric direction shifts the entire map of auditory space in the direction of the fixation point, 

even for auditory stimuli that are at the same location as fixation. While auditory localizations 

still exhibit a slight peripheral bias when central fixation is maintained, it appears that when the 

eyes are allowed to move, auditory space is shifted in the direction of the eye movement. Thus, 

in our task, as eye position was not constrained, the auditory bias may be at least partially due to 

this mechanism.  The tremendous amount of plasticity in auditory representations has been 

demonstrated not only in the context of eye movements, but also as a function of momentary 

exposure to visual and auditory-visual discrepancy (Wozny & Shams, 2011b). Therefore, 

auditory representation of the space appears to be highly dynamic.  

Moreover, much is still unknown about how auditory spatial perception is encoded in the 

human brain.  One current idea is that rather than having explicit auditory spatial maps, some 

form of a distributed population code is built by neurons that may have broad tuning curves (Lee 

& Groh, 2014).  As noted in a recent review (Salminen, Tiitinen, & May, 2012), this population 

rate code may be able to be characterized as a “hemifield code,” where the firing rates of the 

relevant auditory neuron population are highest for stimuli in the periphery (-90 and +90 

degrees) that maximize the ITD and ILD information available.  This idea has substantial support 

from experimental findings indicating that sound source locations could be encoded by the 

relative firing rates of the right-tuned or left-tuned auditory cortical neurons (Stecker, 

Harrington, & Middlebrooks, 2005; Werner-Reiss & Groh, 2008) and has been further supported 
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by recent neuroimaging work (Salminen, May, Alku, & Tiitinen, 2009; Salminen, Tiitinen, 

Yrttiaho, & May, 2010).  Thus, it seems possible that when peripheral stimuli are presented, 

enhanced activity in the auditory population code skews perception of auditory space towards 

eccentric locations. Future research will need to determine exactly how activity in both cortical 

and subcortical regions contributes to humans’ perception of auditory space. 

 
Multisensory integration reduces the bias in spatial perception 
 
 Multisensory integration may be one of the strategies the nervous system attempts to 

reduce the problem of unisensory biases. Our behavioral data showed that biases in spatial 

perception were much smaller in bisensory congruent trials (in which both sound and light were 

presented at the same location), relative to either the unisensory visual or unisensory auditory 

trials. Therefore, it appears that multisensory integration not only benefits perception by 

improving precision (reducing variability), but also by reducing bias; a win-win approach. 

! !!
Open Questions 
!
 While the present work provides valuable insight into the computational mechanism 

underlying spatial biases in the visual and auditory systems, future research must address several 

pertinent questions. For example, future studies will need to address the extent of these biases in 

more complex environments, including more naturalistic settings.  For instance, it has been 

reported that the localization of objects is often biased towards other elements in the visual field 

(Kerzel, 2002).  Known as the “landmark attraction effect” (Hubbard & Ruppel, 1999, 2000), 

this effect is particularly relevant for the current paradigm; while this investigation illuminates 

the biases present in each modality in a sparse visual scene (i.e. with only a fixation cross present 
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at the start of each trial), the question remains as to how biases change as objects that are 

potential sources of the relevant auditory and visual signals are introduced to the environment.  

!
Conclusion 
 
! Nearly every function critical for human survival depends directly on accurate 

localization of objects and events in the environment. While numerous studies have investigated 

spatial perception in humans, little consensus exists on whether representation of space in the 

human brain is accurate or biased, and if the latter is true, how so and why. 

 The findings of this large-scale study revealed that on average, observers’ localizations 

are inaccurate, as visual localizations show a bias towards the center of space, while auditory 

localizations show a bias towards the periphery. Even more surprisingly, the observed biases in 

localization appear to be at least partly due to biases in sensory representations of space as 

opposed to a priori expectations of the spatial layout of objects in the environment (which may 

be due to a number of non-sensory factors such as the experimental setup, instructions, learning 

the distribution of stimuli during experiment, etc.).  

 In real-world settings, objects frequently produce signals that simultaneously stimulate 

multiple sensory modalities. Considering the opposing biases in the visual and auditory 

modalities, when visual and auditory stimuli co-occur at the same spatial location, which bias 

emerges during localization? The results show that visual bias dominates, however, the 

magnitude of the central bias in the visual modality is reduced when the visual stimulus is 

integrated with a co-occurring auditory stimulus, thus revealing an additional advantage of 

multisensory integration: the reduction of perceptual biases.   
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VIII. 
 

Exposure to discrepant audiovisual signals changes the tendency to integrate 
 
 
Abstract 
 
 While many studies have investigated how spatial and temporal factors influence 

audiovisual integration on single trials, few studies have systematically investigated whether the 

general perceptual tendency to integrate stimuli is fixed or plastic.  In our study, subjects first 

completed a pre-test phase involving localization along azimuth of simple audiovisual stimuli 

with varying amounts of spatial discrepancy, and then engaged an exposure task that included 

audiovisual stimuli with varying spatial and temporal relationships.  This exposure task was 

interleaved throughout a post-test audiovisual localization session.  We fit a Bayesian Causal 

Inference model to both the pre-test and post-data data, and discovered that subjects’ estimated 

prior probability of integrating stimuli increased the most in the post-test phase following 

exposure to repeated stimuli that were (1) spatially discrepant, and (2) synchronous in time.  

Exposure to spatially and temporally synchronous stimuli did not alter integration tendencies.  

The integration prior also increased with exposure to spatially discrepant stimuli that were 

consistently offset by 400ms, indicating the importance of temporal correlations in updating this 

prior.  These findings indicate the brain can learn to integrate discrepant pieces of information as 

long as the temporal structure of the signals provides sufficient evidence to warrant inference 

that the signals come from a common source.  This study reveals counterintuitive findings about 

the factors influencing sensory recalibration, and can inform future investigations looking to 

manipulate the tendency to bind sensory signals. 
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Introduction 

 Our sensory systems are constantly being bombarded by information from various 

sources in the environment, and the brain must determine whether these signals originate from a 

single source and should be integrated, or originate from separate sources and should be 

segregated (Körding et al., 2007; Shams & Beierholm, 2010).  In this process of perceptual 

inference, two of the most influential factors that determine whether or not sensory signals are 

integrated are (1) the spatial relationship between the signals, and (2) the temporal relationship 

between the signals. 

Investigations of how the spatial and temporal relationships between signals influence 

multisensory integration on single trials has been well-documented (for a thorough review, see 

Chen & Vroomen, 2013).  For instance, when auditory and visual stimuli are displayed 

simultaneously from spatially discrepant sources, localization of the auditory signal is often 

biased towards the location of the visual stimulus (Alais & Burr, 2004; Bertelson & 

Aschersleben, 1998; Bertelson & Radeau, 1981; Jack & Thurlow, 1973; M Radeau & Bertelson, 

1987).  The strength of this phenomenon, known as the “ventriloquist effect,” has been shown to 

decrease with increasing spatial and temporal disparity between the signals (Hairston et al., 

2003; Lewald & Guski, 2003; Slutsky & Recanzone, 2001; Wallace et al., 2004). 

In addition to this spatial form of ventriloquism, temporal ventriloquism has also been 

shown by a number of studies (Bertelson & Aschersleben, 2003; Fendrich & Corballis, 2001; 

Morein-Zamir, Soto-Faraco, & Kingstone, 2003; Vroomen & de Gelder, 2004).  In temporal 

ventriloquism, judgments about the timing of visual stimuli are influenced by auditory stimuli 

that either precede or follow the visual stimulus, indicating that crossmodal interactions modify 

multisensory percepts in the temporal domain as well. 
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 However, in addition to these examples of spatial and temporal discrepancies influencing 

immediate perception of multisensory stimuli, other studies reveal how repeated exposures to 

stimuli with fixed discrepancies can cause substantial changes in future perceptual experiences. 

For instance, repeated exposure to spatially discrepant visual and auditory stimuli can result in 

subsequent auditory localizations being mislocalized towards the direction of the previous visual 

stimulus (Bertelson, Frissen, Vroomen, & de Gelder, 2006; Canon, 1970; Frissen, Vroomen, & 

de Gelder, 2012; Frissen, Vroomen, de Gelder, & Bertelson, 2003, 2005; Lewald, 2002; 

Monique Radeau & Bertelson, 1977; Recanzone, 1998).  This form of spatial adaptation is 

typically referred to as the “ventriloquist aftereffect,” although a related phenomenon exists in 

the temporal domain, where studies have shown that auditory and visual signals presented with a 

consistent temporal offset result in recalibration of the point of subjective simultaneity for 

audiovisual signals (Fujisaki, Shimojo, Kashino, & Nishida, 2004; Machulla, Luca, Froehlich, & 

Ernst, 2012; Roseboom & Arnold, 2011; Vroomen, Keetels, de Gelder, & Bertelson, 2004). 

 The presence of these multisensory interactions in the spatial and temporal domains has 

raised interesting questions about the computational principles underlying multisensory 

integration.  In the last decade, several models using Bayes’ rule have shown that they can 

computationally characterize immediate audiovisual interactions in both space (Alais & Burr, 

2004; Battaglia, Jacobs, & Aslin, 2003; Beierholm, Quartz, & Shams, 2009; Körding et al., 2007; 

Witten & Knudsen, 2005; Wozny, Beierholm, & Shams, 2010) and time (Sato & Aihara, 2009; 

Yamamoto, Miyazaki, Iwano, & Kitazawa, 2012).  Additionally, two studies modeling the 

ventriloquist aftereffect in a Bayesian framework have shown that spatial shifts in auditory 

localizations are best captured by shifts in the means of the auditory likelihood distributions 

(Sato, Toyoizumi, & Aihara, 2007; Wozny & Shams, 2011a). 
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 While all of these behavioral and computational accounts have provided valuable insights 

into how spatial and temporal factors influence multisensory integration, an important question 

remains unanswered: how does the brain use spatial and temporal information from previous 

experiences to update its tendencies to integrate multisensory signals?  Few studies have probed 

this question thoroughly, but one important investigation was conducted by Van Wanrooij, 

Bremen, & John Van Opstal (2010).  In their study, subjects were instructed to direct head-

pointing responses to the visual component of a spatially misaligned audiovisual target, and 

completed blocks where the audiovisual stimuli were either always spatially aligned, aligned 

10% of the time, or aligned 50% of the time.  Upon assessing spatially congruent trials, 

differences were shown not only between blocks in the experiments (indicating that prior 

knowledge of trials could modulate integration effects), but from trial-to-trial, indicating that the 

observer’s integration tendencies are extremely plastic, and can be influenced on a moment-to-

moment basis.  This idea regarding the remarkable plasticity of sensory systems is quite 

congruent with previous work showing that representations of external auditory space are 

updated on a moment-to-moment basis, based upon previous multisensory experience (Frissen et 

al., 2012; Wozny & Shams, 2011b). 

 Other investigations that shed light on this question have been conducted using cats 

raised in sensory-impoverished environments.  For instance, one study revealed that cats reared 

in an environment containing spatially and temporally coincident audiovisual stimuli exhibited 

significantly more neurons with integration capabilities in the superior colliculus than a group 

reared with audiovisual stimuli presented at random locations and times (Xu, Yu, Rowland, 

Stanford, & Stein, 2012), indicating that spatial and temporal congruence of signals in the 

environment plays an important role in the development of multisensory integration.  These 
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neurons retained these properties even after living for an entire year in complete darkness, 

indicating the preservation of integration tendencies even in the absence of subsequent sensory 

experience.  This finding is quite congruent with behavioral evidence in humans, which shows 

that without counterevidence, sensory adaptation effects remain for an extended period of time 

(Machulla et al., 2012).   Intriguingly, spatial coincidence does not seem to be necessary for 

these neurons to develop multisensory integration capabilities, as previous work has shown that 

animals reared in an environment with audiovisual stimuli that are always spatially disparate and 

temporally coincident develop neurons with unique integration tendencies, responding 

maximally to stimuli with spatial discrepancy (Wallace & Stein, 2007).  This raises an important 

question: under what conditions do stimuli cause an increase in the tendency to integrate 

multisensory signals?  Is it exposure to spatially congruent and temporally synchronous stimuli, 

or spatially disparate and temporally synchronous stimuli?  Additionally, is temporal synchrony 

necessary to increase the overall tendency to integrate, or will exposure to temporally correlated 

stimuli suffice? 

Recent work has shown that spatially congruent, temporally-offset audiovisual signals are 

integrated optimally when they are presented with correlated timing (Parise, Spence, & Ernst, 

2012); audiovisual signals presented with uncorrelated timing are integrated in a suboptimal 

manner.  Additionally, the just-noticeable differences of spatially-offset audiovisual signals are 

greatest when presented with perfectly correlated timing, compared to conditions with only 

partially-correlated or uncorrelated timing (Parise, Harrar, Ernst, & Spence, 2013).  This finding 

was interpreted in a Bayesian framework, with a coupling prior that captures the strength of the 

tendency to bind based on the temporal correlations between signals.  
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In our investigation, we first computationally characterized observers’ integration 

tendencies by modeling their data from an audiovisual localization paradigm (Wozny & Shams, 

2011a), and then sought to manipulate their tendency to integrate with a ten-minute exposure 

task that included audio and visual signals which varied in their spatial and temporal 

relationships.  Participants were then assessed in a post-test phase using a top-up design to 

determine how these spatial and temporal factors influenced the prior probability of binding 

auditory and visual signals in the environment. 

 

Methods & Model 

Participants and Apparatus 
 
 A total of 189 subjects (ages 18-55) participated in our experiment; 20 subjects were 

excluded due to either negligence with the response device or eyetracker malfunctions during the 

task, and thus analyses for each experiment included between 22-31 subjects.  All participants 

verbally reported that they did not have a history of any neurological conditions (seizures, 

epilepsy, stroke), had normal or corrected-to-normal vision and hearing, and had not experienced 

head trauma.  Each subject also signed a consent form approved by the UCLA IRB.   

 
Apparatus and Stimuli 
 

Eligible participants sat at a desk in a dimly lit room with their chins positioned on a 

chinrest 52 cm from a projection screen. The screen was a black, acoustically transparent cloth 

subtending much of the visual field (134° width ° x 60° height).  Behind the screen were 9 free-

field speakers (5 x 8 cm, extended range paper cone), positioned along azimuth 6.5° apart, 7° 

below fixation. The middle speaker was positioned below the fixation point, and four speakers 

were positioned to the right and four to the left of fixation. The visual stimuli were presented 
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overhead from a ceiling mounted projector set to a resolution of 1280 x 1024 pixels with a 

refresh rate of 75 Hz. 

Prior to the presentation of any stimuli in the experiment, participants were required to 

have their gaze centered on the central fixation point.  To ensure that participants’ gaze for each 

trial was starting from the same location, gaze position and fixation time were recorded at 60Hz 

with a ViewPoint eye tracker (Arrington Research, Scottsdale, AZ) fixed to the chinrest and PC-

60 software (version 2.8.5,000).  Stimuli were not displayed until the recorded gaze angle was 

within 3.0° of the fixation point and the fixation time was greater than 250 ms. Viewing of the 

stimuli was binocular, although only movements of the right eye were tracked.  The eye tracker 

was adjusted for each participant before the test session to ensure that the entire eye was being 

monitored, and a calibration task was performed before trials for the experiment began. A 

separate computer controlled stimuli presentation and recorded behavioral responses using 

MATLAB (version 7.6.0, R2008a).  A wireless mouse was used to record the behavioral 

responses.    

The visual stimuli used in the experiments were white-noise disks (.41 cd/m2) with a 

Gaussian envelope of 1.5° FWHM, presented 7° below the fixation point on a black background 

(.07cd/m2), for 35 ms. The center of visual stimuli overlapped the center of one of the five 

speakers behind the screen positioned at -13°, -6.5°, 0°, 6.5°, and 13°. Auditory stimuli were 

ramped white noise bursts of 35 ms measuring 59 dB(A) sound pressure level at a distance of 52 

cm. The speaker locations were unknown to all participants in the experiment. 

 
Procedure 
 
 Participants began each session by being exposed to 10 practice trials with only unimodal 

auditory stimuli presented.  This practice session ensured that participants were accurately using 
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the mouse, understood the instructions, and were accurately fulfilling the fixation requirements 

for each trial. Each trial started with the fixation cross, followed after 750 ms (if the subject was 

fixating properly) by the presentation of stimuli. 450 ms after the stimuli, fixation was removed 

and a cursor appeared on the screen vertically just above the horizontal line where the stimuli 

were presented at a random horizontal location in order to minimize response bias. The cursor 

was controlled by the trackball mouse placed in front of the subject, and could only be moved in 

the horizontal direction. Participants were instructed to “move the cursor as quickly and 

accurately as possible to the exact location of the stimulus and click the mouse.” This enabled 

the capture of continuous responses with a resolution of 0.1 degree/pixel.  No feedback about the 

correctness of responses was given.  Participants were allowed to move their eyes as they made 

their response. 

Following the brief practice session, participants began the “pre-test” session, which 

consisted of 525 trials of interleaved auditory, visual, and audiovisual stimuli presented in 

pseudorandom order, which took about 45 minutes to complete.  The stimulus conditions 

included 5 unisensory auditory locations, 5 unisensory visual locations, and 25 combinations of 

auditory and visual locations (bisensory conditions), for a total of 35 stimulus conditions (15 

trials per condition), shown in Figure 8A on the following page. Following the “pre-test” session, 

participants were allowed to take a 10-minute break, and then began the “post-test” session, 

which employed a “top-up” design with interleaved blocks of an exposure task, and localization 

trials.  In the exposure task, a visual flash and auditory burst of sound (with a fixed spatial and 

temporal relationship; see individual experiments for details) were presented every 600ms.   

Between every 5th to 15th presentation of the stimuli, the visual flash would get noticeably 

brighter (from 0.41 to 3.2 cd/m2), and participants would have to detect this change in brightness 
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by clicking the mouse.  If they correctly detected the change, the stimuli would change positions, 

with the visual and auditory stimuli switching to opposite sides of the midline (see Figure 8B).  

Note that in three experiments (exps. 2, 5, and 6), the visual and auditory stimuli were presented 

from spatially discrepant locations, but in two experiments (exps. 3 and 4), they were presented 

from the same location, and alternated sides at the same time to maintain spatial congruency.  If 

subjects missed the brightness change, participants had to wait through another cycle for a 

brighter flash to be presented.  Participants were forced to maintain fixation at 0°, and if fixation 

was broken (as detected by the eyetracker), the stimuli paused until it was regained.  This 

brightness detection task was interleaved throughout the post-test session, so localization blocks 

and exposure tasks blocks were performed until 525 localization trials (the same as the pre-test 

session) were completed. 

 

 
 

 
 
 
 
 
 
 
 

Fig. 8. The spatial localization paradigm and exposure task.  (A) Stimuli could be presented from one of five 
locations, ranging from -13 to +13 degrees.  (B) The exposure task paradigm.  This was interleaved with localization 
blocks in the post-test phase.  Depicted above is the stimulus arrangement from experiments #2, #5, and #6 where 
auditory and visual stimuli were always presented from 39 degrees apart, and alternated positions with each correct 
detection of the brighter flash.  In experiments #3 and #4, the auditory and visual stimuli always were presented 
from the same location, and alternated together from one side to the other (see results section for each experiment’s 
details.) 

 
In the post-test phase, the initial exposure task block lasted for 35 correct detections 

(approximately ten minutes), and was followed by a localization block consisting of 40 trials.  

Then, for the remainder of the post-test phase, exposure-task blocks (requiring 8 detections) and 
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localization blocks (40 trials) alternated until 525 localization trials were completed.  Typically, 

the post-test phase lasted between 60 and 75 minutes.   

 
Model 
 

Following collection of each individual subjects’ data, responses were divided into the 

pre-test and post-test datasets, and a Bayesian Causal Inference model with 8 free parameters 

(Odegaard et al., submitted) was fit to the data.   The 8 free parameters included the prior 

probability of inferring a common cause (pcommon, or pc, see Figure 9A), a prior distribution over 

space (Figure 9B) characterized by a mean (xp) and variance (!p), and several parameters 

characterizing the sensory likelihood distributions (Figure 9C).  These likelihood parameters 

included the standard deviation of the visual likelihood variance (!v), how the visual likelihood 

variance changes with eccentricity ("!v), how bias in the visual likelihood mean changes with 

eccentricity ("xv), the standard deviation of the auditory likelihood distributions (!a), and how 

bias in the auditory likelihood mean changes with eccentricity ("xa). 

 
 

 
 
 
 
 

 
 
 

 
 
 
 

 
 

Fig. 9.  Shown above are the eight parameters fit to individual subjects’ data.  (A) The inferred causal structure 
for the presented stimuli.  Subjects could either infer the audiovisual signals come from the same source and 
should be integrated (shown in the left box), or infer that the signals come from disparate sources and should be 
segregated.  Each subject has a unique prior probability of inferring a common cause, which ranges anywhere 
from 0 to 1.  (B) The spatial prior distribution.  (C) Graphical representation of the visual and auditory 
likelihood parameters. 
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Shown in Figure 10, the general idea behind the model is that in this task, observers only 

have access to sensory signals xa and xv, and must determine whether or not the signals come 

from one source and should be integrated, or come from two sources and should be segregated.   

 

Fig. 10.  The Causal Inference Model.  On some trials, the observer may infer that both the 
auditory (xa) and visual (xv) signals come form a single source and should be integrated (shown on 
the left).  On other trials, the observer may infer that the signals come from two sources and 
should be segregated.  The latent variable C determines which model generates the data.   

 
 The noisy sensory signals that the subjects have access to are modeled by likelihood 

distributions for the visual and auditory modalities.  The means for these likelihood distributions 

are sampled from a normal distribution around the true location of the stimulus to simulate the 

corruption of sensory channels by the noise parameters !v and !A, which capture the inherent 

precision of encoding in each sensory modality.  A delta term is also included to capture biases 

in the two sensory channels’ representations.  This delta terms scales with eccentricity (see figure 

9C); if the term is positive, this will account for peripheral biases in the sensory representations.  

If the term is negative, this will account for central biases in the sensory representations.  

 

! 

xV ~ N(sV + "xV ,"#V )          (1) 

! 

xA ~ N(sA + "xA ,"#A )          (2) 
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In this model, observers’ final estimates are not only influenced by noise in the sensory 

likelihoods and biases in how those distributions are represented, but also by pre-existing a 

priori biases over space.  Thus, we also include a spatial prior, as this element has been shown to 

significantly improve the model fits (Odegaard et al., submitted): 

 

! 

p(s) = N(µp , "P )           (3) 
 
  

The likelihoods and spatial prior are combined to compute the posterior probability of a 

sensory event.  The more similar the sensory signals are, the more likely scenario is that they 

have originated from the same source and thus should be integrated; with more discrepant 

sensory signals, it is more likely they originated from separate sensory signals and thus should be 

segregated.  Thus, the posterior probability of a sensory event s is conditioned on the causal 

structure of the stimuli, with the optimal combinations according to each causal scenario listed 

below: 

 

 

! 

p(s | xA ,xV ;C =1) =
p(xA | s)p(xV | s)p(s)

p(xA ,xV )
       (4) 

 

! 

p(sA | xA ;C = 2) =
p(xA | sA )p(s)

p(xA )
        (5) 

 

! 

p(sV | xV ;C = 2) =
p(xV | sV )p(s)

p(xV )
        (6) 

 
  

The maximum a posteriori estimate of these computed posteriors reflects the optimal 

combination of the sensory signals given one or two causes.  Since subjects do not know whether 

or not the signals were generated by one or two sources, this must be inferred, incorporating both 
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the sensory likelihoods and the prior information as well.  This process of inference can be 

computed according to Bayes’ Rule:  

 

! 

p(C | xA ,xV ) =
p(xA ,xV |C)p(C)

p(xA ,xV )         (7) 
 
 In order to compute the posterior probability of a single cause, this can be done in the 

following manner, with pc denoting the prior probability of the common cause:  

 

! 

p(C =1 | xA ,xv ) =
p(xA ,xV |C =1)pc

p(xA ,xV |C =1)pc + p(xA ,xV |C = 2)(1" pc )     (8) 
 
  

In this equation, the likelihood terms can be computed by integrating over the latent 

variable s: 

 

! 

p(xA ,xV |C =1) = p(xA | s)p(xV | s)p(s)ds"        (9) 

! 

p(xA ,xV |C = 2) = p(xA" | sA )p(sA )dsA # p(xV | sV )p(sV" )dsV     (10) 
 
  

Following integration over the latent variable s, the posterior probability of a common 

cause can be computed, and thus, the posterior probability of two causes can also be computed: 

 
 

! 

p(C = 2 | xA ,xV ) =1" p(C =1 | xA ,xV )        (11) 
 
  
 Finally, it must be determined how this inferred posterior probability can be used to 

weight the various sensory estimates.  Three possible perceptual strategies exist, as shown 

below: 

Model Selection:  
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       (12) 

 
Model Averaging: 
 

! 

s
"

A = p(C =1 | xA , xV ) s
"

A ,C =1 + p(C = 2 | xA ,xV ) s
"

A ,C =2

s
"

V = p(C =1 | xA , xV ) s
"

V ,C =1 + p(C = 2 | xA ,xV ) s
"

V ,C =2

      (13) 

 
 
Probability Matching: 

 
 
 
 
      
  

(14) 

 
For each subject, we fit the eight free parameters (Figure 9) to individual subjects’ data, 

and also determined whether subjects data were best classified by a probability matching 

strategy, model averaging strategy, or model selection strategy (Wozny et al., 2010, see study #1 

for details).  This was done simulating 10000 trials using MATLAB’s fminsearchbnd function 

(Mathworks, 2006), maximizing the likelihood of the parameters of the model. The parameter 

fits from the best-fitting strategy were then included in analyses shown in the results section. 
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Hypotheses regarding the prior for integrating stimuli  
 
 While we evaluated changes in all parameters between our pre-test and post-test 

localization sessions, we formulated specific hypotheses regarding how the prior for inferring 

that stimuli came from a common source (“PCommon” or “pc”) might change as a result of the 

different exposure task conditions.  These hypotheses are shown in Table 3 on the following 

page.  Intuitively, it seems reasonable that the brain should learn to integrate stimuli when 

exposed to repetitive presentations of spatiotemporally congruent signals, indicating that these 

stimuli could come from the same source (i.e. occur at the same location and at the same time).  

Similarly, it also seems reasonable to hypothesize that the brain should learn to segregate 

information when these stimuli are repeatedly presented in a manner that indicates that they 

originate from different sources (i.e. differ in either location or in time). 

 

Experiment Time Space Expected Change in 
PCommon 

Experiment 1 None None None 
Experiment 2 Uncorrelated Incongruent Decrease 
Experiment 3 Congruent Congruent Increase 
Experiment 4 Uncorrelated Congruent Decrease 
Experiment 5 Congruent Incongruent Decrease 
Experiment 6 Correlated Incongruent Decrease 

Table 3.  Hypotheses regarding the PCommon parameter.  The “time” column denotes whether the stimuli in the 
exposure task were temporally uncorrelated (drawn from a uniform distribution), temporally correlated (separated in 
time, but always by a fixed 400ms discrepancy), or temporally congruent (i.e. synchronous).  

 
 
Results 
 
Experiment #1: The Control Experiment (N = 27) 

 In this experiment, participants completed a standard pre-test localization session, and 

then completed a post-test localization session, which did not include the exposure task.  Instead, 

this post-test session included blocks where participants would simply listen to music for brief 
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periods of time (equivalent to the amount of time the exposure task would have taken).  The 

purpose of this experiment was to determine whether model parameters were consistent from one 

session to the next, in the absence of including the exposure task. 

 

 
As shown in Table 4, none of the parameters significantly changed from the pre-test to 

the post-test in the control experiment, indicating that practice and fatigue effects played a 

negligible role in participants’ localization behaviors over time in this paradigm, and that any 

changes seen in parameters in other experiments would be due to the effects of the exposure task. 

The probability of inferring a common cause (pc) increased by only .05 in the post-test phase, 

and pairwise t-tests conducted to test for differences did not yield any significant findings for this 

parameter, or any others included in the model (p > .05 for all paired-samples t-tests). 

 

Exp. #2: Spatially Incongruent & Temporally Uncorrelated Exposure-Task Stimuli (N=22) 

 In this experiment, individuals first completed the standard localization session 

comprised of 525 trials of visual, auditory, and audiovisual trials.  Following this, they 

completed a ten-minute exposure-task session where visual and auditory stimuli were always 

presented from 39 degrees apart (i.e. when one stimulus was at -19.5°, the other stimulus was at 

+19.5°, and these stimuli flipped positions with each correct detection). Timing of the stimuli 

during the exposure-task session was randomized, as the presentation times were drawn from 

Prior Parameters Likelihood Parameters  
pc !p xp !v "!v "xv !a "xa 

Pre-Test 0.46  
(± .06) 

21.57  
(± 2.79) 

-0.06  
(± 1.71) 

1.38 
(± .12) 

0.44  
(± .05) 

-0.64  
(± .08) 

15.37 
(± 1.76) 

4.58  
(± .87) 

Post-Test 0.51  
(± .06) 

21.26  
(± 3.38) 

2.37 
(± 1.41) 

1.50 
(± .13) 

0.45  
(± .04) 

-0.67  
(± .08) 

17.35 
(± 2.09) 

5.61  
(± .82) 

Table 4.  Optimized Parameter values ± standard error parameter estimates from experiment 1. 
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uniform distributions, and thus the two signals were temporally uncorrelated.  Two-minute 

blocks of this task were then interleaved in the post-test localization sessions. 

 

Table 5.  Optimized parameter values ± standard error parameter estimates from experiment 2. * indicates p < .05, 
** indicates p < .01. 

!
 As shown in Table 5, the prior for inferring a common cause (pc) was not significantly 

different from the pre-test to the post-test session, as these values only changed from 0.52 to 

0.51, indicating that subjects were consistent in their tendency to integrate following engagement 

with exposure-task stimuli.  Thus, presentation of these discrepant stimuli in the exposure task 

did not decrease the tendency to bind; instead, it remained consistent from one session to the 

next.  Two other minor trends are worthy of commentary: the central bias in the visual likelihood 

parameter increased by three tenths of a degree in the post-test phase (t(21) = 4.05, p = .001); this 

is likely due to the fact that fixation was enforced during the interleaved exposure task sessions, 

thus resulting in a slight “tunnel vision” effect from the eyes being left in one place for extended 

periods of time.  Additionally, the auditory likelihood variance parameter was trending towards 

significance, but the paired-samples t-test did not survive a Bonferroni correction (t(21) = -2.856, 

p > .00625).   

!
!
Experiment #3: Spatially Congruent & Temporally Congruent Exposure-Task Stimuli (N = 30) 

 In this experiment, participants completed the standard pre-test localization phase, and 

then a post-test session with both exposure task blocks and localization blocks.  The exposure 

Prior Parameters Likelihood Parameters  
pc !p xp !v "!v "xv** !a* "xa 

Pre-Test 0.52  
(± .07) 

24.64  
(± 4.23) 

0.69  
(± 2.14) 

1.40  
(± .13) 

0.59  
(± .06) 

-0.32  
(± .12) 

13.38 
(± 1.5) 

2.71  
(± .86) 

Post-Test 0.51  
(± .07) 

31.80  
(± 4.07) 

1.60 
(± 2.02) 

1.70 
(± .20) 

0.49  
(± .03) 

-0.61  
(± .14) 

16.66 
(± 1.5) 

1.59  
(± 1.0) 
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task stimuli in this experiment consisted of spatially and temporally congruent visual flashes and 

auditory bursts of noise.  These repeated presentations arose from either +/-19.5°, and would 

switch to the position on the other side of the midline with each correct detection of the bigger 

and brighter flash.  The purpose of this experiment was to determine how repeated presentations 

of spatially & temporally synchronous inputs would affect behavior in the post-test localization 

blocks. 

Prior Parameters Likelihood Parameters  
pc !p xp !v "!v "xv !a "xa 

Pre-Test 0.45  
(± .06) 

21.24  
(± 3.28) 

0.70  
(± 1.26) 

1.18 
(± .10) 

0.64  
(± .08) 

 -0.69 
(± .11) 

18.80 
(± 1.80) 

5.07  
(± .73) 

Post-Test 0.48  
(± .07) 

29.13  
(± 4.69) 

1.08 
(± 1.42) 

1.30 
(± .17) 

 0.55 
(± .07) 

 -0.73 
(± .12) 

17.34 
(± 1.78) 

 4.17 
(± 1.0) 

Table 6.  Optimized parameter values ± standard error parameter estimates from experiment 3. 

!
 Displayed in Table 6 above, none of the parameters significantly changed from the pre-

test to the post-test localization session.  It is interesting to note that repeated exposure to 

spatiotemporally congruent stimuli did not significantly increase the tendency to bind (pc) in the 

post-test localization session ((t(29) = -0.72, p = .480), as individuals only slightly increased 

from 0.45 to 0.48 between the two sessions. 

 

Experiment #4: Spatially Congruent & Temporally Uncorrelated Exposure-Task Stimuli (N=30) 
 
 In experiment four, participants again first took part in a standard pre-test localization 

block, and then engaged an exposure task with stimuli that were spatially congruent, but 

temporally uncorrelated (i.e. drawn from a uniform distribution).  As in other experiments, 

following the initial ten-minute exposure task block, shorter two-minute versions of the exposure 

task were interleaved throughout the post-test localization session. 
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Prior Parameters Likelihood Parameters  
pc !p xp !v "!v "xv* !a "xa 

Pre-Test 0.48  
(± .06) 

28.80  
(± 4.96) 

1.88  
(± 1.10) 

1.29 
(± .09) 

0.58  
(± .04) 

0.15  
(± .08) 

18.65 
(± 1.73) 

5.88  
(± .74) 

Post-Test 0.51  
(± .07) 

30.31  
(± 5.24) 

1.16 
(± 1.10) 

1.44 
(± .13) 

0.52  
(± .03) 

-0.01  
(± .09) 

17.70 
(± 1.83) 

5.41  
(± .72) 

Table 7.  Optimized parameter values ± standard error parameter estimates from experiment 4.  * indicates p < .05. 

  

As shown in Table 7, none of the parameters were significantly different from one 

another between the pre-test and post-test localization sessions, indicating that exposure to 

spatially congruent, temporally uncorrelated exposure-task stimuli did not change the tendency 

to integrate, the sensory likelihoods, or the spatial prior.  The visual likelihood bias in this group 

of subjects was trending towards more veridical perception in the post-test localization phase, but 

this trend was not strong enough to survive a Bonferroni correction (p > .00625). 

 
 
Experiment #5: Spatially Incongruent & Temporally Congruent Exposure-Task Stimuli (N = 29) 

 This experiment included the standard pre-test localization phase, and then a post-test 

session that included exposure-task stimuli that were temporally synchronous, but arose from 

spatially discrepant locations (see Figure 8B).  For instance, during the exposure task, if the 

visual flash was presented at +19.5°, the auditory stimulus would be synchronously presented at 

-19.5°.  Upon a correct detection, these stimuli would switch positions, with each now being 

present in the position on the opposite side of the midline.  Thus, the visual and auditory stimuli 

in the exposure task were always presented 39° apart.  The purpose of this experiment was to 

investigate how exposure to spatially discrepant stimuli that are presented at the same time 

impacts subsequent localizations in the experiment. 
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Prior Parameters Likelihood Parameters  
pc** !p xp !v "!v "xv** !a "xa 

Pre-Test 0.34  
(± .04) 

19.76  
(± 2.93) 

-1.30  
(± 1.23) 

1.20 
(± .08) 

 0.51 
(± .05) 

-0.44  
(± .08) 

15.88 
(± 1.73) 

4.61  
(± 0.90) 

Post-Test 0.52  
(± .06) 

24.20  
(± 4.20) 

-0.70 
(± 1.22) 

1.23 
(± .09) 

0.47  
(± .05) 

 -0.60 
(± .08) 

17.28 
(± 1.76) 

2.95  
(± 0.86) 

Table 8.  Optimized parameter values ± standard error parameter estimates from experiment 5. ** indicates p < .01. 

! !

As shown in Table 8, two important changes to the parameters occurred.  First, the prior 

probability of inferring a common cause significantly increased by 18% in the post-test phase 

(t(28) = -3.203, p = .003).  Importantly, this change in binding in subjects was not fully 

accounted for by increases in unisensory noise, or shifts in the likelihood means; the change was 

primarily in the prior for integration.  Additionally, the delta parameter for visual likelihood was 

also highly significant (t(28) = 3.655, p = .001), indicating that participants’ slight central bias in 

the visual modality in the pre-test phase increased in magnitude in the post-test phase.  In other 

words, participants may have experienced an effect of “tunnel vision” due to the exposure task, 

as fixation was enforced throughout the exposure task that interleaved localization blocks in the 

post-test phase, and thus, and their central bias likely increased by two-tenths of a degree due to 

this factor alone.   

 The significant increase in the prior probability for a common cause can be seen in the 

model fits and behavioral data from the pre-test and post-test phase.  Shown in Figure 11 on the 

following page is one representative subject that exhibited a 14% increase in PCommon from the 

pre-test to the post-test phase; note the increase in the overlap between the visual and auditory 

distributions in spatially discrepant bimodal trials, demonstrating the subject’s increased 

tendency to integrate visual and auditory signals. 

!
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!
Fig. 11. One representative subject’s data and model fits from the pre-test and post-test localization phases.  This 
subject had a “Pcommon” value of 0.58 in the pre-test phase, which increased by 14% to 0.72 in the post-test phase 
(this is comparable to the overall average increase of 18%, shown in Table 8).  Note the increase in overlap between 
the visual and auditory distributions in the post-test phase, particularly for the conditions in which the visual and 
auditory stimuli were presented from spatially disparate locations.  This figure visually demonstrates how exposure 
to spatially discrepant auditory and visual stimuli during the detection task increased the tendency to bind sensory 
signals during the post-test localization phase. 
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Experiment #6: Spatially Incongruent & Temporally Correlated Exposure-Task Stimuli (N = 31) 
!
 In this final study, the standard pre-test localization phase was conducted, and then in the 

post-test phase, the exposure-task stimuli were composed of visual flashes and auditory bursts 

that were always presented 39° apart.  For instance, if the visual stimulus was presented at -

19.5°, the auditory stimulus would be presented at +19.5°, and then these stimuli would alternate 

positions with each correct detection.  However, in contrast to experiment #5, the visual stimulus 

always preceded presentation of the auditory stimulus by 400ms; thus, the stimuli were always 

temporally incongruent, but were presented with a consistent temporal correlation.  The purpose 

of this study was to probe whether temporal synchrony was necessary to induce the parameter 

changes seen in experiment #5, or whether temporal correlations could also have the same 

effect. 

Prior Parameters Likelihood Parameters  
pc** !p xp !v "!v "xv** !a "xa 

Pre-Test 0.40  
(± .05) 

20.04  
(± 3.53) 

2.31  
(± 1.14) 

1.20 
(± .10) 

0.49  
(± .04) 

-0.46  
(± .10) 

15.53 
(± 1.72) 

 4.97 
(± 0.79) 

Post-Test 0.51  
(± .05) 

26.28  
(± 5.17) 

1.54 
(± 1.12) 

1.12 
(± .10) 

0.52  
(± .04) 

-0.66  
(± .12) 

14.26 
(± 1.62) 

4.04  
(± 0.96) 

Table 9.  Optimized parameter values ± standard error parameter estimates from experiment 6.  ** p < .01 

 As shown in Table 9, the prior probability of a inferring a common cause increased by 

11% in the post-test phase, (t(30) = -4.503, p < .001), indicating that while exposure to 

synchronous temporal relationships increases the tendency to integrate multisensory signals (exp. 

#5), temporally-offset, but perfectly correlated signals can also facilitate a very similar effect.  

Therefore, it appears that the brain can learn to integrate spatially discrepant pieces of sensory 

information that would normally be segregated if repeated events with a consistent temporal 

structure are presented for a brief period of time.  Additionally, the delta parameter for the visual 

likelihood showed an increase in the central bias in the post-test phase (t(30) = 3.385, p = .002), 

likely reflecting the same “tunnel vision” phenomenon as commented on previously.   
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Summary of PCommon Results 
  
 The results of the previous experiments demonstrate how subjects’ tendencies to integrate 

audiovisual stimuli are plastic, and can be modified based on previous experience.  A summary 

table of how spatial and temporal factors influence the tendency to bind is shown below. 

 
Experiment Time Space Change in PCommon 

Experiment 1 None None None 
Experiment 2 Uncorrelated Incongruent None 
Experiment 3 Congruent Congruent None 
Experiment 4 Uncorrelated Congruent None 
Experiment 5 Congruent Incongruent Significant Increase 
Experiment 6 Correlated Incongruent Significant Increase 
!"#$%&'()&&,-../01!23!456407.489/:!;</8=4>!78!9<4!?@2..28!6/0/.4940A!B/>4C!28!9<4!94.620/:!/8C!>6/97/:!;</0/;9407>97;>!
23!9<4!4562>-04D9/>E!>97.-:7F 

!
Surprisingly, all of our hypotheses regarding how the prior for integrating stimuli would 

change based on experience (except for the first experiment) were incorrect.  We had 

hypothesized that repeated presentations of spatiotemporally congruent stimuli (experiment 3) 

would teach the brain an association between the auditory and visual stimuli, and thus increase 

the tendency to integrate in the post-test localization phase.  Instead, this experiment produced a 

null result, as the PCommon parameter did not change between the two sessions.  Instead, the only 

conditions which changed PCommon were conditions in which the visual and auditory exposure-

task stimuli were (1) spatially discrepant, and (2) presented with a fixed temporal relationship 

(either synchronous or consistently staggered by 400ms).  Interestingly, none of the exposure-

task conditions resulted in a decrease in PCommon.  Even in experiments #2 and #4, where the 

brain may plausibly have learned to segregate the signals based on the relationships between 

stimuli, PCommon values were consistent from the pre-test to the post-test phase, leaving the 

question of how the brain can learn to effectively segregate information unanswered.
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Discussion 

 As noted in a recent review, one of the major unsolved questions in a Bayesian account 

of perception is how priors change or update over time, as new sensory experience is acquired 

(Seriès & Seitz, 2013).  Here, we demonstrate that our prior tendency to integrate multisensory 

stimuli can be increased through exposure to audiovisual stimuli with fixed spatial and temporal 

relationships.  Specifically, this prior is increased through not only exposure to spatially 

disparate/temporally synchronous stimuli, but also spatially disparate/temporally correlated 

stimuli.  Surprisingly, this prior is not significantly increased when observers are exposed to 

spatially congruent/temporally congruent stimuli. 

It has been well-documented that perceptual priors in human observers can change (Knill, 

2007; Körding & Wolpert, 2004; Miyazaki, Nozaki, & Nakajima, 2005; Sotiropoulos, Seitz, & 

Seriès, 2011).  This principle even applies to priors that govern integration; for instance, subjects 

can learn to integrate artificially correlated signals that would not normally be integrated, such as 

luminance and stiffness, with repeated exposure to statistical co-occurrences (Ernst, 2007).  

Further demonstrating this principle is a recent investigation showing that discrepant visual and 

vestibular cues may be initially segregated, but with repeated exposure to their presentation, 

subjects can learn to integrate them (Kaliuzhna, Prsa, Gale, Lee, & Blanke, 2015).  This 

demonstrates the brain’s plastic capacity to learn to integrate discrepant pieces of information 

based on previous sensory experiences. 

Additionally, the visual “light-from-above” prior can be modified and applied to novel 

visual contexts (Adams, Graf, & Ernst, 2004), and additional studies have revealed that this prior 

can be modified by not only crossmodal feedback, but within-modality feedback as well (Adams, 

Kerrigan, & Graf, 2010).  The authors conclude that one of the driving influences behind 
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recalibration may be what they deem the “oops factor,” as sequential presentations of similar 

stimuli may be used to update and refine how an object is represented.  In their paradigm, 

intermittent feedback served to update the object representation.  In our paradigm, even though 

observers are given no feedback, our exposure task may be functioning in a similar manner: 

repeatedly presenting stimuli outside of the range used in the pre-test or post-test phases may 

cause the brain update the boundaries it uses to determine which stimuli should be integrated as a 

single object, and which stimuli should be segregated as separate objects.  Temporal factors, 

including both synchrony and correlations, seem to be the most influential variables involved in 

updating these spatial boundaries, causing the brain to revise its prior probability of binding even 

when stimuli in the exposure task were presented from extremely discrepant locations. 

These results are quite theoretically important when interpreted in light of recent ideas 

about how predictive coding may be implemented in the brain.  As noted in a recent review,  

“One influential framework to explain the intricacies of multisensory processing is that of 

predictive coding.  The predictive coding framework states that the brain produces a 

Bayesian estimate of the environment (Friston, 2010).  According to this view, stochastic 

models of the environment exist somewhere in the brain, which are updated on the basis 

of processed sensory information.  These stochastic models (see Klemen & Chambers, 

2012, for a review) thus provide the brain areas lower in the sensory processing hierarchy 

with predictions (or in Bayesian terms “priors”) that can be used to adjust the processing 

of ongoing sensory input.  A strong mismatch between the prediction and the actual 

sensory input will then result in a major update of the internal model.  For example, when 

unexpected sensory input is present, our internal model may require updating to deal with 

this change in representations” (Talsma, 2015, p.2).  
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Our studies provide evidence for precisely this phenomenon: when repeatedly presented with 

pieces of sensory information that are normally segregated in one dimension (i.e. space), the 

brain can use information in another dimension (i.e. time) to learn about a relationship between 

the signals, and can then use this information to update its internal model of the world.   Our 

studies demonstrate that this extremely plastic capacity of the brain can result in a change of its 

internal model of the causal structure of the world in an extremely short period of time (less than 

ten minutes), revealing an adaptive advantage of the system to learn about new associations 

between sensory signals in the environment, even in adulthood.  

 While our study of recalibration is based purely upon behavioral data, recent 

neurophysiological studies have provided some insights regarding how our findings might be 

implemented at the level of an individual neuron.  For instance, in normally-reared adult cats, 

repeated exposures to audiovisual stimuli that are aligned in space but separated in time results in 

a merging of the distinct unisensory responses into a fused neural signature similar to what is 

seen for integrated stimuli, indicating plasticity that results in a new tendency to integrate across 

time (Yu, Stein, & Rowland, 2009).  Another study found that in adult cats reared in darkness, 

previously naïve neurons could exhibit multisensory integration tendencies with as little as six 

hours of exposure to spatiotemporally synchronous audiovisual stimuli (Yu, Rowland, & Stein, 

2010).  According to the authors, “[the results] suggest that multisensory integration is subject to 

continual modification throughout life . . . though this possibility requires far more experiential 

support” (Yu et al., 2010, p. 4912).  The finding that multisensory integration tendencies in 

neurons exhibit a high degree of plasticity into adulthood is congruent with the behavioral 

findings from our current study, as we were able to manipulate adult observers’ tendencies to 

integrate in a very small time window. 
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  Our study reveals important insights regarding the spatial and temporal factors 

underlying audiovisual recalibration, and could inform protocols to improve sensory integration 

in individuals with sensory integration deficits.  For instance, the finding that the tendency to 

integrate increases the most with exposure to temporally synchronous but spatially discrepant 

audiovisual stimuli indicates that to increase the brain’s capacity to integrate, visual and auditory 

signals should be separated when repeatedly presented.   Future studies will be needed to 

determine how these newly discovered principles can inform protocol to improve integration in 

clinical populations (e.g. autism, schizophrenia), and should also continue to probe whether these 

principles are specific to audiovisual integration, or represent general principles that apply to 

other modality combinations as well.  
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IX. 
 

The effects of selective and divided attention on sensory integration 
 
 
 
Abstract 
 
 In our daily lives, our capacity to selectively attend to stimuli within or across sensory 

modalities enables enhanced perception of the surrounding world.  While previous research on 

selective attention has studied this phenomenon extensively, two important questions still remain 

unanswered: (1) how selective attention to a single modality impacts sensory integration 

processes, and (2) the mechanism by which selective attention improves perception.  We 

explored how selective attention impacts performance in both a spatial task and a numerosity 

judgment task, and employed a Bayesian Causal Inference model to investigate the 

computational mechanism(s) impacted by selective attention.  Here, we report three interesting 

findings: in the spatial domain, selective attention improves precision of the visual sensory 

representations, but not the auditory sensory representations; in the temporal domain, selective 

attention improves the sensory representations in both modalities; in both tasks, selective 

attention exerts minimal influence over the tendency to integrate sensory stimuli.  We conclude 

with a discussion of how these results relate to recent theoretical considerations regarding the 

topic of selective attention. 
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Introduction 

 
In our daily lives, our capacity to selectively attend to information from a single sensory 

channel is extremely important as we attempt to accurately process information from the 

surrounding world.  For instance, in order to effectively read and comprehend passages in a 

book, one needs to allocate attentional resources exclusively towards processing the visual 

information on the page.  However, if we want to listen to a lecture in podcast format and fully 

comprehend what is being discussed, we will need to exclusively attend to the auditory 

information, at the expense of sensory stimuli in other modalities.  This process of selectively 

attending to a single sensory modality is critical for being able to quickly and effectively 

navigate a busy world in which important information could come from different sensory 

channels at any given time.       

Previous research indicates that selective attention improves processing in the attended 

modality.  Behaviorally, selective attention to a single sensory modality has been shown to 

improve sensory discriminations in the attended modality (Bonnel & Haftser, 1998), decrease 

reaction time to targets (Spence & Driver, 1997), and improve spatial discrimination (left vs. 

right) judgments (Spence, Nicholls, & Driver, 2001).  Neuroimaging studies indicate that 

selective attention to either visual or auditory stimuli in multisensory environments can increase 

activity in the corresponding sensory cortices, while dividing attention across those two 

modalities results in only a slight, simultaneous activation of both brain regions (Jennifer 

Adrienne Johnson & Zatorre, 2006; Jennifer A. Johnson & Zatorre, 2005; Laurienti et al., 2002; 

Loose, Kaufmann, Auer, & Lange, 2003; Shomstein & Yantis, 2004). This general idea is 

consistent with several ERP studies indicating that the effect of selective attention to one type of 

sensory input is to enhance activity in the applicable cortical area (Alho, Woods, & Algazi, 1994; 
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Eimer & Schröger, 1998; Hötting, Rösler, & Röder, 2003).  Thus, studies indicate that 

processing is improved for the attended modality, but the mechanism involved remains unclear. 

Computationally, models assuming optimal Bayesian integration of sensory cues have 

accurately captured human observer’s performance on a number of multisensory tasks (Alais & 

Burr, 2004; Ernst & Banks, 2002; Körding et al., 2007).  However, as noted in a recent review, 

“the success with which Bayesian . . . models can describe the interaction between attention and 

multisensory integration remains yet to be answered” (Talsma, 2015, p.3). Therefore, we aim to 

provide insight into how selective attention exerts its beneficial affects in a Bayesian framework 

by employing a Bayesian Causal Inference model (Beierholm, Quartz, & Shams, 2009; Körding 

et al., 2007; Rohe & Noppeney, 2015; Samad, Chung, & Shams, 2015; Wozny, Beierholm, & 

Shams, 2010; Wozny & Shams, 2011) and comparing conditions of selective and divided 

attention. Because the effect of attention could potentially differ in separate modalities, tasks, or 

domains, we explore these questions systematically by implementing both a spatial task and a 

numerosity task, and testing how attention to the visual or auditory modality alone differs from 

conditions where attention is allocated to both modalities at the same time.  

Most previous studies investigating selective attention indicate that it improves 

processing of an attended feature (Ball & Sekuler, 1980; Corbetta & Shulman, 2002; Dosher & 

Lu, 2000; Motter, 1994; Posner, Snyder, & Davidson, 1980).  However, this could be due to 

improving the sensory representations (reducing noise), or due to improving expectations about 

when and where things will occur in the environment. Using our computational model, we aim to 

establish whether selective attention exerts effects on the sensory representations or a priori 

expectations by quantitatively estimating both of these components in each observer in each task.   
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Finally, while the question of attention’s impact on integration has been explored 

extensively by previous research and thoroughly discussed in several recent reviews (Koelewijn, 

Bronkhorst, & Theeuwes, 2010; Talsma, 2015; Talsma, Senkowski, Soto-Faraco, & Woldorff, 

2010), studies investigating the question of how (or if) attention can influence the integration of 

sensory signals have yielded heterogeneous results.  For instance, depending on the paradigm, it 

has been shown that selective attention does not influence integration (Bertelson, Vroomen, 

Gelder, & Driver, 2000; Shore & Simic, 2005; Vroomen, Bertelson, & Gelder, 2001), increases 

integration (Alsius, Navarra, Campbell, & Soto-Faraco, 2005), or even reduces integration 

(Hugenschmidt, Mozolic, & Laurienti, 2009; Mozolic, Hugenschmidt, Peiffer, & Laurienti, 

2007; Werkhoven, Erp, & Philippi, 2009).  One of the main problems with some of the previous 

studies examining this question is that the measure of integration is confounded with unisensory 

processing; therefore, a change in unisensory processing (improved reliability, for example) 

could result in a change in interaction between the two modalities and be misinterpreted as a 

change in integration. Our Bayesian model provides a measure of integration tendency that is not 

confounded by unisensory precision (or noise), and therefore can provide a clearer picture of 

whether attention influences unisensory precision, multisensory integration or both. Therefore, 

utilizing the causal inference model, we quantitatively estimated the integration tendency for 

each individual subject in both selective and divided attention conditions, and in both spatial and 

temporal tasks to address this question more rigorously.  
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Experiment #1: Single Task vs. Dual Task 
 

The conditions in experiment 1 consisted of blocks requiring selective attention (i.e., 

“unisensory attention”), and blocks requiring divided attention (i.e., “bisensory attention”).  

While the audiovisual environment was the same for all blocks, the unisensory attention 

condition involved blocks in which participants localized either only the auditory stimulus, or 

only the visual stimulus.  The bisensory attention blocks required them to localize both.  Thus, 

our unisensory attention blocks were single-task, requiring only one response, and our bisensory 

attention blocks were dual-task, requiring responses to both stimuli.   

 

 
Fig. 12.  Design schematic depicting the conditions and blocks for experiment 1.  As shown above, while 
the bisensory attention condition only included one block type that required localization of both auditory 
and visual stimuli, the unisensory attention condition was made up of two different block types, with each 
block requiring only the localization of stimuli from one sensory modality. 

 
Methods 

 
Participants and Apparatus 
 

Twenty-five research volunteers at the University of California-Los Angeles (eight 

males) completed the experiment; one subject was excluded due to negligence with the response 

device during the task.  Potential participants were screened before the experiment and ruled 
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ineligible to participate if they had a history of any neurological conditions (e.g. seizures, 

epilepsy, or stroke), had uncorrected vision or hearing impairments, or had experienced 

significant head trauma.  

Eligible participants sat at a desk in a dimly lit room with their chins positioned on a 

chinrest 52 cm from a projection screen. The screen was a black, acoustically transparent cloth 

subtending much of the visual field (134° width ° x 60° height).  Behind the screen were 5 free-

field speakers (5 x 8 cm, extended range paper cone), positioned along azimuth 6.5° apart, 7° 

below fixation. The middle speaker was positioned below the fixation point, and two speakers 

were positioned to the right and two to the left of fixation. The visual stimuli were presented 

overhead from a ceiling mounted projector set to a resolution of 1280 x 1024 pixels with a 

refresh rate of 75 Hz. 

 
Stimuli 
 

The visual stimulus was a white-noise disk (.41 cd/m2) with a Gaussian envelope of 1.5° 

FWHM, presented 7° below the fixation point on a black background (.07cd/m2), for 35 ms. The 

center of visual stimuli overlapped the center of one of the five speakers behind the screen 

positioned at -13°, -6.5°, 0°, 6.5°, and 13°. Auditory stimuli were ramped white noise bursts of 

35 ms measuring 59 dB(A) sound pressure level at a distance of 52 cm. The speaker locations 

were unknown to all participants. 

 
Eyetracker and Response Mechanism 
 

Prior to the presentation of stimuli, participants were required to have their gaze centered 

on the fixation point.  To ensure that participants’ gaze for each trial was starting from the same 

location, gaze position and fixation time were recorded at 60Hz with a ViewPoint eye tracker 
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(Arrington Research, Scottsdale, AZ) and PC-60 software (version 2.8.5,000).  Stimuli were not 

displayed until the recorded gaze angle was within 1.5° of the fixation point and the fixation time 

was greater than 250 ms. Viewing of the stimuli was binocular, although only movements of the 

right eye were tracked.  The eye tracker was adjusted for each participant before the test session 

to ensure that the entire eye was being monitored, and a calibration task was performed before 

trials for the experiment began. A separate computer controlled stimuli presentation and recorded 

behavioral responses using MATLAB (version 7.6.0, R2008a).  A wireless mouse was used to 

record the behavioral responses.    

Procedure 
 

In order to familiarize participants with the task, each session in experiment 1 started 

with three different practice periods of auditory-only trials, visual-only trials, and interleaved 

auditory-only, visual-only, and bisensory trials.  For bisensory trials, subjects were told that “the 

sound and light could come from the same location, or they could come from different 

locations.” As a reminder, a red ‘S’ or a blue ‘L’ was placed inside the cursor to remind subjects 

to respond to the sound or light, respectively. Each trial started with the fixation cross, followed 

after 750 ms (if the subject was fixating properly) by the presentation of the stimuli. 450 ms after 

the stimuli, fixation was removed and a cursor appeared on the screen vertically just above the 

horizontal line where the stimuli were presented at a random horizontal location in order to 

minimize response bias. The cursor was controlled by the trackball mouse placed in front of the 

subject, and could only be moved in the horizontal direction. Participants were instructed to 

“move the cursor as quickly and accurately as possible to the exact location of the stimulus and 

click the mouse”. This enabled the capture of continuous responses with a resolution of 0.1 

degree/pixel.  No feedback about the correctness of responses was given. 
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The practice session was followed by 1425 test trials lasted for approximately 90 

minutes.  The stimulus conditions included five unisensory auditory locations, five unisensory 

visual locations, and all 25 combinations of auditory and visual locations (bisensory conditions).  

Three different blocks were implemented three times each in the experiment in a Latin-square 

design, and in a given block, participants were given one of three possible instructions: localize 

only the auditory stimulus, localize only the visual stimulus, or localize both the auditory and 

visual stimulus.  In bisensory attention blocks, subjects were asked to report both the location of 

the auditory stimulus and the location of the visual stimulus in sequential order. The order of 

these two responses was consistent throughout the session, and was counter-balanced across 

subjects.  After the completion of all 1425 trials, analysis using the Bayesian Causal Inference 

model was performed. 

 
Model 
 

For the spatial tasks, we used a Bayesian causal observer model with eight free 

parameters to model participants’ data from both the unisensory and bisensory attention 

conditions (see Chapters 1 and 2).  The parameters included the prior probability of a common 

cause (pc), the uncertainty of vision (!v), the uncertainty of audition (!A), the bias in the visual 

sensory likelihood ("xv), the bias in the auditory sensory likelihood ("xA), how the visual 

likelihood variance changes with eccentricity ("!V), and the mean and variance of the 

participant’s prior bias for localizing stimuli towards the central location (xp , !p).  Model 

comparisons between this eight-parameter model and other versions with fewer parameters (i.e. 

Körding et al., 2007) have shown that this model is superior both in terms of log-likelihood and 

BIC values (see Chapter 1). 
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For the numerosity task (experiment 3), we used a simpler version of the model with only 

four free parameters (pc, !v, !A, !p), since the spatial biases motivating additional parameters in 

this Bayesian model have not been demonstrated in the numerical domain. Utilizing this model, 

we assumed that the bias for localizing stimuli towards the central location was normally 

distributed with a mean at µp (1.38, based on results from Wozny, Beierholm, and Shams, 2008), 

and a standard deviation, !p, that captured the strength of this prior.  We modeled the likelihood 

terms with Gaussians centered at µv and µa (the true stimulus locations on a given trial), and 

standard deviations that captured the strength of the likelihoods (!v and !a).  

In all experiments, each participant’s data was modeled using the best-fitting decision 

strategy (see Chapter 2).  For each subject, free parameters (either eight free parameters for the 

spatial task, or four free parameters for the numerosity task) were fit to the data.  This was done 

simulating 10000 trials using MATLAB’s fminsearchbnd function (Mathworks, 2006), 

maximizing the likelihood of the parameters of the model.  Participants’ overall datasets were 

divided into trials that from blocks that required unisensory attention (i.e. trials where a response 

was only required from one modality) and trials that required bisensory attention (where a 

response was required for both modalities), and separate parameter fits were obtained for each of 

these datasets. 

 
Results 
 

After the optimized parameters were fit to individual subjects’ data for the unisensory 

attention and bisensory attention datasets, we compared the model parameters between the two 

attention conditions. Two-tailed paired-samples t-tests were performed to determine whether 

there were any significant differences in parameters between the unisensory attention condition 

and the bisensory attention condition.  The results for all parameters are summarized in Table 11. 
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 Pc !v*** !A "xv "xA "!v xp !p 
Unisensory 
Attention 

.41 .91 11.68 -.50 3.65 .58 0.01 25.25 

Bisensory 
Attention 

.35 1.23 11.65 -.58 3.15 .60 -1.96 26.03 

Table 11.  Optimized parameter values from experiment 1.  *** indicates p < .001. 

 

The prior probability for a common cause in the unisensory attention condition was found 

to be slightly larger than in the bisensory condition; however, this difference was not significant 

(t(24) = 1.518, p > .05), indicating that the tendency to bind is not significantly altered due to 

different allocations of attention.  In regards to the question of whether attention can affect the 

precision of sensory representations, the standard deviation of the visual likelihood (!v) in the 

unisensory attention condition was found to be significantly smaller than that of the bisensory 

attention condition (t(24) = -4.161, p < .001, two-tailed paired t-test).  However, a similar trend 

was not found in the auditory domain, as the standard deviation of the auditory likelihood (!a) in 

the unisensory attention condition was nearly identical to that of the bisensory attention 

condition (11.68 compared to 11.65, respectively, t(24) = .061, p > .05).  

 In summary, experiment 1 indicated that while selective attention to the visual modality 

significantly increased precision in the visual domain, selective attention to the auditory modality 

did not increase sensory precision in the auditory domain. Results also showed that under 

conditions requiring attention to a single sensory modality, the tendency to integrate stimuli was 

not significantly altered, compared to a condition requiring attention to two sensory modalities. 
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Experiment #2: Single Response Only 
 

While the findings from experiment 1 provided preliminary evidence for selective 

attention improving the precision in visual sensory representations, there remained the possibility 

that requiring the localization of one stimulus in the unisensory attention condition and two 

stimuli in the bisensory attention condition could be driving the observed effects in the visual 

likelihood distribution, due to differences in the demands required by single and dual tasks.  

Thus, a second experiment was conducted to eliminate these differences in memory requirements 

by making a small change in the bisensory attention condition: participants would now be 

required to pay attention to both stimuli as they occur, but would be notified immediately 

afterwards as to which stimulus (visual or auditory) they were to localize.  Therefore, in both 

attention conditions in experiment 2, participants were only required to localize one stimulus in 

any given block. 

 

 
Fig. 13.  Design schematic for experiment 2.  The conditions and blocks for experiment 2 were quite 
similar to the first experiment, but now in the bisensory attention condition, participants were only required 
to localize one stimulus, and were notified of which stimulus they were to report when the cursor popped 
up on the screen. 
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Methods 
 
 Twenty-eight students and research volunteers at the University of California-Los 

Angeles completed the experiment, and twenty-six participants were included in the data 

analysis (two participants had extremely inaccurate responses indicating negligence while 

performing the task).  All participants were naïve to the experimental tasks, and the setup, 

design, and implementation was the same as in experiment 1, with one exception: since the 

bimodal blocks now only required one response per trial, additional trials were included to gather 

sufficient responses to both visual and auditory stimuli in that condition.  Thus, 1950 trials were 

included in the overall experiment. 

Model 
 

As in experiment 1, a Bayesian causal observer model was implemented to model 

participant data, and changes in parameter values were compared between the unisensory and 

bisensory attention conditions. 

Results 
 

Parameters were fit to the individual subject's data separately for the unisensory attention 

and bisensory attention datasets. T-tests for the parameter fits for both the unisensory and 

bisensory data are shown below. 

 
 Pc !v** !A "xv "xA "!v xp !p 
Unisensory 
Attention 

0.45 1.15 12.26 -0.55 2.60 0.48 -0.13 26.33 

Bisensory 
Attention 

0.44 1.32 11.06 -0.68 3.39 0.55 -0.27 17.73 

Table 12.  Optimized parameter values from experiment 2.  ** indicates p < .01. 

The standard deviation of the visual likelihood (!v) in the unisensory attention condition 

was again found to be significantly smaller than that of the bisensory attention condition (t(25) = 

-3.16, p = p.005).  This finding was strong enough to survive a Bonferroni Correction for the 
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eight t-tests performed on this dataset.  A similar trend was not found in the auditory domain, as 

the standard deviation of the auditory likelihood (!a) in the unisensory attention condition was 

slightly larger to that of the bisensory attention condition (12.26 compared to 11.06, 

respectively); this difference was not significant, due to the large variability in subjects’ auditory 

likelihood standard deviation fits.  Thus, it appears that vision, a sense that is already highly 

adept at processing spatial information, receives an extra boost from selective attention, but 

audition, which is much less precise in terms of spatial information, receives no additional 

benefit. 

A few other trends emerged that, while interesting, did not reach significance at the 

required Bonferroni-corrected p-value.  Visual localizations often show a localization towards 

the center of visual space (e.g. Adam, Davelaar, Gouw, & Willems, 2008; Fortenbaugh & 

Robertson, 2011), and our estimates of the mean of the visual likelihood distribution show that 

the amount of this bias decreases with selective visual attention (Unisensory attention: -0.55°, 

Bisensory attention: -0.67°), indicating that selective attention may make the visual sensory 

representation more accurate.  (A similar trend existed in the auditory domain, but the magnitude 

of the effect was even smaller).  Additionally, bisensory attention appeared to increase reliance 

on the central prior, indicating that as attentional resources are spread across modalities, the brain 

may rely in preexisting information to influence the final sensory estimates. 

 Finally, it is important to note that the prior for integrating sensory information, known as 

the “prior probability of a common cause” or “pc”, was not significantly different between the 

two conditions.  The values between the two conditions were nearly identical, indicating that 

selective attention to a single sensory modality does not impact the tendency to integrate 

multisensory information. 
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 In summary, experiment 2 replicated the findings from experiment 1, and ruled out the 

possibility that the initial findings were due to differences in the demands caused by localizing 

either one or two objects. In both experiments, selective attention significantly increased 

precision in the visual domain, did not increase sensory precision in the auditory domain, and did 

not significantly change the prior probability of integrating stimuli across space. 
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Experiment #3: Beep-Flash Numerosity Judgment Task 
 

While experiments 1 and 2 examined the effects of selective attention on sensory 

integration along a spatial dimension, experiment 3 was conducted to determine whether or not 

selective attention to a single sensory modality could affect integration along a temporal 

dimension.  Similar to experiment 2, subjects participated in conditions involving unisensory and 

bisensory attention; in the unisensory attention condition, participants knew ahead of time which 

modality they needed to report.  In the bisensory attention condition, participants did not know 

which modality to report until after the stimuli were presented, and thus had to pay attention to 

both modalities throughout the task. 

 

 
Figure 14.  Design schematic for experiment 3.  Similar to experiment 2, participants in the numerosity 
judgment paradigm were either reporting the same stimulus for every trial in a block (the unisensory 
attention condition), or had to wait until after stimuli were presented before they knew which stimulus had 
to be reported (the bisensory attention condition). 

 
Methods 
 

Twenty-five subjects from the University of California-Los Angeles completed the 

experiment, but only twenty-four were included in data analysis (one had extremely variable 

responses indicating negligence during the task).  Participants were screened before the 
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experiment according to the eligibility criteria listed in experiment 1.  Eligible subjects were 

seated in a chinrest 57cm away from a CRT monitor, which was flanked on each side by two 

speakers.  Before each trial in the experiment, subjects were required to have their eyes fixated 

on a white cross, displayed at the center of the computer monitor, and the same eyetracking 

method as described in previous experiments was used.  Visual stimuli consisted of a white disc 

flashed for one frame, which was approximately 10 ms.  The flash was presented 7° below the 

fixation point on an otherwise dark monitor.  Auditory stimuli were ramped noise bursts of 

similar duration. 

In order to familiarize participants with the task, each session started with practice trials 

requiring unisensory visual attention, unisensory auditory attention, and bisensory attention to 

both modalities.  In the unisensory visual attention trials, subjects were presented with the 

instruction, “Report the number of flashes you see.”  Following the presentation of these 

instructions for 1800 milliseconds, a fixation cross appeared on the screen, and once participants 

fixated on the cross for longer than 250 milliseconds, stimuli were displayed.  After the stimuli 

were presented, subjects had two seconds to enter their response on keyboard placed on the table 

in front of them, responding with a number from 1-4.  It is important to note that in the 

unisensory attention blocks, participants could be presented with either unimodal or bimodal 

stimuli, but were always consistently reporting one modality throughout a block.  In the 

unisensory auditory attention trials, the protocol was identical to the unisensory visual attention 

trials, but the instruction presented before each trial read, “Report the number of beeps your 

hear.”  The bisensory attention trials proceeded as follows: first, the fixation cross was presented 

at the center of the screen.  Once participants had been fixated on the cross for more than 250 

milliseconds, stimuli were displayed.  Following the stimulus presentation, instructions appeared 
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on the screen, requiring participants to report either the number of flashes, or the number of 

beeps.  From the time instructions appeared, participants had 2 seconds to make their response.  

To cut down on time lost while reading the instructions, the modality to be reported was listed in 

capital letters, so after the first few presentations of the instructions, most participants simply 

looked for the capitalized word. 

The practice session was followed by 1200 trials that consisted of two unisensory 

attention blocks (one visual, one auditory), and two bisensory attention blocks, where reporting 

flashes and reporting beeps was interleaved.  The presentation of the blocks followed a Latin-

square design, with each subject receiving a unique ordering of the blocks.  It is important to 

note that in the unisensory visual block, there was always at least 1 flash presented on every trial, 

and in the unisensory auditory block, at least one beep was always presented.  In the bisensory 

block, participants were never asked to provide a report for a modality that was not presented 

with any relevant stimuli. 

 
Model 
 

As in experiments 1 and 2, a Bayesian causal observer model was fit to participant data.  

Two important changes to the model were implemented: first, the mean for the prior µp was now 

fixed at 1.38, based upon the optimal value found by Wozny, Beierholm and Shams (2008) in a 

numerosity judgment task.  Next, the number of parameters was reduced from eight to four, as 

the parameters that were included to capture systematic biases in spatial localization ("xv, "xA, 

"!V) were omitted. 
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Results 
 

As in previous experiments, parameters were fit to the individual subjects’ data 

separately for the unisensory attention and bisensory attention datasets. 

 

 Pc !v ** !A** !p 
Unisensory 
Attention 

0.52 0.85 0.38 0.93 

Bisensory 
Attention 

0.48 1.01 0.44 0.95 

Table 13.  Optimized parameter values from experiment 3.  ** indicates p < .01. 

!
 The trend from previous experiments for the visual likelihood to improve with unisensory 

attention was preserved, with the unisensory attention condition exhibiting an increase in sensory 

precision compared to the bisensory condition: t(23) = -2.954, p < .01.  Interestingly, the 

auditory likelihood distribution also exhibited a significant increase in precision in the 

unisensory attention condition, yielding t(23) = -3.378, p < .01.  The slight increase in the pc 

parameter was not significant, with the paired-samples t-test finding t(23) = 0.894, p > .05.  

Finally, the difference in !p between the two conditions was also insignificant: t(23) = -.269, p > 

.05.   

 Taken together with the results from experiments 1 and 2, these results highlight some 

surprising findings: selective attention to the visual modality increases sensory precision in both 

the spatial and temporal domains, but selective attention to the auditory modality only sharpens 

sensory representations in the temporal domain.   
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Discussion 
 

Many studies have investigated the role of attention in multisensory integration; the 

results have been mixed, no clear picture has emerged and as a result hypotheses involving 

complex relationships have been proposed (Koelewijn, Brokhorst, & Theeuwes, 2010; Martens, 

Kandula, & Duncan, 2010; Talsma, Senkowski, Soto-Faraco, Woldorff, & 2010). Therefore, the 

question of how selective attention influences sensory integration has yet to be illuminated. Even 

more, studies have investigated the role of attention on visual and auditory perception, but again 

a clear computational characterization of the effect of attention on perceptual processing has 

proved elusive. 

In our first two experiments, we tested the effects of selective attention to a particular 

sensory modality using a localization task.  Experiment 1 assessed the differences between 

unisensory attention and bisensory attention by asking participants for localization of a single 

stimulus in the unisensory condition, or localization of stimuli in two modalities in the bisensory 

condition.  In experiment 2, we always required participants to localize only one stimulus; in the 

unisensory attention condition they knew beforehand which modality was relevant, and in the 

bisensory attention condition they did not, and thus needed to pay attention to both.   

Consistent with the idea of attention as a mechanism that reduces noise and spatial uncertainty 

(Serences, 2011; Whiteley & Sahani, 2012) and consistent with previous findings showing 

benefits for an attended sensory modality (Bonnel & Haftser, 1998; Spence & Driver, 1997; 

Spence et al., 2001), results from the first two experiments showed significant increases in the 

precision of the visual likelihood representations in the unisensory attention condition. 

Interestingly, selective attention did not enhance auditory representations, which opens the 

question of how effectively the brain can select auditory inputs for enhanced spatial processing 
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when visual information is still accessible (i.e. when the eyes are open, when a cursor is visible, 

etc.). 

The first two experiments also found that in a localization task, selective attention did not 

change the tendency to integrate stimuli; a weak trend towards increased integration was found 

in the first study, but nearly identical priors for integration were recorded in both attention 

conditions in the second experiment.  Pre-existing literature on this topic is quite mixed, as 

previous studies investigating whether attention influences multisensory integration have found 

conflicting results.  Some investigations have found that attention has no effect on multisensory 

integration (Bertelson, et al., 2000; Shore & Simic, 2005).  In studies investigating the 

integration of facial and vocal information, a few findings indicate that attention does influence 

integration.   For instance, Alsius, Navarra, Campbell, & Soto-Faraco (2005) found that 

performing a secondary visual or auditory task reduced the prevalence of the McGurk effect, 

indicating that integration processes break down under conditions that require attention to 

multiple sources of information at once.  Additionally, Massaro (1998) investigated facial 

expressions with both visual and auditory components and found increased influence of the 

sensory modality to which attention was directed. 

   Contrary to these findings, several previous studies have indicated that the effect of 

selective attention to a particular modality is to reduce multisensory integration, when 

integration is assessed by analyzing reaction times (Hugenschmidt, Mozolic, & Laurienti, 2009; 

Mozolic, Hugenschmidt, Peiffer, & Laurienti, 2007; Talsma, Doty, & Woldorff, 2006).  In these 

studies, responses to multisensory trials were compared to responses to unisensory trials as 

predicted by the independent race model (Miller, 1982, 1986).  Other studies have used ERP 

analyses, where ERP waves produced in response to audiovisual objects are compared to the sum 
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of the waves when the auditory and visual components were presented alone.  We find that, at 

least in the spatial domain, the brain’s pre-existing prior for integration is not significantly 

impacted by the allocation of modality-specific attention.  While this finding does not exclude 

the possibility that other types of feature-based attention could impact attention (i.e. object-based 

or spatial attention), it does provide some reliable evidence that integration for low-level sensory 

features may operate independently of attention, similar to what has been reported in the spatial 

domain previously. 

From a theoretical perspective, our results inform current ideas about attention in a 

Bayesian framework (Talsma, 2015; Talsma et al., 2010).  Previous accounts of attention using 

Bayesian modeling have focused on attention serving the role as an additional prior to enhance 

selective perception (Dayan & Zemel, 1999; Yu & Dayan, 2004).  A more recent account has 

focused on how attention may impact perception in environments, where inference problems 

may be computationally intractable.  In this framework, rather than simply serving as a prior, 

attention serve as a mechanism to refine perceptual accuracy by approximating the inference to 

be performed (Whiteley & Sahani, 2012).  Here, we used a simple task to determine which 

element of a Bayesian model is impacted by modality-specific attention in a spatial and a 

temporal task.  We did not find evidence that attention impacts the integration process in any 

way, but we did find that it enhances the precision of sensory representations of the visual 

modality in both the spatial and temporal domains, and the auditory modality exclusively in the 

temporal domain.  Additionally, we found that auditory spatial representations were not 

enhanced, which introduces the question of how and when auditory spatial processes may be 

impacted by attention, if at all. 
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Finally, future research will need to investigate the question of additional factors 

influencing integration and segregation under conditions of selective and divided attention.  For 

instance, semantic congruency likely plays a role in how information is either integrated or 

segregated in the brain.  As we read a book, we may find it relatively easy to filter out distracting 

auditory information that is incongruent with the words on the page, but listening to a lecture on 

headphones while encountering an environment with large amounts of visual information may 

make it more difficult to process what we hear at the same moment.  Additional experiments 

should continue to investigate how and when attention can influence integration or segregation 

of higher-level features in more realistic settings, and also probe how its allocation and 

deployment can be more effectively cultivated and implemented. 
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General Discussion and Conclusions 

 

Summary 

This dissertation implemented a new Bayesian computational model to probe the nature 

of biases in spatial perception, recalibration of the tendency to integrate sensory stimuli, and the 

effects of attention on multisensory perception.  These investigations aimed to shed light on how 

these factors can influence both likelihoods and priors in this computational framework. 

The first chapter analyzed an extremely large spatial localization dataset, and showed 

that, on average, subjects exhibited central biases when localizing visual stimuli, peripheral 

biases when localizing auditory stimuli, and for spatially congruent multisensory stimuli, the 

emerging biases were determined at least partially by the inference about a common cause.  

Models were tested to determine which combination of parameters fit subjects’ data the best, and 

these model comparisons revealed that the biases exhibited by subjects were best accounted for 

by a Bayesian model that allowed for systematic, symmetric shifts in the means of the sensory 

representations, as well as a prior over space. 

The second chapter of the dissertation explored how brief sensory experiences may 

change how multisensory information is processed in the brain.  Brief, ten-minute exposure tasks 

were employed, displaying audiovisual stimuli that varied in their spatial and temporal 

relationships.  Counterintuitive principles were revealed regarding how/when the brain updates 

its tendency to bind sensory information, as well as the conditions in which the auditory 

representation of space is changed. 
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The final chapter of the dissertation investigated the effects of selective attention on 

sensory integration and unisensory processing.  It was shown that modality-specific selective 

attention benefits both the prevision of sensory representations for vision and audition in time, 

benefits only vision (and not audition) in terms of spatial processing, and does not impact the 

tendency to integrate multisensory stimuli.  Taken together, findings from all three of these 

chapters reveal surprising inaccuracies in our perceptual systems, remarkable plasticity in the 

brain’s tendency to integrate, interesting spatiotemporal principles regarding how the brain learns 

to change its tendency to integrate, and fascinating findings about how attention can selectively 

benefit unisensory processing, but minimally impact the tendency to bind sensory information. 

 

Future Directions 

Additional projects implementing the refined model described in the first chapter of this 

dissertation are already underway.  The first project focuses on the generalization and stability of 

the prior probability of a common cause; currently, it is unknown (1) whether the tendency to 

integrate multisensory stimuli is consistent across different tasks, and (2) whether the tendency to 

integrate multisensory stimuli is stable across time within a task.  By testing the same group of 

subjects in a spatial localization task (Chapters 1, 2, and 3) and a numerosity judgment task 

(Chapter 3), we hope to determine whether this prior probability (PCommon) reflects a general 

tendency to bind sensory information in different dimensions, or whether the estimated value for 

this parameter is domain-specific in either the spatial or temporal dimension.  Additionally, by 

testing the same group of subjects on these tasks one week apart, we hope to determine for each 

specific task the degree to which this parameter may vary on a day-to-day basis.  Preliminary 

results from this study indicate that while the inferred PCommon values are quite consistent within 
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a task across time, they do not generalize across tasks, indicating a domain-specific nature for 

this binding parameter. 

The second project implementing the eight-parameter Bayesian model focuses on 

investigating the frame of reference in multisensory integration.  Since visual information is 

encoded with respect to the eyes, and auditory information is encoded with respect to the head, 

the question of which frame of reference is used by the brain when integrating multisensory 

information is quite relevant.  Previous work has shown that audiovisual integration aftereffects 

are encoded in a hybrid reference frame (Kopco, Lin, Shinn-Cunningham, & Groh, 2009); our 

spatial localization paradigm and Bayesian model present themselves as unique tools to probe 

this question further.  Specifically, we are interested in the effects that eye and head position may 

have on the various parameters in the model, as these variables could influence any of the 

relevant parameters, including the integration prior, the sensory representations, or the prior over 

space.  Preliminary evidence from these studies indicates that the spatial prior is at least partially 

dependent on eye position (i.e. may be encoded in a hybrid reference frame between eye-and-

head position), and that when eye and head position is aligned, spatial localization using the 

visual response cursor is especially precise.  Building on these insights, future investigations will 

aim to investigate the role of one more important factor in our spatial task: eye movement. In all 

of our localization studies up to this point, we have allowed the eyes to move as subjects make 

their response.  By comparing our initial results to conditions where we force the eyes to fixate 

throughout the localization response, we can more effectively parse out the effects that eye and 

head position may have on the estimated parameters in our Bayesian model. 

Finally, another preliminary study is already underway to determine the degree to which 

parameters in our model may correlate with various psychological disorders and abnormalities.  
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It is already quite well known that individuals with dyslexia, autism, schizophrenia, ADHD, 

synesthesia, and other conditions can exhibit abnormalities in sensory processing and sensory 

binding.  By running a large number of control subjects through our various tasks and modeling 

their data, we seek to investigate whether any of the elements of our model correlate with scores 

from questionnaires that quantitatively estimate traits associated with these specific disorders.  

For instance, it has been shown that people that exhibit schizophrenic traits show abnormalities 

in their ability to integrate multisensory speech information (Stekelenburg, Maes, Van Gool, 

Sitskoorn, & Vroomen, 2013; Szycik et al., 2009).  Therefore, it seems reasonable to hypothesize 

that people that score high on a scale that assesses schizophrenic traits (the PQ-B scale, Loewy, 

Pearson, Vinogradov, Bearden, & Cannon, 2011) may also exhibit a lower PCommon value in our 

model.  These types of investigations could not only be informative to highlight where the deficit 

is in processing multisensory information in these individuals, but could also possibly yield our 

model’s utility as a diagnostic tool in identifying psychological disorders.  Future research will 

be needed to investigate this possibility further. 

Finally, additional work will be necessary to highlight how neural circuits actually 

implement the computations discussed in the preceding chapters.  As noted by previous 

researchers, much is still unknown about how neural circuits can implement Bayesian inference 

(Pouget, Beck, Ma, & Latham, 2013), although a recent investigation has provided substantial 

evidence that the unisensory estimates produced by the Bayesian Causal Inference model used in 

this dissertation are carried out by early-level visual and auditory cortices, and the integrated 

estimates are carried out primarily by regions in the intraparietal sulcus (Rohe & Noppeney, 

2015).  It is only through a combination of computational, physiological, and neuroimaging data 

that we will ultimately come to a more complete understanding of how the brain implements 
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Bayesian principles, and with investigations such as this dissertation shedding light on factors 

that can influence both likelihoods and priors in a Bayesian framework, a more complete and 

coherent understanding appears possible as future endeavors seek to reveal how the brain uses 

past experience and new evidence to enable perception of the surrounding world. 




