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Abstract of the Dissertation

Performance Evaluation Under Modeling

Uncertainty: A Unified Approach Using

Spherically Invariant Random Process

by

Cheng-An Yang

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2015

Professor Kung Yao, Chair

In this dissertation, we considered the exceedingly general spherically invariant

random process (SIRP) as a unifying framework for studying the wireless commu-

nication fading channels. In addition, we studied the important issue of modeling

uncertainty, where only limited knowledge of the underlying fading channel statis-

tics is known. The moment space methodology was proposed to characterize the

uncertainty range of the system performance. Since performance evaluation for

wireless communication systems frequently involve Monte Carlo simulation, we

introduce the Super-Efficient Monte Carlo simulation methodology and the con-

cept of Approximate Super-Efficiency (ASE) to improve the convergence rate of

Monte Carlo simulation. While conventional Monte Carlo simulation yields the

convergence rate 1/N , our Super-Efficient Monte Carlo simulation has a superior

convergence rate 1/N2 for integrands of the Super-Efficient type, and 1/Nα for

ASE algorithm, where α ∈ [1, 2]. Finally, we studied the downlink throughput

maximization problem in cellular networks. Inspired by the multi-armed bandit

problem, we proposed several algorithms to solve the online throughput maxi-

mization problem, and provided convergence analysis. The proposed algorithms

achieved up to 99% of the performance upper bound within 1000 time steps.
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CHAPTER 1

Introduction

The cellular network has been one of the most successful and widely used commu-

nication technology of the past three decades. As smartphones and tablets become

ubiquitous over the past several years, these mobile devices generate an explosive

growth of data traffic over the cellular network not seen in previous generations.

The industry estimated that there will be a thousandfold increase of mobile data

traffic within 10 years. To accommodate such a challenging demand, more sophis-

ticated data transmission schemes with high spectral efficiency is needed. Among

possible solutions, including ultra-wideband (UWB) radio and massive multiple-

input multiple-output systems (MIMO) has received great attention due to it’s

potential to serve multiple users with high data rate.

However, these new technologies also introduce new challenges. One funda-

mental and primary issue is the modeling of the mechanism of radio propagation

channel. For example, due to the superior angular resolution of the massive-

MIMO systems, there are more separable multipaths being seen by the antenna

array. As a result, the energy intercepted by each angular bin decreases. Thus

the usual assumption that each angular bin receives the combination of a large

number of multipath contributions is no longer valid. Hence we can not invoke

the central limit theorem to argue that the channel statistic is Gaussian.

The UWB channels are also fundamentally different from the conventional

channels. This is because larger bandwidth results in shorter delay bins, which

reduces the number of multipath components per bin. As a result, the channel
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statistics is no longer governed by the central limit theorem. Since the perfor-

mance of these important technologies depend critically on the underlying channel

statistics, thus a flexible, reliable and versatile mathematical model is called for.

1.1 Spherically Invariant Random Process

In this dissertation, we propose the use of the exceedingly general spherical in-

variant random process (SIRP) as a modeling tool for various wireless communi-

cation systems. It is well known that the performance of wireless communications

is strongly affected by power fades. Under various propagation scenarios, several

models for the probability distribution of the fading envelope have been proposed,

and are used for performance prediction and design.

Fading models may be categorized into two broad classes: those derived from

physical considerations (a typical example is Rayleigh fading), and those contain-

ing a number of parameters whose values can be obtained by empirical fitting of

observed data. A rich collection of fading models can be found in [3, 4], where

envelope and signal-to-noise ratio distributions are shown along with the corre-

sponding moment-generating functions.

In this dissertation we focus on a class of fading processes obtained as en-

velopes of a generalization of Gaussian processes which exhibit a property called

“spherical invariance.” Spherically Invariant Random Processes (SIRPs) inherit

many analytically tractable properties from Gaussian processes. They have been

advocated as relevant to the modeling of atmospheric noise, speech processes,

radar clutters, impulsive noise, etc. (see, e.g., [5, 6] and references within), and

most of the popular fading models turn out to be special cases of SIRPs. We aims

at justifying the ubiquity of spherically invariant distributions in modeling fading

effects, and advocating their use for system analysis. Among the reasons moti-

vating their applicability are their generality, flexibility, and the fact that, under
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suitable constraints, they maximize differential entropy, as it occurs for Gaussian

processes under the only constraint of bounded variance. Moreover, the fact that

a vast majority of fading models used in practice turn out to be special cases of

SIRP models suggests some underlying structural property that SIRP processes

can capture.

1.2 Model Uncertainty

From a practical point of view, even if a general statistical channel model is

available, the exact set of parameters for the model may not be accurately known.

This makes determining the system performance very challenging. A possible way

of solving this problem is to assume a pdf belonging to the model, and analyze

the performance of the system using it. This procedure carries a fundamental

danger, that of not optimizing the real-life system but rather an inaccurate model

of it, which occurs unless one makes sure that the optimum of the approximation

is actually an approximation of the optimum.

A more reasonable approach we take here consists of determining the inter-

val of performance parameters caused by the uncertainty in the channel model.

This interval is determined by using in the calculations only the (usually limited)

statistical information available about the channel model. More specifically, we

use the moment space methodology to characterize the uncertainty range of the

system performance. Using the SIRP decomposition, we transformed the infinite

dimensional optimization problem into a univariate moment problem, which can

be solved by performing a series of numerical integrations.
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1.3 Super-Efficient Monte Carlo Simulation

For the purpose of performance evaluation, numerical integration is needed to

evaluate complicated mathematical expressions. Monte Carlo simulation is a gen-

eral technique for estimating integrals. We investigated and improves the Super-

Efficient Monte Carlo methodology, which was first proposed by Umeno [7].

Monte Carlo (MC) simulation methods are widely used to solve complex engi-

neering and scientific problems. Unlike other deterministic methods, MC methods

use statistical sampling to produce approximate solutions. As the processed sam-

ple size N growths, the uncertainty of the solution is reduced. It is well known

that the mean-square approximation error decreases as 1/N . However, for large

problems like high-dimensional integrations and computationally intensive simu-

lations, MC methods may take months or even years to obtain a solution with

acceptable tolerance. The Super-Efficient (SE) Monte Carlo simulation method,

originated by Umeno, produces a solution whose approximation error decreases as

fast as 1/N2. However, it only applies to a small class of problems possessing cer-

tain properties. We describe an approximate SE Monte Carlo simulation method

that is applicable to a wider class of problems than the original SE method, and

yields a convergence rate as fast as 1/Nα for 1 ≤ α ≤ 2.

1.4 Downlink Throughput Maximization

As an application to the moment space methodology introduced earlier, we study

the problem of downlink throughput maximization in cellular networks. The pur-

pose of this study is twofold: to investigate the throughput maximization problem

for mobile user equipment (UE) and find effective online algorithms to achieve

the optimal performance with minimal learning cost. Specifically, we formulate

the throughput maximization problem as a linear fractional program under the

4



independent channel condition, and derive an explicit solution for both the un-

constrained and block error rate (BLER) constrained case. We propose using the

Multi-Armed Bandit (MAB) approach to cleverly adjusting the Channel Quality

Indicator (CQI) and maximize the average throughput. We derive a performance

upper bound and show that the algorithm converges to the optimal solution almost

surely. To achieve the optimal online performance without the prior knowledge

of the channel statistics, we propose Multi-Armed Bandit (MAB) based algo-

rithms which learn the problem data by cleverly adjusting the Channel Quality

Indicator (CQI) used by the network for scheduling of data transmission, and

maximize the average throughput. In the unconstrained case, we prove that the

maximal throughput can be achieved by reporting a single CQI, which is problem-

dependent and needs to be learned online. By adopting the MAB framework, we

not only exploit the throughput maximizing CQI with high probability but also

minimize the learning cost. In the BLER constrained case, we prove that the

throughput maximizing CQI distribution has two atoms and derive an explicit

formula for the distribution. We propose a novel Greedy-LP algorithm to solve

the BLER constrained problem and show that it converges almost surely. Sim-

ulation results confirm the effectiveness of the proposed algorithms. Both the

unconstrained and BLER constrained algorithms are shown to achieve up to 99%

of the optimal throughput over a broad range of common channel models.

1.5 Notation

We use boldface and lowercase letters to denote vectors (like a, b,x,y). Matrices

are denoted by boldface and uppercase letters, such as A and B. Random vari-

ables and vectors are denoted by capital letters. The probability density function

(pdf) and cumulative density function (cdf) of X are denoted by fX and FX ,

respectively. The random variable X is distributed as fX is denoted by X ∼ fX .

5



The expectation operator is denoted by E(.). The variance operator is denoted

by Var [.]. R is the set of real numbers, Z is the set of integers and N is the set of

natural numbers.
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CHAPTER 2

Spherically Invariant Random Process

It is well known that the performance of wireless communications is strongly af-

fected by power fades. Under various propagation scenarios, several models for

the probability distribution of the fading envelope have been proposed, and are

used for performance prediction and design. Fading models may be categorized

into two broad classes: those derived from physical considerations (a typical ex-

ample is Rayleigh fading), and those containing a number of parameters whose

values can be obtained by empirical fitting of observed data. A rich collection

of fading models can be found in [3, 4], where envelope and signal-to-noise ratio

distributions are shown along with the corresponding moment-generating func-

tions. In this paper we focus on a class of fading processes obtained as envelopes

of a generalization of Gaussian processes which exhibit a property called “spher-

ical invariance.” Spherically Invariant Random Processes (SIRPs) inherit many

analytically tractable properties from Gaussian processes. They have been advo-

cated as relevant to the modeling of atmospheric noise, speech processes, radar

clutters, impulsive noise, etc. (see, e.g., [5, 6] and references within), and most

of the popular fading models turn out to be special cases of SIRPs. Our paper

aims at justifying the ubiquity of spherically invariant distributions in modeling

fading effects, and advocating their use for system analysis. Among the reasons

motivating their applicability are their generality, flexibility, and the fact that,

under suitable constraints, they maximize differential entropy, as it occurs for

Gaussian processes under the only constraint of bounded variance. Moreover,

7



the fact that a vast majority of fading models used in practice turn out to be

special cases of SIRP models suggests some underlying structural property that

SIRP processes can capture. From a practical viewpoint, (a) SIRP models can

be parametrized through the use of the H-function representation of their prob-

ability density function (pdf), thus simplifying the generation of a mathematical

model from experimental data, (b) Computer simulation of SIRP fading need only

the generation of a Gaussian process and a scalar pseudorandom variable with a

suitable pdf, and (c) The calculation of relevant performance parameters is made

easier if a SIRP fading model is available.

This paper is organized as follows: Section 2.1 summarizes, in a tutorial fash-

ion, the main facts about SIRPs, and shows that they are entropy maximizers.

Section 2.2 focuses on the envelope of a SIRP and its use as a fading model. In

particular, it is shown how the use of Mellin transforms allows one to construct

a fading model and simplify performance evaluation. A parametric model for the

pdf of SIRP fading is derived, and it is shown how most practical fading models

turn out to be spherically invariant. A closer look at the performance of digital

transmission systems affected by a SIRP fading is taken in Section 3.1, where we

derive upper and lower bounds to system performance when we have a limited

knowledge of SIRP statistics. In Section 3.2 we derive the best and worst fad-

ing processes for a given signal-to-noise ratio under the assumption of spherical

invariance, and in Section 3.3 we conclude the paper.

2.1 Definitions and key properties

SIRPs are characterized by some properties commonly associated with Gaussian

processes. Specifically, it is well known that mean-square estimation problems

on Gaussian processes have linear solutions, and Gaussian processes are closed

under linear operations. Vershik showed that these two properties do not uniquely

8



characterize Gaussian processes, while they do characterize SIRPs [5, 8, 9]. Let

Y (t) be a second-order process with mean m(t) and covariance function σ(t, s).

Then Y (t) is a SIRP if all random variables (RVs) in the closed linear span of

Y −m (i.e., the subspace of square-integrable linear functions over Y −m) having

the same variance have the same distribution. A random vector X is spherically

invariant if there exist a function g and a positive definite matrix R such that its

pdf can be written as

fX(x) = g(xTRx). (2.1)

Notice that, deriving structural properties of SIRPs, we can restrict ourselves to

zero-mean, white processes. In fact, the affine map y = Ax+µ transforms a zero-

mean vector with independent, unit-variance components into one with mean µ

and covariance matrix AAT .

It is useful to observe that a SIRP can be characterized as a mixture of Gaus-

sian processes, and determined by a mean µ(t), a covariance function R(t, s), and

a pdf in R+ , [0,∞). Specifically, for a Gaussian process with covariance function

v2R(t, s), the density of a corresponding SIRP is given by the expected value of the

pdf of the Gaussian process taken with respect to v. A SIRP {Y (t),−∞ < t <∞}

has an nth-order pdf of the form [5]

fY (y) = Cn

∫ ∞
0

1

vn
e−(1/2)(y−µ)T (v2R)−1(y−µ)fV (v) dv, (2.2)

where y ∈ Rn, Cn = (2π)−n/2|R|−1/2 is a normalization constant, µ is the mean

vector, and R is the positive definite covariance matrix.

Eq.(2.2) shows that the nth order pdf of a SIRP is the statistical average

of the nth order pdf of a Gaussian process taken with respect to an arbitrary

nonnegative-valued univariate RV V whose pdf is fV (v) (in [10], it is shown that

the distribution of V need not be supported on the nonnegative real line, and that

the second-order property or the nonsingularity property, assumed in [5, 9], need

9



not be imposed). This implies that the spherically invariant process Y (t) has a

simple representation in the form of a Gaussian process with random variance:

formally,

{Y (t) = V Z(t),−∞ < t <∞}, (2.3)

where {Z(t),−∞ < t < ∞} is a Gaussian process independent of V .1 Thus, a

SIRP is completely characterized by its mean value, its covariance function, and

its univariate pdf (or characteristic function). This first-order pdf can be either

prescribed or obtained from experimental data (see, e.g., [11]. A graphical test for

the spherical invariance of a random process has been advocated in [12]). In [11],

it is shown how higher-order pdfs can be derived from the first-order pdf.

2.1.1 Properties of SIRPs

For completeness, here we briefly summarize some of the known additional basic

properties of SIRPs, and indicate its generalizations.

• For SIRPs, the linear mean-square estimator is optimum in the class of all

mean-square estimators. [5].

• Under certain conditions, the class of SIRPs is closed under deterministic

linear operations. [5].

• The form of the likelihood-ratio detector of a known deterministic signal

in additive spherically invariant noise is a correlation receiver or matched

filter. [5].

• The concept of spherically invariant distributions can be extended to mea-

1Notice that representation (2.3) implies that a SIRP can be ergodic only if V is a constant,
i.e., the process is Gaussian. Otherwise, no individual realization of the process can offer infor-
mation about the statistics of V . Notice also the (overly critical) statement in [8], “The fact
that a spherically invariant process which is ergodic is also normal sheds doubt on the physi-
cal significance of non-normal spherically invariant processes.” See below, Section 2.6.1, for a
discussion.
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sures on Hilbert spaces. [13]

• Nonlinear estimation and discrimination of SIRPs is studied in [14,15].

• Statistical inference issues on elliptically contoured random processes are

examined in [16].

2.1.2 SIRPs maximize the differential entropy

The maximum-entropy principle states that, if a random process model is to

be built from incomplete information, one with the largest entropy should be

chosen among those consistent with prior information [17]. Consider an absolutely

continuous (AC) random vectorX, i.e., one taking on an uncountable set of values

and such that the probability that its realization belongs to a given set can be

computed as a multiple integral over its joint pdf. The (differential) entropy of a

vector X with pdf f(x) is defined as [18, p. 224]

h(X) , −
∫
f(x) log(f(x)) dx. (2.4)

With a slight abuse of notation, (2.4) is sometimes written as h(f). This function

is concave.

In [18, Theorem 9.6.5], it is proved that, under the constraint that X has a

given covariance matrix, the multivariate Gaussian distribution of X maximizes

the entropy over all distributions with the same covariance. We shall now prove

the more general statement that, under a spherically invariant constraint, the

entropy is maximized by a spherically invariant distribution.

Let R = ΓΓT be the Cholesky decomposition of the positive definite matrix

R, and define the group

G ,
{
T = (ΓT )−1OΓT | O ∈ O(n)

}
, (2.5)
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where O(n) is the compact group of orthogonal matrices on Rn. We say that a

function f is G-invariant if

f(Qx) = f(x) (2.6)

for all Q ∈ G and x in the domain of f . With these definitions, the entropy

function h turns out to be G-invariant. Consider next a constraint on X with

the form E(C(X)) ≤ 0. This constraint is G-invariant if E(C(X)) ≤ 0 implies

E(C(QX)) ≤ 0 for all Q ∈ G. We are now ready to formulate and prove the

following:

Theorem 1. Let E(C(X)) ≤ 0 be a G-invariant constraint. If the entropy max-

imization problem

max
X∈AC

h(X) (2.7)

s.t. E(C(X)) ≤ 0 (2.8)

has a maximizer X∗, and C(X∗) is integrable, then X∗ can be selected to be

spherically invariant.

Proof

Since G is a compact group, then Haar’s theorem [19, p. 250 ff.], [20, p. 68 ff.]

shows that a unique invariant probability measure ν exists such that

ν(TD) = ν(D) (2.9)

for all T ∈ G and for all measurable D ⊂ G.

Suppose now that X∗ is the optimal solution of Theorem 1. The random

variable

X∗ ,
∫
G

TX∗ dν(T ) (2.10)
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is well-defined almost everywhere and integrable, because

∥∥∥∥∫
G

TX∗ dν(T )

∥∥∥∥ ≤ ∫
G

‖TX∗‖ dν(T ) ≤
∫
G

‖X∗‖ dν(T ) = ‖X∗‖. (2.11)

Let f ∗ denote the pdf of X∗. Then the pdf of X∗ is given by

f ∗(x) =

∫
G

f ∗(T−1x) dν(T ). (2.12)

We will show that X∗ is the maximizer of (2.7) and it is spherically invariant.

1. X∗ is feasible: in fact

E(C(X∗)) =

∫
Rn
C(x)

∫
G

f ∗(T−1x) dν(T ) dx (2.13)

=

∫
G

(∫
Rn
C(x)f ∗(T−1x) dx

)
︸ ︷︷ ︸

E(C(TX))≤0

dν(T ) ≤ 0. (2.14)

(By Fubini-Tonelli theorem, the order of integration can be inverted in (2.13)

and (2.14) because C(X∗) is integrable.)

2. X∗ is optimal: in fact, from Jensen’s inequality [18, p. 25] and the concavity

of h, it follows that

h(f ∗) = h

(∫
G

f ∗(T−1x) dν(T )

)
≥
∫
G

h(f ∗(T−1x)) dν(T ) =

∫
G

h(f ∗(x)) dν(T ) = h(f ∗).

3. X∗ is invariant under G: in fact

QX∗ =

∫
G

QTX∗ dν(T ) =

∫
G

SX∗ dν(Q−1S) =

∫
G

SX∗ dν(S) = X∗.

(2.15)

�
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Example 1. Being a function of xTR−1x, the multivariate Student-t distribution

f(x) =
Γ((ν + n)/2)√
(πν)n|R|Γ(ν/2)

(
1 +

1

ν
xTR−1x

)−(n+ν)/2

(2.16)

is spherically invariant. It turns out to be the entropy maximizer subject to a

G-invariant constraint (2.5) on the expected value E(log)
(
1 + 1

ν
xTR−1x

)
[21].

2.2 Modeling fading envelopes using SIRPs

Consider now narrowband processes and their envelopes. A narrowband Gaussian

process Y (t) can be expressed in the form

Y (t) = YI(t) cos(2πf0t)− YQ(t) sin(2πf0t), (2.17)

where YI(t) and YQ(t) are independent low-pass Gaussian processes. Its envelope

RY (t) , (YI(t)
2 + YQ(t)2)1/2, has a Rice pdf. If Y (t) is a SIRP, then (2.3) holds,

and its envelope can be given the form

RY (t) = (YI(t)
2 + YQ(t)2)1/2 = ((V ZI(t))

2 + (V ZQ(t))2)1/2 = V RZ(t), (2.18)

where RZ(t), the envelope of a Gaussian process, has a Rice pdf.2 To simplify

our notation, assuming stationarity we suppress the variable t, and denote the

original envelope of the Gaussian process by R and the fading SIRP envelope by

X. Thus,

X = V R, (2.19)

where V is the same nonnegative-valued univariate RV as above, whose pdf is

fV (v). Eq. (2.19) shows how the envelope of a SIRP process can be represented as

2In the special case of a zero-mean Y (t), and hence zero-mean Z(t), RZ(t) has a Rayleigh
pdf.
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that of a Rice (or Rayleigh) process with random variance. Various applications

of this principle are examined in [5, 22,23].3

With V and R in (2.19) two independent nonnegative-valued univariate RVs,

the pdf of X satisfies

fX(x) =

∫ ∞
0

(1/v)fR(x/v)fV (v) dv, 0 < x <∞, (2.20)

showing that the pdf of X in (2.20) is a mixture or compound density, resulting

from compounding fR with fV [24].

Remark 1. Eq. (2.19) can be used as the basis for computer simulation of spheri-

cally invariant fading processes. If a simulator of a Gaussian process is available,

it suffices to multiply its envelope by a suitable random variable to generate an

exceedingly wide array of envelope statistics.

Remark 2. We may approximate (2.20) using a discrete mixture, i.e., its discrete

parametric version

fX(x | Θ) =
M∑
i=1

αifR(x | θi), (2.21)

where the vector Θ , (α1, . . . , αM , θ1, . . . , θM) summarizes the parameters αi and

θi of the discrete mixture. These are such that such that
∑M

i=1 αi = 1 and each

fR(x | θi) is a Rice pdf. The EM algorithm can be used to estimate the parameters

of the mixture [25–27].

Using (2.20), we have the following theorem.

Theorem 2. A sufficient condition for a fading envelope RV X to be SIRP is

that its pdf fX(x) be given by the integral in (2.20), where fR(r) is a Rician pdf,

and fV (v) is the pdf of a RV V independent of R and defined on R+.

3Ref. [5] examines SIRP modeling of radar clutters, whose scattering issues are similar to
those of wireless fading.
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Example 2. The Suzuki envelope X has the pdf [28]

fX(x) =

∫ ∞
0

1

σ

(x
σ

exp(−(x/σ)2/2)
) [ 1√

2π βσ
exp(−(ln(σ))2/(2β2)

]
dσ , 0 ≤ x < ∞ ,

(2.22)

where the term between round brackets in (2.22) is the normalized Rayleigh pdf

evaluated at x/σ, while that between square brackets is the lognormal pdf

f(σ) =
1√

2πβσ
exp

(
−(ln(σ))2

2β2

)
, 0 ≤ σ < ∞ . (2.23)

Integral (2.22) has the same form as that of (2.20). Thus, from Theorem 2, we

can conclude that the Suzuki fading envelope RV is SIRP. The Sukuki pdf models

the NLOS short-term fast Rayleigh multipath effects with its standard deviation σ

randomized by the long-term slow shadowing lognormal pdf effects. �

Example 3. The Suzuki Extended Type I envelope X [28] has pdf

fX(x) =

∫ ∞
0

1

σ

(
x

σσ2
1

exp

(
−(x/σ)2 + s2

2σ2
1

)
I0

(
xs

σσ2
1

)) [
1

βσ
√

2π
exp

(
−(ln(σ))2

2β2

)]
dσ,

(2.24)

where 0 ≤ x < ∞. The term between round brackets in (2.24) is the normalized

Rice pdf evaluated at x/σ, and that between square brackets is the lognormal pdf

of (2.23). Again, the integral of (2.24) has the same form as that of (2.20). Thus,

from Theorem 2, we can conclude that the Suzuki Extended Type I envelope RV

is SIRP. The Suzuki Extended Type I pdf models the LOS short-term fast Rician

multipath effects with its standard deviation σ randomized by the long-term slow

shadowing lognormal pdf effects. �

Example 4. The “Half-Cauchy-like” fading envelope random variable X has pdf

fX(x) =
2ax

(1 + 2x2)3/2
, 0 ≤ x <∞, 0 < a. (2.25)

16



Direct integration shows that fX(x) in (2.25) can be expressed as

fX(x) =

∫ ∞
0

1

v
(fR)(

x

v
) fV (v) dv, 0 ≤ x <∞ (2.26)

where fR(x/v) is the normalized Rayleigh pdf evaluated at x/v, and the pdf fV (v)

is given by

fV (v) =

√
2

π
v−2 exp

(
− 1

2v2

)
, 0 < v < ∞ , (2.27)

which is positive-valued on R+ and integrates to one. Since (2.26) is of the form

of (2.20), from Theorem 2 we have that the “Half-Cauchy-like” fading envelope

RV X is SIRP. We note that the “Half-Cauchy-Like” pdf does not have a bounded

second moment. �

Eq. (2.20) may be used to define what is called the Mellin convolution between

densities fR and fV , i.e., we may write

fX(x) = (fR ? fV )(x). (2.28)

Now, it can be shown [29] that the Mellin convolution is commutative and asso-

ciative, so that g ? h = h ? g, and (f ? g) ? h = f ? (g ? h). This allows us to state,

in the form of a theorem, the closure property of SIRP envelopes:

Theorem 3. If the pdf of X has the form (2.28), where R is a SIRP envelope

and V is a positive random variable, then X is also a SIRP envelope.

Remark 3. An implicit assumption made in Theorem 3 is that X, R, and V

are mutually independent. This allows one to avoid the subtle issue of the joint

dependency among these three random variables.

Example 5. The gamma–lognormal fading envelope r.v. X [30] has a pdf given
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by

fGa−log(x) =

∫ ∞
0

1

σ

(
mm(x/σ)m−1

Γ(m)
exp(−mx/σ)

) [
1

βσ
√

2π
exp

(
−(ln(σ))2

2β2

)]
dσ,

(2.29)

for 0 ≤ x < ∞. The term in (2.29) within square brackets is the lognormal

pdf (2.23), while that within round brackets is the following gamma pdf:

f(x) =
1

Γ(m)
mmxm−1 exp(−mx) , 0 ≤ x < ∞, . (2.30)

evaluated at (x/σ). Later, we shall prove (Example 8) that a gamma-distributed

process is a SIRP. Thus, from Theorem 3 we can conclude the Gamma-lognormal

pdf is a SIRP pdf. The Gamma-lognormal pdf models the NLOS short-term fast

Gamma statistical multipath effects with its standard deviation σ randomized by

the long-term slow shadowing lognormal pdf effects. �

2.3 The Mellin transformation

Convolution (2.28) can be transformed into a product if Mellin transforms are

used. The Mellin transform [29, 31, 32] f̂X(s) = M[fX(x)] of the univariate pdf

fX(x) defined in R+ is defined as

f̂X(s) , E[Xs−1] =

∫ ∞
0

fX(x)xs−1 dx. (2.31)

The integral above is defined for any Lebesgue-integrable function, and converges

in a vertical strip of the complex plane. The inverse Mellin transform is given by

fX(x) =
1

2πj

∫ c+j∞

c−j∞
f̂X(s)x−s ds, c ∈ R, x ∈ R+. (2.32)

Raising both sides of (2.19) to power s−1, and taking expectations after using
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the independence of V and R, we obtain from (2.31)

f̂X(s) = f̂V (s)f̂R(s), (2.33)

or, equivalently,

f̂V (s) =
f̂X(s)

f̂R(s)
, (2.34)

and hence

fV (x) =M−1

{
f̂X(s)

f̂R(s)

}
. (2.35)

Thus, if the Mellin transforms f̂R(x) and f̂X(x) are computed, the inverse

transform of their ratio yields fV (x).

Example 6. (Nakagami-m fading) Consider the Nakagami-m density

fX(x) =
2mm

Γ(m)Ωm
x2m−1 exp

(
−m

Ω
x2
)
. (2.36)

With R a Rayleigh fading envelope, we obtain from direct calculation:

fV (v) =
2
(m

Ω

)m
Γ(m)Γ(1−m)

v2m−1
(

1− m

Ω
v2
)−m

, v ∈
(

0,
√

Ω/m
)
. (2.37)

�

Example 7. (κ-µ fading and shadowed fading) A model which has been recently

introduced [33] is that of κ-µ fading. More recently, the κ-µ distribution was gen-

eralized to encompass shadowing in the line-of-sight (LOS) signal component [34].

This model describes the short-term signal variations of a faded signal in the pres-

ence of line-of-sight components. The physical model underlying this distribution

includes Rayleigh, Rice, and Nakagami-m models as special cases, and the distri-

bution itself provides a better fit to experimental data than other traditional fading

models. Ref. [35] shows that the κ-µ distribution is a version of the generalized
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Rice distribution described in [36].

The κ-µ density is given by

fX(x) =
x

σ2

(x
d

)µ−1

exp

(
−x

2 + d2

2σ2

)
Iµ−1

(
dx

σ2

)
, 0 ≤ x <∞, (2.38)

where Iµ−1 denotes the modified Bessel function of the first kind, σ2 denotes

the variance of the non-LOS component, and d2 is the total power of the LOS

components. The Mellin transform of fX(x) is given by

f̂X(s) =
(
2σ2
)(s−1)/2 Γ

(
(s− 1)/2 + µ

)
Γ(µ)

1F̃1

(
−s− 1

2
;µ;− d2

2σ2

)
, (2.39)

and converges in the strip <[s] > max(−µ, 1− 2µ) (here, 1F̃1 denotes the regular-

ized confluent hypergeometric function). While in this paper we show that a large

number of important fading processes are spherically invariant, we were neither

able to prove nor disprove the fact that a process with a κ-µ density is actually a

SIRP. �

2.4 Parameterizing SIRP Using Fox H-function

Examples 6 and 7 refer to cases where Mellin transforms can be obtained in

closed form with relative ease. A tool allowing one to deal with more general

situations can be derived through the use of Fox H-function representation of

densities (see, e.g., [37]). Due to its generality, H-function has found a number

of applications in fading analysis: for example, it has be used to generate closed-

form expressions of capacities and probabilities of digital transmission over faded
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channels in [3, 4, 38,39]. The Fox H-function is defined as follows:

H(z) = Hm,n
p,q

z
∣∣∣∣∣∣ {(a1, A1), . . . , (ap, Ap)}

{(b1, B1), . . . , (bq, Bq)}

 (2.40)

,M−1

{ ∏m
j=1 Γ(bj +Bjs)

∏n
j=1 Γ(1− aj − Ajs)∏q

j=m+1 Γ(1− bj −Bjs)
∏p

j=n+1 Γ(aj + Ajs)

}
,

where the nonnegative integers {m,n, p, q} satisfy 0 ≤ m ≤ q and 0 ≤ n ≤ p, and

aj, bj, Aj, and Bj > 0, are complex numbers such that no poles of the gamma

function Γ(bj−Bjs) coincide with the poles of Γ(1−aj+Ajs). In (2.40), products

whose upper index is zero or less than the lower index are set equal to 1.

Now, assume that the densities fX and fR have expressions as H-functions,

viz.,

fX(x) = k1H
m1,n1
p1,q1

c1x

∣∣∣∣∣∣ {(a
′
1, A

′
1), · · · , (a′p1

, A′p1
)}

{(b′1, B′1), · · · , (b′q1 , B
′
q1

)}

 , (2.41)

where k1 and c1 are some positive constants, and

fR(x) = k2H
m2,n2
p2,q2

c2x

∣∣∣∣∣∣ {(a
′′
1, A

′′
1), · · · , (a′′p2

, A′′p2
)}

{(b′′1, B′′1 ), · · · , (b′′q2 , B
′′
q2

)}

 , (2.42)

where k2 and c2 are also some positive constants. Then, the mixing fV (x) pdf is

given explicitly by

fV (x) = k Hm,n
p,q

cx
∣∣∣∣∣∣ {(a1, A1), · · · , (ap, Ap)}

{(b1, B1), · · · , (bq, Bq)}

 , 0 ≤ x <∞, (2.43)

where the parameters of Hm,n
p,q [ . ] are related to the parameters of Hm1,n1

p1,q1
[ . ] and
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Hm2,n2
p2,q2

[ . ] as follows:

k =
k1

k2

, c =
c1

c2

, m = m1 + p2 − n2, n = n1 + q2 −m2, p = p1 + q2, q = q1 + p2,

(2.44)

{a1, · · · , ap} =
{
{a′1, · · · , a′n1

}, {b′′m2+1, · · · , b′′q2}
}
,
{
{a′n1+1, · · · , a′p1

}, {b′′1, · · · , b′′m2
}
}
,

(2.45)

{A1, · · · , Ap} =
{
{A′1, · · · , A′n1

}, {B′′m2+1, · · · , B′′q2}
}
,
{
{A′n1+1, · · · , A′p1

}, {B′′1 , · · · , B′′m2
}
}
,

(2.46)

{b1, · · · , bq} =
{
{b′1, · · · , b′m1

}, {a′′n2+1, · · · , a′′p2
}
}
,
{
{b′m1+1, · · · , b′q1}, {a

′′
1, · · · , a′′n2

}
}
,

(2.47)

{B1, · · · , Bq} =
{
{B′1, · · · , B′m1

}, {A′′n2+1, · · · , A′′p2
}
}
,
{
{B′m1+1, · · · , B′q1}, {A

′′
1, · · · , A′′n2

}
}
.

(2.48)

The proof is straightforward but lengthy, and will be omitted here.

The above can be summarized in the form of the following theorem:

Theorem 4. The random variable X models a SIRP envelope if fX and fR admit

an H-function representation. In this case V has a pdf admitting the H-function

representation (2.43).

Remark 4. It is possible that a pdf does not admit an H-function representation,

so that Theorem 4 cannot be used to prove that it is the pdf of a SIRP. For

example, the authors were unable to derive an H-function representation for the

Suzuki Extended Type I pdf, which was proved to be the pdf of a SIRP in Example 3.

Example 8. Let X be a RV with a generalized Gamma distribution, so that

fX(x) =
βaα/β

Γ(α/β)
xα−1e−ax

β

=
a1/β

Γ(α/β)
H1,0

0,1

[
a1/βx

∣∣∣−−−−−−−−−{((α−1)/β,1/β)}

]
, 0 ≤ x <∞.
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Next, take as R a Rayleigh-distributed random variable, so that

fR(x) = 2a′′2x exp(−a′′2x2) =
√
a′′2H

1,0
0,1

[√
a′′2x

∣∣∣−−−−−−{(1/2,1/2)}

]
, 0 < x <∞, 0 < a′′2.

(2.49)

The pdf (2.49) includes as special cases seven well-known densities, each cor-

responding to a SIRP envelope. The corresponding densities of V are listed in

Table I.

�

Some of the densities fV derived above are well known, while others are not.

However, in all cases, upon explicit evaluation, all the densities described by H-

functions take nonnegative values on R+ and integrate to 1, which makes them

valid pdfs on R+. Notice also that, if a symbolic computation program is used, one

may express H-functions as Meijer G-functions, as indicated for example in [40].

An efficient Mathematicar program for the evaluation of H-functions is presented

in [41, Appendix].

2.5 Mellin transforms and asymptotics

In certain instances, one does not need to derive the pdf of a random variable

if its Mellin transform is known. One of these instances occurs for narrowband

transmission at high SNR, where the diversity d offers a useful indication of the

channel performance, and this can be evaluated through the parameters of the

following approximation of the pdf of SNR:

fsnr(x) = gxb + o(xb+ε), (2.50)

as x → 0+, where ε > 0 and g, b are positive constant. As shown in [42] (see

also [43, Chapter 4], and [44] for a generalization), whenever the error probability
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of a transmission scheme over the additive white Gaussian noise channel can be

approximated by the expression

PAWGN(e) ≈ κQ
(√

2γ snr
)
, (2.51)

with Q( · ) the Gaussian tail function, snr the energy-per-bit to noise-spectral-

density ratio, κ the error coefficient, and γ the asymptotic power efficiency, then

over a fading channel with fading amplitudes R known at the receiver the average

error probability can be written, as snr→∞, in the form

P (e) ≈ EX2

[
κQ
(√

2γX2snr
)]
∼ κg

Γ(t+ 3/2)

2
√
π(t+ 1)

(γ snr)−(b+1) , (2.52)

where ∼ denotes asymptotic behavior as snr grows to infinity. The parameter d ,

b+1, which quantifies the smoothness of fX2(x) at the origin, is the diversity, while

the coefficient g determines the shift of the the error-probability curve relative to

a baseline curve.

Now, if the Mellin transform f̂X2(s) is known, d and g can be directly computed

from it. In fact we have, as x→ 0+,

fX2(x) ∼ [Res f̂X2(s)]s=ŝ x
−<ŝ, (2.53)

where Res denotes the residue at a pole, and <ŝ is the left boundary of the con-

vergence strip of f̂X2(s) (see [45] for technical details about the validity of (2.53)).

Using definition (2.31), the Mellin transform f̂X2(s) = EX2(s−1) can be obtained

from f̂X(s) with the simple transformation s→ 2s− 1.

Example 9. Consider the Nakagami-m density (2.36) with Ω = 1:

fX(x) =
2mm

Γ(m)
x2m−1e−mx

2

, (2.54)
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which yields

fX2(x) =
mm

Γ(m)
xm−1e−mx, (2.55)

and hence, as x→ 0+,

fX2(x) ∼ mm

Γ(m)
xm−1, (2.56)

and diversity d = m. The Mellin transform of (2.54) is, from direct calculation,

f̂X(s) =
1

Γ(m)
m(1−s)/2Γ

(
(s− 1)/2 +m

)
, (2.57)

from which we have

f̂X2(s) =
1

Γ(m)
m(1−s)Γ

(
(s− 1) +m

)
. (2.58)

This converges for <s > 1 − m with residue at s = 1 − m equal to mm/Γ(m),

hence yielding (2.56), as it should. �

2.6 Performance calculations based on first-order densi-

ties

Here we make the assumption that the transmission system operates on a channel

affected by SIRP fading, that the signal observed by the receiver is the sum of

a faded data signal and of a white Gaussian noise, and that its performance can

be described by the expected value η of a known function h( · ) of the RV X.

Using (2.19), we can write

η , EX [h(X)] = EV [H(V )], (2.59)

where

H(V ) , ER[h(V R) | V ]. (2.60)
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Important examples of performance parameters are (a) error probability of un-

coded binary antipodal modulation with equally likely symbols and (b) outage

probability. The first parameter is representative of system performance when no

error-control coding is used, while the second one reflects the performance when

a near-optimal code is used.

2.6.1 A word of caution

Observe that one must be careful in describing the conditions under which the

performance parameters are defined, because the SIRP underlying the fading enve-

lope cannot be ergodic—otherwise it would be Gaussian (in fact, it is not possible

to derive the distribution of V from the observation of a single realization of X(t)).

Appropriate assumptions of deep interleaving must be added, for example when

error probabilities are evaluated by taking the expectation with respect to V (see

below). In this case, we may assume that the process is “locally SIRP,” in the sense

that V = V (t) is slowly varying. With this model, if V (t) and R(t) are jointly

stationary and ergodic, then X(t) is also stationary and ergodic [46, Proposition

3.36], without the need for V (t) to be a constant process.

2.6.2 Binary error probability

The binary error probability with antipodal signals, coherent reception, and channel-

state information known at the receiver, is given by [43, Chapter 4]

P (e | V ) = ERQ
(√

2V 2R2snr
)
, (2.61)

so that

h(x) = Q
(
x
√

2snr
)
. (2.62)
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With Rayleigh fading, (2.61) yields

P (e | V ) = H(V ) =
1

2

(
1−

√
V 2snr

1 + V 2snr

)
, (2.63)

while in the Rice case we have the implicit expression, which does not seem to be

amenable to closed form:

P (e | V ) = 2(1+K)e−K
∫ ∞

0

r exp
{
−(1 +K)r2

}
I0

(
2r
√
K(1 +K)

)
Q
(√

2V 2r2snr
)
dr.

where K denotes the Rice factor [43, p. 28].

2.6.2.1 Outage probability

On a nonergodic channel affected by fading with random envelope X and additive

white Gaussian noise, the information outage probability is the probability that the

transmission rate ρ, measured in bits per channel use, exceeds the instantaneous

mutual information of the channel. This is given by

pout = P [log2(1 +X2snr) < ρ]. (2.64)

This is the information-theoretical limit which cannot be exceeded by the word

error probability of any coded scheme, and hence can be utilized for estimating

the error probability of transmission scheme using a nearly optimum error-control

code. From (2.64) we have

pout = P [X ∈ I], (2.65)

where

I ,
(

0,
√

(2ρ − 1)/snr
)
, (2.66)
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and hence

h(x) =

 1, x ∈ I

0, otherwise.
(2.67)

Thus, we have [43, p. 86]

pout(V ) = P

(
R <

√
2ρ − 1

V 2snr

)
, (2.68)

which, in the Rayleigh case, yields

pout(V ) = H(V ) = 1− exp[−(2ρ − 1)/V 2snr], (2.69)

and, in the Rice case,

pout(V ) = 1−Q

(
√

2K,

√
(2ρ − 1)

V 2snr

)
, (2.70)

where Q( · , · ) denotes the Marcum Q-function [47, p. 775].

2.6.3 Statistics of fading time intervals

The design of certain features of a wireless system, and the analysis of its perfor-

mance, may depend on the statistics on fading time intervals. For example, the

statistics of burst errors yields useful information for the design of error-control

codes and interleavers. These statistics are known for Rayleigh, Rice, lognormal,

Nakagami, and κ-µ fading distributions (see [48,49] and references therein).

One of these statistics is the rate (in crossings per second) at which the envelope

X(t) crosses the level x in the positive or negative-going direction. The level

crossing rate (LCR) of the stationary differentiable envelope process X(t) is given

by

LX(x) =

∫ ∞
−∞

ẋfX,Ẋ(x, ẋ) dẋ, (2.71)
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where fX,Ẋ is the joint pdf of X and Ẋ. The average fade duration (AFD) of

X(t) is the average time spent by the envelope below level x, and is given by

TX(x) ,
FX(x)

LX(x)
, (2.72)

where FX is the cumulative distribution function of X.

In our context, consider again the process X(t) =
√
X2
I (t) +X2

Q(t), with XI(t)

and XQ(t) independently distributed, with common autocorrelation function

ρ(τ) , E
(
X(t)X(t+ τ)

)
, (2.73)

and assume that |ρ′′(0)| exists. Then the conditional crossing rate is

LX|V (x | v) =

∫ ∞
−∞
|ẋ| fX,Ẋ|V (x, ẋ | v) dẋ =

1

v2

∫ ∞
−∞
|ẋ| fR,Ṙ|V (x/v, ẋ/v | v) dẋ.

(2.74)

When R has a Rayleigh distribution, Ṙ is ∼ N (0, |ρ′′(0)|) and independent of R.

Therefore,

LX|V (x | v) =

√
2|ρ′′(0)|

π
fR(x/v), (2.75)

and hence, averaging over the pdf of V :

LX|V (x) =

√
2|ρ′′(0)|

π

∫ ∞
0

fR(x/v)fV (v) dv. (2.76)

Similarly, we can obtain the AFD of a SIRP fading envelope as

TX(x) =

∫∞
0
FR(x/v)fV (v) dv

LX(x)
. (2.77)
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CHAPTER 3

Modeling Uncertainty Under SIRP Assumption

3.1 Bounds to system performance

When the distribution fV of V is completely known, we can compute the per-

formance parameter η in (2.59) by exact calculation or numerical integration, or

approximate it by Monte Carlo computer simulation. However, in many situations

the exact distribution of V is unknown, as we only have limited knowledge about

it [50,51]. In these conditions, we can evaluate upper and lower bounds ηmax and

ηmin that are consistent with our prior information about V . We are interested

in sharp bounds, i.e., bounds that can be actually achieved by probability distri-

butions satisfying the set of constraints describing our knowledge of the fading

process, and hence cannot be further tightened without altering the constraints.

More precisely, we will determine the performance range that can be obtained

if (a) the fading model is inaccurately chosen, or (b) the propagation conditions

are expected to vary in time by a wide margin, and adaptive techniques are not

sufficient to allow a single propagation model to be valid in a variety of conditions.

In both situations, it is useful to study how the performance parameter η ranges

as the channel model runs through an uncertainty set. This set may reflect (a) the

inaccuracy in determining the mathematical channel model from measured data,

or (b) the wide uncertainty in the knowledge of the actual operating conditions.

Based on this approach, the robustness of system design to channel modeling can

be assessed.
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Our approach to case (a) (Subsection 3.1.1) is based on the evaluation of the

degradation suffered by a system when a small discrepancy, measured by the

Kullback–Leibler (K–L) divergence between a nominal and the actual probability

distribution of the fading, is caused by model uncertainty. In particular, we de-

rive upper and lower bounds to performance parameters as the fading envelope

distribution ranges in a set having a prescribed K–L divergence from the nominal

distribution. This approach was taken in [50] without the SIRP constraint. For

case (b) (Subsection 3.1.2), we assume that some low-order moments of the fading

envelope distribution are known, and derive upper and lower bounds to perfor-

mance parameters as the distribution varies among those having the prescribed

moments. To do this, classical moment-bound theory [52], and some its recent

developments centered on semidefinite programming (see, e.g., [53]), are used.

3.1.1 Using Kullback–Leibler divergence

Here we assume that a fading model has been chosen in accordance to the SIRP

assumption, and hence by using (2.19). For a given choice of the pdf of R, the

model is picked by choosing a pdf of V . We study the effect of an inaccurate

choice of the latter pdf, while maintaining the SIRP model assumption. To do

this, let us denote as fV0 the nominal density chosen, and as fV a pdf with K–L

divergence from fV0 given by

D(V ‖V0) ,
∫
fV (v) log

fV (v)

fV0(v)
dv. (3.1)
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The problem to be solved is

max
fV

∫ ∞
0

H(v)fV (v) dv,

s.t.

∫ ∞
0

log
fV (v)

fV0(v)
fV (v) dv ≤ d,∫ ∞

0

fV (v) dv = 1,

where H( · ) was defined in (2.60), and f is the pdf of V (condition fV (v) ≥ 0

should be added unless automatically satisfied). Duplicating the derivation in [50],

the optimizing fV (v) is obtained in the form

f ?V (v) = fV0(v)
eH(v)/s?

ξ(s?)
, (3.2)

where

ξ(s) ,
∫ ∞

0

eH(v)/sfV0(v) dv, (3.3)

s is the solution of
ξ′(s)

ξ(s)
− s log ξ(s) = ds, (3.4)

and

ξ′(s) ,
dξ(s)

d(1/s)
=

∫ ∞
0

H(v)eH(v)/sfV0(v)dv. (3.5)

The resulting maximum value of EH is given by

ηmax =
ξ′(s?)

ξ(s?)
. (3.6)

Example 10. Assume that the nominal density for X is Nakagami-m. With R

a Rayleigh random variable, the density of V0 is given by (2.37). Choosing outage

probability as the performance parameter, H(V ) is given by (2.69). Numerical

results are shown in Fig. 3.1, 3.2, and 3.3.

Fig. 3.1 and 3.2 show the densities of V and R, respectively, associated with
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Figure 3.2: Worst fX(x) for different values of d and nominal Nakagami-m density
with m = 0.7 (snr = 30 dB).

the nominal Nakagami-m density with m = 0.7. The curves with d = 0 are the

nominal densities, while the other curves show the densities having divergence d

from the nominal one and yielding the largest outage probability. Fig. 3.3 shows

the resulting outage probabilities.
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It can be observed how, for small values of snr, system performance is essen-

tially determined only by snr, reflecting the fact that the effect of model uncertainty

is “masked” by the effect of additive noise, while for high snr the performance loss

is mainly due to model uncertainty. �

3.1.2 Moment constraints

The problem of finding the sharpest bounds when the information on V consists

of the values of some of its moments is called the Generalized Moment Problem

(GMP). As expected, the tightness of the bounds depends on how any moments of

V are available: the more they are, the tighter the bounds will be. In this section,

we show how moment bounds can be computed under the assumption that the

process whose envelope yields V is SIRP. Mathematically, the GMP for the lower
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bound has the form

(P ) inf
V≥0

E(H(V ))

s.t. E(F (V )) = b,

E(G(V )) ≤ c,

where F (V ) and G(V ) are vector-valued functions known as generalized moment

functions, and b, c are constant vectors. This problem can be efficiently solved

using semidefinite programming algorithms [53].

Notice that it is possible to obtain bounds even when the moments are only

known within an interval (see [54] and the references within).

3.1.3 Introducing constraints on second-order statistics

Based on the parameters introduced in Section 2.6.3, moment problems that in-

clude LCR or AFD can be solved. For example, one may look for the SIRP

envelope maximizing or minimizing the LCR given a set of moment constraints,

or maximizing or minimizing the AFD. 1 Yet another problem consists of opti-

mizing a performance parameter under the constraint that AFD does not exceed

a given value.

3.2 Best and worst spherically invariant fading processes

If we look for the “best” and the “worst” fading pdfs with no constraints other than

their moments, the solution turns out to be discrete (see, e.g., [55] and references

within). Now, discrete pdfs for the fading envelope can hardly be motivated in

the practice, and hence one may want to focus on a class of pdfs with a strong

1In this case the moment problem becomes of the fractional type, and hence transformable
to a linear problem.
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physical motivation. SIRP is one such class.

To this end, we may formulate the following GMP

(P ′) inf
fX∈S

E(h(X))

s.t. E(f(X)) = b,

E(g(X)) ≤ c,

(as well as the corresponding sup problem) where h is some performance metric

such as bit error rate (2.62) and outage probability (2.64), and S is the col-

lection of all SIRP fading distributions. Moreover, f(x) , [f0(x), . . . , fn(x)]T ,

g(x) , [g0(x), . . . , gm(x)]T , b , [b0, . . . , bn]T , c , [c0, . . . , cm]T describe the mo-

ment constraints. Due to the probability density constraint, we assume f0 = 1

and b0 = 1 throughout. The GMP (P ′) is an infinite dimensional optimization

problem over the set of SIRP distributions.

Due to property (2.20), under the assumption that the underlying fading pro-

cess is SIRP, our problem can be formulated as in (P ), where H(V ) = E(h(X) |

V ), F (V ) = E(f(X) | V ) and G(V ) = E(g(X) | V ). This is a univariate mo-

ment problem with domain R+, which is known as the Stieltjes-type of moment

problem, and can be reduced to a semidefinite program (SDP).

This approach is equivalent to Popescu’s approach to the convex class of dis-

tribution constraints [53]. It follows from (2.20) that the class of SIRP fading

densities is convex, and generated by the collection of Rice densities indexed by

their variance. Here we reduce ourselves to considering the only constraint of unit

second moment, reflecting the signal-to-noise ratio snr.

Assume R to have a Rice density with parameters ν and σ. We write R ∼
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R(ν, σ), and the density function is

fR(r) =
r

σ2
exp

{
−r

2 + ν2

2σ2

}
I0

(rν
σ2

)
. (3.7)

Observing that

R(ν, σ) = σR(ν/σ, 1), (3.8)

we write the SIRP decomposition in the form

X = V R = (σV )︸ ︷︷ ︸
V ′

(R/σ)︸ ︷︷ ︸
R(ν/σ,1)

, (3.9)

which indicates that we incur in no loss of generality if we assume R ∼ R(ν/σ, 1).

Introducing the “Rice factor” (K = 0 yields the Rayleigh density) K , ν2

2σ2 , we

have

fR(r) = 2r(1 +K) exp
{
−(1 +K)r2 −K

}
I0

(
2r
√
K(1 +K)

)
. (3.10)

In our calculations, we fix K and vary the overall SNR, so that our generalized

moment problem becomes

(P ′′) inf
fX∈F

E(h(X))

s.t. E(X2) =
N0

E
snr,

where

F , {fX : X = V R, V ≥ 0, R ∼ R(
√

2K, 1)}. (3.11)

3.2.1 Deriving the bounds

To derive the bounds we shall make use of the following result, which can be

derived from classical moment-bound theory [52] and generalizes a finding in [55].
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Consider the expectation EXh(X), where h( · ) is monotonic in the interval [0, A],

and EX is known. Using Jensen’s inequality, we have that:

• If h(X) is decreasing and convex ∪, then EXh(X) takes its minimum value if

X is deterministic, i.e., X = EX, and its maximum value if the distribution

of X has only two mass points, one at 0 (with probability close to 1) and

the other one at “infinity” (with probability close to zero).

• If h(X) is increasing and concave ∩, then EXh(X) takes its maximum value if

X is deterministic, i.e., X = EX, and its minimum value if the distribution

of X has only two mass points, one at 0 (with probability close to 1) and

the other one at “infinity” (with probability close to zero).

When the function h( · ) is nonmonotonic, numerical SDP techniques should be

used.

Error probability, unrestricted case From (2.61), since Q(
√
x) is decreasing

and convex ∪, we have that the maximum value of P (e) is 0.5, while its minimum

value is achieved for V 2R2 = 1, i.e., P (e) = Q
(√

2 snr
)
, corresponding to an

AWGN channel.

Error probability, zero-mean SIRP process From (2.63), since P (e | V ) is

decreasing and convex ∪, we have that the maximum value of P (e) is 0.5, while

its minimum value is achieved for V 2 = 1 (V deterministic), so that that if the

SIRP process has mean zero the best fading envelope is Rayleigh, yielding

P (e) =
1

2

(
1−

√
snr

1 + snr

)
. (3.12)

The gap between the upper and lower bound is rather large because the pdf

of V is arbitrary. A more realistic setting is to assume V is unimodal [56, p.
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158] with mode
√
snr. The unimodal constraint on the pdf of V is intuitively

reasonable, since we can model a delta function for the pdf of V as the limit of

some narrower and narrower unimodal distributions. Fig. 3.4 shows the feasible

region of the (P ′) with the additional unimodal constrain on the pdf of V . The
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K = 0 (Rayleigh)
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Figure 3.4: The feasible region of the GMP (P ′) and (P ′′) with objective function
P (e) is represented by the shaded area. The upper and lower bound can be found
at the upper and lower boundary of the feasible region, respectively. The BER of
Rician fading with factor K = 0, 6 and 16 are represented by solid lines.

Rayleigh fading case is represented by the solid line.

Error probability, nonzero-mean SIRP process Without the unimodal

constraint, for a given value of K, the worst fading corresponds again to P (e) =

0.5, while the best fading is achieved for a deterministic V , thus yielding a Rice

fading envelope.

By introducing the unimodal constraint on the pdf of V , the gap between the

upper and the lower bound becomes tighter as shown in Fig. 3.4. The feasible

region of (P ′′) is represented by the shaded area. Note that the lower bound
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coincide with the Rician fading cases (solid lines) because the objective function

is convex ∪ in V .

As expected, as K →∞ the best channel tends to the additive white Gaussian

channel, so that

P (e) = Q
(√

2 snr
)
. (3.13)

Outage probability, unrestricted case The function h(x) defined in (2.67)

can be written as the limit, as ξ →∞, of the decreasing concave ∩ function

hc(x) = 1− xξ/
√

(2ρ−1)/V 2snr. (3.14)

Thus, we can see that the maximum value of the outage probability is pout = 1,

achieved at V 2 = 0. The minimum value is achieved at V 2 = 1, corresponds to

an unfaded channel, and takes values

pout =

 0, if ρ < C

1, if ρ > C,
(3.15)

where C , log2(1 + snr) is the capacity of the AWGN channel.

Outage probability, Rayleigh R With the unimodal constraint on the pdf of

V , fig. 3.5 shows the feasible region of the GMP and upper and lower bounds to

pout for ρ = 9 bits per dimension pair. The outage probability for the Rayleigh

case is represented by the solid line.

Outage probability, Rice R Fig. 3.5 shows the feasible region of the GMP

with the unimodal constraint. The outage probability for the Rician case with

K = 16 is represented by the solid line.
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Figure 3.5: The upper and lower bound of BER and outage probability. The
feasible region of the GMP (P ′) and (P ′′) with objective function pout is repre-
sented by the shaded area. The upper and lower bound can be found at the upper
and lower boundary of the feasible region, respectively. The outage probability of
Rician fading with factor K = 0 and 16 are represented by solid lines.

3.3 Conclusions

We have examined the use of spherically invariant random processes to model fad-

ing in wireless communications. After proving that these processes are differential-

entropy maximizers, we have described a mathematical technique allowing eval-

uation of the performance of digital communication over a channel affected by

spherically invariant fading. Next, we have shown how sharp upper and lower

moment bounds to system performance can be obtained when only a few mo-

ments of the fading process are known, and have derived the best and worst

spherically invariant fading distributions for a given performance parameter and

a given signal-to-noise ratio.
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CHAPTER 4

Super-Efficient Monte Carlo Simulation

Ulam and von Neumann first formulated the Monte Carlo (MC) simulation method-

ology as one using random sequences to evaluate high-dimensional integrals [57].

Since then, MC simulations have been used in many applications to evaluate the

performance of various systems that are not analytically tractable. The simplest,

yet most important, form of MC simulation is used to approximate the integral

I =

∫
Ω

A(x)dx, (4.1)

where the integrand A(x) is defined on the domain Ω = [a, b] for some real number

a < b. To do this, we first choose a probability density function (pdf) ρ(x) 6= 0 in

Ω, and define the function

B(x) :=
A(x)

ρ(x)
, (4.2)

The integral (4.1) is approximated by calculating the N -sample average

1

N

N∑
i=1

B(Xi) ≈ eb(xj) = i, j = 1, 2, . . . , n. (4.3)

where n is the sample size, xi’s are independent identically distributed (i.i.d.)

random samples whose common pdf is ρ(x), and E(.) denotes the expectation

operator with respect to ρ(x). By the strong law of large numbers, the summa-

tion (4.3) converges almost surely to i if the random samples are independent.
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Furthermore, the variance of the approximation decreases at rate 1/n. that is,

Var

[
1

n

n∑
i=1

b(xi)

]
=

1

n
Var [b(xj)] , j = 1, 2, . . . , n. (4.4)

Note that (4.4) holds regardless of the dimension of the domain ω of the integrand

a(x), which make Monte Carlo simulation suitable for performing multidimen-

sional integrations. Umeno’s super-efficient Monte Carlo (SEMC) algorithm [7] is

a variation of standard MC based on chaotic sequences, and exhibits a superior

rate of convergence. Umeno and Yao’s approximate SEMC [58] removes some re-

striction in the original method to make the concept of super-efficiency applicable

to more general situations. In the following sections, we review the pseudo-random

number generation used in conventional MC simulation, and describe the concept

of chaotic sequences and chaotic MC simulation. The correlation between samples

of the chaotic sequence gives rise to the super-efficient convergence rate, which

makes chaotic MC simulation super-efficient. We illustrate how to generate chaotic

sequences from the practical point of view, and how to apply super-efficient sim-

ulation methods to a wide class of integrands using the notion of approximate

SEMC. In the last section, we provide some concluding remarks and point to the

directions for future research.

4.1 Pseudo-Random Number and Chaotic Sequence

A fundamental question of implementing Monte Carlo simulation is how to gener-

ate random samples. It turned out that the generation of truly random sequences

in a controlled manner is a nontrivial problem. Fortunately, in many applications

it suffices to use pseudo-random (PR) sequences [59]. A PR sequence is generated

deterministically by some transformations, and it appears to be random from the

statistical point of view [60]. For example, the sequence of linear congruential PR
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numbers (LCPRN) x0, x1, . . . is produced by the recursion

xn+1 = (axn + c) mod m, (4.5)

where 0 < a < m, 0 ≤ c < m and 0 ≤ x0 < m is the seed of the sequence [57].

When the parameters a, c, m and x0 are properly selected, the linear congruential

recursion can produce a sequence of period m. LCG is one of the oldest and

a popular algorithm for generating PR sequences due to its simplicity and well-

understood properties. Although a LCPRN sequence passes many randomness

tests, LCG has some serious defects. Most notably, it exhibits correlation be-

tween successive samples. The Mersenne Twister algorithm [61] is a better choice

for generating high quality PR numbers for reducing this correlation. For exam-

ple, Matlab uses the Mersenne Twister algorithm as the default uniform random

number generator starting from its version 7.4 in 2007 [62]. We can think of the

process of generating the PR sequence as applying a deterministic transformation

on some state variable repeatedly. More precisely, let Ω denote the collection of

all possible states the of PR generator and T : Ω 7→ Ω denote the transformation.

We select a seed or initial state x0 ∈ Ω and generate the sequence (x1, x2, . . .) by

xi+1 = T (xi), i = 0, 1, . . . . (4.6)

The output of the PR generator can be written as yi = g(xi) for some suitable

output function g.

Another way of generating PR sequences is through dynamical systems. For-

mally, a measure-preserving dynamical system is the quadruple (Ω,A, µ, T ), where

Ω is the state space, A is the σ-algebra on Ω, µ is a probability measure onA and

T is a mapping from Ω to itself such that

µ(T−1(E)) = µ(E) (4.7)
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for all measurable E ∈ A. A mapping T that satisfies (4.7) is called a measure-

preserving transformation. The initial state x0 of a dynamical system at time 0 is

a point in the domain Ω, and the evolution of the state is governed by a mapping

T such that xi+1 = T (xi) for i = 0, 1, . . .. The sequence (x1, x2, . . .) with seed

x0 ∈ Ω is called the orbit of the dynamical system under T . The “time average”

of the integrand B(x) with respect to the orbit is defined as

〈B(xi)〉N :=
1

N

N∑
i=1

B(xi). (4.8)

A natural question to ask is whether (4.8) will converge or not as N →∞. More

importantly, will it converge to the ensemble average I? Birkhoff theorem [63]

says that, the time average of an integrable function B(x) will converge to an

integrable function B̄(x) almost surely, and E(B(X)) = E(B̄(X)), where the

expectation is taken with respect to the measure µ. In general B̄(x) is a function

of the initial seed x0. If a measure-preserving dynamical system has the property

that every integrable function B(x) has a constant time average, then it is called

an ergodic dynamical system. By Birkhoff theorem, this constant must agree with

the ensemble average I. That is,

〈B(xi)〉N → E(B(X)) pointwise as N →∞. (4.9)

In this chapter, we will focus on a special type of ergodic system, which has

“chaotic” behavior in the sense of Auslander-Yorke [64] that 1) it has a dense

orbit in the space Ω, and 2) the orbits are unstable, meaning that orbits arising

from different x0, even if arbitrarily close to each other, grow apart exponentially.

For example, the doubling map

Td(x) =


2x if 0 ≤ x < 0.5,

2x− 1 if 0.5 ≤ x < 1,

(4.10)
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defined on Ω = [0, 1) is known to be chaotic. The invariant pdf ρ(x) is the uniform

distribution on Ω, that is ρ(x) = 1 on 0 ≤ x < 1 and 0 elsewhere. The doubling

map is related to many other chaotic dynamical systems, like the Chebyshev

dynamical system. The Chebyshev dynamical system of order p is defined on the

domain Ω = [−1, 1] with the mapping

Tp(y) = cos(p arccos(y)), (4.11)

where p is a positive integer. The mapping Tp(y) is in fact the pth order Chebyshev

polynomial of the first kind. The Chebyshev dynamical system of order 2 is related

to the doubling map via the relation

yi = cos(2πxi), (4.12)

where xi = Td(xi−1).

4.2 Chaotic Monte Carlo Simulation

A chaotic MC simulation is a MC simulation with a PR sequence replaced by a

chaotic sequence [7]. Furthermore, specifically, let T be a chaotic mapping, and

ρ(x) its invariant pdf. We first draw a seed x0 from the invariant pdf ρ(x), and use

the chaotic mapping T to generate the sequence x1, x2, . . . , xN by xi + 1 = T (xi)

for i = 0, 1, . . . , N − 1, where N is the number of samples. The “time-average”

〈B(xi)〉N =
1

N

N∑
i=1

B(xi)→ I (4.13)

will converge to the integral I defined in (4.1) as N approaches infinity [63].
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4.2.1 Statistical and Dynamical Correlation

The greatest distinction between conventional and chaotic MC simulation is that

the chaotic sequence has correlation between samples. For conventional MC simu-

lation, good PR number generators produce near iid samples. Correlation between

samples is generally considered to be a bad thing, because it may decrease the

convergence rate of the simulation. However, if we select the chaotic mapping

carefully, the correlation between samples may actually improve the convergence

rate for certain integrands. In the following, we show how the correlation can

affect the variance of the approximation error. For measure-preserving dynamical

systems, any measurable function B(x) on Ω forms a stationary random process

{B(xk)}k∈N, where B(xk) = B(T k(x0)). For simplicity, denote B(xk) by Bk and

〈B(xi)〉N by 〈B〉N . Define the autocorrelation function

R(k) = E((Bk+i − I)(Bi − I)), (4.14)

where the expectation is taken with respect to the invariant pdf ρ(x), and i =

1, 2, . . . is arbitrary because B(xk) is stationary. The variance of the approxima-

tion error 〈B〉N − I is given by

σ2
N := E((〈B〉N − I)2) =

1

N
Var [B] +

2

N2

N∑
k=1

(N − k)R(k). (4.15)

The first term on the right-hand side in (4.15) is called the statistical correlation,

which depends on the integrand B(x) and the pdf ρ(x). The second term is

called the dynamical correlation, which depends on the integrand as well as on the

chaotic sequence [7]. Clearly, for iid random samples x1, x2, . . ., we have R(k) = 0,

and hence (4.15) reduces to the conventional case (4.4), where the convergence

rate is 1/N . If there are positive correlations between samples, the variance of the

approximation error σ2
N will increase. On the other hand, negative correlations
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between samples might decrease σ2
N . It is therefore natural to ask what is the best

achievable convergence rate of chaotic MC simulation. This leads to the notion

of super-efficiency of the chaotic MC simulation detailed in next section.

4.2.2 Super-Efficient Chaotic MC Simulation

Rewrite the variance of the approximation error (4.15) as

σ2
N =

1

N

(
Var [B] + 2

N∑
k=1

R(k)

)
︸ ︷︷ ︸

η

− 2

N2

N∑
k=1

kR(k). (4.16)

This shows that the convergence rate of σ2
N has two contributors, one decaying as

1/N and the other as 1/N2. Eventually the convergence rate will be dominated by

1/N , which suggests that the chaotic MC simulation has the same performance

as the standard MC simulation. However, if the dynamical system introduces

the right amount of negative correlation such that η = 0, the convergence rate

becomes 1/N2, which is a huge improvement over the conventional MC simulation.

To obtain η = 0, and hence convergence rate 1/N2, one should suitably combine

the sequence correlation with the integrand [7]. We say the chaotic MC simulation

is Super-Efficient (SE) if the variance of the approximation error decays as 1/N2

for N →∞. Umeno [7] also showed that the condition η = 0 for super-efficiency

is necessary as well as sufficient.

Example 11. Consider the integrand defined on p.1447 of [7]

A(x) =
−8x4 + 8x2 + x− 1

π
√

1− x2
. (4.17)

It satisfies the SE condition under Chebyshev dynamical systems (4.11) of order

p = 2 and p = 4. Fig. 4.1 shows the results of applying the chaotic MC simulation

to find the integral of A(x) using Chebyshev chaotic mappings, and compares their
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convergence rates with the conventional MC simulation using uniform PR samples.
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Figure 4.1: Variance of the approximation error σ2
N versus the sample size N.

We compare the convergence rate of the chaotic MC simulation using Chebyshev
mapping of order p = 2, 4 and 5, and the conventional MC simulation.

The numerical results verify that the chaotic MC simulation is super-efficient

when p = 2 and p = 4. On the other hand, both conventional and chaotic MC

simulation with p = 5 have convergence rate 1/N Using the properties of the

Chebyshev polynomials, it can be shown that the variances σ2
N under p = 2 and

p = 4 are 2/N2 and 1/N2, respectively, which indicate super-efficiency. On the

other hand, the case p = 5 yields a nonzero η in (4.16). In next section, we

present a very powerful characterization of super-efficiency.

4.2.3 Condition for Super-Efficiency

The super-efficiency condition η = 0 arising from (4.16) does not explicitly suggest

any way to achieve it. Umeno [7] first gave a characterization of super-efficiency

in terms of the coefficients of the generalized Fourier series of the modified inte-

grand B(x) = A(x)/ρ(x) for Chebyshev and piecewise linear dynamical systems,
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but the results in [7] did not made clear whether those conclusions are also ap-

plicable to other dynamical systems. Yao [58] established the connection between

Super-Efficiency and the Lebesgue spectrum of ergodic theory [63], which puts

the super-efficient condition derived in Umeno’s work in a general framework, and

generalizes Umeno’s result to a wide range of dynamical systems, namely those

with a Lebesgue spectrum. This observation helps us explain the super-efficiency

systematically and hopefully leads to practical algorithms as detailed in section 5.

In this section, we briefly introduce the concept of Lebesgue spectrum and the

important characterization of super-efficiency in terms of Lebesgue spectrum.

Definition 1. Let Λ be an index sets and N0 = {0, 1, 2, . . .}. A dynamical system

with mapping T is said to have countable one-sided Lebesgue spectrum if there

exists an orthogonal basis containing the constant function 1 and the collection of

functions {fλ,j(x) |λ ∈ Λ, j ∈ N0} such that

fλ,j(T (x)) = fλ,j+1(x) (4.18)

for all λ and j, where the index λ labels the classes and j labels the functions

within each class.

The Koopman operator induced by the transformation T is defined as UTf(x) :=

f(T (x)). It is an isometry and it becomes unitary when T is invertible [65]. We

may rewrite (4.18) as UTfλ, j = fλ,j+1, which means UT has invariant subspaces

Wλ = span(fλ,0, fλ,1, . . .) generated by fλ,0’s. Therefore, the “least element” of

the invariant subspace Wλ is the generating vector fλ,0. Note that the dynamical

system has one-sided Lebesgue spectrum if and only if it is exact (see e.g. [63]

and [66]). If a dynamical system has Lebesgue spectrum, then it is strongly

mixing [63] and hence chaotic in the sense of Auslander-Yorke [64]. All the

dynamical systems we consider in this chapter have Lebesgue spectrum. Since

{1}∪{fλ,j(x) |λ ∈ Λ, j ∈ N0} forms a complete orthogonal basis on the square in-
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tegrable functions L2(Ω), the generalized Fourier series expansion of an integrand

B(x) can be written as

B(x) = b0,0 +
∑
λ∈Λ

∑
j∈N0

bλ,jfλ,j(x). (4.19)

where b0,0 is the coefficient corresponding the constant function 1, which is just

the integral I of B(x).

Theorem 5. Consider a dynamical system which has Lebesgue spectrum {fλ,j(x) |λ ∈

Λ, j ∈ N0} indexed by the sets Λ. The associated chaotic MC simulation is super-

efficient if and only if

dλ :=
∞∑
j=0

bλ,j = 0 for all λ ∈ Λ, (4.20)

where

B(x) = b0,0 +
∑
λ∈Λ

∑
j∈N0

bλ,jfλ,j(x) (4.21)

is the Generalized Fourier series of B(x) = A(x)/ρ(x).

Proof. The autocorrelation function (4.14) can be written as

R(n) = E

(∑
λ∈Λ

∞∑
j=0

bλ,jfλ,j(T
nx)
∑
ν∈Λ

∞∑
i=0

bλ,ifλ,i(x)

)
(4.22)

=
∑
ν,λ∈Λ

∞∑
i,j=0

bλ,jbλ,i E(fλ,j+n(x)fλ,i(x)) (4.23)

=
∑
λ∈Λ

∞∑
j=0

bλ,jbλ,j+n. (4.24)

From (4.16), η can be expressed as

η =
∑
λ∈Λ

(
∞∑
j=0

b2
λ,j + 2

N∑
k=1

∞∑
j=0

bλ,jbλ,j+k

)
=
∑
λ∈Λ

(
∞∑
j=0

b2
λ,j + 2

∞∑
j=0

j+N∑
i=j+1

bλ,jbλ,i

)
.

(4.25)
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As N goes to infinity,

η =
∑
λ∈Λ

(
∞∑
j=0

b2
λ,j + 2

∞∑
i>j

bλ,jbλ,i

)
=
∑
λ∈Λ

(
∞∑
j=0

bλ,j

)2

. (4.26)

Therefore η = 0 if and only if
∞∑
j=0

bλ,j = 0 for each λ ∈ Λ.

Thus, the explicit condition for super-efficiency is that the sum of coefficients

in each class λ be zero. We say that an integrand A(x) is Super-Efficient (under

the dynamical system with mapping T and invariant pdf ρ) if (4.20) holds for

B(x) = A(x)/ρ(x).

Example 12. Consider a variant of the integrand (4.17)

A(x) =
−8x4 + 8x2 + (1 + ε)x− 1

π
√

1− x2
= Bε(x)ρ(x). (4.27)

Under the Chebyshev dynamical system (4.11), Bε(x) can be expanded as

Bε(x) = (1 + ε)T1(x)− T4(x). (4.28)

If p = 2, the coefficients of the generalized Fourier series are b1,0 = 1 + ε,

b1,2 = −1 and zero otherwise. The sum of coefficients are d1 = ε and dλ = 0 for

λ 6= 1. Therefore A(x) is super-efficient if and only if ε = 0. When ε 6= 0 we have

“mismatched” SE MC simulation, which appears to be super-efficient for small N

but gradually loses super-efficiency as N increases [67]. See Fig. 4.2.

From the previous example, it is now clear why the integrand A(x) in (4.17)

under the chaotic mappings T2 and T4 (but not T5) are super-efficient. More

specifically, the modified integrand under the Chebyshev dynamical system can

be written as B(x) = T1(x)−T4(x). When p = 2 and p = 4, the sum of coefficients

in the class λ = 1 is d1 = 1−1 = 0, and all other dλ’s are zero. Hence, the chaotic
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Figure 4.2: The variance of the approximation error σ2
N versus the number of

samples N . The slope of the conventional MC simulation curve is −1, indicating
its 1/N behavior. On the other hand, the slope of the super-efficient MC simu-
lation is −2 because σ2

N decays like 1/N2. Between these two extremes are the
mismatched SE MC simulations with different size of ε. For ε = 0.001, the curve
is almost identical to the super-efficient curve. As ε becomes larger, the slope of
the mismatched SE MC simulations gradually increase as N becomes larger.

MC simulations under both chaotic mappings T2 and T4 are super-efficient. On

the other hand, when p = 5, the chaotic MC simulation has the same convergence

rate as the conventional MC simulation, because d1 = 1 does not satisfy the

super-efficiency condition.

4.2.4 Multi-dimensional Dynamical Systems

Note that the characterization of super-efficiency (4.20) holds regardless of the

dimension of the domain Ω as long as the system has Lebesgue spectrum. Never-

theless, high-dimensional dynamical systems arise naturally through the product

of multiple one-dimensional dynamical systems. In this section, we show that

the Lebesgue spectrum of the product dynamical system has a special structure,

and we derive the corresponding necessary and sufficient condition for super-
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efficiency. For simplicity, we consider two one-dimensional dynamical systems

(Ω1,A1, µ1, T1) and (Ω2,A2, µ2, T2). The product dynamical system (Ω,A, µ, T )

is defined as the product probability space (Ω1 × Ω2,A1 ⊗ A2, µ1 ⊗ µ2) with the

mapping T (x, y) = T1(x)T2(y). It is not difficult to show that the product space

is also a measure-preserving dynamical system [66]. Suppose both the dynamical

systems (Ω1,A1, µ1, T1) and

(Ω2,A2, µ2, T2)

have Lebesgue spectrum with basis function B1 = {1} ∪ {f (1)
λ1,j1

(x) |λ1 ∈ Λ1,j1 ∈

N0} and B2 = {1} ∪ {f (2)
λ2,j2

(y) |λ2 ∈ Λ2,j2 ∈ N0}, respectively. The complete

orthogonal basis on (Ω1 × Ω2,A1 ⊗ A2, µ1 ⊗ µ2) is B = B1 × B2, which can be

written explicitly as

{1}∪{f (1)
λ1,j1

(x)}∪{f (2)
λ2,j2

(y)}∪{f (1)
λ1,j1

(x)f
(2)
λ2,j2

(y)} for λ1 ∈ Λ1, λ2 ∈ Λ2,j1,j2 ∈ N0.

(4.29)

Because of the constant function 1, the expression for B in (4.29) becomes very

messy. It gets even more cumbersome for higher dimensional spaces. For nota-

tional convenience, we define the redundant functions

f0,j(x) := 1 for all j = 0, 1, 2, . . . . (4.30)

This way, the constant function 1 can be indexed by (0, j) for any non-negative j.

To make sense of this definition, we require that b0,j = 0 for all j > 0 and b0,0 = I

is the integral of B(x).

Clearly, the action of UT on the basis function is

UTf
(1)
λ1,j1

(x)f
(2)
λ2,j2

(y) = f
(1)
λ1,j1

(T1(x))f
(2)
λ2,j2

(T2(y)) = f
(1)
λ1,j1+1(x)f

(2)
λ2,j2+1(y) (4.31)

for all λ1 ∈ Λ1, λ2 ∈ Λ2 and j1, j2 ∈ N0. That is, the index of the basis function

changes from (λ1, λ2,j1,j2) to (λ1, λ2,j1+1,j2+1) after applying UT . From (4.31) we
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found that the least element in each invariant subspace associated with UT have

the form

f
(1)
λ1,j1

(x)f
(2)
λ2,j2

(y), j1, j2 ∈ N0, and j1j2 = 0. (4.32)

That is, at least one of the index j1 and j2 of the least element must be zero so

that no other function can precede it under UT . See Fig. 4.3.

(0, 0) (1, 0) (2, 0) (3, 0)

(0, 1)

(0, 2)

(0, 3)

(2, 1)

(3, 2)

(j1, j2)

j1

j2

Figure 4.3: An illustration of the Lebesgue spectrum for 2D systems. Given λ1 and
λ2, each circle represents an basis function indexed by (λ1, λ2, j1, j2). Applying T
on the basis function increases both of j1 and j2 by 1. The least elements are on
the boundary. They generate the invariant subspace.

Therefore we define the index set Λ = Λ1 × Λ2 and J = {(j1, j2) ∈ N0 :

j1, j2 ∈ N0, j1j2 = 0} to index the least elements in each of the invariant subspaces

associated with UT . The generalized Fourier expansion of an integrable function

B(x, y) is given by

B(x, y) =
∑
λ∈Λ

∑
j∈J

∞∑
k=0

bλ,j+k1fλ,j+k1(x, y), (4.33)

where 1 denotes the vector with all unity components. Similarly, for d-dimensional
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space, we define

Λ =
d∏
i=1

Λi (4.34)

and

J = {(j1, j2, . . . , jd) ∈ Nd
0 : j1j2 . . . jd = 0}. (4.35)

The necessary and sufficient condition for super-efficiency is given by

dλ,j =
∞∑
k=0

bλ,j+k1 = 0 (4.36)

for each λ ∈ Λ and j ∈ J .

Example 13. 2D Walsh system. The Walsh system is a complete orthonormal

set associated with the doubling map (4.10). The Rademacher system on the unit

interval equipped with Lebesgue measure is a set of orthonormal functions

{x 7→ rn(x) = sgn(sin(2n+1πx) |x ∈ [0, 1), n ∈ N}, (4.37)

where sgn is the signum function. Note that the Rademacher system is not com-

plete. The complete orthonormal basis is the given by the Walsh-Paley system

{Wn(x) : [0, 1) 7→ {−1, 1} |n ∈ N0}, (4.38)

where W0(x) = 1 and Wn(x) = rν1(x)rν2(x) · · · rνm(x), where

n = 2ν1 + 2ν2 + · · ·+ 2νm (4.39)

is the binary representation of n and ν1 < ν2 < · · · < νm. To show that the
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Walsh-Paley system satisfies (4.18), observe that rn(Td(x)) = rn+1(x) and

Wn(T (x)) = rν1(T (x))rν2(T (x)) · · · rνm(T (x)) (4.40)

= rν1+1(x)rν2+1(x) · · · rνm+1(x) (4.41)

= W2n(x). (4.42)

Therefore the complete orthonormal basis is given by

fλ,j(x) := Wλ2j(x). (4.43)

Because of the simple structure of the Walsh function, there is a fast way of

evaluating it. Let x = 0.b1b2 . . . bp be the first p-bit binary representation of a

number x ∈ [0, 1). Then

Wn(x) = −1⊕
p
i=1(bi∧dp−i+1), (4.44)

where ∧ is the logic AND and ⊕ is the exclusive-OR.

Consider the integrand

B(x, y) = W1(x)W2(y)+0.5W6(x)W1(y)− (1− ε)(W2(x)W4(y)+0.5W12(x)W2(y))

(4.45)

on the product space [0, 1)2. By (4.43) we can verify that

dλ1,j1
= bλ1,j1

+ bλ1,j1+1 = 1− (1− ε) = ε, λ1 = (1, 1), j1 = (0, 1),

(4.46)

dλ1,j1
= bλ2,j2

+ bλ2,j2+1 = 0.5− 0.5(1− ε) = 0.5ε, λ2 = (3, 1), j2 = (1, 0),

(4.47)

which satisfies super-efficient condition (4.36) if ε = 0. See Fig. 4.4.
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Figure 4.4: The variance of the approximation error σ2
N versus the number of

samples N . The slope of the conventional MC simulation curve is −1, indicating
α = 1 behavior. On the other hand, the slope of the super-efficient MC simulation
is −2. The ε indicates the degree of mismatch of the super-efficiency. As ε becomes
larger, the slope of the mismatched SE MC simulations gradually increase as N
becomes larger.
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CHAPTER 5

Approximate Super-Efficient Monte Carlo

Simulation

Applying chaotic MC simulation on super-efficient integrands yields superior con-

vergence rate of 1/N2 in contrast to the conventional convergence rate 1/N . How-

ever, most integrands are not SE. This implies that chaotic MC simulation has

no advantage over conventional MC simulation in general. While most integrands

do not satisfy the SE condition, Yao proposed the Approximate Super-Efficient

(ASE) algorithm [58] that modifies the integrand so that it is approximately SE,

and by applying chaotic MC simulation on the modified integrand, we get a much

faster convergence rate of 1/Nα for convergence exponent α between 1 and 2 (a

concept equivalent to ASE was proposed by Umeno in 2002 [68]. A crucial step

here consists of adding to B(x) a function that has zero mean. This will not

change the integral of B(x) [58]. Therefore, if we know the sum of coefficients dλ

in (4.20) for each class λ, then the new integrand

B′(x) = B(x)−
∑
λ∈Λ

dλfλ,0(x) (5.1)

will be super-efficient without changing the integral of B(x) (recall the basis func-

tions fλ,j(x)’s have zero mean for all λ and j). We call the function dλfλ,0(x) the

compensator associated with class λ. By subtracting compensators from B(x), we

introduce negative dynamical correlation, and make the chaotic MC simulation

nearly super-efficient. In practice, since we do not know the sum of coefficients, it
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is not possible to construct infinitely many compensators to achieve perfect super-

efficiency. The idea of ASE algorithm is to approximate the sum of coefficients dλ

by its Kλ-term partial sum

d̂λ ≈ bλ,0 + bλ,1 + . . .+ bλ,Kλ (5.2)

using conventional MC or chaotic MC simulations, where Lλ is some (hopefully

not too large) positive integer. Then we form the modified integrand

B̃(x) = B(x)−
∑
λ∈Λω

d̂λfλ,0(x), (5.3)

where the index set Λω contains ω classes. If the sum of coefficients d̃λ = dλ − d̂λ

of B̃ is close to zero, and η̃ =
∑
λ∈Λ

d̃λ = ε > 0 is small, then from (4.16) the variance

of the approximation error can be written as

σ2
N =

ε2

N
+

ζ

N2
(5.4)

for some ζ. The effective convergence rate can be expressed as 1/Nα, where

α ∈ [1, 2] is referred to as the convergence exponent, and it is defined as the

negative slope of the N -σ2
N curve (see Fig. 5.1).

α := −dσ2
N

dN

N

σ2
N

. (5.5)

The conventional MC simulation has α = 1 and the Super-Efficient MC sim-

ulation has α = 2. For ASE algorithm, α will decrease as the sample size N

increases. Indeed, when N increases, α will gradually decrease to 1, because the

term ε2/N will eventually dominate the convergence rate. The more accurate the

estimates d̂λ’s are, the slower α decreases to 1 (Fig. 5.1).
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Figure 5.1: Illustration of the convergence rate of σ2
N versus the sample size N .

The convergence exponent α is the negative slope of the curve. Conventional MC
simulation has α = 1. SEMC simulation has α = 2. ASE algorithm has α ≈ 2
when N is small, and will gradually decrease to α ≈ 1 when N becomes large.
Note that even though decay exponent α of the ASE algorithm ultimately goes
to 1, the error variance σ2

N is significantly smaller than the conventional case.
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5.0.5 Fixed-Accuracy ASE Algorithm

Yao first proposed the following two-stage ASE algorithm [58] (see Algorithm 1).

Algorithm 1: Approximate Super-Efficient Algorithm

// Stage I: Estimate dλ for each λ

1 for λ ∈ Λω do

2 d̂λ ← 〈F (K)
λ (xi)B(xi)〉

3 end

4 B̃(x) := B(x)−
∑

Λω
d̂λfλ,0(x) ; // Define the ASE integrand

5 x ∼ ρ ; // Draw a seed from the invariant pdf

6 S ← 0, Dλ ← 0 for each λ ∈ Λω ; // Initialize accumulators

// Stage II: Chaotic MC simulation

7 while #iteration < N do

8 x← T (x) ; // Compute the next state

9 S ← S + B̃(x);

10 end

11 return S/N ;

1. Approximate the sum of coefficients d̂λ’s in (5.2) using n-sample conventional

or chaotic MC simulation for each λ ∈ Λω.

2. Subtract the compensators from the integrand B(x) to form B̃(x) as defined

in (5.3), and apply chaotic MC simulation on B̃(x).

Note that we need to spend n samples to estimate dλ for each λ ∈ Λω in

stage 1. The quality of the estimates will affect how well the chaotic MC simulation

performs in the second stage. To illustrate this point, we apply ASE using different

sizes of n, and compare their performance in the following example.

Example 14. Consider the Chebyshev dynamical system of order p = 2 and the
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integrand [67]

A(x) = (1− x2) exp(−x2) = B(x)ρ(x). (5.6)

Unlike the previous examples, where the integrand B(x) could be expressed as

finite sum of basis functions, the integrand (5.6) has infinitely many terms in its

generalized Fourier series expansion. We choose Λω = {1, 3, 5, 7, 9} and Kλ = 5.

We perform chaotic MC simulation for N = 106 samples using conventional, ASE

and Progressive ASE (PASE) MC algorithms (to be defined shortly), see Fig. 5.2.

10
3

10
4

10
5

10
6

10
7

10
−10

10
−8

10
−6

10
−4

N

σ
2

N

 

 

Conventional

SE

n = 10
2

n = 103

n = 104

n = 105

PASE

Figure 5.2: Variance of approximation error σ2
N versus the number of samples

N . Throughout the entire simulation, both the conventional and super-efficient
MC simulation constantly has 1/N and 1/N2 behavior, respectively. The ASE
MC simulations have 1/N2 behavior at first, but gradually degrade to 1/N . ASE
simulations with larger values of n have better accuracy than the estimates d̂λ’s,
and lose super-efficiency later. The Progressive ASE simulation has 1/N behavior
at first but gradually improves to 1/N2, because the estimates d̂λ’s get more
accurate as N increases.

As a benchmark, we compute the sum of coefficients using accurate numerical

integration for the super-efficient case. For ASE MC simulations, we use differ-

ent number of samples n to estimate dλ’s to demonstrate the effect of inaccurate

estimates and convergence rate. For Progressive ASE MC simulation we estimate
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dλ’s at the same time as the chaotic MC simulation runs.

To better visualize the decay exponent α, we use least square method to find

the slope of the curves in Fig. 5.3 (recall that α is the negative slope of the curve

in the log-log plot).
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Conventional
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n = 102
n = 103

n = 104

n = 105

Figure 5.3: To see the decay exponent α more clearly, we use least square
method to find the slope of the curves in Fig. 5.2. The decay exponent for the
super-efficient MC simulation is 2 for the entire simulation. On the other hand, the
exponent for the conventional MC simulation is 1. For the ASE MC simulation
with sample size n = 100, 000, it is super-efficiency at N = 104 but the decay
exponent gradually decreases to 1.1 in the end of the simulation. With ASE
MC, simulations with lower sample size n have smaller decay exponents, all of
which decrease to 1 very fast. On the other hand, the PASE simulation has decay
exponent around 1.4 in the beginning and gradually increases to nearly 1.9 in the
end, indicating that the quality of the estimates dλ’s is getting better.

From (4.16), if the integrand is nearly super-efficient, then the decay exponent

α will be around 2. For conventional MC simulation, α = 1.

Note that for ASE simulations, we need to spend n random samples in the

first stage for each class in ΛL. The effective number of samples for ASE sim-

ulations should take those extra samples into consideration. On the other hand,

the Progressive ASE algorithm (see next section) does not have this overhead, and
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its convergence rate is improving as N increases because the estimates of dλ are

getting more and more accurate.

5.0.6 Progressive ASE Algorithm

ASE simulation is approximately super-efficient for moderate sizes of N . However,

from (5.4) it is clear that ASE simulation will eventually lose the 1/N2 conver-

gence rate as long as ε 6= 0. In [67], Biglieri suggested computing d̂λ’s iteratively

to improve the accuracy of the estimation . As opposed to the original ASE

algorithm, which has fixed accuracy for the entire simulation, we proposed a Pro-

gressive ASE (PASE) algorithm that keeps improving the accuracy of d̂λ’s as the

chaotic MC simulation goes on. The idea is to use the samples B(xi) generated in

the main chaotic MC simulation to estimate d̂λ’s continuously. Therefore we get

progressively better estimates of d̂λ’s and improve the decay rate. See Algorithm

2.

Algorithm 2: Progressive Approximate Super-Efficient Algorithm

1 x ∼ ρ ; // Draw a seed from the invariant pdf

2 S ← 0, Dλ ← 0 for each λ ∈ Λω ; // Initialize accumulators

3 while #iteration < N do

4 x← T (x) ; // Compute the next state

5 S ← S +B(x);

6 Dλ ← Dλ + F
(L)
λ (x)B(x) for each λ ∈ Λω.

7 end

8 return
(
S −

∑
λ∈Λω

Dλ〈fλ,0〉N
)
/N ;
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5.1 Implementation Issues

5.1.1 Fast Generation of Compensators

One of the most important steps of the ASE algorithm is the estimation of the

coefficients

dλ =
∞∑
j=0

〈B(x), fλ,j(x)〉 . (5.7)

Define the K partial sum of the basis functions as

F
(K)
λ (x) :=

k−1∑
j=0

fλ,j(x). (5.8)

The coefficient dλ can be approximated by

d̂
(K)
λ :=

〈
B(xk), F

(K)
λ (xk)

〉
n
. (5.9)

In the PASE algorithm, we need to evaluate (5.9) repeatedly. This can be chal-

lenging especially when K is large. In this section, we present a fast way of

computing (5.9). Recall that a dynamical system has the Lebesgue spectrum if

the basis function fλ,j(x) satisfies the condition

fλ,j(T (xn)) = fλ,j+1(xn). (5.10)

By using the above property, the partial sum F
(K)
λ (xn) and F

(K)
λ (xn+1) can be

written as

F
(K)
λ (xn) = fλ,0(xn) + fλ,1(xn) + · · ·+ fλ,K−2(xn) + fλ,K−1(xn), (5.11)

F
(K)
λ (xn+1) = fλ,1(xn) + fλ,2(xn) + · · ·+ fλ,K−1(xn) + fλ,K(xn). (5.12)
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Therefore F
(K)
λ (xn) can be written as

F
(K)
λ (xn+1) = F

(K)
λ (xn)− fλ,0(xn) + fλ,K(xn). (5.13)

This is to say that once we have computed F
(K)
λ (x0), F

(K)
λ (xn) can be computed

easily regardless of K for all n. The procedure is summarized in ALGORITHM

III.

Algorithm 3: Fast Compensator Generation

1 x← x0 ; // Generate an initial state.

2 F ← F
(K)
λ ; // Compute the partial sum (5.8).

3 Loop

4 F ← F − fλ,0(x) + fλ,k(x) ; // Compute F recursively

5 x← T (x) ; // Generate the next state.

6 EndLoop

5.1.2 Generating Chaotic Sequence

As we have seen from the previous section, generating compensators can be imple-

mented very efficiently: we only need to evaluate two terms fλ,0(xn) and fλ,K(xn)

for each invariant class λ as in (5.13). Thus, the real question is how to evaluate

these terms. In this section, we consider the doubling map and present a fast algo-

rithm based on the one-sided Bernoulli shift. Note that this method is applicable

to any dynamical systems that have topological conjugacy relation [69] with the

doubling map, such as the Chebyshev dynamical system with p = 2.

Implementing a doubling map is particularly simple using a digital computer.

Recall the doubling map is defined as

T2(x) = (2x) mod 1. (5.14)
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Consider a real number x ∈ (0, 1), which has the binary representation

x = 0.b1b2 . . . , (5.15)

where bk’s are either 0 or 1. Applying T2 on x is equivalent to performing a

left shift to (5.15), i.e.

T2(x) = 0.b2b3 . . . . (5.16)

If we want to implement such an operation using a digital computer, the first

problem we will encounter is that the computer can only store a finite number of

bits, say L bits of x. If we apply the mapping T2 on x for L times, all the L bits

will be flushed to the left and result in zero output. More specifically, let

x := 0.b1b2 . . . bL (5.17)

be the L-bit representation of x in (5.15). We use the notation T n2 (x) to mean

applying T2 on x for n times. We have the following:

x = 0. b1 b2 . . . bL−1 bL

T2(x) = 0. b2 b3 . . . bL 0
...

TL−1
2 (x) = 0. bL 0 . . . 0 0

TL2 (x) = 0. 0 0 . . . 0 0

(5.18)

Note that the numerical error between x and its finite binary representation x

is bounded by 0 ≤ x − x ≤ 2−L. Let x0 ∈ (0, 1), define xk = T k2 (x0). The error

between xk and T k2 (x0) is bounded by

0 ≤ xk − T k2 (x0) ≤ 2−L+k ∧ 1, (5.19)
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where x ∧ y is min{x, y}. This means that the naive implementation of T2 leads

to a numerical disaster: after applying T2 for L times, the relative error
xL−TL2 (x0)

xL

is always 100%. The problem stems from the fact that digital computers can

only store finite number of bits. On the other hand, storing an irrational number

requires infinitely many bits.

A trick to get around this problem is to “generate” the lost bit after applying

T2: suppose we store the finite binary version x0 of an irrational number x0 ∈

(0, 1). Each time we apply T2 on the previous value, we add the term b2−L to

compensate for the lost bit b. Starting from x0, we have

x1 := T2(x0) = T2(x0) + bL+12−L. (5.20)

By adding the term bL+12−L, we restore the truncated version x1 of x1. Similarly,

we can restore the truncated version x2 of x2 by

x2 = T2(x1) + bL+22−L. (5.21)

The general step is

xn = T2(xn−1) + bL+n2−L. (5.22)

This is what we called the randomized doubling procedure, and we denoted

the operation in (5.22) by

T ∗2 (xn−1) = T n∗2 (x0) = xn. (5.23)

The error of the randomized doubling procedure is

0 ≤ xn − T n∗2 (x0) ≤ 2−L, (5.24)

which is always bounded by 2−L regardless of n, in contrast to the exponentially
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large error in (5.19) of the naive implementation. The remaining problem is how

to generate the “lost bits” bL+k for k = 1, 2, . . .. If we select x0 ∈ (0, 1) at random,

then bk’s form a Bernoulli process, i.e. bk’s are independent to each other and have

the same chance to be 0 or 1. Therefore, the problem becomes how to generate

an infinitely stream of independent bits. From practical point of view, we don’t

need an infinitely long sequence of bits. Suppose that we will apply T2 at most M

times on x0, it suffices to generate M independent bits. For example, the Linear

Feedback Shift Register (LFSR) of length m is a simple algorithm to generate

high quality, period 2m− 1 pseudo-random bits. Besides doubling x, we also need

to double the number of the form λx as in (5.10) when λ 6= 1.

Figure 5.4: The example of a 16-bit linear feedback shift register. By connecting
the 11th, 13th, 14th and 16th bit to the XOR gates it is able to produce a binary
sequence of length 216 − 1, which can be used to generate the “loss bits”.

Let

λ = e0 + e12 + e222 + · · ·+ en2n (5.25)

be the binary representation of λ ∈ N, where ei ∈ {0, 1}. λx can be written as

λx = e0x+ e1T2(x) + e2T
2
2 (x) + · · ·+ enT

n
2 (x) mod 1, (5.26)

and T2(λx) can be written as

T2(λx) = e0T2(x) + e1T
2
2 (x) + e2T

3
2 (x) + · · ·+ enT

n+1
2 (x) mod 1. (5.27)

A straightforward way of implementing (5.26) and (5.27) on a digital computer is
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to replace T n2 (x) by T n∗2 (x):

T2(λx) ≈ e0T
∗
2 (x) + e1T

2∗
2 (x) + e2T

3∗
2 (x) + · · ·+ enT

n+1∗
2 (x) mod 1. (5.28)

Clearly, if we implement (5.28) directly, it would be very inefficient because we

need to perform numerous randomized doubling procedures. A better approach

is to exploit the fact that the LSB generated by T k∗2 (x) for k = 1, 2, . . . , n − 1

have already been generated before. For example, suppose we want to compute

10x from doubling 5x. Let x be given by (5.15). Since 5x = x + 4x, we can

imagine there are two shift registers S1 and S2 that hold the values of x and 4x,

respectively (the first and the second row of Fig. 5.5).

Figure 5.5: Illustration of doubling the number 5x: before doubling.

Figure 5.6: Illustration of doubling the number 5x: after doubling.

In addition, we introduce a shift register S3 that stores the previously generated
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bits (the right most column of Fig. 5.5). The cache in the bottom of Fig. 5.5 stores

the sum of x and 4x. In the next cycle, S1 and S2 shift in their corresponding

LSB from S3, and S3 shifts in the bit b7 produced by the random bit generator

(RBG). See Fig. 5.6. Effectively, we don’t need the shift registers S1 and S2 to

store the values of x and 4x. The entire operation can be implemented as shown

in Fig. 5.7.

Figure 5.7: The actual doubling process for 5x.

In general, we only need a shift register S to hold the current value of 10x and

an extra shift register S3 to store the previously generated random bits.

The procedure of doubling the number λx is summarized in Algorithm 4.

Algorithm 4: Randomized Doubling

input: The multiplier λ := e0 + e12 + . . .+ en2n.

1 b← (b0, b1, . . . , bn) ; // Initialize buffer with random bits.

2 Loop

3 s←
∑n

i=0 eibi ; // Calculate the LSB.

4 x← (x << 1) + 2−Ls ; // Left shift x.

5 b← (b << 1) + (0, 0, . . . , X) ; // Left shift the buffer and

generate a new bit X.

6 EndLoop
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Note that the numerical error of (5.28) is given by

0 ≤ T2(λx)−e0T
∗
2 (x)+e1T

2∗
2 (x)+e2T

3∗
2 (x)+· · ·+enT n+1∗

2 (x) mod 1 ≤ log2(λ)2−L.

(5.29)

For a given λ the error can be made arbitrarily small by increasing the number of

bits L, and there is no error propagation.

5.1.3 Parallel Implementation

It is possible to implement the parallel algorithm of the PASE in various ways.

We argue that PASE is particularly suitable for heterogeneous computing based

on the assumption that the most computationally intensive task of the simulation

is the evaluation of the integrand B(x). Define B = (B(x1), B(x2), . . . , B(xM))T

and jλ = (F
(K)
λ (x1), F

(K)
λ (x2), . . . , F

(K)
λ (xM)) for each λ ∈ Λ0, where F

(K)
λ (x) is

the K partial sum of fλ(x)as defined in (5.8). Recall that the estimate d̂λ can be

computed as the inner product

d̂λ =
〈
B(x)F

(K)
λ (x)

〉
M

= BTjλ. (5.30)

By linearity of the time average operator, the integral can be written as

〈
B̃(x)

〉
= 〈B(x)〉 −

∑
λ

d̂λ 〈fλ,0〉 . (5.31)

Using the matrix notation, (5.31) can be expressed as

〈
B̃(x)

〉
=

1

M

(
BT1− dTj

)
, (5.32)

where 1 = (1, 1, . . . , 1)T is an M -vector of unit entries, dT = BT
(
jλ1

, . . . , jλω
)

and j = (〈fλ1,0〉 , . . . , 〈fλω ,0〉)
T . Based on the assumption that the most compu-

tationally intensive task is the evaluation of B, it is reasonable to assign the task

74



to powerful CPUs, which can execute complex instructions. On the other hand,

the task of constructing j and j consists of lots of similar and lightweight com-

putations, which can be computed efficiently by special-purpose processors such

as Graphics Processing Units (GPU). See Algorithm 5.

Algorithm 5: Parallel PASE

1 Generate x0;

2 repeat

3 Generate x1, . . . , xM from x0;

4 in CPU :

5 B ← (B(x1), . . . , B(xM))T ;

6 S ← S +BT1;

7 Send B to GPU.

8 end

9 in GPU :

10 F ← (F
(K)
λj

(xi))ij;

11 f ← f +
(∑M

m=1 fλi,0(xm)
)
i
;

12 d← d+ F TB;

13 end

14 x0 ← xM ;

15 until N samples have been generated ;

16 return I = 1
N

(
S + M

N
dTf

)
;

5.2 Conclusion

While conventional MC simulation yields the convergence rate 1/N , SE MC has

superior convergence rate 1/N2 for integrands of the SE type. Since most inte-

grands are not SE, we introduce the concept of ASE. The ASE and Progressive

ASE algorithms are general, and at least as fast as conventional MC simulation,
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while sometimes yielding near super-efficient convergence rate. Furthermore, the

introduction of the Lebesgue spectrum concept from ergodic theory allows us to

systematically study the SE MC simulation. The above discussions are appli-

cable also to multi-dimensional integrands. It is of great interest to find more

applications to exploit the concept of SE and ASE.
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CHAPTER 6

On The Throughput Maximization in Cellular

Networks

Packet retransmission and channel feedback are two fundamental mechanisms in

the modern communication systems. They improve the efficiency and robustness

of communication links. Since the communication links are subject to noise and

channel variation, the receiver may fail to decode a damaged packet. To recover

the lost packet, the receiver may send a negative-acknowledgment (NAK) to the

transmitter to request a retransmission. Combining with the damaged packet,

the newly received packet may help the receiver to recover the packet, and thus

enhances the reliability of the communication link. However, this added reliability

comes at the cost of extra redundancy, which results in lower data throughput.

To better utilize the channel resource, the transmitter relies on the channel state

information (CSI) feedback by the receiver. The CSI indicates the quality of the

channel, hence provides guideline for the transmitter to determine the packet size,

modulation level, code rate, etc. If the channel quality is good, the transmitter can

transmit a larger packet with small error rate. On the other hand, if the channel

quality is poor, the transmitter may select a smaller packet size so that stronger

error correction code can protect the packet. While high packet error rate results

in poor efficiency, low packet error rate may indicate that the system does not

properly utilize the channel resources, hence the throughout may be improved

by transmitting a larger packet. From the viewpoint of data throughput, it is

desirable for a system to operate at a certain packet error rate.
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For example, in the 3rd and the 4th generation cellular networks, the user

equipment (UE, mobile station) monitors channel quality and periodically reports

CSI back to the base station (Node B). One component of CSI is the Channel

Quality Indicator (CQI), which is an integer ranges from 0 to 15 for LTE and 0 to

30 for UMTS, where 0 indicating the channel is unusable and 15 (30 for UMTS)

indicating the best channel condition. Based on the UE reported CQI, the Node B

will choose the largest Transportation Block Size (TBS, number of information

bits per packet), modulation level and code rate so that the UE can decode at

a certain probability. It is recommended in [70, 6A.2.1] (UMTS) and [71, 7.2.3]

(LTE) that the UE should report CQI such that the first block error rate (BLER)

is around 10% under static channel. However, this 10% target BLER is by no mean

throughput optimal. The exact relationship between the packet error rate and the

throughput is complicated, and it depends strongly on the channel statistics.

In [72], Tao considered the throughput maximization problem by applying an

offset to the CQI distribution. The offset is adaptively adjusted to achieve a given

BLER target, or to maximize the throughput using the stochastic approximation

algorithm.

Instead of finding an optimal offset to the CQI distribution, we consider a

more fundamental question: what is the throughput maximizing CQI reporting

mechanism? More generally, what is the mechanism that not only maximizes

the throughput but also meets some design constraints, such as satisfying a given

BLER target? Most importantly, how to achieve these goals online, where channel

statistics and many problem-dependent factors needs to be learn on the fly?

Clearly the CQI offset approach studied by Tao [72] is a special case among all

the possibilities. If we consider more general CQI reporting mechanisms, the UE

potentially can achieve a much higher throughput. By formulating the problem

of designing an optimal CQI reporting mechanism as a constrained optimization

problem, we show that under the independent channel condition, the optimal
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CQI reporting mechanism is to report CQIs according to some distribution. This

distribution becomes degenerative in the unconstrained case, i.e. there exists a

throughput maximizing CQI. In the BLER constrained case, we show that the

optimal CQI distribution has two atoms, and derive an explicit formula for their

probability mass. The solution to both the unconstrained and constrained prob-

lem depends critically on the channel statistics and the decoding capability of

the UE. From a practical point of view, these conditions are unknown a priori

and needs to be learned online. In the unconstrained case, since there exists an

throughput maximizing CQI, the UE only needs to learn the throughput associ-

ated with each CQI, and report the optimal CQI as frequently as possible. This

can be done by trying all the possible CQIs and report the CQI that yields the

highest throughput. However, trying suboptimal CQIs has the adverse effect of

lowering the average downlink throughput. The UE would like to identify the

throughput maximizing CQI and spend minimum amount of time on suboptimal

CQIs. Here the UE is facing a classical exploration and exploitation dilemma:

while it is desirable to exploit the throughput maximizing CQI by reporting it as

frequently as possible, it takes time to explore other CQIs before getting an accu-

rate throughput estimate for each CQI. We propose using the Multi-Armed Bandit

(MAB) framework to study the problem. In a MAB problem, an agent chooses

some action to play in each time step and gets a reward associated with that

action. The agent’s task is to decide which action to play so that the cumulative

reward is maximized. This setting is very similar to the throughput maximization

problem. The UE need to choose the right CQI to report at each time step so that

the average throughput is maximized. However, the notion of cumulative reward

in the throughput maximization problem is different from the classical MAB prob-

lems. In the throughput maximization problem, the objective is to maximize the

average throughput, which is the ratio of number of decoded bits to the number

of transmission blocks. This difference needs to be taken into consideration when
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designing an algorithm. Based on the classical ε-Greedy, Boltzmann exploration

and Thompson sampling algorithm, we present three algorithms: Greedy-CQI,

Boltzmann-CQI and TS-CQI, which are tailored to solve the online throughput

maximization problem. We further conduct finite time performance analysis for

the Greedy-CQI algorithm.

In the BLER constrained throughput maximization problem, we propose a

novel Greedy-LP algorithm, which solves a sequence of linear programs and grad-

ually converges to the optimal CQI distributions. To quantify the performance of

CQI reporting mechanisms with the BLER constraint, we introduce the concept

of penalized regret, and show that the Greedy-LP algorithm’s penalized regret

converges to zero almost surely.

Our simulation results show that the proposed unconstrained algorithms achieve

up to 99% of the optimal throughput within 1000 blocks of transmissions. In the

BLER constrained case, the Greedy-LP algorithm achieves the given target BLER

with good accuracy and achieves 90% to 99% of the optimal throughput, depend-

ing on the fading model. Note that the UE implementation in our simulation

closely mirrors commercial devices. The performance of the proposed algorithms

is an indication of the potential throughput enhancement that can be realized in

practice.

The chapter is organized as follows. In section 6.1 we formulate the throughput

maximization problem as a moment problem with a fractional objective function.

The explicit solution for both the unconstrained and BLER constrained case are

derived ins section 6.2. Practical online algorithm is considered in Chapter 7.

6.1 Problem formulation

In a communication system, the receiver constantly monitors and reports the

channel quality information back to the transmitter. In practice, this information
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is quantized to a finite set of values known as CQI. Since higher CQI values

indicate better channel quality, the communication channel can support larger

packet size with high probability. In this study, we assume there is a one-to-one

correspondence between the reported CQI and the packet size.

Since CQI measurement and processing takes time, there is a delay between

the reported CQI and its corresponding packet. This delay causes a mismatch

between CQI and TBS due to channel variation. If the channel varies slowly 1, we

may predict the channel condition and report an appropriate CQI that maximize

the throughput. However, if the channel varies rapidly, it is not clear what is the

throughput optimizing CQI reporting strategy.

In this section, we formulate the problem of finding the optimal strategy math-

ematically and show that the optimal solution exists.

Let M be the maximum number of transmissions of a packet (including the

first transmission). Denote the CQI reported by UE at time n by Λn, and let d

be the time delay between CQI and its corresponding TBS.

Suppose the UE received a new packet of TBS mi at time n. The size mi was

determined by the UE reported CQI Λn−d = i at time n−d. Let Y be the number

of transmissions needed to successfully decode the packet subject to the limit of

M transmissions. The number of information bits decoded is a random number

X =


mi if the packet is eventually decoded,

0 if the packet can not be decoded after M − 1 retransmissions.

(6.1)

The downlink throughput T is the rate of transfered information bits over the

1 By varies slowly we mean the delay is larger than the channel coherence time. Typically
the CQI-TBS delay is around 8 ms to 20 ms depending on the system.
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number of time slots taken. That is

T =
E(bits decoded)

E(number of transmissions)
=

E(X)

E(Y )
. (6.2)

The event {Y > 1} indicates a block error occurs. The kth block error rate

(BLER) is defined as the probability Bk = Pr(Y > k). Since BLER dependents

critically on the SNR and the TBS, we denote the kth BLER as a function of TBS

and SNR by

Bk(m, γ) = Pr(Y > k | TBS = m,Γn = γ), (6.3)

where Γn is the instantaneous SNR experienced by the UE at time n.

BLER and throughput are closely related. Indeed, given the SNR and TBS,

the expected number of decoded bits X can be written as

g(m, γ) = E(X | TBS = m,Γn = γ) = m(1−BM(m, γ)). (6.4)

Similarly the expected number of transmissions Y can be written as

h(m, γ) = E(Y | TBS = m,Γn = γ) =
M∑
k=1

k(Bk−1(m, γ)−Bk(m, γ))+MBM(m, γ).

(6.5)

Averaging over the SNR and the CQI, the throughput is given by

T =
E(X)

E(Y )
=

∫∞
0

∑K
i=1 g(mi, γ)fΛn−dΓn(i, γ) dγ∫∞

0

∑K
i=1 h(mi, γ)fΛn−dΓn(i, γ) dγ

, (6.6)

where fΛn−dΓn(i, γ) is the joint pdf of CQI reported at time n − d and SNR at

time n.

A CQI reporting mechanism is a function Q : R+ 7→ {1, 2, . . . , K} that maps

the measured SNR to the set of possible CQI values. That is, Λn−d = Q(Γn−d).

Our goal is to find a mapping Q∗ such that the throughput T is maximized. Since
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Λn−d is a function of Γn−d, the joint pdf fΛn−dΓn can be written as

fΛn−dΓn(i, γ) =

∫
Qi

fΓnΓn−d(γ, γ
′) dγ′, (6.7)

where Qi = Q−1(i) is the range of SNRs that maps to CQI i.

To express explicitly the throughput T as a function of Q, denote the condi-

tional expectation E(X | Γn−d = γ′,TBS = m) by

G(m, γ′) =

∫ ∞
0

g(m, γ)fΓn|Γn−d(γ|γ
′) dγ (6.8)

and the conditional expectation E(Y | Γn−d = γ′,TBS = m) by

H(m, γ′) =

∫ ∞
0

h(m, γ)fΓn|Γn−d(γ|γ
′) dγ, (6.9)

the throughput (6.6) can be written as

T(Q) =

∑K
i=1

∫
Qi
G(mi, γ

′)fΓn−d(γ
′) dγ′∑K

i=1

∫
Qi
H(mi, γ′)fΓn−d(γ

′) dγ′
. (6.10)

Thus the problem of finding the optimal CQI reporting strategy can be formulated

as

Q∗ = arg max
Q
{T(Q) |Q : [0,∞) 7→ {1, 2, . . . , K}}. (6.11)

From the Bayesian decision theory point of view, we may interpret Γn−d as the

evidence and Γn as the state of nature. The CQI mapping Q is a decision rule that

maps from measured SNR Γn−d to an appropriate CQI. The function g in (6.4)

and h in (6.5) may be interpreted as the utility and the loss function, respectively.

Similarly, the function G(m, γ′) and H(m, γ′) are the Bayesian expected gain and

loss function, respectively.

To get an intuitive understanding about the problem (6.11), let’s consider the
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special case that M = 1, meaning that there is no retransmission. The throughput

becomes

T(Q) =
K∑
i=1

∫
Qi

G(mi, γ
′)fΓn−d(γ

′) dγ′. (6.12)

Clearly the throughput maximizing mapping is given by

Q∗(γ′) = arg max
1≤i≤K

G(mi, γ
′), (6.13)

which is the usual generalized Bayes rule.

6.2 Optimal solution under IID channel

In this paper, we focus on the case of fast fading channels, which leads to the

condition

Γn−d ⊥⊥ Γn ∀n, (6.14)

where ⊥⊥ denotes independence.

Since Γn−d ⊥⊥ Γn, Λn−d being a function of Γn−d will necessarily be independent

of Γn. The expected number of decoded bits G(mi, γ
′) in (6.8) and the expected

number of transmissions H(mi, γ
′) (6.9) becomes

gi =

∫ ∞
0

g(mi, γ)fΓn(γ) dγ (6.15)

and

hi =

∫ ∞
0

h(mi, γ)fΓn(γ) dγ, (6.16)

respectively. The throughput (6.10) can be written as

T(Q) =

∑K
i=1 gi

∫
Qi
fΓn−d(γ

′) dγ′∑K
i=1 hi

∫
Qi
fΓn−d(γ

′) dγ′
. (6.17)
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Note that the integral
∫
Qi
fΓn−d(γ

′) dγ′ is precisely fΛn−d(i), the probability mass

function (pmf) of CQI at time n−d. Therefore, the problem of finding the optimal

CQI reporting strategy becomes finding the optimal CQI distribution f ∗Λn−d :

arg max
fΛn−d

T =

∑K
i=1 gifΛn−d(i)∑K
i=1 hifΛn−d(i)

(6.18)

s.t. fΛn−d is a valid pmf on {1, 2, . . . , K}. (6.19)

Problem (6.18) is known as the moment problem with fractional objective

function. It is an optimization problem over probability distributions [73]. Given

the discrete nature of the probability measure fΛn−d , our problem (6.18) became

an linear-fractional program [74]:

max
f∈RK

gTf

hTf
(6.20)

s.t. 1Tf = 1, (6.21)

f ≥ 0, (6.22)

where g = [g1, g2, . . . , gK ]T , h = [h1, h2, . . . , hK ]T and f = [fΛn−d(1), . . . , fΛn−d(K)].

The constraint (6.21) is called a moment constraint. It is either an equality or

inequality constraint of the form

aTf 5 b (6.23)

for some K-vector a and constant b.

In general the throughput maximization problem may have multiple moment
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constraints:

max
f∈RK

gTf

hTf
(6.24)

s.t. Af = b, (6.25)

Bf ≤ c, (6.26)

f ≥ 0, (6.27)

for some matrix A, B and vector b and c. To ensure that f is a valid pmf, we

require that the first row of A is 1T and the first component of b is 1.

By the Charnes-Cooper transformation [75] x = f/(hTf) and z = 1/(hTf),

we may convert (6.24) into a linear program

max
x∈RK ,z∈R

gTx (6.28)

s.t. Ax = bz, (6.29)

Bx ≤ cz, (6.30)

hTx = 1, (6.31)

x ≥ 0, z ≥ 0, (6.32)

and the solution to the original problem (6.24) is f = x/z.

In the following subsection, we derive an explicit solution to the unconstrained

throughput maximization problem and to the throughput maximization problem

with block error rate constraint.
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6.2.1 Unconstrained throughout maximization

We call the throughput optimization problem unconstrained if (6.21) is the only

moment constraint. The equivalent linear program is

max
x∈RK

gTx (6.33)

s.t. hTx = 1, (6.34)

x ≥ 0. (6.35)

This simple linear program has an explicit solution x = ei∗/hi∗ , where ei∗ is the

i∗th unit vector in RK , and i∗ is given by

i∗ = arg max
i

gi
hi
. (6.36)

Therefore, the throughput maximizing CQI distribution is

fΛn−d(i) =


1 for i = i∗,

0 otherwise,

(6.37)

and the optimal throughput is

T∗ =
g∗

h∗
, (6.38)

where g∗ = gi∗ and h∗ = hi∗ . This result shows that the optimal CQI Λn−d under

i.i.d. channel is a deterministic value i∗ that maximize the ratio

Ti =
gi
hi
. (6.39)

The ratio Ti can be interpreted as the conditional throughput for CQI = i, because

it is precisely the throughput that UE gets if it keeps reporting CQI = i.

The result may seem surprising at first but it turns out to be very intuitive:
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since the channel varies so rapidly, we can not predict the instantaneous SNR

in the future. Instead, we optimize the long term average of the throughput.

The solution is thus some fixed value i∗. For example, under the AWGN, SNR

10dB case, the optimal CQI is 24 for our UE. Any other distribution will lead to

suboptiaml performance.

6.2.2 Throughput maximization under BLER constraint

In addition to maximizing the throughput, we may want to keep the block error

rate at some target β. That is, we would like to solve the following moment

problem

max
Q

T(Q) =
E(X)

E(Y )
(6.40)

s.t. B̄1 = β, (6.41)

where B̄1 = Pr(Y > 1) is the first block error rate. The problem can be formulated

as a linear fractional program

max
f∈RK

gTf

hTf
(6.42)

s.t. bTf = β, (6.43)

1Tf = 1, (6.44)

f ≥ 0, (6.45)

where

Bk(mi) =

∫ ∞
0

Bk(mi, γ)fΓn(γ) dγ (6.46)

is the average kth block error rate and b = [B1(m1), . . . , B1(mK)]T is the vector

of first BLERs associated with each CQI. Note that the target first BLER β is

achievable if B1(m1) ≤ β ≤ B1(mK). From now on we assume the target first
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BLER is achievable. The equivalent linear program is

max
x∈RK

gTx (6.47)

s.t. hTx = 1, (6.48)

(b− β1)Tx = 0, (6.49)

x ≥ 0. (6.50)

From the theory of linear program, we know that the optimal solution x∗ of (6.47)

has at most two nonzero entries because there are exactly two equality constraints

(6.48) and (6.49) [76]. That is, we only need to consider the basic solution x, where

all but some ith and jth entry are zero. We refer to this candidate solution the

(i, j)th basic solution, and it must satisfy

 hi hj

bi − β bj − β

xi
xj

 =

1

0

 . (6.51)

After some algebra, it can be shown that the throughput associated with the

(i, j)th basic solution is

Tij =

∣∣∣∣∣∣ gi gj

bi − β bj − β

∣∣∣∣∣∣∣∣∣∣∣∣ hi hj

bi − β bj − β

∣∣∣∣∣∣
, (6.52)

where | · | is the determinant function. Note that not all the basic solutions

are feasible, since x must be non-negative. Observe that the components of b

are non-decreasing, thus there will be a number k0 such that bk0 − β ≤ 0 and

bk0+1 − β ≥ 0. In order for the (i, j)th basic solution to be feasible, we must have

i ≤ k0 and j > k0. This observation leads to the following conclusion: the optimal
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throughput to (6.24) is given by

T∗c = max
i≤k0,j>k0

Tij, (6.53)

where the subscript c stands for constrained, and the optimal CQI distribution is

fΛn−d(i) =



bj∗−β
bj∗−bi∗

for i = i∗,

β−bi∗
bj∗−bi∗

for i = j∗,

0 otherwise,

(6.54)

where

(i∗, j∗) = arg max
i,j

Tij (6.55)

is the index of the optimal basic feasible solution.

Unlike the unconstrained problem (6.28), where a single deterministic optimal

CQI exists, the solution (6.54) suggests that there is no single CQI that will

maximize the throughput and meet the BLER constraint at the same time. It is

a CQI distribution that achieves this.
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CHAPTER 7

Online Throughput Maximization Algorithms

7.1 Online algorithm for unconstrained maximization

From section 6.2.1, we know that the optimal CQI reporting policy under the

i.i.d. channel condition is always reporting some fixed value i∗ such that the

conditional throughput Ti∗ (6.39) is the maximized. Our C++ based HSDPA

simulator showed up to 80% throughput gain1 using the genie-aided optimal CQI

compare to the legacy CQI algorithm, which reports CQI based on instantaneous

SNR.

However, in practice we do not know i∗ before hand. To harvest the huge

gain of reporting the optimal CQI, we need an online algorithm that learns the

conditional throughput Ti for each i, and reports the optimal CQI i∗ with high

probability.

One simple strategy is to learn the conditional throughput Ti for each i during

a training phase, and then apply the best estimated CQI index î∗ afterward.

However, this strategy will always have a non-zero probability of finding and

locking at a suboptimal CQI, and it is not possible for UE to determine if the

CQI î∗ is suboptimal since the UE no longer explores other possibilities.

The challenge here is the classical exploration and exploitation dilemma: in

1 Note that the throughput gain over the legacy algorithm is not a good performance met-
ric. It depends strongly on the performance of the baseline algorithm. This makes comparing
different algorithms on difference version of UE difficult. A better performance metric is to use
the regret (7.3), which is defined as the gap between the maximal achievable throughput and
the algorithm’s average throughput. This metric is independent of the baseline algorithm.
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order to find the optimal CQI i∗ with high confidence, the UE needs to explore

all CQIs with sufficient amount of samples. However, exploring suboptimal CQIs

means losing the opportunity of exploiting the optimal CQI. We propose using

the multi-arm bandit (MAB) framework to model and study the problem.

In a MAB problem, the agent takes an action a ∈ A at each time step t and

the environment generates a reward associated with the action. The agent’s goal

is to maximize the overall reward by properly choosing the actions to play.

Under this setting, it is clear that the UE’s action is to report a CQI It ∈

{1, 2, . . . , K}, where the time step t corresponds to the tth new packet transmis-

sion. After Node B transmitted the packet YIt,t times, UE decodes XIt,t bits. The

aggregate reward generated by the system up to time n is given by the throughout

T(n) =

∑n
t=1XIt,t∑n
t=1 YIt,t

. (7.1)

The UE’s goal is to find a policy πt : Ht−1 7→ A at each time step t that maps

from the history Ht−1 = {(In, XIn , YIn)}t−1
n=1 to a CQI It, such that the expected

throughput

T̄(n) =
E(
∑n

t=1 XIt,t)

E(
∑n

t=1 YIt,t)
(7.2)

is maximized. Equivalently, the UE would like to minimizes the regret

Rn = T∗ − T̄(n), (7.3)

which is the gap between the optimal throughput T∗ (6.38) and the expected

throughput.

Note that gi = E(Xi,t) and hi = E(Yi,t) from (6.15) and (6.16). Let g∗ =
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E(Xi∗,t), h
∗ = E(Yi∗,t), and

Ti(n) =
n∑
t=1

1{It = i} (7.4)

be the number of times that UE reports CQI = i up to time n. The regret can be

written as

Rn =
g∗

h∗
−
∑K

i=1 E(Ti(n))gi∑K
i=1 E(Ti(n))hi

=

∑K
i=1 E(Ti(n))(g∗hi − gih∗)∑K

i=1 E(Ti(n))h∗hi
. (7.5)

A MAB algorithm is said to have zero regret if its regret converges to zero asymp-

totically [77]. Suppose the expected number of reporting suboptimal CQI i 6= i∗

can be bounded by

E(Ti(n)) ≤ qi(n) (7.6)

for some function qi(n), then the average regret (7.5) in our problem can be

bounded by

Rn ≤
∑K

i=1Ci log(n)∆ih
∗hi∑K

i=1 E(Ti(n))
≤ M2

n

K∑
i=1

qi(n)∆i, (7.7)

where ∆i = T∗ − Ti is the difference between the optimal throughput and the

conditional throughput Ti. This shows that if a policy has sublinear upper bounds

qi(n) for each i, then it has zero regret.

From the i.i.d. channel assumption, it is clear that (Xi,t, Yi,t)
∞
t=1 is a sequence

of i.i.d. random pairs for each i. Thus our problem can be categorized as the

stochastic type of MAB problem [78], where the reward associated with each ac-

tion is independent to each other and also independent to time. However, the

definition of our regret (7.3) is different from the classical MAB regret. In classi-

cal MAB problems, the overall reward is the sum of instantaneous reward. In our

problem, the reward (7.1) is the ratio between the sum of the number of decoded

bits and the sum of the number of transmissions taken. Because of the difference

in the definition of the regret, we can not directly apply MAB algorithms to our
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problem. Based on four popular MAB algorithms, we present the following mod-

ified algorithms that are tailored to solve our throughput maximization problem

with unknown block error distributions. We also provide an upper bound for the

Greedy-CQI algorithm.

7.1.1 Greedy-CQI

The ε-Greedy algorithm achieves the exploration by reporting CQI randomly with

probability ε and achieves exploitation by reporting the CQI with highest esti-

mated throughput with probability 1 − ε. See Algorithm 6. Clearly, if ε is kept

fixed, the regret Rn will not decrease to zero. It is shown in [79] that ε = C/n is

sufficient to produce O(log(n)) regret for some properly chosen C. By modifying

the Chernoff-Hoeffding bound, we proved that the modified ε-Greedy algorithm

has a logarithmic regret upper bound.

Theorem 6. The expected time spent on reporting suboptimal CQIs of the Greedy-

CQI algorithm is upper bounded by

E(Tj(n)) = O(log(n)) (7.8)

for each j.

Proof. See Appendix.
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Algorithm 6: Greedy-CQI algorithm.

input: c > 0 and 0 < d < minj 6=i∗ ∆j.

1 for n = 1, 2, . . . do

2 εn ← min
{

1, cK
d2n

}
.

3 Report CQI i ∼


arg maxj T̂j with probability 1− εn,

Uniform probability εn.

4 Receive (Xi, Yi).

5 ĝi ← ĝi + 1
n
(Xi − ĝi).

6 ĥi ← ĥi + 1
n
(Yi − ĥi).

7 T̂i ← ĝi/ĥi.

8 end

7.1.2 UCB

The family of Upper Confidence Bound (UCB) algorithms compute a reward upper

bound for each arm i by adding a bias factor Bi on top of estimated reward r̂i.

The agent then reports the arm with the highest upper bound. Carefully chosen

bias factor helps UCB to achieve the exploration-exploration balance. [79] proved

a O(log(n)) regret upper bound for UCB-1. By applying lemma (7.26), we can

also bound the regret of our throughput maximization problem logarithmically.

However, the bound appears to be rather loose. Empirical results suggest that

UCB algorithm does not perform well compare to other methods.

7.1.3 Boltzmann-CQI

Boltzmann Exploration, also known as SoftMax method, is an MAB algorithm

that reports arms based on the Boltzmann distribution. More specifically, at each
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step n, the agent reports arm i with probability

pi =
exp

(
T̂i
τn

)
∑K

j=1 exp
(

T̂j
τn

) , (7.9)

where temperature τn is a user defined sequence that resembles the temperature

parameter in simulated annealing [80–82], and T̂i is the estimated conditional

throughput for CQI = i.

Algorithm 7: Boltzmann-CQI algorithm.

input: a non-increasing sequence τn > 0 for n = 1, 2, . . . .

1 T̂1 = T̂2 = . . . = T̂K = 0.

2 for n = 1, 2, . . . do

3 Report CQI i with probability pi =
exp(

T̂i
τn

)∑K
j=1 exp(

T̂j
τn

)
for each i = 1, . . . , K.

εn ← min
{

1, cK
d2n

}
.

4 Receive (Xi, Yi).

5 ĝi ← ĝi + 1
n
(Xi − ĝi).

6 ĥi ← ĥi + 1
n
(Yi − ĥi).

7 T̂i ← ĝi/ĥi.

8 end

7.1.4 TS-CQI

The philosophy of Thompson Sampling (TS) is that the agent should take action

ai with probability pi that matches the probability of action ai being optimal.

More specifically, let r be the reward, ai be the ith action, and {p(r|ai, θ)}i,θ be

some parametric model. At step n, the agent takes action ai with probability

pi =

∫
1{E(r | ai, θ,Hn−1) = max

j
E(r | aj, θ,Hn−1)}p(θ|Hn−1) dθ, (7.10)
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where p(θ|Hn−1) is the posterior probability of θ given the history Hn−1 of all the

previous actions and rewards. In general it is difficult to compute pi. Fortunately

we do not need to evaluate the probability explicitly. If we sample θ from the

posterior distribution p(θ|Hn−1) and take action

a = arg max
ai

E(r | ai, θ,Hn−1), (7.11)

then the probability of taking action ai will be exactly pi. This simple rule can be

interpreted as performing a one-sample Monte Carlo simulation of (7.10). After

getting a reward from the action, the agent update the posterior distribution

p(θ|Hn) and repeat the same process. TS can be implemented very efficiently if

the prior distribution p(θ) is chosen to be the conjugate prior for the likelihood

function p(r|ai, θ).

Based on the spirit of the Thompson sampling algorithm, we proposed the TS-

CQI algorithm to solve the online throughput maximization problem. We define

the posterior throughput at time n as

T̂(n|In = i,θ,Hn−1) =

∑n−1
t=1 XIt,t1{It = i}+ E(Xi,n | θ)∑n−1
t=1 YIt,t1{It = i}+ E(Yi,n | θ)

, (7.12)

where θik = Pr(Yi,n = k) is the probability that it takes exactly k times for

UE to decode a packet of TBS mi, for i = 1, . . . , K and k = 1, . . . ,M , and

θi0 = Pr(Xi,n = 0) is the probability that the packet of TBS mi is lost after M

transmissions. From (6.4) and (6.5), it is clear that

E(Xi,n | θ) = mi(1− θi0) (7.13)

and

E(Yi,n | θ) =
M∑
k=1

kθik +Mθi0. (7.14)
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For each CQI = i, the likelihood function p((Xi,t, Yi,t)|θ) is a categorical dis-

tribution with M +1 possible values: (mi, 1), . . . (mi,M) and (0,M). It is natural

to choose the prior distribution p(θ) ∼
∏

i Dir(αi) to be the Dirichlet distribution

with the hyperparameter αi = [αi0, . . . , αiM ] [83–85]. The hyperparameter αik−1

represents the number of the occurrence that it takes k transmissions to decode a

packet of size mi for k = 1, . . . ,M , and k = 0 represents the event that the packet

is lost. The hyperparameters can be selected according to our prior knowledge.

If such information is not available, we can initialize αik = 1 for all i and k. We

summarize the TS algorithm in Algorithm 8.

Algorithm 8: TS-CQI algorithm.

input: αik for i = 1, . . . , K and k = 0, . . . ,M .

1 T̂1 = T̂2 = . . . = T̂K = 0.

2 for n = 1, 2, . . . do

3 for i = 1, 2, . . . , K do

4 Sample [θi0, θi1, . . . , θiM ] ∼ Dir(αi) for i = 1, . . . , K.

5 Compute Xi = mi(1− θi0) and Yi =
∑M

k=1 kθik +Mθi0.

6 T̂i ←
∑n−1
t=1 XIt,t1{It=i}+Xi∑n−1
t=1 YIt,t1{It=i}+Yi

.

7 end

8 Report CQI i = arg maxj T̂j.

9 Receive (Xi, Yi).

10 αiYi ←


αiYi + 1 if Xi 6= 0,

αi0 + 1 otherwise.

11 end

7.2 Online algorithm for constrained maximization

In this section, we consider the online algorithm for the throughput maximization

problem (6.40) with the first BLER constraint B̄1 = β for some β ∈ (0, 1).
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The main challenge of the online constrained problem (6.40) is that the space

of actions A is an uncountable set, where each action is a CQI distribution with

two atoms {i, j} ⊂ {1, 2, . . . , K}. Contrary to the unconstrained problem, where

the optimal CQI distribution is degenerative, the space of action is isomorphic to

the finite set {1, 2, . . . , K}.

A suboptimal strategy is to consider some finite subspace B ⊂ A and apply a

MAB algorithm on B. However, it is not clear how to properly select a subspace

B, and the algorithm will almost never find the optimal solution.

Another challenge of applying MAB methodology to the constrained problem is

that there is no natural notion of regret, because we not only want to maximize the

throughput but also want to keep BLER at a certain level. A plausible approach

may be adding the deviation of the first BLER B̄1 from the target β as a penalty

term to the throughput. More specifically, we define the penalized throughput at

time n to be

T̄(φ)(n) = T̄(n)− φ
(
B̄1(n)− β

)
, (7.15)

where T̄(n) is the expected throughput (7.2) without penalty, and φ is some non-

negative penalty function continuous at 0 that satisfies φ(0) = 0, and

B̄1(n) =

∑n
t=1 1{YIt,t > 1}

n
(7.16)

is the average first BLER up to time n. The penalized regret is defined as

R(φ)
n = T∗c − T(φ)(n), (7.17)

where T∗c is the constrained optimal throughput (6.53). Thus, for any nontrivial

penalty function, if an algorithm has zero penalized regret, the throughput T̄ must

converge to T∗c and the BLER must converge to β.

In this section, we propose the Greedy-LP algorithm, which has zero penalized-
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regret, and the CQI distribution converges to the optimal distribution.

7.2.1 Greedy-LP

Based on the spirit of ε-Greedy algorithm, we propose the Greedy-LP algorithm,

which performs exploration by randomly reporting CQI with a diminishing proba-

bility εn and performs exploitation by reporting CQI with probability distribution

f̂n, which is the solution to the linear program (6.47) using the estimated problem

data (ĝn, ĥn, b̂n).

More specifically, let

S = L(g,h, b, β) (7.18)

be the set of optimal solutions to (6.47) with data (g,h, b). At each step n, UE

estimated the problem data ĝn = [ĝi(n)]i, ĥn = [ĥi(n)]i and b̂n = [b̂i(n)]i from the

history Hn−1 by

ĝi(n) =

∑n−1
t=1 Xi,t1{It = i}
Ti(n− 1)

, (7.19)

ĥi(n) =

∑n−1
t=1 Yi,t1{It = i}
Ti(n− 1)

, (7.20)

b̂i(n) =

∑n−1
t=1 1{Yi,t > 1, It = i}

Ti(n− 1)
, (7.21)

and compute a CQI distribution f̂n ∈ L(ĝn, ĥn, b̂n, β). With probability 1 − εn,

the UE reports a CQI by sampling the distribution f̂n. Otherwise the UE reports
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a CQI randomly. See Algorithm 9.

Algorithm 9: Greedy-LP algorithm.

input: Target first BLER β ∈ (0, 1).

A non-increasing sequence 0 < εn ≤ 1 for n = 2, 3, . . ..

Initial problem data ĝ = [ĝi]i, ĥ = [ĥi]i and b̂ = [b̂i]i.

1 for n = 1, 2, . . . do

2 Report CQI i ∼


f̂ ∈ L(ĝ, ĥ, b̂) with probability 1− εn,

Uniform probability εn.

3 Receive (Xi, Yi).

4 ĝi ← ĝi + 1
n
(Xi − ĝi).

5 ĥi ← ĥi + 1
n
(Yi − ĥi).

6 b̂i ← b̂i + 1
n
(1{Yi > 1} − ĥi).

7 end

Note that there is no need to use a general purpose linear program solver to find

the estimated CQI distribution f̂n. The UE can use the explicit formula (6.54)

to compute f̂n, where the support of the distribution is (i∗, j∗) = arg maxi,j Tij.

Thus, at each step the UE only needs to maintain a sorted list of {Tij}ij and

extract the index (i∗, j∗) of the maximum element to find the support of the

distribution f̂n. Since there are only K elements in {Tij}ij get changed at each

step, maintaining a sorted list can be done efficiently using merge sort.

One caveat of this approach is that the solution to a linear program is in

general not continuous with respect to the problem data, which means a small

perturbation in the estimated problem data may lead to an abrupt jump of the

solution [86]. Fortunately, if the underlying linear program is regular (both the

primal and dual problem has nonempty and bounded optimal set), then the es-

timated CQI distribution f̂n does converge to the optimal distribution f ∗ as UE

collects more samples. We state the result formally in Theorem 7.

Theorem 7. If both the linear program (6.28) and its dual has nonempty and
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bounded optimal set, then the Greedy-LP has zero penalized-regret (7.17), and the

distribution f̂n converges almost surely to the optimal distribution f ∗.

Proof. The main idea of the proof is that the estimated problem data (ĝn, ĥn, b̂n)

will converge to the actual value (g,h, b) under appropriate assumptions. By a

continuity result of linear programing due to Robinson, the estimated CQI dis-

tribution f̂n converges to the optimal distribution f ∗. Consequently, the average

throughput will converge to the optimal throughput and the BLER will converge

to β.

First we will show that the estimated problem data converge to the actual

problem data. Let ḡi(k) =
∑k
t=1Xi,t
k

, h̄i(k) =
∑k
t=1 Yi,t
k

and b̄i(k) =
∑k
t=1 1{Yi,t>1}

k
.

Clearly ḡi(k), h̄i(k) and b̄i(k) converge almost surely to gi, hi and bi, respectively,

as k goes to infinity. Let {IRt = i} be the event that CQI = i at time t due

to exploration, i.e. Pr(IRt = i) = εt/K, and TRi (n) =
∑n

t=1 1{IRt = i}. Clearly

we have TRi (n) ≤ Ti(n) for each i and n. As a result of Borel-Cantelli lemma,

TRi (n) → ∞ almost surely because the events {IRt = i} are independent and∑∞
t=1 εt =∞. This implies Ti(n)→∞ almost surely. Thus ĝi(n) = ḡi(Ti(n− 1))

converges to gi for each i, which implies that ĝn converges almost surely to g.

Similarly ĥn → h and b̂n → b.

Secondly, we will show the estimated CQI distribution f̂n converges to the

optimal distribution f ∗. By assumption, the original linear program and its dual

problem has nonempty and bounded optimal set (known as the regularity condi-

tion), from Robinson [87, Theorem 1], there exist an ε0 > 0 and some number K

such that d(f̂n, S) ≤ Kε whenever max{‖ĝn − g‖, ‖ĥn − h‖, ‖b̂n − b‖} ≤ ε < ε0.

That is, the estimated CQI distribution can be made arbitrarily close to an op-

timal distribution if the estimated problem data is close enough to the actual

problem data. Here d(x,A) = inf{d(x, y) | y ∈ A} denotes the shortest distance

from a point x to a set A.
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Finally, note that E(XIn,n) = gT (εn1
T/K + (1 − εn) E(f̂n)) is bounded be-

tween 0 and the max TBS mK . Since f̂n converges to f ∗ a.s. and εn → 0,

the expected value E(XIn,n) will converge to gTf ∗. By Kolmogorov’s strong

law,
∑n

t=1 XIt,t/n → gTf ∗ almost surely. Similarly,
∑n

t=1 1{YIt,t > 1}/n → β

and
∑n

t=1XIt,t/n → hTf ∗ almost surely as n goes to infinity. This implies the

penalized-regret converges to zero almost surely.

It is not difficult to see that our problem is regular: the primal problem (ref)

has a nonempty and bounded optimal set because the problem is feasible and

has bounded feasible region. This is the consequence of h ≥ 1 and b − β1 has

both positive and negative components. On the other hand, in order for the dual

problem of (ref) to have an unbounded optimal set, we must have B1(mi) = β for

all i = 1, 2, . . . , K, which almost never happens.

7.3 Simulation

We apply the Greedy-CQI, Boltzmann-CQI and TS-CQI algorithms developed in

section 7.1 to the unconstrained throughput maximization problem (6.18), and ap-

ply the Greedy-LP algorithm developed in section 7.2 to the constrained through-

put maximization problem (6.40). We consider the AWGN, VA30 and VA120

channel models, with SNR ranges from 0dB to 20dB.

Note that these algorithms are applicable whenever the instantaneous SNR

satisfies the independence condition (6.14). We assume the maximum number

of packet re-transmission is 4, which means M = 5. During the initialization

phase, the UE will report CQI from 1 to 30 once to get an coarse estimate of the

conditional throughput for each CQI.
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7.3.1 Unconstrained throughput maximization

The performance metric Rn/T
∗ is the throughput regret (7.3) normalized by the

optimal throughput T∗ (6.38). For Greedy-CQI, we choose c = d = 10. For

Boltzmann-CQI, we choose the temperature sequence τn = 50 for all n. For TS-

CQI, we choose the prior distribution to be Dirichlet with zero pseudo-counts. We

average over 5,000 realizations. The error bars indicates the interquartile range.

Under AWGN, Boltzmann-CQI outperforms other tested algorithms by a large

margin. It has less than 0.5% of normalized regret across the whole geometry range

after 1000 new packet transmissions. See Fig. 7.1.
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Figure 7.1: Average throughput regret after 1000 new packet transmissions under
AWGN.

The throughput regret for Greedy-CQI is under 2% for all geometries. TS-

CQI performs the worst. In some geometries, TS-CQI has regret comparable to

Boltzmann-CQI, but in general its normalized average regret can be as high as

15%.

TS-CQI performs much better under VA30 and VA120, see Fig. 7.2 and Fig. 7.3,

respectively.
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Figure 7.2: Average normalized regret after 1000 new packet transmissions under
VA30. Error bar indicates interquartile range.

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

SNR (dB)

T
h

ro
u
g

h
p
u
t 

R
e
g
re

t 
(%

)

 

 
ǫ-Greedy
SoftMax
TS

Figure 7.3: Average normalized regret after 1000 new packet transmissions under
VA120.

In fact, from middle to high geometry, TS-CQI has the lowest regret among

the tested algorithms. We plot the throughput for each algorithms over time in

Fig. 7.4 under VA30 15dB. It can be seen that TS behaves more exploratory in
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the beginning and learns about the optimal CQI very quickly after about 100 new

packet transmissions.
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Figure 7.4: The throughput over time under VA30 15dB for each algorithms. The
gap between the throughput of each algorithm and the optimal throughput is the
throughput regret.

7.3.2 BLER constrained throughput maximization

We set the target first BLER to be β = 0.1. The performance metric R
(φ)
n /T∗c

is the penalized regret (7.17) normalized by the constrained optimal throughput

(6.53), where the penalty function is defined as

φ(x) = xT∗c1{x > 0}. (7.22)

Results are averaged over 1,000 realizations. The BLER curve converges to

β = 10% at around the 100th packet transmission.
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Figure 7.5: The penalized average regret at the 1,000th packet transmission for
AWGN, VA30 and VA120.
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Figure 7.6: The penalized throughput T(φ)(n) over time under VA120 14dB. The
penalized throughput (solid curve) is the throughput without penalty (dotted
curve) minus the penalty function φ. The gap between them is proportional to
the deviation between the target BLER β and the actual BLER B̄1(n). As number
of sample increases, Greedy-LP produces CQI distribution that has BLER very
close to the 10% target, hence the gap is diminishing.
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7.4 Conclusion

In this paper, we investigated the UE throughput maximization problem. We

characterized the optimal CQI reporting scheme for both the unconstrained and

the BLER constrained scenario under the independent channel condition. We

derived the optimal solution as a function of channel statistics and UE’s decod-

ing capability. In practice, these conditions are unknown a priori and need be

learned online. We proposed using the multi-armed bandit framework to study

the trade-off between learning the conditional throughput of each CQI and exploit-

ing the throughput maximizing CQI. We presented three algorithms, Greedy-CQI,

Boltzmann-CQI and TS-CQI to solve the unconstrained online throughput max-

imizing problem, and we also provided a regret upper bound for the Greedy-CQI

algorithm. For the BLER constrained throughput maximization problem, we pre-

sented the Greedy-LP algorithm and proved that it has zero penalized regret.

From our extensive simulations, we found that Boltzmann-CQI algorithm can

achieve up to 99% of optimal throughput for all test cases after 1000 new packet

transmission and more than 95% of optimal throughput after 100 new packet

transmissions. The Greedy-LP can achieve 90%-99% of the optimal throughput

while satisfying the BLER constrain.

7.5 Appendix

Lemma 1. Suppose {(Xi, Yi)}∞i=1 are pairs of i.i.d. random variables with mean

(µX , µY ). Xi ∈ [0,m] and Yi ∈ {1, 2, . . . ,M}. Let SX =
∑n

i=1 Xi and SY =∑n
i=1 Yi. For all n ∈ N and δ > 0, the following bound holds:

Pr

(
SX
SY
≥ µX
µY

+ δ

)
≤ exp

(
− 2δ2n

M2(m+ δ)2

)
. (7.23)

Proof. Define Zi = Xi − γYi and SZ =
∑n

i=1 Zi. Note that Zi ∈ [−Mγ,m − γ]
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almost surely.

Pr

(
SX
SY
≥ γ

)
= Pr(

SZ︷ ︸︸ ︷
SX − γSY ≥ 0) (7.24)

= Pr(SZ − E(SZ) ≥ −E(SZ)) (7.25)

≤ exp

(
− 2n2(µX − γµY )2

n(m+ γ(M − 1))2

)
(7.26)

= exp

(
− 2nµ2

Y δ
2

(m+ γ(M − 1))2

)
(7.27)

≤ exp

(
− 2nδ2

M2(m+ δ)2

)
. (7.28)

The inequality (7.26) follows from Chernoff-Hoeffding bound. By substituting

γ = µX
µY

+ δ and use the fact that µY ≥ 1 and µX ≤ m, we get (7.28).
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CHAPTER 8

Conclusion

In this dissertation, we considered the exceedingly general spherically invariant

random process (SIRP) as a unifying framework for studying the wireless com-

munication fading channels. We showed that the family of SIRP distributions is

the entropy maximizer under the spherical invariant constraint. We proposed the

use of Fox H-functions to parameterize the family of SIRP distributions. This

allowed us to express many important distributions by a simple parametric form,

such as Weibull, Nakagami-m and Generalized Gamma distributions. In addi-

tion, we studied the important issue of modeling uncertainty, where only limited

knowledge of the underlying fading channel statistics is known. The moment

space methodology was proposed to characterize the uncertainty range of the sys-

tem performance. Using the SIRP decomposition, we transformed the infinite

dimensional optimization problem into a univariate moment problem, which can

be solved by performing a series of numerical integrations.

Since Monte Carlo simulation is widely used for numerical integration, we in-

troduce the Super-Efficient Monte Carlo simulation methodology to improve the

convergence rate of Monte Carlo simulation. While conventional Monte Carlo

simulation yields the convergence rate 1/N , our Super-Efficient Monte Carlo sim-

ulation has a superior convergence rate 1/N2 for integrands of the Super-Efficient

type. However, we do not often see Super-Efficient integrands. We thus introduce

the concept of Approximate Super-Efficient (ASE) and proposed the Progressive

ASE algorithm. The Progressive ASE algorithm is applicable to general inte-
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grands, and yields near super-efficient convergence rate. Furthermore, we proved

the necessary and sufficient condition for Super-Efficiency using the concept of

Lebesgue spectrum from the ergodic theory; and designed an efficient numeri-

cal method to generate chaotic sequences. It is of great interest to find more

applications to exploit the concept of Super-Efficiency and the Progressive ASE

algorithm.

Finally, as an application to the moment space methodology, we studied the

downlink throughput maximization problem in cellular networks. We proved that

the optimal channel feedback strategy under fast fading channels is memoryless

and derived an explicit formula for its probability mass function. Inspired by

the multi-armed bandit problem, we proposed several algorithms to solve the

online version of the throughput maximization problem, and provided convergence

analysis. The proposed algorithms achieved up to 99% of the performance upper

bound within 1000 new packet transmissions.
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[82] V. Černỳ, “Thermodynamical approach to the traveling salesman problem:
An efficient simulation algorithm,” Journal of optimization theory and appli-
cations, vol. 45, no. 1, pp. 41–51, 1985.

[83] S. Kotz, N. Balakrishnan, and N. L. Johnson, Dirichlet and Inverted Dirichlet
Distributions, ch. 49, pp. 485–527. John Wiley & Sons, Inc., 2005.

[84] T. S. Ferguson, “Prior distributions on spaces of probability measures,” The
annals of statistics, pp. 615–629, 1974.

[85] I. J. Good, The estimation of probabilities: An essay on modern Bayesian
methods, vol. 30. MIT press, 1965.

[86] R. Meyer, Continuity properties of linear programs. University of Wisconsin-
Madison. Computer Sciences Department, 1979.

[87] S. M. Robinson, “A characterization of stability in linear programming,”
Operations Research, vol. 25, no. 3, pp. 435–447, 1977.

118


	Introduction
	Spherically Invariant Random Process
	Model Uncertainty
	Super-Efficient Monte Carlo Simulation
	Downlink Throughput Maximization
	Notation

	Spherically Invariant Random Process
	Definitions and key properties
	Properties of SIRPs
	SIRPs maximize the differential entropy

	Modeling fading envelopes using SIRPs
	The Mellin transformation
	Parameterizing SIRP Using Fox H-function
	Mellin transforms and asymptotics
	Performance calculations based on first-order densities
	A word of caution
	Binary error probability
	Statistics of fading time intervals


	Modeling Uncertainty Under SIRP Assumption
	Bounds to system performance
	Using Kullback–Leibler divergence
	Moment constraints
	Introducing constraints on second-order statistics

	Best and worst spherically invariant fading processes
	Deriving the bounds

	Conclusions

	Super-Efficient Monte Carlo Simulation
	Pseudo-Random Number and Chaotic Sequence
	Chaotic Monte Carlo Simulation
	Statistical and Dynamical Correlation
	Super-Efficient Chaotic MC Simulation
	Condition for Super-Efficiency
	Multi-dimensional Dynamical Systems


	Approximate Super-Efficient Monte Carlo Simulation 
	Fixed-Accuracy ASE Algorithm
	Progressive ASE Algorithm

	Implementation Issues
	Fast Generation of Compensators
	Generating Chaotic Sequence
	Parallel Implementation

	Conclusion

	On The Throughput Maximization in Cellular Networks
	Problem formulation
	Optimal solution under IID channel
	Unconstrained throughout maximization
	Throughput maximization under BLER constraint


	Online Throughput Maximization Algorithms
	Online algorithm for unconstrained maximization
	Greedy-CQI
	UCB
	Boltzmann-CQI
	TS-CQI

	Online algorithm for constrained maximization
	Greedy-LP

	Simulation
	Unconstrained throughput maximization
	BLER constrained throughput maximization

	Conclusion
	Appendix

	Conclusion
	References



