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Full Waveform Inversion of a 3-D Source Inside an Artificial Rock 

 

Albert C. To and Steven D. Glaser* 

Department of Civil and Environmental Engineering, University of California, Berkeley  

485 Davis Hall 

Berkeley, CA 94122 

USA 

 

Abstract 
 

A full waveform inversion of the kinematics of a 3-D source inside an artificial 

rock plate in presented. The source is provided by a piezoelectric disc embedded inside a 

gypsum plate, excited by an arbitrary electrical signal.  Elastic waves emitted from the 

source propagated through the plate and are recorded by an array of wide-band high-

fidelity microseismic displacement sensors.  This microseismic data is then inverted by 

deconvolving the recorded signals with the theoretical Green’s functions to obtain the 

kinematics of the source modeled by force couples.  The force time functions thus 

inverted are justified qualitatively to the known mechanical behavior and compared 

quantitatively to simplified electro-acoustic equations.  For the first time, the combined 

use of wide-band high-fidelity sensor, Green’s functions incorporating Q damping, 

effective point source theory, and linear deconvolution yield physically justified time 

functions of the source kinematics. 
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   email: glaser@ce.berkeley.edu 
   fax: 1-510-642-1800 

  1

mailto:glaser@ce.berkeley.edu


1. Introduction 

Determination of the kinematics of crack growth during its generation is of great 

importance in engineering and science.  The kinematics of a source in a solid can in 

theory be estimated by inverting recorded microseismic (MS) signals generated by the 

source.  In the present paper, a full waveform inversion of the kinematics of a 3-D source 

inside an artificial rock plate is presented.  The 3-D source is a piezoelectric disc that 

expands (or contracts) in the axial direction and contracts (or expands) in the radial 

direction due to the input of an arbitrary electric signal.   

Inversion methods can be generally divided into three categories:  1) inversion by 

use of only the P-wave amplitude, 2) full waveform inversion by empirical Green’s 

function, and 3) full waveform inversion by theoretical Green’s function.  In the first 

category, only the amplitude of the first P-wave pulse is used to determine the type of 

cracks and the amount of source [1-3].  This method will lead to an answer very quickly 

and does not require the use of Green’s functions, but it does not give the complete 

behavior of the crack as a function of time.   

In the second category, the microseismic signals are inverted from the empirical 

Green’s function to obtain time function of the kinematics [4-6].  The resulting source 

time function is very accurate because the empirical Green’s function accounts for the 

receiver transfer function and anelasticity which arises from crystal defects, grain-

boundary processes, and viscoelasticity, which are difficult to account for individually 

when calculating the theoretical Green’s function.  However, except when the source is a 

monopole on the surface of a solid, obtaining the empirical Green’s function is practically 

impossible inside a solid without disturbing the solid.   
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In the third category, the microseismic signals are inverted from the calculated 

theoretical Green’s functions to obtain the kinematics of the source [7].  The most direct 

inversion method is by direct linear deconvolution of the microseismic data from the 

calculated Green’s functions [8,9].  The linear deconvolution method can be used to 

invert for sources of any nature and location, but the success of this method hinges on 1) 

how close the solid model used to calculate the Green’s function is relative to the actual 

physical properties of the solid, and 2) the estimation of the transfer function of the 

transducer.  Errors in the Green’s function and the transducer transfer function are 

projected onto the resulting source time functions and hence render them physically 

unjustified.  Very few works to date have applied this method successfully to 

microseismic data.  Kim and Sachse [10,11]  presented a full waveform inversion of 

indentation cracks and thermal cracks in glass, respectively.   In Enoki and Kishi [11], 

recorded signals due to cracks were inverted to give the source time function for a 

fracture toughness testing in steel.  Shah and Labuz [12] studied the damage mechanisms 

in stressed rock by performing full waveform inversion.  In these works, the material is 

assumed to be elastic, isotropic, and homogeneous while the source is assumed to be a 

point source.   

Because of the difficulty of obtaining physically justified source time functions by 

linear deconvolution, the source time function is usually parametrized a priori to 

constrain the solution space, which is routinely performed by seismologists and acoustic 

emission practitioners nowadays [7,14].  The most common parameterization of the 

source time function consists of assuming a certain waveform with parameters of rise 

time and amplitude of the first motion.  This method is accurate when the waveform of 
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the source process is known, ie., the source time function of a dynamic mode I crack is a 

step function, but this method will not work for a complicated source.  Another 

disadvantage associated with parametrization of the source time function is that the 

inversion problem becomes nonlinear and will always involve more complicated 

algorithms to solve the problem [15,16].   

In this study, high fidelity sensor with flat frequency response is used to record 

the microseismic data so that the estimation of the sensor transfer function is not needed 

for inversion [17].  Green’s functions that incorporate attenuation in the material, which 

is realistic for rocks, are employed to give more accurate result [22].  The finiteness of 

the dimension of the source is also considered, ie. the whole source region is discretized 

into subregions such that each subregion satisfies the effective point source criterion [7].  

The recorded data are inverted by direct linear deconvolution and the inverted results are 

compared qualitatively to the known mechanical behavior and compared quantitatively to 

the simplified electro-acoustic equations of piezoelectrics.  Although the use of high 

fidelity sensors, the calculation of the Green’s function that includes damping, the 

summation of point sources into finite source, and the direct linear deconvolution are 

each not new, the incorporation of all of the above to obtain physically justified source 

time functions for a finite complex source is a new development in microseismic 

inversion. 

2. Experimental setup 

To model the source, a ceramic disc (PZT-5A, Vernitron) of 13.45 mm diameter 

and 7.16 mm thick is embedded inside a 850×850×42 mm3 gypsum plate, at a vertical 

  4



distance of 15.7 mm from the top surface of the plate (Fig. 1).  The disc expands (or 

contracts) in the axial direction parallel to plate surface due to the input of an electric 

signal and correspondingly contracts (or expands) in the radial direction (Fig. 2).  The 

source is known to resonate and is highly reproducible.  The gypsum plate is made out of 

a ready-mix dry powder called Die-Keen from Modern Materials and is chosen because 

of its desirable physical properties for modeling.  First, the powder is manufactured in a 

finely ground state so that the plate thus formed is very homogeneous.  Second, it is as 

strong as competent natural intact rock.  Third, it has little expansion of 0.41% after 

setting such that the residual stresses are small and thus shrinkage cracks are not likely to 

form.  Some physical properties of PZT-5A and the gypsum plate are listed in Table 1.  

As will be discussed, the known mechanical properties of the disc and the gypsum are 

important not only for formulating the inverse problem, but also for interpreting the 

resulting time function of the kinematics obtained from the inversion. 

High-fidelity, wide band transducers sensitive to displacement normal to the 

monitored interface are used for this experiment because this provides a time history of 

surface displacement without the distortion of the waveform [17].  For sensors that are 

narrow band, the transfer function of the sensor needs to be estimated and the recorded 

displacements by the sensor need to be deconvolved from its transfer function [4], and 

frequencies not recorded cannot ever be recovered by any means.  On the other hand, the 

sensors we use have a flat response from 12 kHz to 1 MHz, so only the sensitivity in 

V/µm needs to be estimated and the displacement in µm can be easily obtained [17].  The 

sensitivity of the transducer is estimated by a capillary break procedure developed by [4].   
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As illustrated in Fig. 1, three sensors are placed on the top surface of the plate in a 

radial pattern, 45o apart from each other and at a radial distance of 70 mm from the 

source.  The axial direction of the source lines up with Sensor 3.  The transient responses 

due to the excitation of the source are digitally sampled at a 0.2 µs interval at 14-bit 

resolution. 

In the experiment, the PZT disc is mechanically deformed by inputting an electric 

signal and the elastic waves emitted and propagated through the gypsum plate are 

received by the transducers.  The input electric signal is a single cycle sinusoidal wave  

because of its simplicity and also because the resonant behavior of the disc can be 

observed and analyzed after the input signal becomes zero.  A variety of signals having 

peak-to-peak voltage of 1 kV and bandpassed between 50 kHz and 20 MHz, but with 

different center frequencies, is tested.  The input signals of center frequencies of 400 

kHz, 600 kHz, 800 kHz, and 1 MHz are shown in Fig. 3.  An example of the time-

displacement waveforms recorded due to the 400 kHz central frequency source is shown 

in Fig. 4. 

3.  The forward problem 

The kinematics of a point source can be completely described by a linear 

combination of nine force couples or moments (three components of force and three 

components of arm directions) as shown in Fig. 5 [18].  Literally, the moment tensor 

Mpq(ξ,t) is defined as the limit of the product of the the qth direction force arm ∆ξq and 

the pth direction forcing function Fp(ξ,t) at location ξ and time t [18]: 

),(lim),(
0

tFtM pq

F

pq

p

q
ξξ ξ

ξ
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where Fp is the force time function in the pth direction and ∆ξq is the force arm in the qth 

direction.  The moment tensor Mpq(ξ,t) is symmetric in p and q due to the conservation of 

momentum for an internal source [18], and thus there are six unique moments instead of 

nine.  The displacement time history un(x,t) at location x in nth direction due to a point 

source can be modeled as a convolution integral of the moment tensor and the Green’s 

displacement tensor: 

∑∑
= =

∗=
3

1

3

1
, ),()0,;,(),(

p q
pqqnpn tMtGtu ξξxx        (2) 

where an asterisk denotes a convolution integral in the time variable. The Green’s 

displacement tensor Gnp,q(x,t,ξ,0) is the displacement in the nth direction at x and t due to 

a unit impulsive concentrated moment at ξ and t=0.  

 Unfortunately, instead of being point sources, cracks have areal extent, and the 

time history of the growing crack is of primary interest.  For a source over a finite area A, 

the displacement at location x in nth direction can be obtained by integrating Eq. (2) over 

A: 
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 According to Johnson and Stump [7], if the region A is discretized into Nr sub-

regions whose largest dimension is smaller than the smallest wavelength of interest, each 

sub-region i is well approximated by a point source.  Therefore, summing the 

contribution from the sub-regions, we obtain: 
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 So far, we have focused on modeling the kinematics of a source whose volume is 

infinitesimal, but the volume of the actual simulated crack in the experiment is not, and 

thus the force arm in Eq. (1) is no longer infinitesimal.  Eq. (4) can be first rewritten as 

∑∑∑
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and then removing the limits from Eq. (5), we obtain 
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where Gnp(x,t;ξ(i),0) is the displacement in the nth direction at x and t due to a unit 

impulsive concentrated force at ξ(i) and t=0.  Fp(ξ(i),t) is the force time function in pth 

direction.  Equation (6) can be interpreted as the sum of the displacements due to time 

variant force couples with finite moment arms on all the sub-regions. 

4. Calculation of Green’s functions 

The Green’s functions for an isotropic, homogeneous infinite plate with constant 

Q damping law by Kjartansson [19] due to a point source is calculated by the frequency-

wavenumber method by Kennett [20].  In this method, the equation of motion is 

transformed into the frequency-wavenumber domain for ease of manipulation.  The 

resulting solution is a frequency-wavenumber integral, which is solved numerically.  The 

computation time needed for the Green’s functions calculated by the frequency-

wavenumber method is faster than numerical methods such as finite difference and finite 

elements [20].   
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4.1.  Determination of Q 
The dimensionless quality factor Q accounts for various damping mechanisms, 

and is effectively constant over a wide range of frequencies for many geological 

materials [22]. These damping mechanisms include crystal defects, grain boundary 

processes, scattering, microcracks, and viscoelastic processes, which are all interrelated.  

Q decreases as the number of cracks and crack sizes increase and as the material has 

higher damping, so when Q decreases, the attenuation of propagating waves increases.  

The recorded phase amplitude A(f) of a wave by a sensor propagating in a constant Q 

damping material is [21]: 

)exp()()()()(
Q
fttGfSfIfA π

−=        (7) 

where f is the frequency,  I(f) is the sensor transfer function, S(f) is the source function 

and t is the time the wave has travelled.  G(t) represents frequency-independent processes 

that affect the wave along its propagation path, such as geometrical spreading and 

reflection and transmission at boundaries without phase shift.  As will be seen below, 

only the exponential term in Eq. (7) is important in determining Q, ie. the relative change 

in attenuation of a wave over a wide range of frequencies is desired, and so a wide band 

source will serve this purpose. 

For a plate of a given material, the dimensionless quality factor Q for the p-wave 

(Qp) can be determined by estimating the spectral ratio of a signal generated by breaking 

a glass capillary on the opposite side of the plate relative to the sensor.  The capillary 

break is generated by loading a rod vertically on a glass capillary placed flat on the plate 

until the capillary shatters suddenly [4].  Before the capillary breaks, the plate is 

displaced locally by the vertical force exerted by the rod through the capillary.  Once the 
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capillary breaks, the surface displacement recovers suddenly.  This sudden rebound 

generates a step-like function that has a very short rise time. Since the capillary break is a 

wide band source from DC to well above 1 MHz [4], so it is a good source to use for 

estimating Q. 

 Now consider the spectral ratio: 
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fA
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fR
p

ppp=          (8) 

where Ap(f) is the amplitude of the p phase in the frequency (f) domain and Appp(f) is the 

amplitude of the reflected P phase.   Substituting Eq. (7) into Eq. (8) gives 
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Notice that both the sensor transfer function and the source function are both cancelled.  

Taking natural logarithm of Eq. (9) gives 

f
Q

t
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ppppppp

pp ∆π
−= )

)(
)(

ln()(ln        (10) 

where ∆t is the time difference between the p phase arrival and the ppp phase arrival.  

Notice from Eq. (10) that Qp can be estimated from the slope of ln(R(f)) vs f plot.  The 

time derivative of the epicentral displacement from the average of three glass capillary 

breaks on the gypsum plate is plotted in Fig. 6.  The time derivative of the epicentral 

displacement is used rather than the original signal because the p and the ppp phases can 

be observed and extracted easily from the signal.  Also, note that Eq. (10) is still valid 

since taking time derivative is equivalent to multiplying the original signal by i2πf in the 
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frequency domain, and the factors for the p amplitude and the ppp amplitude cancel each 

other in Eq. (8).  The natural log of the spectral ratio R(f) of the p and the ppp phases as a 

function of frequency f is plotted in Fig. 7.  Qp is estimated to be 70 from linear 

regression fitting of a straight line through the ln(R(f)) vs f plot, and it is a typical value 

for natural rocks [22]. 

 In principle, the same technique above can be used to estimate Q for s-wave (Qs), 

ie. by replacing the subscript p with s and ppp with sss in Eqs. (8) to (10).  However, the 

reflected sss amplitude is very small due to the radiation pattern and is dominated by the 

P reflections and noise, so it is impractical to use this technique.  However, assuming that 

no energy dissipation occurs in pure compression for p-wave, Qs can be estimated from 

Qp by Apsel [23]: 

p
p

s
s Q

V
V

Q
2

3
4











=          (11) 

where Vp and Vs are the respective p-wave and s-wave velocity. 

It is simple to include Q damping in the calculation of the Green’s functions by 

making the p-wave velocity (Vp) and s-wave velocity (Vs) complex [19]: 

γ

ω
ωπγ ))(

2
cos()(

o
o

iVV −=         (12) 

with 

)1arctan(1
Qπ

γ =          (13) 

where V is the p-wave or the s-wave velocity.  Vo is the reference velocity at frequency 

ωo. 
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5. The Inverse Problem 

The goal of the present study is to determine the force time function Fp(ξ(i),t) in 

Eq. (6) given several displacement time histories un(x,t), Green’s functions Gnp(x,t;ξ(i),0), 

and the source location.  In order to formulate the inverse problem for the experiment, the 

source needs to be discretized into subregions where each subregion is much less than the 

shortest wavelength of interest to be considered a point source effectively [7].  The axial 

face of the disc is discretized into mostly square sub-regions by 26 equally-spaced 

vertical and horizontal lines, and the largest dimension of each sub-region is 0.52 mm 

(Fig. 2).  The radial face is discretized into 1120 sub-regions whose largest dimension is 

0.53 mm Each sub-region is now effectively a point source and thus the Green’s 

functions for each sub-region can be calculated by the frequency-wavenumber method 

[20].  For the inverse problem, the unknown force time function of each direction for 

each subregion needs to be determined, and that means thousands of sensor signals are 

needed to perform the inversion.  However, the number of unknowns can be reduced 

substantially by applying our knowledge of the mechanical behavior of the PZT disc and 

the gypsum plate.  The following two simplifications are made in the formulation of the 

inverse problem: 

1) Each subregion on the axial face can only exert an axial force and each subregion 

on the radial face can only exert a radial force. 

2) The axial force time function is identical for each subregion on the axial face and 

the radial force time function is identical for each subregion on the radial face. 

These simplifications follow directly from the assumption that the bonding between the 

PZT disc and the gypsum is smooth (ie. frictionless) and that the disc expands (or 
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contracts) in the axial direction due to the input of an electric signal and correspondingly 

contracts (or expands) in the radial direction.  With the first simplication, the Green’s 

function due to an impulsive axial force for each sensor (Gaxial(x,t;ξ,0)) is calculated for 

each subregion on the axial face, and in the same manner, the Green’s function due to an 

impulsive radial force for each sensor (Gradial(x,t;ξ,0) is calculated for each subregion on 

the radial face.  The set of equations to be solved can be written as 

( ) ( ;),()0,;,(),()0,;,(),(
1

)()()(

1

)()()()( ∑∑
==

∗+∗=
ra N

r

r
radial

rj
radial

N

a

a
axial

aj
axial

j
n kFkGkFkGku ξξxξξxx )  

     ts NkNj ,...,1,0;,...,2,1 ==   (14) 

where x(j) is the jth sensor location, Ns are the number of sensors, Na the number of 

subregions on the axial face, and Nr the number of subregions on the radial face.  Since 

the observed displacements are discretized at an interval ∆t, the continuous time t in Eq. 

(6) is replaced by increment k times ∆t.  Faxial(ξ(a),k) and Fradial(ξ(r),k) are the axial and 

radial force time functions at each subregion on the axial and radial face, respectively.  

With the second simplification that the force time function is identical for all the axial 

subregions and for all the radial subregions, respectively, the axial and the radial force 

time functions in Eq. (14) can be taken out of the parentheses as follows: 

( ) ( ) ;)()0,;,()()0,;,(),(
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)()(
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radial

N
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j
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     ts NkNj ,...,1,0;,...,2,1 ==   (15) 

Now, only two unknown force time functions Faxial(k) and Fradial(k) need to be 

determined, and with three sensor recordings from each test, the inverse problem is 

overdetermined.  In this study, the Green’s function for each subregion and sensor takes 
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10 minutes on a 900 kHz Intel Pentium III processor with 500 megabyte memory.  A 

total of 6768 Green’s functions were calculated in 47 days of time.  The axial and radial 

Green’s functions used for the inversion are shown in Figs. 8 to 9.  Seventy time steps 

were used in the inversion for each electric input signal.  The force time functions in Eq. 

(15) are deconvolved in the time domain by least squares method [24] and their estimates 

are shown in Figs. 10 to 13 along with their Fourier spectra. 

6. Discussions 

The most direct method to validate the inverted force time functions is to have a 

forward model for the PZT disc embedded inside the gypsum plate.  Direct calculation of 

the force field in the whole solid due to an input electric signal that excites the PZT disc 

is well beyond the scope of this study.  Rather, the force time functions are compared 

qualitatively to the known mechanical behavior and compared quantitatively to the 

simplified electro-acoustic equations. 

As discussed earlier, the general mechanical behavior of the PZT disc is that it 

contracts (or expands) in the radial direction when it expands (or contracts) in the axial 

direction.  It can be clearly seen that for each frequency excitation, the force time 

functions Faxial and Fradial are 180o out of phase.  Also, since the disc is excited in the axial 

direction and the axial face is larger than the radial face, the axial force time function 

Faxial is expected to be larger in amplitude than the radial force time function Fradial, which 

are shown to be the case for each input signal.  To determine how accurate the force time 

functions are for each case, the change in thickness and in diameter calculated from the 

first peak input voltage can be compared to those calculated from the force from the first 
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peak in the force time function, which corresponds to the first peak input voltage.  The 

change in thickness ∆h due to an input voltage V is: 

Vdh 33=∆           (16) 

and the change in diameter ∆D due to an input voltage V is: 

V
h
Dd

D 31=∆           (17) 

where d33 and d31 are piezoelectric constants (Table 1).  The changes in thickness and in 

diameter due to applied forces are obtained from the stress-strain relationship by 

converting the forces into stresses in the axial and radial directions.  Adopting the 

abbreviated notations from Auld [25], the stress-strain relationship is: 

J
CE

IJI TsS ,=           (18) 

where SI and TJ are strains and stresses and  and  are the compliances measured in 

constant electric field and in constant charge density, respectively (Table 1).  Because of 

the coupling between electric and acoustic fields in the PZT disc, measurement of the 

mechanical properties depends on the electrical constraints [25].  The dynamic electric 

field within the PZT disc is unknown during the experiment, so the compliances 

measured in a constant electric field and in constant charge density are used to calculate 

the changes in thickness and in diameter.  The results are tabulated in Table 2 where 

positive sign denotes extension and negative sign denotes contraction.  For each input 

electric signal, the changes in thickness and in diameter calculated from the peak forces 

are larger than those calculated from the peak voltage.  The discrepancies may be due to 

the fact that the simple calculations above assumes idealized boundary conditions and 

static mechanical and electrical behavior while the real behavior is dynamic; but the 

E
IJs C

IJs
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changes in thickness and diameter calculated from the peak forces and from the peak 

voltage are of the same order of magnitude.  Also observed from the table is the change 

in thickness is always larger than the change in diameter because the disc is excited 

axially.  As expected, the larger the peak voltage, the larger the changes in thickness and 

in diameter, and this fact is also reflected in the calculation from the peak forces. 

The dynamic mechanical behavior of the source can be studied from the 

waveform of the force time functions.  The waveform of the force time functions from 0 

to 4 µs looks quite similar to their respective input electric signals in Fig. 3 while the later 

part of all the force time functions oscillates with varying amplitudes at different 

frequencies.  This is to be expected since the PZT disc is known to resonate due to 

electrical excitation, and the frequencies at which it resonates can be seen from the 

Fourier spectra of the force time functions.  In all cases, it is apparent that 3 peaks in the 

Fourier spectra are at the same frequencies:  0.32, 1.1 and 1.7 MHz while 2 peaks that 

occur at the same frequencies are not as apparent:  0.63 and 0.95 MHz.  These results can 

be explained by the axial normal modes of the PZT disc, assuming axial faces are stress 

free.  This assumption is acceptable because the disc is excited axially and the axial p-

wave impedance of piezoelectric solid (ρVp=29.3 MPa.s/m3)  is almost three times higher 

than that of gypsum (  =11.0 MPa.s/mE
paVρ 3), whereV  is the axial p-wave velocity 

measured in constant electric field.  The axial normal modes are the solutions to the 

following equation:  

E
pa

sin(πfnh/Vpa)=0,         (19a) 

cos(πfnh/Vpa)=0,         (19b) 

which have solutions: 
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fn=nVpa/2h, n=1,2,3,…        (20) 

where fn are the normal modes, h is the thickness of the PZT disc and Vpa is the axial p-

wave velocity.  The first five modes observed from the Fourier spectra in Figs. 10 to 13 

and the modes calculated from Eq. (20) with two different Vpa measured in constant 

electric field and in constant charge density are tabulated in Table 3.  Note that all five 

modes calculated from Eq. (20) are slightly smaller than those observed from the peaks in 

the Fourier spectra in all cases.  The difference is expected since the actual boundary 

conditions of the disc are not truly stress free as in the calculations and also there are may 

be other modes in addition to the axial modes being excited.   

 The fitted data in Figs. 14 to 17 are obtained by convolving the Green’s functions 

with the force time functions through Eq. (15).  Since the inverse problem is 

overdetermined and is solved by least squares, the fitted data is not necessarily identical 

to the recorded data and so it is meaningful to compare them to examine the misfit.  In 

each case, the fitted data has good match with the original recorded data.  There may be 

several sources that lead to the very slight misfit.  First, the Green’s function calculated 

based on Q damping may not truly capture the inhomogeneity in the gypsum plate and all 

the damping processes during wave propagation.  Second, the Green’s function is 

calculated assuming each subregion is a point source, and the error in the Green’s 

function grows with increasing frequency [7].  However, from the good match between 

the fitted data and the recorded data, these errors are deemed to be minor.   
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7. Conclusions  

In this study, we have successfully used theoretical Green’s functions 

incorporating Q damping to perform a full waveform inversion.  There are three crucial 

factors that we believe lead to the successful inversion:  1) the use of broadband 

transducers with high fidelity frequency response, 2) the use of Green’s functions based 

based on Q damping, and 3) taking the source finiteness into account.  The use of 

narrowband transducers requires obtaining the transfer function each time a test is 

performed on a different solid and then performing deconvolution of the microseismic 

data from the transfer function.  Since a narrowband transducer has missing data in some 

frequencies, the deconvolution is fundamentally ill-posed.  For broadband transducers, all 

displacement information present is being transduced and is included in the inversion.   

The microseismic data is inverted from inelastic Green’s functions, rather than 

based on a linear, homogenous, elastic solid model.  For a plate, Q can be obtained 

experimentally by breaking a capillary on one side of the plate.  It captures the damping 

behavior of the gypsum quite well.   

 This study also incorporates the source finiteness in formulating the inverse 

problem.  Since the source size is known a priori, the disc can be discretized into 

subregions with the largest dimension less than the minimum wavelength such that each 

subregion is effectively a point source.  This is believed to improve the accuracy of the 

Green’s functions and consequently lead to better inversion results.   

The success of a full waveform inversion is judged by whether the inverted results 

can be explained physically.  The inverted force time functions match the known 
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mechanical behavior of the PZT disc and the observed oscillations match well with the 

theoretical axial normal modes.   

Although the use of high fidelity sensors, the calculation of the Green’s function 

that includes damping, the summation of point sources into finite sources, and the 

technique of inversion are each not new, the incorporation of all the above to obtain 

physically justified source time functions for a complex source is a new development in 

microseismic inversion.  It should be emphasized that in this study the source time 

function is not parametrized a priori like many seismologists and acoustic emission 

researchers do nowadays to obtain physical solutions.  For dynamic crack inversion, it is 

certainly fine to assume the waveform of the source time function to be a step function.  

In more complicated dynamic processes such as in this study, direct deconvolution must 

be used to determine the source processes.  In fact, recently the source time function on a 

subfault calculated based on an asperity model for dynamic earthquake faulting shows 

more than a step function:  the source time function is actually a step function followed 

by periodic undulations [26].  If the parametrization of a step function is used for 

inversion, the real behavior of the source process will not be obtained.  Another problem 

associated with the parametrization of the source time function is that the inversion 

problem becomes nonlinear and will always involve more complicated algorithms to 

solve the problem.  In conclusion, this study demonstrates the feasibility of obtaining the 

most complete and physically justified quantitative information from a dynamic source 

process in a damped solid. 
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Table 1 Physical Properties of the PZT-5A Disc and the Gypsum Plate 
 PZT-5A Gypsum Plate 
Density ρ (103 kg/m3) 7.75 2.6 
p-wave velocity Vp (103 m/s) 3.78E, 4.36C 4.23 
s-wave velocity Vs (103 m/s) - 2.35 
Qp - 70 
Qs - 29 
Piezoelectric constants (10-12 m/V)   
d31 -171 - 
d33  374 - 
d15  584 - 
Elastic compliance at constant electric field (10-12 m2/N)   

Es11
 16.4 - 

Es33  18.8 - 
Es44  47.5 - 
Es12

    -5.74 - 
Es13     -7.22 - 

Elastic compliance at constant charge density (10-12 m2/N)   
Ds11

 14.4 - 
Ds33      9.46 - 
Ds44   25.2 - 
Ds12

    -7.71 - 
Ds13     -2.98 - 

Eaxial p-wave velocity measured at constant electric field 
Caxial p-wave velocity measured at constant charge density 
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Table 2 Deformation of the Source Calculated from the Peak Forces and Peak Voltage 
Input 
electrical 
signal central 
frequency 
(MHz) 

Peak 
axial 
force  
(N) 

Peak 
radial 
force 
(N) 

Change in 
thicknessE 
(µm)  

Change in 
thicknessC 
(µm) 

Change in 
diameterE 
(µm)   

Change in 
diameterC 
(µm) 

0.4 1240   -45 1.05 0.52 -0.81 -0.36 
0.6 1720   -90 1.46 0.73 -1.16 -0.54 
0.8 1560   -34 1.31 0.66 -0.98 -0.43 
1 1400 -110 1.20 0.60 -1.00 -0.49 

 

Input electrical 
signal central 
frequency (MHz) 

Peak voltage 
(V) 

  Change in 
thickness (µm) 

 Change in 
diameter (µm)   

0.4 346   0.13  -0.11 
0.6 622   0.23  -0.20 
0.8 586   0.22  -0.19 
1 482   0.18  -0.15 

Ecalculated from compliances measured in constant electric field 
Ccalculated from compliances measured in constant density charge 
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Table 3. Axial Normal Modes of the PZT Disc 

Modes (MHz)  
n=1 n=2 n=3 n=4 n=5

Calculated from normal mode theoryE  0.26 0.53 0.79 1.1 1.3 
Calculated from normal mode theoryC 0.30 0.61 0.91 1.2 1.5 
Observed from the Fourier spectra of the force time 
functions 

0.32 0.63 0.95 1.1 1.7 

Ecalculated from axial p-wave velocity measured in constant electric field (see Table 1) 
Ccalculated from axial p-wave velocity measured in constant density charge (see Table 1) 
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Figure 1 Gypsum Test Plate with a Piezoelectric Disc Embedded Inside and Sensors on 
the Top Surface 

  



 

 
 
 
Figure 2 Orientation of the 3-D Dislocation Source. Discretization of the Source into 
Sub-Regions for Calculation of Green’s Functions 
 
 
 
 
 
 
 
 
 
 

 



 

 
 
Figure 3 Input Electric Signals of Single Cycle Sinusoidal Functions to the Piezoelectric 
Disc with Various Central Frequencies:  a) 400 kHz, b) 600 kHz, c) 800 kHz, and d) 1 
MHz. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

   



 
 
Figure 4 An Example Set of Time-Displacement Signals Recorded on Plate Surface for 
the Electric Signal with Central Frequency of 400 kHz in Fig. 3a. 

 



 
 
Figure 5 Nine Components of the Moment Tensor (Aki and Richards, 2002) 

   



 
 
Figure 6 Time Derivative of the Epicentral Displacement due to a Glass Capillary Break.  
The P Phase and the PPP Phase are Indicated in the figure. 

   



 

 
 
Figure 7 The Spectral Ratio of the PPP Phase and the P Phase 

  



 
 
Figure 8 Green’s Functions in the Axial Direction Corresponding to Sensors 1, 2, and 3 

   



 

 
 
Figure 9 Green’s Functions in the Radial Direction Corresponding to Sensors 1, 2, and 3 

   



 

 
 
Figure 10 The Force Time Function of the 3-D Dislocation Due to the Input Signal with 
Central Frequency of 400 kHz and the Fourier Spectrum of the Force Time Function 
 
 
 
 
 

  



 

 
 
Figure 11 The Force Time Function of the 3-D Dislocation Due to the Input Signal with 
Central Frequency of 600 kHz and the Fourier Spectrum of the Force Time Function 

   



 

 
 
Figure 12 The Force Time Function of the 3-D Dislocation Due to the Input Signal with 
Central Frequency of 800 kHz and the Fourier Spectrum of the Force Time Function 

   



 

 
 
Figure 13 The Force Time Function of the 3-D Dislocation Due to the Input Signal with 
Central Frequency of 1 MHz and the Fourier Spectrum of the Force Time Function 
 
 

   



 

 
 
Figure 14 Comparison of Recorded Signals Due to the Input Signal with Central 
Frequency of 400 kHz and the Fitted Data from the Inversion. 

   



 

 
 
Figure 15 Comparison of Recorded Signals Due to the Input Signal with Central 
Frequency of 600 kHz and the Fitted Data from the Inversion. 

   



 

 
 
Figure 16 Comparison of Recorded Signals Due to the Input Signal with Central 
Frequency of 800 kHz and the Fitted Data from the Inversion. 

  



 

  
 
Figure 17 Comparison of Recorded Signals Due to the Input Signal with Central 
Frequency of 1 MHz and the Fitted Data from the Inversion. 
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