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Abstract

Label-efficient Learning in Natural Language Processing

by

Shiyang Li

Natural language is one of the most common mediums for people to communicate and

natural language processing (NLP) is a subfield in artificial intelligence that enables computers

to understand and reason human languages. NLP has many important applications in our daily

life, including Amazon Alexa, Apple Siri, and Google Translate. However, state-of-the-art NLP

models often require a large amount of labeled data to learn. This labeled-data-hungry property

brings challenges when applying these methods in many real-world applications since collecting

large-scale labeled data is cost-expensive, time-consuming and sometimes even not possible

due to privacy restrictions.

In this dissertation, we aim at alleviating the labeled-data-hungry issue in NLP by leveraging

additional unlabeled and synthesized data. We begin with leveraging unlabeled data to improve

model performance for natural language understanding tasks. We show that two major semi-

supervised approaches, namely task-adaptive pre-training and self-training, are complementary

and their performance gains can be strongly additive. Then we move our focus on utilizing

synthesized data to facilitate model learning. In this line of work, we first develop an algorithm

focusing on how to leverage a structured knowledge base (KB) to teach the common sense

reasoning capability of pre-trained language models (PLMs). Specifically, we use KB to

construct various logical forms and utilize rules to convert these logical forms into multiple-

choice question-answer pairs requiring commonsense logical reasoning to refine PLMs. Next,

we aim at evaluating and augmenting the dialogue state tracking module, a core component for

task-oriented dialogue systems. In particular, we first train a PLM as data generator and then

ix



leverage it to generate additional dialogue data with their labels to evaluate and augment state-

of-the-art dialogue state tacking models. Finally, we target improving the reasoning capability

of small language models (SLMs) to reduce their gap with large language models (LLMs).

Specifically, we utilize LLM prompting to generate explanations and they are used as additional

supervision signals to improve SLMs, which are more favorable due to low storage and compute

cost in real-world applications.

In the end, we summarize the key findings of this dissertation to improve label efficiency

via additional unlabeled and synthesized data, and discuss possible future directions towards the

goal of more label-efficient learning in NLP.
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Chapter 1

Introduction

Natural language is one of the most common mediums for people to communicate with each

other and serves as the basis of human interaction. When people express themself with natural

language, they implicitly or explicitly connect it with abstract or concrete objects, which

requires complex understanding and reasoning for efficient and effective communication. On

the other hand, there are many scenarios where automatic systems are needed to process natural

language. For example, monolingual users in social media require machine translation systems

to understand posts with other languages; Social media platforms require systems to detect hate

speech automatically for social good; Business’ customer service needs intelligent systems to

automatically answer users’ questions and solve their problems timely to provide better user

experience.

Natural language processing (NLP) is a subfield in artificial intelligence that aims at enabling

computers to understand and reason complex human language. Due to recent advances in

representation learning for NLP [1, 2, 3, 4], many NLP systems [5, 6] have achieved better or

comparable performance compared to human in specific tasks [7, 8]. However, state-of-the-art

NLP models often require a large amount of labeled data to learn. As an example, Figure 1.1

shows three state-of-the-art NLP models, namely BERT [2], GPT [9] and XLNet [10], have
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Figure 1.1: Results of finetuning BERT, GPT and XLNet with different sizes of labeled data on
CommonsenseQA dataset [8]. Details are deferred into Section 3.4.1

much worse performance when their labeled training data sizes are small in CommonsenseQA,

a question answering dataset requiring common sense reasoning ability [8]. On the other

hand, collecting large-scale labeled data requires lots of human efforts, which is not only cost-

expensive but also time-consuming, and is even not possible due to data privacy constraints in

many cases [11] , e.g. medical applications, posing challenges when applying state-of-the-art

NLP methods in many real-world applications.

1.1 Improving Label Efficiency via Unlabeled Data

To address aforementioned labeled-data-hungry issue, semi-supervised learning [12] pro-

vides a plausible solution by making effective use of freely massive unlabeled data [13, 14].

The goal of semi-supervised learning algorithms is to integrate both labeled and unlabeled data

to boost final model performance. Semi-supervised learning has achieved remarkable successes

in a variety of tasks [13, 14, 11]. Task-adaptive pre-training (TAPT) [15] and Self-training (ST)

[16] have emerged as the major semi-supervised approaches to improve natural language under-

2
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standing (NLU) tasks. In TAPT, pre-trained language models (PLMs) continue self-supervised

learning, e.g. mask language modeling [2], on unlabeled data to learn task-specific linguistic

characteristics and has shown to be consistently effective across multiple tasks [15]. On the

other hand, ST [16] utilizes unlabeled data different from the paradigm of TAPT. In ST, a teacher

model is first trained on labeled data and then used to generate pseudo labels for unlabeled data.

After that, both labeled and pseudo-labeled data are combined together to train a student model

for better performance. The student model can be again assigned as a teacher model and the

teacher-student framework can be iterated over multiple rounds. Due to different paradigms

of utilizing unlabeled data in TAPT and ST, it is unclear if these two major semi-supervised

approaches are complementary for NLU tasks.

In this dissertation, we show that these two major semi-supervised approaches, TAPT and

ST, do not always outperform each other, and they are complementary and their performance

gains can be strongly additive across various settings. These findings can help future NLP

studies build a strong semi-supervised baseline to better learn information buried under freely

massive unlabeled data and bridge the gap between the state-of-the-art methods and real-world

applications.

1.2 Improving Label Efficiency via Synthesized Data

Another promising direction to alleviate labeled-data-hungry issue is to synthesize high-

quality data for model learning. Automatic data synthesis is often faster, cheaper and more

scalable than human annotations. In the following section, we detail our proposed three

individual approaches to synthesize high-quality data for improving model learning in different

scenarios.

3
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Teaching PLMs with commonsense reasoning via data synthesis from KB. Commonsense

reasoning is important for many tasks, e.g. text understanding, and is seen as one of the

milestones of artificial general intelligence [17]. However, the commonsense reasoning ability

of state-of-the-art PLMs, e.g. BERT, GPT and XLNet, are still limited [18, 8]. On the other

hand, there exist large-scale commonsense knowledge bases(KBs), e.g. ConceptNet [19], which

explicitly record relations between entities and can capture rich world knowledge. Therefore,

a key question is how to inject commonsense reasoning knowledge from KBs into PLMs. To

achieve this goal, we develop an algorithm that utilizes KB to construct various logical forms

and generates multiple-choice question-answer pairs requiring commonsense logical reasoning.

These generated multiple-choice question-answer pairs are used as additional pre-training data

to refine common sense reasoning capability of PLMs. We show that our proposed method

can consistently and significantly improve the commonsense reasoning capability of PLMs,

especially in few-shot settings.

Evaluating and augmenting dialogue state tracking via data synthesis from PLM. Task-

oriented dialogue systems aim at assisting users to finish specific goals, e.g. restaurant book-

ing. A key component of task-oriented dialogue systems is dialogue state tracking module,

which recognizes the user’s goal represented as slot-value pairs, e.g. {(restaurant-food, Chi-

nese),(restaurant-people, 6)}, and often requires a large amount of labeled data to achieve

state-of-the-art performance [20]. On the other hand, collecting a large-scale corpus of task-

oriented dialogues with human annotations is expensive and time-consuming [21]. To bridge this

gap, we first train a model as data generator and then leverage it to generate additional labeled

dialogue data. After that we filter out degraded dialogue data and utilize generated labeled

data after filtering to evaluate and augment state-of-the-art dialogue state tracking models. We

show that our method can consistently improve state-of-the-art dialogue state tacking models in

various settings.

4
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Improving SLM reasoning via explanation synthesis from LLM. Large language models

(LLMs) [22, 23, 24, 25, 26, 27] have achieved remarkable successes in reasoning tasks [28].

However, their strong reasoning abilities only emerge when they scale to dozens or hundreds

of billions of parameters [29], making it expensive to deploy them in a large scale for real-

world applications [28]. On the other hand, small language models (SLMs) have low cost in

both storage and computation but worse performance on complicated reasoning tasks [29, 30],

especially when training data sizes are limited [31]. To bridge this gap, we propose to utilize

explanations generated from LLM [28, 32] to improve SLM reasoning capability. Specifically,

we first utilize several examples with human-written explanations as demonstrations for LLM

and then generate explanations for the whole training set. Then we adopt a multi-task learning

setup to utilize the LLM-generated explanations to facilitate SLM to acquire strong reasoning

power along with explanation generation ability. We show that our framework can consistently

and significantly improve the reasoning capability of SLMs, especially in few-shot settings.

1.3 Summary

In this section, we briefly summarize our contributions toward the goal of label-efficient

learning in NLP. Our contributions fall into two categories (1) label-efficient learning via making

use of freely massive unlabeled data (2) label-efficient learning via data synthesis.

For label-efficient learning via unlabeled data, in [33], we study two major semi-supervised

approaches for NLU tasks, TAPT and ST, and find that they are complementary for NLU tasks

and their performance gains can be strongly additive across various settings. We hope these

findings can help future NLP studies build a strong semi-supervised baseline to better learn

information within unlabeled data.

For label-efficient learning via data synthesis, we study several different techniques to

synthesize data for improving model learning. In [31], we propose to leverage KB to generate
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large-scale commonsense reasoning question answering dataset to refine PLMs. In [34], we

propose to train a PLM to synthesize labeled data, which is used to evaluate and augment

dialogue state tracking module. In [35], we propose a framework to leverage explanations

generated from LLM to improve SLM reasoning capability.

The rest of this dissertation is organized as follows. Chapter 2 studies the complementarity

of TAPT and ST for NLU tasks. Chapter 3 presents our method to leverage KB to improve

commonsense reasoning capability of PLMs. Chapter 4 discusses our approach for evaluating

and augmenting dialogue state tracking module. Chapter 5 introduces our framework to utilize

explanations from LLM to improve reasoning ability of SLMs. Chapter 6 summarizes key

findings of our work and discusses possible future directions.

6



Chapter 2

Complementarity of Pre-training and

Self-training with Unlabeled Data for NLU

2.1 Introduction

Deep neural networks [36] often require large amounts of labeled data to achieve state-of-

the-art performance [37]. However, acquiring high-quality annotations is both time-consuming

and cost-expensive, which inspires research on methods that can exploit unlabeled data to

improve performance [38]. Pre-trained language models like BERT [2], RoBERTa [39] and T5

[40] can learn general language understanding abilities from large-scale unlabeled corpora and

have reduced this annotation cost. In this paradigm, large neural networks are first pre-trained

on massive amounts of unlabeled data in a self-supervised manner and then finetuned on large

amount of labeled data for specific downstream tasks, which has led to large improvements

for natural language understanding on standard benchmarks [41, 7]. However, their success

still relies on large amount of data during finetuning stage. For example, [20] shows that BERT

only achieves 6.4% joint goal accuracy with 1% finetuning data for dialogue state tracking task,

a core component of task-oriented dialogue systems, making it far behind its full counterpart

7
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45.6%. This data-intensive finetuning poses several challenges for many real-world applications,

where collecting large amount of labeled data is not only cost-expensive and time-consuming,

but also infeasible sometimes due to data access and privacy constraints [11].

Semi-supervised learning [12] provides a plausible solution to address aforementioned data

hungry issue by making effective use of freely available unlabeled data. One of the most popular

semi-supervised learning algorithms is self-training [16]. In self-training, a teacher model is

first trained on available labeled data and then used to generate pseudo labels for unlabeled data.

The original hand-annotated labeled data and the pseudo-labeled data are combined together to

train a student model. The student model is assigned as a teacher model in next round and the

teacher-student training procedure is repeated until convergence or reaching maximum rounds.

Self-training utilizes unlabeled data in a task-specific way during pseudo labeling process [42]

and has been successfully applied to a variety of tasks, including image recognition [37, 43],

automatic speech recognition [44], text classification [45, 46], sequence labeling [11] and neural

machine translation [38].

Recently, task-adaptive pre-training (TAPT) [15] has been further proposed, which can

adapt pre-trained language models, e.g. BERT and RoBERTa, to unlabeled in-domain training

set to improve performance [15]. The intuition of TAPT is that datasets for specific tasks

may only contain a subset of the text within the broader domain and continuing pretraining

on the task dataset itself or other relevant data can be useful [15]. TAPT tends to adapt its

linguistic representation by utilizing the unlabeled data in a task-agnostic way [42]. With the

recent success of task-adaptive pre-training and self-training in natural language understanding

(NLU), a research question arises: Are task-adaptive pre-training (TAPT) and self-training (ST)

complementary for natural language understanding (NLU)?

In this chapter, we show that TAPT and ST can be complementary with simple TFS protocol

by following TAPT → Finetuning → Self-training process (TFS). TFS protocol follows three

steps: (1) TAPT on unlabeled corpus drawn from a task (2) Standard supervised finetuning

8
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on labeled data inheriting parameters from TAPT as initialization to train a teacher model

(3) Teacher model generates pseudo labels for the same unlabeled corpus in (1) and trains a

student model in a self-training framework until convergence or reaching maximum rounds as

shown in Figure 2.1. The first step utilizes unlabeled corpus in a task-agnostic way to learn

general linguistic representations while the third one utilizes unlabeled corpus in a task-specific

way during pseudo-labeling process. Therefore, unlabeled data are utilized twice through two

different ways by taking advantages of TAPT and ST. TFS can effectively utilize unlabeled data

to achieve strong combined gains of TAPT and ST consistently across six datasets covering

sentiment classification, paraphrase identification, natural language inference, named entity

recognition and dialogue slot classification. We further investigate various semi-supervised

settings and consistently show that gains from TAPT and ST can be strongly additive by

following TFS procedure.

2.2 Related Work

Pre-training. Unsupervised or self-supervised pre-training have achieved remarkable suc-

cesses in natural language processing [2, 39, 3, 40, 22]. However, these models are pre-trained

on a very large general domain corpus, e.g. Wikipedia, and may limit their performance on

a specific task due to distribution shift [47, 20, 15]. To better handle aforementioned issue,

domain-adaptive pre-training (DAPT) by continuing pre-training of existing language models,

e.g. BERT and RoBERTa, on a large corpus of unlabeled domain-specific text data has been

proposed and achieved great successes in specific domains [15, 47, 20]. [47] proposes BioBERT

by continuing pre-training of BERT on biomedical domain corpus and outperforms BERT in

biomedical text mining significantly. Following a similar idea, [20] proposes ToD-BERT by

continuing pre-training of BERT on nine dialogue datasets for NLU tasks in task-oriented dia-

logue systems and achieves great successes in various few-shot NLU tasks in dialogue domain.

9
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[15] takes one step further and continues pre-training of language models on a much smaller

amount of unlabeled data but drawn from the same distribution for a given task (TAPT), which

not only can achieve competitive results with DAPT but also is complementary with it.

Self-training. Self-training as one of the earliest and simplest semi-supervised learning has

recently shown state-of-the-art performance for tasks like image classification [37, 48], object

detection [43] and can perform at par with fully supervised models while using much less

labeled training data. On natural language processing, [46] applies self-training for few-shot

text classification and incorporates uncertainty estimation of the underlying neural network for

unlabeled data selection. [11] improves self-training with meta-learning by adaptive sample

reweighting to mitigate error propagation from noisy pseudo-labels for named entity recognition

and slot tagging in task-oriented dialog systems. [38] injects noise to the input space as

a noisy version of self-training for neural sequence generation and obtains state-of-the-art

performance for tasks like neural machine translation. [45] utilizes information retrieval to

retrieve task-specific in-domain data from a large amount of web sentences for self-training.

Beyond these applications of self-training, [49] further theoretically proves that self-training

and input-consistency regularization will achieve high accuracy in regard to ground-truth labels

under certain assumptions.

There also exist works combing pre-training with self-training. [42] first conducts self-

supervised pre-training with SimCLR [50] on ImageNet [51] in a task-agnostic way, then

finetunes pre-trained models on limited labeled data and finally conducts self-training/knowledge

distillation [52] via the same unlabeled examples as pre-training in a task-specific way. Such

a framework enables models to make use of data twice in both pre-training and self-training/

knowledge distillation stage. [53] follows this framework on speech recognition and achieves

state-of-the-art performance only with very limited labeled data. However, it’s unclear that

language models like BERT that have already been pre-trained in a very large general corpus can

10
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benefit this framework or not since [42] and [53] conduct pre-training from scratch. In addition,

they only conduct self-training in one round, making it unclear whether iterative self-training

without pre-training can achieve comparable results in the end. A recent work [45] does both

continuing pre-training and self-training in retrieved data from open domains but only observes

gains for self-training while our work utilizes existing in-domain unlabeled data and finds that

both TAPT and self-training are effective.

2.3 Algorithms

2.3.1 Problem setup

Denote Dl = {xi, yi}N to be a set of N labeled instances, where xi is a sequence of m

tokens: xi = {xi1, xi2, ..., xim} with yi being its label. Also, consider Du = {xj}M to be a set of

M unlabeled instances drawn from the same distribution of {xi}N , where M ≫ N . Assuming

that we can only access a small amount of labeled data along with a much larger amount of

unlabeled data, our goal is to fully leverage unlabeled data Du to improve model performance.

2.3.2 Task-adaptive Pre-training (TAPT)

One simple yet effective way to improve BERT-like models with unlabeled data is task-

adaptive pre-training (TAPT). The approach of TAPT is quite straightforward – simply continu-

ing pre-training BERT-like models with masked language modeling (MLM) [2] on unlabeled

text data for a specific given task [15].

Specifically, during MLM process, a proportion of randomly sampled tokens in the input

are masked out with special token [MASK]. We conduct dynamical token masking during

pre-training following [39, 20]. The training objective of MLM is the cross entropy loss to

11
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reconstruct masked tokens:

Lmlm = −
M∑
j=1

m∑
k=1

1 ∗ log( p(xjk)), (2.1)

where 1 is 1 if xjk is masked out in the input, otherwise 0.

2.3.3 Self-training (ST)

Self-training begins with a teacher model pt trained on the labeled data Dl. The teacher

model is used to generate pseudo labels for unlabeled data Du. The augmented data Dl ∪Du is

then used to train a student model ps. Specifically, ∀xj ∈ Du, we use teacher model to generate

its soft label and then student model is trained with standard cross-entropy loss for labeled data

and KL divergence for unlabeled data, which can be formulated as:

Lst = −
∑

(xi,yi)∈Dl

log(yi|ps(xi))

−
∑

xj∈Du

KL(pt(xj)||ps(xj)),

(2.2)

where teacher model pt is fixed in the current round. After training of student model with

objective Lst, it is assigned as a new teacher model in the next round and the teacher-student

training procedure is repeated until convergence or reaching maximum rounds.

2.3.4 TAPT → Finetuning → Self-training (TFS)

Although TAPT has been proven effective to utilize unlabeled data, it’s task-agnostic in the

sense that it’s unaware of specific tasks, e.g. sentence classification or name entity recognition.

This paradigm learns general linguistic representations buried under unlabeled data, which are

not directly tailored to a specific task. Utilizing data in a task-agnostic may lose the information

12
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TAPT

Teacher
Labeled

Data

Unlabeled
Data

Pseudo 
Labeling

Pseudo
Labeled

Data

Unlabeled
Data

Labeled
Data

Student

FinetuningFinetuning

Assign student as a new teacher for next round

Shared unlabeled data Iterative Self-training (ST)

Figure 2.1: The overall pipeline of TFS. It has three steps (1) TAPT on unlabeled corpus drawn
from a task (2) Train a teacher model on labeled data with TAPT as initialization (3) Teacher
generates pseudo labels from share unlabeled corpus with (1) and trains a student model with
both labeled and pseudo labeled data in an iterative self-training framework.

of unlabeled data key to the task at hand. On the contrary, self-training utilizes unlabeled data

in a task-specific way. Pseudo labels are obtained through trained models and task-specific

information can be encoded into pseudo labels. However, this method may only work well when

a considerable portion of the predictions on unlabeled data are correct [38], otherwise early

mistakes made by teacher model pt due to limited labeled data can reinforce itself by generating

incorrect labels for unlabeled data and re-training on this data can even result in a worse student

model ps in the next round [54].

TFS protocol by following TAPT → Finetuning → Self-training (TFS) process can take

advantages of TAPT and ST but at the same time avoid their weakness. The overall pipeline

of TFS is shown in Figure 2.1. TFS first utilizes unlabeled data in a task-agnostic way by

Algorithm 1 TFS Protocol
Input: Labeled corpus Dl, unlabeled corpus Du and initialized model pθ

1: Update model pθ with TAPT on unlabeled corpus Du by Equation 2.1
2: Train a teacher model pτ initialized with pθ by finetuning on labeled corpus Dl

3: repeat
4: Apply pτ to the unlabeled corpus Du to obtain D̂u := {(xj, pτ (xj))|∀xj ∈ Du}
5: Train a student model pτ on Dl ∪ D̂u by Equation 2.2
6: Assign pτ as a teacher for the next round
7: until Convergence or maximum rounds are reached

13
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TAPT to have a better initialization for finetuning in next step and then finetunes a teacher

model initializing its parameters from TAPT on labeled data in a standard supervised way.

These two steps can build a better teacher model, avoid early mistakes and generate more

accurate predictions for students, which is key to the success of self-training. The unlabeled

data is leveraged again during self-training process in a task-specific way to further boost the

performance of models at hand. We summarize the workflow of TFS in Algorithm 1.

2.4 Experiments

Here we conduct comprehensive experiments and analysis on different NLU datasets to

demonstrate the effectiveness of TFS.

2.4.1 Experimental Setup

We use six popular large-scale datasets covering sentiment classification, paraphrase identi-

fication, natural language inference, named entity recognition and dialogue slot classification as

follows.

(1) SST-2 consists of sentences from movie reviews and human annotations of their sentiment

[55] . The task is to predict the sentiment of a given sentence to be positive or negative [41].

(2) Both QNLI [41] and MNLI [56] are natural language inference datasets. QNLI is

adapted from the SQuAD [57] question answering dataset and the task is to predict whether

the context sentence includes the answer to a given question [41], which can be regarded

as a binary classification problem. MNLI is slightly different from QNLI as it has multiple

genres. Specifically, a premise sentence and a hypothesis sentence are given for each example

in MNLI, and the task is to predict whether the given premise entails (entailment), contradicts

(contradiction) the given hypothesis, or neither of them (neutral) [41].

(3) QQP is a paraphrase identification dataset [58]. The goal is to determine if two questions
14
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Dataset Task Train size Number of classes Evaluation metrics
SST-2 Sentiment analysis 67,349 2 Accuracy
QNLI Natural language inference 104,743 2 Accuracy
MNLI Natural language inference 100,000* 3 Accuracy
QQP Paraphrase identification 100,000* 2 F1
CoNLL 2003 Named entity recognition 14,041 9 F1
MultiWOZ 2.1 Slot classification 56,557 30 Micro-F1

Table 2.1: Dataset summary for evaluation. * are datasets that we randomly sample 100K
instances from original training sets due to the high cost of iterative self-training.

asked on Quora are semantically equivalent [41], which can also be formulated as a binary

classification problem.

(4) CoNLL 2003 is a name entity recognition dataset and the task is to recognize four

types of named entities: persons, locations, organizations and miscellaneous entities, where

miscellaneous type does not fall into any of the previous three categories [59].

(5) MultiWOZ 2.1 is a large-scale multi-domain dialogue dataset with human-human

conversations [60]. We convert each dialogue into turns and the task is to predict whether a

slot, e.g. restaurant name, is mentioned in a turn and can be cast as a multi-label binary slot

classification problem [34].

SST-2, QNLI, MNLI and QQP datasets are from GLUE benchmark 1 and we only report

their results on development sets as extensive experiments don’t allow us to submit predictions

on their test sets to the official leaderboard due to submission limitations 2. Note that for both

MNLI and QQP, we randomly downsample their training sets into 100K and development sets

into 5K otherwise iterative self-training in various semi-supervised setups can be too costly

and for MNLI, we report results on the matched development set. On both CoNLL 2003 and

MultiWOZ 2.1, we report results of their test sets. For SST-2, MNLI and QNLI, we use standard

accuracy metric and for QQP and CoNLL 2003 we report their F1 scores. For MultiWOZ 2.1,

we report micro-F1. We summarize details of each dataset including task, full training data size,

1We only consider datasets with training data size larger than 10K in GLUE benchmark.
2See more about FAQ 1 at https://gluebenchmark.com/faq
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number of classes and their evaluation metric in Table 2.1.

TAPT. We use BERT-base and BERT-large as our backbone to leverage both labeled

and unlabeled data. Both labeled and unlabeled data are used for TAPT in our implementation

so that we can use the same checkpoint for different data split and labeled data size without

repeating costly pre-training process on the same dataset. During TAPT process, we use MLM

objective with random token masking probability 0.15 for each training set listed in Table 2.1

following previous work [2, 39].

Finetuning. We follow standard supervised fine-tuning paradigm [2] by adding a linear

projection layer with weight W ∈ RK×I on top of BERT in labeled data for each dataset listed

in Table 2.1, where K is the number of classes and I is the dimensionality of representations of

BERT. Specifically, for SST-2, QNLI, MNLI and QQP, we pass the representation of [CLS]

token HCLS to a linear layer followed by a Softmax function. Models are trained with cross-

entropy loss between the predicted distributions Softmax(W (HCLS)) and their ground truth

labels. For CoNLL 2003 name entity recognition task, we feed the representation of each

token into a linear layer followed by a Softmax function. Models are trained with average

cross-entropy loss between the predicted distributions and their labels over all tokens 3. For

multi-label binary slot classification task on MultiWOZ 2.1, we pass the representation of

[CLS] token HCLS into a linear layer followed by a Sigmoid function. Models are trained

with mean binary cross-entropy loss between the predicted distributions Sigmoid(W (HCLS))

and their ground truth labels.

Self-training. We use the finetunned models with labeled data as teachers to generate pseudo

soft labels on unlabeled data following [45]. Pseudo labeled data are combined with original

labeled data to train student models by optimizing objective function in Equation 2.2. In the first

3We only calculate loss of the first token for words with multiple tokens after tokenization.
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round, students utilize the same pre-trained checkpoints as their teachers and in the following

rounds, students inherit parameters from teachers. We set maximum rounds as 3 since we

observe that setting a much larger round brings the same results or very marginal gains on both

SST-2 and CoNLL 2003.

2.4.2 Main results

Dataset Model FT TAPT ST TFS

SST-2
BERTbase 87.31.5 88.50.7 (+1.2) 88.41.0 (+1.1) 89.40.8 (+2.1)
BERTlarge 89.04.2 90.70.7 (+1.7) 90.14.2 (+1.1) 91.40.4 (+2.4)

QNLI
BERTbase 79.10.8 82.00.5 (+2.9) 80.20.7 (+1.1) 83.10.6 (+4.0)
BERTlarge 82.60.4 83.20.6 (+0.6) 83.70.4 (+1.1) 84.40.6 (+1.8)

MNLI
BERTbase 57.31.9 58.81.3 (+1.5) 59.22.1 (+1.9) 60.91.4 (+3.6)
BERTlarge 66.42.6 67.61.5 (+1.2) 68.72.2 (+2.3) 69.41.4 (+3.0)

QQP
BERTbase 71.30.8 74.30.8 (+3.0) 72.30.6 (+1.0) 75.10.9 (+3.8)
BERTlarge 73.11.7 75.10.9 (+2.0) 74.21.8 (+1.1) 76.10.9 (+3.0)

CoNLL 2003
BERTbase 78.81.1 79.31.6 (+0.5) 81.61.1 (+2.8) 82.21.3 (+3.4)
BERTlarge 76.32.4 79.81.0 (+3.5) 79.42.4 (+3.1) 82.21.1 (+5.9)

MultiWOZ 2.1
BERTbase 75.60.7 79.80.5 (+4.2) 76.60.8 (+1.0) 80.20.4 (+4.6)
BERTlarge 77.70.4 81.40.2 (+3.7) 78.70.6 (+1.0) 81.80.3 (+4.1)

Table 2.2: Results comparison (%) of finetuned baselines on labeled data (FT), TAPT, ST and
TFS of BERTbase and BERTlarge on six different datasets with 1% labeled data. Mean results
along with their standard deviation in the subscript are listed and values inside the parentheses
are gains over FT.

In this section, we simulate data scarcity scenarios for these mentioned datasets in Table

2.1 for both BERTbase and BERTlarge. Specifically, for each dataset we randomly sample 1%

training data as labeled corpus and left 99% as unlabeled data. Both labeled and unlabeled

corpus is used as the input of TAPT while only unlabeled corpus is used for self-training. For

all datasets, we randomly choose three data splits and have three different runs for each of them

except BERTlarge on CoNLL 2003 and MultiWOZ 2.1 to combat their instability by leveraging

their results on development sets. In these two datasets, we use ten different runs for each
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data split on BERTlarge and report corresponding test set results based on top three runs on

development sets. Results are summarized in Table 2.2.

Comparison between TAPT and ST. TAPT and ST in both BERTbase and BERTlarge models

consistently outperform finetuned baseline results across six different datasets, demonstrating

their effectiveness as semi-supervised methods on NLU tasks. However, TAPT has inconsistent

results compared to ST. TAPT outperforms ST in SST-2, QQP and MultiWOZ 2.1 datasets but

underperforms ST or only achieves comparable results for QNLI, MNLI and CoNLL 2003.

These results indicate that they learn different representations from unlabeled data since they

utilize data from different perspectives.

TFS shows strong additive gains over individual TAPT and ST. On QNLI, TFS on

BERTbase improves 4% accuracy over finetuned baselines (FT), equal to the sum of gains

from TAPT (+2.9%) and ST (+1.1%), and on BERTlarge improves 1.8% accuracy, even slightly

larger than the sum of gains from TAPT (+0.6%) and ST (+1.1%). On MNLI, TFS on BERTbase

improves 3.6% accuracy, larger than the sum of gains from TAPT (+1.5%) and ST (+1.9%). Sim-

ilar results on BERTbase also hold for CoNLL 2003. For results of other settings, improvements

of TFS can also be well approximated by simply adding gains from corresponding TAPT and

ST over FT. These consistent and significant results show that TAPT and ST are complementary

to each other and TFS can effectively add their gains.

2.4.3 Varying size of labeled data

We have demonstrated the effectiveness of TFS on both BERTbase and BERTlarge in six

different datasets with 1% training data in section 2.4.2. We further explore different sizes of

labeled data on six datasets in Table 2.1 with BERTbase model.

Specifically, on relatively simple dataset SST-2, we vary labeled data ratio as {0.1%, 0.2%,
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Figure 2.2: Results comparison (%) of FT, TAPT, ST and TFS with different sizes of labeled
data on six datasets. TAPT+ST is not a method but references to demonstrate additive gains of
TFS.

0.5%, 1.0%} and on more difficult QNLI, MNLI and QQP datasets, we vary their labeled ratios

as {1%, 2%, 5%, 10%}. For CoNLL 2003, we explore labeled data ratio in {0.5%, 0.6%, 0.7%,

0.8%0.9%, 1.0%} and for MultiWOZ 2.1, we set labeled data ratio as {1%, 2%, 3%, 4%, 5%}.
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Following previous settings, for each labeled data ratio among these six datasets, we randomly

select 3 data splits and each data split has three different runs. Final average results for each

data ratio are reported over these nine runs. To better measure additive property of TFS, we

introduce TAPT+ST in our results for references, which directly adds performance gains of

TAPT and ST on FT.

Results of six different datasets among different sizes of labeled data are summarized in

Figure 2.2. TAPT outperforms ST in SST-2, QNLI, QQP and MutiWOZ 2.1 datasets in various

labeled data setups but underperforms it on MNLI and CoNLL 2003, indicating that TAPT and

ST learn different representations from unlabeled data and have their pros and cons. However,

TFS consistently and significantly outperforms TAPT and ST in all scenarios among six different

datasets and again proves its effectiveness over TAPT and ST alone. For example, in CoNLL

2003 with 0.5% labeled data, TFS has relative 4.4% and 3.1% improvement over TAPT and ST,

respectively. More importantly, TFS overall has very similar results with TAPT+ST in various

labeled data size of different datasets, which further strengthens that TFS protocol can yield

strong additive gains over TAPT and ST.

2.4.4 Analysis

Given the promising results in the previous experiments, we aim to answer why TFS

outperforms ST consistently and significantly. Indeed, the differences between TFS and ST lie in

two aspects: (1) TFS uses initialization from the checkpoint of TAPT rather than original BERT

as ST. (2) TFS utilizes pseudo labels generated from TAPT finetuned models while ST

uses pseudo labels generated from BERT finetuned models (FT). To further investigate

these two perspectives, we design a variant of original ST, ST with TAPT Initilization (STTI),

which utilizes pseudo labels generated by BERT finetuned models as ST but is initialized with

the same checkpoints from TAPT as TFS during the first round of self-training. The intermediate
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FT TAPT ST STTI TFS
Init. BERT TAPT* BERT TAPT* TAPT*

Pseud. - - FT FT TAPT
Acc. (0.1%) 72.0 84.5 74.1 75.4 85.7
Acc. (1.0%) 87.3 88.5 88.4 88.8 89.4

Table 2.3: Results comparison of FT, TAPT, ST, STTI and TFS on SST-2 dataset. Rows with
Init. and Pseud. show initialization and pseudo labeler of different models, respectively. Last
two rows list accuracy with 0.1% and 1.0% labeled training data of these models. * represents
models without finetuning on labeled data.

variant can help us better understand what makes TFS work. We run experiments on SST-2

with 0.1% and 1.0% labeled data for BERTbase to compare ST, STTI and TFS. The results of

STTI are obtained by running over the same three data splits as ST and TFS, and having three

different runs for each data split. Results are averaged and summarized in Table 2.3.

Importance of initialization. Table 2.3 shows that STTI consistently outperforms ST in

both 0.1% and 1% labeled setup. Comparing its difference with ST, we can conclude that

its improvement over ST comes from its TAPT initialization. Results of MNLI and CoNLL

2003 in Figure 2.2 (c) and (e) also validate the importance of initialization. In these two

datasets, although ST can consistently generate more accurate labels than TAPT finetuned

models, meaning that it can match TAPT finetuned performance during self-training process, it

still underperforms TFS in the end. These results again indicate the importance of initialization.

Without TAPT as initialization, even if ST itself can outperform TAPT finetuned models, who

are teachers of TFS in self-training process, but still at its end will be left behind of TFS.

Importance of pseudo label correctness. Table 2.3 also shows that STTI underperforms TFS

in both 0.1% and 1% labeled setup although both of them inherit the same parameters from

TAPT. These results indicate that beyond initialization, accurate pseudo labels also matter for

self-training process. STTI takes pseudo labels generated from BERT finetuned baselines (FT)

21



Complementarity of Pre-training and Self-training with Unlabeled Data for NLU Chapter 2

that have more errors while TFS utilizes more accurate pseudo labels generated from TAPT

finetuned models. Suffering from more incorrect pseudo labels in the beginning of self-training

process, STTI may converge to a worse local optima than that of TFS. This is even more severe

when labeled data is 0.1% and FT is left far behind of TAPT finetuned models, causing that

STTI has 10.3% accuracy gap compared to TFS. These results prove the importance of accurate

pseudo labels for self-training.

Combining these findings, we argue that TFS can outperform ST at least for two reasons: (1)

it has a better initialization from TAPT compared to ST from BERT (2) it utilizes more accurate

pseudo labels from TAPT finetuned models than ST.

2.5 Conclusion

In this chapter, we demonstrate that TAPT and ST are complementary for NLU tasks with

TFS by following TAPT → Finetuning → Self-training process. Our extensive experiments

in various semi-supervised setups across six popular datasets show that they are not only

complementary but also strongly additive with TFS protocol. We further show that TFS

outperforms ST through (1) a better initialization from TAPT (2) more accurate predictions

from TAPT finetuned models. We hope that TFS could serve as an important semi-supervised

baseline for future NLP studies.
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Chapter 3

Teaching PLMs with Commonsense

Reasoning via Data Synthesis from KB

3.1 Introduction

Recently, pretrained language models [2, 9, 10] have achieved great successes on various

natural language understanding tasks, and they are also believed to master a certain level

of commonsense reasoning abilities [61, 62, 63]. Equipping machines with commonsense

reasoning ability has been seen as one of the key milestones of artificial general intelligence

[17]. However, the commonsense reasoning ability of these state-of-the-art pretrained models is

still far away from that of humans [18, 8]. One probable reason is that these models are learned

from massive amounts of unstructured texts with various language model (LM) objectives (e.g.,

masked language model [2]). That is, the commonsense reasoning capability is never explicitly

taught to the pretrained models, but is implicitly acquired through modeling input texts via

LM objectives. In this chapter, we focus on how to explicitly teach the pretrained models the

commonsense reasoning ability.

There are several challenges in explicitly injecting commonsense reasoning capability
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into pretrained models. First, it is generally hard to exploit direct supervision signals for

commonsense reasoning from unstructured texts, and it is also expensive, if ever possible, to

create a large amount of human-labeled data for learning the commonsense reasoning ability.

Second, the pretrained models do not have explicit symbolic reasoning operations; instead, the

reasoning is performed implicitly through the neural network operations such as self-attention,

and any knowledge relevant to reasoning is stored in the network weights. Note that the weights

are only learned to fit certain input-output pairs, where the inputs to the model are natural

language sentences, and the outputs are certain items to predict (e.g., masked tokens, next

sentence indicator). That is, any reasoning ability has to be acquired implicitly by processing

unstructured input texts during pretraining, and it is more difficult to directly supervise the

reasoning path for a pretrained model.

To address these challenges, we propose a simple yet effective method to teach pretrained

models with explicit commonsense reasoning abilities. The key idea is to exploit the structured

knowledge in commonsense knowledge bases (e.g., ConceptNet [19]) to generate multiple-

choice questions that require commonsense reasoning. Specifically, we sample subgraphs from

KB to generate various logical forms and then use text templates to generate natural language

questions and candidate answers. As a result, we automatically generate a large-scale multiple-

choice question answering dataset with 167 million questions that ask about specific logical

relations between different entities/concepts. These questions will be used as the additional

training data to further refine the pretrained models, which force them to learn the commonsense

reasoning ability in order to answer correctly. These training inputs are already in the natural

language form, which is consistent with the input of pretrained models. Therefore, it allows

the model to continually adjust its pretrained weights so that it can master more commonsense

reasoning abilities; it naturally combines the power of pretrained weights from unstructured

texts and the new information from structured knowledge in KB. Our experimental results show

that the proposed approach consistently outperforms the baselines on commonsense reasoning
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tasks, especially in few-shot learning settings. In addition, we examine which logical relations

are more “commonsense” and find that only a few simple ones are most relevant. This work

is as a preliminary attempt to integrate structured commonsense knowledge into pretrained

models with promising results. As we shall see, the structured knowledge in KB allows us to

systematically construct the logical relations that we want to teach the models. We hope that

our work could inspire more research towards combining structured knowledge and pretrained

models.

3.2 Related Work

Structured knowledge, e.g. Freebase [64] and ConceptNet [19], has been explored for im-

proving question answering and reading comprehension systems. [65] transforms questions into

knowledge graphs so that large-scale knowledge bases can be leveraged to provide the missing

background to improve question answering. [66] exploits to incorporate knowledge triplets from

knowledge bases into answer generation process. [67] proposes a general framework to leverage

graph convolutional neural networks [68] to encode external knowledge from knowledge base

for question answering systems. [69] utilizes relations and embeddings from ConceptNet to

build feature-based classifier for reading comprehension problems. [70] augments the input

with relation embedding from ConceptNet to better incorporate commonsense knowledge for

commonsense machine comprehension problems. [71] utilizes ConceptNet to pre-train direct

and indirect relational functions between concepts so that they could be added to existing neural

network models. This line of work rely on knowledge retrieval from knowledge base for specific

questions and, are not generic and flexible.

Another line of work directly inject commonsense knowledge from knowledge base into the

parameters of pre-trained models so that they can be used as drop-in replacements for existing

ones. [72] fine-tunes pre-trained BERT model on questions constructed by predicting the head
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or tail mention in a triple while [73] proposes to align triples in knowledge base to Wikipedia

sentences to form natural language questions to continue pre-training BERT. Instead, we explore

utilizing knowledge base to systematically construct different logical forms and then convert

them into question-answer pairs to explicitly teach multiple types of pre-train language models

with commonsense reasoning.

3.3 The Proposed Approach

The key idea of our method is to generate multiple-choice questions from different subgraphs

in KB, and then we use the generated data to further refine the pretrained models. The overall

idea of the data generation process is shown in Figure 3.1, which consists of (i) generating

different logical forms from a sampled subgraph in KB, (ii) generating multiple-choice questions

in natural language form.

3.3.1 Generating multiple-choice questions as the refinement data

Generating logical forms We first sample a subgraph from KB that is in the following form:

(A
R1−→B

R2−→C) (3.1)

where A, B, and C are three different entities in the KB, and R1 and R2 represent two different

relations in the KB. For each of the above subgraph, we will construct a multiple-choice

question related to the entity B in the following manner. First, introduce the following two

sets: R1 = {X ∈ Ω : A
R1−→X}, R2 = {X ∈ Ω : X

R2−→C}, where Ω denotes the entire

entity set. Note that the set R1 represents the set of all (tail) entities that have relation R1 with

A, and R2 represents the set of all (head) entities that have relation R2 with entity C. We

use the two circles in the Venn diagram (Fig. 3.1) to represent these two sets, respectively.
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A B C

Q: which of the following is an antonym of alone
and meanwhile is capable of sing in church ?
A: people
B: dressmake
C: with others

!! !"

e.g. 

Sample

Template
Logical form

alone
Antonym�! people

CapableOf�! sing in church
<latexit sha1_base64="1BPGr1eAdBYSfw7Cl6shwYgg5Bw=">A AANoHicpZdfb9s2EMCV7l/nLlu7PW4PQtsMe1jSOBuwvAxomqRN26RxUjtJUwUFJdEWa4pUSKqxS+g77Ovtiwx73EkWz5bSDdhGIDDvd3eU7h8dhxln2qyv/75046OPP/n0s5ufd259sfzlV7fvfH2iZa4iOogkl+osJJpyJujAMMPpWaYoSUNOT8Pxdqk/fUeVZlL0zTSjFykZCTZkETGA3tz+LTB0YlRqCZeCFn4gS2tqrONbwkgxTYvCBmAxUmyUGKKUvALb2iSjMuMf8t0mGYEXORz+k7dmYuQz4UcJhJQUb27fW19br5Z/fdOtN/e8evXe3Ln1ZxDLKE+pMBEnWr/urmfmwhJlWASv1QlyTTMSjcmIvs7NcPPCMpHlhoqo8Fd8wrm88oGvbvoVb9j3uxd2KMXMGNaKD0p/czVkxu93/VKlO53Oiv/rf1ngt7q4Fh9tI5KVJSrAaBHrPETNIjds/L5JJlV3zFip5SxURE1tlX/d8k4UBUEZUxasqUtzblhZstbriYjy1ikkzDlRk6LTwHAuKVsZQlnMbcx0+bALa2QshTRUt2NdUHRmme+zlOpW3CltBTNSJEtYNGlSSNyQjXJFm69hBTEhC5u2hI+kYiZJ/wazqKlIYLKUokOggl5FMk2JiGEMEro3P8oGkIeQRQuntxKVK151mVsrvmYpjJY/ON73y+mFQhoYl4ZTKOUYEq8LdMqUHFJdjjzhq5c55N5M/aqwzdSRVFcNPPcMOahCSVTsp8Qkvp6moeRNL8EiOlQkmntBvKA0zhqmQvndBxs/+tREa81WYpGSZSCF83VEVkWbdlZWr69WVyy09UIk5fs2YdiuXqqvVfQD3QNmZSCtWWo9kGsYwtacxFU2W4flJgn5GOpc3hIfiO3fLMjDFtfSJ3FMYz+EmibUL58g1f8/u2xcOE8qmtr6s7D9etPQcgrtXdj96qOhiaSSHC6AaWG3cduwiOmQCVbdXnZnvm/YQPtmUtdGvQWhYQUXfZ7O7kG7Nd83bOiElONT2N1609DCH1Hjwh7PPuvRzeGyV9bQNKOXIhLVpaXofKqDo92dWaPb+0E1LxpGTNH7ZY0DiC8QwgZCijwNqaoKX9FdG5QtGoZ2F8a+QmnoWA3gj17CtaEYESNOL51dNLOLCK8JjMAMqTLp3B34jijEsHc4ZmSEvBScIoKvzPk5IDhFf35OH48JezYI4Qk9B+AfhplZrG3Xwd7ctYeuUNLJApYTp9g/QLx/UGAK0y1bRr2Fmdqp5B2UDyr5AOVBJQ9QPq3kU5TPK/l8/gRSp35oCcaHKMQEIYowmYhihygi6tAQ0dChESLMf4IocYghYg69RfTWoTGisUMcEbZDiih1SCASWEVEEsuFKHPoEtGlQwoR1lkj0g4ZRNhdOaIcOxfRO4euEF05NEGEDTRFNHXoPaL31RdsybaQYU89QvTIoW1E2w7tIMLme4zosUNPED1xaA/RnkNPET116BmiZw49R/QcpwTRvkMHiHAIXiB64dAhokOcT0Q4x0eIjhw6RnTs0EtEL/GaQNR3aIAIh/EE0YlDp4hwRM8QnTn0CtErh84RlbMMvxW67V8G1zcnG2vdn9Y2jn6+9/BR/avhpvetd9f7wet6v3gPvT2v5w28yPtj6bullaXvl+8u7y0fLh/NTG8s1T7feI21fP4XvvvoIA==</latexit>

S1
<latexit sha1_base64="5QI/MN9/PozsQF61rNJ71mO3MJ4="></latexit>

S2
<latexit sha1_base64="FUwx1Nje8Hcl0LWTB3q9BiAWKgk=">AAANFnicpZfNb9s2FMDV7qtzvbXdjrsISwPssGRxNmC5DGi+2rRNWie1kzRVEJAUbbOmSJmkEjuE/omdBmx/y27DrrvuP9lxlGw+W0p32EbAEN/vPZJ6XzSEU860WVv789bt997/4MOP7nzcuNv85NN79x98dqxlpgjtEsmlOsVIU84E7RpmOD1NFUUJ5vQED7cL/cklVZpJ0TGTlJ4nqC9YjxFkHDqNEmJf5RfrF/eX1lbXyhHenLRmk6VgNtoXD+7+FcWSZAkVhnCk9ZvWWmrOLVKGEU7zRpRpmiIyRH36JjO9jXPLRJoZKkgeLoeIc3kVOr6yEZa8Yt9pndueFFNjN5ZDpww3VjAzYacVFirdaDSWwx/+y3DrVhbH4tGWoLQITO6MFrHOMGgWuWHD6yoZlzmZskLLGVZITVxglLzStdUDRZ2gjEG4FjObZNwwtySvvZ4glNd2QTjjSI3zRgW7fVFRQM6VxdjGTBeHnVsjYymkobru64KiMY18hyVU1/xOaM2ZvkLpgJFxlbrA9Vg/U7T6GlYggxmu2iLel4qZQfIPmJGqYuDqWSnac1TQKyKTBInYRmZA9+Zb2cjFATOysHstUJniZZX5sRxqlqScht2j/bDoGZdIw0S/sghLOXSB1zksSpXsUV00GuIro8zF3kzCMrHV0KFElwU8X4m5U2GJVBwmyAxCPUmw5NVVghHaU4jMVzl/ndJ4a9cVKmx9s/51SA1ZrZYSI0oWjuR+rSeyTNqksbxyc9SqYqGsFzwp3rcKcT17ib6R0XdUjzMrHKn1Uu1Arl0T1vokLqNZ2ywzA8yHLs/FLfEO3/7NcHHY5FqGKI5pHGKX0wENixOk+v97F4Xr9pOKJnb2zG1nNqloOXXlndv98lHREKkkdxfAJLfbMK1YxLTHBCtvL7szn1dsXPmmUs+M2gtCxcpd9FkyvQft5nxesaFjVLRPbndnk4rW/ZAa5vZo+py1buYue2UNTVI6EkSUl5ai866ODnd3poVuH0Zlv2jXYoo+LHIcOf8iIWwkpMgSTFWZ+JLu2qgoUYztrmv7EiXYsxlwPzpy14ZiSPQ5HXk7MrUjiM+Ia4EpUkXQud/wEinAbu5xzFAfeCF4BXF/mfN9nOAVnfk+HdgGt22E3QltD6SgU7NY25aH7fnSNix1KR0vYDn2iv0DwPsHOYQw2bSF15sQqZ1S3gH5oJQPQO6Wchfkk1I+AfmslM/mJ6BZ6HsWgX+AMAQIEIFgAoo9ooCoRz1APY/6gCD+A0ADjxgg5tFbQG89GgIaesQBQTkkgBKPBCABWQQkIV2AUo9GgEYeKUCQZw1Ie2QAQXVlgDKoXECXHl0BuvJoDAgKaAJo4tE1oOvyD7Zgm8CgprYAbXm0DWjbox1AUHyPAT326AmgJx7tAdrz6Cmgpx49A/TMo+eAnkOXANr36AAQNMELQC88egnoJfQnIOjjQ0CHHh0BOvLoFaBXcE0A6njUBQTNeAzo2KMTQNCip4BOPXoN6LVHZ4CKXnbfCq36l8HNyfH6auvb1fXD75Yebc2+Gu4EXwRfBl8FreD74FGwF7SDbkACHvwY/Bz80vyp+Wvzt+bvU9Pbt2ZrPg8qo/nH30+dsdk=</latexit>

S3
<latexit sha1_base64="gbUNPQsgiwtQ7ZsbDJLLMPKFGw4="></latexit>

S4
<latexit sha1_base64="5u999pmT/sgB3PEuW0qLn684jlA="></latexit>

S2
<latexit sha1_base64="FUwx1Nje8Hcl0LWTB3q9BiAWKgk="></latexit>

Figure 3.1: The generation of logical forms and multiple-choice questions in our proposed
approach. The yellow and the red circles in the Venn diagram represent the sets R1 and R2,
respectively.

Note from Fig. 3.1 that the entire space could be partitioned into four subsets, denoted as:

S1 = R1 ∩ Rc
2, S2 = R1 ∩ R2, S3 = Rc

1 ∩ R2, S4 = Rc
1 ∩ Rc

2. Each subset represents a

certain logical relation. For example, the subset S2 = R1 ∩R2 means all the entities that have

relation R1 with A and have relation R2 with C. Using these four subsets, we could compose

questions that ask about all different logical relations from the subgraph in (3.1). To see this,

note that we could compose a set by either choosing or not choosing each subset Si, which

leads to a total of 24 = 16 subsets. Among them, two trivial cases are excluded: the all-chosen

case (full set) and the all-not-chosen set (empty set). Therefore, there are a total of 14 different

logical relations about (3.1) that we could ask (see Appendix A.2 for all the 14 logical forms).

To have a more concrete example, consider the composed subset S1∪S3, then we are examining

the logical relation:

((A
R1−→? ) ∨ (?

R2−→C)) ∧ ¬((A R1−→? ) ∧ (?
R2−→C)) (3.2)
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where ∧ and ∨ denotes logical AND and logical OR, respectively, and ¬ denotes logical negation

(NOT). This approach allows us to systematically generate all different types of logical relations

pertaining to each sampled subgraph from the KB, which even covers questions about a single

relation. For example, the logical form corresponding to S1 ∪ S2 is “A R1−→?”, and the logical

form corresponding to S2 ∪ S3 is given by “? R2−→C”, which ask the tail entity and head entity,

respectively.

Generating multiple-choice questions Now that once we have a logical form in the form of

(3.2), we can generate natural language questions that ask about this particular logical relation.

We achieve this by using text templates. Specifically, we first create two different types of

mapping, namely, affirmative mapping and negative mapping. The affirmative mapping is

used to generate sentences with affirmative questions, while the negative mapping is used for

generating negative ones. Consider the following specific example of a logical form (also shown

in Figure 3.1):

(alone
Antonym−→ ?) ∧ (?

CapableOf−→ sing in church)

where the correct answer for the missing entity is people. In the above logical form, the

relation CapableOf will be mapped into “is capable of” using affirmative mapping. On the

other hand, when there is a negation ¬ before the relation CapableOf, it will be mapped into

“is not capable of” using a negative mapping. These obtained strings from relations will be put

together with the head entities and the tail entities to generate sentences as natural as possible by

using a set of simple heuristic rules. For example, the above logical relation will be mapped into

the following natural language sentence: “which of the following is an antonym of alone and

meanwhile is capable of sing in church?” In Appendix A.2, we give examples of the possibly

generated questions for all the 14 logical relations.
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Generating candidate answers The correct answer is obtained from the particular logical

form that we want to examine. For example, if we want to generate a question regarding the

logical form (3.2), the set of correct answer is given by S1 ∪ S3. On the other hand, for the

wrong candidate answers, we firstly choose wrong subset uniformly from S1, . . . ,S4 and then

sample an entity from the selected subset.

3.3.2 Refinement: teaching the pretrained models with commonsense

reasoning

To teach the pretrained models with commonsense reasoning, we further train the pretrained

models on the generated multiple-choice questions to predict the correct answer, which becomes

a multi-class classification problem. Afterwards, the model is finetuned on different downstream

tasks. We name this step as refinement to distinguish it from the pretraining and the finetuning

stages.

3.4 Experiments

In this section, we demonstrate the effectiveness of the proposed method and perform

analysis on which logical relations are more “commonsense”. First, we briefly describe the

experimental setting, and more details could be found in Appendix A.1. We first preprocess

ConceptNet and keep 3,098,816 English-only triples. Then, we perform search on these triples

and obtain a total of 167,395,947 subgraphs that are in the form of (3.1). These subgraphs would

lead to over 167 million multiple-choice questions for further refining the pretrained models. To

evaluate the performance, we finetune the refined models on two commonsense reasoning tasks:

CommonsenseQA [8] and CosmosQA [74] (see Appendix A.1 for the descriptions).
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Dataset CommonsenseQA-dev CosmosQA-dev

BERT 57.33(1.03) 58.34(0.82)
BERT + refine 59.28(0.43) 58.91(0.44)

Table 3.1: Performance comparison in accuracy (%) on CommonsenseQA and CosmosQA
deveopment set with full training data size. “model + refine” denotes our method. All results
are averaged over five independent runs, with standard deviations listed inside the parentheses.

3.4.1 Main results

We first evaluate our method on pretrained BERT base model to demonstrate its effectiveness.

We refine BERT on our generated multiple-choice questions and then finetune them on both

CommonsenseQA and CosmosQA with full training data. We compare the results of our

approach to the original BERT without the refinement process. We report mean results and

standard deviations with 5 different runs. Results are summarized in Table 3.1. Our approach

can consistently improve strong BERT model on both CommonsenseQA and CosmosQA

datasets. On CommonsenseQA, our method can improve strong BERT baseline with 1.95%

accuracy and on CosmosQA, our method improves 0.57% accuracy. These results demonstrate

the effectiveness of our approach in teaching pretrained language model with commonsense

reasoning.

We further evaluate our proposed method on pretrained BERT base, GPT and XLNet base

under different sizes of fine-tuning data on CommonsenseQA. Specifically, we vary training

data size as {100, 200, 400, 800, 1600, 3200, 9741 (full training data size)} . For each data size,

Data size 100 (1.0%) 200 (2.1%) 400 (4.1%) 800 (8.2%) 1600 (16.4%) 3200 (32.9%) 9741 (100%)

BERT [2] 34.94(1.97) 38.41(2.16) 41.73(2.02) 45.44(1.16) 47.53(1.15) 51.84(0.62) 57.33(1.03)
BERT + refine 42.54(1.27) 44.93(1.69) 47.03(0.27) 50.58(0.64) 53.43(0.85) 54.86(0.75) 59.28 (0.43)

GPT [9] 27.90(1.30) 28.34(1.39) 30.20(1.99) 33.96(2.53) 38.54(1.55) 45.45(0.65) 50.75(1.08)
GPT + refine 37.69(0.27) 38.56(0.37) 40.49(0.50) 42.49(0.44) 44.24(0.58) 46.50(0.35) 51.52(0.62)

XLNet [10] 25.04(0.67) 27.44(1.08) 29.80(2.17) 34.27(0.89) 38.67(1.30) 47.14(1.25) 57.25(1.14)
XLNet + refine 43.60(0.15) 43.67(0.24) 45.81(0.23) 47.24(0.47) 50.60(0.53) 53.41(0.32) 59.31(0.44)

Table 3.2: Results with different size of fine-tuning data in accuracy (%) on the Common-
senseQA development set. Data size percentages are listed in the parentheses.
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we report mean results with 5 different runs along with their standard deviations. Results are

summarized in Table 3.2. Our method has consistently and significantly better performance

when fine-tuning data sizes are limited across three different models. When training data is

extremely low with 100 instances, our approach can improve BERT, GPT and XLNet with

7.60%, 9.79%, 18.56% absolute accuracy, respectively, meaning that the refinement process

effectively teaches pretrained models commonsense reasoning even with a few finetuning

samples. With full finetuning data, our method also performs consistently better than baselines

and improves up to 2.06% absolute accuracy for XLNet. These consistent and significant results

across different fine-tuning data sizes and model types demonstrate the effectiveness of our

method to teach pre-trained language models with commonsense reasoning.

3.4.2 Analysis

Our method can generate question-answer pairs requiring different logical reasoning ca-

pabilities. Hence, a natural question is which logical relations are more “commonsense”? To

partially answer this question, we refine the pretrained BERT base model on different subsets of

logical relations from all the 14 logical forms in Appendix A.2. For BERT + refine (all), we

sample all valid logical forms according to a uniform distribution. For BERT + refine (1,2,5),

BERT + refine (2,4,5), and BERT + refine (4,7,9), logical forms are uniformly sampled over

(#1, #2, #5), (#2, #4, #5), and (#4 , #7, #9), respectively. We conduct refining experiments

Method BERT BERT + refine (1,2,5) BERT + refine (2,4,5) BERT + refine (4,7,9) BERT + refine (all)

CommonsenseQA 57.33(1.03) 59.10(0.43) 58.18(0.41) 56.42(0.82) 59.28(0.43)
CosmosQA 58.34(0.82) 59.28(0.81) 59.76(0.75) 58.86(0.74) 58.91(0.44)

Average 57.84 59.19 58.97 57.64 59.10

Table 3.3: The relevance of different logical relations to commonsense. “BERT + refine (1,2,5)”
means the pretrained BERT model is refined on the logical forms #1, #2, and #5 defined in
Appendix A.2. ”Average” denotes the averaged results on CommonsenseQA and CosmosQA
under each setting.
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on CommonsenseQA and CosmosQA datasets, train models five times for each setting and

report their mean values and standard deviations. Results are shown in Table 3.3. We observe

that relatively simple logical relations (#1, #2, #5) (i.e., simple logical AND and single relation

reasoning) are more relevant to commonsense; refining on just three of them achieves similar

performance to refining all (BERT + refine (all)). On the other hand, the logical forms (#4, #7,

#9), which require more logical compositions and negations, are less commonsense; refining

on them does not improve the baseline BERT model. This is consistent with our intuition that

commonsense should be something relatively straightforward.

3.5 Conclusion

In this chapter, we propose a simple yet effective method to use structured knowledge (i.e.,

ConceptNet) to enhance the commonsense reasoning abilities of pretrained language models.

The structured knowledge in KB allows us to construct various logical forms, and then generate

multiple-choice questions that require commonsense logical reasoning. Experimental results

demonstrate that, when refined on these training examples, these models consistently improve

their performance, especially in few-shot learning settings. Further analysis shows that simple

logical relations are more relevant to commonsense. Exploring methods than can generate more

diverse natural language questions instead of relying on patterns is left as future work.
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Chapter 4

Evaluating and Augmenting Dialogue State

Tracking via Data Synthesis from PLM

4.1 Introduction

Task-oriented dialogue (TOD) systems have recently attracted growing attention and

achieved substantial progress [75, 76, 77, 78, 79], partly made possible by the construction of

large-scale datasets [80, 81, 82]. Dialogue state tracking (DST) is a backbone of TOD systems,

where it is responsible for extracting the user’s goal represented as a set of slot-value pairs

(e.g., (area, center), (food, British)), as illustrated in the upper part of Figure 4.1. The DST

module’s output is treated as the summary of the user’s goal so far in the dialogue and directly

consumed by the subsequent dialogue policy component to determine the system’s next action

and response. Hence, the accuracy of the DST module is critical to prevent downstream error

propagation [83], affecting the end-to-end performance of the whole system.

With the advent of representation learning in NLP [84, 2, 3], the accuracy of DST models

has increased from 15.8% (in 2018) to 55.7% (in 2020). While measuring the held-out accuracy

is often useful, practitioners consistently overestimate their model’s generalization [85, 86]
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data attraction-name hotel-name restaurant-name taxi-departure taxi-destination train-departure train-destination

dev 94.5 96.4 97.3 98.6 98.2 99.6 99.6
test 96.2 98.4 96.8 95.6 99.5 99.4 99.4

Table 4.1: The percentage (%) of domain-slot values in dev/test sets covered by training data.

slot name data area book day book time food name price range

book people
train 1.9 38.8 39.2 2.1 16.4 1.5
dev 1.9 38.9 38.9 1.9 16.3 2.2
test 2.7 36.9 37.7 1.6 18.7 2.4

Table 4.2: Co-occurrence distribution(%) of book people slot with other slots in restaurant
domain within the same user utterance. It rarely co-occurs with particulars slots (e.g., food),
which hinders the evaluation of DST models on realistic user utterances such as “I want to book
a Chinese restaurant for 8 people.”

since test data is usually collected in the same way as training data. In line with this hypothesis,

Table 4.1 demonstrates that there is a substantial overlap of the slot values between training

and evaluation sets of the MultiWOZ DST benchmark [80]. In Table 4.2, we observe that the

slot co-occurrence distributions for evaluation sets tightly align with that of train split, hinting

towards the potential limitation of the held-out accuracy in reflecting the actual generalization

capability of DST models. On the other hand, state-of-the-art DST model is still far from perfect

even on held-out test set (55.7% in 2020) when comparing it with models for other natural

language understanding tasks, e.g. sentiment analysis, which often exceeds 90% accuracy [39].

Inspired by this phenomenon, we aim to address and provide further insights into the following

question: how can we evaluate and augment state-of-the-art DST models with dialogues that

have novel and realistic scenarios but are not captured well by a given dataset?

To address this question, we propose controllable counterfactuals (COCO) as a principled,

model-agnostic approach to generate novel conversation scenarios beyond a given dataset. Our

approach is inspired by the combination of two natural questions: how would DST systems react

to (1) unseen slot values and (2) rare but realistic slot combinations? COCO first encapsulates

these two aspects under a unified concept called counterfactual goal obtained by a stochastic
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Figure 4.1: The upper left is a dialogue example between user and system with its turn-level and
dialogue-level belief states on the upper right. The lower left are valid user utterance variations
generated by VS and CoCo with their corresponding belief states derived from the original ones
on the right.

policy of dropping and adding slots to the original turn-level belief state followed by replacing

slot values. In the second step, COCO conditions on the dialogue history and the counterfactual

goal to generate counterfactual conversation. We cast the actual utterance generation as a

conditional language modeling objective. This formulation allows us to plug-in a pretrained

encoder-decoder architecture [40] as the backbone that powers the counterfactual conversation

generation. We also propose a strategy to filter utterances that fail to reflect the counterfactual

goal exactly. We consider value substitution (VS), as presented in Figure 4.1, as a special COCO

case that only replaces the slot values in the original utterance without adding or dropping slots.

When we use VS as a fall-back strategy for COCO (i.e., apply VS when COCO fails to generate

valid user responses after filtering), we call it COCO+.

We first evaluate three strong DST models [87, 88, 89] with our proposed controllable

counterfactuals generated by COCO and COCO+, and our results show that the performance

of each significantly drops (up to 30.8%) compared to their joint goal accuracy on the original

MultiWOZ held-out evaluation set. On the other hand, we find that these models are, in

fact, quite robust to paraphrasing with back-translation, where their performance only drops

up to 2%. We further utilize COCO+ as a data augmentation method and our results show

that it consistently improves the robustness of the investigated DST models on counterfactual
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conversations generated by each of VS, COCO and COCO+, and also improves the joint goal

accuracy of these strong DST models on the original MultiWOZ evaluation set. More notably,

when COCO+ multi-round data augmentation (by sampling multiple counterfactual goals for

each turn) is used on the best of three DST models, its performance on the original MultiWOZ

evaluation set improves up to 5.49% joint goal accuracy. In addition, human evaluations show

that COCO-generated counterfactual conversations perfectly reflect the underlying user goal

with more than 95% accuracy and are found to be quite close to original conversations in

terms of their human-like scoring. These results prove our proposed approach’s reliability and

potential to be used for evaluating and augmenting DST models.

4.2 Related Work

Dialogue State Tracking. DST has been a core component in current state-of-the-art TOD

systems. Traditional approaches usually rely on hand-crafted features or domain-specific

lexicon [90, 91] and require a predefined ontology, making them hard to extend to unseen

values. To tackle this issue, various methods have been proposed. [92] treats DST as a reading

comprehension problem and predicts slot values with start and end positions in the dialogue

context. [93] proposes DS-DST, a dual-strategy model that predicts values in domains with a

few possible candidates from classifiers and others from span extractors. Furthermore, [88]

proposes TripPy, a triple copy strategy model, which allows it to copy values from the context,

previous turns’ predictions and system informs.

An alternative to classification and span prediction is value generation. [87] generates slot

values with a pointer generator network [94] without relying on fixed vocabularies and spans.

[89] models DST as a conditional generation problem and directly finetunes GPT2 [3] on DST

task and achieves state-of-the-art on the MultiWOZ.

Adversarial Example Generation and Data Augmentation in NLP. Adversarial example
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generation has been commonly studied in computer vision [95, 96] and has received growing

attention recently in NLP domain as well. [97] finds adversarial examples in the embedding

space, and then remapped them to the discrete space. [98] proposes a population-based word

replacing method and aims to generate fluent adversarial sentences. These methods often edit the

original data greedily assuming access to the model’s gradients or outputs besides querying the

underlying model many times [99]. Alternative line of work investigates generating adversarial

examples in a model-agnostic way. [100] proposes to generate adversarial paraphrases of

original data with different syntactic structures. [101] automatically generates sentences with

key word overlappings of questions in SQuAD [57] to distract computer systems without

changing the correct answer or misleading humans.

There also exist many data augmentation studies in NLP. [102] proposes to replace words

with their nearest neighbors in embedding space to create new training instances. [103] proposes

EDA (easy data augmentation) by synonym replacement, random insertion, swap and deletion of

given sentences in training set to improve performance on text classification tasks. [104] instead

conducts data augmentation via mixup [105] in embedding space for sentence classification

tasks. [106, 107] further utilize pre-train language models to conduct data augmentation for text

classification tasks.

Although different methods have been proposed to evaluate or augment NLP models,

majority of the prior work in this line focus either on text classification, neural machine

translation or reading comprehension problems. Perhaps the most similar existing work with

ours are [108] and [109]. [108] focuses on evaluating and improving intent classification and

slot tagging in TOD while [109] targets at synthetic competitive negotiation dialogues [110]

without DST component. In this work, however, we focus on evaluating and augmenting a core

component of state-of-the-art TOD, DST, on the widely used benchmark, MultiWOZ.
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4.3 Background

Multi-domain DST task definition. Let Xt = {(U sys
1 , U usr

1 ), ..., (U sys
t , U usr

t )} denote a se-

quence of turns of a dialogue until the t-th turn, where U sys
i and U usr

i (1 ≤ i ≤ t) denote system

and user utterance at the i-th turn, respectively. In multi-domain DST, each turn (U sys
i , U usr

i ) talks

about a specific domain (e.g., hotel), and a certain number of slots (e.g., price range) in that

domain. We denote all N possible domain-slot pairs as S = {S1, ...SN}. The task is to track

the value for each Sj (1 ≤ j ≤ N ) over Xt (e.g., hotel-price range, cheap). Belief states can be

considered at two granularities: turn-level (Lt) and dialog-level (Bt). Lt tracks the information

introduced in the last turn while Bt tracks the accumulated state from the first turn to the last. As

illustrated in the upper part of Figure 4.1, when the dialogue flow arrives at the second turn, B2

becomes {(restaurant-area, center), (restaurant-food, British), (restaurant-book time, 18:00)},

while L2 is {(restaurant-food, British), (restaurant-book time, 18:00)}, essentially tracking the

update to Bt by the last turn.

Problem definition. Given a tuple < Xt, Lt, Bt >, our goal is to generate a new user utterance

Û usr
t to form a novel conversation scenario X̂t = {(U sys

1 , U usr
1 ), ..., (U sys

t , Û usr
t )} by replacing the

original user utterance U usr
t with Û usr

t . To preserve the coherence of dialogue flow, we cast the

problem as generating an alternative user utterance Û usr
t conditioned on a modified L̂t derived

from original turn-level belief state Lt in a way that is consistent with the global belief state

Bt. This formulation naturally allows for producing a new tuple < X̂t, L̂t, B̂t > controllable

by L̂t, where B̂t is induced by Bt based on the difference between Lt and L̂t. As illustrated

in the lower part of Figure 4.1, U usr
2 is replaced with the two alternative utterances that are

natural and coherent with the dialogue history. Resulting set of < X̂t, L̂t, B̂t > will be used to

evaluate and augment DST models when < Xt, Lt, Bt > is from held-out test set and training

set, respectively.

38



Evaluating and Augmenting Dialogue State Tracking via Data Synthesis from PLM Chapter 4

Paraphrase baseline with back-translation. Paraphrasing the original utterance U usr
t is a

natural way to generate Û usr
t . With the availability of advanced neural machine translation

(NMT) models, round-trip translation between two languages (i.e., back-translation (BT)) has

become a widely used method to obtain paraphrases for downstream applications [111]. We

use publicly available pretrained English→German (log(g|e)) and German→English (log(e|g))

NMT models.1 We translate U usr
t from English to German with a beam size K, and then translate

each of the K hypotheses back to English with the beam size K. Consequently, we generate

K2 paraphrase candidates of Û usr
t and then rank them according to their round-trip confidence

score log(g|e) + log(e|g). As paraphrases are expected to preserve the meaning of U usr
t , we set

L̂t = Lt and B̂t = Bt.

4.4 CoCo

As illustrated in Figure 4.2, COCO consists of three main pillars. We first train a conditional

user utterance generation model pθ(U usr
t |U sys

t , Lt) using original dialogues. Secondly, we

modify Lt into a possibly arbitrary L̂t by our counterfactual goal generator. Given L̂t and U sys
t ,

we sample Û usr
t ∼ pθ(Û

usr
t |U sys

t , L̂t) with beam search followed by two orthogonal filtering

mechanisms to further eliminate user utterances that fail to reflect the counterfactual goal L̂t.

4.4.1 Value Substitution

A robust DST model should correctly reflect value changes in user utterances when tracking

user’s goal. However, slot-value combinations, e.g. (restaurant-book time, 18:00), in evaluation

sets are limited and even have significant overlaps with training data as shown in Table 4.1,

which can hinder evaluations on diverse patterns and at the same time cause overfitting in model

training. To alleviate this issue, we propose a Value Substitution (VS) method to generate Û usr
t .

1https://pytorch.org/hub/pytorch_fairseq_translation
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Figure 4.2: The overall pipeline of CoCo. The very left part represents the training phase of
utterance generation model, where the concatenation of U sys

t and Lt is processed by the encoder,
which the decoder then conditions on to generate the user utterance U usr

t . The input and output of
this model is shown within the box at the lower-left. The right part depicts the inference phase,
where the counterfactual goal generator first modifies the original belief Lt fed from the left
part into a new one L̂t, which is then fed to the trained utterance generator along with the same
conversation history to generate Û usr

t by beam search followed by filtering undesired utterances.
Note that conversational turns in inference phase don’t have to originate from training phase.

Specifically, for each value of Sj in Lt, if the value only appears in U usr
t rather than U sys

t , we

allow it to be substituted. Otherwise, we keep it as is. This heuristic is based on the following

three observations: (1) if the value comes from U sys
t , e.g. TOD system’s recommendation of

restaurant food, changing it may make the dialogue flow less natural and coherent (2) if it never

appears in the dialogue flow, e.g. yes of hotel-parking, changing it may cause belief state label

errors (3) if it only appears in U usr
t , it is expected that changing the value won’t cause issues in

(1) and (2).

For values that can be substituted, new values are sampled from a Slot-Value Dictionary,

a predefined value set for each domain-slot. These new values are then used to update their

counterparts in U usr
t , Lt and Bt. We defer the details of slot-value dictionary to section 4.4.2.

After the update, we get Û usr
t , L̂t and B̂t, and can use < X̂t, L̂t, B̂t > to evaluate or augment the

performance of DST models depending on the set where it is derived. An example of how VS

works is illustrated in the lower part of Figure 4.1. At the second turn, as British and 18:00 are in
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L2 and only appear in U usr
2 rather than U sys

2 , we can replace them with Chinese and 17:00 that are

sampled from a slot-value dictionary, respectively, to get Û usr
2 , L̂2 and X̂2 without interrupting

the naturalness of the dialogue flow.

4.4.2 Controllable Counterfactual Generation

Back-translation (BT) and value-substitution (VS) provide controllability at different granu-

larities. BT only provides syntactic variety while preserving the meaning, hence the belief state.

VS can only replace the values of the existing slots in an utterance while still having to exactly

retain all the slots. However, neither of them are able to explore conversations with even slightly

modified set of slots. We propose a principled approach to unlock the capability of conversation

generation that generalizes beyond just transformation of existing utterances. We cast it as a

task of generating novel user utterances (U usr
t ) from a given conversation history (U sys

t ) and a

turn-level user goal (Lt).

We propose to tackle this problem with a conditional generation model that utilizes a

pretrained encoder-decoder architecture [40, 4] to approximate p(U usr
t |U sys

t , Lt), where the

concatenation of U sys
t and Lt is used as input to the encoder and U usr

t is set to be the target

sequence to be generated by the decoder, as illustrated in the lower-left of Figure 4.2. To

learn this distribution, we factorize it by chain rule [112] and train a neural network with

parameters θ to minimize the aggregated negative log-likelihood Jgen over each dialogue turn

tuple (U sys
t , Lt, U

usr
t ) where U usr

t = (U usr
t,1 , U

usr
t,2 , . . . , U

usr
t,nt

) and U usr
t,k is its k-th token: 2

pθ(U
usr
t |U sys

t , Lt) =
nt∏
k=1

pθ(U
usr
t,k |U usr

t,<k, U
sys
t , Lt), Jgen = −

nt∑
k=1

log pθ(U
usr
t,k |U usr

t,<k, U
sys
t , Lt)

(4.1)

Once the parameters θ of the goal-conditioned utterance generation model pθ are learned

from these tuples, it gives us the unique ability to generate novel conversation turns by plugging

2More details can be found in Appendix B.3.1.
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in an arbitrary but consistent counterfactual goal L̂t derived from Lt. An example of how

the counterfactual goal generator operates is shown in the middle part of Figure 4.2. The

counterfactual goal generator has three components, namely operation, slot-value dictionary

and slot-combination dictionary.

Operation decides to apply which combination of the following three meta-operations, namely

drop, change and add on Lt. Drop is used to remove values from a non-empty slot in Lt. Change

borrows the same operation in VS, to substitute existing values. Add allows us to add new

domain-slot values into Lt, giving us the power of generating valid but more complicated Û usr
t .

Slot-Value Dictionary has a pre-defined value set Sval
j for each Sj . Once change and/or add

meta-operation is activated for Sj , counterfactual goal generator will randomly sample a value

from Sval
j .

Slot-Combination Dictionary has a predefined domain-slot set Sadd
j for each Sj . When add

meta-operation is activated, counterfactual goal generator will sample a domain-slot from the

intersection among all Sadd
j , where Sj has non-empty values within Lt. Once a new domains-

slot is sampled, its value will then be sampled from its corresponding value set as defined in

slot-value dictionary.

Given Lt, the counterfactual goal generator first takes Lt as its input, and sequentially applies

drop, change and add to output L̂t. Given L̂t and U sys
t , we can sample Û usr

t ∼ pθ(Û
usr
t |U sys

t , L̂t)

with beam search. We use a rule-based method to get B̂t of X̂t. Specifically, we obtain B̄t−1 by

calculating the set difference of Bt and Lt. Given B̄t−1 and L̂t, we update the domain-slot in

B̄t−1 if its value in L̂t is not none, otherwise we keep its value as it is in B̄t−1 following [113].

After the update, we get B̂t and use it as the dialogue-level label of X̂t.
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4.4.3 Filtering

We have presented methods to generate Û usr
t , but how do we make sure that the generated

utterance correctly reflects the user goal represented by L̂t? To motivate our methods, we take an

example generated by beam search located at the lower right of Figure 4.2 for illustration. In this

example, the first hypothesis doesn’t include value 2 for restaurant-book people that is within

L̂t. On the contrary, the second hypothesis includes value 18:00 for restaurant-book time that is

not part of L̂t. We call these two phenomenons de-generation and over-generation, respectively.

Filtering candidates with these issues is thus an important step to make sure (U sys
t , Û usr

t ) perfectly

expresses the user goals in L̂t. We propose two filtering methods, namely slot-value match filter

and classifier filter, to alleviate de-generation and over-generation issues, respectively.

Slot-Value Match Filter. To tackle with de-generation issue, we choose a subset of values in

L̂t (values that should only appear in Û usr
t rather than U sys

t ) to eliminate candidates that fail to

contain all the values in the subset.3 In Figure 4.2, the first hypothesis from the beam search

output will be eliminated by this filter because it does not include the value 2 for restaurant-book

people in L̂t.

Classifier Filter. As shown in Table 4.2, the slot restaurant-book people frequently appears to-

gether with restaurant-book time in the data used to train our generation model pθ(Û usr
t |U sys

t , L̂t),

which may cause the resulting generation model to fall into over-generation issue. To deal with

this over-generation problem, we propose to use a N-way multi-label classifier to eliminate such

candidates. We employ BERT-base [2] as its backbone:

HCLS
t = BERT([CLS]⊕ [Xt−1]⊕ [SEP]⊕ [U sys

t ]⊕ [U usr
t ]) ∈ Rdemb (4.2)

3For hotel-parking and hotel-internet, we use parking and wifi as their corresponding values for filtering.

43



Evaluating and Augmenting Dialogue State Tracking via Data Synthesis from PLM Chapter 4

where HCLS
t ∈ Rdemb is the representations of CLS token of BERT with dimension demb. We then

feed HCLS
t into a linear projection layer followed by Sigmoid function:

P = Sigmoid(W (HCLS
t )) ∈ RN , Jcls = − 1

N

N∑
j=1

(Yj · logPj +(1−Yj) · log(1−Pj)) (4.3)

where W ∈ RN×demb is the trainable weight of the linear projection layer and Pj is probability

that slot Sj appears at t-th turn of Xt with Yj as its label. The classifier is trained with Jcls, i.e.

the mean binary cross entropy loss of every slot Sj and achieves a precision of 92.3% and a

recall of 93.5% on the development set 4. During inference, the classifier takes X̂t as input and

predicts whether a slot Si appears at t-th turn or not with threshold 0.5. We use this filter to

eliminate generated candidates for which the classifier predicts at least one slot Sj mentioned in

(U sys
t , Û usr

t ) while Sj /∈ L̂t. In Figure 4.2, our classifier filter eliminates the second hypothesis

from the output of beam search because L̂t does not contain the slot restaurant-book time while

it is mentioned in the generated utterance.

4.5 Experiments

4.5.1 Experimental Setup

We consider three strong multi-domain DST models to evaluate the effect of COCO-

generated counterfactual conversations in several scenarios. TRADE [87] builds upon pointer

generator network and contains a slot classification gate and a state generator module to generate

states. TRIPPY [88] introduces a classification gate and a triple copy module, allowing the model

to copy values either from the conversation context or previous turns’ predictions or system

informs. SIMPLETOD [89] models DST as a conditional generation problem with conversation

history as its condition and belief state as its target and finetunes on GPT2.
4We defer further details of the classifier to Appendix B.3.2.
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Evaluation. We train each of these three models following their publicly released implemen-

tations on MultiWOZ 2.1 [60]. We use the joint goal accuracy to evaluate the performance of

DST models. It is 1.0 if and only if the set of (domain-slot, value) pairs in the model output

exactly matches the oracle one, otherwise 0.

Slot-Value Dictionary. We carefully design two sets of slot-value dictionaries to capture the

effect of unseen slot values from two perspectives, namely in-domain (I) and out-of-domain

(O). I is a dictionary that maps each slot to a set of values that appear in MultiWOZ test set,

but not in the training set.5 On the other hand, we construct O using external values (e.g., hotel

names from Wikipedia) that fall completely outside of the MultiWOZ data for the slots (e.g.,

hotel-name, restaurant-name, etc.). Otherwise, we follow a similar fall-back strategy for slots

(e.g., hotel-internet) with no possible external values beyond the ones (e.g., yes and no) in the

original data.

Slot-Combination Dictionary. As illustrated in Table 4.2, held-out evaluation set follows

almost the same slot co-occurrence distribution with training data. This makes it difficult to

estimate how well DST models would generalize on the valid conversation scenarios that just do

not obey the same distribution. COCO’s flexibility at generating a conversation for an arbitrary

turn-level belief state naturally allows us to seek an answer to this question. To this end, we

design three slot combination dictionaries, namely freq, neu and rare. A slot combination

dictionary directly controls how different slots can be combined while generating counterfactual

goals. As suggested by their names, freq contains frequently co-occurring slot combinations

(e.g., book people is combined only with book day and book time slots), while rare is the

opposite of freq grouping rarely co-occurring slots together, and neu is more neutral allowing

5When this set is empty for a slot (e.g., hotel-area), we use the set of all possible values (e.g., center, east, west,
south, north) for this slot from training data. Please see Appendix B.7 for further details.
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Figure 4.3: Joint goal accuracy (%) across different methods. “Original” refers to the results
on the original held-out test set. * denotes results obtained from in-domain unseen slot-value
dictionary (I). VS, COCO and COCO+ results use out-of-domain slot-value dictionary (O).
For brevity, we omit COCO and COCO+ results using in-domain slot-value dictionary. See
Appendix B.2 for the full results. freq, neu, and rare indicate which slot-combination dictionary
is used. Lower bound refers to the percentage of correct predictions on turns with empty
turn-level belief state over original held-out test set.

any meaningful combination within the same domain.6

4.5.2 Generalization Evaluation

Before reporting our results, it is important to note that several different post-processing

strategies are used by different DST models. To make a fair comparison across different models,

we follow the same post-processing strategy employed by SIMPLETOD evaluation script for

TRADE and TRIPPY as well. We summarize our generalization evaluation results of different

DST models on original training set in Figure 4.3. While all three DST models are quite robust

to back-translation (BT) 7, their performance significantly drop on counterfactual conversations

generated by each of VS, COCO and COCO+ compared to MultiWOZ held-out set accuracy

(original).

6Please see Appendix B.6 for further details.
7Similar to COCO, we back-translate only the turns with non-empty turn-level belief states and apply slot-value

match filter. We fall back to original user utterance if none of the paraphrases passes the filter.
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Unseen Slot-Value Generalization. We analyze the effect of unseen slot values for the two

dictionaries (I and O) introduced in the previous section compared to the original set of slot

values that have large overlap with the training data. Results presented on the left part of Figure

4.3 show that the performance of DST models significantly drops up to 11.8% compared to

original accuracy even on the simple counterfactuals generated by VS strategy using in-domain

unseen slot-value dictionary (I). Furthermore, using out-of-domain slot-value dictionary (O)

results in about 10% additional drop in accuracy consistently across the three models. Consistent

and similar drop in accuracy suggests that TRADE, SIMPLETOD, and TRIPPY are almost equally

susceptible to unseen slot values.

Generalization to Novel Scenarios. The right section of Figure 4.3 presents the novel scenario

generalization results. Based on these results, we see that state-of-the-art DST models are having

a serious difficulty generalizing to novel scenarios generated by both COCO and COCO+ using

three different slot combination strategies. The generalization difficulty becomes even more

serious on counterfactuals generated by COCO+. As expected, the performance drop consistently

increases as we start combining less and less frequently co-occurring slots (ranging from freq

to rare) while generating our counterfactual goals. In particular, COCO+(rare) counterfactuals

drops the accuracy of TRADE from 49.4% to 18.6%, pushing its performance very close to its

lower bound of 13.8%. Even the performance of the most robust model (TRIPPY) among the

three drops by up to 25.8%, concluding that held-out accuracy for state-of-the-art DST models

may not sufficiently reflect their generalization capabilities.

Transferability Across Models. A significant difference and advantage of our proposed

approach lies in its model-agnostic nature, making it immediately applicable for evaluation of any

DST model. As can be inferred from Figure 4.3, the effect of COCO-generated counterfactuals

on the joint goal accuracy is quite consistent across all three DST models. This result empirically
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proves the transferability of COCO, strengthening its reliability and applicability to be generally

employed as a robustness evaluation of DST models by the future research.

Human
likeliness Correctness

Human 87% 85%
COCO(ori) 90% 91%

COCO(freq) 90% 99%
COCO(neu) 79% 98%
COCO(rare) 82% 96%

Table 4.3: Human evaluation.

4.5.3 Human Evaluation

We next examine the quality of our generated data from two perspectives: “human likeliness”

and “turn-level belief state correctness”. The human likeliness evaluates whether a user utterance

is fluent and consistent with its dialog context. The turn-level belief state correctness evaluates

whether (U sys
t , Û usr

t ) exactly expresses goals in L̂t. Both metrics are based on binary evaluation.

We randomly sample 100 turns in the original test data and their corresponding CoCo-generated

ones. For the COCO-generated data, we have two different settings to examine its quality. The

first is to use the original turn-level belief state to generate user utterance, denoted by COCO(ori).

The second setting is to verify the quality of the conversations generated by COCO(freq)-,

COCO(neu)- and COCO(rare) as they hurt the DST models’ accuracy significantly as shown in

Figure 4.3. For each result row reported in Table 4.3, we ask three individuals with proficient

English and advanced NLP background to conduct the evaluation, and use majority voting to

determine the final scores.

We can see that CoCo(ori) generated conversations are almost as human-like as original

conversations and have slightly higher correctness score than the original utterances. In addition,
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Figure 4.4: Comparison of retrained DST models (indicated by ⋄ ) on COCO+(rare)-augmented
training data with their counterparts trained on original MultiWOZ train split.

all three variants of the COCO-generated conversations consistently outperform human response

in terms of the turn-level belief state correctness. Although COCO(neu) and COCO(rare) are

slightly less human-like than the original human response, COCO(freq)-generated utterances

have similar human-likeness as original ones. These results demonstrate the effectiveness of our

proposed approach in generating not only high-fidelity but also human-like user utterances.

4.5.4 Analysis of COCO+ as Data Augmentation Method

So far, we have focused on the generalization capability of DST models on COCO-generated

conversations using different slot-value and slot-combination dictionaries. We have observed

that all three DST models are consistently most susceptible to conversations generated by

COCO+(rare) strategy. Instead, we now seek to answer the following question: Would using

conversations generated by COCO+(rare) to augment the training data help these DST models

in better generalization? Towards exploring this direction in a principled way, we design a new

slot value dictionary (train-O) similar to out-of-domain unseen slot-value dictionary (O). For a

fair comparison, we make sure that the slot values in train-O (please refer to Appendix B.7 for

the complete dictionary) do not overlap with the one (O) used for generating test conversations.

We first retrain each DST model on the MultiWOZ training split augmented with COCO+(rare)-
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generated conversations using train-O slot-value dictionary. Retrained DST models are then

evaluated on original test set as well as on the counterfactual test sets generated by VS and

various versions of COCO+. Results presented in Figure 4.4 show that retraining on the

COCO+(rare)-augmented training data improves the robustness of all three DST models across

the board. Most notably, it rebounds the performance of TRIPPY on COCO+(rare)-generated

test set from 35.5% to 56.2%, significantly closing the gap with its performance (61.3%) on

the original test set. To better understand such performance gain on TRIPPY, we compare the

slot-level accuracy between original model and its counterpart after data augmentation. Results

are shown in Figure 4.5. Comparison of blue and orange lines reveals that counterfactuals

generated by COCO+(rare) consistently drops the performance of TRIPPY model (trained on

the original MultiWOZ train split) across all the slots, significantly hurting the accuracy of

most slots in train domain along with book day slot for hotel domain. On the other hand,

comparing green and orange lines clearly demonstrates the effectiveness of COCO+(rare) as a

data augmentation method, assisting TRIPPY in recovering from most of the errors it made on

COCO+(rare) evaluation set. In fact, it rebounds the joint goal accuracy of TRIPPY from 35.5%

to 56.2% as presented more quantitatively in Figure 4.4.

In addition, we observe that all three retrained DST models obtain an improved joint goal

accuracy on the original MultiWOZ test set compared to their counterparts trained only on the

original MultiWOZ train split, further validating the quality of COCO-generated conversations

and its generalizability and effectiveness as a data augmentation method for DST. Finally, we

would like to highlight that retrained TRIPPY achieves 62.6% joint goal accuracy, improving

the previous state-of-the-art by 1.3%.
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Figure 4.5: Slot-level accuracy analysis of TRIPPY. ”Ori-TripPy-Clean” (blue) and ”Ori-TripPy-
CoCo+(rare)” (orange) denote TRIPPY (trained on original MultiWOZ training data) when
evaluated against original test set and COCO+(rare) generated test set, respectively. ”Aug-
TripPy-CoCo+(rare)” (green) indicates slot-level accuracy of TRIPPY after data augmentation
(see Section 4.5.4 for further details) when evaluated against test set generated by COCO+(rare).

4.5.5 CoCo+ Multi-round Data Augmentation on TripPy

Section 4.5.4 shows that CoCo+ as data augmentation (COCOAUG) improves TRIPPY’s

joint goal accuracy by 1.3% when evaluated on the original test set following the post-processing

strategy employed by SIMPLETOD. In this section, we further extend previous single-round

data augmentation into multiple rounds. Specifically, for each tuple < Xt, Lt, Bt > in the
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Model JOINT GOAL ACCURACY

DSTreader [92] 36.40%†
TRADE [87] 45.60% †
MA-DST [114] 51.04% †
NA-DST [115] 49.04% †
DST-picklist [93] 53.30% †
SST [116] 55.23% †
MinTL(T5-small) [117] 50.95% §
SimpleTOD [89] 55.76% §
ConvBERT-DG+Multi [118] 58.70% §¶
TRIPPY [88] 55.04%*

+ COCOAUG (1×) 56.00%
+ COCOAUG (2×) 56.94%
+ COCOAUG (4×) 59.73%
+ COCOAUG (8×) 60.53%

Table 4.4: Joint goal accuracy results on MultiWOZ 2.1 [60] of different methods. The upper
part are results of various baselines and lower part are results of TRIPPY without or with
{1, 2, 4, 8} times data augmentation size over original training data. †: results reported from
[93]. §: results reported in their original papers. ∗: results of our run based on their officially
released code. ¶: results need open-domain dialogues and DialoGLUE data.

original training set, we can generate multiple < X̂t, L̂t, B̂t > by sampling L̂t multiple times

and utilizing CoCo+ to generate corresponding X̂t and B̂t. With this approach, generated

multiple < X̂t, L̂t, B̂t > combined with original < Xt, Lt, Bt > can be used to train DST

models.

We experiment with {1, 2, 4, 8} times data augmentation size over original training data on

TRIPPY following its own default cleaning so that results with previous methods are comparable.

Comparison results with different baselines and data augmentation sizes are summarized in

Table 4.4. When using more and more CoCo+ generated training data, TRIPPY gains benefits

from more training data and consistently improves over strong baselines. When using 8x CoCo+

generated training data, TRIPPY provides 5.49% accuracy improvement over its counterpart

without data augmentation. Furthermore, it achieves the new state-of-the-art join goal accuracy8,

8Code is available at https://github.com/salesforce/coco-dst/tree/multi_
fold_coco_aug
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outperforming CONVBERT-DG+MULTI, which uses open-domain dialogues and DialoGLUE

[118] as additional training data.

4.6 Conclusion

We propose a principled, model-agnostic approach (COCO) to evaluate and augment dia-

logue state trackers. We show that state-of-the-art DST models’ performance significantly drop

when evaluated on the COCO-generated conversations. Human evaluations validate that they

have high-fidelity and are human-like. Hence, we conclude that these strong DST models have

difficulty in generalizing to novel scenarios with unseen slot values and rare slot combinations,

confirming the limitations of relying only on the held-out accuracy. When utilizing COCO as a

data augmentation method, it consistently improves state-of-the-art DST models not only on

the COCO-generated evaluation set but also on the original test set. CoCo multi-round data

augmentation further improves 5.49% accuracy over its counterpart without data augmention,

making it achieve new state-of-the-art accuracy. These results prove the benefit and potential of

our approach to be adopted for both evaluation and augmentation of DST models.
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Chapter 5

Improving SLM Reasoning via

Explanation Synthesis from LLM

5.1 Introduction

Large language models (LLMs) have achieved impressive results with in-context learning; by

adding a few demonstrations as the prompts, they can solve unseen tasks without any parameter

update [22, 23, 24, 25, 26, 27]. Recently, it is shown that adding explanation-augmented prompts

can elicit strong performance in various reasoning tasks [28, 119], such as math word problem

[120], symbolic reasoning [28], numerical reasoning [121] and commonsense reasoning tasks

[8]. In addition, they also enable LLM to generate reasonable explanations to justify the

reasoning outcomes [32]. However, these strong few-shot reasoning abilities only emerge when

models scale to dozens or hundreds of billions of parameters [29], making it costly expensive to

deploy them at scale in real-world applications [28].

Small language models (SLMs)1 provide an alternative and could be more favorable over

1We argue that small and large models are relative concepts. The same model can be small or large, depending
on the context.
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LLM ExplanationsRaw Training
Data

Prompting Decoding T5

(a) Explanation Generation

Prediction

Explanation

Task 1

Task 2

(b) Multi-task Learning

Figure 5.1: Overview of our framework. As shown in (a), we first utilize several examples with
human-written explanations as demonstrations for LLM to generate explanations for the whole
training set. Then, as shown in (b), we adopt a multi-task learning framework to utilize the
LLM-generated explanations, where one task is training SLM to generate predictions while
the other is training them to generate explanations as additional supervision signals. During
inference, models can generate both predictions and explanations with different task prompts.

LLM in many real-world applications due to their low cost in both storage and computation.

Nevertheless, one important open question is how to close the gap between LLM and SLM on

complicated reasoning tasks, as is observed in [29, 30], especially in few-shot settings [31].

An intuitive way is to utilize explanations written by humans as additional training signals

to improve SLM reasoning capability. Surprisingly, [122] shows that using human-annotated

explanations does not improve the performance compared to standard finetuning on T5 [40]. One

possible reason is that many human-annotated explanations collected via crowdsourcing [123]

could be logically inconsistent and grammatically incorrect [124], which restricts the amount of

available high-quality explanations. As an example, explanations of CommonsenseQA dataset

[8] collected by [125] include many meaningless and irrelevant explanations, e.g., ”rivers flow

trough valleys.” and ”this word is most relevant”, which appear hundreds of times in the training

set 2. On the other hand, using explanation-augmented prompts enables LLM to automatically

generate reasonable explanations [32], making it a plausible alternative to generate an arbitrary

amount of explanations quickly and cheaply 3. Therefore, a key question is: If we utilize high-

quality explanations generated by LLM rather than the ones from humans, can they improve the

reasoning capability of SLM?

2https://github.com/salesforce/cos-e/issues/2
3Most powerful Davinci model costs 0.02 USD/1K tokens as of Jan. 19, 2023 according to https://

openai.com/api/pricing/. In addition, decoding an explanation with one API call often takes several
seconds and API calls can be executed in parallel.

55

https://github.com/salesforce/cos-e/issues/2
https://openai.com/api/pricing/
https://openai.com/api/pricing/


Improving SLM Reasoning via Explanation Synthesis from LLM Chapter 5

In this chapter, we propose a framework leveraging explanations generated from LLM to

improve reasoning capability of SLM. Our framework is shown in Figure 5.1. Specifically, we

first utilize several examples with human-written explanations as demonstrations for LLM and

then generate explanations for the whole training set. After that, we adopt a multi-task learning

setup to utilize the LLM-generated explanations to facilitate SLM to acquire strong reasoning

power together with explanation generation capabilities. Under this setup, one task is training

SLM to generate predictions the same as standard reasoning models, while the other is training

them to generate explanations as additional supervision signals. Such a setup enables the models

not only to generate predictions but also to generate explanations to justify their predictions

during inference. Experimental results show that our framework can consistently improve

the reasoning capability of SLM with multiple explanation generation approaches as well as

different multi-task learning setups. In addition, our method can outperform standard finetuning

baseline by up to 8.1% in accuracy and even perform better than finetuning/prompting a 60x

larger GPT-3 model (175B) [22] by up to 9.5% in accuracy on CommonsenseQA dataset. Finally,

as a side benefit, human evaluation further shows that our method can generate high-quality

explanations to justify its predictions, moving towards the goal of building more explainable AI

systems [126].

In a nutshell, we summarize our contribution as follows:

• We propose a framework using explanations from LLM to improve the reasoning ca-

pabilities of SLM. Experimental results show that our framework can consistently and

significantly improve strong T5 baselines, especially in few-shot settings, which is in stark

contrast to the results in [122], where finetuning T5 using crowdsourced explanations

only perform comparably.

• We demonstrate that our method can perform better than finetuning/prompting a 60x

larger GPT-3 model (175B) by up to 9.5% in accuracy on CommonsenseQA dataset.
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• We show that SLM trained with explanations from LLM can generate competitive expla-

nations to justify their predictions compared to GPT-3 towards the goal of explainable

AI.

5.2 Related Work

Prompting with Explanations. Recently, a new learning paradigm, in-context learning where

several training examples are used as demonstrations for LLM without any parameter update, has

shown promising results in various NLP tasks [22]. Although promising, LLM still struggles

with tasks requiring strong reasoning capability [28]. To enable better few-shot in-context

learning of LLM for reasoning tasks, [28] proposes chain of thought prompting, which provides

intermediate reasoning steps as explanations in prompts before answers and has achieved state-

of-the-art in arithmetic [120], symbolic [121] and common sense reasoning tasks [127]. [121]

further extends chain of thought prompting with least-to-most prompting, which decomposes a

complex problem into a list of subproblems with natural languages and then sequentially solves

these subproblems in a recursive fashion. [128] moves one step further and shows that LLMs

are zero-shot reasoners by simply adding “Let’s think step by step” without any demonstration

in prompts. Unlike these work, [119] explores explanations after answers prompting for LLM,

where answers are fed into LLM before providing their explanations in prompts, and also

observes consistent gains.

There is also existing work to utilize explanations generated from LLM rather than focusing

on their final predictions. [32] explores utilizing LLM to annotate explanations for existing

datasets and proposes a sample-then-filter paradigm with human annotations. [129] proposes to

utilize a calibrator to calibrate GPT-3 [22] as they find that GPT-3 tends to generate consistent

but less factual explanations for textual reasoning tasks. However, none of these work explores

if these noisy explanations generated from LLM without human-involved filtering can be used
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to improve SLM reasoning capability. Perhaps the closest work to ours is STaR [30]. STaR

begins with prompting a descent large language model GPT-J with 6B parameters [130] possibly

including answer hints via chain of thought prompting to generate explanations with incorrect

answer rejection. After that, they utilize filtered training datasets with explanations to finetune

GPT-J as a teacher model and then utilize the teacher model to generate explanations of training

datasets to train a student GPT-J model iteratively with a self-training fashion until performance

plateaus. However, STaR often requires dozens of iterations to converge, which is both time-

consuming and compute-intensive to train a large 6B model. What’s worse, their method may

not be applicable to smaller language models, e.g., GPT-2 small/medium [3], as few-shot chain

of thought reasoning abilities only emerge when models scale to dozens or hundreds of billions

of parameters, making self-teaching infeasible. In addition, they only focus on chain of thought

style prompting and finetuning while our approach can improve SLMs across model sizes,

explanation generation, multi-task finetuning methods, and training data sizes.

Learning with Explanations. Learning with explanations has been commonly studied in

robotics [131] and computer vision [132]. Recently, it has received increasing attention in NLP

as well. [133] proposes multi-task learning with explanations for natural language inference

tasks with LSTM and does not observe gains over standard single-task finetuning, i.e., direct

predictions. [124] utilizes a similar setup on both T5-base and T5-11B models but mainly

focuses on explanation generation. Instead, [125] observes improvements with two-stage

finetuning using human-annotated explanations for common sense reasoning task, where the

first stage is to train a model for explanation generations with GPT [9] and the second one

utilizes explanations as input to train a classification model based on BERT [2]. However,

[122] finds that both two-stage finetuning and multi-task learning with explanation setups only

obtain comparable results over standard finetuning baselines on T5. We instead show that

our approach can improve SLM across model sizes, explanation generation methods from
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LLM, multi-task finetuning setups, and training data sizes consistently and significantly without

accuracy-explanation trade-off [134].

5.3 Explanation Generation from LLM

Problem setup. Denote D = {(xi, yi)}N to be a dataset with N training instances, where xi is

a problem and yi is its answer. Also, we have a handful of human-written instances E = {(xp
i ,

epi , ypi )}M , where epi is a free-text explanation to explain why a problem xp
i has ypi as its answer

and {(xp
i , y

p
i )}M ⊂ D with M ≪ N (we set M = 7 in our experiments). Our goal is to fully

leverage LLM with E as demonstrations for in-context learning to generate explanation ei for

all (xi, yi), where 1 ≤ i ≤ N , so that we can utilize these generated explanations from LLM to

improve SLM reasoning capability.

COTE. A chain of thought is a series of intermediate reasoning steps before providing an

answer of a problem, mimicking the human deliberate thinking process to perform complicated

reasoning tasks [28]. Chain of thought prompting provides intermediate reasoning steps as

explanations before answers in prompts. Formally, for 1 ≤ i ≤ N , we first concatenate all

instances in E and xi as prompt p̂i = (xp
1, e

p
1 , yp1 , ..., xp

M , epM , ypM , xi). We then feed prompt p̂i

into LLM and greedily decode until a stop token is generated. After that, we parse the decoded

sentence as explanation part êi and prediction part ŷi. Intuitively, if ŷi ̸= yi, êi may not have

high quality as incorrect explanations tend to generate incorrect predictions [28]. Thus, we

utilize Chain Of Thought prompting with incorrect answer rEjection (COTE) [30] by only

adopting ei := êi if ŷi = yi; otherwise, we reject êi and set ei as none.

RP. Since COTE uses the answers in original datasets to reject explanations with incorrect

predictions, these instances will no longer have explanations. To alleviate this issue, an alterna-
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tive is to apply Rationalization Prompting (RP) [32] to generate explanations for every instance

in training sets. Unlike COTE, RP provides explanations given golden answers. Specifically, for

1 ≤ i ≤ N , we concatenate all instances in E and (xi, yi) as prompt p̄i = (xp
1, y

p
1 , ep1 , ..., xp

M ,

ypM , epM , xi, yi). We then feed prompt p̄i into LLM and greedily decode until a stop token is

generated. The decoded sentence ēi is parsed and cast as explanation êi without filtering.

CROP. COTE will possibly generate relatively high-quality explanations if LLM give correct

predictions of problems at hand, as incorrect explanations tend to generate incorrect predictions

[28]. However, for problems with incorrect predictions, COTE casts their explanations as none.

On the other hand, RP can generate explanations for every instance in the dataset, but we

cannot easily assess their quality without human annotation. Therefore, we propose Chain of

Thought with Rationalization PrOmpting backuP (CROP), where when COTE generates none

as explanations, we will utilize RP as a backup approach. Intuitively, if LLM cannot predict a

problem correctly under chain of thought prompting, the problem may be difficult [30] and RP

may provide a meaningful explanation as it can access the golden label during the explanation

generation process.

5.4 Multi-task Learning with Explanations

In this section, we elaborate how to utilize explanations generated from LLM to improve

SLM reasoning capability with a multi-task learning framework. We detail three multi-task

learning with explanations methods in the following.

MT-Re. Multi-task Learning with Reasoning (MT-Re) is introduced by [122] (see Figure 5.2

(a)). MT-Re is trained to directly generate predictions for qta (question to answer) task the

same as standard finetuning without explanations and generate explanations without explicitly

60



Improving SLM Reasoning via Explanation Synthesis from LLM Chapter 5

qta Q: The only baggage the woman checked
was a drawstring bag, where was she heading
with it? Answer Choices: (a) garbage can (b)
military (c) jewelry store (d) safe (e) airport A:

qtr Q: The only baggage the woman checked was
a drawstring bag, where was she heading with
it? Answer Choices: (a) garbage can (b) military
(c) jewelry store (d) safe (e) airport A:

T5

The answer must be a place where someone
would check a bag. The only place where
someone would check a bag is at an airport.
Therefore, the answer is airport (e).

The answer is airport (e). Explanation: The
answer must be a place where someone would
check a bag. The only place where someone
would check a bag is at an airport.

The answer must be a place where someone
would check a bag. The only place where
someone would check a bag is at an airport.

(e)

(c) MT-CoT

(b) MT-Ra

(a) MT-Re

Chain of Thought (CoT)

Rationalization (Ra)

Reasoning (Re)

qta task: Answer Prediction

qtr task: Explanation Generation

Answer

Answer

(e)

(e)

Answer

Figure 5.2: The comparison among (a) MT-Re [122], (b) MT-Ra [133] and (c) our proposed
MT-CoT for multi-task learning with explanations under text-to-text format using T5. The left
parts are inputs of T5, and the right is targets for different multi-task learning setups. Task
qta (question to answer) is trained to directly generate answers for all three modes while qtr
(question to reason) task is trained to generate reasoning, rationalization, and chain of thought
for (a) MT-Re, (b) MT-Ra and (c) MT-CoT, respectively.

providing answers in qtr (question to reason) task. The training objective of MT-Re is to mix

loss Lqta for qta task and Lqtr for qtr task:

Lmt = αLqta + (1− α)Lqtr, (5.1)

where α weights Lqta and Lqtr loss, and is tuned on development set.

MT-Ra. Multi-task Learning with Rationalization (MT-Ra) is first proposed by [133] for

natural language inference task using LSTM-based models [135], and we adopt it with a more

powerful T5 model for other reasoning tasks. As shown in Figure 5.2 (b), models are trained to

generate predictions for qta task the same as MT-Re and also trained to generate rationalization

for qtr task. This is different from MT-Re as MT-Ra allows explanations to be explicitly

conditioned on predictions. For MT-Ra, we use the same training objective as Equation 5.1 and

tune α on the development set.
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MT-CoT. MT-Re does not explicitly model interactions between explanations and answers

during training, which may make it hard to capture their relations. While MT-Ra is explicitly

trained to generate explanations conditioned on answers, it may still have difficulty understand-

ing their causal effects as answers are never trained to explicitly access their explanations. To

bridge this gap, we propose Multi-task Learning with Chain of Thought (MT-CoT), where

models are trained to generate answers for qta task and generate chain of thought for qtr task,

as shown in Figure 5.2 (c). For MT-CoT, we use the same training objective as Equation 5.1 and

tune α on the development set.

In the MT-CoT training paradigm, models not only know answers from qta task but also are

explicitly shown how answers are derived with intermediate reasoning steps before knowing

them from qtr task. As we will show in experiments, this training paradigm is a supplement to

MT-Re and MT-Ra, and can consistently improve small language model reasoning capability

and also outperform MT-Re and MT-Ra on two datasets.

5.5 Experiments

5.5.1 Experimental setup

We evaluate our methods on three reasoning tasks.

(1) CommonsenseQA [8] is a 5-way multi-choice question answering dataset that requires

common sense reasoning with 9741/1221/1140 for training/development/test set questions,

respectively. Since its test set is not publicly available, we report results on its development set

following previous work [30, 31].

(2) StrategyQA is a binary yes/no question answering dataset requiring implicit multi-hop

reasoning steps and should be inferred using a strategy [127]. It has 2290 questions in the

training set and 490 in the test set. Since its test set is not publicly available, we utilize their
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split in GitHub 4, where the original training set is randomly split into 90% for the training and

10% for the development set. In our experiments, we report results on their Github development

set and utilize their Github training set for training without utilizing explanations from their

original annotations.

(3) OpenbookQA is a 4-way multi-choice question answering dataset requiring open book

facts with broad common knowledge and multi-hop reasoning [136]. It has 4957/500/500

questions for training/development/test set splits, respectively, and we report results on its test

set.

Explanation generation from LLM. We utilize GPT-3 text-davinci-002 engine with official

OpenAI API 5 to generate explanations through greedy decoding (by setting temperature as 0)

following in-context learning paradigm. In each dataset, we have the same 7-shot examples

with human-written explanations for COTE, RP, and CROP detailed in section 5.2. We defer

details of prompts into Appendix C.1.

Multi-task learning with explanations. After obtaining explanations by COTE, RP, and

CROP, we utilize MT-Re, MT-Ra, and MT-CoT introduced in section 5.4 to train models with

explanations based on T5 on NVIDIA RTX A6000. We implement multi-task learning (MT)

framework with Huggingface transformers library [137]. For baselines, we utilize single-task

finetuning (ST) without explanations. For a fair comparison with ST, we keep hyper-parameters

of multi-task learning the same as its corresponding ST except weight α, which we tune with

grid search {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} on development sets. When training on

none explanations generated by COTE, we mask their loss for qtr task. For both ST and MT, we

directly generate predictions from qta task for fair comparisons.

4https://github.com/eladsegal/strategyqa
5https://beta.openai.com/docs/models/gpt-3
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CommonsenseQA StrategyQA OpenbookQA

COTE RP CROP COTE RP CROP COTE RP CROP
ST 63.050.50 58.601.36 58.080.65

MT-Re 63.780.43 63.780.20 64.050.22 60.260.92 60.520.81 60.260.62 59.480.93 60.441.49 59.041.63

MT-Ra 64.050.60 64.140.22 64.500.22 60.520.86 60.790.43 60.610.64 58.682.11 59.520.20 60.400.59
MT-CoT 63.880.14 63.690.30 63.750.51 60.261.46 60.791.31 61.050.85 60.680.37 60.640.66 59.640.90

Table 5.1: Accuracy comparison (%) of single-task finetuning baselines (ST) with MT-Re,
MT-Ra, and MT-CoT utilizing explanations generated by COTE, RP, and CROP. Results are
averaged over five runs with their standard deviation in the subscript. The best results for each
column with the same explanations are underlined and best results for each dataset are bold.

5.5.2 Main results

In this section, we compare results between multi-task learning with explanations and its

single-task finetuning counterpart using full training data on three datasets introduced in section

5.5.1. Specifically, we generate explanations for each dataset with COTE, RP, and CROP. For

each explanation generation method, we train T5-base model under MT-Re, MT-Ra and MT-CoT

setups with 5 different runs in each setting. For single-task finetuning baselines, we only keep

qta task by removing qtr task in the multi-task learning setup. Results are summarized in Table

5.1.

Three multi-task learning with three different explanation generation methods consistently

and significantly outperform single-task finetuning baselines, showing the effectiveness of

utilizing explanations from LLM. However, MT-CoT and MT-Ra have 4 and 6 underlined

results, respectively, while MT-Re does not have any. We hypothesize it is because MT-CoT and

MT-Ra explicitly mention answers by the answer is in qtr task, making it easier for T5 to model

relations between explanations and answers. Considering the best results for each dataset, two

of three are obtained via CROP with the remaining one obtained by COTE, showing that chain

of thought prompting generates better explanations for SLM finetuning when their predictions

are correct and RP backup can possibly further improve SLM reasoning capability. In addition,
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two of these three best results are obtained by MT-CoT, demonstrating that our method MT-CoT

can serve as a good candidate to improve SLM reasoning with explanations from the toolbox.

5.5.3 Few-shot learning results

50 100 200 400
CommonsenseQA

ST 21.921.57 27.062.83 28.042.78 44.492.16

MT 29.253.03 33.283.53 36.135.29 46.551.53

α* 0.1 0.2 0.3 0.6
OpenbookQA

ST 27.082.96 28.322.88 30.682.10 37.804.64

MT 29.763.74 32.920.95 34.841.27 43.680.94

α* 0.1 0.1 0.2 0.2

Table 5.2: Accuracy comparison (%) between single-task finetuning (ST) and multi-task learning
with explanations (MT) along with optimal α* in development sets under different training
sample sizes. Results are averaged over five different training data splits with their standard
deviation listed in the subscript.

We have shown the effectiveness of our method on full-training settings in section 5.5.2

and further explore if explanations can improve SLM reasoning capability under few-shot

settings. We conduct few-shot learning experiments for both CommonsenseQA and OpenbookQA

datasets with the best settings in section 5.5.2. Specifically, we choose MT-Ra finetuning with

explanations generated by CROP for CommonsenseQA dataset and MT-CoT finetuning with

explanations generated by COTE for OpenbookQA dataset. We conduct experiments with

{50, 100, 200, 400} training sample sizes for both datasets on T5-base model, and for each

sample size, we randomly sample five data splits from its whole training set, and each data

split has a single run. Similar to previous experiments, we have single-task finetuning as our

baselines and tune α using grid search on development sets for multi-task learning experiments.

Besides accuracy, we also report optimal α on development sets, denoted as α*. Intuitively,
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if α* is small, Lqtr loss has more weight in the multi-task learning training objective listed in

Equation 5.1 and hence, explanations are more important for correct prediction. We summarize

our results in Table 5.2.

Multi-task learning with explanations (MT) consistently and significantly outperforms

single-task finetuning baselines (ST). For CommonsenseQA, when training sample sizes are in

{50, 100, 200}, MT significantly improves over ST with about 6%-8% absolute accuracy. For

OpenbookQA dataset, when training sample sizes are in {100, 200, 400}, MT improves over

ST with about 4%-6% absolute accuracy. More interestingly, α* tends to be smaller when less

training data is used on both datasets. Intuitively, when training data sizes are small, models may

have difficulty in learning just from the limited problem and answer pairs and hence, requires

a small α* in the multi-task training objective 5.1, i.e., larger weight on Lqtr loss during the

multi-task learning process. These consistent and significant gains show that our method not

only can improve results in full-training settings but also is very useful when training data is

limited.

5.5.4 Results across model sizes

T5-small T5-base T5-large T5-3B
CommonsenseQA

ST 48.26 63.05 72.56 81.82

MT 49.17 64.50 74.37 82.47
OpenbookQA

ST 50.36 58.08 61.60 76.60

MT 51.72 60.68 64.60 78.60

Table 5.3: Accuracy comparison (%) between ST and MT across different model sizes.

Previous experiments utilize T5-base model, and we further explore if explanations can

improve language model reasoning capability across model sizes. We conduct full-training
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set experiments for both CommonsenseQA and OpenbookQA datasets with best settings for

each dataset in section 5.5.2 across {T5-small,T5-base,T5-large,T5-3B}. For T5-small and

T5-base, we have five different runs for each setting, and their average results are reported.

For T5-large and T5-3B, we only report a single run due to their intensive computational cost.

Results are summarized in Table 5.3.

MT consistently improves its ST counterpart on both CommonsenQA and OpenbookQA

across model sizes from T5-small (60 million parameters) to T5-3B. For CommonsenQA, MT

improves ST by about 0.7%-1.8% absolute accuracy, and for OpenbookQA, MT improves ST

by about 1.4%-3.0% absolute accuracy. Even for T5-3B, MT can improve strong ST with 2%

absolute accuracy. These consistent results show that our approach can work on both small and

relatively large models.

5.5.5 Results comparison with LLM

We further compare our method on T5-3B with state-of-the-art LLM. Specifically, we adopt

GPT-J direct finetuning, its self-bootstrapping version (STaR) [30] and GPT-3 direct finetuning

[6] as baselines with parameter update on downstream tasks. We also adopt GPT-3 direct

prompting [22], GPT-3 chain of thought prompting [28] and GPT-3 explanations after answers

prompting [119] as prompting baselines. These three prompting methods utilize the same set

of demonstrations for explanation generation in section 5.2, and we defer their prompts into

Appendix C.1. Results are summarized in Table 5.4.

Our approach can outperform strong 60x larger GPT-3 finetuning and various GPT-3 prompt-

ing methods on CommonsenseQA up to about 9.5% accuracy. Also, although STaR can

outperform its GPT-J baseline with chain-of-thought style iterative finetuning, their result still

has about 10% accuracy gap with our method on CommonsenseQA even with doubled parameter

size and more compute during the iterative finetuning process. For OpenbookQA, our model
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CSQA OBQA
GPT-J Direct Finetuning (6B) ⋄ 60.0 -

STaR (6B) ⋄ 72.5 -
GPT-3 Direct Finetuning (175B)* 73.0 -
GPT-3 Direct Prompting (175B) 80.59 83.00

GPT-3 Chain of Thought Prompting (175B) 73.71 72.60
GPT-3 Explanation after Answer Prompting (175B) 80.84 83.40

T5 MT (3B) 82.47 78.60

Table 5.4: Accuracy comparison (%) between T5 multi-task learning with explanations with
various state-of-the-art LLM on CommonsenseQA (CSQA) and OpenbookQA (OBQA), and
model sizes are listed in the parenthesis. Results with ⋄ and * are from [30] and [6], respectively.

underperforms GPT-3 direct prompting and explanation after answer prompting but can still

outperform GPT-3 chain of thought prompting with 6% absolute accuracy. In short, our method

can achieve strong performance even compared with 60x larger GPT-3.

5.5.6 Explanation comparison with LLM

A side benefit of our model is to generate explanations towards more explainable AI to

alleviate the notorious black box issue of deep neural networks [138]. Our model is trained

with explanations generated by GPT-3, and we would like to know its generated explanation

quality compared to that of GPT-3, which has been shown to be competitive even compared to

human-written ones in [32]. Therefore, we conduct human evaluation since automatic metrics

are not highly correlated with human assessment [139, 140].

Specifically, we perform a head-to-head explanation comparison on CommonsenseQA

between T5-3B and GPT-3 175B few-shot explanations after answers prompting since these

models achieve close performance on this dataset, as shown in Table 5.4. We randomly sample

100 examples that are predicted correctly by both GPT-3 and T5 from qta task. For each

example, we present a question, its ground truth answer and two randomly shuffled and parsed

explanations as (a) and (b) generated by GPT-3 and T5 from qtr task with greedy decoding to
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Preference Agreement Level

T5 Tie GPT-3 Level 0 Level 1 Level 2
14% 44% 42% 7% 56% 37%

Table 5.5: Head-to-head human explanation preference comparison between T5 (3B) and GPT-3
(175B) on CommonsenseQA along with their agreement percentage on three levels.

Q: What will a person going for a jog likely be wearing?
Answer Choices: (a) grope (b) acknowledgment (c)
comfortable clothes (d) ipod (e) passionate kisses
Prediction: (c) comfortable clothes (✓)
T5: The answer should be something that a person
going for a jog would wear. Comfortable clothes are a
must for a jog.
GPT3: The answer should be something that a person
going for a jog would likely be wearing. Comfortable
clothes are typically worn when exercising.

(a) T5 wins

Q: Where will a cheap book be found? Answer Choices:
(a) bookstore (b) classroom (c) discount store (d) school
room (e) bedside table
Prediction: (c) discount store (✓)
T5: The answer should be a place where books are sold
for a low price. Discount stores are known for selling
items at a discounted price.
GPT3: The answer should be a place where a cheap
book might be found. Discount stores are known for
selling items at a discounted price, so a cheap book
might be found there.

(b) Tie

Q: The hikers stopped to have a drink, simply put they
what? Answer Choices: (a) had a party (b) were thirsty
(c) refreshment (d) getting drunk (e) celebrating
Prediction: (b) were thirsty (✓)
T5: The answer must be a reason for the hikers to stop
for a drink. The hikers stopped for a drink because they
were thirsty.
GPT3: The answer must be a reason for the hikers to
stop. Thirst is a common reason for people to take a
break while hiking.

(c) T5 loses

Figure 5.3: T5 and GPT-3 generated explanations used in human evaluations. In example (a),
(b) and (c), T5 wins over, is tied with, and loses to GPT-3, respectively.

three different human annotators with advanced NLP backgrounds and then ask them which

explanation they prefer: (a), (b) or tie, similar to [32]. Finally, we adopt majority voting to decide

preference on each example if at least two annotators have the same preference; otherwise, we

cast that example’s two explanations are tied. In addition, we report agreement percentages

across three levels. Level 0 means all three annotators have different preferences; level 1 means

only two annotators have the same preference, and level 2 means all three annotators have the

same preference. Results are summarized in Table 5.5.

As expected, explanations generated by T5 are less preferred over those from GPT-3,

but there are still 58% (14%+44%) explanations having better or competitive quality over

GPT-3. In addition, only 37% explanations are in level 2 agreement, and more than 60%

explanations have disagreement (7% in level 0 + 56% in level 1). Given [32] finds that GPT-3

can generate competitive explanations even compared to human-written ones, we argue that this

high disagreement is because explanations generated by both T5 and GPT-3 are high-quality,

making humans hard to choose. Therefore, we choose three T5 and GPT-3 generated explanation

examples used in our human evaluation experiments, as shown in Figure 5.3. Both T5 and
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GPT-3 can generate plausible explanations to justify their predictions in all three examples.

Even though T5 loses to GPT-3 in example (c), its explanation is still reasonably good. We

also provide examples with incorrect predictions of both T5 and GPT-3 in Appendix C.2, some

of which we find still have plausible predictions and explanations although they are different

from golden labels. These results demonstrate that explanations generated by our model are

competitive even compared to strong GPT-3 with a 60x larger size.

5.6 Conclusion

In this chapter, we leverage explanations from LLM to improve small reasoners in a multi-

task learning framework. Extensive experiments on multiple reasoning tasks show our method

can consistently and significantly outperform single-task finetuning baselines across explanation

generation methods, multi-task learning setups, training samples, and small reasoner sizes, and

can outperform strong finetuning/prompting a 60x larger GPT-3 175B on CommonsenseQA

dataset by up to 9.5% in accuracy. In addition, human evaluation shows that our model

can generate competitive explanations even compared to strong GPT-3 175B towards more

explainable AI.

70



Chapter 6

Conclusion

NLP has many important applications in our life but state-of-the-art NLP models often require a

large amount of labeled data to learn, hindering their applications in real-world problems. In this

dissertation, we studied different techniques towards the goal of more label-efficient learning in

NLP. We leverage unlabeled data to improve model label efficiency for NLU tasks and showed

that TAPT and ST, two major semi-supervised approaches for NLU, are complementary and

their performance gains can be strongly additive. Also, we propose an approach utilizing a

structured KB to generate large-scale logical reasoning question-answer pairs for improving the

commonsense reasoning capability of PLMs. We further evaluate and augment state-of-the-art

DST models with synthesized dialogue data generated from PLMs. Finally, we enhance the

reasoning capability of SLMs by utilizing explanations generated from LLMs.

While lots of efforts have been devoted towards the goal of label-efficient learning in NLP,

the research problem is far from being solved. Here we emphasize two future research directions

worth exploring:

Transfer Learning from Relevant NLP Tasks In this dissertation, we focus on utilizing

unlabeled and synthesized data to improve label efficiency. Another promising direction is to
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leverage transfer learning from other relevant NLP tasks. Intuitively, different NLP tasks may

require similar skills and learning one task may facilitate learning another task as well. As an

example, [141] leverages dialogue summarization dataset to improve the task of dialogue state

tracking. However, [142] shows both positive and negative transfer will happen. Therefore,

how to efficiently select most useful relevant tasks of a specific given one for positive transfer

learning is still worth exploring in future work.

Label-efficient Fine-tuning for NLP We have discussed different techniques to leverage

additional data to improve label efficiency. Another direction is to develop label-efficient

fine-tuning algorithms that can better leverage knowledge in PLMs for specific downstream

tasks since different fine-tuning algorithms perform differently even using the same set of

data. For example, [143] shows that prompt-based fine-tuning, which adds task templates and

several demonstrations for a given input, can consistently outperform standard fine-tuning [2]

in few-shot settings. However, different task templates and demonstration selection strategies

can largely impact model performance [143]. Hence, finding more robust and effective ways to

fine-tune PLMs that can consistently improve label efficiency under different scenarios is still

worth exploring in future study.
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Supplementary Materials for

Teaching PLMs with Commonsense

Reasoning via Data Synthesis from KB

A.1 Experimental Details

In this section, we describe more details of the experimental settings and the choice of

hyper-parameters.

A.1.1 Experiment details of the refinement process

Handling invalid logical forms. We find that some subgraphs (3.1) sampled from KB could

not generate all the 14 logical forms in Appendix A.2. For example, if S1 is an empty set for

a specific subgraph, logical form #0 is invalid. In our implementation, we create a specific

14-dimension 0/1-mask vector for each subgraph to indicate which logical forms are valid for

sampling.
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Efficiency considerations. In our implementation, we use the torch.utils.data.Data

set class in PyTorch [144] to generate the training data for the refinement process on-the-fly.

We observe that calculating S4 is relatively time-consuming because we have to remove all the

elements in S1,S2, and S3 from the total set for each sampled subgraph. This can be a bottleneck

for the dataloader and will finally reduce the overall GPU utilization. To address this issue, we

approximate S4 by the total set in our experiments, which is an efficient and relatively accurate

approximation. Note that since the number of elements in S1,S2, and S3 is much smaller than

that in the total set, the chance of sampling an element from S1,S2, and S3 is extremely small.

Therefore, this could be an efficient and good approximation to sampling from S4.

Hyper-parameters for the refinement process. When we refine BERT, GPT, and XLNet, we

only train them for one epoch. This is because we find that training too many iterations on our

generated multiple-choice question answering dataset may make the model forget the pretrained

language modeling capability and eventually hurt performance. We set the maximum sequence

length to be 40 during refinement as it covers most of the input texts for all three pretrained

models, and we set the optimizers and the learning rates to be the same as their default values.

The learning rates are set to be 2× 10−5, 6.25× 10−5, and 2× 10−5 for BERT, GPT, and XLNet,

respectively. We do not tune their hyper-parameters (e.g., learning rate) due to limited resources.

Note that for GPT, language model coefficient is set to be 0 during refining since we argue that

the texts in our template datasets may not be as natural as the ones used for pretraining.

A.1.2 Description of the downstream tasks

CommonsenseQA dataset consists of 12,247 multi-choice question answer pairs with one

correct answer and four incorrect answers requiring commonsense reasoning capability [8].

This dataset has two kinds of splits, namely question concept split and random split [8], and our

experiments are conducted on the official random split. For few-shot learning experiments, we
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allow models to train more epochs to make sure that they converge. Specifically, for training data

size in {100, 200, 400, 800, 1600, 3200} , we train models with epoch ∈ {100, 50, 25, 12, 8, 8},

respectively and keep other settings fixed. For training on the whole dataset, we follow similar

settings of officially released code 1. For a fair comparison between baselines and our refining

methods, we keep their epochs, batch sizes, and other settings the same. The only differences

are parameters where baselines utilize officially pretrained models, and ours use checkpoints

during the proposed refining processes.

CosmosQA dataset consists of 35.6K multiple-choice reading comprehension problems

requiring commonsense reasoning capability from given contexts [74]. Therefore, it is an

appropriate dataset for testing commonsense reasoning of models. We finetune baselines

and our proposed methods for four epochs with learning rate 2e-5 and batch size of 36. We

evaluate models on the development set in every epoch and report the best performance for each

experiment.

A.2 All Logical Forms with Example Multiple-Choice Ques-

tions

In this appendix, we show all the 14 logical relations that could be sampled from a partic-

ular triple pair, and the examples for the corresponding generated multiple-choice questions.

Specifically, we consider the following example of triple pair:

(arise
Antonym−→ sit, sit

RelatedTo−→ sit up)

Then, all the 14 logical forms and the corresponding example questions are given below, where

the correct answer is highlighted in red and bolded:

1https://github.com/jonathanherzig/commonsenseqa/tree/master/bert.
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• logical form #0: S1

(A
R1−→? ) ∧ ¬(? R2−→C) (A.1)

Q: which of the following is an antonym of arise and meanwhile is not related to sit up ?

A: set

B: fancifying

C: storing space shuttle

• logical form #1: S2

(A
R1−→? ) ∧ (?

R2−→C) (A.2)

Q: which of the following is an antonym of arise and meanwhile is related to sit up ?

A: sit

B: sitting up

C: stand up

• logical form #2: S1 ∪ S2

(A
R1−→? ) (A.3)

Q: which of the following is an antonym of arise ?

A: promegapoietin
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B: sleigher

C: set

• logical form #3: S3

¬(A R1−→? ) ∧ (?
R2−→C) (A.4)

Q: which of the following is not an antonym of arise and meanwhile is related to sit up ?

A: craftist

B: queer anarchism

C: stand up

• logical form #4: S1 ∪ S3

((A
R1−→? ) ∨ (?

R2−→C)) ∧ ¬((A R1−→? ) ∧ (?
R2−→C)) (A.5)

Q: which of the following is an antonym of arise or is related to sit up, but not both of

them ?

A: sit down

B: make refreshing dessert

C: lower
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• logical form #5: S2 ∪ S3

(?
R2−→C) (A.6)

Q: which of the following is related to sit up ?

A: lay

B: sitting up

C: descend

• logical form #6: S1 ∪ S2 ∪ S3

(A
R1−→? ) ∨ (?

R2−→C) (A.7)

Q: which of the following is an antonym of arise or is related to sit up ?

A: marksberrys

B: sit down

C: previsive

• logical form #7: S4

¬(A R1−→? ) ∧ ¬(? R2−→C) (A.8)

Q: which of the following is not an antonym of arise and is not related to sit up ?

A: crunch
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B: millikin

C: sit

• logical form #8: S1 ∪ S4

¬(? R2−→C) (A.9)

Q: which of the following is not related to sit up ?

A: sit down

B: simpliciter

C: crunch

• logical form #9: S2 ∪ S4

((A
R1−→? ) ∧ (?

R2−→C)) ∨ (¬(A R1−→? ) ∧ ¬(? R2−→C)) (A.10)

Q: which of the following is an antonym of arise and is related to sit up, or neither of

them ?

A: fall down

B: cremators

C: lower
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• logical form #10: S1 ∪ S2 ∪ S4

(A
R1−→? ) ∨ ¬(? R2−→C) (A.11)

Q: which of the following is an antonym of arise or is not related to sit up ?

A: sitting up

B: sit down

C: stand up

• logical form #11: S3 ∪ S4

¬(A R1−→? ) (A.12)

Q: which of the following is not an antonym of arise ?

A: lay down

B: free criminals

C: abed

• logical form #12: S1 ∪ S3 ∪ S4

¬(A R1−→? ) ∨ ¬(? R2−→C) (A.13)

Q: which of the following is not an antonym of arise or is not related to sit up ?
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A: sit down

B: sit down

C: snub line

• logical form #13: S2 ∪ S3 ∪ S4

¬(A R1−→? ) ∨ (?
R2−→C) (A.14)

Q: which of the following is not an antonym of arise or is related to sit up ?

A: lower

B: fall

C: sit down

81



Appendix B

Supplementary Materials for

Evaluating and Augmenting Dialogue State
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B.1 Ablation Study on Operations

In Table B.1, we present ablation results on three meta operations (i.e., drop, change, add)

that are used to generate counterfactual goals. The result in the first row corresponds to the

performance of three DST models on evaluation set generated by COCO including all three meta

operations along with the classifier filter. Each row analyzes the effects of the corresponding

meta operation or classifier by removing it from full models. From Table B.1, we observe that

removing drop operation from full models hurts the performance of the three models further.

This may indicate that the investigated DST models are more vulnerable against user utterances

including more slot combinations.
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CoCo TRADE SIMPLETOD TRIPPY

Full 26.2 31.6 42.3
-Drop 25.7 31.1 42.1
-Add 30.4 36.0 50.4
-Change 34.1 40.9 48.3
-Classifier 25.3 30.5 41.3

Table B.1: Ablation study on the meta operations and classifier based filtering.

B.2 Full figure for Generalization evaluation
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Figure B.1: Joint goal accuracy (%) across different methods. “Original” refers to the results
on the original held-out test set. * denotes results obtained from in-domain unseen slot-value
dictionary (I) while other results use out-of-domain slot-value dictionary (O). freq, neu, and
rare indicate which slot-combination dictionary is used.

B.3 Model details

B.3.1 The details of controllable generation model

We instantiate pθ(U
usr
t |U sys

t , Lt) with T5-small [40] and utilize MultiWOZ 2.2 as its

training data since it’s cleaner than previous versions [145]. During training, we use Adam

optimizer [146] with an initial learning rate 5e− 5 and set linear warmup to be 200 steps. The

batch size is set to 36 and training epoch is set to be 10. The maximum sequence length of

both encoder and decoder is set to be 100. We select the best checkpoint according to lowest

perplexity on development set.
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B.3.2 The details of classifier filter

We employ BERT-base-uncased as the backbone of our classifier filter and train classi-

fier filter with Adam optimizer [146] on MultiWOZ 2.2 since it’s cleaner than previous versions

[145]. We select the best checkpoint based on the highest recall on development set during

training process. The best checkpoint achieves a precision of 92.3% and a recall of 93.5% on

the development set of MultiWOZ 2.2 and, a precision of 93.1% and a recall of 91.6% on its

original test set.

B.4 Diversity Evaluation

slot name data area book day book time food name price range entropy

book people
Ori-test 2.7 36.9 37.7 1.6 18.7 2.4 0.57

CoCo-test 3.6 38.5 25.2 15.6 14.8 2.2 0.65

Table B.2: Original test set (Ori-test) and CoCo generated test set (CoCo-test) co-occurrence
distribution(%) comparisons of book people slot with other slots in restaurant domain within
the same user utterance. The distribution entropy of CoCo-test is higher than its counterpart
of Ori-test with an upper bound 0.78 corresponding to uniform distribution, meaning that
CoCo-test is more diverse compared to Ori-test in terms of slot combinations.

Data Distinct-1 ↑ Distinct-2 ↑ Distinct-3 ↑ Distinct-4 ↑
Ori-test 0.009 0.051 0.105 0.151
CoCo-test 0.009 0.053 0.113 0.166

Table B.3: Language diversity comparisons of data points between Ori-test and CoCo-test. We
use unique n-gram ratio [147] as our diversity metric. ↑ represents a higher number means more
diversity. Overall, CoCo-test has similar (if not better) diversity scores compared to Ori-test.
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B.5 Generated examples by CoCo

'KCNQIWG�)NQY 6WTP�NGXGN�%GNKGH�5VCVG
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&Q&Q�6WTP��
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Figure B.2: Zero-shot generation ability of CoCo on flight domain, which is never seen during
training.
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Figure B.3: A success and failure example generated by CoCo with different slot-value combi-
nations.
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Figure B.4: An example generated by CoCo with correct predictions by TRADE, SIMPLETOD
and TRIPPY without retraining.
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Figure B.5: An example generated by CoCo with incorrect predictions by TRADE, SIMPLETOD
and TRIPPY without retraining.
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Figure B.6: An example from original MultiWOZ test set, which is predicted incorrectly by
original TRADE, SIMPLETOD and TRIPPY, is corrected by their retraining counterparts.&Q&Q�TCTG�

>6\VWHP@��\HV���OD�UD]D�LV�D�UHVWDXUDQW�VHUYLQJ�VSDQLVK�IRRG�LQ�WKH�FKHDS�
SULFH� UDQJH� �� LW� LV� ORFDWHG� DW� ��� URVH� FUHVFHQW� �� ZRXOG� \RX� OLNH� D�
UHVHUYDWLRQ�"
>8VHU@��L�ZRXOG�OLNH�D�UHVWDXUDQW�LQ�WKH�FHQWUH��

>6\VWHP@��OD�UD]D�LV�D�FKHDS�UHVWDXUDQW�VHUYLQJ�VSDQLVK�IRRG�LQ�WKH�FHQWUH�SDUW�
RI�WRZQ���LWV�DGGUHVV�LV����URVH�FUHVFHQW�DQG�LWV�SRVW�FRGH�LV�FE������
>&R&R�UDUH�@���FDQ�\RX�ERRN�D�WDEOH�IRU����SHRSOH�DW�������SP�RQ�VXQGD\�"

�UHVWDXUDQW��DUHD��FHQWUH!���UHVWDXUDQW��ERRN�GD\��VXQGD\!��
�UHVWDXUDQW��ERRN�SHRSOH����!���UHVWDXUDQW��ERRN�WLPH��������
SP!���UHVWDXUDQW��IRRG��VSDQLVK!���UHVWDXUDQW��QDPH��OD�UD]D!��
�UHVWDXUDQW��SULFH�UDQJH��FKHDS!

'KCNQIWG�)NQY 'KCNQIWG�NGXGN�%GNKGH�5VCVG

6WTP��

&Q&Q�6WTP��

�UHVWDXUDQW�� DUHD�� FHQWUH!�� �UHVWDXUDQW�� ERRN�
GD\��VXQGD\!���UHVWDXUDQW��ERRN�SHRSOH����!��
�UHVWDXUDQW�� ERRN� WLPH�� QRQH!�� �UHVWDXUDQW��
IRRG�� VSDQLVK!�� �UHVWDXUDQW�� QDPH�� OD� UD]D!��
�UHVWDXUDQW��SULFH�UDQJH��FKHDS!

�UHVWDXUDQW�� DUHD�� FHQWUH!�� �UHVWDXUDQW�� ERRN�
GD\��VXQGD\!���UHVWDXUDQW��ERRN�SHRSOH����!��
�UHVWDXUDQW�� ERRN� WLPH�� �����!�� �UHVWDXUDQW��
IRRG�� VSDQLVK!�� �UHVWDXUDQW�� QDPH�� OD� UD]D!��
�UHVWDXUDQW��SULFH�UDQJH��FKHDS!

�UHVWDXUDQW�� DUHD�� FHQWUH!�� �UHVWDXUDQW�� ERRN�
GD\��VXQGD\!���UHVWDXUDQW��ERRN�SHRSOH����!��
�UHVWDXUDQW�� ERRN� WLPH�� QRQH!�� �UHVWDXUDQW��
IRRG�� VSDQLVK!�� �UHVWDXUDQW�� QDPH�� OD� UD]D!��
�UHVWDXUDQW��SULFH�UDQJH��FKHDS!

6TCFGǷU�QTKIKPCN�RTGFKEVKQP 5KORNG61'ǷU�QTKIKPCN�RTGFKEVKQP 6TKR2[ǷU�QTKIKPCN�RTGFKEVKQP

Figure B.7: An example generated by CoCo(rare) evaluation set, which is predicted incorrectly
by original TRADE, SIMPLETOD and TRIPPY, is corrected by their retraining counterparts.
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B.6 Slot-Combination Dictionary

Please find the different slot-combination dictionaries introduced in chapter 4 below.

domain-slot freq
”hotel-internet” [”hotel-area”,”hotel-parking”,”hotel-pricerange”,”hotel-stars”,”hotel-type”]
”hotel-type” [”hotel-area”,”hotel-internet”,”hotel-parking”,”hotel-pricerange”,”hotel-stars”]
”hotel-parking” [”hotel-area”,”hotel-internet”,”hotel-pricerange”,”hotel-stars”,”hotel-type”]
”hotel-pricerange” [”hotel-area”,”hotel-internet”,”hotel-parking”,”hotel-stars”,”hotel-type”]
”hotel-book day” [”hotel-book people”,”hotel-book stay”]
”hotel-book people” [”hotel-book day”,”hotel-book stay”]
”hotel-book stay” [”hotel-book day”,”hotel-book people”]
”hotel-stars” [”hotel-area”,”hotel-internet”,”hotel-parking”,”hotel-pricerange”,”hotel-type”]
”hotel-area” [”hotel-internet”,”hotel-parking”,”hotel-pricerange”,”hotel-stars”,”hotel-type”]
”hotel-name” [”hotel-book day”,”hotel-book people”,”hotel-book stay”]
”restaurant-area” [”restaurant-food”,”restaurant-pricerange”]
”restaurant-food” [”restaurant-area”,”restaurant-pricerange”]
”restaurant-pricerange” [”restaurant-area”,”restaurant-food”]
”restaurant-name” [”restaurant-book day”,”restaurant-book people”,”restaurant-book time”]
”restaurant-book day” [”restaurant-book people”,”restaurant-book time”]
”restaurant-book people” [”restaurant-book day”,”restaurant-book time”]
”restaurant-book time” [”restaurant-book day”,”restaurant-book people”]
”taxi-arriveby” [”taxi-leaveat”,”train-book people”]
”taxi-leaveat” [”taxi-arriveby”,”train-book people”]
”taxi-departure” [”taxi-destination”,”taxi-leaveat”,”taxi-arriveby”]
”taxi-destination” [”taxi-departure”,”taxi-arriveby”,”taxi-leaveat”]
”train-arriveby” [”train-day”,”train-leaveat”,”train-book people”]
”train-departure” [”train-arriveby”,”train-leaveat”,”train-destination”,”train-day”,”train-book people”]
”train-destination” [”train-arriveby”,”train-leaveat”,”train-departure”,”train-day”,”train-book people”]
”train-day” [”train-arriveby”,”train-leaveat”,”train-book people”]
”train-leaveat” [”train-day”]
”train-book people” []
”attraction-name” []
”attraction-area” [”attraction-type”]
”attraction-type” [”attraction-area”]

Table B.4: Slot-combination dictionary for freq case.
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slot-name neu

”hotel-internet”
[”hotel-book day”,”hotel-name”,”hotel-book stay”,”hotel-pricerange”,
”hotel-stars”,”hotel-area”,”hotel-book people”,”hotel-type”,”hotel-parking”]

”hotel-area”
[”hotel-book day”,”hotel-name”,”hotel-book stay”,”hotel-pricerange”,
”hotel-stars”,”hotel-book people”,”hotel-internet”,”hotel-type”,”hotel-parking”]

”hotel-parking”
[”hotel-book day”,”hotel-name”,”hotel-book stay”,”hotel-pricerange”,”hotel-stars”,
”hotel-area”,”hotel-book people”,”hotel-internet”,”hotel-type”]

”hotel-pricerange”
[”hotel-book day”,”hotel-name”,”hotel-book stay”,”hotel-stars”,”hotel-area”,
”hotel-book people”,”hotel-internet”,”hotel-type”,”hotel-parking”]

”hotel-stars”
[”hotel-book day”,”hotel-name”,”hotel-book stay”,”hotel-pricerange”,”hotel-area”,
”hotel-book people”,”hotel-internet”,”hotel-type”,”hotel-parking”]

”hotel-type”
[”hotel-book day”,”hotel-book stay”,”hotel-pricerange”,”hotel-stars”,”hotel-area”,
”hotel-book people”,”hotel-internet”,”hotel-parking”]

”hotel-name”
[”hotel-book day”,”hotel-book stay”,”hotel-pricerange”,”hotel-stars”,”hotel-area”,
”hotel-book people”,”hotel-internet”,”hotel-parking”]

”hotel-book day”
[”hotel-name”,”hotel-book stay”,”hotel-pricerange”,”hotel-stars”,”hotel-area”,
”hotel-book people”,”hotel-internet”,”hotel-type”,”hotel-parking”]

”hotel-book people”
[”hotel-book day”,”hotel-name”,”hotel-book stay”,”hotel-pricerange”,”hotel-stars”,
”hotel-area”,”hotel-internet”,”hotel-type”,”hotel-parking”]

”hotel-book stay”
[”hotel-book day”,”hotel-name”,”hotel-pricerange”,”hotel-stars”,”hotel-area”,
”hotel-book people”,”hotel-internet”,”hotel-type”,”hotel-parking”]

”restaurant-area”
[”restaurant-book day”,”restaurant-name”,”restaurant-food”,”restaurant-book people”,
”restaurant-book time”,”restaurant-pricerange”]

”restaurant-food”
[”restaurant-book day”,”restaurant-book people”,”restaurant-book time”,
”restaurant-area”,”restaurant-pricerange”]

”restaurant-pricerange”
[”restaurant-book day”,”restaurant-name”,”restaurant-food”,”restaurant-book people”,
”restaurant-book time”,”restaurant-area”]

”restaurant-name”
[”restaurant-book day”,”restaurant-book people”,”restaurant-book time”,
”restaurant-area”,”restaurant-pricerange”]

”restaurant-book day”
[”restaurant-name”,”restaurant-food”,”restaurant-book people”,”restaurant-book time”,
”restaurant-area”,”restaurant-pricerange”]

”restaurant-book people”
[”restaurant-book day”,”restaurant-name”,”restaurant-food”,”restaurant-book time”,
”restaurant-area”,”restaurant-pricerange”]

”restaurant-book time”
[”restaurant-book day”,”restaurant-name”,”restaurant-food”,”restaurant-book people”,
”restaurant-area”,”restaurant-pricerange”]

”taxi-departure” [”taxi-destination”, ”taxi-leaveat”, ”taxi-arriveby”]
”taxi-destination” [”taxi-departure”, ”taxi-leaveat”, ”taxi-arriveby”]
”taxi-leaveat” [”taxi-departure”, ”taxi-destination”, ”taxi-arriveby”]
”taxi-arriveby” [”taxi-departure”, ”taxi-destination”, ”taxi-leaveat”]
”train-arriveby” [”train-book people”,”train-day”,”train-leaveat”,”train-departure”,”train-destination”]
”train-leaveat” [”train-book people”,”train-arriveby”,”train-day”,”train-departure”,”train-destination”]
”train-departure” [”train-book people”,”train-arriveby”,”train-day”,”train-leaveat”,”train-destination”]
”train-destination” [”train-book people”,”train-arriveby”,”train-day”,”train-leaveat”,”train-departure”]
”train-day” [”train-book people”,”train-arriveby”,”train-leaveat”,”train-departure”,”train-destination”]
”train-book people” [”train-arriveby”,”train-day”,”train-leaveat”,”train-departure”,”train-destination”]
”attraction-name” [”attraction-area”]
”attraction-area” [”attraction-type”]
”attraction-type” [”attraction-area”]

Table B.5: Slot-combination dictionary for neu case.
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slot-name rare
”hotel-internet” [”hotel-book people”,”hotel-book day”,”hotel-name”,”hotel-book stay”]
”hotel-area” [”hotel-book people”,”hotel-book day”,”hotel-name”,”hotel-book stay”]
”hotel-parking” [”hotel-book people”,”hotel-book day”,”hotel-name”,”hotel-book stay”]
”hotel-pricerange” [”hotel-book people”,”hotel-book day”,”hotel-name”,”hotel-book stay”]
”hotel-stars” [”hotel-book people”,”hotel-book day”,”hotel-name”,”hotel-book stay”]
”hotel-type” [”hotel-book people”,”hotel-book day”,”hotel-book stay”]
”hotel-name” [”hotel-pricerange”,”hotel-stars”,”hotel-area”,”hotel-internet”,”hotel-parking”]

”hotel-book day”
[”hotel-name”,”hotel-pricerange”,”hotel-stars”,”hotel-area”,”hotel-internet”,
”hotel-type”,”hotel-parking”]

”hotel-book people”
[”hotel-name”,”hotel-pricerange”,”hotel-stars”,”hotel-area”,”hotel-internet”,
”hotel-type”,”hotel-parking”]

”hotel-book stay”
[”hotel-name”,”hotel-pricerange”,”hotel-stars”,”hotel-area”,”hotel-internet”,
”hotel-type”,”hotel-parking”]

”restaurant-area”
[”restaurant-book day”,”restaurant-name”,”restaurant-book time”,
”restaurant-book people”]

”restaurant-food” [”restaurant-book day”,”restaurant-book time”,”restaurant-book people”]

”restaurant-pricerange”
[”restaurant-book day”,”restaurant-name”,”restaurant-book time”,
”restaurant-book people”]

”restaurant-name” [”restaurant-area”,”restaurant-pricerange”]
”restaurant-book day” [”restaurant-name”,”restaurant-area”,”restaurant-food”,”restaurant-pricerange”]
”restaurant-book people” [”restaurant-name”,”restaurant-area”,”restaurant-food”,”restaurant-pricerange”]
”restaurant-book time” [”restaurant-name”,”restaurant-area”,”restaurant-food”,”restaurant-pricerange”]
”taxi-departure” []
”taxi-destination” []
”taxi-leaveat” [”taxi-departure”, ”taxi-destination”]
”taxi-arriveby” [”taxi-departure”, ”taxi-destination”]
”train-arriveby” [”train-destination”, ”train-departure”]
”train-leaveat” [”train-destination”,”train-book people”,”train-arriveby”,”train-departure”]
”train-departure” []
”train-destination” []
”train-day” [”train-destination”, ”train-departure”]
”train-book people” [”train-arriveby”,”train-departure”,”train-destination”,”train-day”,”train-leaveat”]
”attraction-name” [”attraction-area”]
”attraction-area” [”attraction-name”]
”attraction-type” []

Table B.6: Slot-combination dictionary for rare case.
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B.7 Slot-Value Dictionary

Please find the different slot-value dictionaries introduced in chapter 4 below.

slot-name train-O
”hotel-internet” [”yes”]
”hotel-type” [”hotel”, ”guesthouse”]
”hotel-parking” [”yes”]
”hotel-pricerange” [”moderate”, ”cheap”, ”expensive”]

”hotel-book day”
[”march 11th”, ”march 12th”, ”march 13th”, ”march 14th”, ”march 15th”,
”march 16th”, ”march 17th”,”march 18th”, ”march 19th”, ”march 20th”]

”hotel-book people” [”20”,”21”,”22”,”23”,”24”,”25”,”26”,”27”,”28”,”29”]
”hotel-book stay” [”20”,”21”,”22”,”23”,”24”,”25”,”26”,”27”,”28”,”29”]
”hotel-area” [”south”, ”north”, ”west”, ”east”, ”centre”]
”hotel-stars” [”0”, ”1”, ”2”, ”3”, ”4”, ”5”]

”hotel-name”
[”moody moon”, ”four seasons hotel”, ”knights inn”, ”travelodge”, ”jack summer inn”,
”paradise point resort”]

”restaurant-area” [”south”, ”north”, ”west”, ”east”, ”centre”]
”restaurant-food” [”asian fusion”, ”burger”, ”pasta”, ”ramen”, ”taiwanese”]
”restaurant-pricerange”: [”moderate”, ”cheap”, ”expensive”]

”restaurant-name”
[”buddha bowls”,”pizza my heart”,”pho bistro”,
”sushiya express”,”rockfire grill”,”itsuki restaurant”]

”restaurant-book day” [”monday”,”tuesday”,”wednesday”,”thursday”,”friday”, ”saturday”,”sunday”]
”restaurant-book people” [”20”,”21”,”22”,”23”,”24”,”25”,”26”,”27”,”28”,”29”]

”restaurant-book time”

[”19:01”,”18:06”,”17:11”,”19:16”,”18:21”,”17:26”,”19:31”, ”18:36”,”17:41”,”19:46”,”18:51”,
”17:56”, ”7:00 pm”, ”6:07 pm”,”5:12 pm”,”7:17 pm”,”6:17 pm”,”5:27 pm”, ”7:32 pm”,”6:37 pm”,
”5:42 pm”, ”7:47 pm”, ”6:52 pm”, ”5:57 pm”, ”11:00 am”,”11:05 am”, ”11:10 am”,”11:15 am”,
”11:20 am”,”11:25 am”, ”11:30 am”,”11:35 am”,”11:40 am”, ”11:45 am”,”11:50 am”, ”11:55 am”]

”taxi-arriveby”
[ ”17:26”,”19:31”,”18:36”,”17:41”,”19:46”,”18:51”,”17:56”, ”7:00 pm”,”6:07 pm”,”5:12 pm”,”7:17 pm”,
”6:17 pm”, ”5:27 pm”,”11:30 am”,”11:35 am”,”11:40 am”,”11:45 am”, ”11:50 am”,”11:55 am”]

”taxi-leaveat”
[ ”19:01”,”18:06”,”17:11”,”19:16”,”18:21”,”7:32 pm”, ”6:37 pm”,”5:42 pm”,”7:47 pm”,”6:52 pm”,
”5:57 pm”,”11:00 am”,”11:05 am”,”11:10 am”, ”11:15 am”,”11:20 am”,”11:25 am”]

”taxi-departure”
[”moody moon”, ”four seasons hotel”, ”knights inn”,
”travelodge”, ”jack summer inn”, ”paradise point resort”]

”taxi-destination”
[”buddha bowls”,”pizza my heart”,”pho bistro”,
”sushiya express”,”rockfire grill”,”itsuki restaurant”]

”train-arriveby”
[ ”17:26”,”19:31”,”18:36”,”17:41”,”19:46”,”18:51”, ”17:56”,”7:00 pm”,”6:07 pm”,”5:12 pm”,
”7:17 pm”, ”6:17 pm”,”5:27 pm”,”11:30 am”,”11:35 am”,”11:40 am”, ”11:45 am”,”11:50 am”,
”11:55 am”]

”train-leaveat”
[”19:01”,”18:06”,”17:11”,”19:16”,”18:21”, ”7:32 pm”,
”6:37 pm”,”5:42 pm”,”7:47 pm”,”6:52 pm”,”5:57 pm”,
”11:00 am”,”11:05 am”,”11:10 am”,”11:15 am”,”11:20 am”,”11:25 am”]

”train-departure”
[”gilroy”,”san martin”,”morgan hill”,”blossom hill”,
”college park”,”santa clara”,”lawrence”,”sunnyvale”]

”train-destination”
[”mountain view”,”san antonio”,”palo alto”,”menlo park”,
”hayward park”,”san mateo”,”broadway”,”san bruno”]

”train-day”
[”march 11th”, ”march 12th”, ”march 13th”, ”march 14th”, ”march 15th”,
”march 16th”, ”march 17th”,”march 18th”, ”march 19th”, ”march 20th”]

”train-book people” [”20”,”21”,”22”,”23”,”24”,”25”,”26”,”27”,”28”,”29”]
”attraction-area” [”south”, ”north”, ”west”, ”east”, ”centre”]

”attraction-name”
[”grand canyon”,”golden gate bridge”,”niagara falls”,
”kennedy space center”,”pike place market”,”las vegas strip”]

”attraction-type” [”historical landmark”, ”aquaria”, ”beach”, ”castle”,”art gallery”]

Table B.7: Slot value dictionary of train-O.
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slot-name I
”hotel-internet” [”yes”]
”hotel-type” [”hotel”, ”guesthouse”]
”hotel-parking” [”yes”]
”hotel-pricerange” [”moderate”, ”cheap”, ”expensive”]
”hotel-book day” [”friday”, ”tuesday”, ”thursday”, ”saturday”, ”monday”, ”sunday”, ”wednesday”]
”hotel-book people” [”1”, ”2”, ”3”, ”4”,”5”, ”6”, ”7”,”8”]
”hotel-book stay” [”1”, ”2”, ”3”, ”4”,”5”, ”6”, ”7”,”8”]

”hotel-name”
[”alpha milton”, ”flinches bed and breakfast”, ”express holiday inn by cambridge”,
”wankworth house”, ”alexander b and b”, ”the gonville hotel”]

”hotel-stars” [”0”, ”1”, ”3”, ”2”, ”4”, ”5”]
”hotel-area” [”south”, ”east”, ”west”, ”north”, ”centre”]
”restaurant-area” [”south”, ”east”, ”west”, ”north”, ”centre”]
”restaurant-food” [”europeon”, ”brazliian”, ”weish”]
”restaurant-pricerange” [”moderate”, ”cheap”, ”expensive”]

”restaurant-name”
[”pizza hut in cherry”, ”the nirala”, ”barbakan”, ”the golden house”, ”michaelhouse”,
”bridge”, ”varsity restaurant”,”loch”, ”the peking”, ”charlie”, ”cambridge lodge”,
”maharajah tandoori”]

”restaurant-book day” [”friday”, ”tuesday”, ”thursday”, ”saturday”, ”monday”, ”sunday”, ”wednesday”]
”restaurant-book people” [”8”, ”6”, ”7”, ”1”, ”3”, ”2”, ”4”, ”5”]
”restaurant-book time” [”14:40”, ”19:00”, ”15:15”, ”9:30”, ”7 pm”, ”11 am”, ”8:45”]
”taxi-arriveby” [”08:30”, ”9:45”]
”taxi-leaveat” [”7 pm”, ”3:00”]

”taxi-departure”

[”aylesbray lodge”, ”fitzbillies”, ”uno”, ”zizzi cambridge”, ”express by holiday inn”,
”great saint marys church”, ”county folk museum”,”riverboat”, ”bishops stortford”,
”caffee uno”, ”hong house”, ”gandhi”, ”cambridge arts”, ”the hotpot”, ”regency gallery”,
”saint johns chop shop house”]

”taxi-destination”
[”ashley”, ”all saints”, ”de luca cucina and bar’s”, ”the lensfield hotel”, ”oak bistro”,
”broxbourne”, ”sleeperz hotel”, ”saint catherine’s college”]

”train-arriveby”

[”4:45 pm”, ”18:35”, ”21:08”, ”19:54”, ”10:08”, ”13:06”, ”15:24”, ”07:08”, ”16:23”, ”8:56”,
”09:01”, ”10:23”, ”10:00 am”, ”16:44”, ”6:15”, ”06:01”, ”8:54”,”21:51”, ”16:07”, ”12:43”,
”20:08”, ”08:23”, ”12:56”, ”17:23”, ”11:32”, ”20:54”, ”20:06”, ”14:24”, ”18:10”, ”20:38”,
”16:06”, ”3:00”, ”22:06”, ”20:20”, ”17:51”,”19:52”, ”7:52”, ”07:44”, ”16:08”]

”train-leaveat”

[”13:36”, ”15:17”, ”14:21”, ”3:15 pm”, ”6:10 am”, ”14:40”, ”5:40”, ”13:40”, ”17:11”, ”13:50”,
”5:11”, ”11:17”, ”5:01”, ”13:24”, ”5:35”, ”07:00”, ”8:08”, ”7:40”, ”11:54”, ”12:06”, ”07:01”,
”18:09”, ”13:17”, ”21:45”, ”06:40”, ”01:44”, ”9:17”, ”20:21”, ”20:40”, ”08:11”, ”07:35”, ”14:19”,
”1 pm”, ”19:17”, ”19:48”, ”19:50”, ”10:36”, ”09:19”, ”19:35”, ”8:06”, ”05:29”, ”17:50”, ”15:16”,
”09:17”, ”7:35”, ”5:29”, ”17:16”, ”14:01”, ”10:21”, ”05:01”, ”15:39”, ”15:01”, ”10:11”, ”08:01”]

”train-departure”
[”london liverpool street”, ”kings lynn”, ”norwich”, ”birmingham new street”,
”london kings cross”,”broxbourne”]

”train-destination”
[”bishops stortford”, ”cambridge”, ”ely”, ”stansted airport”, ”peterborough”, ”leicester”,
”stevenage”]

”train-day” [”friday”, ”tuesday”, ”thursday”, ”monday”, ”saturday”, ”sunday”, ”wednesday”]
”train-book people” [”9”]

”attraction-name”
[”the cambridge arts theatre”, ”the churchill college”, ”the castle galleries”, ”cambridge”,
”saint catherine’s college”, ”street”, ”corn cambridge exchange”, ”fitzwilliam”,
”cafe jello museum”]

”attraction-area” [”south”, ”east”, ”west”, ”north”, ”centre”]

”attraction-type”
[”concerthall”, ”museum”, ”entertainment”, ”college”, ”multiple sports”, ”hiking”,
”architecture”, ”theatre”, ”cinema”, ”swimmingpool”, ”boat”, ”nightclub”, ”park”]

Table B.8: Slot-value dictionary for I case.
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slot-name O
”hotel-internet” [”yes”]
”hotel-type” [”hotel”, ”guesthouse”]
”hotel-parking” [”yes”]
”hotel-pricerange” [”moderate”, ”cheap”, ”expensive”]

”hotel-book day”
[”april 11th”, ”april 12th”, ”april 13th”, ”april 14th”, ”april 15th”,
”april 16th”, ”april 17th”,”april 18th”, ”april 19th”, ”april 20th”]

”hotel-book people” [”30”,”31”,”32”,”33”,”34”,”35”,”36”,”37”,”38”,”39”]
”hotel-book stay” [”30”,”31”,”32”,”33”,”34”,”35”,”36”,”37”,”38”,”39”]
”hotel-area” [”south”, ”east”, ”west”, ”north”, ”centre”]
”hotel-stars” [”0”, ”1”, ”2”, ”3”, ”4”, ”5”]

”hotel-name”
[”white rock hotel”, ”jade bay resort”, ”grand hyatt”, ”hilton garden inn”,
”cottage motel”,”mandarin oriental”],

”restaurant-area” [”south”, ”east”, ”west”, ”north”, ”centre”]
”restaurant-food” [”sichuan”, ”fish”, ”noodle”, ”lobster”, ”burrito”, ”dumpling”, ”curry”,”taco”]
”restaurant-pricerange” [”moderate”, ”cheap”, ”expensive”]

”restaurant-name”
[”lure fish house”,”black sheep restaurant”,”palapa restaurant”, ”nikka ramen”,
”sun sushi”,”super cucas”]

”restaurant-book day” [”monday”,”tuesday”,”wednesday”,”thursday”,”friday”,”saturday”,”sunday”]
”restaurant-book people” [”30”,”31”,”32”,”33”,”34”,”35”,”36”,”37”,”38”,”39”]

”restaurant-book time”

[”20:02”,”21:07”,”22:12”,”20:17”,”21:22”,”22:27”,”20:32”,”21:37”,”22:42”,
”20:47”,”21:52”,”22:57”,”8:00 pm”,”9:04 pm”,”10:09 pm”,”8:14 pm”,
”9:19 pm”,”10:24 pm”,”8:29 pm”,”9:34 pm”,”10:39 pm”,”8:44 pm”,”9:49 pm”,
”10:54 pm”,”10:00 am”,”10:06 am”,”10:11 am”,”10:16 am”,”10:21 am”,”10:26 am”,
”10:31 am”,”10:36 am”,”10:41 am”,”10:46 am”,”10:51 am”,”10:56 am”]

”taxi-arriveby”
[”20:02”,”21:07”,”22:12”,”20:17”,”21:22”,”22:27”,”9:34 pm”,”10:39 pm”,
”8:44 pm”,”9:49 pm”,”10:54 pm”, ”10:00 am”,”10:06 am”,”10:11 am”,
”10:16 am”,”10:21 am”,”10:26 am”]

”taxi-leaveat”
[”21:37”,”22:42”,”20:47”,”21:52”,”22:57”,”8:00 pm”,”9:04 pm”,”10:09 pm”,
”8:14 pm”,”9:19 pm”,”10:24 pm”,”8:29 pm”,”10:31 am”,”10:36 am”, ”10:41 am”,
”10:46 am”,”10:51 am”,”10:56 am”]

”taxi-departure”
[”lure fish house”,”black sheep restaurant”,”palapa restaurant”, ”nikka ramen”,
”sun sushi”,”super cucas”]

”taxi-destination”
[”white rock hotel”, ”jade bay resort”, ”grand hyatt”, ”hilton garden inn”,
”cottage motel”,”mandarin oriental”]

”train-departure”
[”northridge”,”camarillo”,”oxnard”,”morepark”,”simi valley”,”chatsworth”,
”van nuys”,”glendale”]

”train-destination”
[”norwalk”,”buena park”,”fullerton”,”santa ana”,”tustin”,”irvine”,
”san clemente”,”oceanside”]

”train-arriveby”
[”20:02”,”21:07”,”22:12”,”20:17”,”21:22”,”22:27”, ”9:34 pm”,”10:39 pm”,
”8:44 pm”,”9:49 pm”,”10:54 pm”,”10:00 am”,”10:06 am”,”10:11 am”,
”10:16 am”,”10:21 am”,”10:26 am”]

”train-day”:
[”april 11th”, ”april 12th”, ”april 13th”, ”april 14th”, ”april 15th”,
”april 16th”, ”april 17th”,”april 18th”, ”april 19th”, ”april 20th”]

”train-leaveat”:
[”21:37”,”22:42”,”20:47”,”21:52”,”22:57”,”8:00 pm”,”9:04 pm”,”10:09 pm”,
”8:14 pm”,”9:19 pm”,”10:24 pm”,”8:29 pm”,”10:31 am”,”10:36 am”,
”10:41 am”,”10:46 am”,”10:51 am”,”10:56 am”]

”train-book people”: [”30”,”31”,”32”,”33”,”34”,”35”,”36”,”37”,”38”,”39”]
”attraction-area” [”south”, ”east”, ”west”, ”north”, ”centre”]

”attraction-name”
[”statue of liberty”,”empire state building”,”mount rushmore”,
”brooklyn bridge”,”lincoln memorial”,”times square”]

”attraction-type” [”temple”, ”zoo”, ”library”, ”skyscraper”,”monument”]

Table B.9: Slot-value dictionary for O case.
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Appendix C

Supplementary Materials for

Improving SLM Reasoning via

Explanation Synthesis from LLM

C.1 Prompt details

Here we provide prompts used in our experiments. Our prompts on CommonsenseQA

are based on [30] while prompts on StrategyQA are based [28] and [127]. Explanations in

prompts for OpenbookQA are based on science facts in OpenbookQA dataset Github repository

https://github.com/allenai/OpenBookQA.
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Q: What do people use to absorb extra ink from a fountain pen? Answer Choices: (a) shirt pocket (b)

calligrapher’s hand (c) inkwell (d) desk drawer (e) blotter

A: blotter (e)

Q: What home entertainment equipment requires cable? Answer Choices: (a) radio shack (b) substation (c)

television (d) cabinet (e) desk

A: television (c)

Q: The fox walked from the city into the forest, what was it looking for? Answer Choices: (a) pretty flowers (b)

hen house (c) natural habitat (d) storybook (e) dense forest

A: natural habitat (c)

Q: Sammy wanted to go to where the people were. Where might he go? Answer Choices: (a) populated areas

(b) race track (c) desert (d) apartment (e) roadblock

A: populated areas (a)

Q: Where do you put your grapes just before checking out? Answer Choices: (a) mouth (b) grocery cart (c)

super market (d) fruit basket (e) fruit market

A: grocery cart (b)

Q: Google Maps and other highway and street GPS services have replaced what? Answer Choices: (a) united

states (b) mexico (c) countryside (d) atlas (e) oceans

A: atlas (d)

Q: Before getting a divorce, what did the wife feel who was doing all the work? Answer Choices: (a) harder (b)

anguish (c) bitterness (d) tears (e) sadness

A: bitterness (c)

Table C.1: Standard prompt for CommonsenseQA, adapted from [30].
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Q: What do people use to absorb extra ink from a fountain pen? Answer Choices: (a) shirt pocket (b)

calligrapher’s hand (c) inkwell (d) desk drawer (e) blotter

A: The answer must be used to absorb extra ink. Blotters are designed to absorb liquids. Therefore, the answer

is blotter (e).

Q: What home entertainment equipment requires cable?

Answer Choices: (a) radio shack(b) substation (c) television (d) cabinet (e) desk

A: The answer must require cable. Cable is used to provide satellite channels to televisions. Therefore, the

answer is television (c).

Q: The fox walked from the city into the forest, what was it looking for? Answer Choices: (a) pretty flowers (b)

hen house (c) natural habitat (d) storybook (e) dense forest

A: The answer must be a reason for a fox to go into the forest. The forest is a fox’s natural habitat. Therefore,

the answer is natural habitat (c).

Q: Sammy wanted to go to where the people were. Where might he go? Answer Choices: (a) populated areas

(b) race track (c) desert (d) apartment (e) roadblock

A: The answer must be a place with many people. Populated areas, by definition, have a lot of people. Therefore,

the answer is populated areas (a).

Q: Where do you put your grapes just before checking out? Answer Choices: (a) mouth (b) grocery cart (c)

super market (d) fruit basket (e) fruit market

A: The answer should be the place where grocery items are placed before checking out. Of the above choices,

grocery cart makes the most sense for holding grocery items. Therefore, the answer is grocery cart (b).

Q: Google Maps and other highway and street GPS services have replaced what? Answer Choices: (a) united

states (b) mexico (c) countryside (d) atlas (e) oceans

A: The answer must be something that used to do what Google Maps and GPS services do, which is give

directions. Atlases were also used to give directions. Therefore, the answer is atlas (d).

Q: Before getting a divorce, what did the wife feel who was doing all the work? Answer Choices: (a) harder (b)

anguish (c) bitterness (d) tears (e) sadness

A: The answer should be a feeling which would cause someone who was doing all the work to get divorced. If

someone feels bitter towards their spouse, they are likely to want a divorce. Therefore, the answer is bitterness

(c).

Table C.2: Chain of Thought prompt for CommonsenseQA [30].
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Q: What do people use to absorb extra ink from a fountain pen? Answer Choices: (a) shirt pocket (b)

calligrapher’s hand (c) inkwell (d) desk drawer (e) blotter

A: blotter (e) Explanation: the answer must be used to absorb extra ink. Blotters are designed to absorb liquids.

Q: What home entertainment equipment requires cable? Answer Choices: (a) radio shack (b) substation (c)

television (d) cabinet (e) desk

A: television (c) Explanation: the answer must require cable. Cable is used to provide satellite channels to

televisions.

Q: The fox walked from the city into the forest, what was it looking for? Answer Choices: (a) pretty flowers (b)

hen house (c) natural habitat (d) storybook (e) dense forest

A: natural habitat (c) Explanation: the answer must be a reason for a fox to go into the forest. The forest is a

fox’s natural habitat.

Q: Sammy wanted to go to where the people were. Where might he go? Answer Choices: (a) populated areas

(b) race track (c) desert (d) apartment (e) roadblock

A: populated areas (a) Explanation: the answer must be a place with many people. Populated areas, by definition,

have a lot of people.

Q: Where do you put your grapes just before checking out? Answer Choices: (a) mouth (b) grocery cart (c)

super market (d) fruit basket (e) fruit market

A: grocery cart (b)

Explanation: the answer should be the place where grocery items are placed before checking out. Of the above

choices, grocery cart makes the most sense for holding grocery items.

Q: Google Maps and other highway and street GPS services have replaced what? Answer Choices: (a) united

states (b) mexico (c) countryside (d) atlas (e) oceans

A: atlas (d) Explanation: the answer must be something that used to do what Google Maps and GPS services

do, which is give directions. Atlases were also used to give directions.

Q: Before getting a divorce, what did the wife feel who was doing all the work? Answer Choices: (a) harder (b)

anguish (c) bitterness (d) tears (e) sadness

A: bitterness (c) Explanation: the answer should be a feeling which would cause someone who was doing all

the work to get divorced. If someone feels bitter towards their spouse, they are likely to want a divorce.

Table C.3: Rationalization prompt for CommonsenseQA, adapted from [30].
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Q: Yes or no: Do hamsters provide food for any animals?

A: Hamsters are prey animals. Prey are food for predators. Thus, hamsters provide food for some animals. So

the answer is yes.

Q: Yes or no: Could the members of The Police perform lawful arrests?

A: The members of The Police were musicians, not law enforcement officers. Only law enforcement officers

can perform lawful arrests. Thus, the members of The Police could not perform lawful arrests. So the answer is

no.

Q: Yes or no: Hydrogen’s atomic number squared exceeds number of Spice Girls?

A: Hydrogen has an atomic number of 1. 1 squared is 1. There are 5 Spice Girls. Thus, Hydrogen’s atomic

number squared is less than 5. So the answer is no.

Q: Yes or no: Is it common to see frost during some college commencements?

A: College commencement ceremonies can happen in December, May, and June. December is in the winter, so

there can be frost. Thus, there could be frost at some commencements. So the answer is yes.

Q: Yes or no: Could a llama birth twice during War in Vietnam (1945-46)?

A: The War in Vietnam was 6 months. The gestation period for a llama is 11 months, which is more than 6

months. Thus, a llama could not give birth twice during the War in Vietnam. So the answer is no.

Q: Yes or no: Would a pear sink in water?

A: The density of a pear is about 0.6 g/cmˆ3, which is less than water. Objects less dense than water float. Thus,

a pear would float. So the answer is no.

Q: Yes or no: Is shrimp scampi definitely free of plastic?

A: Shrimp scampi is a dish made with shrimp. Shrimp have been found to contain microplastics. Microplastics

are plastic material. Thus, shrimp scampi may contain plastic. So the answer is no.

Table C.4: Chain of Thought prompt for StrategyQA, adapted from [28] and [127]
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Q: Yes or no: Do hamsters provide food for any animals?

A: yes Explanation: Hamsters are prey animals. Prey are food for predators. Thus, hamsters provide food for

some animals.

Q: Yes or no: Could the members of The Police perform lawful arrests?

A: no Explanation: The members of The Police were musicians, not law enforcement officers. Only law

enforcement officers can perform lawful arrests. Thus, the members of The Police could not perform lawful

arrests.

Q: Yes or no: Hydrogen’s atomic number squared exceeds number of Spice Girls?

A: no Explanation: Hydrogen has an atomic number of 1. 1 squared is 1. There are 5 Spice Girls. Thus,

Hydrogen’s atomic number squared is less than 5.

Q: Yes or no: Is it common to see frost during some college commencements?

A: yes Explanation: College commencement ceremonies can happen in December, May, and June. December is

in the winter, so there can be frost. Thus, there could be frost at some commencements.

Q: Yes or no: Could a llama birth twice during War in Vietnam (1945-46)?

A: no Explanation: The War in Vietnam was 6 months. The gestation period for a llama is 11 months, which is

more than 6 months. Thus, a llama could not give birth twice during the War in Vietnam.

Q: Yes or no: Would a pear sink in water?

A: no Explanation: The density of a pear is about 0.6 g/cmˆ3, which is less than water. Objects less dense than

water float. Thus, a pear would float.

Q: Yes or no: Is shrimp scampi definitely free of plastic?

A: no Explanation: Shrimp scampi is a dish made with shrimp. Shrimp have been found to contain microplastics.

Microplastics are plastic material. Thus, shrimp scampi may contain plastic.

Table C.5: Rationalization prompt for StrategyQA, adapted from [28] and [127]
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Q: What is the most likely to be an effect of acid rain on an aquatic environment? Answer Choices: (a) decrease

in plant life (b) increase in fish population (c) increase in plant growth (d) cleaner and clearer water

A: (a) decrease in plant life

Q: The moon’s surface Answer Choices: (a) is smooth on the entire surface (b) contains large cavities cause by

explosions (c) contains an internal core of cheese (d) is filled with lakes

A: (b) contains large cavities cause by explosions

Q: As a car approaches you in the night Answer Choices: (a) the headlights become more intense (b) the

headlights recede into the dark (c) the headlights remain at a constant (d) the headlights turn off

A: (a) the headlights become more intense

Q: When the weather changes as it does from Christmas to Easter, Answer Choices: (a) the air may chill (b) the

ground may freeze (c) the plants may die (d) the ground may warm

A: (d) the ground may warm

Q: Heat and moisture in the ocean is a good recipe for Answer Choices: (a) a violent storm (b) violent sea

animals (c) condensation (d) inland storms

A: (a) a violent storm

Q: Hummingbirds take what with them Answer Choices: (a) Bees (b) energy (c) Pollen (d) Honey

A: (c) Pollen

Q: What covers over 90% of the Earth’s surface and 0% of the moon’s surface Answer Choices: (a) a magnesium

iron silicate mineral (b) chemical element with the symbol S (c) the element with the symbol Fe (d) that which

contains 2 hydrogen and 1 oxygen molecules

A: (d) that which contains 2 hydrogen and 1 oxygen molecules

Table C.6: Standard prompt for OpenbookQA, adapted from [136].
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Q: What is the most likely to be an effect of acid rain on an aquatic environment? Answer Choices: (a) decrease

in plant life (b) increase in fish population (c) increase in plant growth (d) cleaner and clearer water

A: Acid rain has a negative impact on water quality and decrease in water quality leads to a decrease in aquatic

life. So the answer is (a) decrease in plant life.

Q: The moon’s surface Answer Choices: (a) is smooth on the entire surface (b) contains large cavities cause by

explosions (c) contains an internal core of cheese (d) is filled with lakes

A: The moon’s surface contains many craters and craters are large cavities caused by explosions. So the answer

is (b) contains large cavities cause by explosions.

Q: As a car approaches you in the night Answer Choices: (a) the headlights become more intense (b) the

headlights recede into the dark (c) the headlights remain at a constant (d) the headlights turn off

A: Headlights of a car are source of light. As a source of light becomes closer , that source will appear brighter.

So the answer is (a) the headlights become more intense.

Q: When the weather changes as it does from Christmas to Easter, Answer Choices: (a) the air may chill (b) the

ground may freeze (c) the plants may die (d) the ground may warm

A: Christmas is in the winter season while Easter is in the beginning of spring. Weather change from winter to

spring is to become warm. So the answer is (d) the ground may warm.

Q: Heat and moisture in the ocean is a good recipe for Answer Choices: (a) a violent storm (b) violent sea

animals (c) condensation (d) inland storms

A: An ocean is a source of heat and moisture for a hurricane and a hurricane is a violent storm. So the answer is

(a) a violent storm.

Q: Hummingbirds take what with them Answer Choices: (a) Bees (b) energy (c) Pollen (d) Honey

A: When hummingbirds dip their long bills into flowers to drink nectar, they also pick up grains of pollen.

Pollen that sticks to a hummingbird’s feathers and bill gets carried to the next flower it visits. So the answer is

(c) Pollen.

Q: What covers over 90% of the Earth’s surface and 0% of the moon’s surface Answer Choices: (a) a magnesium

iron silicate mineral (b) chemical element with the symbol S (c) the element with the symbol Fe (d) that which

contains 2 hydrogen and 1 oxygen molecules

A: Water covers over 90% of the Earth’s surface and 0% of the moon’s surface, and contains 2 hydrogen and 1

oxygen molecules. So the answer is (d) that which contains 2 hydrogen and 1 oxygen molecules.

Table C.7: Chain of Thought prompt for OpenbookQA, adapted from [136].
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Q: What is the most likely to be an effect of acid rain on an aquatic environment? Answer Choices: (a) decrease

in plant life (b) increase in fish population (c) increase in plant growth (d) cleaner and clearer water

A: (a) decrease in plant life Explanation: Acid rain has a negative impact on water quality and decrease in water

quality leads to a decrease in aquatic life.

Q: The moon’s surface Answer Choices: (a) is smooth on the entire surface (b) contains large cavities cause by

explosions (c) contains an internal core of cheese (d) is filled with lakes

A: (b) contains large cavities cause by explosions Explanation: The moon’s surface contains many craters and

craters are large cavities caused by explosions.

Q: As a car approaches you in the night Answer Choices: (a) the headlights become more intense (b) the

headlights recede into the dark (c) the headlights remain at a constant (d) the headlights turn off

A: (a) the headlights become more intense Explanation: Headlights of a car are source of light. As a source of

light becomes closer , that source will appear brighter.

Q: When the weather changes as it does from Christmas to Easter, Answer Choices: (a) the air may chill (b) the

ground may freeze (c) the plants may die (d) the ground may warm

A: (d) the ground may warm Explanation: Christmas is in the winter season while Easter is in the beginning of

spring. Weather change from winter to spring is to become warm.

Q: Heat and moisture in the ocean is a good recipe for Answer Choices: (a) a violent storm (b) violent sea

animals (c) condensation (d) inland storms

A: (a) a violent storm Explanation: An ocean is a source of heat and moisture for a hurricane and a hurricane is

a violent storm.

Q: Hummingbirds take what with them Answer Choices: (a) Bees (b) energy (c) Pollen (d) Honey

A: (c) Pollen Explanation: When hummingbirds dip their long bills into flowers to drink nectar, they also pick

up grains of pollen. Pollen that sticks to a hummingbird’s feathers and bill gets carried to the next flower it

visits.

Q: What covers over 90% of the Earth’s surface and 0% of the moon’s surface Answer Choices: (a) a magnesium

iron silicate mineral (b) chemical element with the symbol S (c) the element with the symbol Fe (d) that which

contains 2 hydrogen and 1 oxygen molecules

A: (d) that which contains 2 hydrogen and 1 oxygen molecules Explanation: Water covers over 90% of the

Earth’s surface and 0% of the moon’s surface, and contains 2 hydrogen and 1 oxygen molecules.

Table C.8: Rationalization prompt for OpenbookQA, adapted from [136].
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Q: What do people typically do while playing guitar?

Answer Choices: (a) cry (b) hear sounds (c) singing (d)

arthritis (e) making music

T5 Prediction: (e) making music (✗). T5 Explanation:

The answer should be something people do while

playing guitar. People typically play guitar to make

music.

GPT3 Prediction: (e) making music ( ✗ ). GPT3

Explanation: The answer must be something people do

while playing guitar. Making music is the primary

purpose of playing guitar.

Q: She was always helping at the senior center, it brought

her what? Answer Choices: (a) satisfaction (b) heart (c)

feel better (d) pay (e) happiness

T5 Prediction: (a) satisfaction (✗). T5 Explanation: The

answer should be a feeling that would be brought about

by helping at the senior center. If someone feels satisfied

when they help others, they are likely to want to do it

again.

GPT3 Prediction: (a) satisfaction (✗). GPT3 Explanation:

the answer should be a feeling which would cause

someone to help at the senior center. If someone feels

satisfied after helping others, they are likely to continue

doing so.

Q: What do you want someone to do when you illustrate

point? Answer Choices: (a) did not understand (b) accepting (c)

make clear (d) understood (e) understanding

T5 Prediction: (d) understood (✗). T5 Explanation: The answer

should be something that you want someone to do when you

illustrate a point. When you illustrate a point, you want the

person to understand what you are trying to say.

GPT3 Prediction: (c) make clear (✗). GPT3 Explanation: The

answer should be something that you want someone to do

when you illustrate a point. When you illustrate a point, you

want the other person to understand what you are trying to

say.

(a) (b) (c)

Figure C.1: T5 and GPT-3 generated explanations with incorrect predictions.

C.2 Explanation examples

Here we further provide three examples as shown in Figure C.1, where both T5 and GPT-3

have incorrect predictions. We observe that in both example (b) and (c), T5 and GPT-3 have

plausible predictions and explanations, although their predictions are different from golden

labels.
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