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EXECUTIVE	SUMMARY	

INTRODUCTION	 	

This	is	the	final	deliverable	for	UC	Connect	project	“From	Trend	Spotting	to	Trend	Setting:	Modeling	
the	 Impact	 of	Major	Technological	 and	 Infrastructural	 Changes	on	Travel	Demand”	 (Contract	No.	
65A0529).	 This	 deliverable	 entails	 three	 components.	 The	 first	 two	 components	 comprise	 two	
journal	articles	based	on	the	research	performed	in	the	project	that	will	be	submitted	for	publication	
in	the	next	couple	of	months.	The	third	component	is	a	brief	draft	report	that	begins	to	lay	out	basic	
principles	 of	 what	 we	 can	 learn	 from	 the	 literature	 of	 technology	 adoption	 with	 respect	 to	
autonomous	 vehicles.	 The	 research	 motivation	 behind	 this	 project	 comprises	 defining	 a	
methodological	 framework	 tailored	 to	address	 impacts	of	 technological	 innovation	 to	understand	
and	predict	long-range	trends	in	travel	behavior.			

The	 behavioral	 analysis	 approach	 builds	 on	 urban	 land	 use,	 travel,	 and	 activity	microsimulation	
models.	These	models	incorporate	a	range	of	individual-level	decisions	that	impact	travel,	such	as	
residential	 location	 choice,	 auto	 ownership,	 and	mode	 choice.	 The	models	 are	 based	 on	 detailed	
travel	 and	activity	data	 collected	 from	 individuals,	 and	 the	 resulting	behavior	 is	 specified	 to	be	a	
function	 of	 the	 socio-demographics	 of	 the	 individuals,	 as	 well	 as	 the	 transport	 and	 land	 use	
infrastructure.	The	models	are	used	to	perform	“what-if”	analyses	regarding	potential	policies,	new	
technologies	and	services.	For	example,	cities	are	trying	to	navigate	a	range	of	policies	related	to	new	
transport	services	such	as	Uber	and	Lyft.	These	policies	impact	price	and	service	and	therefore	also	
influence	 use	 of	 these	 services.	 While	 these	 models	 are	 used	 extensively	 to	 inform	 long-run	
infrastructure	 investments	 and	policy	 decisions,	 existing	models	 and	 frameworks	 are	 not	 able	 to	
address	major	technology	and	service	changes	in	the	transport	system.	

	

PROBLEM	STATEMENT	

Major	technological	and	infrastructural	changes	are	expected	to	occur	over	the	next	decades	such	as	
the	introduction	of	autonomous	vehicles,	advances	in	information	and	communication	technology,	
California	High	Speed	Rail,	carsharing	and	ridesharing,	etc.	However,	this	evolution	has	no	defined	
path	and	we	should	be	cautious	with	how	the	future	is	going	to	play	out.	We	want	the	future	to	consist	
of	sustainable	and	efficient	systems.	One	critical	component	in	this	strategy	comprises	developing	
quantitative	 behavioral	 analysis	 tools	 that	 focus	 on	 modeling	 and	 influencing	 trends	 of	 travel	
behavior	to	guide	transformative	mobility	and	set	it	on	the	right	track.	Moreover,	the	potential	roles	
of	the	government	and	policy	are	key	in	shaping	and	influencing	the	future.	This	could	be	achieved	
by	developing	quantitative	methods	that	offer	insights	to	planners	and	policy-makers	on	what	can	be	
done	to	influence	possible	outcomes.		

In	order	to	tackle	and	address	the	general	research	questions	we	are	interested	in,	we	have	addressed	
three	specific	components	regarding	developing	the	methodological	framework:	

1- Projecting	membership	and	market	shares	of	upcoming	modes	of	transport.	Developing	such	a	
framework	 will	 be	 based	 on	 integrating	 models	 of	 technology	 adoption	 and	 discrete	 choice	
analysis	(Paper	#1).	
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2- Understanding	and	predicting	structural	long-range	trends	of	travel	behavior.	Developing	such	a	
dynamic	 framework	 of	 disaggregate	 decision-making	will	 require	 integrating	 hidden	markov	
models	(HMM)	with	current	travel	demand	models	(Paper	#2).	

3- While	 the	 first	 two	 components	 focus	on	developing	quantitative	behavioral	 analysis	 tools	 to	
guide	transformative	mobility	to	ensure	a	sustainable	and	efficient	system,	we	also	investigate	
the	adoption	and	diffusion	processes	in	light	of	economic	theory	and	its	pertinent	literature.	

	

PAPER	#1	

An	Econometric	Framework	for	Modeling	and	Forecasting		
the	Adoption	and	Diffusion	of	New	Transportation	Services	

This	 paper	 is	 motivated	 by	 existing	 work	 in	 technology	 adoption	 modeling	 which	 employs	 a	
microeconomic	utility-maximizing	representation	of	individuals.	This	framework	is	of	interest	to	us	
as	 it	 could	 be	 easily	 integrated	 with	 our	 disaggregate	 activity-based	 models.	 Moreover,	 we	 are	
interested	in	capturing	the	impact	of	social	influences	and	network	effect	(spatial	component)	on	the	
adoption	process.		

The	technology	adoption	model	we	estimated	builds	on	the	formulation	of	discrete	mixture	models	
and	 specifically	 Latent	 Class	 Choice	Models	 (LCCM)	 that	 allow	 for	 heterogeneity	 in	 the	 utility	 of	
adoption	 for	 the	 various	 market	 segments	 i.e.	 innovators/early	 adopters,	 imitators	 and	 non-
adopters.	We	make	use	of	revealed	preference	(RP)	time	series	data	for	a	one-way	car	sharing	system	
in	 a	major	 city	 in	 the	US.	The	data	 contains	 a	 complete	 set	of	member	enrollment	 ever	 since	 the	
service	was	launched.	Consistent	with	the	technology	diffusion	literature,	our	model	identifies	three	
latent	classes	whose	utility	of	adoption	have	a	well-defined	set	of	preferences	that	are	significant	and	
behaviorally	consistent.		

	

PRACTICAL	IMPLICATIONS	

The	technology	adoption	dynamic	model	predicts	the	probability	that	a	certain	individual	will	adopt	
the	 service	 at	 a	 certain	 time	 period,	 and	 is	 explained	 by	 social	 influences,	 network	 effect,	 socio-
demographics	and	 level-of-service	attributes.	The	model	was	calibrated	and	then	used	to	 forecast	
adoption	of	the	carsharing	system	for	potential	investment	strategy	scenarios.	A	couple	of	takeaways	
from	 the	 adoption	 forecasts	 were:	 (1)	 placing	 a	 new	 station/pod	 for	 the	 carsharing	 system	 in	
coordination	with	recruiting	at	a	major	technology	firm	induces	the	highest	expected	increase	in	the	
monthly	number	of	adopters;	and	(2)	there	 is	no	significant	difference	 in	the	expected	number	of	
monthly	adopters	for	the	downtown	region	will	exist	between	having	a	station	or	on-street	parking.	

	

PAPER	#2	

Integrated	Hidden	Markov	and	Discrete	Choice	Models:		 	
Developing	a	Forecasting	Framework	for	the	Transition	Matrix	Model	

Autonomous	vehicles	on	the	horizon,	not	to	mention	the	introduction	of	newer	ways	of	travel	and	
activity	engagement	such	as	ridesharing,	carsharing,	etc.	It	is	critical	to	understand	and	quantify	the	
impacts	 of	 this	 transformative	mobility	 trend	 on	 travel	 behavior,	 and	 in	 particular	mode	 choice	
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conditional	 on	 decision-makers	 adopting	 to	 those	 new	 technologies	 and	 services.	 This	 paper	 is	
motivated	by	existing	work	that	integrates	the	construct	of	modality	styles	in	travel	demand	models.	
Modality	styles	are	lifestyles	built	around	the	use	of	a	travel	mode	or	set	of	travel	modes	that	people	
consider	when	making	mode	choice	decisions	(Vij,	2013).	In	addition	to	that,	dynamic	modeling	is	of	
interest	 to	us	 and	 specifically	Hidden	Markov	Models	 (Baum	and	Petrie,	 1966)	as	 they	provide	a	
structural	approach	to	model	the	evolution	of	modality	styles	over	time	after	a	certain	shock	occurs	
in	the	transportation	network.	As	an	example,	this	shock	could	be	brought	about	by	the	introduction	
of	a	new	rail	system	in	the	market	or	a	new	technology	(Uber,	Lyft,	etc.).	

This	paper	focuses	on	dynamic	modeling	to	capture	how	decision-makers	make	choices	relevant	to	
their	work	trip	commutes	(mode	choice	used:	auto,	metro,	bus,	etc.).	The	model	identifies	various	
segments	of	 the	population	 that	use	a	certain	set	of	modes	 for	work	commute	and	have	different	
sensitivities	to	attributes	of	the	travel	modes	i.e.	travel	time,	travel	cost,	waiting	time,	etc.	The	dataset	
used	comes	 from	Santiago,	Chile	(Yañez	et	al.,	2010).	This	panel	dataset	offers	 the	opportunity	 to	
investigate	 the	 effects	 of	 a	 sudden	 change	 in	 the	 transportation	 network	 (introduction	 of	
Transantiago,	 complete	 redesign	 of	 the	 public	 transportation	 system	 in	 Santiago)	 on	 lifestyles,	
modality	styles	and	travel	mode	choice	behavior.	

Our	model	identifies	the	following	market	segments:	multimodal	segment	with	a	concentration	on	
drivers,	bus	users,	bus-metro	users	and	auto-metro	users.	The	transition	probability	model	identifies	
how	 decision-makers	 can	 transition	 from	 one	 segment	 to	 the	 other	 as	 a	 function	 of	 socio-
demographics	 and	 the	 derived	 consumer	 surplus	 from	 subscribing	 to	 a	 certain	market	 segment	
(modality	style).		

	

PRACTICAL	IMPLICATIONS	

The	key	to	understanding	the	future	of	transformative	mobility	is	not	only	to	study	the	immediate	
impact	of	current	policies,	services,	and	nudges;	but	also	how	these	impacts	influence	trends	and	play	
out	over	decades	and	as	new	technologies	and	services	are	introduced.	The	developed	methodology	
of	our	dynamic	model	of	modality	styles	will	provide	the	quantitative	tools	to	do	so.	The	proposed	
dynamic	model	can	help	policy	makers	assess	 the	 influence	of	a	certain	policy/investment	on	the	
projected	market	 shares	 of	 the	 various	modal	 orientations	 (and	modes	 of	 transport)	 in	 order	 to	
identify	 the	 most	 effective	 policy	 that	 caters	 for	 behavior	 change.	 Also,	 this	 methodological	
framework	shall	provide	a	mechanism	to	capture	and	predict	structural	shifts	 in	trends	in	overall	
travel	behavior.		

	

PAPER	#3	

What	can	the	Literature	on	Technology	Adoption	Teach	Us	about	Autonomous	Vehicles?	

In	this	initial	report	we	begin	to	investigate	how	the	economic	literature	on	technology	adoption	can	
help	us	understand	and	predict	the	expected	market	penetration	rates	of	autonomous	cars	in	order	
to	guide	the	diffusion	of	 this	new	technology.	We	also	highlight	some	key	research	questions	that	
should	be	addressed	with	autonomous	vehicles	being	on	the	horizon.	In	addition	to	that,	the	report	
addresses	 the	potential	 role	 required	by	 the	 government	 to	 support	 this	 transformative	mobility	
trend.	 Finally,	 it	 is	 essential	 to	 understand	 the	 importance	 of	 effective	 policies	 and	 investment	
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strategies,	 whether	 on	 the	 public	 or	 private	 level,	 and	 how	 they	 can	 guide	 the	 evolution	 of	 the	
autonomous	vehicles	market.	

	

CONCLUSION	

The	developed	methodological	framework	in	this	research	project	will	provide	the	means	to	assess	
how	policies	 and	 investment	 strategies	 can	 transform	cities	 to	be	more	 efficient	 and	 sustainable,	
provide	 a	 higher	 level	 of	 connectivity	 and	 improve	 the	 economic	 and	 environmental	 health	 for	
people.	 Those	 models	 provide	 key	 quantitative	 analysis	 tools	 that	 try	 to	 understand	 how	 the	
transportation	system	performance	is	going	to	look	like	in	the	future.	Planners,	policy	makers	and	
transportation	specialists	are	eager	about	the	investments	in	infrastructure	and	technology	that	are	
bound	to	occur	and	are	interested	in	assessing	how	current	decisions	will	play	out	in	the	future.	This	
research	project	shall	provide	the	building	blocks	to	advances	in	dynamic	travel	demand	modeling	
to	 guide	 transformative	mobility	 and	 infrastructure	 investments	 towards	a	more	 sustainable	 and	
efficient	system.		

	

DELIVERABLES	

The	two	journal	publications	and	the	brief	report:	

• El	Zarwi,	F.,	Vij,	A.,	and	Walker,	J.	An	Econometric	Framework	for	Modeling	and	Forecasting	
the	Adoption	and	Diffusion	of	New	Transportation	Services.	In	preparation	for	Submission	
for	Transportation	Research:	Part	C.	

• El	Zarwi,	F.,	Vij,	A.,	and	Walker,	J.	Integrated	Discrete	Choice	and	Hidden	Markov	Models:	
Developing	a	Forecasting	Framework	for	the	Transition	Matrix	Model.	In	preparation	for	
Submission	for	Transportation	Research:	Part	B.	

• Brief	report	on	autonomous	vehicles	that	focuses	on	what	we	can	learn	from	the	economic	
technology	adoption	literature.	

These	papers	are	all	works	in	progress	that	we	will	submit	to	archival	journals.	We	ask	that	Caltrans	
keep	them	internal	until	we	provide	versions	that	we	have	submitted.		
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ABSTRACT 
Major technological and infrastructural changes over the next decades, such as the introduction of 

autonomous vehicles, implementation of mileage-based fees, carsharing and ridesharing are expected to 

have a profound impact on lifestyles and travel behavior. Current travel demand models are unable to 

predict long-range trends in travel behavior as they do not entail a mechanism that projects membership 

and market share of new modes of transport (Uber, Lyft, etc). We propose integrating discrete choice and 

technology adoptions models to address the aforementioned issue. In order to do so, we build on the 

formulation of discrete mixture models and specifically Latent Class Choice Models (LCCM). We adopted 

a confirmatory approach to estimating our dynamic LCCM based on findings from the technology diffusion 

literature across multiple disciplines that focus on defining two distinct types of adopters: innovator/early 

adopters and imitators. LCCM allow for heterogeneity in the utility of adoption for the various market 

segments i.e. innovators/early adopters, imitators and non-adopters. We make use of revealed preference 

(RP) time series data from a one-way carsharing system in a major city in the United States to estimate 

model parameters. The data entails a complete set of member enrollment for the carsharing service for a 

time period of 2.5 years after being launched. 

Consistent with the technology diffusion literature, our model identifies three latent classes whose utility 

of adoption have a well-defined set of preferences that are significant and behaviorally consistent. The 

technology adoption model predicts the probability that a certain individual will adopt the service at a 

certain time period, and is explained by social influences, network effect, socio-demographics and level-

of-service attributes. Results from model estimation depict that an individual is more likely to be a non-

adopter, high-income groups and men are more likely to be early adopters. In addition to that, each latent 

class is characterized by a distinct set of sensitivities for the following covariates: network/spatial effect, 

socio-demographics, social influences and level-of-service attributes. Finally, the model was calibrated and 

then used to forecast adoption of the carsharing system for potential investment strategy scenarios. A couple 

of takeaways from the adoption forecasts were: (1) placing a new station/pod for the carsharing system 

outside a major technology firm induces the highest expected increase in the monthly number of adopters; 

and (2) no significant difference in the expected number of monthly adopters for the downtown region will 

exist between having a station or on-street parking. 
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1. INTRODUCTION 
The nonstop growth in population and urban development has impacted societies in one way or another 

from air pollution to greenhouse gas emission, climate change and traffic congestion. This made policy 

makers more inclined towards the development of smart cities that promote sustainable mobility and 

multimodality. As such, major technological and infrastructural changes over the next decades such as the 

introduction of autonomous vehicles, advances in information and communication technology, California 

High Speed Rail, carsharing and ridesharing are expected to traverse our societies. This will induce potential 

paradigm shifts in the cost, speed, safety, convenience and reliability of travel.   

Travel demand models are the dominant approach to predict 20-30 year forecasts of traffic volumes and 

transit ridership across transportation networks. However, current travel demand models are unable to 

predict long-range trends in travel behavior as they do not entail a mechanism that projects membership 

and market share of new modes of transport (Uber, Lyft, autonomous vehicles, etc). Our objective is to 

develop a methodological framework tailored to model the technology diffusion process by focusing on 

quantifying the effect of the spatial configuration of the new technology and socio-demographic variables. 

Moreover, we are also interested in capturing the effect of social influences and level-of-service attributes 

of the new technology on the adoption process. This will help planners and policy makers gain more insight 

about the projected market shares of upcoming modes of transport for various policies and investment 

strategies at the public and private levels. Our research is motivated by existing work in technology adoption 

modeling which employs a microeconomic utility-maximizing representation of individuals. This 

framework is of interest to us as it could be easily integrated with our disaggregate activity-based models.  

This study contributes to the existing body of literature in providing a unique methodology to model the 

adoption behavior and uptake of new products/technologies by various market segments. Our model caters 

for the effects of social influences, network effect, socio-demographics and level-of-service attributes of 

the product on the adoption behavior of each of the market segments. The following framework could be 

used to predict future market shares of upcoming modes of transport as one specific type of application. 

The paper is organized as follows: Section 2 provides a literature review of existing technology adoption 

and diffusion frameworks. Section 3 provides the adopted methodological framework used to model 

technology adoption and details the framework of the Latent Class Choice Model (LCCM). Section 4 

explains the dataset used in the study. Section 5 discusses model results and model applications. Section 6 

concludes the findings of the paper. 

2. LITERATURE REVIEW 
Autonomous vehicles on the horizon, not to mention the transformative mobility trend that is occurring in 

our transportation system via the introduction of electric vehicles, ridesharing, carsharing, and many other 

new technologies. The transportation industry has been trying to develop quantitative methods rooted in 

the technology diffusion literature to try and predict market shares of those upcoming modes of 

transportation. One study (Li et al., 2015), focused on defining variables that influence ridership of  the 

Taiwan High Speed Rail System (THSR) using econometric time series models and revealed preference 

(RP) data of monthly ridership from January 2007 till December 2013. Two models were estimated: (1) 

seasonal autoregressive integrated moving average and (2) first order moving average model to explore the 

influence of explanatory variables on ridership.  

Moreover, studying the market diffusion of electric vehicles has received worldwide attention these past 

few years. For example, Plötz et al. (2014), estimated an agent-based simulation model of the diffusion 

process of electric vehicles using real-world driving data that captured heterogeneity among decision-

makers, psychological factors and attributes of the new technology.  Another study, please refer to Gnann 

et al. (2015), used an Alternative Automobiles Diffusion and Infrastructure (ALADIN) diffusion model to 

forecast market penetration of plug-in electric vehicles through simulation techniques. Their proposed 

methodology incorporated an agent based simulation model that catered for different types of users in 

addition to their respective decision making processes to make it behaviorally richer. Other studies focused 
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on using agent based simulation models alone while others integrated them with discrete choice methods 

to account for a richer behavioral interpretation (Eppstein et al., 2011; Brown, 2013; Zhang et al, 2011). 

For example in Eppstein et al. (2011), an integrated agent based and consumer choice model was estimated 

that tried to capture the effect of social interactions and media on the market penetration of plug-in hybrid 

electric vehicles.  

Also, a current developed model focuses on forecasting adoption of electric vehicles using an integrated 

discrete choice and diffusion models (Jensen, 2014). This model builds on the previous work of Jun and 

Park (1999) whereby they specify the utility of adopting a certain good at time t as a function of the 

attributes of the technology, and difference between time t and the time period at which the product was 

introduced in the market. The parameter associated with the aforementioned second variable in the utility 

of adoption will account for the effect of the diffusion process. The probability of adoption at a certain time 

period could be computed using the logit closed form. Following that, the sales of electric vehicles at 

different time periods could be computed respectively. To forecast the demand of electric vehicles, data 

was collected from a stated preference (SP) survey conducted in Denmark in 2012 and 2013 for the choice 

between electric vehicles and internal combustion engines. The specification of the utility of choosing either 

mode included purchase price, propulsion costs, driving range, emissions, number of battery stations, and 

characteristic of public charging facilities. The utility equation of choosing an electric vehicle also entailed 

a parameter that portrays the effect of the diffusion process while assuming that internal combustion engines 

have reached market saturation. The model was used to forecast market share of electric vehicles for several 

policy scenarios. Our proposed methodological framework is different as it caters for (1) heterogeneity 

among decision-makers and in particular among distinct discrete market segments in the population that 

have different adoption behavior; (2) effect of various socio-economic and demographic variables on the 

diffusion process; (3) spatial or network effect of the new technology whereby we are interested in assessing 

how an increase in the size of the network that is covered by the new mode of transportation will impact 

adoption behavior; and (4) social influences and how that will influence the utility of adoption.  

In order to have a deep understanding of the diffusion process tackled in the transportation literature, we 

need to get a handle on the diffusion literature in a thorough manner. Over the course of the next few 

paragraphs we will describe the central piece of the framework governed by the model of technology 

adoption. The adoption and diffusion of new technologies has received attention across multiple disciplines 

within economics and social sciences over the years. As defined by Rogers (1962), “diffusion is the process 

by which an innovation is communicated through certain channels over time among the members of a 

certain social system”. Diffusion models are widely used in the marketing science industry as they capture 

the dynamics behind the uptake of a new product in addition to forecasting its demand. Diffusion models 

are popular in a variety of disciplines such as: agriculture (Sunding and Zilberman, 2001; and Ward & 

Pulido-Velazquez, 2008), consumer durables (Delre et al., 2007; and Schramm et al., 2010), pharmaceutical 

industry (Desiraju et al., 2004), and the automobile industry and in particular aggregate diffusion patterns 

of car ownership (Dargay and Gately, 1999). Those models have been estimated and used in forecasting 

across different cultures such as: United States, France, Spain and many other countries (please refer to 

Tellis et al., 2003). Forecasting accuracy with diffusion models varies depending on the type of dataset 

being used, whether it’s homogenous or heterogeneous i.e. from different sources (Meade and Islam, 2006). 

Improvement with respect to specification of the diffusion models such as incorporating non-parametric 

parametrization and enhancing flexibility has helped increase forecasting accuracy across multiple 

disciplines (Meade and Islam, 2006).  

The rate and extent of diffusion is a function of the attributes of the innovation, the characteristics of the 

social system, time, and the available channels for communication (Rogers, 1962). Any innovation may be 

defined in terms of the relative advantage offered by the innovation over existing alternatives, the degree 

to which the innovation is consistent with existing needs and values, the measure of difficulty associated 
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with using the innovation, the extent to which the innovation can be tried on a limited basis, and the ease 

with which the benefits of the innovation are tangible to others. Differences in social systems may be 

characterized by the pattern of relationships among members of the system, established norms of what 

constitutes acceptable and unacceptable behavior, and the degree to which individual agents are able to 

influence the behavior of others. Communication channels can be broadly classified as either mass media, 

such as the television, or interpersonal channels that require a direct exchange between two or more 

individuals. 

Rogers (1962) defines the following five classes of adopters that define the uptake of a certain technology 

across various disciplines: innovators, early adopters, early majority, late majority and laggards. Based on 

the mathematical formulation of the diffusion model of Bass (1969), adopters can be divided into two 

distinct groups: innovators and imitators with the latter comprising the remaining four classes of adopters 

listed above. The technology diffusion literature stresses on the importance of the role of those two different 

types of adopters in shaping the market penetration rate of a new good or service (please refer to Mansfield, 

1961; Mahajan et al., 1990; and Cavusoglu et al, 2014). Innovators are individuals that “decide to adopt an 

innovation independently of the decisions of other individuals in a social system” while imitators are 

adopters that “are influenced in the timing of adoption by the pressures of the social system” (Bass, 1969).  

The dominant models for technology adoption and diffusion are either disaggregate or aggregate. 

Throughout the next few paragraphs, we will describe the assumptions and formulations for those two 

distinct frameworks, and motivate why disaggregate models are a better methodological approach to our 

research question. Aggregate models of technology diffusion formulate the percentage of the total 

population that has adopted an innovation at some time period as some function of the characteristics of the 

population and the attributes of the innovation. The empirical research on aggregate models was pioneered 

by Griliches (1957), Mansfield (1961), and Bass (1969).The Bass model is well-known in the marketing 

science literature and it formulates the probability that a certain consumer will make an initial purchase at 

a given time t given that no purchase has been yet made by that specific consumer denoted as 𝑃𝑡 in the 

equation below as a linear function of the number of previous buyers: 

𝑃𝑡 = 𝑝 +
𝑞

𝑀
Y(t) 

𝑝: Coefficient of innovation; 𝑞: Coefficient of imitation; 𝑀: Total potential market for the technology 

Y(t): Cumulative number of individuals that adopted the new technology by time t (number of previous 

buyers) 

The term 
𝑞

𝑀
Y(t) reflects the “pressures operating on imitators with an increase in the number of previous 

buyers” (Bass, 1969) while 𝑝 reflects the percentage of adopters that are innovators.  

Using this formulation, sales of a certain technology/product could be forecasted into the future via a closed 

form solution. We are interested in the formulation of the Bass model as it identifies the two types of 

adopters of a new technology in addition to capturing the effect of social influence onto the probability of 

adoption. The figure below depicts the sales of a product over time (bell-shaped curve, S(t)) and cumulative 

sales over time (“S”-shaped curve, Y(t)) according to Bass (1969). The plot below uses a value of 0.005 for 

the coefficient of innovation p, 0.3 for coefficient of imitation q, and 100 for total potential market M. 

Those values were chosen arbitrarily to display the shape of the S(t) and Y(t) curves and provide useful 

insights. It is evident from the “S”-shaped diffusion curve that once a certain good or service is introduced 

in a market, it exhibits a low adoption rate followed by takeoff whereby the market experiences high 

adoption rates. After the takeoff period, technology adoption slows down until it reaches market saturation.  

Mansfield (1961) on the other hand formulates the cumulative sales of a good/service using a logistic model 

which is a special case of the Bass model (p=0). Extensions of the Bass model and more recent 
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enhancements to aggregate diffusion models (see for example Kamakura and Balasubramanian, 1988; and 

Meade & Islam, 2006), have incorporated the effects of price, advertising and other marketing variables 

into the model parametrization in an attempt to increase forecasting power. Furthermore, aggregate models 

have been developed to assess the diffusion levels of a certain technology across different countries. A 

major drawback in these models is the absence of explicit understanding and modeling of utility-

maximizing representation of individuals that drives decision-makers to adopt at different times. 

 

 

Figure 1: Sales vs. Cumulative Sales over Time 

Recently, agent-based modeling and simulation methods are becoming more popular in the technology 

diffusion discipline as they are estimated on an individual level. This will in turn address some of the 

shortcomings of aggregate diffusion models and cater for heterogeneity among consumers and explicit 

social structure (Kiesling et al., 2012; and Schramm et al., 2010).  

Disaggregate models of technology adoption on the other hand formulate the probability that an individual 

or household adopts an innovation as some function of the characteristics of the decision-maker, attributes 

of the alternative, communication channels (both interpersonal networks and mass media) and time in order 

to cater for the temporal dimension of the diffusion process. These models have been used to predict the 

adoption of a wide variety of technologies and innovations that include color televisions, genetically 

modified crops, irrigation technology, computers, diapers and drill bits (Zilberman to al., 2012). 

Disaggregate models are of interest to us for the following reasons: (1) they employ a microeconomic 

utility-maximizing representation of individuals that provides insight into the decision-making process 

underlying the adoption or non-adoption of different innovations by consumers which is consistent with the 

framework typically employed by travel demand models; (2) they capture various sources of heterogeneity 

in the decision-making process; (3) they can be transferable across different geographical, social and 

cultural contexts with the pertinent model calibration; and (4) they can account for a range of policy 

variables that can be used to rank policies and investment strategies in terms of maximizing the expected 

number of adopters of a new technology in future time periods. Moreover, we are interested in 

understanding how the spatial configuration of a new transportation service and the different socio-

demographic variables of decision-makers can influence the adoption behavior. The aforementioned 

aggregate models cannot cater for those two key variables in their formulation to project future market 

shares of a new technology in a more representative manner. In addition to that, model application is a key 
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component in our analysis to provide policy makers and transportation specialists with the means to 

quantify the expected number of adopters for a set of policies and strategies at the metropolitan levels. 

Aggregate models do suffer from a limited degree of policy sensitivity and can only account for a narrow 

range of policy variables which make them less appealing to our analysis.  

There are various disaggregate diffusion models, each focusing on different aspects of the decision making 

process and behavior. One dominant disaggregate adoption model is the threshold model which was first 

introduced by David (1969) in an attempt to study the technology adoption of grain harvesting machinery 

and was further explored by Sunding and Zilberman (2001). The threshold model incorporates 

heterogeneity among decision-makers in the adoption process and could be used in conjunction with 

discrete choice models (logit or probit) to represent the utility maximization behavior of decision-makers. 

The sources of heterogeneity that affect the adoption process may include various variables depending on 

the available data and what the analyst is trying to capture. At every time period, the critical level of each 

source of heterogeneity in the model is determined. Decision-makers equipped with a value of that source 

of heterogeneity, say income, that is larger than the critical level at a certain time period will choose to 

adopt the new technology/product at that time period. The critical level of a source of heterogeneity shall 

decrease over time which induces more consumers to adopt due to principles of “learning by doing” and 

“learning by using” (please refer to Sunding and Zilberman, 2001). One application of this consisted of 

using a disaggregate utility function model of household vehicle choice using the threshold model in its 

aggregate context with income, household structure, comfort/quality being three critical sources of 

heterogeneity (Liu, 2010). Advances in the threshold model incorporate dynamic optimization in their 

analysis, such that a decision-maker is making a trade-off between the expected decrease in price of a 

certain technology in the future and the current benefits from purchasing it which will dictate the timing of 

adoption (McWilliams and Zilberman, 1996). 

As we are interested in capturing various sources of heterogeneity in the decision-making process, the 

threshold model does not seem to be a good fit to the methodological framework we want to adopt. As 

previously mentioned, the literature focuses on two different types of adopters (early adopters and 

imitators). We are interested in modeling the adoption behavior of those two distinct market segments in 

addition to the non-adopters market segment that chooses to never adopt a new technology. The formulation 

of disaggregate utility function of the threshold model can be used as a starting point in the development of 

our methodological framework of technology adoption for the three different market segments. 

3. METHODOLOGICAL FRAMEWORK 
The methodological framework we want to develop builds on the aggregate diffusion literature and in 

particular the concepts of consumer heterogeneity towards the adoption process i.e. innovators versus 

imitators and social influences as described in the Bass model. We are interested in disaggregate diffusion 

models as they can be easily integrated with the activity-based travel demand models of interest. Also, with 

disaggregate models, we can account for the impact of socio-demographics and social influences on the 

adoption process in addition to spatial effects. By spatial effects we are referring to increasing the relative 

size of potential destinations that one can reach out to via the new mode of transport. While there have been 

disaggregate models developed in the literature, they seem to be based on different behavioral assumptions 

(for example the previously mentioned threshold model) or do not cater for heterogeneity in the 

specification of the utility of adoption. Most studies in the literature focus on the role of three defined 

distinct market segments in their analysis that differ in their respective adoption behavior towards a new 

technology. Those market segments are: innovators/ early adopters, imitators and non-adopters. We will be 

building on these findings using a disaggregate technology diffusion approach, which is rooted in findings 

from the aggregate diffusion literature.  

The specification we are interested in developing is unique as it tries to model how technology adoption 

and use is influenced by socio-demographics, attributes of the new technology/service, spatial effect (or 

network effect) and finally social influences. The aggregate diffusion literature mainly refers to two types 
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of adopters (innovators and imitators). In order to assess the adoption behavior of a certain population we 

need to take into account those decision-makers that will choose to never adopt the new technology/service. 

We are interested in modeling the adoption behavior of each of the following three market segments 

(innovators/early adopters, imitators, and non-adopters) to try and capture heterogeneity in the adoption 

behavior of each of those market segments. Innovators or early adopters denote the market segment that  

determines whether a new technology will pick up in market share or not after being introduced in the 

market. They define how steep or flat the “S” cumulative diffusion curve (figure 1) can be during the early 

stages. Innovators comprise the biggest fraction of adopters of a new technology during the initial time 

periods. Imitators on the other hand come into play as time elapses since the introduction of the new 

technology. They will determine the rate at which the market will adopt the new product or service and will 

in turn shape the steepness of the “S” cumulative diffusion curve at later stages in the diffusion process. 

Non-adopters will define the time period at which the cumulative diffusion curve reaches a plateau. For 

example, as the number of non-adopters increases the faster the “S” curve attains a plateau.  

However, we do not observe what type of a person any given individual is i.e. we do not have information 

about which market segment each decision-maker belongs to. In order to account for this, discrete mixture 

models and in particular latent class choice models (LCCM) are found to be the most appropriate 

framework. Latent class choice models comprise two components: a class membership and a class-specific 

choice model as depicted in the figure below.  

The class-specific choice model formulates the probability of technology adoption of a certain individual 

conditional on that individual either being an innovator, imitator or non-adopter. This component captures 

variation across classes with respect to choice set, tastes and sensitivities, decision protocol and covariance 

structure of the error term (Gopinath, 1995).  

 

 

Figure 2: Latent Class Choice Model Framework 

As we are interested in modeling the adoption process for each market segment, we should cater for the 

temporal dimension of technology diffusion as decision-makers will adopt the new technology at various 

time periods according to the aforementioned explanatory variables. Hence, the probability that individual 

n during time period t after the new technology was available in the market adopted or chose to not adopt 

could be written as: 
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𝑃(𝑦𝑛𝑡𝑗|𝑍𝑛𝑡 , 𝑋𝑛𝑡𝑗, 𝑞𝑛𝑠) ∀ 𝑗 ∈ {0,1|𝑦𝑛(𝑡−1)𝑗}  

where 𝑦𝑛𝑡𝑗 equals one if individual n during time period t chose to adopt the new technology (j=1) and zero 

otherwise, conditional on the characteristics of the decision-maker during time period t denoted as 𝑍𝑛𝑡 and 

attributes of the new technology (j=1) during time period t denoted as 𝑋𝑛𝑡𝑗, and conditional on the decision-

maker belonging to latent class s (𝑞𝑛𝑠 equals one and zero otherwise). 

Now, evaluating the probability of adoption or non-adoption will be based on a binary logit formulation 

that transforms the utility specification into probabilities. Let 𝑈𝑛𝑡𝑗|𝑠 denote the utility of adoption (j=1) or 

not (j=0) to the new technology during time period t for individual n conditional on him/her belonging to 

latent class s which is expressed as follows: 

𝑈𝑛𝑡𝑗|𝑠 = 𝑉𝑛𝑡𝑗|𝑠  +  𝜀𝑛𝑡𝑗|𝑠 =   𝑧𝑛𝑡
′ 𝛽𝑠 + 𝑥𝑛𝑡𝑗

′ 𝛾𝑠 +  𝜀𝑛𝑡𝑗|𝑠 

where 𝑉𝑛𝑡𝑗|𝑠 is the systematic utility that is observed by the analyst,  𝑧𝑛𝑡
′  is a row vector of characteristics 

of the decision maker n during time period t, 𝑥𝑛𝑡𝑗
′  is a row vector of attributes of the new technology (j=1) 

during time period t for individual n, 𝛽𝑠 and 𝛾𝑠 are columns vectors of parameters specific to latent class s 

and 𝜀𝑛𝑡𝑗|𝑠 is the stochastic component of the utility specification. Since we have prior assumptions about 

the behavior of the two various types of adopters (innovators versus imitators) based on the existing 

technology diffusion literature, the systematic utility of adoption for each of the three latent classes was 

specified according to the following rationale. The systematic utility of adoption of innovators shall include 

characteristics of the decision-maker and attributes of the new technology as we are interested in assessing 

the significance of those explanatory variables on the decision process of adopting or not. The systematic 

utility of adoption for imitators is also modeled as a function of the characteristics of the decision-maker 

and attributes of the new technology. However, this is the latent class whose adoption behavior is influenced 

by the extent of social influence and accumulating pressure with the increase in the previous number of 

adopters (Bass, 1969). That is why we are interested in determining the effect of the previous number of 

adopters on the utility of adoption of imitators at a certain time period. Finally, the systematic utility of 

adoption of the third latent class (non-adopters) consists of an alternative specific constant (ASC) only. 

Ideally, this ASC should attain a highly negative value via estimation to ensure that this class will most 

likely never adopt the new technology. The systematic utility of adoption / non-adoption for innovators, 

imitators and non-adopters is specified in the following manner: 

{
𝑉𝑎𝑑𝑜𝑝𝑡,𝑛,𝑡|𝑠=𝑖𝑛𝑛𝑜𝑣𝑎𝑡𝑜𝑟 =  𝑧𝑛𝑡

′ 𝛽1 + 𝑥𝑛𝑡𝑗
′ 𝛾1

𝑉𝑛𝑜𝑛−𝑎𝑑𝑜𝑝𝑡,𝑛,𝑡|𝑠=𝑖𝑛𝑛𝑜𝑣𝑎𝑡𝑜𝑟 = 0
 

{
𝑉𝑎𝑑𝑜𝑝𝑡,𝑛,𝑡|𝑠=𝑖𝑚𝑖𝑡𝑎𝑡𝑜𝑟 =  𝑧𝑛𝑡

′ 𝛽2 + 𝑥𝑛𝑡𝑗
′ 𝛾2 +  ∆(𝑡−1)𝛼2

𝑉𝑛𝑜𝑛−𝑎𝑑𝑜𝑝𝑡,𝑛,𝑡|𝑠=𝑖𝑚𝑖𝑡𝑎𝑡𝑜𝑟 = 0
 

{
𝑉𝑎𝑑𝑜𝑝𝑡,𝑛,𝑡|𝑠=𝑛𝑜𝑛−𝑎𝑑𝑜𝑝𝑡𝑒𝑟 =  λ

𝑉𝑛𝑜𝑛−𝑎𝑑𝑜𝑝𝑡,𝑛,𝑡|𝑠=𝑛𝑜𝑛−𝑎𝑑𝑜𝑝𝑡𝑒𝑟 = 0
 

where ∆(𝑡−1) depicts the cumulative number of adopters of the new technology during time period (t-1), 

and λ is an alternative specific constant.  

Now, in order to assess the impact of the spatial/network effect of the new technology on the utility of 

adoption, we resided to quantifying the level of accessibility brought about by the new mode of 

transportation. Accessibility is defined as the “ease with which any land-use activity can be reached from 

a location, using a particular transport system” (Dalvi et al., 1976). There are several types of accessibility 

measures: cumulative opportunities measures, gravity-based measures, and utility-based measures (Handy 

and Niemeier, 1997). We will focus on utility-based measures for the assessment of accessibility through 

developing a destination choice model. Utility based measures of accessibility have desirable advantages 
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over other methods as they account for flexibility in travel purposes and sensitivity to travel impedance 

measures in terms of time and cost. Also, they capture individual-level preferences and socio-demographic 

influences on travel behavior. In those types of models, we assume that given a certain origin, each decision-

maker associates a utility to each of the available destinations in his/her respective choice set 𝐶𝑛 and will 

end up choosing the alternative i.e. destination which maximizes his/her utility. Accessibility is defined as 

the logsum measure of those destination choice models as it “measures the expected worth of certain travel 

alternatives” (Ben-Akiva and Lerman, 1985).  

Let 𝑈𝑛𝑖𝑗 denote the utility of individual n conducting a trip from origin i to destination alternative j. 

Determining the systematic utility specification requires assessing the explanatory variables that influence 

an individual’s decision to conduct a trip from a certain origin to a certain destination. Travel impedance 

whether in terms of travel distance or cost is an important variable as travelers prefer conducting shorter 

trips. Second, since travel is a derived demand whereby an individual goes from a certain origin to a 

destination to conduct an activity, evaluating the available number of opportunities or attractions at the 

destination is important. In addition to that, an individual is more likely to use the new technology (mode 

of transport in our case) if it provides a relatively close destination spot to his home. Finally, socio-

demographic variables can play a role in defining some characteristics that can drive individuals into 

conducting certain trips. That is why we resided to expressing 𝑈𝑛𝑖𝑗 in the following manner: 

𝑈𝑛𝑖𝑗 = 𝑉𝑛𝑖𝑗  + 𝜀𝑛𝑖𝑗 =   𝑑𝑖𝑗𝛽 + ln(𝑠𝑖𝑧𝑒𝑗) 𝛼 + 𝑍𝑛𝛾 +  𝑋𝑛𝑗θ +  ℎ𝑜𝑚𝑒𝑛𝛿 + 𝜀𝑛𝑖𝑗 

where 𝑉𝑛𝑖𝑗 is the systematic utility observed by the analyst, 𝑑𝑖𝑗 denotes a friction factor of traveling from 

origin i to destination alternative j which is the travel distance associated with origin-destination pair (i,j), 

𝑠𝑖𝑧𝑒𝑗 represents the attractions associated with destination j which will be governed by the employment 

rate at the destination (number of employees per square mile) as it is considered to be the driver behind trip 

attractions, 𝑍𝑛 represents socio-demographic characteristics of decision-maker n, 𝑋𝑛𝑗 denotes attributes of 

the new technology at destination alternative j for individual n, ℎ𝑜𝑚𝑒𝑛 is a dummy variable which will be 

equal to one if decision-maker n resides within a certain proximity as his/her corresponding destination 

alternative, 𝛽 , 𝛼, 𝛾, 𝛿, and θ are parameters associated with the explanatory variables, and 𝜀𝑛𝑖𝑗 is the 

stochastic component of the utility specification.  

Assuming that all individuals are utility maximizers and that 𝜀𝑛𝑖𝑗 follows an i.i.d. Extreme Value Type I 

distribution across individuals, origin and destination alternatives with mean zero and variance 
𝜋2

6
 , the 

accessibility measure is expressed as the following logsum measure: 

𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑛,𝑖,𝑡 = 𝑙𝑛 [∑ 𝑒𝑉𝑛𝑖𝑗

𝐽𝑡

𝑗=1

] 

where i denotes an origin alternative and 𝐽𝑡 is the total number of distinct destination alternatives available 

at time period t.  

Now that we have defined the formulation of the network effect model denoted by accessibility, we return 

to the formulation of the class-specific choice model. Assuming that all individuals are utility maximizers 

and that 𝜀𝑛𝑡𝑗|𝑠 follows an i.i.d. Extreme Value Type I distribution across individuals, time periods, 

alternatives and latent classes with mean zero and variance 
𝜋2

6
 , the class-specific choice model could be 

formulated as such: 

𝑃(𝑦𝑛𝑡𝑗|𝑍𝑛𝑡 , 𝑋𝑛𝑡𝑗, 𝑞𝑛𝑠) = 𝑃(𝑈𝑛𝑡𝑗|𝑠  ≥  𝑈𝑛𝑡𝑗′|𝑠 ∀ 𝑗′ ∈  𝐶) = 
𝑒

𝑉𝑛𝑡𝑗|𝑠

∑ 𝑒
𝑉

𝑛𝑡𝑗′|𝑠𝐽

𝑗′=1
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where 𝐶 denotes the choice set i.e. either adopting to the new service or not which is common to all 

individuals.  

Assuming that the class-specific choice probabilities for individual n across all choice situations are 

conditionally independent given that he/she belongs to latent class s, then the conditional probability of 

observing a vector of choices 𝑦𝑛 becomes: 

𝑃(𝑦𝑛|𝑞𝑛𝑠) =  ∏ ∏ 𝑃(𝑦𝑛𝑡𝑗|𝑍𝑛𝑡 , 𝑋𝑛𝑡𝑗, 𝑞𝑛𝑠)
𝑦𝑛𝑡𝑗

𝑗∈ 𝐶

𝑇𝑛

𝑡=1

 

where  𝑇𝑛 is the total number of time periods available for individual n until he /she adopts. 

The class membership model on the other hand predicts the probability that decision-maker n with 

characteristics 𝑍𝑛 belongs to latent class s and is defined as such: 

𝑃(𝑞𝑛𝑠|𝑍𝑛) 

Let 𝑈𝑛𝑠 denote the utility for individual n from latent class s which is expressed as follows:  

𝑈𝑛𝑠 = 𝑉𝑛𝑠  + 𝜀𝑛𝑠 =   𝑧𝑛
′ 𝜏𝑠 +  𝜀𝑛𝑠 

where 𝑉𝑛𝑠 is the systematic utility, 𝑧𝑛
′  is a row vector of socio-economic and demographic variables for 

decision-maker n, 𝜏𝑠 is a column vector of parameters, and 𝜀𝑛𝑠 is the stochastic component of the utility 

specification. Again, assuming that all individuals are utility maximizers and that 𝜀𝑛𝑠 follows an i.i.d. 

Extreme Value Type I distribution across individuals and latent classes with mean zero and variance 
𝜋2

6
 , 

the class membership model could be formulated as such: 

𝑃(𝑞𝑛𝑠|𝑍𝑛) = 𝑃(𝑈𝑛𝑠  ≥  𝑈𝑛𝑠′ ∀ 𝑠′ = 1,2, … . , 𝑆) = 
𝑒𝑉𝑛𝑠

∑ 𝑒
𝑉

𝑛𝑠′𝑆
𝑠′=1

 

where 𝑆 denotes the total number of distinct latent classes which is equal to three in our case. 

Now, to put things in perspective with respect to our methodological framework, the figure below displays 

all three components in our analysis. 

 

Figure 3: Generalized Technology Adoption Model 
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The destination choice model will dynamically feed into the class-specific adoption model in terms of 

evaluating the accessibility measure at different time periods. Afterwards, joint estimation of the class-

specific adoption model and class membership model will take place. 

The marginal probability 𝑃(y) of observing a vector of choices y for all decision-makers is: 

𝑃(y) =  ∏ ∑ 𝑃(𝑦𝑛|𝑞𝑛𝑠)

𝑆

𝑠=1

𝑃(𝑞𝑛𝑠|𝑍𝑛) 

𝑁

𝑛=1

=  ∏ ∑𝑃(𝑞𝑛𝑠|𝑍𝑛) ∏ ∏ 𝑃(𝑦𝑛𝑡𝑗|𝑍𝑛𝑡 , 𝑋𝑛𝑡𝑗, 𝑞𝑛𝑠)
𝑦𝑛𝑡𝑗

𝑗∈ 𝐶

𝑇𝑛

𝑡=1

𝑆

𝑠=1

𝑁

n=1

 

Finally, the technology adoption model predicts the probability that a certain individual will adopt the new 

technology/service at a certain time period, and is explained by social influences, network effect, socio-

demographics and level-of-service attributes. The model was estimated via the Expectation- Maximization 

(EM) algorithm. This optimization technique enhances the computation power of model estimation by 

making use of conditional properties that exist in our model.  

 

4. DATASET 
We will use revealed preference (RP) time series data to estimate the integrated discrete choice and 

technology adoption model from a one-way carsharing system that is currently operating in a major city in 

the United States. The name of the carsharing company was withheld for confidentiality reasons. Our data 

focuses on the adopters of the service ever since it was launched. Signing up to be a member of this 

carsharing system requires a membership fee but no monthly nor annual fees. Currently, there are 14 

pods/stations in addition to 5 locations for on-street pick-up/drop-off locations. The dataset entails zip code 

information about members of the new transportation service which drove our analysis to be zip code 

focused. In total, there are 16 zip code based stations for the car sharing service as some of the on-street 

pick-up/drop-off locations exist in the same zip code as other stations.  

The dataset consists of all individuals that have signed up for the service for a time period of 2.5 years after 

being launched in addition to their registration date, gender and zip code associated with their residential 

location or zip code at which the registration payment was performed. Moreover, travel patterns via the 

carsharing service for a period of 6 months were recorded. Information about which user conducted a trip 

was recorded in addition to the origin and destination carsharing stations used. Our main focus revolves 

around the technology adoption behavior of residents of that major city and hence we are only interested in 

those adopters that had a location zip code affiliated with it which summed up to 1847 adopters. Figure 4 

below highlights the cumulative number of adopters over the entire time period that are active users of the 

service in order to project where exactly on the “S” diffusion curve the carsharing system’s current market 

share is.  

Finally, in order to have a representative sample of the population, we wanted to enrich the sample with a 

random draw of 2724 observations from the Household Travel Survey (2013) of the same state to which 

the city we are working with belongs. We will also assume that the individuals from this random sample 

are non-adopters i.e. did not adopt to the new service for the entire data collection time period (2.5 years). 

The prior probability of being an adopter in the city of interest is 3x10-4 given the number of adopters and 

the population. Hence, the expected number of adopters in the random sample is approximately one. 
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Figure 4: Cumulative Number of Adopters of Carsharing Service 

 

Our technology adoption model shall assess the impact of socio-demographics, carsharing supply (fleet and 

pricing), social influences and network effect on the adoption behavior of innovators, imitators and non-

adopters. Identifying network effect that is governed by the construct of accessibility shall be restricted to 

be zip code based for the same reason mentioned above. We would like to identify the level of accessibility 

associated with each zip code based station of the carsharing system depending on the spatial distribution 

of potential destinations i.e. stations. The origins and destinations entail the full set of the carsharing 

system’s stations. The destination choice model will be estimated based on trips that were conducted by 

users over a period of 6 months. For our formulation with this dataset, the accessibility measure will be 

non-zero only for users that have a home zip code associated with one of the stations or on-street parking 

locations. To account for that, we wanted to assign an accessibility measure for zip codes which do not 

entail a station/pod or on-street parking. We were interested in imputing the accessibility for those zip codes 

from the accessibility of the nearest zip code that had either a station or on-street parking while taking a 

friction factor into consideration, distance in our case. The accessibility measure for individual n with home 

zip code i which does not have a station or on-street parking at time t could be defined as follows: 

𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑛,𝑖,𝑡 =  
𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑛,𝑘,𝑡| 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑘 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖,𝑘)𝛼
 

where α denotes the degree of the distance friction effect which will be estimated in the model.  

 

Moreover, the sample population we are working is choice-based whereby each choice in the available 

choice set (adopt, not adopt) corresponds to a separate stratum (carsharing members versus household travel 

survey sample). However, the sampling fractions are not equal to the population shares especially that we 

have accounted for all adopters of the carsharing system and hence are highly over-represented in our 

sample. To cater for that and yield consistent parameter estimates, each observation needs to be weighted 

by 
𝑊𝑔

𝐻𝑔
 where 𝑊𝑔 is the population fraction and 𝐻𝑔 is the sample fraction of members of stratum g (Ben-

Akiva and Lerman, 1985). Accordingly, the marginal probability 𝑃(𝑦) of observing a vector of choices for 

all decision-makers should be expressed as follows: 
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𝑃(𝑦) = ∏ (∑𝑃(𝑞𝑛𝑠|𝑍𝑛) ∏ ∏ 𝑃(𝑦𝑛𝑡𝑗|𝑍𝑛𝑡 , 𝑋𝑛𝑡𝑗, 𝑞𝑛𝑠)
𝑦𝑛𝑡𝑗

𝑗∈ 𝐶

𝑇𝑛

𝑡=1

𝑆

𝑠=1

)

𝑊𝑔

𝐻𝑔𝑁

𝑛=1

 

 

Figure 5 below displays the growth in the number of pods/stations and on-street pick-up/drop-off locations 

for the 2.5-year time period. 

 

 

Figure 5: Growth in Number of Pods/Stations and On-Street Parking over Time 

 

 

5. ESTIMATION RESULTS AND DISCUSSION 
The following section entails results of the destination choice model which will be used to compute the 

accessibility measure that is used as an explanatory variable in the technology adoption model. Followed 

by that, results of the technology adoption model will be presented. 

Results of the destination choice model for the 16 zip code based stations are tabulated below including 

parameter estimates (and t-statistics). We included 4 alternative specific constants (ASCs) for 4 stations as 

we considered them to be hubs for trips conducted using the carsharing service. The four exogenous 

variables used were distance, employment rate, home dummy, and on-street parking. The on-street parking 

variable was introduced in the destination choice model utility specification in order to quantify and 

understand the effect of having on-street parking versus stations on the projected number of adopters. The 

on-street parking variable used was a dummy variable which will be equal to one if the destination 

alternative (zip code) entails on-street parking structure for the new transportation service and zero 

otherwise. 
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We did not include ASCs in all 16 utility equations because that will problematic when evaluating 

accessibility when new stations are introduced as it will be difficult to assess the ASC of the new destination 

i.e. station. In addition to that, a dummy variable between a major technology firm’s headquarters and a 

major airport in the city was introduced which takes a value of one if a trip takes place between the 

technology firm and the airport stations. That dummy variable was of interest as 46% of the total trips of 

the car sharing service had either that technology firm or airport as an origin or destination. Finally, a 

dummy variable between the major airport and the city’s downtown region was introduced which takes a 

value of one if a trip takes place between the airport and downtown.            

 

    

Table 1: Destination Choice Model 

Variable Parameter Estimate 

Distance in 100 Kilometers -0.24 (-2.06) 

Employment in Zip Code (employees/miles2) 0.18 (10.06) 

Home 1.55 (20.51) 

On-street Parking 0.34 (5.47) 

Trip between Major Technology Firm and Downtown 1.00 (14.18) 

Trip between Major Technology Firm and Major 

Airport 
2.78 (45.46) 

Alternative Specific Constant 

Technology Firm 

Airport 1 

Airport 2 

Airport 3 

 

1.10 (13.27) 

1.76 (23.07) 

0.61  ( 5.90) 

0.93 (10.32) 

 

Since we had apriori hypothesis regarding the number of latent classes in our model, determining the final 

model specification was based on varying the utility specification for both sub-models i.e. class membership 

and class-specific choice models. Tables 2 below presents detailed parameter estimates (and t-statistics) for 

the class membership of the technology adoption model.  
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Table 2: Class Membership Model 

Variable Class 1 – Innovators Class 2 - Imitators Class 3 – Non-Adopters 

Alternative Specific 

Constant (Adoption) 
-- 7.00 (37.09) 7.51 (56.78) 

Monthly Income 

($1000) 
-- -0.23 (-13.01) -0.04 (-3.86) 

Male -- -0.77 (-8.70) -1.72 (-23.56) 

-- Not applicable 

 

The rho-bar-squared (𝜌̅2) measure for this technology adoption model is 0.993 with a total number of 4571 

individuals and 120,665 observations. 𝜌̅2 has such a high value because of the weights applied to each of 

the observations. Currently, the market share of the carsharing adopters is very minimal compared with the 

rest of the population which forces the increase in model fit.  

The class membership model includes parameter estimates which correspond to the influence of socio-

demographic variables on class membership. The class membership model results reveal that all else equal, 

an individual is more likely to be a non-adopter, high-income groups and men are more likely to be early 

adopters (innovators). The monthly income used in our analysis was the average zip code based income 

since that socio-demographic variable was not provided in the data. 

Tables 3 below presents detailed parameter estimates (and t-statistics) for the class-specific model 

corresponding to the adoption behavior of the new technology. As for the class-specific model results, the 

parameter estimates for the utility of adoption for the two types of adopters have the right sign and are 

significant at the 1% level except for the major technology firm employee variable for the innovators latent 

class. This agrees with the behavioral interpretation of the adoption process for each class. Early Adopters’ 

utility of adoption increases with an individual being an employee of the major technology firm and having 

a station or on-street parking for the new transportation service in his/her corresponding zip code. Also, an 

increase in the accessibility of a certain home zip code that has neither a station nor on-street parking will 

in turn drive an innovator to adopt. A similar behavioral interpretation applies for home zip codes that do 

have stations or on-street parking. Imitators’ utility of adoption increases with an individual being an 

employee of the major technology firm and with an increase in the cumulative number of adopters in the 

previous time period. This is the class which is highly influenced by previous adopters. Moreover, as the 

accessibility of the home zip code which has neither a station nor on-street parking increases, an imitator is 

more likely to adopt. The same rationale also applies for home zip codes that do have stations or on-street 

parking. The behavior of the non-adopters latent class is deterministic as the probability of adoption is 

almost equal to one for each individual that belongs to this market segment at each time period. 
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Table 3: Class-specific Technology Adoption Model 

Variable Class 1 – Innovators Class 2 – Imitators Class 3 – Non-Adopters 

Alternative Specific 

Constant (Adoption) 
-7.88 (-78.08) -14.71 (-78.63) -100.00 (--) 

Station in Zip Code 1.38 (3.61)   -- -- 

On-street Parking in Zip 

Code 
1.18 (3.99) -- -- 

Major Technology  

Firm Employee 
1.33 (1.89)* 7.10 (46.43) -- 

Accessibility for Zip 

Codes Containing a 

Station or  

On-street Parking  

0.44 (5.29) 0.68 (55.39) -- 

Accessibility for Zip 

Codes Containing neither 

a Station nor On-Street 

parking  

0.91 (22.77) 0.59 (22.64) -- 

Cumulative Number of 

Adopters at (t-1) in 100’s 
-- 0.14 (24.21) -- 

Degree of Distance 

Friction Effect for 

Accessibility 

                                                    1.00 (--) 

-- Not applicable; * Insignificant at the 5% level 

 

Now that we have estimated a technology adoption model, we want to use it to forecast adoption into the 

future for various potential scenarios. More specifically, we are interested in using the model to understand 

the potential effectiveness of new pods and on-street parking facilities placed in different locations. In order 

to do so, we should calibrate our model first by adjusting the values of the alternative specific constants 

(ASCs) of the utility of adoption for innovators and imitators. That will minimize the difference between 

projected and actual demand. In order to do so, we will perform sample enumeration on the entire 

population of the major city using our estimated model in order to predict the number of adopters that joined 
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the service during the last month of the data’s time horizon. We will adjust the ASCs in order to equate the 

predicted number of adopters for the last month from the model with the actual number of adopters for that 

month from the data itself. 

There were three scenarios that we were interested in assessing their impact on the adoption of the new 

transportation service besides the base case scenario. The base case scenario comprises not investing in any 

new station or on-street parking facility in any of the zip codes. The three scenarios are: 

a- Stations/pods outside a second major technology firm  

b- Stations/pods in a new zip code in the downtown region 

c- On-street parking facilities instead of stations/pods in the same zip code as in scenario b 

Figure 6 below displays how the cumulative adoption “S” diffusion curve will be projected into the future 

under the aforementioned potential scenarios. Also, figure 7 below identifies the forecasted cumulative 

monthly adoptions of the new transportation service for the next year on a month to month basis. It is 

evident that investing in stations/pods outside another major technology firm will increase the monthly 

number of new adopters the most. There is no significant difference in the number of new monthly adopters 

for the downtown region between having a station or on-street parking. That is because, the only way we 

were able to incorporate the effect of each was via dummy variables. Ideally, we would have been interested 

in incorporating the number of cars in each station/pod or total area allocated for on-street parking but that 

information was not available. That said, the power of the integrated discrete choice and adoption model 

we developed lies in projecting adoption into the future and identifying the most effective policy that will 

cater for behavior change and maximize adoption. 

 

 

Figure 6: Cumulative Adoptions for New Transportation Service 
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Figure 7: Forecasted Adoption for New Transportation Service 

We were also interested in assessing the aggregate technology adoption process using the Bass model to 

highlight the advantages of our adopted methodological framework in this paper. The three variables that 

need to be calculated which define the “S”-shaped diffusion curve of the cumulative number of adopters of 

the one-way carsharing service are:  the coefficient of innovation p, for coefficient of imitation q, and total 

potential market M. In order to compute the values for those three variables, we need to define the following 

formulation (Bass, 1969): 

𝑆(𝑡) = 𝑝𝑀 + (𝑞 − 𝑝)𝑌(𝑡) −  
𝑞

𝑚
𝑌2(𝑡) 

S(t) depicts sales of a product over time which is the expected number of adopters of the carsharing service 

at time period t. The discrete time series data was used to run the required regression analysis in order to 

estimate p, q and M that attained the following values respectively: 0.0051, 0.2108 and 2200. The figure 

below displays how the number of adopters S(t) and cumulative number of adopters Y(t) will evolve over 

time. It is evident that the Bass model suffers from the following limitations: (1) lack of including important 

policy variables into model parametrization which hinders its forecasting power in terms of identifying 

effective policies and investment strategies that maximize the expected number of adopters; (2) absence of 

key variables that shape the adoption process of a new transportation service such as the spatial 

configuration of the service; and (3) absence of incorporating the effect of socio-demographic variables 

onto the diffusion process which should be accounted for to capture heterogeneity in the decision making 

process across different consumers. That is why, the Bass diffusion model forecasts displayed below, will 

be identical across each of the aforementioned three potential investment strategies / policies. 
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                                        Figure 8: Adopters vs. Cumulative Adopters over Time Using Bass Model 

 

6. CONCLUSION 

Major technological and infrastructural changes over the next decades, such as the introduction of 

autonomous vehicles, implementation of mileage-based fees, carsharing and ridesharing are expected to 

have a profound impact on lifestyles and travel behavior. However, the dominating mechanism for 

predicting the 20-30 year forecasts across transportation networks suffers from its inability to project 

membership of upcoming modes of transport. The methodological framework used in our analysis to study 

technology adoption consisted of an integrated latent class choice model (LCCM) and network effect model 

that was governed by a destination choice model. The latent classes used in the analysis are supported by 

the technology diffusion literature across multiple disciplines and are defined as: innovators/early adopters, 

imitators and non-adopters. These latent classes are able to capture heterogeneity in preferences towards 

technology adoption. Each class entails a distinct set of sensitivities and parameter estimates pertinent to 

the exogenous variables used in estimation. The adopted methodological framework focused on 

understanding the relative impact of the following set of covariates: social influences, network/spatial 

effect, socio-demographics and level-of-service attributes.  

One major contribution for this research project is defining a methodology to capture the impact of the 

network/spatial effect of the new technology. We were interested in understanding how the size of the 

network, governed by the new mode of transportation, would influence the adoption behavior of the 

different market segments as the ability of reaching out to multiple destination increased i.e. the size of the 

network grew bigger. This is a critical component in our analysis as it will quantify the effect of placing 

stations or on-street parking facilities in different locations and prioritize locations in the transportation 

network that will maximize the expected number of adopters. Our generalized technology adoption model 

has two other major advantages whereby it employs a microeconomic utility-maximizing representation of 

individuals and captures various sources of heterogeneity in the decision-making process.  
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The empirical results look very promising in terms of defining the adoption behavior of the three classes. 

Finally, the model was calibrated and used to project adoption into the future for various potential scenarios.  

Some findings from our technology adoption model are: (1) a decision-maker is more likely to be a non-

adopter, high-income groups and men are more likely to be early adopters or innovators; (2) network/spatial 

effect, socio-demographics, social influences and level-of-service attributes of the new technology have a 

positive set of sensitivities in the utility of adoption across latent classes which is consistent with our a-

priori hypotheses and the diffusion literature; (3) placing a new station/pod for the carsharing system outside 

a major technology firm will increase the expected number of monthly adopters the most; and (4) no 

significant difference is observed regarding the expected number of monthly adopters for the downtown 

region between having a station or on-street parking. 
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Abstract 
Activity-based travel demand models are the dominant approach that metropolitan planning agencies use 

to predict 20-30 year forecasts of traffic volumes, transit ridership, bike and walk mode shares across 

networks brought about from large scale transportation investments. However, current travel demand 

models are unable to capture and predict structural shifts in trends of overall travel behavior, for example 

the peak auto phenomenon or the rise of carsharing. We propose integrating discrete choice and hidden 

markov models (HMM) to address the aforementioned issue. In doing so, we will use the construct of 

modality styles which are defined as lifestyles built around the use of a travel mode or set of travel modes 

that capture what modes people consider when making mode choice decisions. Our model identifies 

various market segments of the population: drivers, bus users, bus-metro users (transit), and auto-metro 

users (transit). The market segments differ in terms of their choice set consideration and their sensitivity 

to level-of-service attributes (travel time, travel cost, etc.). The transition probability model identifies how 

decision-makers can transition from one segment to the other as a function of socio-demographics and the 

derived consumer surplus from subscribing to a certain market segment. This dynamic model will help 

policy makers assess the influence of a certain policy/investment on the projected market shares of the 

various modes of transport in order to identify the most effective policy that caters for behavior change.  
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1. Introduction 
The nonstop growth in population and urban development has impacted societies in one way or another 

from air pollution to greenhouse gas emission, climate change and traffic congestion. This made policy 

makers more inclined towards the development of smart cities that promote sustainable mobility and 

multimodality. As such, major technological and infrastructural changes over the next decades such as the 

introduction of autonomous vehicles, advances in information and communication technology, California 

High Speed Rail, carsharing and ridesharing are expected to traverse our societies. This shall induce 

potential paradigm shifts in the cost, speed, safety, convenience and reliability of travel. Together, they 

are expected to influence both shot-term travel and activity decisions, such as where to go and what mode 

of travel to use, and more long-term travel and activity decisions, such as where to live and how many 

cars to own. Hence, those major technological and infrastructural changes shall in turn have a profound 

impact on modality styles i.e. lifestyles built around the use of a travel mode or set of travel modes that 

people consider when making mode choice decisions (Vij, 2013), and travel behavior.  

 

Activity-based travel demand models are the dominant approach that metropolitan planning agencies use 

to predict 20-30 year forecasts of traffic volumes, transit ridership, bike and walk mode shares across 

networks brought about from large scale transportation investments and policy decisions. These models 

try to assess the impacts of transportation investments, land use and socio-demographic changes on travel 

behavior with the main objective of predicting future mode shares, auto ownership levels, etc. These 

forecasts are critical in assessing the viability of any infrastructure investment and policy 

intervention/decision (e.g., parking, HOV lanes, etc.) as they predict how decisions now will play out in 

the future. Furthermore, results from these models will: (1) provide insight into locations and corridors 

that will suffer from congestion in future years, (2) identify impacts of a certain infrastructure investment 

or policy in mitigating congestion along congested spines or corridors and (3) assess increase/reduction in 

greenhouse gas emissions (GHG). However, current travel demand models are unable to capture and 

predict structural shifts in trends of overall travel behavior, for example the peak auto phenomenon or the 

rise of carsharing.  

 

2. Literature Review 
Over the course of the next few paragraphs we will describe the three central pieces of the framework 

governed by taste heterogeneity in travel mode choice models, preference instability in discrete choice 

models, and dynamic choice models. 

 

2.1 Taste Heterogeneity in Travel Mode Choice Models (Modality Styles) 
Activity-based travel demand models comprise the primary approach metropolitan agencies use to 

forecast mode shares and travel behavior as a result of potential transportation investments and land use 

changes. They also aim at identifying potential future congested corridors in a transportation network in 

addition to forecasting GHG emissions. Activity-based travel demand models rely on the notion that a 

decision-maker engages in conducting a trip from a certain origin to a certain destination to participate in 

certain activities (work, shopping, recreational, etc.). These models focus on behaviorally richer and 

realistic approach in modeling travel mode choice as opposed to the tradition four step travel demand 

models. Travel demand models evaluate travel and activity behavior as a series of nested logit models that 

comprise several interdependent models: travel mode choice, vehicle availability, and time-of-day 

models, etc. In order to do so, a population synthesizer is required in the activity-based modeling system 

which entails the full range of characteristics of the targeted population. These models typically assume 

that individuals consider all available transportation modes in their respective consideration set. Some 

models try to address this issue in a deterministic manner, for example, restricting a maximum walking 

distance from a certain origin to destination. In this case, individuals with trip patterns that consist of a 
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longer distance than this maximum walking distance will not consider walking in their respective 

consideration set. Also, these models incorporate a limited representation of heterogeneity or taste 

variation in the choice process that are usually represented either in a systematic or random manner. The 

first approach entails interactions between observed level-of-service attributes and socio-demographic 

variables while the latter comprises having parameters follow a certain distribution (usually normal 

distribution) rather than using point estimates.   

These assumptions overlook lifestyles built around the use of different travel modes that identify 

decision-maker’s preferences toward mode choice and travel behavior.  The construct of modality styles 

(Vij, 2013) addresses those two issues that exist in current travel demand models. Modality styles try to 

capture distinct segments of the population with different preferences i.e. modes considered in the choice 

set and sensitivity to level-of-service attributes and socio-demographic variables. With new modes of 

transport existing in the choice set not to mention investment in infrastructure, choice set consideration 

will be altered in one way or the. For example, nowadays carshring and ridesharing constitute a 

reasonable market share in several regions across the United States. Obviously those two new modes exist 

in the consideration set of certain distinct market segments in the population. Other decision-makers do 

not consider those two modes as they might prefer driving or are more attached to their current 

commuting habits. That is why the construct of modality styles is key to our analysis as it addresses those 

variations in preferences that we are interested in modeling. Modality styles will capture the various 

market segments that consider those upcoming modes of transport in addition to the various sensitivities 

to level-of-service attributes and socio-demographics. Moreover, the share of people in different modality 

styles shall change/evolve in response to societal changes and the emergence of newer ways for travel and 

activity engagement. Hence, analyzing what types of lifestyles have emerged or declined over time is key 

to understanding mode share shifts which are a manifestation of individual preferences (Vij, 2013). 

Finally, decision-makers that belong to a certain modality style (market segment) will react different to a 

new transformative policy or investment strategy that is trying to impact the transportation network and 

cause a behavioral change. 

 

2.2 Preference Instability in Discrete Choice Models 

One of the most common limitations in discrete choice models constitutes the fact that preferences, which 

constitute choice sets and taste parameters, are assumed to be “exogenous to the choice situation and 

stable over time” (Vij et al., 2014). This means that the alternatives in the choice set and sensitivities to 

socio-demographic variables and attributes of the different alternatives remain fixed over time. Vij et al. 

(2014), estimated latent class choice models (LCCMs) to identify various modality styles in a given 

population that are different in their choice set consideration and sensitivities to attributes of the 

alternatives. However, they focused on defining a methodological framework that could model how an 

individual’s set of preferences could evolve as a result of changes in the transportation system which 

could be brought about by a transformative transportation policy that impacts the network or by 

introducing a new mode in the transportation system. Their formulation consisted of parametrizing the 

class membership model of the LCCM to comprise socio-demographic variables and the consumer 

surplus that is offered by each class. This parametrization allows assessing the impact of changes in the 

built environment on a decision-maker’s set of preferences.  

Why would one expect preferences to evolve and change over time due to changes in the transportation 

network? Let’s consider the following example to motivate this notion. Introducing autonomous vehicles 

will definitely alter the choice set consideration of decision-makers that consider this mode when making 

work and non-work trips. However, being in an autonomous vehicle will allow an individual to multitask 

which will alter his/her preferences. Individuals are now: (1) less sensitive to driving during the peak 

hours and getting caught up in congestion, (2) not worried about finding a parking spot in congested cities 

nor paying parking fees, (3) less restrictive in terms of residential choice location that they might consider 
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residing outside of the city and commute via the autonomous vehicle for work and other activities as 

driving has become less onerous. All of these factors will play a role in influencing preferences, mainly 

value of time (VOT). That is why, current travel demand models that assume preference stability can be 

used in forecasting over short term periods whereby preferences are more or less invariant or stable. 

However, in terms of forecasting over long term horizons, we need to take into account that various 

shocks/changes in the built environment and the transportation system are bound to happen within the era 

of transformative mobility. Hence, disregarding the evolution of preferences as a result of these changes 

will result in inconsistent and unreasonable forecasts.  

The methodological framework in Vij et al. (2014) is key to our approach. However, their formulation 

was adopted in a static framework through the development and estimation of a LCCM which is not 

exactly what we will be using. However, the parametrization of the LCCM provides a good structure to 

incorporating the influence of changes in the built environment onto the evolution of preferences. 

 

2.3 Dynamic Choice Models  
Activity-based travel demand models and the construct of modality styles were applied in a static context 

as we have previously discussed. However, we are interested in assessing the evolution or change in 

trends of overall travel behavior conditional on adoption to a new technology or infrastructure which is 

why we need to extend our framework to a dynamic context. Dynamic choice models try to account for 

the influence of past experiences on present choices. According to Kenneth Train (2009), current choices 

affect future choices as past choices affect current choices and this causality provides the basis for 

dynamic discrete choice modeling. Moreover, the choice an individual makes at a certain time period 

influences the attributes and availability of alternatives in the following choice situations. For example, in 

the context of car ownership, a car is considered a durable good that yields utility over time. An 

individual’s choice of whether to purchase a car at a certain time period or postpone the purchase depends 

on how that individual expects to use the car now and in the future. Dynamic discrete choice models 

incorporate both static and dynamic individual characteristics and product attributes into the utility 

functions, and allow a consumer at each time period to either buy a car or postpone the purchase to the 

next time period. This is an example of the optimal stopping problem which was first proposed by Rust 

(1987). Those models focus on individuals maximizing their current and expected discounted utility when 

making a decision at a certain time period and hence the importance of the forward-looking behavior of 

decision-makers. Given the future’s uncertainty, an individual chooses the alternative in the current time 

period which maximizes his/her expected utility over the current and future periods. Recently, dynamic 

discrete choice models that incorporated the optimal stopping problem have been applied in the 

transportation sector to model car ownership (see for example Cirillo and Xu, 2011 and Glerum et al., 

2013). According to Rust (1987), a dynamic problem is modeled by a Markov decision process (MDP) 

which constitutes two variables that need to be defined for every individual at each time period. These 

two variables are the state variable 𝑠𝑡 and decision variable 𝑑𝑡 which determine the utility at time t 

defined as U(𝑠𝑡, 𝑑𝑡). A Markov transition probability p(𝑠𝑡+1|𝑠𝑡 , 𝑑𝑡) is defined to determine the evolution 

of the states across time. At each time period, the individual maximizes the expected utility to determine 

the optimal decision. Rust (1987) adopted this methodology to the problem of bus engine replacement 

whereby the optimal stopping rule reflected “replacing the bus engine at each time period or not”.  

Choudhury et al. (2010) estimated a dynamic discrete choice model to study the “evolution of unobserved 

driving decisions as drivers enter a freeway”. This model focused on planning and action in a choice 

model which better represents the hierarchy behind a decision process using the hidden markov model 

(HMM). The rationale behind this model is that an individual plans ahead before he/she executes a certain 

action which is a manifestation of the chosen latent plan. In their work, they were more interested in the 

evolution of the unobserved driving decisions i.e. plans rather than discounting future expected utility. 

HMMs can be either homogenous or heterogeneous. Homogenous HMMs assume that the transition 
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probability model between states from one time period to the other is consistent/time-invariant (e.g., 

Choudhury et al., 2010, and Xiong et al., 2014). Heterogeneous HMMs on the other hand are formulated 

such that the transition probability model varies over time (e.g., Vij, 2013).  As we are more interested in 

the dynamics underlying preferences as denoted by the construct of modality styles rather than the 

dynamic underlying choices, we will employ an integrated hidden markov and discrete choice model 

(HMM/DCA) to model the evolution of the modality styles. We are not interested in evaluating the 

expected utility of a certain mode as the scope of our analysis does not revolve around the 

replacement/ownership of a certain good.  

Using the HMM, the following two assumptions are made: 

1- The observed mode choice at a certain time t is only dependent on the corresponding modality 

style during that time period 

2- An individual’s modality style during a certain time t is only dependent on his/her modality style 

during the previous time period  

The figure below depicts the HMM assumptions and illustrates how a modality style (state) at time period 

t affects the manifested mode choice (action) over time. It is important to note that modality style0 seeks 

to determine the effects of inertia and past experiences on the probabilistic assignment of each individual 

to each of the available modality styles during the first time period i.e. t=1.That said, an issue with using 

HMMs is that the initialization condition must be specified appropriately, or else the model might result 

in inconsistent estimates. 

 

Figure 1: First-order Hidden Markov Model 

3. Methodological Framework – HMM/DCA 
In developing a methodological framework for dynamic travel model choice that seeks to inform policy 

makers and transportation specialists about the 20-30 year forecasts made from large-scale urban travel 

demand models, we employed an integrated hidden markov and discrete choice model (HMM/DCA). Our 

dynamic framework consists of hidden states which denote modality styles and transition probabilities to 

model the evolution of those modality styles over time which shall capture shifts in travel behavioral 

trends. Our dynamic framework requires a transition matrix that can capture shifts in modality styles 

brought about either by major changes to the transportation system (sharing, automation, transit on 

demand) or by shifts in attitudes (e.g. towards/away from auto-orientation). We are interested in 

forecasting, and thus require a structural model for the transition matrix that captures the influence of 

transportation and societal changes. For this we employed a homogenous HMM which assumes that the 

transition probability model between modality styles (states) from one time period to the other is 

consistent/static i.e. transition probabilities between subsequent waves is time-invariant. The figure below 

displays the dynamic nature of modality styles and their influence on the observed mode choice at each 

time period. 
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Figure 2: Hidden Markov Model Methodological Framework 

There are three pieces to the HMM: class-specific travel mode choice model, initialization sub-model and 

the transition probability model which will be further explained below.  

3.1 Class-specific Travel Mode Choice Model (Action Given State) 

Let 𝑈𝑛𝑡𝑘𝑗|𝑠 denote the utility of alternative j during choice situation k over wave t for individual n 

conditional on the decision-maker belonging to modality style s which is expressed as follows: 

𝑈𝑛𝑡𝑘𝑗|𝑠 = 𝑉𝑛𝑡𝑘𝑗|𝑠  +  𝜀𝑛𝑡𝑘𝑗|𝑠 =   𝑥𝑛𝑡𝑘𝑗
′ 𝛽𝑠 +  𝜀𝑛𝑡𝑘𝑗|𝑠 

where 𝑉𝑛𝑡𝑘𝑗|𝑠 is the systematic utility that is observed by the analyst,  𝑥𝑛𝑡𝑘𝑗
′  is a row vector of attributes of 

alternative j during choice situation k over wave t for individual n, 𝛽𝑠 is a column vector of parameters 

specific to modality style s and 𝜀𝑛𝑡𝑘𝑗|𝑠 is the stochastic component of the utility specification. Now, 

assuming that all individuals are utility maximizers and that 𝜀𝑛𝑡𝑘𝑗|𝑠 follows an i.i.d. Extreme Value Type I 

distribution across individuals, waves, choice situations, alternatives and states (modality styles) with 

mean zero and variance 
𝜋2

6
 , the class-specific choice travel model choice model could be formulated as 

such: 

 

𝑃(𝑦𝑛𝑡𝑘𝑗 = 1|𝑞𝑛𝑡𝑠 = 1) =
exp (𝑥𝑛𝑡𝑘𝑗

′ 𝛽𝑠)

∑ exp (𝑥𝑛𝑡𝑘𝑗′
′ 𝛽𝑠)𝑗′∈ 𝐶𝑛𝑡𝑘|𝑠

 

where 𝑃(𝑦𝑛𝑡𝑘𝑗 = 1|𝑞𝑛𝑡𝑠 = 1) denotes predicting the probability that individual n over wave t and choice 

situation k chose alternative j (implying 𝑦𝑛𝑡𝑘𝑗  equals one and zero otherwise) conditional on the same 

individual having modality style s during wave t (𝑞𝑛𝑡𝑠  equals one and zero otherwise), and 𝐶𝑛𝑡𝑘|𝑠 denotes 

the choice set available for individual n at wave t for modality style s.  

 

Time Period (t) Time Period (t+1) 
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Assuming that the choice probabilities for individual n across all choice situations for wave t are 

conditionally independent given that the individual has modality style s during wave t, then the 

conditional probability of observing a vector of choices 𝑦𝑛𝑡 for a certain wave t becomes: 

𝑃(𝑦𝑛𝑡 = 1|𝑞𝑛𝑡𝑠𝑡
= 1) =  ∏ ∏ 𝑃(𝑦𝑛𝑡𝑘𝑗 = 1|𝑞𝑛𝑡𝑠𝑡

= 1)
𝑦𝑛𝑡𝑘𝑗

𝑗∈ 𝐶𝑛𝑡𝑘|𝑠

𝐾𝑛𝑡

𝑘=1

 

where  𝐾𝑛𝑡 is the distinct number of choice situations faced by individual n over wave t. 

3.2 Initialization Sub-model 

Let 𝑃(𝑞𝑛1𝑠 = 1|𝑍𝑛1) denote the probability that individual n has modality style s during the first wave. 

𝑃(𝑞𝑛1𝑠 = 1|𝑍𝑛1) =
exp (𝑧𝑛1

′ 𝜏𝑠)

∑ exp (𝑧𝑛1
′ 𝜏𝑠′)𝑆

𝑠′=1

 

where 𝑧𝑛1
′ is a row vector of socio-economic and demographic variables for individual n during the first 

wave and 𝜏𝑠 is the associated column vector of parameter estimates for each modality style. Finally, S 

denotes the total number of modality styles in the sample. 

3.3 Transition Probability Model (Evolution of States/ Modality Styles) 

Let 𝑈𝑛𝑡𝑠|(𝑡−1)𝑟 denote the utility derived from transitioning into modality style s during wave t conditional 

on individual n having modality style r during the previous wave (t-1) which is expressed as follows:  

𝑈𝑛𝑡𝑠|(𝑡−1)𝑟 = 𝑉𝑛𝑡𝑠|(𝑡−1)𝑟  +  𝜀𝑛𝑡𝑠|(𝑡−1)𝑟 =   𝑧𝑛𝑡
′ 𝛾𝑠𝑟 +  𝜀𝑛𝑡𝑠|(𝑡−1)𝑟  

where 𝑉𝑛𝑡𝑠|(𝑡−1)𝑟  is the systematic utility, 𝑧𝑛𝑡
′  is a row vector of observable socioeconomic and 

demographic characteristics of individual n over wave t and 𝛾𝑠𝑟 is a column vector of parameters specific 

to modality style s at wave t given that the individual has modality style r over wave (t-1), and 𝜀𝑛𝑡𝑠|(𝑡−1)𝑟  

is the stochastic component of the utility specification. 

Assuming that all individuals are utility maximizers and that 𝜀𝑛𝑡𝑠|(𝑡−1)𝑟  follows an i.i.d. Extreme Value 

Type I distribution across individuals, waves and modality styles with mean zero and variance 
𝜋2

6
 , the 

transition probability model could be formulated as such: 

𝑃(𝑞𝑛𝑡𝑠 = 1|𝑞𝑛(𝑡−1)𝑟 = 1) =
exp (𝑧𝑛𝑡

′ 𝛾𝑠𝑟)

∑ exp (𝑆
𝑠′=1 𝑧𝑛𝑡

′ 𝛾𝑠′𝑟)
 

where 𝑃(𝑞𝑛𝑡𝑠 = 1|𝑞𝑛(𝑡−1)𝑟 = 1) denotes one entry of the transition probability matrix which involves 

predicting the probability that individual n has modality style s during wave t, for t > 1, conditional on the 

individual having modality style r during the previous wave (t-1). 

Now, the transition probability model is merely a function of socio-demographics. However, wouldn’t 

changes in the transportation network such as reductions in travel time or travel cost, etc. influence the 
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transition from one modality style to the other? If a new mode of transportation is introduced in a 

transportation system, say a metro system, then it is important to model the impact of such a shock on the 

transportation system onto the transition probabilities. If the new metro system is efficient and cost 

effective, then we should be able to cater for those effects on the transition probabilities of modality styles 

that include this new mode. This way, we can quantify the attractiveness of the new mode in our 

transition probability model in a more representative manner. That is why we need to assess the influence 

of the built environment or changes that occur in the transportation network on the transition from one 

modality style to the other.  

 

To develop a structural transition matrix model that is sensitive to changes in the transportation system, 

we propose to make the transition probabilities a function of the consumer surplus each decision-maker 

would derive via subscribing to different modality styles (building off the static modality style framework 

in Vij et al., 2014). Hence, incorporating consumer surplus will provide a method of capturing influences 

of changes of the built environment onto transition probabilities and allows forecasting them into future 

years. Assuming error terms to be i.i.d Extreme Value Type I, then the consumer surplus offered by 

modality style s to individual n for wave t is defined as a logsum measure: 

 

𝐶𝑆𝑛𝑡𝑠 =
1

𝐾𝑛𝑡
∑ 𝑙𝑜𝑔 [ ∑ exp (𝑥𝑛𝑡𝑘𝑗

′ 𝛽𝑠)

𝑗∈𝐶𝑛𝑡𝑘|𝑠

]

𝐾𝑛𝑡

𝑘=1

 

 

Hence, the transition probability model we are proposing is given by: 

𝑃(𝑞𝑛𝑡𝑠 = 1|𝑞𝑛(𝑡−1)𝑟 = 1) =
exp (𝑧𝑛𝑡

′ 𝛾𝑠𝑟 + 𝐶𝑆𝑛𝑡𝛼𝑠𝑟)

∑ exp (𝑆
𝑠′=1 𝑧𝑛𝑡

′ 𝛾𝑠′𝑟  + 𝐶𝑆𝑛𝑡𝛼𝑠′𝑟)
 

where 𝛼𝑠𝑟 is a parameter associated with the consumer surplus specific to modality style s given that the 

individual has modality style r over wave (t-1). 

Now, the marginal probability 𝑃(𝑦𝑛) of observing a sequence of choices 𝑦𝑛 for decision-maker n over T 

waves is expressed as follows: 

𝑃(𝑦𝑛) =  ∑ 𝑃(𝑦𝑛𝑇 = 1|𝑞𝑛𝑇𝑠𝑇
= 1)

𝑆

𝑠𝑇=1

∑ 𝑃(𝑞𝑛𝑇𝑠𝑇
= 1|𝑞𝑛(𝑇−1)𝑠𝑇−1

= 1)

𝑆

𝑠𝑇−1=1

𝑃(𝑦𝑛(𝑇−1) = 1|𝑞𝑛(𝑇−1)𝑠𝑇−1
= 1) … 

∑ 𝑃(𝑞𝑛3𝑠3
= 1|𝑞𝑛2𝑠2

= 1)

𝑆

𝑠2=1

𝑃(𝑦𝑛2 = 1|𝑞𝑛2𝑠2
= 1) ∑ 𝑃(𝑞𝑛2𝑠2

= 1|𝑞𝑛1𝑠1
= 1)

𝑆

𝑠1=1

𝑃(𝑦𝑛1 = 1|𝑞𝑛1𝑠1
= 1) 𝑃(𝑞𝑛1𝑠1

= 1|𝑍𝑛1) 

The model was estimated via the Expectation-Maximization (EM) algorithm (forward-backward 

algorithm) which provides a computationally robust method of optimization that takes advantage of the 

conditional independence properties of the model framework. The EM algorithm is particularly useful for 

HMMs without feedback because in the M-step, each of the class-specific choice models, the 

initialization model and transition probability model can be maximized independent of the other sub-

models. For HMMs with feedback through consumer surplus however, the class-specific choice models 

and the transition probability model can no longer be separated and maximized independently because the 

sub-models are joined through the consumer surplus construct. Consequentially, the EM algorithm is no 

more useful than traditional gradient-based optimization routines.  
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4. Dataset – HMM/DCA 
The dataset used to develop the integrated hidden markov and discrete choice model comes from 

Santiago, Chile (Yañez, 2010). The data entails an opportunity to assess impacts on travel behavior once a 

shock is introduced in a transportation network. During February 2007, the city of Santiago introduced 

Transantiago, a complete redesign of the public transit system in the city. Prior to that, the public 

transportation system in Santiago consisted of privately operated system of buses that had an inefficient 

fleet and was characterized by small headways and high frequencies at congested spines and corridors. 

However, regions that were less congested suffered from inadequate service. The public transportation 

system also included jitneys, shared taxis and the Metro. The Metro system only comprised 8% of the 

city’s trips even though it is more reliable and faster than the bus system. A Chilean team of consultants 

tried to address these issues in 2005 by a complete redesign of the public transit system (Transantiago). 

The Santiago region was divided into ten zones which were to be operated by ten new companies. The 

bus system was divided into feeder networks to connect the zones with the Metro lines and trunk routes to 

supplement the Metro lines in providing more coverage for transportation mobility across the network. 

This way, the bus system would provide a backbone to the Metro lines and will no longer operate 

inefficiently. In addition to that, an integrated fare collection system (smart card) was introduced.  

The redesign of the transportation system was not marketed with the community of Santiago as it was 

introduced without informing the public about it. The dataset is longitudinal as it entails four one-week 

pseudo travel diaries throughout a twenty-two month period which overlapped with the introduction of 

Transantiago. The introduction of Santiago happened three months after wave one. The travel diaries 

across the four waves were conducted on the following dates: December 2006, May 2007, December 

2007 and October 2008 respectively. The longitudinal dataset entailed full-time employees working at the 

campuses of Pontificia Universidad Catolica de Chile all over Santiago and focused on work trips during 

the morning peak hours. The dataset has a good level of distribution of origin and destination pairs. After 

data cleaning, 220 individuals were kept in the dataset that had recorded travel diaries across the four 

waves which resembles the low attrition rate the survey has. Each individual has 5 choice situations 

recorded during each of the four waves corresponding to a total of 4400 choice situations. The survey 

entailed questions about the level-of-service attributes of the morning work trip, socioeconomic and 

demographic characteristics of the decision makers, activities during, before and after work, chosen 

transport mode for the corresponding work trip in addition to subjective perceptions about the 

performance of the new system (collected during second and third waves) and finally decision-maker’s 

agreement with attitudinal statements about the system’s performance which were collected during the 

fourth wave only. The available travel modes were aggregated into the following modes: auto, metro, bus, 

walk, bike, drive to metro and bus to metro.  

The figure below denotes the chosen modes of transport across the four waves for all 220 individuals. It is 

evident that there was a big reduction in choosing the bus system as a mode of transport for work tours 

after wave one (post introduction of Transantiago). The mode share for bus was 40.6% during the first 

wave, 21.5% during wave two, 18.2% and 21.6% during waves three and four respectively. Moreover, the 

mode share for drive to metro and bus to metro drastically picked up after the introduction of 

Transantiago. The major shifts in the mode choices occur between waves one and two as one would 

expect. Shifts tend to stabilize over time as people get more adjusted with their new work trips mode 

choice habits.  
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Figure 3: Mode Choice Shares across All Waves 

5. Estimation Results and Discussion 
The following section entails results of the HMM/DCA travel behavior model which studies the evolution 

of modality styles. Determining the final model specification was based on varying the utility 

specification for all sub-models i.e. initialization sub-model, transition probability model and class-

specific choice model. The method of identifying the number of distinct modality styles that exist in the 

sample population is iterative. We first started estimating a model that comprised two modality styles and 

built on that to increase the number of modality styles. Since we only had 220 individuals in our dataset, 

it is quite difficult to attain a big number of classes (modality styles). Determining the number of 

modality styles in our sample will be based on model comparison criteria in terms of the final log-

likelihood, and measures of statistical fit: rho-bar-squared (𝜌̅2), Akaike Information Criterion (AIC) and 

Bayesian Information Criterion (BIC).  

We ended up selecting the four modality styles case as our optimal scenario. This entailed a behaviorally 

richer and interpretable scenario in addition to the best statistical measures of fit that are tabulated below 

for the two, three and four modality style cases. It is clear that with an increase in the number of classes, 

rho-bar-squared increased while the AIC and BIC decreased.  

 

Table 1: Measures of Model Fit 

Classes Log-Likelihood 𝝆̅𝟐 AIC BIC 

Two -2365 0.514 4798 5015 

Three -1599 0.636 3328 3743 

Four -1234 0.649 2680 3357 
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Tables 2 and 3 below present detailed parameter estimates (and t-statistics) of the class-specific travel 

model choice model, initialization sub-model and transition probability model.  

Table 2: Class-specific Travel Mode Choice Model 

Dependent Variable / Choice: Travel Model Choice 

Variable Class 1  
Drivers 

Class 2  

Bus Users 

(Transit) 

Class 3 

Bus-Metro Users 

(Transit) 

Class 4 

Bus-Auto Users 

(Transit) 
Alternative Specific Constant 

Auto 

 

Metro 

 

Bus 

 

Walk 

 

Bike 

 

Auto-Metro 

 

Bus-Metro 

 
 

 

            0.00 

                (-) 

           -3.92 

(-25.90) 

          -4.26 

           (-9.44) 

           1.94 

           (9.05) 

          -0.71 

          (-1.89) 

         -3.44 

         (-31.08) 

         -3.62 

         (-12.68) 
 

 

 

 

 

 

 

 

 

 

 

-- 

 

             -- 

           0.00 

     (-) 

  -7.64 

     (-30.05) 

 

 

 

 

 

 

         2.21 

  (24.14) 
 

 

             0.00 

               (-) 

             2.29 

           (3.52) 

 

 

 

 

 

 

4.44 

(7.94) 
 

 

 
 

 

Travel Time (mins) 
         -0.03 

         (-10.96) 
 

-- 
-0.09 

(-38.11) 
 

   -0.07 

   (-7.17) 
 

Walk Time (mins) 
        -0.04 

        (-5.87) 
 

-- 
-0.13 

(-24.13) 
 

   -0.10 

   (-2.15) 
 

Travel Cost (CLP) 
        -0.01 

        (-3.45) 
 

-- 
-0.10 

(-41.30) 
 

   -0.08 

  (-5.00) 
 

Waiting Time (mins) 
       -0.02 

        (-2.25) 
 

-- 
-0.29 

(-41.13) 
 

    -0.05* 

  (-0.88) 
 

Number of Transfers                   - -- 
-1.14 

(-14.40) 
 

               - 

-- Not applicable; * Insignificant at the 5% level 
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Table 3: Initialization and Transition Probability Model Results 

Variable Class 1  
Drivers 

Class 2  

Bus Users 

(Transit) 

Class 3 

Bus-Metro Users 

(Transit) 

Class 4 

Bus-Auto Users 

(Transit) 

Initialization Model (Wave 1) 

Alternative Specific Constant 
0.00 

(-) 
 

2.98 

(6.46) 
 

-0.26 

(-0.55) 
 

0.22 

(0.45) 
 

Household Income 

(100,000s CLP) 

0.00 

(-) 
 

       -0.51 

(-4.18) 
 

      -0.08 

      (-1.29) 
 

        -0.16 

        (-1.99) 
 

Male 
0.00 

(-) 
 

0.24 

(0.72) 
 

       0.69 

       (1.27) 
 

         0.60 

        (1.17) 
 

Number of Vehicles 
0.00 

(-) 
 

       -1.00 

      (-4.08) 
 

      -0.50 

      (-1.21) 
 

        -0.49 

       (-1.72) 
 

Transition Probability Model (Given Class 1, Wave > 1) 

Alternative Specific Constant 
0.00 

(-) 
 

       -1.96 

(-1.35) 
 

  0.96 

  (1.97) 
 

           -1.69 

          (-5.20) 
 

Household Income 

(100,000s CLP) 

0.00 

(-) 
 

       -0.12 

(-0.31) 
 

      -0.61 

      (-3.81) 
 

       -0.09 

        (-1.72) 
 

Male 
0.00 

(-) 
 

0.49 

(0.55) 
 

     -1.93 

      (-2.62) 
 

        0.30 

        (0.80) 
 

Number of Vehicles 
0.00 

(-) 
 

       -0.67 

      (-0.67) 
 

      -0.96 

      (-1.73) 
 

        -0.18 

       (-0.93) 
 

 

Transition Probability Model (Given Class 2, Wave > 1) 

Alternative Specific Constant 
0.00 

(-) 
 

         2.47 

(13.89) 
 

  1.50 

  (4.38) 
 

           -1.04 

          (-3.22) 
 

Household Income 

(100,000s CLP) 

0.00 

(-) 
 

       -0.40 

(-8.93) 
 

      -0.26 

      (-3.48) 
 

       -0.15 

        (-2.78) 
 

Male 
0.00 

(-) 
 

1.37 

(9.58) 
 

       1.17 

       (3.41) 
 

     -33.87 

      (-92.00) 
 

Number of Vehicles 
0.00 

(-) 
 

         0.19 

        (1.76) 
 

      -0.40 

      (-1.25) 
 

        0.33 

        (1.73) 
 

Transition Probability Model (Given Class 3, Wave > 1) 

Alternative Specific Constant 
0.00 

(-) 
 

         4.16 

 (3.09) 
 

  3.21 

  (32.31) 
 

            2.66 

           (8.36) 
 

Household Income 

(100,000s CLP) 

0.00 

(-) 
 

       -0.98 

      (-1.89) 
 

      -0.11 

      (-7.41) 
 

       -0.88 

        (-16.83) 
 

Male 
0.00 

(-) 
 

0.11 

(0.16) 
 

       1.28 

       (12.08) 
 

      -0.52 

       (-1.41) 
 

Number of Vehicles 
0.00 

(-) 
 

       -1.83 

      (-2.19) 
 

      -1.22 

      (-13.20) 
 

        -0.11 

       (-0.52) 
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Transition Probability Model (Given Class 4, Wave > 1) 

Alternative Specific Constant 
0.00 

(-) 
 

        0.73 

      (0.53) 
 

  0.48 

  (0.82) 
 

             1.30 

           (11.74) 
 

Household Income 

(100,000s CLP) 

0.00 

(-) 
 

       -0.47 

(-1.11) 
 

      -0.33 

      (-2.69) 
 

        -0.07 

        (-5.79) 
 

Male 
0.00 

(-) 
 

1.55 

(2.15) 
 

       1.50 

       (3.06) 
 

         0.23 

        (1.55) 
 

Number of Vehicles 
0.00 

(-) 
 

       -1.38 

      (-1.29) 
 

       0.31 

      (0.85) 
 

         0.51 

         (5.32) 
 

-- Not applicable; * Insignificant at the 5% level 

 

Class 1 denotes drivers and in particular multimodal users that consider all available modes of transport in 

their choice set and are sensitive to travel time and travel cost. However, when we performed sample 

enumeration for this class, 70% of the trips were conducted via the auto alternative. Class 2 is a 

deterministic class i.e. it is the class that considers one and only one alternative for all trips which is the 

bus alternative. Class 3 was labelled bus-metro users (transit) since that group highly considered the 

metro, bus and bus-metro alternatives for their work trips. Class 4 was labelled auto-metro users (transit) 

as the choice set depicts auto, metro and auto-metro alternatives.  It is evident from the class-specific 

travel model choice model that each market segment is different in its choice set consideration and its 

respective sensitivity to travel time, waiting time, number of transfers and travel cost. In addition the 

tabulated model results are behaviorally consistent whereby parameter estimates in the class-specific 

travel mode choice model have the right sign and are highly significant.  

We were also interested in understanding the evolution of modality styles as a result of the introduction of 

Transantiago (shock to the transportation network) as individuals started adopting to it. In order to do so, 

we performed sample enumeration to determine the percentage share of individuals that belong to each of 

the four modality styles across the four waves as predicted by the model. The figure below displays the 

results of the sample enumeration procedure. It is evident that a shock to the transportation network along 

the lines of Transantiago did force people to reconsider their mode choice for travel. The share of drivers, 

and bus-metro (transit) users has increased after the introduction of Transantiago while the market share 

for bus users has drastically decreased. The market share for the auto-metro class remained almost stable 

throughout the four waves.  
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Figure 4: Percentage Share of Individuals in Each Modality Style across Waves 

 

6. Conclusion  
An integrated hidden markov and discrete choice model (HMM/DCA) was developed to capture the 

dynamics behind travel behavior in response to changes/shocks that occur in the transportation network 

via studying the evolution of modality styles. Based on behavioral interpretation and statistical fit 

measure, we resided to selecting the four modality style dynamic model of travel behavior. The four 

modality styles were drivers, bus users, bus-metro users (transit) and auto-metro users (transit). The 

results look promising in terms of defining the utility associated with each of the available modes in the 

choice set. Parameter estimates in the class-specific travel mode choice model have the right sign and are 

highly significant. Also, the sample enumeration of modality styles across the four waves support the 

intentions and major goals behind Transantiago in making people reconsider their modes of travel. The 

share of drivers, and bus-metro (transit) users has increased after the introduction of Transantiago while 

the market share for bus users has drastically decreased. The market share for the auto-metro class 

remained almost stable throughout the four waves. The adopted methodological framework in this paper 

provides a methodology that should be taken into consideration to improve the accuracy of the 20-30 year 

forecasts made from large-scale urban travel demand model. Also, this framework provides a quantitative 

tool to understand and predict structural long-range trends of travel behavior that are bound to occur in 

this transformative mobility era.  
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WHAT	CAN	THE	LITERATURE	ON	TECHNOLOGY	ADOPTION		 	
TEACH	US	ABOUT	AUTONOMOUS	VEHICLES?	

Thoughts	in	progress		 	
by	Prof	David	Zilberman,	Feras	El	Zarwi,	Prof	Joan	Walker	(UC	Berkeley)	 	

Autonomous	cars	are	on	the	horizon	and	are	expected	to	induce	societal	benefits	on	many	
different	 levels	 from	 improving	 quality	 of	 life,	 ensuring	 economic	 vitality,	 encouraging	
multimodality,	promoting	connectivity,	mitigating	the	escalating	stress	encountered	when	
driving	 in	 addition	 to	 reducing	 congestion	 levels	 and	 emissions.	 However,	 this	
transformative	mobility	 trend	has	 no	defined	path.	We	 should	 be	 cautious	with	 how	 the	
future	is	going	to	play	out	and	the	role	that	policy	may	play	in	guiding	the	transformation.	

There	are	four	key	research	questions	to	be	addressed:	

1. Short-,	medium-	and	 long-run	 transportation	 infrastructure	development,	particularly	
concerning	 the	 transition	period	 from	 conventional	 to	 autonomous	 and	 the	period	of	
mixed	vehicles.	

2. Synergies	between	transportation	and	energy	infrastructure,	including	the	adoption	of	
electric	vehicles	and	the	growth	of	the	electric	power	system.		

3. The	market	 share	 between	owners	 of	 autonomous	 vehicles	 and	 those	using	 a	 shared	
vehicle	fleet.		

4. Supply	chain	issues	including	who	will	develop	the	technology	and	infrastructure.		

Essential	within	each	of	these	questions	is	the	potential	role	of	government,	i.e.	the	potential	
effect	 of	 policies	 and	 investment	 strategies.	 Effective	 policies	 and	 investment	 strategies	
whether	on	the	public	or	private	 level	will	play	a	key	role	 in	guiding	the	evolution	of	 the	
autonomous	vehicles	market.	

In	this	paper	we	focus	on	how	the	literature	on	technology	adoption	can	help	us	understand	
and	 predict	 the	 expected	 market	 penetration	 rates	 of	 autonomous	 cars	 and	 guide	 the	
diffusion	of	this	new	technology.		

There	 are	 three	 distinct	 components	 that	 need	 to	 be	 analyzed	 to	 address	 the	 research	
question	we	have	in	mind.	These	components	are:	the	adoption	process	which	will	constitute	
our	 main	 focus	 in	 this	 report	 followed	 by	 supply	 chain	 systems,	 and	 political	 economy	
considerations.	Those	three	components,	together	with	their	interactions	and	functionality	
will	yield	and	define	how	the	diffusion	process	of	autonomous	vehicles	is	going	to	look	like.		
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Figure	1:	Three	Components	of	the	Diffusion	of	Autonomous	Vehicles	

First,	we	will	dwell	upon	the	adoption	process	of	autonomous	vehicles.	The	adoption	process	
entails	several	stages:	(1)	awareness	of	the	new	technology	i.e.	autonomous	vehicles	which	
is	 affected	by	 formal	 sources	of	 information	 such	as	 advertisement	and	mass	media,	 and	
informal	sources	of	information	induced	by	the	imitation	process.	The	imitation	process	is	
rooted	in	the	technology	diffusion	literature	as	it	stresses	on	the	importance	of	the	role	of	
two	 different	 two	 types	 of	 adopters	 in	 shaping	 the	 market	 penetration	 rate	 of	 a	 new	
technology.	These	distinct	types	of	adopters	are:	innovators	and	imitators.	Innovators	are	
individuals	 that	 “decide	 to	 adopt	 an	 innovation	 independently	 of	 the	 decisions	 of	 other	
individuals	in	a	social	system”	while	imitators	are	adopters	that	“are	influenced	in	the	timing	
of	adoption	by	the	pressures	of	the	social	system”	(Bass,	1969);	(2)	assessment	of	the	new	
good	or	service	which	takes	into	account	risk	considerations,	potential	welfare	gains	from	
adoption	in	addition	to	the	product’s	respective	fit	with	the	consumer’s	lifestyle	and	needs.	
This	stage	is	influenced	by	the	way	the	product	is	packaged	and	introduced	in	the	market	
(buying,	 leasing,	 renting,	 etc.);	 (3)	 decision	 to	 adopt	 the	 new	 technology	 or	 not	which	 is	
influenced	by	various	exogenous	variables	 such	as	 socio-demographics,	 social	 influences,	
attributes	of	 the	autonomous	vehicles,	 and	most	 importantly	 safety.	When	we	 talk	 about	
safety,	 it	 is	 important	 to	 keep	 in	 mind	 that	 the	 coexistence	 of	 autonomous	 cars	 and	
conventional	cars	will	be	tricky.	The	ability	to	have	insurance,	as	well	as	liability	rules	that	
will	make	the	introduction	of	autonomous	cars	economically	viable	will	be	challenging;	and	
(4)	 reevaluation	 of	 the	 adoption	 decision	 in	 terms	 of	 consumer	 satisfaction	 and	 other	
criteria.		

A	very	important	notion	in	the	adoption	process	is	heterogeneity	that	exists	among	different	
decision-makers	which	drives	different	consumers	to	adopt	a	new	technology	at	different	
time	periods.	Potential	adopters	will	vary	according	to	socio-demographic	variables	such	as	
age,	education	level,	gender,	income	level,	etc.	The	diffusion	process,	and	in	particular	the	
steepness	of	the	“S”-shaped	diffusion	curve	and	the	time	period	at	which	it	exhibits	a	plateau,		
is	directly	 influenced	by	new	segments	of	adopters	entering	the	market	and	adopting	the	
new	technology.	In	the	context	of	autonomous	vehicles,	one	can	consider	three	key	variables	
that	are	trivial	in	identifying	potential	adopters.	These	variables	are	age,	income	level	and	
land	use	density.	The	table	below	categorizes	different	potential	consumers	based	on	the	
aforementioned	 variables	 and	 whether	 they	 are	 more	 likely	 to	 own	 a	 car,	 own	 an	
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autonomous	vehicle	(AV)	or	share	an	AV	according	to	a-priori	hypotheses	and	lessons	from	
the	diffusion	literature.		The	table	highlights	the	effect	of	income,	land	use	density	and	age	
on	the	willingness	to	own	a	car	or	autonomous	vehicle	versus	share	an	autonomous	vehicle.	

	
Table	1	:	Effect	of	Land	Use	Density,	Income	and	Age	on	Adoption	of	Autonomous	Vehicles	

			
Ag

e	

	
	
	

Young	

Land	Use	Density	
Low	 High	

Low	Income	 High	Income	 Low	Income	 High	Income	

own	car	 own	AV	
own	car	 share	AV	 share	AV	

Senior	 share	AV	 own	AV	 share	AV	 own	AV	
	

Furthermore,	it	is	essential	to	identify	different	consumer	groups	that	will	be	affected	by	the	
introduction	of	 autonomous	 cars	 as	 an	alternative	mode	of	 transportation.	Those	groups	
comprise	various	companies	and	communities	and	will	be	discussed	hereafter.		Companies	
like	Uber	and	Lyft	and	other	carsharing	services	will	be	more	 inclined	to	take	part	 in	the	
sharing	economy	and	adopt	the	new	technology	in	order	reduce	the	incurred	cost	of	driving.	
Moreover,	senior/disabled	communities	are	more	likely	to	adopt	and	be	part	of	the	sharing	
autonomous	vehicles	market	as	it	provides	a	reliable	and	safe	alternative	to	compensate	for	
their	inability	to	drive.	Transit	providers	(like	BART)	will	try	to	pursue	autonomous	vehicles	
sharing	 arrangements	 to	 provide	 riders	 with	 a	 better	 feeder	 network	 to	 use	 the	 transit	
service	 in	addition	to	reaching	their	 final	destination	from	the	transit	system	i.e.	work	or	
home,	etc.	Finally,	estates	or	facilities	that	control	large	amounts	of	land	and	are	in	need	of	a	
transportation	service	that	provides	mobility	and	connectivity	to	conduct	various	activities	
such	 as	 gold	 courses,	 big	 industrial	 plants,	military	 bases	 and	 farms	will	 highly	 consider	
acquiring	autonomous	cars.		

All	 of	 those	 types	 of	 companies	 and	 communities	may	 be	 early	 adopters	 of	 autonomous	
vehicles	and	will	in	turn	refine	the	technology	and	the	industry	itself.	The	early	adopters	are	
more	likely	to	be	individuals	that	prefer	conducting	a	trip	via	a	car	(private	transportation)	
but	are	incapable	of	driving	nor	enjoy	driving.	Richer	busy	senior	people	are	definitely	more	
inclined	toward	owning	autonomous	cars	and	be	early	adopters	of	this	new	technology.		

Another	important	dimension	to	be	tackled	in	the	adoption	process	is	the	relationship	and	
interaction	between	autonomous	cars	and	public	transportation.	In	regions	with	accessible	
and	reliable	public	 transportation	system,	 the	need	for	private	transport	systems	such	as	
regular	cars	and	autonomous	vehicles	might	be	minimalistic.	However,	autonomous	cars	can	
be	 used	 to	 complement	 the	 existing	 transit	 system	 through	 providing	 a	 reliable	 feeder	
network	so	that	individuals	can	easily	access	the	transit	station/stop	from	their	respective	
origins	and	reach	their	final	destination.	On	the	other	hand,	when	the	public	transportation	
system	is	less	developed,	people	have	to	travel	more	frequently	to	conduct	their	respective	
activities	 which	 induces	 a	 higher	 auto	 ownership	 level.	 In	 these	 regions,	 autonomous	
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vehicles	might	have	much	higher	market	penetration	rates	to	relieve	the	escalating	stress	of	
driving	and	ensure	a	higher	connectivity	than	the	existing	transit	service.	

Now	that	we	have	identified	the	main	aspects	of	the	adoption	process,	we	will	briefly	discuss	
the	remaining	two	components	that	will	shape	the	diffusion	process	of	autonomous	cars:	
supply	chain	system	and	political	economy.	The	supply	chain	is	a	key	element	in	technology	
diffusion	 of	 any	 innovation	 as	 it	 is	 involved	 in	 the	 development,	 up-scaling,	
commercialization,	marketing,	distribution	and	many	other	processes	pertinent	to	the	good	
or	 service.	 Frequently,	 the	 basic	 research	 that	 leads	 to	 products	 is	 supported	 by	 the	
government	 and	 may	 be	 done	 by	 research	 institutes	 and	 companies.	 The	 more	 applied	
research	is	more	likely	to	be	done	by	the	private	sector.	Development	and	commercialization	
are	undertaken	by	the	private	sector,	but	are	often	times	subsidized	by	the	government.		We	
all	know	that	once	autonomous	vehicles	are	introduced	in	the	market,	they	will	be	expensive	
which	 will	 in	 turn	 drive	 the	 early	 adopter	market	 segment	 to	 be	 constitute	 the	 entities	
previously	mentioned.	However,	 the	 supply	 chain	 system	will	 expand	and	 refine	 itself	 to	
promote	higher	market	penetration	rates	by	reaching	out	to	a	larger	range	of	income	levels.	
Ultimately,	 the	purchase	price	of	 autonomous	vehicles	will	decrease	over	 time	and	more	
consumers	will	likely	to	adopt.			

Finally,	 a	 brief	 overview	 of	 political	 economic	 considerations	 that	 should	 be	 taken	 into	
account.	Every	new	technology	is	expected	to	face	some	sort	of	objection	from	individuals	
and	organizations	that	will	be	negatively	affected	by	it.	In	the	case	of	autonomous	cars,	the	
biggest	losers	may	be	drivers.	We	are	aware	of	the	fights	between	taxi	and	Uber	drivers.	But	
both	parties	might	be	expected	to	unite	against	the	new	technology	so	that	they	can	preserve	
their	revenue	streams	from	their	current	services.	On	the	other	hand,	if	autonomous	cars	can	
improve	 the	 fate	 of	 older	 people	 by	 providing	 them	 with	 an	 alternative	 that	 promotes	
mobility	 and	 connectivity,	 then	 one	 would	 expect	 the	 American	 Association	 of	 Retired	
Persons	(AARP),	as	an	example,	to	support	government	programs	that	encourage	the	need	
for	having	autonomous	cars.	

Furthermore,	 to	cater	 for	 the	 temporal	dimension	of	 the	diffusion	of	any	technology,	 it	 is	
important	to	understand	the	role	of	different	dynamic	processes	that	occur	once	the	new	
good	or	service	is	introduced	in	the	market.	From	the	supply	side,	“learning	by	doing”	will	
reduce	fixed	costs	through	knowledge	accumulation	by	the	manufacturer.	Also,	continuous	
R&D	studies	and	development	can	further	enhance	the	new	technology	and	make	it	operate	
more	efficiently	in	addition	to	developing	newer	technologies.	Finally,	the	role	of	distribution	
channels	and	their	expansion	rates	could	affect	the	dynamic	process	of	market	penetration	
on	a	larger	scale.	From	the	demand	side,	“leaning	by	using”	whereby	a	consumer	becomes	
better	equipped	in	using	the	technology,	learning	from	other	adopters	of	the	new	product	
and	their	experiences,	branding	and	marketing	effects,	and	network	externalities	(implying	
that	as	the	benefits	to	users	from	the	new	technology	become	greater	then	that	is	expected	
to	have	an	increase	in	the	number	of	adopters)	will	impact	the	adoption	rate	at	different	time	
periods.	
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One	final	thought	entails	possible	synergy	with	electric	vehicles.	So,	it	may	be	that	locations	
that	invest	in	infrastructure	for	electric	cars	(charging	stations)	may	be	the	locations	that	
will	also	invest	in	self-driving	cars.	For	example,	if	a	city	or	an	organization,	out	of	concern	
for	 climate	 change,	 is	 able	 to	 obtain	 affordable	 clean	 energy	 to	 support	 an	 electric	 car	
network,	 it	 may	 also	 encourage	 adoption	 of	 autonomous	 vehicles.	 To	 some	 extent,	 the	
dynamics	and	the	pace	of	evolution	of	electric	and	autonomous	cars	will	be	highly	correlated.	
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