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Figure 47: The variable importance heat map for the top machine learning models used in the 

prediction of oral cavity cancer. The heat map supplies a visual representation of the relative 

importance of different variables across these models on h2o automl function. ..................... 117 
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Despite diagnostic advancements, the development of reliable methods for assessing 

the risk of cancer occurrence still remains a challenge. Effective risk assessment models can 

improve monitoring and increase change of early detection and intervention. Existing risk 

estimate models rely primarily on data collected from single institute and often lack racial and 

ethnic diversity. In addition, many existing statistical models do not sufficiently incorporate 

inheritance factors.  

With the recent advancements in genetics, big data and artificial intelligence, precision 

medicine can become a reality. In this study we leveraged the available data from the largest 

cancer databases to develop machine learning models for predicting cancer occurrence.   

In this work, we developed a novel framework for extracting recurrence cases from the 

SEER dataset and identified cases within a 5-year and 10-year period. Machine‑learning 

prediction models for oral tongue squamous cell carcinoma (OTSCC) cancer recurrence was 

then developed based on sociodemographic and clinical variables. Among the top trained 

classification models, the Gradient Boosting Machine model performed the best, achieving 
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81.8% accuracy and 97.7% precision for 5‑year prediction. Moreover, 10‑year predictions 

demonstrated 80.0% accuracy and 94.0% precision.  

In addition to the aforementioned model, we also explored a novel strategy that 

incorporates structural variations in germline DNA, specifically chromosomal scale-length 

variation (CSLV), to assess individuals' genetic risk scores. This approach enabled 

comprehensive analysis of copy number variations (CNVs) across large segments of the human 

genome, capturing variations that may contribute to the inheritance of cancer risk. The strategy 

was tested on two unique datasets, UK Biobank and NIH All of Us.  The viability of the approach 

first evaluated by developing a machine learning model for predicting breast cancer recurrence 

based on data from UK-Biobank. The model developed based on CSLV values of 489 patients, all 

of whom were of white race and had experienced breast cancer recurrence, as well as a 

negative class consisting of age-matched and under-sampled patients from 13,478 cases who 

had not experienced breast cancer recurrence. The model showed an average AUC of 0.54 on 

unseen split of data, however, since the model was developed solely based on CSLV values, it 

could not comprehensively evaluate an individual's risk for breast cancer recurrence. 

In order to determine whether CSLV could be used for developing risk assessment 

models for occurrence of cancer, we relied on the NIH All of Us dataset. The developed risk 

estimate model accurately evaluated individuals' risk of developing breast, colorectal, and oral 

cavity cancer solely based on calculated CSLV values. The AUC of the trained model on unseen 

split of data was 0.70, 0.68, and 0.69, respectively. By calculating the odds ratio relative to the 

whole population, we found that patients who were scored by the model in the top 10% were 

14, 12, and 13 times more likely to develop that specific type of cancer. The diversity of the 
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datapoints in the All of Us dataset allowed us to examine our developed model's performance 

for predicting an individual's risk of breast cancer across different races. This analysis provided 

valuable insights into the generalizability of our model among different racial groups. 

In conclusion, the advancements in machine learning, next-generation sequencing, and 

big data have allowed the development of effective risk assessment models for various types of 

cancer. More importantly the techniques introduced in this work are easily translatable to the 

study of other complex diseases.  We hope that this investigation encourages future studies 

that incorporate clinical, sociodemographic and genetic variables for detection and treatment 

of cancer. As healthcare datasets continue to grow in size and computational power continues 

to increase, there is, without a doubt, great promise for significant strides in precision medicine 

and personalized healthcare. 
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CHAPTER 1: INTRODUCTION 

Healthcare research has made significant progress with recent advancements in 

computing technologies. These advancements, including improvements in computational 

power, storage, and data transfer speeds, have opened up new opportunities for conducting 

innovative research in biomedical and healthcare applications.1   

Assessing a patient's risk for complex diseases, such as cancer, can have profound 

implications for disease management, prevention strategies, and optimizing patient outcomes. 

Stratifying patients based on their risk of specific types of cancer enables early detection, 

leading to improved survival rates among high-risk individuals. Additionally, a patient's risk for 

cancer extends beyond the initial diagnosis; assessing the risk of cancer recurrence is crucial for 

optimizing treatment strategies and making informed decisions regarding disease monitoring.2,3  

Several risk estimate models have been developed to predict cancer risk across diverse 

populations.4,5 However, these developed models possess certain limitations that need to be 

addressed. The majority of prior risk assessment tools heavily rely on data from Caucasian 

populations, giving rise to concerns about their accuracy when applied to underrepresented 

communities. Moreover, studies focusing on cancer recurrence statistics are often confined to 

small sample sizes at the institutional level, leading to challenges in predicting recurrence on a 

larger scale. Additionally, some of these models lack the inclusion of inheritance factors in their 

risk determination calculation, posing further limitations. 

For models that have integrated inheritance factors, certain limitations are present. The 

advent of Next Generation Sequencing (NGS) technologies has resulted in an abundance of data 
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at reduced costs. 6 However, the current polygenic risk models primarily rely on Genome-Wide 

Association Studies (GWAS), which predominantly focus on single nucleotide polymorphisms 

(SNPs) in germline samples. 7–9 Unfortunately, these models often overlook the nonlinear 

effects of genetic variants, leading to the common outcome of a panel of associated gene 

mutations or genetic variations in such studies. Consequently, risk scores derived from these 

models tend to inaccurately predict individualized risks for most patients. These scores usually 

report odds ratios (OR) or the area under the curve (AUC) of the receiving operating 

characteristics curve (ROC). For example, in one study the AUC of polygenic risk score for breast 

cancer is reported as 0.68, while in another study for ovarian cancer, the odds ratio for the top 

quantile relative to the entire study population is reported as 3.4 1.77. 4,10,11In light of these 

limitations, our aim is to enhance the predictions of cancer risk score models on an 

individualized basis for most patients. 

With the rise of big data and advancements in NGS technologies, the amount of 

available clinical and genetic data has exponentially increased.  1,12,13In these large, 

geographically, and racially diverse datasets lies the potential to gain a deeper understanding of 

various diseases and the efficacy of treatments, including cancer. We believe that by harnessing 

the power of these extensive databases, we can create an accurate personalized risk estimate 

model. However, the challenge lies in analyzing such vast amounts of unfiltered and often 

disorganized data, hindering the development of effective solutions. The main objective of this 

study is to identify relevant clinical and genetic features and transform them into actionable 

and reliable information that can aid physicians in enhancing screening and prevention 

strategies.  
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Machine learning (ML) has emerged as a game-changer in addressing various medical 

challenges, including the battle against cancer.1 ML algorithms have proven their exceptional 

ability to analyze pertinent information and construct models based on nonlinear effects. In this 

research, our goal is to leverage the available clinical and genetic data from large-scale, 

geographically diverse datasets and develop a risk estimation model for cancer occurrence 

using advanced machine learning algorithms. By employing machine learning classification 

algorithms, we have adopted a novel approach to assess the risk of cancer occurrence, 

overcoming the limitations observed in previous models. Through this endeavor, we aim to 

pave the way for more accurate and personalized cancer risk assessments, ultimately leading to 

improved patient care and better outcomes in the fight against cancer. 

In our initial investigation, we centered our focus on utilizing sociodemographic and 

clinical variables from the SEER dataset to develop a risk estimation model for cancer 

recurrence. We applied this framework to two specific types of cancer: oral tongue squamous 

cell carcinoma (OTSCC) and breast cancer, aiming to predict the 5- and 10-year risk of 

recurrence for these cancers. 

Furthermore, In the second objective of this investigation, we aimed to expand the 

application of risk estimation models and explore the impact of inheritance factors by adopting 

a novel strategy that incorporates the effect of structural variations in germline DNA. We 

focused on chromosomal scale-length variation (CSLV) as a promising approach for assessing 

genetic risk scores and incorporated it into the development of our machine learning models. 

14–16 The CSLV approach allowed us to comprehensively analyze copy number variations (CNVs) 

across large segments of the human genome, enabling us to capture variations that may 
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contribute to the inheritance of cancer risk. 16–19 To test our hypothesis, we leveraged the 

extensive genetic data available in the UK Biobank and All of Us datasets. Utilizing these 

comprehensive resources, we evaluated the viability of our developed models for predicting 

cancer recurrence and assessing the risk of developing specific types of cancer, including breast 

cancer, colon cancer, and oral cavity cancer. Through this investigation, we aimed to provide 

valuable insights into the role of inheritance factors in cancer risk and contribute to the 

development of personalized risk estimation models for improved cancer outcomes. 

By leveraging the resources provided by the SEER, UK Biobank and All of Us datasets, we have 

taken significant steps toward developing more accurate and personalized risk estimation 

models for improved cancer risk prediction and patient care. 
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CHAPTER 2: OBJECTIVES &SPECIFIC AIMS 

Cancer is a complex and devastating disease that continues to pose significant 

challenges in the field of biomedical research.20 Early detection of cancer is significantly 

important in improving patient outcomes and reducing mortality rates. 21 We believe that 

systematic data analysis, filtering, and feature engineering on large cancer databases, coupled 

with advanced machine learning algorithms, can allow development of effective and accurate 

risk assessment models for both cancer occurrence and cancer recurrence. The model can 

provide risk estimates at an individual level and classify patients into high-risk and low-risk 

groups. We aim to leverage this knowledge to improve early detection and prognosis.  

Objective 1: Assessing the Risk of Cancer Recurrence using Clinical and 

Sociodemographic Variables 

Our first aim of this investigation focuses on developing a technique for analyzing the largest 

nationally representative medical registry for cancer, SEER (Surveillance, Epidemiology, and End 

Results), with the goal of developing a reliable, predictive risk determination model, for cancer 

recurrence. For this purpose, we developed a novel algorithm to identify cases of cancer 

recurrence from the SEER database. The developed framework can be applied to identify 

recurrent cases of any type of cancer. For the initial objective of this study, we investigated the 

possibility of developing machine learning models for predicting time-specific recurrence in 

cancer patients at 5 and 10-year intervals. We used commonly available sociodemographic and 

clinical variables as the basis for our models’ features. Specifically, we focused on two types of 

cancer: oral tongue squamous cell carcinoma (OTSCC) and malignant breast tumors. To test the 

performance of the developed model, we calculated sensitivity, precision, accuracy and area 
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under the curve (AUC) of trained ML model on unseen test data set. The model with the best 

performance has been used for further analysis.  

Objective 2: Investigating the Impact of Inheritance Factors on Cancer 

Recurrence Risk 

The results of the investigation on the SEER dataset were very promising, however by 

analyzing the SHAP value and feature importance graph, we found out that the number of prior 

tumors is consistently one of the most influential features on predicting cancer recurrence. This 

recognition raised some new questions, specifically regarding genetic predispositions. We 

hypothesized that inheritance factors may play an important role in the first occurrence and 

recurrence of cancer. To gain a better insight of how genetic factors can be integrated into a 

predictive model for recurrence, we investigated the possibility of developing a model that can 

include inheritance factors as sole features for predicting recurrence of complex diseases such 

as a cancer. Since genetic data was not present in SEER, this specific aim focuses developing a 

risk estimate model for cancer recurrence on available genetic data in UK-Biobank dataset.  

To test our hypothesis, we incorporated genome structural variations at the 

chromosome level as predictive features in our model. For this objective, we utilized germline 

copy number variation (CNV) information from individual patients and transformed it into 

Chromosomal Scale Length Variation (CSLV) values. This approach allowed us to reduce the 

dimensionality of the problem and condense the genomic information into a smaller number of 

parameters. CSLV, which evaluates copy number variations across autosomes chromosomes, 

enabled us to represent the data with only 22 variables, significantly reducing the complexity 

compared to using millions of single nucleotide polymorphisms (SNPs). By employing this 
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approach, we were able to leverage available tools in machine learning algorithms to develop a 

robust predictive model. To achieve this objective, we conducted an analysis of genetic data 

obtained from breast cancer patients enrolled in the UK Biobank study. Our primary focus was 

to identify patients within the UK Biobank who experienced breast cancer recurrence during 

the study period. Using the calculated CSLV numbers as the sole input, we constructed a 

machine learning model specifically tailored to this task. To evaluate the model's performance, 

we compared its prediction results on a completely randomly shuffled dataset. 

Objective 3: Developing Chromosome Scale Length Variability-Based Genetic 

Risk Scores for Predicting Cancer Occurrence 

While our initial objectives focused on predicting recurrence, in this effort we would like 

to take a step further and delve deeper to explore the possibility of predicting the actual 

occurrence of cancer. Our goal is to leverage germline genetic information to develop a 

predictive model for assessing the risk of cancer occurrence. By identifying individuals who are 

at higher risk, we can potentially enhance cancer prevention efforts by targeting screening and 

other preventive strategies towards those who are most likely to benefit.  

In line with our previous objective, we employ genome structural variations at the 

chromosomal level (CSLV) as a predictive parameter for model development. For our final 

objective in this investigation, we have tested our hypothesis using recently released genetic 

data from the NIH All of Us study. The inclusion of this dataset is particularly valuable as it 

encompasses diverse groups that have been historically underrepresented in biomedical 

datasets. This presents a unique opportunity to develop an accurate and personalized risk 

estimation tool for cancer. In pursuit of this objective, we have explored the development of 
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various machine learning models for cancer risk assessment at different primary sites. These 

models have been evaluated using various metrics to analyze their performance. By leveraging 

the dataset from the NIH All of Us study, our goal is to improve the inclusivity and effectiveness 

of our predictive models for assessing cancer risk. This research seeks to contribute to the 

advancement of personalized medicine and improve outcomes in cancer prevention and early 

detection. 
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CHAPTER 3: BACKGROUND 

Cancer Statistics  

Cancer is the second leading cause of death after heart disease since 1970 in the United States. 

It is responsible for one in eight deaths worldwide. In 2018 there were more than 18 million 

new cases and 9.5 million cancer-related deaths worldwide. Based on incidence data collected 

by the Surveillance, Epidemiology, and End Results program; there were 1,898,160 new cancer 

cases and around 600’000 cancer deaths in the United States in 2020. 22–24Due to the 

advancements in early diagnosis and treatment options, the cancer death rate has fallen from 

its peak in 1991 through 2018 after increasing for most of the 20th century.  Figure 1 illustrates 

the trend in cancer incidence and mortality rates by sex between 1975-2018. 23 

 

Cancer encompasses more than 100 different diseases with diverse risk factors and 

epidemiology. It originates from most of the cell types and organs of the human body, which 

can invade beyond normal tissue boundaries due to the unrestrained proliferation of cells and 

metastasize to distinct organs. 25 

Figure 1: Trends in cancer incidences and mortality rates (1975-2018) in United States.  
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Cancer Recurrence 

Cancer recurrence is a prevalent and challenging issue that significantly impacts both 

patients' quality of life and healthcare systems.26Typically, cancer recurrence is defined as the 

return of cancer after a period of undetectability.  27It can be classified into three main 

categories based on its location and extent: local recurrence, regional recurrence, and distant 

recurrence. Cancer recurrence is a complex problem and may be due to numerous factors such 

as, type of the cancer, stage of the cancer, histology of a tumor genetic factors, age, and types 

of treatment.  The complexity of cancer recurrence necessitates a thorough understanding of 

its underlying mechanisms and risk factors. For instance, studies have demonstrated that 

women with estrogen receptor-positive primary breast cancer generally have a higher rate of 

cancer recurrence, even after 5 years of the initial diagnosis, compared to those with estrogen 

receptor-negative disease.28 

The early detection of cancer is crucial for improving patient survival and quality of 

life.22,23 Studies have shown that patients diagnosed with cancer at earlier stages (stage I and 

stage II) have a higher chance of survival compared to those diagnosed at later stages (stages 

III-IV). Late-stage diagnosis often necessitates more intensive and invasive treatments, leading 

to longer-lasting side effects and poorer outcomes.  29–31Unfortunately, the availability of 

limited early detection tools has contributed to high rates of late-stage diagnosis, resulting in 

suboptimal patient outcomes. Frequent screening is currently the main approach for early 

cancer detection. However, it is essential to ensure that screening programs are effective and 

yield meaningful results before implementation. Some screening tests may produce false 

positive results, leading to unnecessary invasive procedures and causing anxiety for both 

patients and healthcare providers. Moreover, many screening tests are expensive, placing a 

significant financial burden on individuals from lower economic classes. 32,33 
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Cancer Risk Estimate Models and Their Limitations  

Indeed, there is a crucial need for an individualized and effective risk estimation model that can 

accurately classify individuals into high-risk and low-risk groups. Such a model would provide 

precise risk estimates tailored to each individual, enabling early detection of cancer and 

significantly improving patient outcomes. 4,34 By identifying high-risk individuals, appropriate 

interventions can be implemented promptly, leading to better treatment strategies and 

increased chances of survival. Additionally, the utilization of personalized risk estimation 

models would reduce the reliance on current generalized screening tools, which often produce 

false positive results and cause unnecessary side effects and anxiety for patients. 35By 

embracing advanced technologies and incorporating comprehensive genetic and clinical data, 

these models can pave the way for a new era of precision medicine, where each patient's 

unique risk profile informs their personalized care plan. 

 Artificial Intelligence  

Recent advancements in computer science and data technologies have opened up 

unique opportunities for addressing various medical challenges. The emergence of big data, 

characterized by its vast variety, high volume, and rapid velocity, provides access to large-scale, 

geographically diverse datasets that hold the potential to offer deeper insights into the causes 

and outcomes of numerous medical conditions, including cancer.  26  36However, effectively 

interpreting and extracting meaningful insights from the massive amounts of data can be a 

daunting task. Analyzing hundreds of thousands of inputs and finding connections between 

seemingly unrelated information presents a significant challenge. 37 Nonetheless, with the aid 

of advanced machine learning algorithms and data analytics, we can unlock valuable knowledge 

and patterns from these datasets, ultimately leading to better understanding, improved 

diagnostics, and more personalized approaches in medical research and patient care. 
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Artificial Intelligence (AI), along with its subset, machine learning, is at the forefront of 

understanding and analyzing the vast amount of data that is being generated across various 

domains, including healthcare. AI represents the integration of human-like intelligence into 

machines, enabling them to emulate human decision-making and logic.38 

Machine learning, as a subset of AI, was first introduced by Arthur Samuel in the late 

1950s. Samuel, a pioneer in computer gaming and AI, used this concept to train computers to 

play checkers without any direct human intervention. The core focus of machine learning is to 

empower machines with the ability to learn from data, recognize patterns, and make informed 

decisions on their own. The foundation for artificial neural networks was laid in 1943 by 

McCulloch and Pitts, who conceptualized a theoretical model based on the connections and 

communication between human neurons. However, due to the limited performance 

capabilities of the systems at that time, these ideas remained dormant for a while. 1,39 

Machine learning (ML) has found extensive applications in healthcare, with three main 

areas of focus. Firstly, ML is applied to medical imaging, including MRI, CT, and PET scans, to 

enhance diagnostic accuracy and efficiency. Secondly, ML is used for natural language 

processing of medical documents, enabling the extraction of valuable information from vast 

amounts of unstructured data. Lastly, ML is employed in genetics to predict diseases and gain 

deeper insights into their underlying mechanisms.1 

ML can be categorized into two main learning models: supervised and unsupervised 

learning. More recently, a third learning method called reinforcement learning has been 

introduced, which some literature considers as a distinct third category. These diverse ML 
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approaches have opened up new avenues for addressing complex healthcare challenges and 

improving patient outcomes.  40,41 

Supervised learning  

In supervised learning, a model makes predictions based on labeled data, where the data 

consists of one or more inputs or features and a corresponding "labeled" output or target 

variable to be predicted. The data is typically split into training and test datasets. During the 

training step, the model learns from the labeled data to improve its predictions on new, unseen 

data in the test dataset. 

This learning method is commonly used in classification and regression algorithms, 

including random forests (RF), decision trees (DT), Naïve Bayes models, linear and logistic 

regression, support vector machines (SVM), and neural networks. Neural networks can also be 

trained through supervised learning.42 The schematic of the supervised learning method is 

shown in   Error! Reference source not found..  

Unsupervised learning 

In unsupervised learning, we do not have labeled data or known output. Instead, the 

Figure 2: Schematic of supervised learning method 
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model identifies patterns and relationships in the input data and clusters the data based on 

their inherent characteristics found within the dataset. The goal is to group similar data points 

together based on their similarities, without any prior knowledge of the specific categories or 

labels. 

Unsupervised learning is particularly useful when we want to explore the structure and 

patterns within the data, discover hidden relationships, or gain insights into the underlying 

distribution of the dataset. Clustering algorithms, such as k-means clustering and hierarchical 

clustering, are commonly used in unsupervised learning to group data points into clusters based 

on their similarities.43 

Reinforcement learning 

 

In reinforcement learning, the model learns by receiving rewards or penalties for its previous 

actions in an environment. The goal of the model is to adopt the optimal behavior that 

maximizes the total cumulative reward over time. 

In this learning method, the model interacts with the environment and takes actions to achieve 

a specific goal. After each action, the model receives feedback in the form of rewards or 

penalties, indicating the quality of its decision. Through trial and error, the model learns to 

associate actions with the expected rewards and adjusts its strategy accordingly to maximize 

the total reward. 

Reinforcement learning is commonly used in scenarios where the optimal decision-making 

strategy is not explicitly known, and the model needs to learn from its interactions with the 

environment to improve its performance over time.44 
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Machine Learning Algorithms 

There are several machine learning algorithms that are mainly used for classification 

problems. In this section we will focus on algorithms that have been utilized in our model 

development. Since the focus of our study is developing a classification model to identify high 

risk patients from low-risk patients we only utilized algorithms that work best on binary 

classification problems.  

Decision tree 

Most of these algorithms that have been used for this study are developed based on a 

decision tree. Decision tree algorithms are a popular and intuitive machine learning technique 

used for both classification and regression tasks. The algorithm works by recursively 

partitioning the data into subsets based on the values of input features, creating a tree-like 

structure where each internal node represents a decision based on a feature, and each leaf 

node corresponds to a class label or a regression output. Decision trees are easy to interpret 

and visualize, making them valuable for understanding the underlying decision-making process, 

Figure 3. 



16 
 
 

However, they can be prone to overfitting, where the model becomes too complex and 

fails to generalize well to new data. To address this, ensemble methods like Random Forests 

and Gradient Boosting are commonly used to combine multiple decision trees and improve 

overall performance.45 

 

Gradient Boosting Machine 

 

Gradient Boosting Machine (GBM) is an ensemble learning technique that combines the 

predictions from a series of weak classification trees to generate a strong predictive model. 

Unlike other ensemble methods that use equal-weighted trees, GBM employs a sequential 

approach where each tree takes into account the errors made by its predecessors and builds 

upon them. This step-by-step process gradually moves towards the best fit, descending to 

minimize the error (measured by the minimum squared loss function) and effectively handling 

imbalanced classes. However, one of the potential drawbacks of GBM is the risk of overfitting, 

which can be addressed through cross-validation. By verifying results on different randomly 

Figure 3: Constructing decision tree schematic 
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selected datasets and utilizing leave-out testing for final prediction, the risk of overfitting is 

mitigated, ensuring a more reliable and robust model.46 

 

Distributed Random Forest 

 

Distributed Random Forest is a potent algorithm used for solving classification and 

regression problems. It consists of multiple weak decision trees that are independently 

ensembled. The predictions made by these individual trees are then averaged to obtain a more 

accurate prediction for a class or numeric value. One of the strengths of Random Forest is its 

ability to include hundreds or even thousands of trees, which enhances its performance on 

noisy data. As the number of trees increases, the variance is reduced, making the model more 

robust. This feature makes Distributed Random Forest particularly effective in handling noisy 

data, making it well-suited for tasks involving multi-class objects and bioinformatics, where 

statistical noise is prevalent. 47 

Generalized Linear Model  

 

The Generalized Linear Model (GLM) is a sophisticated statistical modeling approach 

that encompasses several other models, such as Linear Regression, Logistic Regression, and 

Poisson Regression. GLM is versatile and can be applied to both classification and regression 

problems. To use GLM effectively, the data should meet certain criteria, such as being random, 

independent, and balanced. While the outcome or labeled variable does not necessarily need 

to follow a normal distribution, it should belong to an exponential family, which includes 

distributions like binomial, Poisson, and multinomial distributions. GLM provides a flexible 
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framework for analyzing various types of data and is widely used in statistical modeling and 

data analysis.48 

Deep Learning 

 

An Artificial Neural Network (ANN) is a powerful algorithm composed of multiple layers and 

nodes that simulate the behavior of biological neurons. ANN has found extensive application in 

disease genomics research. Deep learning, a subset of ANN, is built on a multilayer feedforward 

architecture that can include a large number of hidden layers. The training of the feedforward 

ANN is achieved through stochastic gradient descent using backpropagation. Despite its 

effectiveness, the downside of ANN lies in the complexity introduced by the number of hidden 

layers, making it challenging to interpret and understand the model fully. However, ANN tends 

to perform exceptionally well with large-sized datasets, making it a valuable tool for processing 

and analyzing vast amounts of genomic data.49 

Stacked Ensemble Learning 

 

The stacked ensemble method is based on the concept of leveraging multiple machine learning 

algorithms to enhance the overall performance of the final model. It achieves this by using a 

process called stacking, where predictions from various machine learning algorithms are 

combined to find the optimal combination. The meta-algorithm, which forms the final model, is 

constructed from multiple base algorithms, such as Gradient Boosting Machine (GBM), 

Distributed Random Forest (DRF), and others. By blending the predictions of these diverse 

algorithms, the stacked ensemble method can significantly improve the model's predictive 

capabilities. 50 
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Application of Machine Learning in Cancer Research 

Over the past decade, scientific efforts have demonstrated the utility of the advent rise 

of available big data in health care and machine learning in guiding cancer diagnosis and 

management. 8,51 Specifically, many studies have applied advanced machine learning 

techniques and statistical models for predicting tumor recurrence, patient survival and 

developing data-driven risk estimate models in the context of various cancers. 14,52–57 Recently, 

Alabi et al. and Karadaghy et al. showed the capacity for ML to elucidate models for predicting 

recurrence and survival, respectively, in oral tongue squamous cell carcinoma patients. 58,59 In 

another work done by Ahmad et al. and Tseng et al. machine learning models were developed 

for predicting 2-year risk of breast cancer recurrence and identifying risk factors of ovarian 

cancer recurrence respectively. 60,61  

However, as with many of their predecessors, these studies were limited by the small 

samples of patients from which their models were trained. Many of these studies were 

conducted using institutional-level databases, which often lack geographical, racial, and ethnic 

diversity.58,60 Even studies developed based on big data may not be medically applicable, as 

they often fail to include the time interval between the first and second diagnosis in their 

analysis. Additionally, some of these studies are based on very specific clinical variables, limiting 

their generalizability to broader populations.58,62  

On the other side, current risk studies for cancer prediction, have incorporated inherited 

factors in a very limited way, looking mainly at cancers caused by single mutations. 63–65 Even 

the most popular risk assessment models for cancer, such as Gail model for breast cancer are 
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developed based on data from the Caucasians and they have limitation on the way that 

incorporate family histories and inheritance factors.66,67  

The current challenge in cancer risk estimate models is to expand them into scalable models 

that provide accurate risk estimates for individuals. With advancements in technology, there is 

a vast and diverse biomedical dataset available, allowing for inclusion of data from 

underrepresented communities to enhance predictions for different backgrounds and ethnic 

groups. With application of these available data and efficient feature selection we are aiming to 

improve early cancer diagnosis and increase survival rates. A novel strategy involving 

inheritance factors, focusing on structural level differences in chromosomes rather than single 

nucleotide mutations, will address limitations of current genetic score models. By utilizing 

advanced machine learning algorithms and implementing this strategy in feature selection, we 

can better understand diseases caused by combinations of mutations. Developing such a risk 

estimate model can guide disease management, optimize patient outcomes, and significantly 

impact early cancer detection and preventative treatments. These models can have a 

significance impact in early diagnosis of cancer and will enable medical community to look 

further preventative treatments.  
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CHAPTER 4:  ASSESSING THE RISK OF CANCER RECURRENCE USING 

CLINICAL AND SOCIODEMOGRAPHIC VARIABLES 

In recent years, the adoption of machine learning (ML) in the medical field has brought 

unique perspectives and solutions to various medical challenges. Notably, ML has been applied 

in tumor diagnosis, tumor recurrence, and patient survival in the context of various cancers. 

However, studies utilizing ML for predicting tumor diagnosis, recurrence, and patient survival 

have encountered limitations such as small sample sizes, limited applicability to specific 

cohorts, low prediction accuracy, and lack of dataset diversity. 1,57,58,68  

The small sample sizes often result in models that may not generalize well to broader 

patient populations, potentially leading to biased or unreliable predictions. Furthermore, the 

limited applicability of these models to specific cohorts or populations may hinder their 

widespread adoption in clinical practice. 

Low accuracy in predictions is another challenge faced by many of these machine 

learning-based models. The complexity and heterogeneity of cancer make it challenging to 

achieve consistently high accuracy in predicting tumor occurrence and patient outcomes. 

Despite significant advancements in cancer diagnostics, reliable prognostic systems for 

assessing the risk of cancer occurrence remain a challenge due to the limitations mentioned 

earlier. As a result, the development of robust and generalizable prognostic models has been 

hindered. Prognostic systems are crucial for providing personalized risk assessments to 

patients, guiding treatment decisions, and ultimately improving patient outcomes. Moreover, 

there have been fewer studies focusing on predicting cancer recurrence.  
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For our first aim in this investigation, we concentrated on leveraging data from one of 

the largest cancer databases to overcome the limitations associated with recent studies. By 

utilizing this vast dataset, we aim to pave the way for more precise and personalized cancer risk 

assessment for predicting recurrence, ultimately leading to better patient care and improved 

cancer outcomes.  

4.1: SEER Dataset: Identifying Cancer Recurrence Cases. 

The Surveillance, Epidemiology, and End Results (SEER) program, in particular, provides 

one of the largest cancer databases in the United States and represents nearly 48% of the 

national population. The 2000-2018 SEER database is a deidentified registry that reports cancer 

incidence and survival data of the national population, serving as one of the most 

comprehensive efforts for tracking oncological cases within the U.S. Due to the massive scale of 

available data, this work utilized SEER as its target database. 69,70 

To identify patients with specific cancer recurrence throughout the study period a novel 

algorithm was implemented.  A unique framework to leverage the expansive SEER database to 

generate highly representative prediction models for cancer recurrence.  In this strategy, a new 

approach was implemented for extracting cases from the SEER database with the goal of 

identifying cases with recurrence of cancer within 5-year and 10-year periods. As further 

detailed in the sections below, SEER*Stat version 8.3.9 (Surveillance Research Program, 

National Cancer Institute) was used to extract data from 18 SEER registries from 2000 to 2018. 
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Each individual case in the SEER dataset was defined by a unique patient identification 

number. Cases were first grouped according to their patient IDs, and subsequently sorted 

within their groups using their sequence numbers. Next, a series of validations were performed 

for all patients and their respective cases. These validations focused on minimizing errors in 

later classification steps by eliminating conditions where the “state of recurrence” (recurrence 

= true/false) could not be determined with absolute confidence based on the available SEER 

data. All cases corresponding to patients with missing or unknown values for any variable 

critical for analysis, including Total Number of Malignant Tumors, Sequence Number, Survival 

Months, and Year of Diagnosis, were filtered out. In the final step of the algorithm, we 

computed the target outcome variable, “Will Recure”. This variable, was computed for each 

Figure 4: Schematic of developed algorithm to identify patients who have had cancer recurrence in SEER database 
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individual case, defining whether a case would recure in locoregional sites or the same primary 

site within the defined period of time (5 and 10 years). A non-recurrence was defined as a 

patient that had only one primary tumor and survived longer than the target window (e.g., 5 

years). Conversely, if there was another recurrence of the cancer within the target window and 

in the same region as the initial tumor, then the case was marked as “Will Recur” = true. It is 

worth noting that, based on the algorithm above, the last case for a patient with multiple 

primary tumors (i.e., multiple case) would be marked as “will not recur” if the patient survived 

longer than the target window without another recurrence of cancer. This is critical as it tends 

to indicate a successful treatment. Figure 4 illustrates the schematic of developed algorithm 

used to identify recurrence cases. We applied this algorithm on the all the primary sites that 

listed in SEER database and calculated the recurrence rate for each primary sites, Figure 5.  

As a proof of concept, we chose to develop a recurrence risk estimation machine learning 

Figure 5:Recurrence rate vs primary sites on SEER database.  
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model for two prevalent types of cancer: oral tongue squamous cell carcinoma, one of the most 

common neoplasms of the head and neck, and breast cancer, the most common type of cancer 

in females. 

4.2: Machine Learning Model Development Using H2O.ai 

 

We utilized the H2O AI platform (H2O.ai, Inc, Mountain View, CA) in conjunction with R 

statistical computing environment (version 3.6.1; The R Foundation for Statistical Computing) to 

train and test numerous machine learning models.  Our primary objective was to identify the 

most effective model for predicting locoregional recurrence of OTSCC and local recurrence of 

malignant breast tumors. To ensure proper validation and testing, the dataset was split into 

training (80%) and test (20%) sets. Employing H2O's Automl function, we explored various 

machine learning algorithms and assessed different hyperparameters for each algorithm, Figure 

6.  
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Due to the unbalanced nature of the dataset (i.e., many fewer recurrence cases 

compared to non-recurrence), two approaches for balancing data were evaluated. The first was 

oversampling, which involved synthesizing new examples from the existing samples for the 

minority class. 71 The downside of oversampling is that it introduces a risk of overfitting and/or 

introducing mathematically valid, yet logically non-sensical sample sets. The second approach 

was under-sampling, which involved randomly selecting examples from the majority class to 

remove from the training dataset. In general, under-sampling is the preferred method, 

particularly for large datasets. 72,73 In this case, the application of the massive SEER data set 

Figure 6: Schematic of data processing and model development. The model development process, data cleaning, and machine 
learning steps in R studio and H2O.ai tool. 
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helped make utilization of the under-sampling approach a reality, further strengthening the 

accuracy of the final model.  

Using the H2O Automl function, we trained and evaluated various machine learning 

algorithms, including gradient boosting machine (GBM), distributed random forest (DRF), deep 

learning, logistic regression, and generalized linear model (GLM). To prevent overfitting during 

the training phase, we initially assessed the performance of the models using a 5-fold cross-

validation technique. The trained models were ranked based on their AUC values, and we 

selected the top four models for further evaluation on an unseen data split, test split. 

The evaluation metrics, including accuracy, precision, recall (sensitivity), and area under 

the curve (AUC) of the receiver operating characteristic (ROC), were computed for the top four 

predictive models using a separate 20% test set. The method to compute these 

hyperparameters is outlined in Equations 1-3. 

 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3: 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

H2O was executed with a 5-fold cross validation and configured for a maximum runtime 

of 600 seconds. For each ML model, 5 different runs were executed, and the average 

performances of the top four ML models, were compared.  
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4.3: Prediction of Local Regional Recurrence in Oral Tongue Squamous Cell 

Carcinoma 

Oral tongue squamous cell carcinoma (OTSCC) is a common head and neck neoplasm 

that accounts for approximately 1% of new cancer cases diagnosed in the United States each 

year 50. Despite advancements in cancer therapeutics and surgical techniques, the worldwide 

incidence of OTSCC is on the rise, Figure 7.  Adequate OTSCC management is still a challenge, 

with patient 5-year survival rates averaging at about 50%. 68,74–76 

 

 

Figure 7: Age adjusted rate of OTSCC between 1975-2019 
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Although significant progress has been made in cancer diagnostics and treatments, the 

prognosis of OTSCC is still poor, with many patients experiencing cancer recurrence and 

surviving less than 10 years after their initial diagnoses.77,78 With recent studies reporting 

recurrence rates as high as 37.4%, further investigations aimed at optimizing treatment 

regimens and post-therapy follow-up will be critical to enhancing patient outcomes.79,80 

A total of 136,826 cases were extracted from SEER*Stat version 8.3.9 which represented 

130,979 unique patients. Two models were trained, one focusing on locoregional recurrence of 

OTSCC in a 5-year period and the other, a 10-year period. In the 5-year analysis, 14,530 patients 

met the inclusion criteria, of which 657 suffered from a locoregional recurrence.  For the 10-

year analysis, 7,100 patients met the inclusion criteria, of which 971 experienced a locoregional 

recurrence. It is worth noting that only patients alive within the follow-up period (5- or 10-

years) were considered in our analyses.  Of note, we observed a recurrence rate of ~ 5%, which 

was lower than the 16-33% recurrence rate that has been previously reported 81–83. This was 

due to the stringent exclusion criteria that we applied, which required that patients with certain 

missing or unknown case information be excluded from analysis. 

The database was queried for patients diagnosed with OTSCC using the International 

Classification of Disease for Oncology, 3rd Edition (ICD-O-3) topography codes for the oral 

tongue (C01.9-C02.9) and histology/behavior codes for squamous cell carcinoma (SCC; 8010/3, 

8020/3, 8021/3, 8070/3, 8071/3, 8072/3, 8073/3, 8074/3, 8082/3). The following demographic 

and clinical variables of interest were used for training our machine learning models age, sex, 

race, marital status, year of diagnosis, number of prior tumors, tumor site (e.g., ventral surface 

of tongue, dorsal surface of tongue, border of tongue), histology, tumor grade, T/N/M stage, 
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and administered treatments (i.e., surgery, radiation, chemotherapy). To account for variant 

specific OTSCC behavior and the influence of p16 human papillomavirus (HPV) status, histology 

was stratified into the following prognostic categories: nonkeratinizing SCC with maturation, 

undifferentiated nonkeratinizing SCC, differentiated nonkeratinizing SCC, and keratinizing SCC. 

84 Furthermore, each case contained a sequence number that provided information on the 

number of all reportable primary tumors that had occurred over the lifetime of a patient. This 

variable was used to calculate the “Number of prior tumors”, which was defined as the 

sequence number minus one. All cases with unknown or missing sociodemographic or outcome 

variables were excluded. Table 1shows a summary of predictors that were used for training the 

machine learning model. By using simple and commonly acquired prognostic markers as the 

basis of our models, we enabled our system to be more accessible and easily adoptable by a 

wide range of practitioners. 
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Variable 
5-Year (N = 14995) 10-Year (N=7342) 

No. (%) No. (%) 
Mean Age, yrs. (SD) 58.4 (11.5) 56.2 (11.5) 
Sex     
    Male 10,636 (72.0) 4,075 (67.7) 
    Female 4,129 (28.0) 1,943 (32.3) 
Race     
    White 13261 (89.8) 5991 (90.1) 
    Black 706 (4.8) 270 (4.1) 
    Asian 798 (5.4) 387 (5.8) 
Marital Status     
    Single 5056 (34.2) 2040 (30.7) 
    Married 9709 (65.8) 4608 (69.3) 
Number of Prior Tumors     

0 14051 (95.2) 6324 (95.1) 
1 496 (3.4) 232 (3.5) 
2 161 (1.1) 77 (1.2) 
3 46 (0.3) 14 (0.2) 
4+ 11 (0.1) 1 (0.0) 

Histology     
    Nonkeratinizing SCC with maturation 11468 (77.7) 5276 (79.4) 
    Undifferentiated nonkeratinizing SCC 86 (0.6) 39 (1.0) 
    Differentiated nonkeratinizing SCC 824 (5.6) 288 (4.3) 
    Keratinizing SCC 2286 (15.5) 993 (15.0) 
    SCC NOS 101 (0.7) 52 (1.0) 
Tumor Grade     
    Well-differentiated 2262 (18.8) 1067 (19.7) 
    Moderately differentiated  5752 (47.8) 2585 (47.6) 
    Poorly differentiated 3896 (32.4) 1710 (31.5) 
    Undifferentiated 117 (1.0) 64 (1.2) 
T-Stage     
   T1 4443 (46.7) 1594 (50.0) 
   T2 3274 (34.4) 1109 (34.8) 
   T3 1013 (10.6) 262 (8.2) 
   T4 784 (8.2) 221 (6.9) 
N-Stage     
   N0 5110 (45.5) 1918 (48.3) 
   N1 1968 (17.5) 764 (19.2) 
   N2 3847 (34.3) 1187 (29.9) 
   N3 296 (2.6) 102 (2.6) 
M-Stage     
   M0 11200 (99.3) 3913 (99.2) 
   M1 75 (0.7) 30 (0.8) 
Surgery     
   Yes 6125 (41.8) 2506 (37.5) 
   No 8519 (58.2) 4185 (62.5) 
Radiation     
   Yes 8965 (60.7) 3811 (57.3) 
   No 5800 (39.3) 2837 (42.7) 
Chemotherapy     
   Yes 6598 (44.7) 2632 (39.6) 
   No 8167 (55.3) 4016 (60.4) 

SCC: Squamous Cell Carcinoma; NOS: Not Otherwise Specified 
Values are based on the number of cases. 

Table 1:Summary of the sociodemographic and clinical predictors used in developing the ML models for predicting OTSCC 
recurrence. 
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To identify the best predictive model, the AUC of the ROC curve was used as a metric to 

compare the performance of four trained machine learning algorithms, Generalized Linear 

Model (GLM), Gradient Boosting Machine (GBM), Distributed Random Forest (DRF), and deep 

learning (artificial neural network), Error! Reference source not found. on test split. These 

models were ranked at the top due to their superior performance on 5-fold cross-validation 

during the training process in the H2O AutoML function compared with other trained 

algorithms. 

 

 

 

 
Figure 8:  ROC plots of four developed ML models. Performance of Gradient Boosting Machine (GBM),Generalized Linear Model (GLM) , 
Distributed Random Forest (DRF), Deep learning.  
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The performance metrices of top four ML model are shown and compared in Table 2. GBM 

classification model with AUC of 0.75 (0.01) and 0.74 (0.02) outperformed all other models for 

both 5-year prediction and 10-year prediction respectively. Of note, the accuracy, recall, and 

precision of the model can be calculated at different thresholds within the graph of the ROC 

curve. Thus, the optimum threshold for each model can vary depending on the definition and 

application of the classification problem. For example, a screening tool may require high recall 

and precision. For this specific application, we focused on using the model as a screening tool 

and, therefore, aimed to increase recall without major sacrifice of accuracy however this 

strategy may vary based on the application of the model. Therefore, the best overall 

performance for predicting OTSCC recurrence was achieved by the GBM model with 81.8% 

Prediction 

Window 

Classification 

Model 
AUC (SD) Accuracy % (95% CI) Recall % (SD) Precision % (SD) 

5 Years 

 GBM 0.75 (0.01) 81.8 (79.7-83.9) 83.0 (0.02) 97.7 (0.002) 
GLM 0.73 (0.02) 77.4 ((74.5-80.2) 78.1 (0.03) 98.0 (0.002) 

DRF 0.73 (0.03) 72.8 (69.8-75.7)) 73.3 (0.02) 97.8 (0.003) 

Deep Learning 0.70 (0.04) 82.1 (74.7-89.6) 83.5 (0.06) 97.6 (0.002) 

10 Years 

GBM 0.74 (0.02) 80.0 [75.3, 84.1] 82.8 (0.04) 94.0 (0.004) 

GLM 0.73 (0.02) 78.4 [74.2, 82.7] 81.0 (0.04) 94.3 (0.002) 

Deep Learning  0.71 (0.02) 74.4 [70.1, 78.8] 76.6 (0.04) 94.0 (0.002) 

DRF 0.69 (0.01) 70.6 [68.0, 73.3] 72.2 (0.02) 93.8 (0.004) 

AUC: Area Under Curve; GBM: Gradient Boosting Machine; GLM: Generalized Linear Model; DRF: Distributed Random Forest 
Performance metrics were reported as the average of 5 runs. 

Table 2: Performance metrics of the top 4 machine learning models for predicting 5- and 10-year cancer recurrence. The GBM 
model exhibited the highest AUC and accuracy for both prediction windows. 
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accuracy, 83.0% recall, and 97.7 % precision for 5-year prediction, and 80.0% accuracy, 82.8% 

recall, and 94.0% accuracy for 10-year prediction.   

In addition to performance metrics of the model, we were also interested in assessing 

the impact of each individual feature on the predictive outcome.  To achieve this, we applied 

two different methods to the best predictive model, GBM, which is a tree-based model. The 

first method involved calculating the GBM model's variable importance, which measures and 

normalizes the relative influence of each feature. The values are presented in Figure 9. This 

importance is determined by evaluating whether a variable was selected for splitting during the 

tree-building process and how much the squared error improved or decreased as a result over 

all trees. 45 

Figure 9:  The relative influence of each feature on model's predictability for a) 5-year prediction and b) 10-year prediction of OTSCC 
recurrence. 
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In the second method, the Shapley Additive exPlanations contribution plot (SHAP) was 

utilized to illustrate how the GBM model arrived at its results, Figure 10. This method ranked 

the importance of each feature in the GBM model based on all the possible pairs of coalitions 

between predictors of the model, with higher importance scores indicating a higher 

contribution to the model’s predictive ability (from top to bottom). 

 

As shown by both approaches, the number of prior tumors, age, histology, 

chemotherapy and tumor site were the most important factors in determining the probability 

of locoregional recurrence of OTSCC. 

Figure 10: The Shapley Additive exPlanations contribution plots (SHAP) for the GBM model. SHAP plots of (a) 5-year and (b) 10-year prediction 
models. All pairs of coalitions between features of ML model were calculated and feature’s importance were ranked from top to bottom. 
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In the first aim of this chapter, we used our novel framework for identifying cases of 

OTSCC recurrence from the SEER dataset. We demonstrated the utility of this framework by 

developing ML models that predicted 5- and 10-year cancer recurrence with high accuracy and 

precision using a large population-based cohort of OTSCC patients. Specifically, of the four ML 

algorithms that we employed, the GBM-based model showed the most promise, demonstrating 

accuracies of 82% and 80% for 5-year and 10-year recurrence, respectively. Although we 

observed a low recurrence rate, we do not anticipate this lower prevalence to have influenced 

our findings. Unlike traditional regression techniques that compute likelihood or risk scores 

based on a sample's observed event rate, our machine learning model was trained using an 

under-sampling approach on the majority class (non-recurrence) to be tolerant of deviations 

from the true population prevalence rates. 

By developing a predictive screening tool, treatment teams can be better informed of a 

patient’s risk for cancer recurrence and modify their management strategy accordingly. 

Additionally, the mortality rate in recurrent cases of OTSCC is highly dependent on the time of 

diagnosis, with early detection of recurrence being associated with reduced mortality.85,86 By 

using our highly representative and sensitive classification models, clinicians can be better 

informed of which patients are at higher risk for OTSCC recurrence and cater their management 

and follow-up to ensure timely diagnosis if a recurrence were to occur. 

In our analysis, we used SHAP and feature’s importance calculation to explain the 

predictions made by the Gradient Boosting model and interpret the tangled nonlinear 

relationships between features and local regional recurrence of OTSCC. Consequently, we 

found that the number of prior tumors, patient age, tumor site, chemotherapy, tumor histology 
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and tumor grade were consistently the most influential features in predicting cancer 

recurrence. Thus, by developing an artificial intelligence (AI) model in the context of a highly 

representative population for cancer recurrence and analyzing the nonlinear effect of features 

by the SHAP method, we found some of the features to be more prognostic compared to those 

that have been traditionally considered major prognostic factors in oral tongue cancer 

recurrence, such as lymphatic invasion or T-stage. 82,83 Importantly, these findings do not 

discount the prognostic importance of previously reported clinical factors, but rather highlights 

certain factors that may be generally considered highly prognostic across a more diverse and 

heterogeneous patient population. 

In a recent institutional study, Alabi et al. similarly demonstrated success in predicting 

locoregional recurrence in OTSCC. 58However, despite their impressive results, their models 

were trained using only 217 cases of early-stage OTSCC, which largely limited their system’s 

applicability to more advanced tumors and its external validity against the general population, 

where the spectrum of disease behavior and progression is much more diverse than what is 

experienced at a single institution. Interestingly, the authors found that certain specialized 

histopathological parameters, such as lymphocyte host response, pattern of invasion, depth of 

invasion, and perineural invasion, were particularly important features in their prediction 

models. Owing to the limitations of the SEER database, our models were trained without using 

these clinical features. While the lack of dependence on these specialized histopathological 

parameters expanded the accessibility of our system to a broader range of clinical facilities 

where such information may not be readily available, consideration of these features may be 
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warranted in future generations of ML models where higher prediction accuracy in lieu of 

increased accessibility is desired. 

Earlier research has highlighted the importance of genetic predisposition in head and 

neck squamous cell carcinoma (HNSCC).87,88 Moreover, genetic and environmental factors, 

including a history of prior head and neck cancer, have been shown to be associated with 

recurrence of HNSCC.89,90 The influence of patient age on prognosis has also been previously 

established. In a large retrospective study of OTSCC patients, Mukdad et al. demonstrated that 

older patients were associated with more advanced disease and worse survival.68 It was 

hypothesized that this worse prognosis was partly due to a tendency for clinicians to more 

aggressively treated younger patients with multimodality therapy. Interestingly, younger 

patients were also observed to less frequently present with metastatic lymph nodes. Indeed, 

survival and recurrence rates have been reported to be largely influenced by the presence of 

nodal disease.91As such, cancer recurrence at a regional site can be suggestive of more 

aggressive disease with tendency to recur following treatment. In a cohort study, Wolfer et al. 

suggested that aggressive neoplastic behavior is strongly dictated by tumor histology.92 

Specifically, the degree of keratinization in oral squamous cell carcinoma was demonstrated to 

be an important prognostic factor for recurrence and survival. Other recent studies have 

reached similar conclusions and have even created recurrence risk models on the sole basis of 

histological parameters.93–96 

To our knowledge, this is one of the first studies to develop an algorithm to identify 

cases of cancer recurrence from the expansive and widely used SEER database, laying a basis 

for future investigations across a variety of medical fields. Through the use of this novel 
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framework, we also presented one of the first machine learning-based classification models 

that accurately predicted 5- and 10-year recurrence in OTSCC patients using only commonly 

available demographic and clinical features.  

There are, however, limitations to this study worth mentioning. Since patients were 

extracted from a de-identified national database, the data may be susceptible to information 

bias. Additionally, despite including a number of sociodemographic and clinical variables in our 

models, we would like to point out that certain potentially valuable histopathological (e.g., 

lymphocyte host response, perineural invasion, depth of invasion, tumor budding and worst 

pattern of invasion) and clinical features (e.g., timing of treatments, radiation dose, HPV status, 

neck dissection) were not accounted for due to the limitations of the SEER database . Despite 

these constraints, we were able to develop a model with high predictability for locoregional 

recurrence of OTSCC. We believe that incorporating these site-specific variables along with 

other clinical and sociodemographic variables can only enhance the predictive power of these 

models.58,80,83,89,97 We hope that this investigation will encourage inclusion of such variables in 

future updates to SEER and other large-scale clinical datasets. Furthermore, in the next chapter 

of this study, we investigated the impact of genetic variations in individuals in determining the 

risk of cancer recurrence. 
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CHAPTER 5: INVESTIGATING THE IMPACT OF INHERITANCE FACTORS 

ON CANCER RECURRENCE RISK 

 

In the first aim of this investigation, we developed a novel framework for identifying 

cases of cancer recurrence from the SEER database with which a generalizable and highly 

representative machine learning model could be generated. By developing a predictive risk 

estimate tool, treatment teams can be better informed of a patient’s risk for cancer recurrence 

and modify their management strategy accordingly. In the analysis of our models’ feature 

scores and SHAP contribution, we found the number of prior tumors to consistently be the 

most influential features in predicting cancer recurrence. Previous studies have emphasized on 

the significance of genetic predisposition in both head and neck squamous cell carcinoma 

(HNSCC) and breast cancer. 87,88,98Additionally, genetic, and environmental factors, including a 

history of prior tumors, have been shown to be associated with different types of cancer 

recurrence. 89,90,98,99 

For the next specific aim, we are going to include the effect of genetic and inheritance 

factors in our model development and investigate developing a machine learning risk estimate 

model for cancer recurrence based on the inheritance factors.   

Next-generation sequencing (NGS) has revolutionized the field of genomics by enabling 

the sequencing of millions of fragments in a massively parallel fashion, leading to improved 

speed, accuracy, and reduced sequencing costs. This technological advancement has laid the 

groundwork for a new era of genomic studies. Among the remarkable findings facilitated by 

NGS technologies is the discovery of extensive genomic structural variations, known as copy 
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number variations (CNVs). These structural variations involve alterations in the dosage of 

genomic segments, ranging in size from one kilobase pairs (Kbp) to mega base pairs (Mbp), as 

compared to a reference human genome. These variations result from deletions, duplications, 

triplications, insertions, translocations, and inversions of chromosome segments. Such insights 

into the genomic landscape hold significant promise for advancing our understanding of genetic 

complexities and their implications in various diseases, including cancer. 100–102 

These structural variations in the genome can have diverse effects depending on their 

size and location. CNVs can disrupt gene function and lead to complex diseases through 

different mechanisms. For example, deletions or disruptions within genes or intragenic CNV 

interactions can result in haploinsufficiency, where the remaining functional copy of a gene is 

unable to produce enough gene product to maintain normal function. 103 This highlights the 

importance of considering CNVs in understanding the genetic basis of diseases and their 

potential impact on gene function and disease development.104 

CNVs in germ line DNA have been implicated in cancer predisposition through various 

mechanisms. These structural variations can lead to the formation of fusion genes, disrupt gene 

regulation, impair DNA repair mechanisms, and affect tumor suppressor genes. However, the 

precise mechanisms by which CNVs influence cancer development are still being investigated 

and require further study.17,18,105 It is worth noting that CNVs are present in all individuals, but 

research on CNVs in cancer has predominantly focused on rare single region CNVs. Similarly, 

studies exploring germline CNVs have often concentrated on rare single region CNVs and have 

identified individual genes associated with specific cancers. Few studies have specifically 

examined the interactions of intragenic CNVs and the inclusion of structural variations across 
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chromosome scales in their model development. 104,106 Therefore, there is a need for more 

comprehensive investigations to better understand the role of CNVs in cancer and their 

potential implications for disease risk assessment and management. 

Indeed, there is a significant distinction between germline CNVs and somatic tumor 

CNVs. Germline CNVs refer to the structural variations present in an individual's inherited DNA, 

which can be passed down to offspring. 105These CNVs are less influenced by environmental 

factors and provide a foundation for studying inherited risk factors for diseases. On the other 

hand, somatic CNVs arise in the DNA of somatic cells during an individual's lifetime and are 

associated with the development of tumors. These somatic CNVs are more influenced by 

environmental factors and are not inherited or passed on to future generations. 107To ensure 

the focus on germline inheritance factors and minimize the impact of environmental factors, 

this study specifically examines and analyzes CNVs derived from germline DNA. 

The majority of existing genetic scores for cancer rely on single nucleotide 

polymorphisms (SNPs), which are specific variations in a single nucleotide at a particular 

location in the genome. These polygenic risk scores calculate a score by combining the values of 

multiple SNPs in a linear manner. 108 While this approach can be effective for diseases caused 

by single mutations, it may not adequately capture diseases that arise from combinations of 

mutations or involve complex interactions between multiple genetic factors. In particular, 

diseases influenced by combinations of mutations, such as the presence of three out of five 

specific mutations, or diseases affected by epistatic interactions, where the effect of one gene 

depends on the presence of other genes, cannot be adequately studied using the traditional 
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SNP-based analysis. 63–65,109 Due to the above challenges the predictability of polygenic risk 

scores developed solely based on SNPs may be limited. 4 

Machine learning algorithms offer the advantage of incorporating nonlinear 

combinations of single nucleotide polymorphisms (SNPs) in model development. However, the 

vast number of SNPs across the human genome, which exceeds 5 million, presents challenges in 

applying non-linear machine learning algorithms due to the high dimensionality of the data. 

110,111 The number of SNPs typically far exceeds the number of available patient data points, 

which can limit the effectiveness of traditional machine learning approaches. 

To overcome the challenges associated with the limited predictability of polygenic risk 

scores based solely on SNPs, we propose an alternative strategy that incorporates structural 

variations as predictors in our risk models. By including structural variations, such as CNVs we 

can capture a broader range of genetic variations that may contribute to disease risk. 

Recent advancements in next-generation sequencing (NGS) have opened up new 

possibilities for researchers, offering a wealth of information on various types of structural 

variations and their impact on genomic architecture. 112 One valuable measurement that can be 

achieved with these advancements is copy number variation analysis, which involves 

quantifying changes in the number of copies of specific genomic regions compared to a 

reference sample. CNV analysis involves two common metrics: CNV ratio and log R ratio. The 

log R ratio is a logarithmic transformation of the CNV ratio, representing the relative change in 

copy number for a specific genomic region (locus) in the sample being analyzed compared to a 

reference sample. This value is calculated as the log base 2 of the CNV ratio, where a positive 

log R ratio indicates amplification of the genomic region, and a negative log R ratio indicates 



44 
 
 

copy number loss or deletion. 113 The logarithmic scale provides a more sensitive measurement 

of the intensity difference compared to a linear scale. To detect these genetic variants, 

genome-wide genotyping arrays are commonly employed, offering an efficient method for 

large-scale analysis. 113,114 

5.1: Research Design and Methods 

 

In our approach, we will employ machine learning algorithms to analyze genetic data 

obtained from DNA microarray measurements, allowing us to capture intricate genetic 

interactions. By reducing the dimensionality of the problem and taking genome structural 

variations into account, our goal is to overcome the limitations associated with traditional 

polygenic risk scores. This comprehensive strategy aims to provide a more accurate and robust 

assessment of cancer risk. 

This comprehensive approach, which includes the integration of structural variations 

and the utilization of advanced machine learning techniques, has the potential to improve the 

predictability and accuracy of genetic risk models for complex diseases. It allows us to capture a 

more complete picture of the genetic architecture underlying disease susceptibility and provide 

more reliable risk assessments for individuals. As part of our second aim in this investigation, 

we will utilize available genetic data from the UK Biobank to develop a machine learning model 

for predicting breast cancer recurrence. While current polygenic risk scores for cancer have 

mainly focused on identifying individuals at higher risk of developing specific cancers, there has 

been limited research on developing models to detect the risk of cancer recurrence. Our study 
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aims to fill this gap and contribute to a more personalized and precise approach in predicting 

cancer recurrence risk. 

5.1.a: UK Biobank, Axiom Microarray, Chromosomal Scale Length Variation Calculation 

 

The UK Biobank is a large-scale population-based study that aims to improve the 

prevention, diagnosis, and treatment of various diseases. It involves the collection of extensive 

health-related data, including genetic information, from over 500,000 participants in the United 

Kingdom. Participants in the UK biobank, recruited at ages 40-69 and were registered with the 

National Health Service (NHS). 115 It comprises approximately 488,000 individuals with genetic 

data, with a total of 764,257 CNV values across the 22 autosomes, as well as 18,857 CNV values 

for the X chromosome and 691 CNV values for the Y chromosome.115,116 The entire cohort's 

genotype is being determined using DNA microarrays containing selected genetic variants, 

including single nucleotide polymorphisms, insertions, deletions, and copy number variants. 

The UK Biobank utilizes the Axiom Array to probe specific locations of interest for copy number 

variations (CNVs).  These files encompass various information such as normal SNP genotyping 

data, calls, confidences, intensities, and other relevant data related to the study of genetic 

variations. Our access to this information is obtained through a renewed application process 

every three years, and it is provided only to approved researchers through the data 

showcase.117 Researchers can download the data through the UK Biobank's Data Showcase, 

which collaborates closely with the European Genome Archive (EGA). The dataset compromises 

genotype data for a total of 488,377 participants. We need access to l2r files in order to derive 

the relative genetic information related to chromosome structural variations.  
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Each patient in the UK biobank study is assigned a unique patient ID. The patient IDs file 

has been organized as a list, with one ID per row for each patient. The order of these IDs is 

crucial as they correspond to the column headings of individual microarray data, which contains 

approximately 850,000 genetic variants. Each chromosome file is a plain text file without 

headers, and the data is structured with one column per patient where each row represents the 

log2 intensity ratio measured at a different SNP location in their array.   All the l2r genetic data 

files for each chromosome along with patient ID file were downloaded by the previous 

graduate student Christopher Toh in our lab and are stored in our server. 118 

To incorporate structural variations in the genetic score model development, we adopted an 

unique approach. This involved analyzing CNVs within each segment of the chromosome. To 

facilitate this analysis, a chromosomal scale length variation (CSLV) dataset was computed by 

averaging 𝑙𝑜𝑔2
𝑅 across each chromosome. The average  𝑙𝑜𝑔2

𝑅 can be calculated based on the 

desired number of even splits within the values of each chromosome or within each individual 

segment of chromosome. This approach enables a comprehensive assessment of structural 

variations and their potential impact on the genetic score model. 

Figure 11 shows the histogram of the relative length of chromosome 1 for 10,000 

randomly selected individuals from the UK Biobank. The histogram illustrates that the majority 

of people have a nominal value of 0 for chromosome 1. However, approximately 200 

participants had longer chromosome 1 lengths (around 7% longer) compared to the nominal 

average. This observation indicates the presence of chromosomal scale length structural 

variations within the population.  
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Figure 11: Histogram of the “relative length of Chromosome 1” for 10,000 randomly selected individuals from the UK 
Biobank dataset. 
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5.1.b:Data Cleaning and ML Model Development 

To test our hypothesis and process the data, we needed to analyze another encrypted 

file containing information about each patient, such as sex, age, cancer incidences throughout 

the study period, time of diagnosis of each incidence, cancer type, etc. This information could 

be linked to the calculated CSLV dataset by using the patient ID. 118 Since our focus was on 

developing a risk estimate model for cancer recurrence based on the available genetic data in 

UK biobank, we wrote an algorithm in C# to identify patients who have had cancer recurrence. 

For that purpose, we used available information on cancer incidences for each patient and 

identify whether that patient has had a cancer recurrence throughout the study period. The 

algorithm was executed for all primary tumor sites in the UK Biobank, and the number of 

patients with recurrence for each tumor site was calculated and plotted, Figure 12.  

Based on the data collected from the UK Biobank and analyzing all 488,000 patients with  

Figure 12: Number of patients who have had cancer recurrence at each cancer site within 10 years 
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genetic data using our developed platform in C#, we identified the number of target 

patients who had cancer recurrence within the same primary site group. Among them, 

melanoma of the skin, breast cancer, and digestive organs showed a higher number of patients 

with cancer recurrence throughout the study period.  

Based on the available recurrence data within each primary site for this specific aim, we 

focused on developing a genetic risk estimate model for breast cancer recurrence. To achieve 

this, we divided the study population into two classes: patients who have experienced breast 

cancer recurrence and an age-matched group of patients who were diagnosed with breast 

cancer only once throughout the UK Biobank study. 

During classification ML model development, for each run, we linked the two classes of 

patients those with breast cancer recurrence and the age-matched group with a single breast 

cancer diagnosis, based on their unique patient IDs to the calculated chromosomal scale length 

variation (CSLV) dataset. The CSLV dataset consisted of average values of copy number 

variations (CNVs) within large segments of each chromosome, which served as features for the 

ML model. This approach allowed us to incorporate structural variations from the genetic data 

into the model, and evaluate their effect solely on determining the risk of individual for 

developing a breast cancer recurrence.  

For the current aim, we utilized the H2O.ai tool and its corresponding R package for 

developing a machine learning model. The clean dataset, consisting of features and labels, was 

passed to the H2O automl function in each run, with specific criteria set for model 

development. In each run, we applied 5-fold cross-validation as an additional method for model 

evaluation. The model was trained using 80% of the data, while the remaining 20% split of the 
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data was used for testing the trained model. Additionally, we set the model development time 

to 900 seconds and included all available machine learning algorithms in the process. We also 

kept all the cross-fold predictions for further analysis and comparison. This approach allowed us 

to thoroughly evaluate the performance of the machine learning model and assess its 

predictive capabilities in predicting cancer recurrence. By using cross-validation and test splits, 

we obtained multiple metrics to analyze the model's generalization and performance on 

unseen data. 

By analyzing the performance of the model through calculating AUC and plotting ROC 

curve on test split of the data we can assess the model’s ability to distinguish between cancer 

recurrence cases and non-recurrence cases. Furthermore, we compared the model's 

performance on the completely shuffled dataset to evaluate its robustness and generalization 

capabilities. This step helped us ensure that the model's predictions were not biased or overfit 

to the specific dataset used during training.  

Overall, these analyses provided us with a comprehensive understanding of the 

developed model's strengths and limitations, paving the way for further improvements and 

applications in cancer recurrence prediction. 

5.2: Results  

5.2.a: Predicting Malignant Breast Tumor Recurrence using Germline Chromosomal Scale 

Length Variation 

In the UK Biobank, there are a total of 502,536 patients. Through our analysis, we 

identified 543 different types of neoplasms associated with these patients. Among them, 

12,441 patients experienced more than one diagnosis of neoplasm throughout the study. The 
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latest version of the ICD-10 classification system was employed to categorize neoplasms into 

various subgroups. 119This grouping method was utilized to organize each specific neoplasm 

into a larger subgroup, making it easier to sort and analyze the data for identifying the 

recurrence cases within each subgroup, Figure 12.  

To define recurrence, we identified patients who had more than one cancer incidence 

within the same group of neoplasm, with a time period of more than 180 days between the two 

cancer incidences. In particular, patients with malignant neoplasm of the breast, coded as C-

50.0 to C50.9 according to the ICD-10 classification, were grouped together. 119Among them, 

those who received a second diagnosis within the same group were identified as recurrence 

cases of breast cancer. 

After identifying the target patients, we linked them to the calculated CSLV data table 

using their unique patient IDs. The finalized dataset for developing a machine learning (ML) 

model to predict malignant breast cancer recurrence consisted of two main classes, and each 

case was represented with 22 numbers, each corresponding to the average log2R value within 

each chromosome. 

The negative class consisted of women who had a single diagnosis of malignant breast 

tumor. In contrast, the positive class included women from the UK Biobank study who had 

experienced breast tumor recurrence. These women were diagnosed with malignant tumor of 

the breast more than once within the study period, with a time gap between the diagnoses of 

more than 180 days. Specifically, the positive class comprised 489 women who had received 

multiple diagnoses of malignant breast tumor and negative class compromised 13478 cases. 
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Error! Reference source not found. represents the racial and sex distribution along with 

average age of women in both groups.  

 

 

 

 

 

Figure 14-b shows the distribution of structural variations in the positive class for 

chromosome 1, while Figure 14-a displays the distribution in the negative class. The histograms 

for non-recurrence cases and recurrence cases both indicate that most people in both classes 

have a nominal value of 0. However, the distribution in the positive class (recurrence cases) 

appears to be more widespread. One possible explanation for this observation could be related 

to the relatively smaller number of cases in the positive class compared to the negative class. 

Table 3: Race, sex, and age distribution of two classes that were used for developing ML model to predict breast cancer recurrence. 
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Figure 14-a :Histogram of the “relative length of Chromosome 1” for 13478 patients who have been 
diagnosed with breast cancer once through the UK Biobank study period (non-recurrence). 

Figure 14-b: Histogram of the “relative length of Chromosome 1” for 489 patients who have had breast 
cancer recurrence through the UK Biobank study period (positive class).   
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Figure 15 presents a comprehensive comparison between the two classes using whisker-

box plots of calculated chromosomal scale length variations (CSLV) for all the chromosomes. 

This plot allows us to visually compare the distribution of CSLV values between the positive 

(recurrence cases) and negative (non-recurrence cases) classes across all chromosomes. 

Figure 15: Box plot of CSLV distribution for each chromosome in the positive class (patients who have had breast cancer recurrence in the Biobank 
study) vs. the negative class (patients who have not had breast cancer recurrence). 
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Based on Figure 15, the median of the calculated chromosomal scale length variations (CSLV) 

for both classes was 0. However, it is noticeable that the number of outliers in the non-

recurrence class was higher compared to the recurrence class. This could be attributed to the 

smaller number of cases in the recurrence class or potential structural predispositions in the 

two groups, leading to differences in CSLV values. Further investigation is needed to understand 

the underlying factors contributing to these variations by increasing the number of datapoints 

in the positive class.  

These calculated CSLVs were used as feature for model development. During the ML 

model development process, for each run, an under-sampled age-matched group of 

participants was selected from the negative class. This under-sampled group was then 

appended to the positive class, creating a balanced dataset with a rough ratio of 60:40. The 

balanced dataset, was used as input for the H2O AutoML function, which was implemented 

using R programming language. The main objective of this step was to ensure that the classes 

were balanced, thereby preventing any bias towards one class and improving the model's 

performance. The finalized dataset was divided into 80% training data and 20% test data. 

Gradient Boosting machine was the algorithm that consistently ranked the highest on the 

leader board for each run. The performance of the trained model was evaluated by plotting the 

ROC curve on the test split of the data as shown in Figure 16.  
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The AUC of the top trained model was 0.56 indicating a slightly better performance than a 

completely random prediction, which would have an AUC of 0.50. 

To improve the prediction of the model, we further investigated the number of splits 

within each chromosome. By increasing the number of splits and capturing more variations 

with finer subdivisions within each region of the chromosome, we aimed to enhance the 

model's predictability. In this exploration, we characterized each case in the model with 88 

numbers, where each number corresponds to a quadrant of a chromosome. 

 

Figure 16: ROC curve of the trained GBM model tested on the unseen dataset with an AUC of 0.56.  
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Figure 17 displays the ROC curve of the top trained model, GBM, on the test split of the data , 

achieving an AUC of 0.57.   

 

Through multiple runs and a comparative analysis of the average AUCs from 5 runs between 

the 1-split and 4-splits analysis, along with statistical testing, we observed that there is no 

significant difference in the model's performance for predicting breast cancer recurrence when 

we allow for capturing more detailed information about the Chromosomal Scale Length 

Variations (CSLVs) by increasing the number of splits.   

We explored the impact of increasing the training time on the model's prediction 

performance. We adjusted the training time to 12 hours and 24 hours, and although the 

Figure 17:  ROC curve of a GBM model trained on a dataset based on 88 numbers associated with 4 splits for each 
chromosome for each case. The model was then tested on an unseen split of data, achieving an AUC of 0.57. 
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model's performance improved slightly on the training split of the data, there was no significant 

change in its prediction on the test split. The AUC value only increased by approximately 1-2%, 

indicating that further increasing the training time did not substantially enhance the model's 

predictive capabilities on the unseen data.  

To validate our results and ensure that the predictions are not solely due to overfitting 

of the model on the input data, we conducted another validation method to assess the 

generalizability of the model. This approach allowed us to assess the model's performance 

when the target labels were randomly assigned, effectively eliminating any meaningful 

relationship between the input data and the predictions. By comparing the AUC of the ROC 

curve from the unshuffled dataset with the shuffled dataset, we could validate whether the 

model's predictions were genuine and not a result of overfitting.  

Table 4: Comparison of Mean AUC Values for ML Models Trained with Unshuffled and Shuffled Target Columns. 
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Figure 18 displays the ROC plot of the top model that was trained and tested on the 

completely shuffled target column. Error! Reference source not found. presents a comparison 

of the mean AUC values from 5 individual runs of ML models. The models were trained using 

the unshuffled target column and then tested on the remaining split of data. Additionally, the 

table includes results from the same dataset, but with the target column randomly shuffled. 

This allows us to determine if the model's predictions are genuinely generalizable. 

 

 

Figure 18: ROC curve of the top ML model that was trained and tested on shuffled target column, with an AUC 
0.522.  
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By analyzing the mean AUC values of the two separate approaches and conducting a t-

test, we found that there was no significant difference between the predictions generated 

using the unshuffled target column and those obtained when the target column was randomly 

shuffled. The calculated p-value further supported this conclusion. 

Based on the above results, we have concluded that there is no significant genetic 

predisposition for breast cancer recurrence. Instead, we found that recurrence of the malignant 

tumor is more strongly correlated with factors such as age, breast cancer subtype, stage, grade, 

histology, and treatment strategy of the initial diagnosis. 120,121 

There are several limitations associated with our study. One of the main limitations is 

the limited availability of recurrence data within each specific primary site in the UK Biobank 

study. Due to this limitation, our selection criteria for recurrence cases could not be as precise 

as we would have liked. If we had applied stricter filtering based on the time of recurrence after 

the first diagnosis and the histology type of the recurred tumor compared to the primary 

tumor, we would have had less data available for model development and analysis. As a result, 

the specificity of our model may be affected. Another limitation is the possibility that some 

non-recurrence data could actually be recurrence cases where the second or third primary 

tumor was not reported to the UK Biobank study. This could introduce a degree of 

misclassification in our dataset and affect the accuracy of our model. 

Additionally, the lack of complete and detailed information on treatment regimens and 

follow-up care in the UK Biobank dataset may limit our ability to fully account for the impact of 

different treatments on recurrence risk. 
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Furthermore, the genetic data used in this study were derived from germline DNA, and 

environmental factors were not incorporated in risk determination. As a result, the model may 

not fully capture the complex interplay between genetic and environmental factors in breast 

cancer recurrence. 

Overall, these results emphasize the importance of considering clinical, treatment and 

environmental factors when dealing with malignant tumors after the first diagnosis.82,120,121 

While genetic predisposition may still play a role, its impact may be less significant, or it may be 

more specifically related to certain SNP mutations rather than germline structural variations for 

breast cancer recurrence. Due to the limitation of available data for oral OTSCC cases in UK 

biobank we could not tested our hypothesis on this type of cancer.  Our study highlights the 

need to take a comprehensive approach, considering both genetic and non-genetic factors, to 

better understand and predict breast cancer recurrence. Future research should aim to address 

these limitations and explore additional factors that may influence breast cancer recurrence 

and analyze genetic predisposition for OTSCC recurrence. 
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CHAPTER 6: DEVELOPING CHROMOSOME SCALE LENGTH VARIABILITY-

BASED GENETIC RISK SCORES FOR PREDICTING CANCER OCCURRENCE 

In this chapter, we expand our investigation beyond predicting cancer recurrence to 

develop a risk estimate model for predicting cancer occurrence. The primary objective of the 

final aim in this study is to investigate the development of a model capable of accurately 

classifying patients into high-risk and low-risk categories for the development of specific types 

of cancer. By utilizing advanced machine learning techniques and incorporating relevant genetic 

features, our aim is to enhance our ability to identify individuals at a higher risk of developing 

cancer. This objective aligns with our second aim, which focuses on investigating a novel 

approach for incorporating inheritance factors into the development of polygenic risk score 

models for cancer recurrence. Instead of relying solely on single nucleotide polymorphisms 

(SNPs), we explore the utilization of structural variations within chromosomes as a mean to 

enhance the predictive power of the risk score model. 105,122 However, we apply this approach 

for developing a ML model for predicting cancer occurrence. By incorporating these structural 

variations, we aim to capture a more comprehensive representation of inheritance factors and 

improve the accuracy of our risk estimation. This model holds great potential for improving 

early detection and implementing targeted prevention strategies to reduce the burden of 

cancer. 

Currently, there are several risk estimate models for different types of cancer. One of 

the most popular risk assessment tools for breast cancer is the Gail model, which is based on a 

statistical model. The model is named after Dr. Mitchel Gail the Senior Investigator. This tool 

allows professionals to estimate a 5-year and lifetime risk of developing invasive breast cancer 
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in women. This statistical model uses an individual’s own personal information such as age, 

race, age of first menstrual period, number of past breast biopsies, etc. to calculate the risk of 

developing breast cancer. 123,124 However, similar to other developed risk assessment models, 

this tool does not give a good risk estimate for women with a personal history of invasive breast 

cancer due to the limited way that the model incorporates family history. 66 The model was 

originally developed based on data from white women and there are some concerns that may 

underestimate risk for women with other racial and ethnic groups.  

For colorectal cancer, doctors and other health care providers use a risk assessment tool 

which gives a risk estimate of colorectal cancer over the next 5 years and the lifetime for men 

and women. However similar to the Gail model there is not much data available for 

black/African Americans, Asian Americans, and Pacific Islanders which limits the predictive 

ability of this model for these groups.125 R package calculates the individual risk of lung cancer 

based on age, education, race, smoking history, body mass index, etc. Comparable with other 

models, inheritance factors and family history are not incorporated into the calculation of 

risk.126  

It’s been shown that genetic factors play an important role in developing lung cancer, 

which could add great predictive value to the model. 127  

It’s been shown that structural variations at germline DNA have valubale prediction 

ability in developing complex diseases. 15,52,122 By incorporating these structural variations 

(CSLV) in nonlinear way, we aim to capture a more comprehensive representation of 

inheritance factors and enhance the accuracy and precision of our risk estimate model. The 

current developed polygenic risk scores are derived from the available genetic data in large 
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healthcare datasets. However, one of the main limitations of these datasets is the presence of 

data inequality. This inequality arises from various factors, including differences in participant 

demographics, representation of diverse populations, and data collection strategies. As a result, 

the polygenic risk scores may not accurately capture the genetic diversity and risk profiles of 

underrepresented or marginalized populations. 128In large-scale biomedical research programs 

such as The Cancer Genome Atlas (TCGA) and the UK Biobank study, there is a notable 

imbalance in data representation, with a disproportionate number of participants from 

European American and White populations. This lack of diversity poses challenges in terms of 

generalizability and applicability of findings and risk assessment models to underrepresented 

populations. 

For instance, in TCGA, more than 80% of participants are of European American 

ancestry, while the UK Biobank study has over 94% of participants from the broad category of 

White ethnicities. This imbalance limits the accuracy and relevance of polygenic risk scores and 

other genetic findings for individuals from diverse backgrounds. 

To address these limitations, it is crucial to promote inclusivity and diversity in genetic 

research. Efforts are underway to expand data collection initiatives and encourage participation 

from underrepresented populations. By including individuals from diverse racial and ethnic 

backgrounds, researchers can improve the accuracy and applicability of risk assessment models, 

ensuring that they are more equitable and reliable for all individuals, regardless of their 

ancestry or background. 
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6.1: Research design and methods 

6.1.a: All of Us Dataset 

In this investigation, the All of Us dataset was utilized to compute genetic risk scores for 

various types of cancer. The All of Us study, sponsored by the National Institutes of Health, has 

enrolled more than 600,000 participants as of June 18th, 2023, with 80% of them coming from 

underrepresented communities. Figure 19 (provided by All of Us study) showcases the self-

reported races and ethnicities of the participants who have completed the initial steps of the 

program, providing a diverse representation. The recruitment process spans all regions of the 

United States. The All of Us workbench encompasses a wealth of information gathered from 

electronic health records, including data from Fitbit devices, survey responses, and 

socioeconomic factors. Notably, a recent release of data in April 2023 included approximately 

245,400 whole genome sequencing records and 312,940 genotyping microarrays, further 

enhancing the dataset's depth and potential for analysis.  

By application of available data in All of Us, we will include data from communities and 

backgrounds in our model which has always been underrepresented in biomedical research.129 
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In our innovative approach, we have incorporated CSLV in model development and 

utilized advanced machine learning algorithms to overcome the limitations of current risk 

assessment tools. This strategy directly addresses two major limitations of existing risk 

assessment tools: the lack of diversity in the data used for model development and the failure 

to incorporate inheritance factors and family history. By leveraging the power of machine 

learning and considering a broader range of genetic information from the All of US dataset, our 

approach holds promise for more comprehensive and personalized risk assessment in the field 

of healthcare. 

 

Figure 19: Racial distribution of participants in All of Us dataset 
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6.1.b: Genetic Data in All of Us  

The All of Us dataset has released its genetic data in two phases. The initial release, 

known as controlled tier V6, included DNA microarray data for 165,127 participants. More 

recently, the controlled tier V7 was released in April 2023, and it is anticipated that additional 

data will be added to the dataset by the end of 2023. The microarray data in controlled tier 6 

contains measurements on 1,814,517 genetic variants for each of the 165,127 participants. 

Illumina Global Diversity Array GDA has been used for microarray data analysis. The GDA is a 

cost-effective variant coverage solution within the Illumina human array portfolio. It offers 

comprehensive coverage of disease-associated and pharmacogenetic variants for clinical 

research. Built on a high-density SNP backbone, the GDA provides optimal cross-population 

imputation coverage and enables the development of polygenic risk scores. It is a valuable tool 

for studying genetic architecture and characterizing genetic traits in diverse populations.130,131 

 The header of the array Variant Call Format (VCF) file contains information about the 

sample processing. VCF is a common file format used to represent genetic data from multiple 

individuals, including data from the All of Us genetic dataset. The VCF header includes format 

specifiers for different fields, such as the key parameter for CSLV (log R ratio or LRR). This 

information can also be processed via Hail matrix, a scalable and flexible framework for genetic 

analysis. Hail MatrixTable is a tabular data structure that is often used to represents a matrix of 

genetic data. It organized genetic data into three dimensions.  This allows for efficient querying, 

filtering, and transformation operations on large-scale genetic datasets. 
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6.1.c: Data Extraction & Processing by using Hail MatrixTable 

For data analysis and model development within the All of Us dataset, a dedicated 

researcher workbench was established.  The Researcher Workbench is a cloud-based platform 

that grants registered researchers access to both Registered and Controlled Tier data. Equipped 

with robust tools, it enables efficient data analysis and promotes collaborative research efforts. 

In our study, we extracted microarray genetic information for each participant by analyzing the 

data stored in the Hail Matrix table. This step was conducted on integrated cloud based Jupyter 

notebook environment using Python programming language on the designated workbench. 132 

Figure 20 depicts a Hail matrix table, which is structured with three dimensions.  

The column fields represent individual participants in the study, allowing for the 

identification of specific individuals within the dataset. The row fields, on the other hand, 

contain constant information that applies to entire rows of entries. In this table, the row field 

represents the locus, which refers to the specific location on a chromosome where a genetic 

Figure 20: Hail matrix representation within Jupyter notebook on all of us workbench. 
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marker is situated. This field can be used to efficiently query or manipulate subsets of the rows 

based on their genomic location or other annotations. Lastly, the entry fields are indexed by 

both row and column and encompass various attributes such as Genotype (GT), Illumina 

GenCall Confidence (IGC) Score, Raw X and Y intensities as scanned form the original 

genotyping array, normalized X and Y intensities, normalized R value, normalized Theta value, 

Log R ratio, B allele frequency (BAF) etc.  

In this investigation, our focus was on incorporating structural variations into the 

development of the machine learning (ML) model. Incorporating structural variations, such as 

insertions, deletions, translocations, and copy number variations, provides insights into the 

individual's chromosome length. These structural variations slightly modify the overall length of 

a person's chromosomes. To achieve this, we specifically extracted the log R ratio (LRR) values 

from the entry field for each patient at different loci and excluded other values. The LRR values 

represent the logarithm of the observed signal intensity ratio, providing information about the 

copy number status or dosage of genetic material at a specific locus. By computing the average 

LRR values over a chromosome or a portion of it, we obtained the nominal length known as 

chromosome scale length variation (CSLV). A value of 0 indicates the presence of two copies at 

the locus, while higher values indicate duplications and lower values indicate deletions. 

To begin our analysis, we filtered the genetic data for each chromosome and stored it in 

separate Hail Matrix tables within our workbench. We then calculated the average LRR values 

within all segments of the chromosome along each column of entries, where each column 

corresponds to a specific participant. The resulting average values were stored as new column 

annotations in a new Hail Matrix table. We subsequently analyzed the column fields (column 
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fields are the average values of all the LRR values of that specific chromosome and patient IDs) 

of this new table individually, focusing on the average LRR values for each chromosome and 

patient ID.  

To facilitate further analysis and reduce computational load, we converted the column 

fields table into a Pandas DataFrame format. This format offers greater flexibility for data 

manipulation. The resulting DataFrame consists of 165,127 rows, representing each participant, 

and two columns: patient ID and average LRR value for the analyzed chromosome. These steps 

were repeated 22 times to calculate the average LRR values for each chromosome. 

Figure 21 presents a histogram that illustrates the distribution of relative chromosome 

lengths obtained from DNA samples in the All of Us dataset, specifically for chromosomes 1, 7, 

13, and 19. A value of “0” represents the nominal average chromosome length. This 

visualization provides insights into the variations in chromosome lengths within the dataset. 
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The analyzed results for all 22 chromosomes of the participants in the controlled tier V6 

were saved in a storage bucket associated with our workbench in the All of Us dataset. This 

storage bucket allows for convenient access and sharing of the analyzed data among registered 

researchers who have access to the workbench. This collaborative feature facilitates further 

exploration and investigation of the CSLV analysis in the dataset.  

  

Figure 21: The distribution of  relative chromosome lengths obtained from DNA samples in the All of Us dataset for chromosomes 1, 7,13 and 
19. These histograms were plotted for average LRR values of 10,000 participants that were randomly selected from 165,127 participants in the 
All of Us dataset V6.  
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6.1.d: Machine Learning Model Development  

Once we calculated the average LRR values within each chromosome or segments of 

chromosome for all the participants of controlled Tier V6, the CSLV data table was built. Then 

we explored the ML model development within the environment of Jupyter notebook. For that 

purpose, the cohort builder in the workbench was used. The Cohort Builder is a custom, point-

and-click tool that allows researchers to create, review, and annotate groups of participant 

data, or cohorts, within the All of Us dataset. Once the participants of the interest were 

selected the dataset builder was used to collect the relevant information about the cohort 

subjects. This allowed us to query through the participant level data and select the positive- 

class, participants who have been diagnosed with specific type of cancer and negative class, age 

matching participants who have not been diagnosed with that specific type of cancer. These 

data tables are accessible within the workbench and other relevant health information can be 

linked to each participant of two classes of datasets through the built in feature called concept 

set within the dataset builder.  

The next step in model development involves identifying the shared participants 

between the CSLV data table and the positive and negative classes for a specific type of cancer. 

As we have mentioned before each participant is assigned a unique identifier called the person 

ID, which is used to match individuals with relevant genetic information for the target classes. 

The last step of data processing before ML model development is under sampling of the control 

group. In this step, the control group, participants who have not been diagnosed with the 

specific type of cancer, is under-sampled and age-matched with positive class. This involves 

randomly selecting participants from the negative class within each age group, while 
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maintaining a 40:60 percent ratio between the positive class and control. Once the finalized 

dataset is constructed, the H2O machine learning package, which was previously utilized in 

aims 1 and 2, is employed to develop a polygenic risk score using a range of different machine 

learning algorithms. In this step, the H2O package was installed and imported into the Jupyter 

notebook for each run. To enhance the performance of the developed models, the cloud 

analysis configuration in the workspace was adjusted as follows: the cloud compute profile was 

set to CPUs = 16 and RAM = 60 GB, and the worker configuration was set to have 2 workers 

with CPUs = 4, RAM (GB) = 15, and External Disk (GB) = 150. The finalized dataset was divided 

into a 20% test set and an 80% training set for each run. The model was developed using the 

80% training split. We utilized the H2O AutoML built-in function, which runs through various 

machine learning algorithms with specific configurations, for each run. The H2O AutoML 

function was configured with a maximum run time of 900 seconds and 5-fold cross-validation. 

During each run, the cross-validation predictions were retained on the leaderboard. 

Additionally, the trained model's performance was evaluated on the unseen test split of the 

data. All of these steps were done on Jupyter notebook in python programming language.    

6.2 Results 

Preliminary findings from previous studies suggest the presence of substantial inherited 

variations across different types of cancer. Moreover, it is evident that the prediction of cancer 

based solely on germline copy number variations is feasible. 14,122 A similar method has been 

previously used for assessing the influence of inheritance factors on specific traits using other 

biobanks. Toh et al applied similar approach to develop a poly genic risk score for prediction 

ovarian cancer by utilizing genetic data in Cancer Genome Atlas (TCGA) project. 14TCGA was a 
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project sponsored by the National Cancer Institute. The developed genetic risk score had an 

AUC of 0.88 which provided an effective means of predicting whether or not a woman will 

develop an ovarian cancer. In another study conducted by Toh et al, a similar strategy was used 

to predict schizophrenia based on available genetic data in UK Biobank dataset.  In their work 

they were able to develop a model that could distinguish schizophrenia patients from control 

with an AUC of 0.54. This was an indication of significant genetic correlation, however not very 

precise. 133In another study conducted by Ko et al, they employed a similar strategy and 

successfully developed a machine learning (ML) model for predicting breast cancer using data 

from the UK Biobank and The Cancer Genome Atlas (TCGA). Their model achieved an 

impressive AUC (Area Under the Curve) value of 0.83, indicating its strong predictive 

performance. 134 

For the third aim of this investigation, we focused on developing a polygenic risk score (PRS) to 

predict the occurrence of different cancer types, namely malignant breast tumors, malignant 

oral cavity tumors, malignant colorectal tumors, and malignant ovarian tumors. To accomplish 

this, we utilized the CSLV data table extracted for all 165,127 participants from the controlled 

tier V6 of the All of Us dataset. The goal of this aim was to overcome the limitations associated 

with existing risk assessment models and develop a comprehensive PRS that can accurately 

predict the risk of specific cancer types. By leveraging the CSLV data, which provides detailed 

information on the genomic structural variability of participants, we aimed to create a more 

precise and personalized risk scoring system. 



75 
 
 

6.2.a Genetic Risk Score Model for Determining Risk of Breast Cancer  

 Breast cancer is the most commonly diagnosed cancer in women worldwide, 

accounting for 25% of all cancer cases among women. It is estimated that approximately 2.3 

million new cases of breast cancer were diagnosed in 2020 alone.  135–137 Due to the 

advancements in technology and screening methods, the breast cancer death rate continues to 

decline. However, there is a significant disparity in breast cancer mortality between black and 

white. This could be attributed to various factors, including disparities in access to healthcare, 

socioeconomic status, genetic factors and disparities in cancer screening and treatments. These 

factors contribute to differences in early detection, diagnosis, and timely access to quality 

healthcare, which can impact the outcomes and survival rates for individuals with breast 

cancer. By early stage detection of breast cancer, this disease can be curable through 

mastectomy.  

Several predictive models based on inheritance factors, such as the Gail model and 

Tyrer-Cuzick model, have been developed to aid in the early prediction of breast cancer. The 

Gail model, a statistical model used for breast cancer risk assessment, incorporates parameters 

such as age, race, and first-degree relatives to provide a 5-year risk estimate. However, it 

exhibits modest predictive accuracy with an area under the curve (AUC) of 0.58.123,124,138 

Models that include combinations of SNPs or other genetic factors in their personalized risk 

calculations have shown improved predictive ability compared to methods that rely solely on 

family history surveys. This is because family histories are often incomplete and limited to only 

one or two generations, whereas poly genic risk models can capture a broader range of genetic 

variations that contribute to disease risk. On the other hand, the Tyrer-Cuzick model 
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incorporates additional genetic information, including BRCA1 and BRCA2 mutations, along with 

age, family history, and other factors. This model demonstrates improved predictive ability 

compared to the Gail model, with an AUC of 0.62 and a 95% confidence interval (CI) ranging 

from 0.60 to 0.64. An extended version of the Tyrer-Cuzick model, incorporating a 313 variant 

polygenic risk score, achieves an AUC of 0.64.  139–141 In one of the latest research, polygenic risk 

score had been calculated based on linear combinations of 313 SNPs to predict breast cancer 

with an AUC of 0.63. 4 

These personalized risk assessment tools have never been able to achieve higher AUC 

than 0.65 and their accuracy has been limited by the way that have analyzed the SNPs. The 

disparity in breast cancer mortality between different races is also partly attributed to the fact 

that many screening methods and prevention guidelines have been developed based on studies 

predominantly involving white populations. As a result, there may be limitations in the 

effectiveness and accessibility of screening and prevention strategies for minority populations, 

contributing to disparities in breast cancer outcomes. Addressing these disparities requires a 

more comprehensive and inclusive approach that considers the diverse characteristics of all 

populations and include SNPs interaction in a novel way.   

 Developing a personalized risk assessment model for breast cancer using the available 

data in All of Us offers the potential to overcome limitations observed in previous studies, 

primarily due to the unique nature of the dataset. We utilized the calculated Chromosomal 

Scale Length Variation (CSLV) data table from section 6.1.d as the basis for developing our ML 

model. 
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Our dataset consisted of two main components: the positive class and the control group. The 

positive class comprised 7,998 women from the All of Us dataset-controlled Tier V6 who had 

been diagnosed with malignant breast tumors. On the other hand, the control group was 

constructed by excluding men and women with any type of cancer diagnosis, resulting in a 

cohort of 13,794 cancer-free women. From these two separate datasets, we selected 

participants with available genetic information and created two distinct case-control tables. 

Specifically, we identified 4,533 cases with microarray genetic data in the positive class and 

44,518 cases with microarray genetic data in the control group. Error! Reference source not 

found. represents the racial distribution in positive and control classes.  

For model development, in each run, an under-sampled age-matched group of participants 

from the negative class is selected. This group is then appended to the positive class and used 

as input for the H2O AutoML function. The purpose of this step is to achieve class balance and 

ensure that the model is trained on a representative dataset that accounts for an equal age 

distribution in both the positive and negative classes. 
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The initial model is developed by utilizing 22 numbers, each corresponding to the average log R 

ratio (LRR) values of all the SNP markers within each chromosome. These average LRR values 

capture the overall copy number status or dosage of genetic material at specific loci on the 

chromosomes. By incorporating these 22 numbers as features in the model, we aim to capture 

the genetic variations associated with breast cancer risk and improve the accuracy of the risk 

assessment model. Using the All of Us dataset, we developed a classifier for identifying breast 

cancer patients, which achieved an AUC of 0.60 with a standard deviation (SD) of 0.003, Figure 

22.  The Best Classifier identified with the H2o automl package was stacked ensemble.  

 

 

 

 

 

Class Race Distribution  Sex Total 

White Black Asian/Middle 

Eastern 

Other Unknown Female 

Positive (Malignant 

Breast Tumor) 

3342 440 129 64 558 4533 4533 

Negative (Control) 17109 13436 1796 1318 13235 44518 44518 

.  

Table 5: Racial distribution of participants in positive & negative class of risk assessment model for breast cancer. The positive class includes women with 
a diagnosis of malignant breast tumor, while the control group comprises cancer-free women 
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The model's performance, as measured by AUC, on the training and cross-validation sets 

was 0.70 and 0.61, respectively. These results indicate that the model shows promise in 

predicting breast cancer status comparable with other available polygenic risk scores. 4,139–141 

To improve the model’s performance and its predictability compared with other 

developed polygenic risk scores, we investigated other possible model modifications. As we 

have described above, for this step average LRR values across entire chromosome was 

calculated and used as a feature for model development, however we can split chromosome 

into 2,4, etc. equal segments and take average LRR values across these segments as a predictive 

feature. By this approach we are able to capture more detailed information about the structural 

variability of the genome. For instance, chromosome 1 has 146,409 genetic variants, in order to 

Figure 22: ROC curve of the stacked ensemble model developed using 22 numbers (1split) with each number 
corresponding to an individual chromosome. The model achieved AUC of 0.59. 
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calculate “4 splits of chromosome 1”, 36,602 sequential values would be averaged to form one 

value for the first 3 splits and then the last split would  be the remaining 36,603 sequential 

values. This process results in 88 numbers that characterize each case in both classes. By 

utilizing these 88 numbers instead of the initial 22 numbers, a more comprehensive ML model 

was developed that incorporates a broader range of genetic information. The evaluation 

criteria and model’s characteristics remain consistent with the previous approach. 

Using the same classes in table 5 with 88 measurements instead of 22, a classifier was 

trained and tested on unseen split of data with an average AUC of 0.70 with standard deviation 

of 0.01 on test split, Figure 23. The Stacked Ensemble model, similar to the previous approach, 

was identified as the best classifier for this optimization.  

Figure 23:  ROC curve of the stacked ensemble model developed using 88 numbers, each number corresponds to a 
quarter of an individual chromosome obtained by splitting each chromosome into 4 equal segments. The stacked 
ensemble model achieved an AUC of 0.73,  
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To compare the performance of the two approaches, the evaluation metrics were calculated at 

different stages of model development, including training, cross-validation, test, and values 

were plotted in Figure 24. The metrics include average values of AUC, accuracy, and F1-score 

calculated from 5 runs for both the 1-split and 4-split models. These metrics provide insights 

into the performance of the models and allow for a comparison between the two approaches. 

Comparing the mean AUC for the 4 split model vs 1 split model gave a p value of 9.83 ×

10−14 indicating that finer splits significantly improved the predictive ability of the model. It 

demonstrates how the quality of these predictions increases with finer information on 

chromosome length variations.  
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Figure 24: Performance comparison of the developed ML models by 1-split and 4-split approach based on average AUC, accuracy, and 
F1-score values from 5 runs.  
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By using H2O automl function, different ML algorithms trained during the training phase 

and the performance of the developed model compared by plotting the ROC curves on test 

split, Figure 25, and calculating other performance metrices at different stage of model 

development, Table 6.  

 

The impact of varying the allocated train time for model development on AutoML function was 

examined. By extending the time from 900 seconds to 12 hours and 24 hours, the AUC of the 

top model, stacked ensemble, improved by 1-2%. Notably, the deep learning models, which 

Figure 25: ROC plots of four developed ML models (Stacked Ensemble, Gradient Boosting Machine (GBM), Generalized Linear 
Model (GLM), and deep learning) for predicting breast cancer based on 88 numbers derived from average LRR values of quarter 
segments of chromosomes. The ROC plots depict the performance of the models on the test split. 
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initially had lower rankings during the 900-second training, significantly improved and rose to 

the top positions with the longer training times. 

 

 

 

Table 6: Performance metrics of the top 4 machine learning models for predicting breast cancer. Performance metrics were 
reported as an average of 8 runs along with standard deviation. 

 

Once we identified the best classifier, to stimulate a real- world application, a trained model is 

tested on unseen test split. The model returns a score for each women in test set. We assessed 

the accuracy of the model by ranking each woman based on the assigned score and evaluating 

its performance across quintile. A higher score indicates a higher likelihood of having breast 

cancer, and we calculated the odds ratio of the model within each quintile. Table 7 displays the 

Model AUC- Train 

(SD) 

Accuracy-Train 

% 

(SD) 

AUC-

Validation % 

(SD) 

Accuracy-

Validation % 

(SD) 

AUC-Test 

(SD) 

Accuracy-Test % 

(SD) 

F1 Score -Test 

% (SD) 

Stacked 

Ensemble 
0.76 (0.03) 72% (2.3) 0.70 (0.02) 67% (0.01) 0.70 (0.01) 68% (1.1) 0.64 (0.04) 

GLM 0.71 (0.01) 66.5% (3.3) 0.69 (0.01) 67.2 % (1.4) 0.7 (0.01) 67.8% (1.0) 0.62(0.02) 

Deep 

Learning 
0.70 (0.03) 66.3% (4.1) 0.65 (0.05) 63% (2.5) 0.65 (0.03) 63%(5.1) 0.6 (0.05) 

GBM 0.69 (0.05) 65.3 (1.4) 0.55 (0.03) 57.2 (1.7) 0.56 (0.01) 58% (2.4) 0.59 (0.02) 
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odds ratios calculated from the top quintile for each respective quintile relative to the entire 

test population, indicating the increased likelihood of having breast cancer associated with 

higher scores. The top 20% of women (ranked based on the score received from our risk 

estimate model) in our results had an increase of 9-fold risk over women who scored in the 

bottom 20%.  

 

To understand how the model reaches its results, we analyzed the variable importance to 

identify the regions that contribute the most to the model's predictions. We focused on the 

generalized linear (GLM) model, which was ranked second on the AutoML function. As stacked 

ensemble models do not provide variable importance information, we plotted the relative 

importance of the most significant variables on the trained GLM model Figure 26. 45This analysis 

helped us identify the key variables that had the most influence on the model's predictions.   

Table 7 : This table represents the odds ratio between the quintile of predicted results from our trained model tested on unseen split of data. The 
result indicates that the top quintile is 9 times as likely to have an accurate prediction for breast cancer as the bottom quintile.  
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The SHAP summary plot was used as an additional method to gain insights into the machine 

learning (ML) model. This analysis specifically focused on tree-based models. Among all the tree 

based models GBM ranked higher on the leaderboard of h20 AutoML function. Figure 27 

displays the SHAP summary plot for the GBM model.  

  

Figure 26 The variable importance plot on breast risk assessment model. The GLM model shows the relative importance of the most 
important variables in the model.  
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Figure 27: The Shapley additive explanations plot of GBM model for predicting breast cancer. 
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The analysis of SHAP values and variable importance calculations indicates that there is no 

single chromosomal region that contributes significantly more than others to the predictions of 

the model. Instead, the model relies on a combination of multiple chromosomal regions and 

genetic factors to make accurate predictions. This suggests that the overall genomic landscape 

and interplay between different regions play a crucial role in determining the risk of breast 

cancer. 

6.2.b: Cross Races Analysis in Developed ML Model for Breast Cancer  

We investigated the potential of leveraging the diversity within our datasets by 

developing a model based on a specific race and testing its performance on individuals from 

different races. This analysis allowed us to explore the transferability of the model across 

different racial groups and assess its generalizability. For this reason, we conducted ML model 

development for predicting breast cancer using different splits of available data for each racial 

group and tested the models on different racial groups. The positive class in this study, consists 

of 3,342 patients identifying as white, 440 patients identifying as black or African American, 107 

patients identifying as Asian, 22 patients identifying as Middle Eastern, and 2 patients 

identifying as Native Hawaiian. Additionally, there are 620 patients in the positive class whose 

race is unknown. To conduct a cross-analysis considering all subpopulations in the positive 

class, we categorized the cases into three subgroups: white, black or African American, and 

other races. The "other races" category includes cases with unknown race as well as individuals 

from Asian, Middle Eastern, and Native Hawaiian backgrounds. Due to the limited number of 

cases in the Asian, Middle Eastern, and Native Hawaiian groups, they were not analyzed as 

separate groups in the cross-race analysis. 
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Once we categorized the positive class into three subpopulations, we aimed to maintain a 

balanced ratio of 40:60 between the positive and negative classes in the final dataset. To 

achieve this, we randomly selected an age-matched number of cases from the negative class 

within each subsection of race for each run. In this study, two different ML models were 

developed. The first ML model was trained on 80% of the finalized dataset of the white 

subgroup and tested on the remaining 20% split of the white population. The same trained 

model also was tested on the black or African American dataset, the other races dataset, and 

the combined dataset including white, black, and other races. The performance of each model 

was evaluated by calculating the maximum F1 score, maximum accuracy, and AUC of the ROC 

curve at each step of testing on each different subcategory of races. These evaluation steps 

were repeated for each ML model, the recorded values were averaged for 5 separate runs. The 

average values for evaluation metrics of the 5 runs, along with their corresponding standard 

deviations, are presented in Figure 28 and Table 8. The model development followed similar 

criteria as the previous models, and 5-fold cross-validation was employed to mitigate 

overfitting.  
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Figure 28: AUC values of two different types of ML models for predicting breast cancer. The first model was trained on the white subgroup, 
while the second model was trained on the black subgroup. AUC values were recorded for each run at different stages of model 
development, including training and cross-validation, as well as its performance on different subgroups of races. 

Table 8: Evaluation metrics of two different ML models. The first model was trained on the white subgroup, while the second 
model was trained on the black subgroup. The metrics include the AUC, accuracy, and F1 score for each model tested on 
different races.   
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ROC curves for the trained ML model on the white subpopulation of the dataset, tested on 

Figure 30: ROC curve of model trained on the white subpopulation and tested on the black subpopulation group with an AUC of 
0.59.  

Figure 29: ROC curve of model trained on 80% of the white subpopulation and tested on the remaining 20% test split of 
the white subpopulation, with an AUC of 0.66. 
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remaining 20% unseen split of the white, black, other, and mixed races, are shown in Figure 

Figure 31: ROC curve of the model trained on the white subpopulation and tested on the other races split of the finalized 
dataset, demonstrating an AUC of 0.60. 

Figure 32: ROC curve of model trained on the white subpopulation and tested on all the combined races, including black, white and 
other races, with an AUC of 0.62. 
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29,Figure 30,Figure 31and Figure 32 respectively. 

Similarly, the ML model trained on 80% of the black or African American subgroup was 

evaluated by testing its performance on the remaining 20% of the black split, white split, other 

race subgroups, and the combined dataset of white, black, and other races. The ROC curves of 

the model, tested on different race subpopulations, are presented in Figure 33, Figure 34, 

Figure 35, ,Figure 36 along with other evaluation metrics shown in Table 8. 

 

Figure 33: ROC curve of model, trained on 80% of the black subpopulation and tested on the remaining 20% test 
split of the black subpopulation, with an AUC of 0.60.  
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Figure 34: ROC curve of model trained on the black subpopulation and tested on white race, with an AUC of 0.58. 

 

 

Figure 35: ROC curve of model trained on the black subpopulation and tested on other races, with an AUC of 0.55. 
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Figure 36: ROC  curve of model trained on the black subpopulation and tested all the mixed races, including black, white and 
other races, with an AUC of 0.58. 

 

Based on the performance analysis of these two trained models on different race 

subgroups, a notable trend can be observed. Among all the calculated AUC values for different 

subgroups, the model trained on the white subgroup and tested on the remaining 20% split of 

the white subgroup exhibited the best performance. During each run of model development on 

the white split of data, a total of 6,684 cases were used for training and 1,671 cases were used 

for testing. In contrast, the number of cases in the black subgroup was significantly lower, with 

a total of 1,100 cases available for each run, of which only 880 cases could be used for training. 

To further evaluate the differences in model performance, p-values were calculated comparing 

the AUC values tested on the white subgroup with the AUC values tested on different 

subgroups. The results showed a significant difference in the model's performance on the white 

split of the data compared to other racial subgroups. This significant difference could be 
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attributed to the larger number of cases in the white subgroup, which may contribute to 

improved model performance. However, when considering a more diverse population, the 

model's performance decreases significantly, indicating that this approach may be more 

effective for the white race. 

Considering the limitation of the number of cases in the black subgroup, the model trained on 

the black race exhibited a relatively consistent performance on all other subgroups of races. 

This may be attributed to the higher diversity observed in the germline DNA of the black race, 

which could increase the generalizability of the model. Surprisingly the model’s performance on 

white split of population was better than black population which also supports the more 

diversity within the black group.  However, it is important to note that the overall model's 

performance was lower compared to the model trained on the white race.  

To further investigate the potential for model improvement, it would be beneficial to include 

more data points from the black subgroup. By increasing the sample size and diversity within 

the black race, it is possible to enhance the model's performance and explore its effectiveness 

in predicting breast cancer risk within this population. 

6.2.c Results Discussion- Breast Cancer  

The developed ML model for predicting breast cancer based on CSLV features derived from 

germline DNA introduces a new approach to breast cancer risk determination. By incorporating 

machine learning algorithms and considering the epistatic effects of the genome in a nonlinear 

way on data derived from All of Us study, this model overcomes the limitations of previous 

models, particularly in terms of generalizability. The developed ML model based on 88 numbers 

achieved an AUC of 0.70, surpassing other risk determination models for breast cancer, 
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including the Tyree-Cusick model with an AUC of 0.64 and the polygenic risk score computed 

from linear combinations of SNPs with an AUC of 0.630. 4,139 This indicates that the developed 

model has better predictive accuracy and performs more effectively in determining the risk of 

breast cancer compared to these existing models.  

In this approach, 88 numbers were used to characterize each genome by splitting the 22 

chromosomes into four equal parts. Further improvements to the model can be explored by 

splitting the chromosomes into finer segments and increasing the training time. However, 

understanding the underlying mechanisms of the model can be challenging. Analysis of feature 

importance and Shapley values reveal that there is no single chromosome region that 

significantly contributes to the model's predictions. 

Another limitation of the proposed model is that it focuses solely on germline DNA and does 

not incorporate environmental factors in risk determination. However, despite these 

limitations, the developed model based on CSLV exhibits effective prediction of breast cancer 

occurrence within one of the most diverse datasets available. In fact, the likelihood of a woman 

developing breast cancer is 9 times higher if she scores in the top quantile according to the 

developed model compared to a woman who is ranked in the bottom quantile. This 

demonstrates the strong predictive power of the model in identifying individuals at higher risk 

for breast cancer. 
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6.2.d Genetic Risk Score Model for Determining Risk of Colorectal Cancer  

 

Based on the promising results obtained from the breast cancer risk estimate model, we 

proceeded to explore the application of a similar strategy for developing a risk assessment 

model for colorectal cancer. In this sub-chapter, our objective is to investigate the feasibility of 

predicting the occurrence of colorectal cancer in participants enrolled in the All of Us study. By 

leveraging the available data and applying machine learning techniques, we aimed to develop a 

model that could accurately classify individuals as either at high risk or low risk for developing 

colorectal cancer. 5,21,135 

Colorectal cancer is a prevalent form of cancer diagnosed worldwide and is recognized 

as the second leading cause of cancer-related deaths in the United States. Since the mid-1990s, 

there has been a decline in the incidence of colorectal cancer, which can be attributed to the 

widespread implementation of regular screening programs. However, the incidence and 

mortality of this cancer is not even across US subpopulations; there is a marked difference in 

CRC incidences by race and ethnicity. In particular, Black Americans have the highest mortality 

and incidence rate and Native Americans been ranked second.142 It’s been shown that high 

screening utilization can potentially eliminate the mortality disparity among Black Americans. 

The current risk assessment models that have been used to identify the high-risk population for 

colorectal cancer contain two sections, non-modifiable risk factors and modifiable risk factors. 

Non-modifiable risk factors include genetic or heritable susceptibility and modifiable risk factors 

are environmental risk factors such as diet, tobacco use etc. The genetic susceptibility of 

colorectal cancer (CRC) is strongly influenced by an individual's family history of cancer and the 
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age at which those cancers occurred. Screening recommendations are often based on these 

assessments, with individuals at higher risk advised to undergo screening at an earlier age, 

typically above 50. Indeed, studies have shown that Black and Hispanic Americans with a family 

history of colorectal cancer (CRC) have lower rates of participation in screening compared to 

other racial/ethnic groups. Additionally, there is a disparity in knowledge of parental cancer 

history between Black and White Americans, with Black Americans being less likely to have this 

information available. Furthermore, the communication of colonic polyp findings within 

families is less likely to occur among Black Americans. This lack of information or lack of 

transmittal of information from Black Americans can result in individuals being categorized as 

average-risk for screening instead of being identified as having a positive family history that 

warrants earlier screening.  143–146 Current risk assessment tools often do not adequately 

consider the contribution of racial/ethnic ancestry to heritable susceptibility factors. The 

limitations mentioned underscore the importance of developing an improved and more 

accurate risk assessment model for colorectal cancer that adequately incorporates inheritance 

factors. 

Currently there are few colorectal risk estimates models that include germline DNA 

analysis in their risk estimate calculation, in one study 115 risk variants derived form GWAS and 

they were used to develop polygenic risk model for East Asians population. The performance of 

the developed logistic regression model was analyzed by calculating AUC = 0.63.  34 In another 

study, nine populations of European descent were studied for model development. Binary 

regression model was developed with an AUC = 0.59 which is based on combined effect of age, 

gender, family history and genotype of 10 susceptibility loci. 147 Polygenic risk scores have 
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gained a lot of attention recently new models may continue to emerge as research progresses, 

however the linear analysis of genetic variants and lack of diversity of datapoints are the main 

limitations of the current developed models which results in a lower predictability, the 

maximum AUC that has been achieved is 0.63. 148,149 

Developing a polygenic risk model that incorporates germline DNA analysis in a 

nonlinear manner based on diverse data points holds great potential for improving the accuracy 

of risk assessment tools for colorectal cancer and addressing the aforementioned limitations. 

By leveraging advanced genetic analysis techniques, such as chromosomal structural variations, 

we can better capture the complex genetic susceptibility to colorectal cancer.  

For developing a personalized risk assessment model based on CSLV, we utilized the 

calculated CSLVs number (section 6.1.d) for each patient in all of us controlled tier V6 dataset  

and used it as the basis for developing the ML model. We were interested in identifying 

participants who have been diagnosed with malignant neoplasm or tumor of colon/ rectum and 

have had microarray genetic data. The control group for this study was constructed by 

excluding men and women with any type of cancer diagnosis, resulting in a cohort of 78,196 

cancer-free women and men in all of us dataset-controlled tier V6.  For positive class we 

identified 1401 cases, and 78,196 cases were identified in control class that have had genetic 

microarray data. Table 9 represents the racial and sex distribution in both classes of the model 

that were used for model development.  
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Table 9:Racial and sex distribution of participants in positive & negative class of risk assessment model for colorectal cancer. 
The positive class includes men and women with a diagnosis of malignant colon-rectum tumor, while the control group 
comprises cancer-free men and women.  

 

For model development in this section, we employed the same strategy as in the 

previous section. To achieve a balanced distribution, we selected an under-sampled age-

matched group of participants in the control class, ensuring a 40:60 ratio between the positive 

and negative classes in each run. This approach allows us to account for the imbalanced nature 

of the dataset and improve the performance and generalization of the developed models. 

Class Race Distribution  Sex Total 

White Black Asian/Middle 

Eastern 

Other Unknown Female Male Unknown 

Positive 

(Malignant  

Colorectal 

Tumor) 

1022 136 25 22 196 728 656 17 1401 

Negative 

(Control) 

27949 24810 3116 2210 20111 44518 33678 0 78196 
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Based on the successful results obtained from breast cancer risk determination, we 

applied the same strategy for model development to predict colorectal cancer. In this 

approach, we utilized 88 numbers derived from splitting each of the 22 chromosomes into 4 

equal segments as predictive features. These numbers were fed into the H2O AutoML function 

to develop machine learning models for predicting colorectal cancer. The same criteria as the 

breast cancer risk determination model were implemented for model development. 

 

 

Figure 37: ROC curves of top 4 classifiers for predicting colorectal cancer. Models were trained on 80% of data and 
tested on the remaining 20% split. The stacked ensemble model performed the best, followed by the GLM and GBM 
models. The performance of the deep learning models varied and was influenced by the allocated training time, but 
none of them ranked as the stacked ensemble model in terms of AUC. 
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Figure 37 displays the ROC curve of the top 4 classifiers that were trained on 80% of the 

dataset and tested against the remaining 20%. Table 10 presents additional evaluation criteria 

such as accuracy, F1 score, and precision for these models at various stages of development, 

including training, cross-validation, and testing. These metrics provide a comprehensive analysis 

of the models' performance and their ability to accurately predict colorectal cancer. 

To evaluate the performance of the trained model on unseen data, each case in the test set was 

assigned a score based on the model's predictions, similar to odds ratio calculation for breast 

cancer model. The accuracy of the model was then assessed by ranking the scores according to 

their scores and analyzing its performance across each subsections. A higher score indicated a 

higher probability of having colorectal cancer. Figure 39 presents the odds ratios calculated 

based on predictions done by top model, stacked ensemble, for each respective 1/25th 

subsection.  

 

Table 10: Performance metrics of the top 4 machine learning models for predicting colorectal cancer. Performance metrics were reported as 
the average of 8 runs along with standard deviation. 
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Figure 38, demonstrates the increased likelihood of having colorectal cancer associated 

with higher scores. People who were ranked in the top 10% by the model are 12 times more 

likely to develop a colorectal cancer compared with the bottom 10% group. These results 

supply valuable insights into the predictive ability of the model and its effectiveness in 

identifying individuals at a higher risk of colorectal cancer.  

Figure 39,Figure 40 and Figure 41 showcase the variable importance analysis performed on 

different models within the H2O AutoML framework. Specifically, the GLM model's variable 

importance is displayed, providing insights into the significance of each variable. The SHAP plot 

represents the contribution of features in the best decision tree model, XGBoost, shedding light 

Figure 38: This figure shows that cases ranked higher by the ML model, stacked ensemble, are significantly more likely 
to have colorectal cancer. This trained model ranked all 700 new cases in the test split based on their likelihood of 
having a colorectal cancer, based solely on germline DNA CSLV data. This ranking was then split into 25 equal portions, 
each with about 28 cases. This plot shows the odds ratio of each of the 25 equal partitions along with 95% confidence 
intervals.  
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on their impact on the predictions. Additionally, the variable importance heat map offers a 

comprehensive overview of the top models on the leaderboard, illustrating the relative 

importance of variables across multiple models. These figures were generated using the 

available functions in the H2O AutoML framework. 

 

 

 

Figure 39: Relative importance of the most significant variables in the model. The variable importance was calculated based on 
GLM ML model for predicting colorectal cancer.   
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Figure 40: The Shapley additive explanations plot of GBM model for predicting breast cancer. 

 



106 
 
 

 

 

 

Figure 41: The variable importance heat map for the top machine learning models used in the prediction of 
colorectal cancer. The heat map supplies a visual representation of the relative importance of different variables 
across these models. 
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Similar to breast cancer model analysis, these analysis reveals that there is no specific 

chromosomal region that significantly outweighs others in terms of its contribution to the 

predictions made by the model.  

Our developed personalized risk estimate model, which incorporates germline DNA analysis to 

analyze inheritance factors, overcomes the limitations of current risk assessment tools that rely 

on family history information. This is particularly beneficial for racial and ethnic groups who 

may have limited knowledge of their parental cancer history. 143The model achieved an AUC of 

0.68 on the unseen split of data, and individuals ranked in the top 10% by the model are 12 

times more likely to develop colorectal cancer compared to the bottom 10% group. This 

outperforms current polygenic risk estimate models with an AUC of 0.63. 34 By incorporating 

inheritance factors through our novel approach of Chromosomal Scale Length Variability (CSLV), 

we significantly improve the accuracy of risk estimation for colon cancer. By considering the 

structural variations and genetic information at the chromosomal level, our model provides a 

more comprehensive and accurate assessment of individual risk for colon cancer, regardless of 

the availability of family history data. This ensures that individuals from all backgrounds can 

benefit from personalized risk estimation and receive appropriate preventive measures and 

screenings. 
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6.2.e Genetic Risk Score Model for Determining Risk of Oral Cavity Cancer 

In the first aim of this study, our focus was on developing a machine learning model for 

predicting local regional recurrence of oral tongue squamous cell carcinoma based on 

sociodemographic and clinical variables.  Through the analysis of relative feature importance, 

we found that several factors, including the number of prior tumors, histology, tumor site, and 

age, were among the features that exhibited the highest importance in the predictive model. 

We hypothesized that there will be genetic predisposition associated with tumor occurrence.  

For this reason, we investigated developing a personalized predictive model purely based on 

CSLV, to estimate the risk of oral cavity cancer for individuals.  

In the past decade, there has been significant research and development of risk 

estimation models for oral cavity cancers. This area of study has garnered considerable 

attention due to the rising incidence rates observed across all age groups worldwide. 150–153 

Particularly concerning is the increased incidence and mortality rates among young adults 

below the age of 40 in the European Union and the United States. 154,155 

Unfortunately, the current detection of oral cancer often occurs at advanced stages, 

leading to high morbidity and mortality rates. Late-stage diagnosis is a significant factor 

contributing to these outcomes. However, there is hope for improved survival rates, with 

projections suggesting that implementing reliable risk assessment and screening methods in 

clinical settings could increase survival rates to 80% to 90% . Early detection and intervention 

play a crucial role in improving patient outcomes. To facilitate early diagnosis, screening 

programs targeting high-risk individuals have been developed. These programs employ various 

techniques such as visual inspections, oral brush biopsy, toluidine blue staining, 
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chemiluminescence, or fluorescence imaging. These methods help identify potentially 

abnormal areas in the oral cavity, which can then be further investigated to determine the 

presence of oral cavity cancers. 156 

The current risk assessment models for oral cavity cancer take into account a range of 

risk factors to estimate an individual's likelihood of developing the disease. These factors 

include age, gender, tobacco and alcohol use, betel nut chewing, family history, human 

papillomavirus (HPV) infection status, and the presence of oral potentially malignant disorders. 

Nomograms, which are graphical representations of mathematical models, have also been 

utilized to assess an individual's risk based on these factors. 

 Identifying the high-risk group for oral cavity cancer is crucial, as early detection and 

intervention can significantly impact mortality rates. Sankaranarayanan et al, observed that 

screening using visual inspection conducted by trained health workers led to a remarkable 34% 

reduction in oral cancer mortality among individuals who were tobacco and/or alcohol users in 

the intervention group. 157 This highlights the effectiveness of targeted screening programs in 

identifying individuals at high risk and potentially preventing disease progression and related 

mortality. 

Developing a more comprehensive risk assessment model with the aid of advanced 

machine learning algorithms can improve the accuracy of the current models significantly. 

There are several studies that have attempted to develop risk estimate models for oral cavity 

cancer by utilizing different ML algorithms. However similar to other developed risk estimate 

models for other types of cancer most of these studies have developed their models based on 

small population, usually white race, with lack of diversity in their study group. These models 



110 
 
 

are mainly based on clinical and sociodemographic variables and inheritance factors have not 

been investigated fully in the developed ML models.158 As the genetic testing for oral cavity 

cancer cases is not a routine practice, developing a risk assessment model which includes 

genetic variables in their model has not been studied yet. 159 

Similar to the previous two ML models in this chapter, we utilized All of Us dataset for 

model development. Following the same data extraction strategy as previous models, we 

constructed a dataset consisting of two classes: the positive class and the control group. The 

positive class comprised participants who had malignant tumors in specific primary sites, 

including the floor of mouth, lip, oral cavity and pharynx, oropharynx, tonsil, and salivary gland. 

These primary sites were selected according to the primary sites that were used as local 

regional sites for developing a prediction model for local regional recurrence of OTSCC.  

The control group had similar properties as the control group in the colorectal cancer risk 

estimate model.  Table 11 provides a breakdown of the racial and sex distribution within the 

positive class and control group used in the construction of the risk estimate model for oral 

cavity cancer. Model development followed the same strategy as the two previous developed 

models, colorectal cancer and breast cancer.  

 

Table 11: Sociodemographic, racial and sex distribution within the positive class and control group used for constructing the risk 
estimate model for oral cavity cancer. The positive class includes men and women with a diagnosis of malignant oral cavity 
tumor, while the control group comprises cancer-free men and women.     
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We utilized 88 numbers, each corresponding to equal splits of each chromosome into 4 

segments, to build the ML model using the H2O AutoML function. Stacked ensemble model was 

ranked the best classifier model during the training, cross validation, and test split. Figure 42 

displays the ROC curve of the trained stacked ensemble model which was tested on unseen 

Figure 42: ROC curve of top classier, stacked ensemble model, for predicting oral cavity cancer. The performance of the trained model 
was evaluated on test split of data and AUC of the ROC curve was calculated. The stacked ensemble model has an AUC of 0.72.  

Table 12: Performance metrics of top four ML models for predicting oral cavity cancer. 
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split of the data with an AUC value. Table 12 and Figure 43 show the evaluation criteria of the 

top four ML models at different stages of the model development process along with ROC curve 

of top four classifiers.   

 

Figure 43 : ROC curve of top 4 ML developed for predicting oral cavity cancer, these plots were generated by testing the 
trained model on unseen split of data.  



113 
 
 

 

By obtaining the scores of the trained model on the unseen test split of the data, we 

calculated the odds ratio. We ranked men and women on the test split based on their score, 

divided the rankings into 5 equal quantiles, and calculated the odds ratio relative to the entire 

group with a 95% confidence interval. The results, presented in Table 13, show that individuals 

who were ranked higher by the predictive model are 7 times more likely to have oral cavity 

cancer compared with the bottom quintal. These rankings, determined by the stacked 

ensemble model and are based solely on germline DNA. Figure 44 displays the average of odds 

ratio for each of the 25 equal partitions along with their standard deviations of 5 runs.  

 

 

Figure 44: This figure shows that participants ranked higher by the predictive model are significantly more likely to have oral 
cavity cancer. The predictive model ranked all 645 women and men in the test split of dataset based on their likelihood of 
having oral cavity cancer, based solely on germ line DNA data. This ranking was then split into 25 equal partitions, each with 
about 129 participants. This plot shows the odds ratio (relative to entire group) of each of the 25 equal partitions along with 
the 95% confidence intervals.  
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Figure 45 displays the variable importance for the GLM model, highlighting the relative 

importance of each variable in predicting oral cavity cancer risk. Figure 46, presents the Shap 

summary plot for the top tree-based model, XGBoost, showing the impact of each variable on 

the model's predictions. 

 

Table 13: The participants in the unseen split of data were ranked by score from lowest to highest by the top trained model into five equal 
quintiles. This table presents the number of participants with and without oral cavity cancer in each quintile along with the odds ratio 
compared to the entire group and the 95% confidence interval for the odds ratio.  
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Figure 45: The variable importance plot on oral cavity risk assessment model. The GLM model was ranked second on the leaderboard and 
been used to show the relative importance of the most important variables in the model. 
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Figure 46: The Shapley additive explanations plot of XGBoost model for predicting oral cavity cancer.  
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The variable importance heat map, Figure 47, illustrates the relative importance of variables 

across multiple models developed for predicting oral cavity cancer.   

Figure 47: The variable importance heat map for the top machine learning models used in the prediction of oral cavity cancer. The 
heat map supplies a visual representation of the relative importance of different variables across these models on h2o automl 
function. 
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In recent years, there has been a significant increase in the incidence rate of oral cavity 

cancer, leading to a focus on identifying high-risk individuals through various assessment tools. 

150,151 Several studies have utilized machine learning algorithms, such as artificial neural 

networks, logistic regression, decision trees, and Fuzzy regression, to develop risk assessment 

models for predicting oral cavity cancer. Among these models, the top models with the best 

performance were artificial neural network with 80% sensitivity and voting classifier with an 

AUC of 0.83. However, these models have limitations, first, as they are developed based on 

individuals' risk habits and demographic profiles, which inheritance factors had not been fully 

investigated in their model development. Second, the models were developed based on 

primarily datasets representing the white race and non-Hispanic and Latino ethnicity.158–160 

Based on the obtained results, we developed a machine learning model using 88 

numbers derived from an individual's germline DNA to predict the risk of oral cavity cancer. The 

top-performing model demonstrated an AUC of 0.70 and a precision of 85%, indicating 

promising predictive ability. Upon analyzing the SHAP plot and assessing the importance of 

different features in each run, we observed that no single feature consistently exhibited high 

predictability. This suggests that the combination of numbers derived from different splits of 

each chromosome contributed to the model's development. To further evaluate the model's 

performance, odds ratios were calculated to compare the likelihood of individuals ranked at the 

top versus those ranked at the bottom by the model. 

 

To date, there have been no studies analyzing germline DNA in a nonlinear manner to 

assess the risk of oral cavity cancer in individuals. While the prediction ability of previously 
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discussed ML models may be higher than our model, we were able to develop a model using a 

dataset that exhibits greater diversity in its data points. We hypothesize that by integrating 

germline DNA analysis with other established risk factors, we can enhance the predictability 

and applicability of future models for determining the risk of oral cavity cancer. These 

developed models have the potential to identify high-risk patients and tailor screening and 

prevention strategies based on an individual's specific risk profile. 
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CHAPTER 7: CONCLUSION, LIMITATIONS & FUTURE DIRECTIONS 

 

Cancer research plays a vital role in understanding and combating one of the most 

challenging health issues worldwide. Over the years, significant advancements have been made 

in cancer research, leading to groundbreaking discoveries and novel treatment options. Recent 

developments in this field have included targeted therapies, immunotherapies, and precision 

medicine approaches, which have shown promising results in specific cancer types. 

Additionally, advances in genomics and molecular biology have provided a deeper 

understanding of the underlying mechanisms driving cancer development and progression. 

Moreover, research efforts have also focused on early detection methods and personalized risk 

estimate models, enabling more tailored and effective treatments for individual patients. By the 

recent advancements in AI and big data in health care we believe human beings can make a 

significant contribution to early detection and advancing precision medicine.  

This investigation demonstrates the potential of utilizing available data from large 

healthcare databases, such as SEER, UK Biobank, and All of Us datasets, to advance early 

detection of cancer through advanced machine learning algorithms. For the first aim of this 

investigation a unique algorithm developed to identify cases of cancer recurrence from the 

expansive and widely used SEER database.  This lays the groundwork for future investigations 

into various challenges related to cancer recurrence. Using this novel framework, we developed 

one of the first machine learning-based classification models that can accurately predict 5- and 

10-year recurrence in patients with oral tongue squamous cell carcinoma (OTSCC) and breast 
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cancer. Importantly, this model uses only commonly available demographic and clinical 

features, making it easily applicable in a clinical setting. 

To incorporate hereditary factors in our risk estimation models and study their impact 

on cancer occurrence, two biobanks have been investigated: UK Biobank and All of Us dataset. 

These biobanks are invaluable resources, providing diversity and statistical power for our 

analysis. For this objective, we evaluated a novel approach to incorporate hereditary factors 

into our model and improve prediction accuracy using ML algorithms. Instead of relying on 

SNPs and the traditional method of calculating polygenic risk scores, we developed our model 

based on structural variations in germline DNA. These structural variations could be caused by 

insertions or deletions of segments genome. 

First, we investigated whether we could use the CSLV values corresponding to each 

chromosome or segment of the chromosome to develop a model capable of accurately 

classifying breast cancer recurrence from non-recurrence cases based solely on these calculated 

numbers. We discovered that using the CSLV values, we were unable to accurately classify 

breast cancer recurrence cases from non-recurrence cases within the available data from the 

UK Biobank. This limitation may be due to the small number of recurrence cases identified in 

the dataset and the significant impact of treatment strategies and the stage of first diagnosis on 

the success of cancer remission. These factors influenced the ability to predict recurrence more 

than inheritance factors.  

To explore the applicability of our unique approach in determining an individual's risk of 

developing a specific type of cancer, we tested our hypothesis on the recently released data 

from the All of Us study. The diversity of data points within the All of Us study provides valuable 
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input that can overcome the limitations of current risk estimate models, which are often 

developed based on specific race and ethnic groups. By incorporating a more diverse dataset, 

our approach has the potential to improve the accuracy and inclusivity of risk prediction models 

for various populations. By calculating CSLV values derived from copy number variations 

measurements within our associated workbench in the All of Us study, we were able to develop 

accurate risk estimate models for breast cancer, colorectal cancer, and oral cavity cancer. The 

models were trained exclusively using inheritance factors and were then tested on a separate, 

unseen split of data. By calculating Odds ratio and AUC values of the model performance on the 

test split, we demonstrated the potential of utilizing copy number variations in the form of 

chromosomal scale length variations to predict complex diseases, particularly cancer. This 

approach, combined with machine learning techniques, shows great promise in enhancing early 

detection and advancing precision medicine approaches for cancer. We believe that this 

approach can be extended to other complex diseases, enabling further investigation into the 

contributions of genetic variation to individual susceptibility.  

However, there are some limitations associated with this study that can be enhanced 

and improved for future investigations. In our first aim of this study, we utilized avaibale data in 

SER dataset, due to the limitation of the collected data within the platform, some valubale 

histopathological and clinical features were not included in our features. Despite these 

constraints, we were able to develop a model with high predictability for the locoregional 

recurrence of OTSCC and local recurrence of malignant breast tumor. We believe that 

incorporating these site‑specific variables along with other clinical and sociodemographic 

variables can only enhance the predictive power of these models.  
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In the second and third aim of our study, we focused solely on developing risk estimate 

models based on the calculated CSLV values within segments of the chromosome. However, it 

is important to note that this approach only accounts for structural variations within the size of 

the SNP region, specifically deletions and additions of segments of the chromosome that can be 

detected through CNV analysis. Other structural variations in the genome, such as 

translocations, cannot be accounted for in this approach.  

Additionally, a common limitation associated with all machine learning models, 

including ours, is the challenge of interpreting the model's performance and understanding 

how predictions are made. Machine learning models are often considered black boxes, making 

it difficult to fully comprehend the factors driving their predictions. This limitation highlights the 

need for further research and development of interpretability techniques in machine learning 

to enhance the trust and acceptance of these models in the medical field. 

We believe that that there is room for further improvement to enhance the applicability 

and accuracy of the models we have developed. Strategies such as feature engineering, using 

sub-chromosomes instead of complete chromosomes, and data augmentation can potentially 

improve the AUC values of the models. Additionally, incorporating SNP data and environmental 

factors into the models could have a significant impact on their accuracy. 

Moreover, to enhance the applicability of the developed models, we can train the 

model on one dataset and evaluate its performance on a completely different dataset. Each 

analysis has been conducted on separate datasets and then tested on the same dataset. Future 

research could further refine this method to improve the predictive ability of the models. 
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In conclusion, we firmly believe that enhancing the accuracy of cancer risk estimate 

models and advancing precision medicine can effectively identify individuals at higher risk of 

cancer and enable personalized screening and intervention strategies. This approach will have a 

significant clinical impact on early cancer detection and ultimately lead to improve survival 

rates for individuals who are at risk. By tailoring healthcare interventions based on risk 

estimates, we can make substantial progress in the fight against cancer and improve patient 

outcomes. 
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