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ABSTRACT OF THE DISSERTATION

Bipartite Network Community Detection: Development and Survey of Algorithmic and

Stochastic Block Model Based Methods

by

Yidan Sun

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2021

Professor Jingyi Li, Chair

In a bipartite network, nodes are divided into two types, and edges are only allowed to

connect nodes of different types. Bipartite network clustering problems aim to identify node

groups with more edges between themselves and fewer edges to the rest of the network. The

approaches for community detection in the bipartite network can roughly be classified into

algorithmic and model-based methods. The algorithmic methods solve the problem either

by greedy searches in a heuristic way or optimizing based on some criteria over all possible

partitions. The model-based methods fit a generative model to the observed data and study

the model in a statistically principled way. In this dissertation, we mainly focus on bipartite

clustering under two scenarios: incorporation of node covariates and detection of mixed

membership communities.

In Chapter 2, we study an algorithmic bipartite clustering method in the context of gene

co-clustering. Gene co-clustering is a widely-used technique that has enabled computational

prediction of unknown gene functions within a species. However, it remains a challenge

to refine gene function prediction by leveraging evolutionarily conserved genes in another

species. This challenge calls for a new computational algorithm to identify gene co-clusters

in two species, so that genes in each co-cluster exhibit similar expression levels in each

species and strong conservation between the species. Here we develop the bipartite tight
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spectral clustering (BiTSC) algorithm, which identifies gene co-clusters in two species based

on gene orthology information and gene expression data. BiTSC novelly implements a

formulation that encodes gene orthology as a bipartite network and gene expression data as

node covariates. This formulation allows BiTSC to adopt and combine the advantages of

multiple unsupervised learning techniques: kernel enhancement, bipartite spectral clustering,

consensus clustering, tight clustering, and hierarchical clustering. As a result, BiTSC is a

flexible and robust algorithm capable of identifying informative gene co-clusters without

forcing all genes into co-clusters. Another advantage of BiTSC is that it does not rely

on any distributional assumptions. Beyond cross-species gene co-clustering, BiTSC also

has wide applications as a general algorithm for identifying tight node co-clusters in any

bipartite network with node covariates. We demonstrate the accuracy and robustness of

BiTSC through comprehensive simulation studies. In a real data example, we use BiTSC

to identify conserved gene co-clusters of D. melanogaster and C. elegans, and we perform a

series of downstream analyses to both validate BiTSC and verify the biological significance

of the identified co-clusters.

The stochastic block model (SBM) serves as a fundamental and classic tool to study model-

based community detection in a statistically principled way. It is a simple generative model but

too restrictive to include empirical network characteristics. With the flexibility of the SBM,

many SBM variants have been proposed to accommodate the real-world scenarios, such as node

degree heterogeneity, mixed membership communities, and bipartite structure. In Chapter 3,

we review a few extensions of the SBM, including degree-correction SBM, mixed membership

SBM, and bipartite SBM. We conduct a survey about community detection methods based

on the mixed membership SBM and bipartite SBM. We discuss these methods in detail and

summarize the challenges in introducing degree-correction to the mixed membership SBM;

the challenges in extending the degree-corrected mixed membership SBM to the bipartite

network.

To address some of the research gaps discussed in Chapter 3, we construct a generative

bipartite degree-corrected mixed membership SBM in Chapter 4. To fit the model, we
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propose a variational expectation-maximization (EM) algorithm. We perform a preliminary

simulation study in which the result suggests that the algorithm is sensitive to the initial

values. We discuss the possible improvements for future directions.
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CHAPTER 1

Introduction

1.1 Background and Motivation

A network is a set of nodes with edges connected between them. Mathematically, a network

consisting of N nodes can be represented by an N ×N symmetric adjacency matrix, where

each entry indicates the corresponding edge weight. An edge weight is a similarity measure

of the two nodes the edge connects and may take any positive continuous value; the higher

the value, the more similar the two nodes. One of the major and fundamental challenges in

statistical network analysis is to divide nodes into meaningful groups. Community detection,

as an unsupervised technique, aims to solve this problem. This task has been actively studied

in several fields, including statistics, biology, social science, computer science, and physics.

In general, community detection aims to partition nodes into communities so that nodes

within a community have denser edge connections with each other than with nodes outside

the community. By definition, a community usually refers to a group of nodes that behave

homogeneously [1]. Using the language of the adjacency matrix, a community refers to a

group of nodes of high similarity. Note that community detection is related to the concept of

graph partitioning (such as RatioCut [2] and Ncut [3]) from the computer science field. The

latter one typically aims to find a minimum cut between partitions.

Community detection has wide real-world applications across a range of disciplines, such as

gene regulation network [4–6], protein interaction network [7–9], social friendship network [10,

11], etc. The main motivation for developing new clustering models/methods is driven by the

emerging new features of the real-world networks. Due to the complexity and existence of

noise in the network data sets, no method is ideal enough to accurately and robustly capture
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the structures presented among networks of various sizes and heterogeneous features (see [12]

for reviews). Over the last two decades, plenty of methods have been developed with different

emphases on computational complexity, empirical application, statistical optimality, and

theoretical quality. These methods basically can be considered as two categories, algorithm-

based approaches, and model/likelihood-based approaches. The algorithm-based approaches

include the heuristic methods such as hierarchical clustering [13] and DBSCAN [14], as

well as the methods based on optimizing a global measurement over all possible partitions

such as spectral clustering [3, 15, 16] and modularity maximization [17]. The model-based

approaches focus on fitting a probabilistic model for community structure within a network,

including convex relaxations via semidefinite programs (SDPs) [18, 19]; profile likelihood [20];

MCMC [21] and variational Bayes [22, 23]; pseudo-likelihood maximization [24]. Among

these methods, SDPs have the limitation of not being able to extend to the disassortative

structure, such as the bipartite structure. Spectral clustering, on the other hand, has the

flexibility of accommodating real-world scenarios such as the degree heterogeneity [25, 26],

sparsity [24, 27], and bipartite structure [28]. Besides, spectral clustering itself is often used

as the initialization method for EM algorithm [24, 29].

The increasing need to understand the features and properties of network structures has

been propelled by the availability of extensive real-world network data sets in various areas.

A natural network structure called being bipartite arises when there are two types of nodes in

a network. In a bipartite network, one divides N nodes into N1 type-1 nodes and N2 type-2

nodes, and edges exist only between nodes of different types. Many networks present the form

of bipartite structure, for instance, a network of drugs and proteins, where drugs are connected

to proteins that they target; a network of papers and authors, where people are connected to

papers they co-authored in; a network of movies and actors where actors are connected to

movies they play roles in. Similar to the general network case, the definition of a community

in a bipartite network is a group of type-1 nodes with similar connectivity patterns to other

groups of type-2 nodes and vice versa. Community detection in the bipartite networks has

wide applications and promising prospects in the real-world data sets, especially in biomedical
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research [30] and social science fields. For example, we can cluster on a drug-protein bipartite

network to study the drug repurposing [31, 32]; we can cluster on a transcription factor

(TFs)-genes bipartite network to study gene regulation. In social science, we can cluster on a

user-item bipartite network to study the recommendation system [33, 34]. More specifically,

the recommender systems are used to predict users’ rating/preference on items. The rationale

is that similar users are likely to purchase similar items and rate them in similar ways. Hence

we can recommend items to a user based on the observed rating behaviors of the group

to which this user belongs. In this dissertation, we will use the term “type” and “side”

interchangeably; we will use the term “community”, “group” and “cluster” interchangeably.

In the field of computational biology, the wide applications of network community detection

focus on gene co-expression networks, where a gene is represented by a node and co-expression

correlation of two genes is represented by an edge. RNA sequencing (RNA-seq), a technology

for quantifying the transcript levels across multiple biological conditions, has been increasingly

used to produce large-scale gene expression data sets. Provided by the numerous public

RNA-seq datasets, researchers have developed plenty of tools to analyze the gene expression

data among multiple species. In particular, one common but important question is how

to predict gene functions, as many genes have not been well understood. To answer this

question, we can cluster genes into functional groups based on the gene co-expression network.

The rationale is as follows. Gene expression levels in various biological samples could be

different, and genes exhibiting similar expression patterns across samples are more likely to

encode proteins in the same complex; to participate in a common metabolic pathway; to share

similar biological functions. Within a species, one can construct a gene co-expression network

and group genes with similar expression patterns. Based on the rationale that co-expressed

genes are functionally related, we can determine functional enrichment within each group

and assign the enriched functions to poorly annotated genes in the same group.

On the other hand, given gene expression data of two species, i.e., human and mouse,

we want to utilize information in both species together to refine gene functions of unknown

species by studying genes of well-known species. The rationale is based on a principle in
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evolutionary biology: all living things on earth evolved from an ancient common ancestor,

and the shared information is encoded in the orthologs. By definition, orthologs are genes in

different species that are evolved from a common ancestral gene by speciation, and in general,

retain a similar function along with the evolution history. Given this, to simultaneously

identify functionally conserved gene groups in two species, a clustering method that can

integrate both gene expression data and orthologs data is demanded. In Chapter 2, we

develop a bipartite spectral clustering algorithm to fill in this gap. In sum, our method

is applied to a bipartite network with node covariates, where a gene expression vector is

encoded as a node covariate, and an edge is encoded as a pair of orthologs.

As we mentioned above, the algorithm-based methods do not assume a probabilistic

distribution model for the data. In the statistics field, the vast amount of methods proposed

have driven researchers to compare them in a principled way. Specifically, a generative

model which can be served as a ground truth testbed for studying community detection is

preferred. The SBM is the best-known generative model with a block structure for studying

community detection. In the simplest version of SBM, each node belongs to one of the

K groups, and undirected edges are generated independently with probabilities that only

depend on the group memberships of the nodes. This model enjoys the desirable property

of asymptotic consistency under certain conditions. While the simple SBM often fails to

capture the complex structures in the real-world networks, many variants of the SBM have

been proposed to incorporate these aspects, including broad node degree distributions [35]

(hub nodes with many more connections than other nodes in their community); weighted

edges [36]; outliers [37]; nodes with covariates [38, 39]; mixed membership communities (nodes

that belong to more than one community) [40, 41]; disassortative structures (i.e., bipartite

networks [42]); hierarchical community structures [43]; multilayer structures [44].

The degree-corrected stochastic block model (DCSBM) [35] is the most popular generative

model to accommodate the node degree heterogeneity in the SBM, where the probability of an

edge between nodes i and j is multiplied by the product of node-specific degree parameters θiθj .

While original paper [35] fits the model by maximizing the likelihood, DCSBM has also been
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studied under various model settings such as pseudo-likelihood, modularity maximization,

and spectral clustering [24, 25, 27, 45–47]. Although the majority of existing approaches

for community detection focus on nonoverlapping or disjoint communities, it is common for

communities to overlap in empirical situations. There has been a growing interest in studying

the mixed membership community detection problem in the last decade. For example, the

mixed membership stochastic block model (MMSBM) [48] is a well-studied extension of the

SBM, allowing for overlap. The main idea is to assign each node by a probability mass

function πi = (πi1, πi2, . . . , πiK)T where each element is the probability node i belongs to

a community k. In principle, in mixed membership community models, all entries of a

membership vector can be continuous and positive, indicating its weight of belonging to

different communities [49–56]. Besides, researchers have also attempted to incorporate degree-

correction into the mixed membership communities, see examples in [57–59]. In Chapter 3,

we summarize the existing approaches for detecting mixed membership communities and

discuss the limitations of extending these methods to the degree-correction case.

Built on DCSBM, Larremore et al. [60] extend the model to bipartite case and propose

the bipartite stochastic block model (biSBM). Intuitively, the existing clustering methods

for the general SBM framework can be directly applied to the bipartite network, as the

bipartite SBM is essentially a special case of the SBM with zero diagonal blocks. However,

previous research [60] has shown that prespecifying the node type information is nontrivial

and improves both the quality of clustering and computational time.

Compared to the unipartite networks, studying the mixed membership community

detection under the bipartite scheme was given less attention. With statistical inference

methods becoming increasingly sophisticated, it is possible to combine degree-correction,

mixed membership in one bipartite community detection problem. As far as we know, no

research has studied the degree-corrected mixed membership community detection based on

bipartite stochastic block models. Therefore, clustering methods designed for filling in this

gap are demanded.
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1.2 Outline

In summary, this dissertation is organized as follows:

• In Chapter 2, we develop BiTSC, a flexible and robust network clustering algorithm

capable of identifying conserved gene co-clusters in two species based on gene orthology

information and gene expression data. We demonstrate the accuracy and robustness of

BiTSC through comprehensive simulation studies. In a real data example, we apply

BiTSC to identify conserved gene co-clusters of D. melanogaster and C. elegans, and

we perform a series of downstream analyses to validate BiTSC and verify the biological

significance of the identified co-clusters.

• In Chapter 3, we start with a detailed literature review about current exiting community

detection methods for (degree-corrected) mixed membership SBM and bipartite SBM.

We compare the properties of each method from multiple perspectives. We then analyze

the current research gaps in these methods.

• In Chapter 4, we fill in the gap discussed in Chapter 3 by proposing a broadly applicable

bipartite mixed membership SBM with degree correction. After introducing the model,

we also present a variational EM algorithm that fits the model to data. We implement

the algorithm and obtain some preliminary simulation results.

• In Chapter 5, we conclude this dissertation with discussion and future work.
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CHAPTER 2

Bipartite Tight Spectral Clustering (BiTSC)

Algorithm

2.1 Introduction

In computational biology, a long-standing problem is how to predict functions of the majority

of genes that have not been well understood. This prediction task requires borrowing

functional information from other genes with similar expression patterns in the same species

or orthologous genes in other species. Within a species, how to identify genes with similar

expression patterns across multiple conditions is a clustering problem, and researchers have

successfully employed clustering methods to infer unknown gene functions [61, 62]. Specifically,

functions of less well-understood genes are inferred from known functions of other genes in

the same cluster. The rationale is that genes in one cluster are likely to encode proteins in

the same complex or participate in a common metabolic pathway and thus share similar

biological functions [63]. In the last two decades, gene clustering for functional prediction

has been empowered by the availability of abundant microarray and RNA-seq data [64–68].

Cross-species analysis is another approach to infer gene functions by borrowing functional

information of orthologous genes in other species, under the assumption that orthologous

genes are likely to share similar functions [67, 69–73]. Although computational prediction of

orthologous genes remains an ongoing challenge, gene orthology information with increasing

accuracy is readily available in public databases such as TreeFam [74] and PANTHER [75].

Hence, it is reasonable to combine gene expression data with gene orthology information to

increase the accuracy of predicting unknown gene functions.
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Given two species, the computational task is to identify conserved gene co-clusters

containing genes from both species. The goal is to make each co-cluster enriched with

orthologous gene pairs and ensure that its genes exhibit similar expression patterns in each

species. Among existing methods for this task, the earlier methods [76–78] took a two-step

approach: in step 1, genes are clustered in each species based on gene expression data; in step

2, the gene clusters from the two species are paired into co-clusters based on gene orthology

information. This two-step approach has a major drawback: there is no guarantee that gene

clusters found in step 1 can be paired into meaningful co-clusters in step 2. The reason

is that step 1 performs separate gene clustering in the two species without accounting for

gene orthology, and as a result, any two gene clusters from different species may share few

orthologs and should not be paired into a co-cluster. More recent methods abandoned this

two-step approach. For example, SCSC [79] took a model-based approach, and MVBC [80]

took a joint matrix factorization approach. Both SCSC and MVBC require that genes in two

species are in one-to-one ortholog pairs. This notable limitation prevents SCSC and MVBC

from considering the majority of genes that do not have known orthologs or have more than

one orthologs in the other species. Furthermore, SCSC assumes that each orthologous gene

pair has expression levels generated from a Gaussian mixture model and the gene expression

levels are independent between the two species. This strong distributional assumption does

not hold for gene expression data from RNA-seq experiments. MVBC is also limited by its

required input of verified gene expression patterns, which are often unavailable for many

gene expression datasets. OrthoClust [81] is a network-based gene co-clustering method

that constructs a unipartite gene network with nodes as genes in two species. Edges are

established based on gene co-expression relationships to connect genes of the same species, or

gene orthology relationships to connect genes from different species. OrthoClust identifies

gene clusters from this network using a modularity maximization approach, which cannot

guarantee that each identified cluster contains genes from both species. There are also two

open questions regarding the use of OrthoClust in practice: (1) how to define within-species

edges based on gene co-expression and (2) how to balance the relative weights of within-species

edges and between-species edges in clustering. Another class of methods is biological network
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alignment [8, 9, 82, 83], whose aim is to find conserved node and edge mapping between

networks of different species. These methods have been mostly applied to protein-protein

interaction networks. If applied to gene co-clustering, they would have the same requirement

as OrthoClust has for pre-computed within-species gene networks, whose construction from

gene expression data, however, has no gold standards.

Here we propose bipartite tight spectral clustering (BiTSC), a novel cross-species gene

co-clustering algorithm, to overcome the above-mentioned disadvantages of the existing

methods. BiTSC for the first time implements a bipartite-network formulation to tackle the

computational task: it encodes gene orthology as a bipartite network and gene expression data

as node covariates. This formulation was first mentioned in [84] but not implemented. BiTSC

implements this formulation to simultaneously leverage gene orthology and gene expression

data to identify tight gene co-clusters, each of which contains similar gene expression patterns

in each species and rich gene ortholog pairs between species. Existing bipartite network

clustering methods, which were developed for general bipartite networks, are not well suited

for this task. Some of them cannot account for node covariate information [28, 60, 85],

while others have strong distributional assumptions that do not hold for gene orthology

networks and gene expression data measured by RNA-seq [84, 86]. In contrast, BiTSC adopts

and combines the advantages of multiple unsupervised learning techniques, including kernel

enhancement [87], bipartite spectral clustering [28], consensus clustering [88], tight clustering

[89], and hierarchical clustering [90]. As a result, BiTSC has three main advantages. First,

BiTSC is the first gene co-clustering method that does not force every gene into a co-cluster;

in other words, it only identifies tight gene co-clusters and allows for unclustered genes. This

is advantageous because some genes have individualized functions [91–93] and thus should

not be assigned into any co-cluster. BiTSC is also flexible in allowing users to adjust the

tightness of its identified gene co-clusters. Second, BiTSC is able to consider all the genes in

two species, including those genes that do not have orthologs in the other species. Third,

BiTSC takes an algorithmic approach that does not rely on any distributional assumptions,

making it a robust method. Moreover, we want to emphasize that BiTSC is not only a
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bioinformatics method but also a general algorithm for network analysis. It can be used to

identify tight node co-clusters in a bipartite network with node covariates.

2.2 Methods

2.2.1 Bipartite network formulation

BiTSC formulates the cross-species gene co-clustering problem as a community detection

problem in a bipartite network with node covariates. A bipartite network contains two

sides of nodes, and edges only exist between nodes on different sides, not between nodes

on the same side. Each node is associated with a covariate vector, also known as node

attributes. In bipartite network analysis, the community detection task is to divide nodes

into co-clusters based on edges and node covariates, so that nodes in one co-cluster have

dense edge connections and similar node covariates on each side [84]. In its formulation,

BiTSC encodes genes of two species as nodes of two sides in a bipartite network, where an

edge indicates that the two genes it connects are orthologous; BiTSC encodes each gene’s

expression levels as its node covariates, with the requirement that all genes in one species

have expression measurements in the same set of biological samples. For the rest of the

Methods section, the terms “nodes” and “genes” are used interchangeably, so are “sides” and

“species”, as well as “node covariates” and “gene expression levels.”

In mathematical notations, there are m and n nodes on side 1 and 2, respectively. Edges

are represented by a binary bi-adjacency matrix A = (aij)m×n, where aij = 1 indicates that

there is an edge between node i on side 1 and node j on side 2, i.e., gene i from species

1 and gene j from species 2 are orthologous. Note that A is allowed to be a weighted

bi-adjacency matrix with aij ∈ [0, 1] when weighted orthologous relationships are considered.

Node covariates are encoded in two matrices, X1 and X2, which have dimensions m× p1 and

n× p2 respectively, i.e., species 1 and 2 have gene expression levels measured in p1 and p2

biological samples respectively. The i-th row of X1 is denoted as xT1i, and similarly for X2.

Note that all vectors are column vectors unless otherwise stated.
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2.2.2 The BiTSC algorithm

BiTSC is a general algorithm that identifies tight node clusters from a bipartite network with

node covariates. Table 1 summarizes the input data, input parameters, and output of BiTSC.

Figure 2.1 illustrates the idea of BiTSC, and Figure 2.8 shows the detailed workflow. In the

context of cross-species gene co-clustering, BiTSC inputs A, which contains gene orthology

information, and X1 and X2, which denote gene expression data in species 1 and 2. BiTSC

outputs tight gene co-clusters such that genes within each co-cluster are rich in orthologs

and share similar gene expression levels across multiple biological samples in each species.

A unique advantage of BiTSC is that it does not force all genes into co-clusters and allows

certain genes with few orthologs or outlying gene expression levels to stay unclustered.

Input: bipartite network 
with node covariates

BiTSC
Node in Co-cluster 1

Node in Co-cluster 2

Unclustered node

 Output: identified co-clusters

Node

Edge

Covariate vector

Covariate vector

Figure 2.1: Diagram illustrating the input and output of BiTSC. The identified tight node

co-clusters satisfy that, within any co-cluster, nodes on the same side share similar covariates,

and nodes from different sides are densely connected. In the context of gene co-clustering,

within any co-cluster, genes from the same species share similar gene expression levels across

multiple conditions, and genes from different species are rich in orthologs.

As an overview, BiTSC is an ensemble algorithm that takes multiple parallel runs. In

each run, BiTSC first identifies initial node co-clusters in a randomly subsampled bipartite

sub-network; next, it assigns the unsampled nodes to these initial co-clusters based on node

covariates. Then BiTSC aggregates the sets of node co-clusters resulted from these multiple
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runs into a consensus matrix, from which it identifies tight node co-clusters by hierarchical

clustering. This subsampling-and-aggregation idea was inspired by consensus clustering [88]

and tight clustering [89].

Table 1 Input and output of BiTSC

Input data: bipartite network with node covariates

• A: m× n bi-adjacency matrix

• X1: m× p1 covariate matrix for side 1

• X2: n× p2 covariate matrix for side 2

Input parameters:

• H: number of subsampling runs

• ρ ∈ (0, 1): proportion of nodes to subsample in each run

• τ : tuning parameter for constructing the enhanced bi-adjacency matrix

• K0: number of node co-clusters to identify in each run

• α ∈ (0, 1): tightness parameter

Output:

• Tight node co-clusters that are mutually exclusive and collectively a subset of the

(m+ n) nodes

BiTSC has five input parameters (Table 1): H, the number of runs; ρ ∈ (0, 1), the

proportion of nodes to subsample in each run; τ , tuning parameter for constructing the

enhanced bi-adjacency matrix; K0, the number of node co-clusters in each run; α ∈ (0, 1),

the tightness parameter used to find tight node co-clusters in the last step. In the h-th run,

h = 1, . . . , H, BiTSC has the following four steps.

1. Subsampling. BiTSC randomly samples without replacement m̃ = bρmc nodes on side

1 and ñ = bρnc nodes on side 2, where the floor function bxc gives the largest integer
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less than or equal to x. We denote the subsampled bi-adjacency matrix as Ã, whose

dimensions are m̃× ñ, and the two subsampled covariate matrices as X̃1 and X̃2, whose

dimensions are m̃× p1 and ñ× p2 respectively.

2. Kernel enhancement. To find initial node co-clusters from this bipartite sub-network

Ã with node covariates X̃1 and X̃2, a technical issue is that this sub-network may

have sparse edges and disconnected nodes. To address this issue, BiTSC employs

the kernel enhancement technique proposed by [87] to complement network edges by

integrating node covariates. This kernel enhancement step will essentially reweight

edges by incorporating pairwise node similarities on both sides. Technically, BiTSC

defines two kernel matrices K̃1 and K̃2, which are symmetric and have dimensions

m̃ × m̃ and ñ × ñ, for nodes on side 1 and 2 respectively. In K̃r, r = 1, 2, the (i, j)-

th entry is kr(x̃ri, x̃rj) = exp(−‖x̃ri − x̃rj‖2/pr), where ‖x̃ri − x̃rj‖ is the Euclidean

distance between nodes i and j on side r in this sub-network. Then BiTSC constructs

an enhanced bi-adjacency matrix B̃ = (K̃1 + τ1Im̃)Ã(K̃2 + τ2Iñ), whose dimensions

are m̃ × ñ, where Im̃ and Iñ are the m̃- and ñ-dimensional identity matrices, and

τ = (τ1, τ2) ∈ [0,∞)2 is a tuning parameter that balances the information from the

subsampled bi-adjacency matrix and the two kernel matrices. Since B̃ can be rewritten

as K̃1ÃK̃2 + τ1ÃK̃2 + τ2K̃1Ã + τ1τ2Ã, when τ1 and τ2 are large, τ1τ2Ã dominates

and covariate information has little to no impact on B̃; when τ1 and τ2 are both close

to 0, K̃1ÃK̃2 dominates and covariate information contributes more to the enhanced

bi-adjacency matrix.

3. Bipartite spectral clustering. BiTSC identifies initial node co-clusters from B̃, the

enhanced bi-adjacency matrix of the bipartite sub-network, by borrowing the idea from

[28]. Technically, BiTSC first constructs

W̃ = (w̃ij)(m̃+ñ)×(m̃+ñ) =

0m̃×m̃ B̃m̃×ñ

B̃T
ñ×m̃ 0ñ×ñ

 ,
which may be viewed as the adjacency matrix of a unipartite network with (m̃ + ñ)
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nodes. Then BiTSC identifies K0 mutually exclusive and collectively exhaustive clusters

from W̃ via normalized spectral clustering [15] as follows:

(a) BiTSC computes a degree matrix D̃, an (m̃ + ñ)-dimensional diagonal matrix

whose diagonal entries are the row sums of W̃.

(b) BiTSC computes the normalized Laplacian of W̃ as L̃ = Im̃+ñ − D̃− 1
2 W̃D̃− 1

2 .

Note that L̃ is a positive semi-definite (m̃ + ñ) × (m̃ + ñ) matrix with (m̃ + ñ)

non-negative real-valued eigenvalues: 0 = λ1 ≤ · · · ≤ λm̃+ñ.

(c) BiTSC finds the first K0 eigenvectors of L̃ that correspond to λ1, · · · , λK0 . Each

eigenvector has length (m̃ + ñ). Then BiTSC collects these K0 eigenvectors

column-wise into a matrix Ũ, whose dimensions are (m̃+ ñ)×K0.

(d) BiTSC normalizes each row of Ũ to have a unit `2 norm and denotes the normalized

matrix as Ṽ. Specifically, Ṽ also has dimensions (m̃+ ñ)×K0, and its i-th row

ṽTi = ũTi /‖ũTi ‖, where ũTi is the i-th row of Ũ and ‖ · ‖ denotes the `2 norm.

(e) BiTSC applies K-means clustering to divide the (m̃+ ñ) rows of Ṽ into K0 clusters.

In detail, Euclidean distance is used to measure the distance between each row

and each cluster center.

The resulting K0 clusters of (m̃+ñ) nodes are regarded as the initial K0 node co-clusters.

4. Assignment of unsampled nodes. BiTSC assigns the unsampled nodes, which are

not subsampled in step 1, into the initial K0 node co-clusters. Specifically, there are

(m−m̃) and (n− ñ) unsampled nodes on side 1 and 2, respectively. For each initial node

co-cluster, BiTSC first calculates a mean covariate vector on each side. For example,

if a co-cluster contains nodes i and j on side 1 of the bipartite sub-network, its mean

covariate vector on side 1 would be computed as (x̃1i + x̃1j)/2. BiTSC next assigns each

unsampled node to the co-cluster whose mean covariate vector (on the same side as the

unsampled node) has the smallest Euclidean distance to the node’s covariate vector.

With the above four steps, in the h-th run, h = 1, . . . , H, BiTSC obtains K0 node

co-clusters, which are mutually exclusive and collectively containing all the m nodes on side 1
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and n nodes on side 2. To aggregate the H sets of K0 node co-clusters, BiTSC first constructs

a node co-membership matrix for each run. Specifically, M(h) = (m(h)
ij )(m+n)×(m+n) denotes

a node co-membership matrix resulted from the h-th run. M(h) is a binary and symmetric

matrix indicating the pairwise cluster co-membership of the (m+ n) nodes. That is, an entry

in M(h) is 1 if the two nodes corresponding to its row and column are assigned to the same co-

cluster; otherwise, it is 0. Then BiTSC constructs a consensus matrix M̄ = (m̄ij)(m+n)×(m+n)

by averaging M(1), . . . ,M(H), i.e., m̄ij = ∑H
h=1m

(h)
ij /H ∈ [0, 1]. An entry of M̄ indicates the

frequency that the two nodes corresponding to its row and column are assigned to the same

co-cluster, among the H runs.

Lastly, BiTSC identifies tight node co-clusters from M̄ such that within every co-cluster,

all pairs of nodes have been previously clustered together at a frequency of at least α, the

input tightness parameter. Specifically, BiTSC considers (1 − M̄) as a pairwise distance

matrix of (m+ n) nodes. Then BiTSC applies hierarchical clustering with complete linkage

to (1 − M̄), and it subsequently cuts the resulting dendrogram at the distance threshold

(1 − α). This guarantees that all the nodes within each resulting co-cluster have pairwise

distances no greater than (1−α), which is equivalent to being previously clustered together at

a frequency of at least α. A larger α value will lead to finer co-clusters, i.e., a greater number

of smaller clusters and unclustered nodes. BiTSC provides a visualization-based approach to

help users choose α: for each candidate α value, BiTSC collects the nodes in the resulting

tight co-clusters and plots a heatmap of the submatrix of M̄ that corresponds to these

nodes; users are encouraged to pick an α value whose resulting number of tight co-clusters is

close to the number of visible diagonal blocks in the heatmap. (Please see Appendix for a

demonstration in the real data example in Section 2.3.2.) Regarding the choice of K0, i.e.,

the input number of co-clusters in each run, the entries of M̄ provide a good guidance. A

reasonable K0 should lead to many entries equal to 0 or 1 and few having fractional values

in between [88]. Following this reasoning, BiTSC implements a computationally efficient

algorithm to automatically choose K0 (Algorithm 2 in Section 2.D) while also giving users

the option to input their preferred K0 value. In Section 2.D, we demonstrate the use of
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Algorithm 2 for the real data application (Section 2.3.2).

To summarize, BiTSC leverages joint information from bipartite network edges and

node covariates to identify tight node co-clusters that are robust to data perturbation, i.e.,

subsampling. In its application to gene co-clustering, BiTSC integrates gene orthology

information with gene expression data to identify tight gene co-clusters, which are enriched

with orthologs and contain genes of similar expression patterns in both species. In particular,

within each subsampling run, the bipartite spectral clustering step identifies co-clusters

enriched with orthologs; another two steps, the kernel enhancement and the assignment of

unsampled nodes, ensure that genes with similar expression patterns in each species tend

to be clustered together. Moreover, the subsampling-and-aggregation approach makes the

output tight gene co-clusters robust to the existence of outlier genes, which may have few

orthologs or outlying gene expression patterns. The pseudocode of BiTSC is in Algorithm 1.

Algorithm 1 Pseudocode of BiTSC

• For h = 1 to H:

1. Subsample m̃ = bρmc nodes from side 1 and ñ = bρnc nodes from side 2 to obtain

a subsampled bi-adjacency matrix Ã and two subsampled node covariate matrices

X̃1 and X̃2

2. Use kernel enhancement to construct an enhanced bi-adjacency matrix B̃ from Ã,

X̃1, and X̃2

3. Find K0 initial node co-clusters from B̃ by bipartite spectral clustering

4. Obtain K0 node co-clusters by assigning the unsampled nodes into the K0 initial

node co-clusters; encode the K0 node co-clusters as a co-membership matrix M(h)

• Calculate the consensus matrix M̄ as the average of M(1), . . . ,M(H)

• Identify tight node co-clusters from M̄ with tightness parameter α
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2.2.3 Six possible variants

In the development of BiTSC, we considered six possible variants of its algorithm, and we

compared them with BiTSC to justify our choice of BiTSC as the proposed algorithm. The

performance comparison is in Section 2.3.1.

1. Bipartite spectral clustering with kernel enhancement (Spectral-kernel). This algorithm

applies kernel enhancement followed by bipartite spectral clustering to the original

bipartite network with node covariates. Comparing it with BiTSC would help us evaluate

the effectiveness of the subsampling-and-aggregation approach taken by BiTSC.

2. Bipartite spectral clustering (Spectral). This algorithm removes the kernel enhancement

step from Spectral-kernel. Comparing it with Spectral-kernel would help us evaluate

whether kernel enhancement is useful.

3. BiTSC-1. This algorithm differs from BiTSC in terms of the timing of subsampling.

Unlike BiTSC, BiTSC-1 performs subsampling after applying kernel enhancement and

bipartite spectral clustering to the original bipartite network. The use of “1” in the

algorithm name means that bipartite spectral clustering is only applied for once. In

detail, BiTSC-1 first performs kernel enhancement on the original bipartite network

with node covariates to obtain an enhanced bi-adjacency matrix B. BiTSC-1 next

applies bipartite spectral clustering, same as in BiTSC but without the last K-means

clustering step, to B to obtain V, an (m + n) ×K0 matrix. Then BiTSC-1 applies

the subsampling-and-aggregation approach to the (m+ n) rows of V. Specifically, in

the h-th run, h = 1, . . . , H, BiTSC-1 has the following three steps: (1) it randomly

samples without replacement m̃ rows from the first m rows of V and ñ rows from the

last n rows of V; (2) it divides the subsampled (m̃+ ñ) rows into K0 initial co-clusters

using the K-means algorithm with Euclidean distance; (3) it assigns the unsampled

(m − m̃ + n − ñ) nodes to the K0 initial co-clusters based on node covariates, same

as in BiTSC. The remaining steps of BiTSC-1, including the aggregation of these H

sets of K0 node co-clusters into a consensus matrix and the identification of tight node
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co-clusters, are the same as those of BiTSC. Comparing BiTSC-1 with BiTSC will help

us evaluate the effect of the timing of subsampling, i.e., whether performing subsampling

before kernel enhancement and bipartite spectral clustering aids the identification of

tight node co-clusters.

4. BiTSC-1-nokernel. This algorithm removes the kernel enhancement step from BiTSC-1.

Comparing it to BiTSC-1 would help us evaluate whether kernel enhancement is useful

given the subsampling-and-aggregation approach.

5. BiTSC-1-NC. This algorithm modifies BiTSC-1 by changing how the unsampled nodes

are assigned into the K0 initial node co-clusters in each of the H runs. Specifically,

BiTSC-1-NC only differs from BiTSC-1 in step (3) of the h-th run, h = 1, . . . , H, where

BiTSC-1-NC assigns the unsampled (m − m̃ + n − ñ) nodes to the K0 initial node

co-clusters based on their corresponding rows in V instead of their covariates. In detail,

BiTSC-1-NC calculates a mean vector for each initial node co-cluster as the average

of its corresponding rows in V; then BiTSC-1-NC assigns each unsampled node to

the initial co-cluster whose mean vector has the smallest Euclidean distance to the

node’s corresponding row in V. Note that “NC” in the algorithm name means that

“no covariates” is used in the assignment step. Comparing BiTSC-1-NC with BiTSC-1

would help us evaluate the effect of using node covariates in the assignment step.

6. BiTSC-1-NC-nokernel. This algorithm removes the kernel enhancement step from

BiTSC-1-NC. When compared to BiTSC-1-NC, it can help us evaluate whether kernel

enhancement is useful in the absence of node covariates in the assignment step.

In summary, the above six possible variants of BiTSC can help us evaluate the design

of BiTSC. Three variants pose contrasts to BiTSC in three aspects: Spectral-kernel does

not use the subsampling-and-aggregation approach; BiTSC-1 uses a different timing for

subsampling; BiTSC-1-NC does not use node covariates in the assignment of unsampled

nodes to initial node co-clusters. The other three variants, Spectral, BiTSC-1-nokernel, and
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BiTSC-1-NC-nokernel, remove the kernel enhancement from Spectral-kernel, BiTSC-1, and

BiTSC-1-NC respectively to evaluate the effectiveness of kernel enhancement.

2.3 Results

2.3.1 Simulation

We designed multiple simulation studies to justify the algorithm design of BiTSC by comparing

it with the six possible variants listed in Section 2.2.3: spectral-kernel, spectral, BiTSC-1,

BiTSC-1-nokernel, BiTSC-1-NC, and BiTSC-1-NC-nokernel.

We use the weighted Rand index [94], defined in Section 2.B, as the evaluation measure

of co-clustering results. The weighted Rand index compares two sets of node co-clusters: the

co-clusters found by an algorithm and the true co-clusters used to generate data, and outputs

a value between 0 and 1, with a value of 1 indicating perfect agreement between the two sets.

The weighted Rand index is a proper measure for evaluating BiTSC and its variants because

it accounts for noise nodes that do not belong to any co-clusters.

We compared BiTSC with its six possible variants in identifying node co-clusters from

simulated networks with varying levels of noise nodes (i.e., θ in Section 2.3.1.1) and varying

average degrees of nodes. It is expected that the identification would become more difficult as

the level of noise nodes increases or as the average degree decreases. Our results in Figure 2.2

(a) are consistent with this expectation. Figure 2.2 (a) also shows that BiTSC consistently

outperforms its six variant algorithms at all noise node levels and average degrees greater than

five. This phenomenon is reasonable because BiTSC performs subsampling on the network,

and the subsampled network, if too sparse, would make the bipartite spectral clustering

algorithm fail. In fact, the three algorithms that outperform BiTSC for sparse networks, i.e.,

spectral-kernel, BiTSC-1, and BiTSC-1-NC, only perform bipartite spectral clustering on the

entire network, so they are more robust to network sparsity. Additionally, we observe that the

three variants that do not use kernel enhancement consistently have the worst performance.

In summary, BiTSC has a clear advantage over its possible variants in the existence of noise
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nodes and when the network is not overly sparse. These results confirm the effectiveness of

the subsampling-and-aggregation approach and the kernel enhancement step, and they also

show that subsampling in the first step is beneficial if the network is not too sparse, thus

justifying the design of BiTSC.

In addition to validating the design of BiTSC, we also performed simulation studies to

compare BiTSC with OrthoClust [81], a gene clustering method that also simultaneously uses

gene expression and orthology information. We chose OrthoClust as the baseline method

to compare BiTSC against because OrthoClust is the only recent method that does not (1)

exclude genes not in one-to-one orthologs like SCSC [79] and MVBC [80] do or (2) have

strong distributional assumptions as SCSC does. Moreover, OrthoClust has a unipartite

network formulation, so its comparison with BiTSC would inform the effectiveness of our

bipartite network formulation. The OrthoClust software takes three input files: two within-

species gene co-expression networks constructed by users and one between-species ortholog

network. Following the recommendation in OrthoClust, we constructed the within-species

gene co-expression networks by connecting each gene to its closest gene(s), whose number

is specified by a tuning parameter rank, in terms of Euclidean distance. OrthoClust allows

users to specify a κ value (in the between-species ortholog network input file), which balances

the weights of within-species edges and between-species edges in the cost function. Our

results in Figure 2.2b show that BiTSC consistently outperforms OrthoClust under various

simulation settings.

Furthermore, we performed simulation studies to show the robustness of BiTSC to its

input parameters: K0 (the number of co-clusters to identify in each subsampling run), ρ (the

proportion of nodes to subsample in each run), and τ = (τ1, τ2) (the tuning parameters in

the kernel enhancement step) (Section 2.C). We find that BiTSC performs well when K0 is

set to be equal to or larger than K, the number of true co-clusters (Figure 2.10a). For ρ,

we recommend a default value of 0.8 (Figure 2.10b). For τ , we recommend a default value

of (1, 1) based on Figures 2.10c and 2.11, which show that small τ values lead to better

clustering results when the network is sparse, and that BiTSC becomes more robust to τ
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values when the network becomes denser. In general, small τ values put large weights on

node covariates, while large τ values make BiTSC use more of the edge information to find

node clusters. Users have the flexibility to set τ values based on their confidence or preference

on node covariates and edges. For instance, if a user would like to find co-clusters such that

between-species edges are dense but within-species gene expression might be dissimilar, he

or she may opt for larger τ values provided that the kernel enhancement compensates the

edge sparsity enough so that BiTSC can successfully run. Overall, BiTSC is robust to the

specification of these tuning parameters.

2.3.1.1 Data generation in simulation studies

Here we describe how we generate bipartite networks with node covariates in simulation

studies (Section 2.3.1). The generation process comprises three steps.

1. Network structure setup. To evaluate the capacity of BiTSC in detecting tight node

co-clusters and leaving out outlier nodes, we generate a bipartite network including two

types of nodes: clustered nodes in co-clusters and noise nodes that do not belong to any

co-clusters. We consider K non-overlapping node co-clusters, each of which contains n1

nodes from side 1 and n2 nodes from side 2. Hence, there are Kn1 and Kn2 clustered

nodes on side 1 and 2, respectively. We define θ as the ratio (# of noise nodes)/(#

of clustered nodes). Then there are bθKn1c and bθKn2c noise nodes on side 1 and 2,

respectively. Therefore, the bipartite network contains a total of m = Kn1 + bθKn1c

nodes on side 1 and n = Kn2 + bθKn2c nodes on side 2.

2. Edge generation. We generate independent binary edges between nodes by following a

stochastic block model [21]: if two nodes belong to the same co-cluster, an edge between

them is drawn from Bernoulli(p), where p ∈ (0, 1) is the within-cluster edge probability;

otherwise, an edge is drawn from Bernoulli(q), where q ∈ (0, p) is the not-within-cluster

edge probability smaller than p. A larger q/p ratio would lead to a more obscure node

co-cluster structure in the resulting bipartite network.
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3. Covariate generation. We generate covariate vectors for clustered nodes and noise nodes

separately. First, we assume that nodes in each co-cluster on each side have covariate

vectors following a multivariate Gaussian distribution. In detail, for the n1 nodes in

the k-th co-cluster on side 1, we independently draw n1 vectors of length p1 from a

p1-dimensional Gaussian distribution N (µ1k, (ω1k)2Ip1), k = 1, . . . , K. Note that the

larger the co-cluster index k, the more spread out the n1 covariate vectors are around the

mean µ1k. The K co-cluster mean vectors on side 1, µ11, . . . ,µ1K , are independently

drawn from a p1-dimensional Gaussian prior N (0, σ2
1Ip1). Nodes in co-clusters on side 2

are simulated similarly from K p2-dimensional Gaussian distributions N (µ2k, (ω2k)2Ip2),

with the co-cluster mean vectors on side 2, µ21, . . . ,µ2K , independently drawn from a

p2-dimensional Gaussian prior N (0, σ2
2Ip2). Second, for noise nodes that do not belong

to any co-clusters on each side, we randomly generate their covariate vectors from

uniform distributions defined by the ranges of the already-generated covariate vectors

of clustered nodes. In detail, on side 1, we take the Kn1 clustered nodes and define

a range based on their values in each of the p1 dimensions. Then we independently

draw bθKn1c scalars uniformly from the range of each dimension to construct bθKn1c

covariate vectors of length p1. Similarly, we simulate covariate vectors of noise nodes

on side 2.

In summary, the data generation process requires the following input parameters: K, the

number of true co-clusters; nr, the number of nodes in each co-cluster on side r; θ, the ratio

of the number of noise nodes over the number of clustered nodes; p, the within-cluster edge

probability; q, the not-within-cluster edge probability; pr, the dimension of covariate vectors

on side r; ωr, the parameter for within-cluster variance on side r; σ2, the variance parameter

for generating co-cluster mean vectors on side r, r = 1, 2.

We simulated an example bipartite network using the approach described above, with

H = 50, n1 = 50, n2 = 70, p1 = p2 = 2, σ1 = σ2 = 10, ω1 = ω2 = 0.1, θ = 0.5, q/p = 5, and

q = 0.03. Figure 2.9a-b illustrate the bi-adjacency matrix and the true co-membership matrix

of this simulated network. Figure 2.9c-d show the node covariates.
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2.3.1.2 Average degree

Within each of the K true co-clusters, there are n1 and n2 nodes on side 1 and 2, respectively.

The noise node ratio is denoted by θ; that is, there are bn1Kθc and bn2Kθc noise nodes on side

1 and 2. Hence, in total there are m = n1K+bn1Kθc nodes on side 1 and n = n2K+bn2Kθc

nodes on side 2. Recall that A = (aij)m×n is the bi-adjacency matrix. Let λ1i = ∑n
j=1 aij and

λ2j = ∑m
i=1 aij be the degree of node i on side 1 and node j on side 2, respectively. Then, the

average degree of the network is

λ =
∑m
i=1 λ1i +∑n

j=1 λ2j

m+ n
=

2∑m
i=1

∑n
j=1 aij

m+ n
. (2.1)

2.3.2 Real data analysis

In this section, we demonstrate how BiTSC is capable of identifying conserved gene co-clusters

of D. melanogaster (fly) and C. elegans (worm). We compared BiTSC with OrthoClust

[81] and performed a series of downstream bioinformatics analysis to both validate BiTSC

and verify the biological significance of its identified co-clusters. We compared BiTSC with

OrthoClust and not SCSC or MVBC for the same reasons as described in Section 2.3.1.

2.3.2.1 BiTSC outperforms OrthoClust in identifying gene co-clusters with

enriched ortholog pairs and similar expression levels

We applied BiTSC and OrthoClust to the D. melanogaster and C. elegans developmental-

stage RNA-seq data generated by the modENCODE consortium [96] and the gene orthology

annotation from the TreeFam database [97]. For data processing, please see Section 2.3.2.3.

We ran BiTSC with input parameters H = 100, ρ = 0.8, τ = (1, 1), K0 = 30, and α = 0.9.

For the choices of K0 and α, please see Section 2.D. We ran OrthoClust by following the

instruction on its GitHub page (https://github.com/gersteinlab/OrthoClust accessed on Nov

12, 2019). Specifically, we constructed the within-species gene co-expression networks by

connecting each gene with its closest five genes in terms of Pearson correlation and used κ = 1

(the default value). For details regarding the computational time of BiTSC and OrthoClust,

23



a BiTSC vs. variants

b BiTSC vs. OrthoClust

BiTSC
Spectral-kernel
Spectral
BiTSC-1
BiTSC-1-nokernel
BiTSC-1-NC
BiTSC-1-NC-nokernel

BiTSC
OrthoClust (rank=1,    =1)
OrthoClust (rank=1,    =5)
OrthoClust (rank=3,    =1)
OrthoClust (rank=3,    =5)
OrthoClust (rank=5,    =1)
OrthoClust (rank=5,    =5)

Figure 2.2: Performance of BiTSC vs. (a) its six variant algorithms (Section 2.2.3) and (b) OrthoClust. The weighted

Rand index is plotted as a function of noise node level (first column) or average degree (second column). The data sets are

simulated using the approach described in Section 2.3.1.1. For both columns, we set K = 15, n1 = 50, n2 = 70, p1 = p2 = 2,

σ1 = σ2 = 10, and ω1 = ω2 = 0.1. For the first column, we vary the noise node level θ from 0.05 to 2.05 and set p = 0.15 and

q = 0.03. For the second column, we set θ = 0.5, vary p from 0.005 to 0.175, set q = p/5, and as a result vary the average degree

from 1 to 51 (see Section 2.3.1.2 for details about the average degree). For the input parameters of BiTSC and its variants, we

choose H = 50, ρ = 0.8, τ = (1, 1),K0 = K = 15 and α = 0.7 whenever applicable. We set K0 = K following the convention

that when the ground truth is known in simulation studies, one can select input parameters based on the truth [25, 60, 84, 95].

For OrthoClust, rank = 3 means that in the construction of within-species gene co-expression networks, we connect each gene

with its three closest genes in terms of Euclidean distance; similarly for rank = 1 and rank = 5. In this figure, genes in identified

co-clusters that only contain genes from one species are treated as noise genes, just like unclustered genes, in the calculation

of the weighted Rand index. This is why in the second column of (b) we cannot see the curves for OrthoClust (rank = 5) —

no co-clusters with genes from both species were identified. We show that BiTSC also outperforms OrthoClust when we only

consider unclustered genes as noise genes in Figure 2.5.
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please see Section 2.E. To compare BiTSC and OrthoClust, we picked a similar number of

large gene co-clusters identified by either method: 16 BiTSC co-clusters with at least 10

genes in each species (Table 2.1) vs. 14 OrthoClust co-clusters with at least 2 genes in each

species (Table 2.2). Compared with OrthoClust, the co-clusters identified by BiTSC are more

balanced in sizes between fly and worm. In contrast, OrthoClust co-clusters typically have

many genes in one species but few genes in the other species; in particular, if we restricted the

OrthoClust co-clusters to have at least 10 genes in each species, only two co-clusters would be

left. We also ran OrthoClust again with κ = 3 (the value used in OrthoClust paper) instead

of κ = 1, and the result is very similar (Table 2.3). We evaluated both methods’ identified

co-clusters in two aspects (using κ = 1 for OrthoClust): the enrichment of orthologous genes

and the similarity of gene expression levels in each co-cluster. Figure 2.3 shows that the

BiTSC co-clusters exhibit both stronger enrichment of orthologs and higher similarity of

gene expression than the OrthoClust co-clusters do. Note that in general, the co-clusters

identified by OrthoClust (Table 2.2), with cluster size ranging between 184 and 1002, are

larger than those identified by BiTSC (Table 2.1). Although the difference in cluster size

does not invalidate our analysis, for further investigation, we adjusted the input parameters

of BiTSC to obtain co-clusters that are closer to those identified by OrthoClust in size. With

the new input parameter choices for BiTSC, we are able to further confirm the advantages

of BiTSC in Figure 2.15. Therefore, the gene co-clusters identified by BiTSC have better

biological interpretations than their OrthoClust counterparts because of their more balanced

gene numbers in two species, greater enrichment of orthologs, and better grouping of genes

with similar expressions.

2.3.2.2 Functional analysis verifies the biological significance of BiTSC gene

co-clusters

We next analyzed the 16 gene co-clusters identified by BiTSC. First, we verified that genes

in each co-cluster exhibit similar functions within fly and worm. We performed the GO

term enrichment test (Section 2.3.3.1) for each co-cluster in each species. The results are
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Figure 2.3: Comparison of BiTSC and OrthoClust in terms of their identified fly-worm

gene co-clusters (Section 2.3.2.1). (a) Distributions of within-cluster enrichment of ortholog

pairs. For BiTSC and OrthoClust, a boxplot is shown for the − log10 P3 values calculated

by the ortholog pair enrichment test (Section 2.3.3.3) on the identified gene co-clusters.

Larger − log10 P3 values indicate stronger enrichment. (b): Distributions of within-cluster

gene expression similarity. For BiTSC and OrthoClust, a boxplot is shown for the average

pairwise Pearson correlation (PPC) between genes of the same species within each identified

co-cluster. (c): Within-cluster gene expression similarity vs. ortholog enrichment. Each point

corresponds to one co-cluster identified by BiTSC or OrthoClust. The − log10 P3 and average

PPC values are the same as those shown in (a) and (b).
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summarized in Figure 2.6, which show that every co-cluster has strongly enriched GO terms

with extremely small p-values, i.e., P1 values. Hence, genes in every co-cluster indeed share

similar biological functions within fly and worm. We also calculated the pairwise Pearson

correlation coefficients between genes of the same species within each co-cluster (Figure 2.7).

The overall high correlation values also confirm the within-cluster functional similarity in each

species. Second, we show that within each co-cluster, genes share similar biological functions

between fly and worm. We performed the GO term overlap test (Section 2.3.3.2), which

output small p-values, i.e., P2 values, suggesting that fly and worm genes in each co-cluster

have a significant overlap in their GO terms. Figure 2.6 also illustrates this functional

similarity between fly and worm genes in the same co-cluster. In summary, the 16 gene

co-clusters exhibit clear biological functions, some of which are conserved between fly and

worm.

The above analysis results are summarized in Table 2.1. Specifically, for each co-cluster,

Table 2.1 lists the numbers of fly and worm genes, the numbers of genes lacking BP GO term

annotations, example GO terms enriched in both species by the GO term enrichment test,

and p-values from the GO term overlap test and the ortholog enrichment test (Section 2.3.3).

Interestingly, we observe that when BiTSC identifies co-clusters, it simultaneously leverages

gene expression similarity and gene orthology to complement each other. For example,

co-clusters 10 and 11 do not have strong enrichment of orthologs but exhibit extremely high

similarity of gene expression in both fly and worm; on the other hand, co-cluster 13 have

relatively weak gene expression similarity but particularly strong enrichment of orthologs.

This advantage of BiTSC would enable it to identify conserved gene co-clusters even based

on incomplete orthology information.

We further visualized the 16 gene co-clusters using the concensus matrix M̄. Figure 2.4

plots the fly and worm genes in these co-clusters, as well as 1,000 randomly sampled unclustered

genes as a background. Figure 2.13 shows that the pattern of the 16 co-clusters is robust

to the random sampling of unclustered genes. We observe that many co-clusters are well

separated, suggesting that genes in these different co-clusters are rarely clustered together.
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We also see that some co-clusters are close to each other, including co-clusters 1 and 12,

co-clusters 9 and 16, and co-clusters 10, 11 and 14. To investigate the reason behind this

phenomenon, we inspected Table 2.1 and Figure 2.6 to find that overlapping co-clusters share

similar biological functions. This result again confirms that the identified gene co-clusters are

biologically meaningful.

Moreover, we computationally validated BiTSC’s capacity of predicting unknown gene

functions. Many co-clusters contain genes that do not have BP GO terms. For each of these

genes, we predicted its BP GO terms as its co-cluster’s top enriched BP GO terms. Then

we compared the predicted BP GO terms with the gene’s other functional annotation, in

particular, molecular function (MF) or cellular component (CC) GO terms. Our comparison

results in Figure 2.14 show that the predicted BP GO terms are highly compatible with the

known MF or CC GO terms, suggesting the validity of our functional prediction based on

the BiTSC co-clusters.

2.3.2.3 Data processing in the real data application

In the real data application of BiTSC (Section 2.3.2), the D. melanogaster (fly) and C. elegans

(worm) data set consists of two parts: gene expression data and gene orthology information.

For gene expression data, we started with 15,095 fly protein-coding genes’ expression levels

across 30 developmental stages and 44,969 worm protein-coding genes’ expression levels across

35 developmental stages. Note that the gene expression levels are in the FPKM (Fragments

Per Kilobase of transcript per Million mapped reads) unit and were processed from RNA-seq

data collected by the modENCODE Consortium [96, 99]. For gene orthology information,

we started with 11,403 ortholog pairs between the above mentioned fly and worm genes

(obtained and processed from the TreeFam database [97, 99]). Then we removed all the fly

and worm genes that have zero expression levels across all the developmental stages and have

no orthologous genes, leaving us with 5,414 fly genes, 5,731 worm genes, and 10,975 ortholog

pairs. After that, we performed the logarithmic transformation on the gene expression levels

and standardized the transformed levels by subtracting the mean and dividing the standard
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Table 2.1: Fly-worm gene co-clusters identified by BiTSC (Section 2.3.2)

Co-cluster # of fly genes1 # of worm genes Examples BP GO terms highly enriched in both

species3

P24 P35

(without GO2) (without GO)

1 106 (19) 83 (15) Chemical synaptic transmission; synaptic signaling 1.35e-07 2.77e-53

2 46 (8) 119 (28) Muscle cell development 1.70e-09 1.50e-17

3 75 (3) 83 (6) Peptide and amide biosynthetic process 1.17e-08 6.23e-180

4 73 (4) 50 (13) ATP metabolic process 2.72e-12 1.61e-58

5 57 (4) 62 (8) Protein catabolic process; proteolysis 3.15e-09 3.15e-56

6 83 (4) 36 (8) Mitochondrial translation; mitochondrial gene

expression

2.60e-03 2.04e-32

7 89 (13) 25 (8) Protein localization to endoplasmic reticulum 2.69e-10 7.72e-22

8 80 (16) 26 (11) Ribosome biogenesis; RNA metabolic processing 2.05e-16 7.50e-37

9 29 (3) 76 (19) Cilium and cell projection organization 2.03e-09 3.81e-05

10 32 (2) 24 (6) DNA replication and metabolic process 2.98e-06 6.53e-02

11 25 (4) 19 (4) DNA replication 2.46e-06 1.00e-00

12 28 (4) 15 (4) G protein-coupled glutamate receptor signaling

pathway

4.17e-14 1.81e-10

13 16 (7) 25 (12) Glycoside catabolic process; transmembrane transport 1.52e-02 5.29e-46

14 15 (1) 24 (4) DNA metabolic process; cell cycle process 1.83e-05 3.11e-02

15 24 (2) 11 (1) Oxidation-reduction process 1.41e-03 2.36e-31

16 14 (0) 15 (1) Cilium organization; cell projection assembly 1.20e-07 1.83e-02

1 Number of fly genes in the co-cluster
2 Number of fly genes without BP GO term annotations in the co-cluster
3 Examples of BP GO terms that are highly enriched in both species in the co-cluster (Section 2.3.3.1). These example BP

GO terms are used as labels of the co-clusters in Figure 2.4.
4 p-value of the co-cluster based on the GO term overlap test (Section 2.3.3.2)
5 p-value of the co-cluster based on the ortholog enrichment test (Section 2.3.3.3)
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Figure 2.4: Visualization of the 16 gene co-clusters found by BiTSC from the fly-worm gene

network (Section 2.3.2). The visualization is based on the consensus matrix M̄ using the R

package igraph [98] (https://igraph.org, the Fruchterman-Reingold layout algorithm). Genes

in the 16 co-clusters are marked by distinct colors, with squares and circles representing fly

and worm genes respectively. For each co-cluster, representative BP GO terms are labeled

(Table 2.1). 1,000 randomly-chosen unclustered genes are also displayed and marked in white.

In this visualization, both the gene positions and the edges represent values in M̄. The higher

the consensus value between two genes, the closer they are positioned, and the darker the

edge is between them. If the consensus value is zero, then there is no edge.
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deviation for every gene (Section 2.3.2.4). Finally, we built a bipartite network of fly and

worm genes by connecting orthologous genes, and we collected every gene’s standardized

expression levels into its node covariate vector. In this resulting bipartite network with node

covariates (Table 1), m = 5, 414, n = 5, 731, p1 = 30, and p2 = 35. The average degree of

this bipartite network is 1.97 (Section 2.3.1.2).

2.3.2.4 Processing of gene expression levels

Gene expression values in the FPKM unit are typically highly skewed with the presence

of extremely large values. Logarithmic transformation has been widely used to transform

FPKM values to reduce the effects of outliers and to make the transformed values more

normally distributed [100–102]. Following the notations in Section 2.2.1, for gene i on side r,

we constructed its j-th covariate as

xrij = lrij − l̄ri·√∑pr
j=1(lrij − l̄ri·)2/(pr − 1)

, (2.2)

where lrij = log2(FPKMrij + 1) and l̄ri· = ∑pr
j=1 lrij/pr. In other words, the gene covariates

are standardized log-transformed FPKM values. We used these covariates in our fly-worm

data analysis in Section 2.3.2.

2.3.3 Bioinformatics gene function analysis

Here we introduce three hypothesis tests, which are designed to analyze the gene co-clusters

identified by BiTSC in the real data application (Section 2.3.2). The three tests are from

[99] and described in detail below. Note that we only include biological process (BP) gene

ontology (GO) terms in the GO term enrichment test and the GO term overlap test for ease

of interpretation. The GO terms are from the R package GO.db [103].
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2.3.3.1 GO term enrichment test

Given a gene co-cluster, the GO term enrichment test is to check for each species, whether

a GO term is enriched in this co-cluster relative to all the genes in that species. The top

enriched GO terms would indicate the biological functions of this co-cluster in each species.

Suppose that there are u genes of species 1 in this co-cluster, v of which are annotated

with a given GO term. Also suppose that species 1 has a total of U genes, V of which are

annotated with the same GO term. The null hypothesis is that this GO term has the same

enrichment level in the u genes as in the U genes, i.e., the u genes are randomly sampled

from the U genes. The alternative hypothesis is that this GO term is more enriched in the u

genes relative to the U genes. Under the null hypothesis, X, the number of genes that are

annotated with this GO term among any u genes, follows a hypergeometric distribution with

the following probability mass function

P (X = x) =

(
V
x

)(
U−V
u−x

)
(
U
u

) , x = 0, 1, · · · ,min(V, u) .

Hence, this test has a p-value defined below and denoted by P1.

P1 = P (X ≥ v) =
min(V,u)∑
x=v

(
V
x

)(
U−V
u−x

)
(
U
u

) .

We implemented this test, which is equivalent to the one-tail Fisher’s exact test, using the R

package topGO [104].

2.3.3.2 GO term overlap test

Given a gene co-cluster, the GO term overlap test is to check whether the genes from the two

species share similar biological functions, i.e., whether the two sets of genes have a significant

overlap in their annotated GO terms.

Specifically, for this co-cluster, we denote by A and B the sets of GO terms associated

with its genes in species 1 and 2, respectively. We define a population of N GO terms as the

set of terms associated with any genes in species 1 or 2. The null hypothesis is that A and B
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are two independent samples from the population, i.e., the common GO terms shared by two

species in this co-cluster is purely due to a random overlap. The alternative hypothesis is that

A and B are positively dependent samples. Under the null hypothesis that two samples with

sizes |A| and |B| are independently drawn from the population, Y , the number of common

GO terms shared by the two samples, has the following probability mass function

P (Y = y) =

(
N
y

)(
N−y
|A|−y

)(
N−|A|
|B|−y

)
(
N
|A|

)(
N
|B|

) , y = 0, 1, · · · ,min(|A|, |B|) .

Hence, this test has a p-value defined below and denoted by P2.

P2 = P (Y ≥ |A ∩B|) =
min(|A|,|B|)∑
y=|A∩B|

(
N
y

)(
N−y
|A|−y

)(
N−|A|
|B|−y

)
(
N
|A|

)(
N
|B|

) .

2.3.3.3 Ortholog enrichment test

Given a gene co-cluster, the ortholog enrichment test is to check whether the genes from the

two species are rich in orthologs. This test will work as a sanity check for BiTSC, which is

expected to output co-clusters enriched with orthologs.

For example, given D. melanogaster (fly) and C. elegans (worm), the two species in our

real data application (Section 2.3.2), we denote the population of ortholog pairs between fly

and worm by O = {(f1, w1), · · · , (fM , wM )}, where fi and wi are the fly gene and worm gene

in the i-th ortholog pair. Note that f1, . . . , fM contain repetitive genes and so do w1, · · · , wM .

Given a co-cluster, F denotes its set of fly genes, and F ′ = {(fi, wi) : fi ∈ F} denotes the set

of ortholog pairs whose fly genes are in F . Similarly, W denotes the set of worm genes in this

co-cluster, and W ′ = {(fi, wi) : wi ∈ W} denotes the set of ortholog pairs whose worm genes

are in W . Note that F ′ ∩W ′ is the set of ortholog pairs between fly genes in F and worm

genes in W . The null hypothesis is that F ′ and W ′ are two independent samples from O, i.e.,

their common ortholog pairs in F ′ ∩W ′ are purely due to a random overlap. The alternative

hypothesis is that F ′ and W ′ are positively dependent samples. Under the null hypothesis

that two samples with sizes |F ′| and |W ′| are independently drawn from O, Z, the number

of ortholog pairs shared by the two samples, has the following probability mass function
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P (Z = z) =

(
M
z

)(
M−z
|F ′|−z

)(
M−|F ′|
|W ′|−z

)
(
M
|F ′|

)(
M
|W ′|

) , z = 0, 1, · · · ,min(|F ′|, |W ′|) .

Hence, this test has a p-value defined below and denoted by P3.

P3 = P (Z ≥ |F ′ ∩W ′|) =
min(|F ′|,|W ′|)∑
z=|F ′∩W ′|

(
M
z

)(
M−z
|F ′|−z

)(
M−|F ′|
|W ′|−z

)
(
M
|F ′|

)(
M
|W ′|

) .

2.4 Discussion

BiTSC is a general bipartite network clustering algorithm. It is unique in identifying tight

node co-clusters such that nodes in a co-cluster share similar covariates and are densely

connected. In addition to cross-species gene co-clustering, BiTSC has a wide application

potential in biomedical research. In general, BiTSC is applicable to computational tasks that

can be formulated as a bipartite network clustering problem, where edges and node covariates

jointly indicate a co-clustering structure. Here we list three examples. The first example is

the study of transcription factor (TF) co-regulation. In a TF-gene bipartite network, TFs and

genes constitute nodes of two sides, an edge indicates that a TF regulates a gene, and node

covariates are expression levels of TFs and genes. BiTSC can identify TF-gene co-clusters

so that every co-cluster indicates a group of TFs co-regulating a set of genes. The second

example is cross-species cell clustering. One may construct a biparite cell network, in which

cells of one species form nodes of one side, by drawing an edge between cells of different

species if the two cells are similar in some way, e.g., co-expression of orthologous genes. Node

covariates may be gene expression levels and other cell characteristics. Then BiTSC can

identify cell co-clusters as conserved cell types in two species. The third example is drug

repurposing. One may construct a drug-target bipartite network by connecting drugs to

their known targets (usually proteins) and including biochemical properties of drugs and

targets as node covariates [105]. BiTSC can then identify drug-target co-clusters to reveal

new potential targets of drugs.

A natural generalization of BiTSC is to identify node co-clusters in a multipartite network,
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which has more than two types of nodes. An important application of multipartite network

clustering is the identification of conserved gene co-clusters across multiple species. Here

we describe a possible way of generalizing BiTSC in this application context. Suppose that

we want to identify conserved gene co-clusters across three species: Homo sapiens (human),

Mus musculus (mouse), and Pan troglodytes (chimpanzee). We can encode the three-way

gene orthology information in a tripartite network and include gene expression levels as

node covariates. To generalize BiTSC, we may represent the tripartite network as three

bi-adjacency matrices (one for human and mouse, one for human and chimpanzee, and one

for mouse and chimpanzee) and three covariate matrices, one per species. A key step in

this generalization is to stack three (subsampled and kernel-enhanced) bi-adjacency matrices

into a unipartite adjacency matrix and apply spectral clustering. Other parts of BiTSC,

such as the subsampling-and-aggregation approach, the assignment of unsampled nodes,

and the hierarchical clustering in the last step to identify tight co-clusters, will stay the

same. We have implemented this functionality in the BiTSC software package. Compared to

the existing method OrthoClust [81] that can also perform multi-species gene co-clustering,

BiTSC is more transparent in its combination of gene orthology and expression information

(because guidance is provided for the selection of each tuning parameter in BiTSC) and is

more focused on identifying gene co-clusters rather than within-species gene clusters.

BiTSC is also generalizable to find tight node co-clusters in a bipartite network with node

covariates on only one side or completely missing. In the former case, we will perform a

one-sided kernel enhancement on the bi-ajdancecy matrix by using available node covariates

on one side. We also need to perform bipartite spectral clustering on the whole network to

obtain an Euclidean embedding, i.e., the matrix V in BiTSC-1 (Section 2.2.3), for the nodes

without covariates. Then we can apply the same subsampling-and-aggregation approach as

in BiTSC, except that in each subsampling run we will assign the unsampled nodes without

covariates into initial co-clusters based on Euclidean embedding instead of node covariates.

In the latter case where all nodes have no covariates, we will skip the kernel enhancement

step, and BiTSC-1-NC, a variant of BiTSC described in Section 2.2.3, will be applicable.
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Another extension of BiTSC is to output soft co-clusters instead of hard co-clusters.

In soft clustering, a node may belong to multiple clusters in a probabilistic way, allowing

users to detect nodes whose cluster assignment is ambiguous. Here we describe two ideas of

implementing soft clustering in BiTSC. The first idea is that after we obtain the consensus

matrix (M̄), we replace the current hierarchical clustering by spectral clustering to find the

final co-clusters; inside spectral clustering, we use fuzzy c-means clustering [106, 107] instead

of the regular K-means to find soft co-clusters. The second idea is that after we obtain

the distance matrix (1 − M̄), we use multidimensional scaling to find a two-dimensional

embedding of the nodes and then perform fuzzy c-means clustering to find soft co-clusters.

Lastly, we comment that the relationship between community detection and link prediction

is an open question in network research. We preliminarily explored the performance of BiTSC

and OrthoClust in terms of link prediction in the fly-worm network (Section 2.3.2) and

found that BiTSC achieves a reasonable and better performance than OrthoClust in this

task (Figure 2.16). We leave further investigation regarding the relative advantages and

disadvantages of using community detection methods vs. existing supervised learning methods

for link prediction to future research.

To summarize, BiTSC is a flexible algorithm that is generalizable for multipartite networks,

bipartite networks with partial node covariates, and soft node co-clustering. This flexibility

will make BiTSC a widely-applicable clustering method in network analysis.
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APPENDIX

2.A Code

The Python package BiTSC is open-access and available at https://github.com/edensunyidan/

BiTSC.

2.B Evaluation metric of clustering result

In the simulation study (Section 2.3.1), we use the weighted Rand index [94], which the

extension of the adjusted Rand index [109, 110], to evaluate the clustering result by

comparing the identified co-clusters to the true co-clusters. The weighted Rand index

was developed for the case where noise nodes exist and should stay unclustered. We use

V = {V1,V2, . . . ,VK ,VK+1} to denote the true node cluster membership, where V1,V2, . . . ,VK

indicate the K true co-clusters and VK+1 indicates the set of noise nodes. We use Ṽ =

{Ṽ1, Ṽ2, . . . , ṼC , ṼC+1} to denote the clustering result, where Ṽ1, Ṽ2, . . . , ṼC indicate the C

identified co-clusters and ṼC+1 represents the set of unclustered nodes.

Thalamuthu et al. proposed two types of adjusted Rand index. The first one, Rand1(V , Ṽ),

considers VK+1 and ṼC+1 as two regular clusters:

Rand1(V , Ṽ) =
∑K+1
i=1

∑C+1
j=1

(
Nij

2

)
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(
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)
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)
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)]
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(
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)
/
(
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) ,
where Nij = |Vi ∩ Ṽj|, Ni· = ∑C+1

j=1 Nij , N·j = ∑K+1
i=1 Nij , and N = ∑K+1

i=1
∑C+1
j=1 Nij . Note that

N denotes the total number of nodes.

The second index Rand2(V , Ṽ) ignores VK+1 and ṼC+1:

Rand2(V , Ṽ) =
∑K
i=1

∑C
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(
Nij

2

)
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where Ñi· =

∑C
j=1Nij, Ñ·j = ∑K

i=1Nij and Ñ = ∑K
i=1

∑C
j=1Nij.
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Rand1(V , Ṽ) is biased against clustering methods that do not allow unclustered nodes,

especially when the number of noise nodes is large. On the other hand, Rand2(V , Ṽ) is biased

against clustering methods that allow unclustered nodes. To balance the two, the weight

Rand index was proposed as a weighted sum of the two indices [94]:

Rand(V , Ṽ) = λ · Rand1(V , Ṽ) + (1− λ) · Rand2(V , Ṽ) , (2.3)

where λ = |VK+1 ∪ ṼC+1|/N .

We implemented the weighted Rand index by using the adjusted_rand_score function

in the Python package sklearn [111].

2.C Robustness analysis of input parameters

Figure 2.10 shows the robustness analysis of BiTSC and its three variants: Spectral-kernel,

BiTSC-1, and BiTSC-1-NC, against input parameters K0 (the number of co-clusters in each

subsampling run), ρ (the subsampling proportion), and τ (the kernel enhancement parameter),

in the simulation setting (Section 2.3.1.1). We observe that BiTSC is robust to the choice of

K0 when K0 is larger than K, the number of true co-clusters. BiTSC outperforms the three

variants when ρ is larger than 0.7, and BiTSC is robust to the choice of τ . Hence, we set

ρ = 0.8 and τ = (1, 1) as the default input parameters in BiTSC.

Interestingly, BiTSC-1-NC has weighted Rand indices that are extremely close to those of

Spectral-kernel and invariant to ρ in Figure 2.10b. Spectral-kernel does not use subsampling,

so it is expected to have a constant weighted Rand index invariant to ρ. However, BiTSC-1-

NC uses subsampling, so its weighted Rand index should depend on ρ. We investigated this

phenomenon and found that BiTSC-1-NC has weighted Rand indices not exactly the same

but very close in values:
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ρ Weighted Rand index

0.3 0.7708656319227645

0.4 0.7706005330861144

0.5 0.7710055546541685

0.6 0.7711873136856517

0.7 0.7712402375720288

0.8 0.7713976529947345

0.9 0.7715965812884181

This result suggests that BiTSC-1-NC, where we only do subsampling on V and do not

use node covariates but only rows in V to assign unsampled nodes in each subsampling

run (Section 2.2.3), is very robust to ρ and highly similar to Spectral-kernel. This result is

consistent with what we observed in Figure 2.2.

We further verified the robustness of BiTSC against τ in simulated networks with various

sparsity levels (Figure 2.11). The performance of BiTSC and the three variants consistently

peak near τ = 0 and decrease as τ increases. This is within our expectation: in these simulated

bipartite networks, the covariate information is consistent with the edge information, i.e.,

the true co-clusters feature both dense edges between species and similar covariates within

species (Section 2.3.1.1); therefore, a smaller τ means better performance (Section 2.2.2).

We also observe that the smaller p is, i.e., the lower the edge density, the more quickly

the performance of BiTSC and the three variants drops as τ increases, demonstrating the

importance of incorporating covariate information in the kernel enhancement step especially

when edge density is low.

Interestingly, as is the most obvious in Figures 2.11c–h, as τ keeps increasing, eventually

the performance of the three variant algorithms surpass the performance of BiTSC. This is

because in the three variant algorithms, kernel enhancement is performed prior to subsampling

(or in the case of spectral-kernel, no subsampling is done) (Section 2.2.3). Hence, utilizing

covariate information from all of the nodes in the bipartite network can make up for a large

τ to a certain extent.
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2.D Choice of K0 in the real data application

In our simulation study in Section 2.C, we observed that BiTSC is robust to K0 values above

K, the number of true co-clusters. However, in real data applications, we do not know K.

Here we explain how we used the consensus distribution [88, 112] to choose K0 = 30 in the

real data application (Section 2.3.2).

The idea of using the consensus distribution to guide the choice of K0 is the following:

since the entries of the consensus matrix M̄ lie between 0 and 1, with each entry indicating

how frequently two nodes are grouped together across multiple clustering results, a good K0

should lead to many entries in the consensus matrix equal to 0 or 1 and few having fractional

values in between. In other words, if we plot a histogram of the consensus matrix obtained

for a good K0, it would present a bimodal shape with two bins concentrated at 0 and 1. To

better quantify this concentration of the consensus distribution, [88] used both the empirical

cumulative distribution function (CDF) (Figure 2.12 (a)) of a consensus matrix entries and

the area under CDF as the guidance to select K0. In particular, the CDF corresponding to a

good K0 should present the shape with 2 increases (one increase at 0 and one increase at 1)

and a horizontal line in between, and this bimodal shape would keep stable as K0 past K (if

known). In general, by inspecting the area under CDF curve (Figure 2.12b) to see where does

the progression reach stable, users could decide an appropriate number of clusters as K0.

Following the same sense, BiTSC provides an efficient way to select K0 based on the idea

of binary search (details in Algorithm 2). The rationale of Algorithm 2 is among a range

of K0’s, we want to find the value of K0 corresponding to which the CDF of the consensus

matrix reaches stable at the earliest. In the real data analysis (Section 2.3.2), when we

initialize K0_min = 10 and K0_max = 50 (H = 48, ρ = 0.8 and τ = (1, 1)), Algorithm

2 selects 30 as the final input for K0. To further verify the rationality in Algorithm 2, we

applied BiTSC (H = 48, ρ = 0.8 and τ = (1, 1)) to the fly-worm data, with K0 ranging from

2 to 50. For each K0 and its resulting consensus matrix, we plotted the empirical cumulative

distribution function (CDF) of the matrix entries in Figure 2.12a. We also plotted the area

under CDF curve as a function of K0 in Figure 2.12b. From the result, we can observe that
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distribution of entries in the consensus matrix corresponding to K0 = 30 concentrates at 0

and 1, and the area under the CDF curve plateaus after this point.

2.E Computational time

Under Ubuntu 16.04.6 LTS (GNU/Linux 4.4.0−157−generic x86_64), the computational

time for the real data analysis (Section 2.3.2) is: BiTSC with a single subsampling run took

161 seconds using a single core, and OrthoClust took 258 seconds.

BiTSC
OrthoClust (rank=1,    =1)
OrthoClust (rank=1,    =5)
OrthoClust (rank=3,    =1)
OrthoClust (rank=3,    =5)
OrthoClust (rank=5,    =1)
OrthoClust (rank=5,    =5)

Figure 2.5: Performance of BiTSC vs. OrthoClust. This figure is an extension of Figure 2.2.

The only difference is that in Figure 2.2, genes in identified co-clusters that only contain

genes from one species are considered noise genes in the calculation of the weighted Rand

index, just like unclustered genes. Here, we only consider unclustered genes as noise genes.

BiTSC outperforms OrthoClust in a wide range of simulation settings.
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Figure 2.6: Top five enriched BP GO terms in each of the 16 fly-worm gene co-clusters identified by BiTSC

(Section 2.3.2). (a) GO terms enriched in fly genes of each co-cluster. (b) GO terms enriched in worm genes

of each co-cluster. The p-value (P1 value) of each GO term is computed by the GO term enrichment test

(Section 2.3.3.1). Smaller P1 values are shown in darker colors to indicate stronger enrichment. For each

co-cluster, the top enriched GO terms common to fly and worm are highlighted in green.
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Figure 2.7: Boxplots of pairwise Pearson correlation coefficients in each species within each

of the 16 fly-worm gene co-clusters identified by BiTSC (Section 2.3.2). In each co-cluster,

the Pearson correlation coefficient is computed for every two genes of the same species based

on their expression levels, i.e., covariate vectors.
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Figure 2.8: Workflow of BiTSC (Section 2.2.2).
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Figure 2.9: The simulated bipartite network described in Section 2.3.1.1. (a) The bi-adjacency

matrix. (b) The true co-membership matrix. In both matrices, entries of ones are shown in

blue colors. Nodes belonging to the same true co-cluster are ordered next to each other. (c)

The node covariates on side 1. (d) The node covariates on side 2. Each point corresponds to

one node, and the two axes represent the two dimensions of node covariates. Nodes in the

15 true co-clusters are marked in blue, and noise nodes not belonging to any co-clusters are

marked in red.
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Figure 2.10: Clustering performance (weighted Rand index) of BiTSC and three variant

algorithms (Section 2.2.3) as functions of (a) K0, the number of clusters in each run, (b) the

subsampling proportion ρ, and (c) the kernel enhancement parameter τ . A bipartite network

was simulated as described in Section 2.3.1.1 using K = 15, n1 = 50, n2 = 70, p1 = p2 = 2,

σ1 = σ2 = 10, ω1 = ω2 = 0.1, θ = 0.5, p = 0.15, and q = p/5. We set H = 50 and α = 0.7

whenever applicable. For (a), we set ρ = 0.8 and τ = (1, 1). For (b), we set K0 = 15 and

τ = (1, 1). For (c), we set K0 = 15 and ρ = 0.8.
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Figure 2.11: Clustering performance (weighted Rand index) of BiTSC and three variant

algorithms (Section 2.2.3) as functions of τ (τ1 = τ2). For each of (a) through (h), a bipartite

network was simulated following the procedure described in Section 2.3.1.1 using K = 15,

n1 = 50, n2 = 70, p1 = p2 = 2, σ1 = σ2 = 10, ω1 = ω2 = 0.1, θ = 0.5, and q = p/5. For the

input parameters of the algorithms, we set H = 50, ρ = 0.8, K0 = K = 15, and α = 0.7

whenever applicable. Note that Figure 2.10c is a truncated version of panel (h) here.
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Table 2.2: Fly-worm gene co-clusters identified by OrthoClust (Section 2.3.2)

Co-cluster1 # of genes # of genes P2
2 P3

3 Average PPC4 Average PPC Average PPC5

Fly Worm Fly Worm Total

1 216 4 2.54e-03 1.25e-07 0.52758649 0.27495886 0.52752971

2 296 5 4.39e-02 1.14e-08 0.11182023 -0.09538319 0.11177321

3 999 3 9.57e-01 6.71e-04 0.51022172 -0.22759466 0.51021819

4 449 3 3.95e-02 6.07e-05 0.54076835 0.30057179 0.54076212

5 646 5 2.14e-01 4.88e-05 0.06707985 0.20971478 0.06708681

6 530 3 3.47e-01 9.99e-05 0.25106598 0.03598257 0.25106156

7 8 502 4.07e-03 1.34e-11 0.77520991 0.61604135 0.61608481

8 3 442 6.34e-02 5.79e-05 0.46570141 0.52308973 0.52308803

9 2 610 4.44e-01 2.86e-03 0.51949823 0.38322655 0.38322734

10 265 286 1.47e-08 9.72e-110 0.78480461 0.33437622 0.58870568

11 79 105 1.18e-08 1.10e-179 0.90816313 0.62631328 0.7687559

12 5 675 3.37e-03 7.17e-07 0.35234373 0.60067804 0.60066888

13 5 864 2.27e-02 1.54e-04 0.56978234 0.40720803 0.40721284

14 4 467 2.58e-04 2.78e-06 0.13064446 0.51414297 0.51412525

1 With κ = 1, OrthoClust outputs a total of 24 clusters, among which 14 co-clusters have ≥ 2 genes in each

species.
2 p-value of the co-cluster based on the GO term overlap test (Section 2.3.3.2).
3 p-value of the co-cluster based on the ortholog enrichment test (Section 2.3.3.3).
4 The average pairwise Pearson correlation (PPC) is computed for all fly gene pairs in each co-cluster.
5 The average PPC is computed for all gene pairs of the same species in each co-cluster. Values in this

column are shown in Figure 2.3b-c.
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Table 2.3: Fly-worm gene co-clusters identified by OrthoClust (Section 2.3.2)

Co-cluster1 # of genes # of genes P2
2 P3

3 Average PPC4 Average PPC Average PPC5

Fly Worm Fly Worm Total

1 412 4 3.14e-01 1.68e-06 0.1812038 -0.05888426 0.1811872

2 417 2 1.00e-00 1.33e-03 0.24701688 -0.08194976 0.2470133

3 216 16 1.11e-06 3.51e-16 0.52421706 0.29469462 0.5231781

4 412 3 4.16e-02 4.68e-05 0.115830253 -0.05725930 0.1158242

5 900 5 8.00e-01 3.03e-06 0.51815480 0.08545191 0.518146

6 650 2 2.93e-01 3.24e-03 0.63868879 0.41859354 0.6386879

7 4 692 3.35e-05 1.35e-05 -0.13076364 0.5729412 0.572928

8 4 734 2.15e-01 1.70e-05 0.021641929 0.473630719 0.4736222

9 250 361 3.40e-04 1.20e-151 0.78019168 0.33264337 0.5172098

10 6 1067 2.32e-01 3.94e-05 0.49751377 0.42596621 0.4259682

11 2 427 2.72e-01 1.40e-03 -0.64244048 0.10860390 0.1085944

12 78 99 1.23e-06 3.40e-176 0.92014421 0.70566047 0.8179273

13 2 517 1.00e-00 2.05e-03 -0.796179190 0.240137690 0.2401283

14 2 692 1.14e-01 2.23e-04 0.296111471 0.50715018 0.5071478

1 With κ = 3, OrthoClust outputs a total of 22 clusters, among which 14 co-clusters have ≥ 2 genes in each

species.
2 p-value of the co-cluster based on the GO term overlap test (Section 2.3.3.2).
3 p-value of the co-cluster based on the ortholog enrichment test (Section 2.3.3.3).
4 The average pairwise Pearson correlation (PPC) is computed for all fly gene pairs in each co-cluster.
5 The average PPC is computed for all gene pairs of the same species in each co-cluster.
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a b

Figure 2.12: (a) The empirical CDFs of the entries of the consensus matrix for K0 between 2

and 50 (in increments of 5 after K0 passing 5) in the real data example (Section 2.3.2). (b)

The area under CDF curve as a function of K0. K0 = 30 was chosen.
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Algorithm 2 Automatic selection of K0 in BiTSC

Result: K0

Input: H, ρ, and τ for BiTSC; candidate K0’s in the interval [a, b] (default [5, 50])

Initialization:

K0_min = a and K0_max = b, K0_mid =
⌈
K0_min +K0_max

2

⌉
Calculate AUC_K0_min and AUC_K0_max as follows:

1. Run BiTSC with H = H, ρ = ρ, τ = τ , and K0 = K0_min to obtain the consensus

matrix;

2. Plot the empirical cumulative distribution function (CDF) of the entries of the consensus

matrix;

3. Calculate the area under the CDF curve and define it as AUC_K0_min;

4. Obtain AUC_K0_max similarly based on Step 1-3;

while True do

if |AUC_K0_ min−AUC_K0_ max|
AUC_K0_ min ≤ 0.05 then

Return K0_mid as the selected K0;
else

K0_mid =
⌈
K0_min +K0_max

2

⌉
, calculate AUC_K0_mid based on Step 1-3

if | AUC_K0_min−AUC_K0_mid | ≥ | AUC_K0_mid− AUC_K0_max | then

K0_min← K0_mid; K0_max← K0_max;

AUC_K0_min← AUC_K0_mid; AUC_K0_max← AUC_K0_max;

else

K0_min← K0_min; K0_max← K0_mid;

AUC_K0_min← AUC_K0_min; AUC_K0_max← AUC_K0_mid;

end

end

end
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a b

c d

Figure 2.13: Robustness of the random selection of 1,000 unclustered genes in Figure 2.4.

(a)-(d) Visualization of the 16 gene co-clusters found by BiTSC, same as in Figure 2.4 except

that four different random seeds were used to sample the 1,000 unclustered genes.
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Co-cluster Fly gene3 Fly gene MF/CC GO terms Worm gene4 Worm gene MF/CC GO terms
D1065.1 Cytosol; transporter activity; membrane
D2021.2 Membrane; transferase activity
C09B8.6 M band; striated muscle dense body
D2092.4 Myofibril (part of: body wall muscle cell)
F09F7.2 Cytoskeleton; myosin complex

striated muscle myosin thick filament 
(part of: body wall muscle cell); 

F55C12.1 Cytoskeleton
W03A5.7 Nucleus (part of: body wall muscle cell)
W04D2.1 Striated muscle thin filament;

striated muscle dense body (part of: body wall muscle cell)
C37A2.7 Ribosome
C53H9.2 Cytosol
K02B2.5 Cytosol; ribosome
Y37E3.8 Ribosome; cytosolic large ribosomal subunit
C25H3.9 Mitochondrion
F35D11.5 Mitochondrion
F58F12.1 Mitochondrion; proton-transporting ATP synthase complex
F59C6.5 Mitochondrion
M176.3 Mitochondrion
R53.4 Mitochondrion; proton-transporting ATP synthase complex
T02H6.11 Oxidoreductase Activity; mitochondrion
Y48E1B.5 Mitochondrion
Y71H2AM.5 Mitochondrion
Y94H6A.8 Oxidoreductase Activity; mitochondrion
F25H5.6 Mitochondrion
M01F1.6 Mitochondrion
T21B10.1 Mitochondrion

FBgn0011016 Endoplasmic reticulum F44E7.9 Integral component of membrane
FBgn0019925 Endomembrane system F56A8.3 Integral component of membrane
FBgn0021795 Endoplasmic reticulum T04G9.5 Endoplasmic reticulum; endoplasmic reticulum membrane
FBgn0028327 Endoplasmic reticulum Y56A3A.21 Endoplasmic reticulum; integral component of membrane
FBgn0030990 Endomembrane system Y71F9AM.6 Endoplasmic reticulum; endoplasmic reticulum membrane
FBgn0034500 Endomembrane system
FBgn0039303 Transport/localization; endomembrane system
FBgn0010520 Nucleolus; small-subunit processome C37H5.5 Nucleus; nucleolus; chromatin binding
FBgn0030067 Nucleolus; preribosome, large subunit precursor F44G4.1 Nucleolus; preribosome, large subunit precursor
FBgn0030504 Nucleolus JC8.2 Nucleus
FBgn0031361 Small ribosomal subunit rRNA binding; 

nucleolus; small-subunit processome
T05H4.10 Nucleus

FBgn0033169 RNA binding T23D8.3 Nucleus; preribosome, small subunit precursor
FBgn0034528 Nucleic acid binding T23G7.3 Nucleic acid binding
FBgn0034734 Nucleolus; small-subunit processome Y54H5A.1 Nucleus
FBgn0037489 Chromatin binding; nucleus Y73E7A.2 Nucleus; nucleolus
FBgn0037561 ATP binding; RNA binding; nucleolus
FBgn0260456 mRNA binding; RNA binding; 

ribonucleoprotein complex
C27F2.1 Cell projection; cytoskeleton; cilium
C52B9.3 Cytoplasm; cytoskeletal protein binding
F56D12.4 Cytoplasm
K07E8.6 Cytoplasm
Y97E10AR.2 Plasma membrane
ZK643.1 Cytoplasm (part of: body wall muscle cell)

10 C32E8.5 Nucleus; mRNA binding
11 FBgn0013548 Nucleus C09H10.6 Nucleus
12 C17H11.1 G protein-coupled receptor activity

FBgn0034605 Transferase activity; UDP-glycosyltransferase activity;
intracellular membrane-bounded organelle

AC3.7 UDP-glycosyltransferase activity; transferase activity

FBgn0040252 Glucuronosyltransferase activity; transferase activity; 
UDP-glycosyltransferase activity

C10H11.3 Glucuronosyltransferase activity; 
UDP-glycosyltransferase activity;transferase activity

FBgn0040255  Glucuronosyltransferase activity; transferase activity;
UDP-glycosyltransferase activity

C32C4.7 UDP-glycosyltransferase activity; transferase activity

FBgn0040257 Glucuronosyltransferase activity; transferase activity; 
UDP-glycosyltransferase activity

H23N18.1 UDP-glycosyltransferase activity; transferase activity

T19H12.10 UDP-glycosyltransferase activity; transferase activity
T19H12.11 UDP-glycosyltransferase activity; transferase activity
Y49C4A.8 UDP-glycosyltransferase activity; transferase activity

14 FBgn0032169 Nucleic acid binding C25A1.4 Nucleic acid binding; RNA binding
16 D1009.5 Cell projection; cytoskeleton

ZK512.2 Nucleotide binding; nucleic acid binding;
RNA binding; ATP binding

FBgn0032800 Cell projection; cilium

Mitochondrion

13

Molecular Function (MF) or Celluar Component (CC) GO terms1 closely related to featured BP GO terms2 in each co-cluster

1. GO Terms Information is collected from FlyBase (flybase.org) and WormBase (wormbase.org). 
    The Terms are based on experimental evidence or predictions or assertions.
2. BP GO terms that are highly enriched in both species in a given co-cluster.
3. Fly genes (non-BP-GO-annotated) with MF/CC GO terms that are closely related to featured BP GO terms in the co-cluster. 
    Please see Supplementary Materials for the featured BP GO terms that the MF/CC GO terms in this table are closely related to.
4. Worm genes (non-BP-GO-annotated) with MF/CC GO terms that are closely related to featured BP GO terms in the co-cluster.

4

6

7

8

9

FBgn0052311 Cytoskeletal binding

1

2

3

FBgn0025336

Figure 2.14: MF and CC GO terms of the genes without BP GO terms in the 16 gene

co-clusters identified by BiTSC (Section 2.3.2).
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Figure 2.15: Comparison of BiTSC and OrthoClust in terms of their identified co-clusters

(Section 2.3.2.1). This figure is an extension of Figure 2.3. After running the OrthoClust

algorithm, we kept the 14 co-clusters with at least two genes in each species (Section 2.3.2.1;

Table 2.2). The cluster sizes are between 184 and 1002. For BiTSC, we set H = 100, ρ = 0.8,

and τ = (1, 1) as we did in Section 2.3.2.1. Then we varied K0 between 5 and 10 and set

α = 0.6 so that BiTSC outputs co-clusters with sizes comparable to those identified by

OrthoClust. For a given choice of K0 and α, we kept the co-clusters that have at least 10

genes from each species and at least 200 genes total. Here, This figure shows that controlling

for cluster size, the co-clusters identified by BiTSC exhibit higher gene expression similarity

(second column of each panel) and greater enrichment of orthologs (third column of each

panel).
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19.50% edges removed 29.54% edges removed 39.44% edges removed

Figure 2.16: Comparison of BiTSC and OrthoClust in terms of link prediction performance on the fly-worm

data set (Section 2.3.2). From the 5414 fly genes and the 5731 worm genes in the fly-worm data set, we

sampled a proportion of fly genes and worm genes each, removed all edges among the sampled genes from the

original network, and run BiTSC on the remaining network with H = 100, ρ = 0.8, τ = (1, 1), and K0 = 30

(the same parameters as we used in Section 2.3.2) as well as OrthoClust. The number of removed edges

divided by the number of edges in the original network (10, 975) is shown in the title of each plot. For

BiTSC, we performed link prediction by thresholding the consensus matrix with cutoffs between 0 and 1. For

OrthoClust, we performed link prediction by connecting every pair of genes in the same identified co-cluster.

Denote the set of sampled fly genes as F and the set of sampled worm genes as W . Let F ′ ⊂ F be the set of

fly genes in F that are orthologous to at least one gene in W , and similarly, let W ′ ⊂W be the set of worm

genes in W that are orthologous to at least one gene in F . That is, we removed the “isolated" genes in F and

W to obtain F ′ and W ′. Then, the link prediction performance of BiTSC and OrthoClust was evaluated

based on the set of all gene pairs between F ′ and W ′ and the ROC curves and precision-recall curves were

obtained accordingly. We chose to evaluate BiTSC and OrthoClust based on all gene pairs between F ′ and

W ′ instead of F and W due to the low edge density in the original network. If we considered all gene pairs

between F and W , then the negatives would overwhelm the positives in the truth.
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CHAPTER 3

A Survey of Mixed Membership SBMs and Bipartite

SBMs

3.1 Introduction

The SBM [1, 113] serves as a benchmark tool in studying community detection problems,

where it assumes a process of edge formulation. A lot of methods have been developed

based on SBM to recover the latent block structure and node communities (see [1] for a

review). In a network of N nodes divided into K disjoint groups, the SBM assumes that

each node exclusively belongs to one cluster, and edges are generated independently with

probabilities only depending on the clusters to which the corresponding two nodes belong.

The flexibility of the SBM allows researchers to further generalize the SBM to more advanced

variants. In the last two decades, the development in technology has rapidly increased the

availability of network data with numerous structural features. For example, some networks

are accompanied by the metadata or node covariates, such as the gene expression levels in a

gene regulatory network or the personal age information in a social network. [38, 84] extend

the statistical inference methods for the SBM to incorporate such metadata. A lot of networks

contain noisy nodes or outliers [37, 114, 115], i.e., there may exist nodes that do not belong to

any clusters and connect with the other nodes in an arbitrary way. To tackle this issue, Cai

et al. [114] propose a generalized SBM with outliers and formulate the community detection

by a convex optimization problem; Qian et al. [37] develop a degree-corrected version of

this method. Besides, in real-world data, noises could also exist among edges [115]. For

example, when studying the gene regulatory networks, the known interaction (an observed
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edge) between a transcription factor (a protein) and a DNA-binding site (a gene) is measured

based on the physical binding between them [116]. This implies that an observed edge

may not represent the actual regulation (as the detected interaction may only be caused

by sequencing errors). In contrast, an unobserved edge (zero in the adjacency matrix) does

not necessarily imply there is certainly no regulation. In general, the adjacency matrices of

empirical network data could contain many false zeros (i.e., missing data) due to measurement

errors. Given this, several researches [24, 36, 48] have accounted for the sparsity in their

stochastic block modeling.

Compared to the above methods, which all consider partitioning network nodes into

disjoint groups, there is a line of research concentrating on detecting the mixed membership

communities (see [117, 118] for review). The overlap in node membership is a very common

characteristic of many real-world networks. For example, a professor doing interdisciplinary

researches could have collaborations in multiple research areas. A gene or protein could

participate in multiple signaling pathways or functional complexes [7]. For this reason,

extensions of the SBM to mixed membership scenarios have received a lot of attention

recently. In this chapter, we give a review of the community detection methods on the mixed

membership SBM.

So far, a community we discussed in either the non-overlapping case or the overlapping

case refers to a group within which the edge density is relatively higher than the edge

density between groups. Nevertheless, the definition of a community needs to be further

generalized when the network exhibits a disassortative community structure such as the

bipartite network [119]. A bipartite network, as a special case of a network, containing two

types of nodes, where edges are only allowed to connect nodes of different types. In Chapter 2,

we have studied a bipartite ortholog network by connecting orthologous genes in two species;

clustering on such a network could lead to evolutionarily conserved gene clusters [30, 108].

In this chapter, we mainly focus on the community detection methods under the SBM and

its three types of extensions: (1) degree-corrected SBM; (2) mixed membership/overlapping

SBM; (3) bipartite SBM. As far as we know, is no research has integrated all three of the
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real-world network features in one model. We give a literature review on the existing methods

under (degree-corrected) mixed membership SBM and (degree-corrected) bipartite SBM. The

main questions we wish to answer are the following: What are the challenges in introducing

degree-correction in the mixed membership SBM? What are the challenges in extending the

degree-corrected mixed membership SBM to the bipartite network?

Outline. The rest of the chapter is organized as follows. In Section 3.2, we review a detailed

definition of the SBM. In Section 3.3, we review a detailed definition of the DCSBM. In

Section 3.4, we present an overview of the mixed/overlapping SBM and relevant community

detection methods. In Section 3.5, we review a detailed definition of the biSBM and relevant

community detection methods. In Section 3.6, we generally summarize the challenges in

benchmarking these methods. And we close this chapter by discussing future research

directions.

Notation. We use bold uppercase letters to denote matrices. We use bold lowercase letters

to denote vectors. We use unbolded letters to denote entries in a matrix or a vector. 1

denotes an all-ones vector. For a vector x, ‖x‖p denotes its lp-norm. For a matrix X, ‖X‖F
denotes its Frobenius norm. Denote [N ] := {1, . . . , N}.

3.2 Simple SBM

In a network of N nodes, the N ×N adjacency matrix A is defined by Aij = 1 if there is

an edge between i and j and 0 otherwise, and edges correspond to independent Bernoulli

random variables. Here we focus on the undirected networks without self-edges; then A is

symmetric and Aii = 0. Suppose the network contains K groups, we let πi = (πi1, · · · , πiK)T

be a K-dimensional membership indicator of node i, where only one element equals one and

others equal to zero; that is, πik = 1 if node i belongs to group k. The SBM assumes that

the edge generation probability between two nodes is a function of the communities they

belong to. Let Ω be the K×K symmetric matrix, representing the Bernoulli edge generation
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probabilities between different communities. Then Aij ∼ Ber(Ωgh) if node i belongs to group

g and node j belongs to group h; or equivalently, Aij ∼ Ber(πT
i Ωπj). If we integrate all

the node membership vectors into an N ×K matrix Π, then we can write E[A] = ΠΩΠT.

Note that the non-zero elements in column k of Π correspond to the nodes in community

k. And nodes within the same groups are statistically identical. As the SBM explicitly

assumes a parametric probability distribution of networks, community detection under the

SBM becomes estimation of parameters Π and Ω. Compared to many other community

detection schemes, SBM-based community detection methods are convenient to study their

statistical properties and asymptotic consistency under certain conditions.

In the connectivity matrix Ω, the diagonal elements Ωkk represent the edge probabilities

within blocks, while the off-diagonal elements Ωgh represent the edge probabilities between

blocks. ∀ k, g, h = 1, · · · , K, g 6= h, when Ωkk = Ωgh, it recovers the Erdős-Rényi random

graph; when Ωkk > Ωgh, it recovers the assortative block structure, where edges within blocks

are more dense than between blocks; when Ωkk < Ωgh, it recovers the disassortative structure,

where edges between blocks more dense than within blocks. Note that there is a special case

of the disassortative mixing structure when Ωkk = 0, ∀k. In this case, edges only connect

nodes from different blocks, which is commonly used to study the bipartite structure [60]

(see details in Section 3.5).

3.3 Degree-correction SBM

In network analysis, the node’s degree stands for the total number of edges connected to

it. In other words, the degree of node i is equal to the sum of the corresponding row or

column of the adjacency matrix. The simple version of SBM (Section 3.2) assumes that

within the same group, nodes are statistically equivalent, so that node degree distribution

is homogeneous. However, empirical networks often have nodes with varying degrees, as

there exist “popular” (high-degree, so-called hub) nodes and “unpopular” (low-degree) nodes.

This common phenomenon makes the node degree distribution frequently exhibit the heavy

tail or right-skewed property [37, 47, 120]. In particular, it has been claimed that the node
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degrees in some networks follow approximately a power-law distribution [121] (Section 4.C).

Besides, previous research [20, 24, 35] shows that in the network with heavy-tailed distribution,

the classical clustering algorithm (e.g., spectral clustering) often fails to recover the block

structure. That is, these methods tend to group nodes with similar degrees.

Karrer et al. [35] proposed the degree corrected stochastic block model (DCSBM) to

accommodate the node degree heterogeneity while preserving the overall block structure. The

DCSBM introduces the node-specific degree correction parameters θi, which are absorbed into

the edge generation probability. In detail, the number of expected edges between node i and

j follows a Poisson distribution Aij ∼ Poi(θiθjπT
i Ωπj). Note here θi, θj and Ω are arbitrary

up to multiplicative constants, which can be fixed by imposing the following constraints on

θi:
N∑
i=1

θiπi =
N∑
i=1
πi (3.1)

That is, the sum of node degree parameters within a community equal to the number of

nodes in that community. The authors [35] use a Kernighan-Lin-like procedure to iteratively

maximize the likelihood function by treating true community labels πi and degree parameters

θi as fixed parameters. And they test the efficacy of DCSBM both on synthetic and empirical

networks with heterogeneous node degrees. In addition, DCSBM has also been studied under

other various scenarios, including but not limited to pseudo-likelihood [24], spectral clustering

[26, 27, 46] and modularity based approaches [25, 45].

Note that in DCSBM, multi-edges (i.e., Aij > 1) are allowed. Even though many real-

world networks only have single edges, many researchers have discussed the advantage by

assuming edges are Poisson-distributed in SBM [25, 35, 122]. The inclusion of multi-edges

usually makes the computations simpler and easier without affecting the actual outcome

significantly. Specifically, a Bernoulli random variable with a small mean is well approximated

by a Poisson random variable having the same mean (see detailed discussion in [122]). And

most real networks are sparse, so one can expect the approximation to work well. Besides,

Zhao et al. [25] found no significant difference in the solutions produced by the model that

uses the Poisson distribution instead of the Bernoulli distribution used in the original model.
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3.4 Mixed membership SBM

In most real-world networks, a node could belong to multiple groups, or in other words, have

mixed or overlapping communities [123]. For example, in a gene regulatory network, a gene

could participate in more than one signaling pathway or biological process. In a friendship

network, a person could be a member of several social clubs. Mixed membership community

detection has been an increasing research area during the last decade, and several extensions

of the SBM [41, 117] have been proposed in the literature to model the mixed membership

scenario. These models characterize each node by a membership vector indicating its weight

of belonging to different communities, making the clustering results more interpretable than

those in the non-overlapping case. Compared to the node membership πi in Section 3.2, πi
in the mixed membership case is a soft membership vector which is not constrained always

to have only one entry equal to one and all the others equal to zero. In this section, we first

introduce several famous mixed membership SBMs: MMSBM, OSBM, OCCAM, LCM and

we discuss relevant methods developed for identifying mixed membership communities.

The first introduced and well-studied generative model for mixed membership communities

is the mixed membership stochastic block model (MMSBM) [48]. Under this model, all node

membership vectors are drawn independently from a Dirichlet prior, with πik representing

the probability of node i belong to group k. In detail, the complete generative process is

stated as follow:

πi ∼ Dirichlet(α), i ∈ [N ], α ∈ RK
+ (3.2)

zi→j ∼ Multinomial(πi), zi←j ∼ Multinomial(πj) (3.3)

Aij ∼ Bernoulli(zi→jTΩzi←j) (3.4)

where zi→j and zi←j are the K-dimensional edge-specific membership indicators, respectively

denoting the group membership of node i and node j when they interact with each other.

Note that a node could belong to different groups when interacting with different nodes. The

parameter α0 = ∑
k αk controls the level of overlap; the larger the α0, the greater the overlap.
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Alternatively, the edge probability in (3.4) can be replaced by a simplified version:

Aij ∼ Bernoulli(πT
i Ωπj) (3.5)

which is more popularly adopted by other literature. Note that, under the MMSBM, the

edge probability between a pair of nodes does not necessarily increase as the number of

communities that they share increases. Also, the MMSBM has been applied to various

scenarios. For example, Huang et al. [124] applied it to the heterogeneous networks. In

this case, a network could consist of different types of nodes and interactions among types.

Under their model, MMSBM is a special case containing only one single type of node. Kao

et al. [125] propose a hybrid MMSBM (HMMB) by capturing mixed-membership, power-law

distributed node degrees, and sparsity into one hybrid model and infer the parameters based

on the MCMC inference procedure. Besides, each degree correction parameter θi in their

model is viewed as a random variable following a prior power-law distribution.

The overlapping stochastic block model (OSBM) [49] is another well-known extension of

SBM to the overlapping case. Under the OSBM, each node is assigned with a {0, 1}-vector

of length K; that is, πi ∈ {0, 1}K . And elements πik are independent Bernoulli random

variables. In particular, the edge probabilities are given by:

Aij ∼ Bernoulli(σ(πT
i Wπj + πT

i u + vTπj +W ∗)) (3.6)

where σ(·) is the sigmoid function. W ∈ RK×K
+ , u,v ∈ RK

+ , and W ∗ ∈ R. In this sense, two

nodes are more likely to be connected if they have more than one group in common. The

author uses an EM-like algorithm to infer the parameters of the model.

The overlapping continuous community assignment model (OCCAM) [126] is a degree-

corrected mixed membership SBM. The formulation is slightly different than MMSBM and

as follows:

Aij ∼ Bernoulli(ρNθiθjπT
i Ωπj) (3.7)

where ρN is the scaling factor for theoretical analysis, and ρN → 0 as N → ∞. Also, the

degree parameters are constrained by (3.1) and ∀ i, ‖πi‖2 = 1 for identifiability.
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So far, the models that we discuss focus on the mixed membership communities for nodes.

On the other hand, Ball et al. [50] have proposed the link communities model (LCM) to study

the mixed membership communities by grouping edges instead of nodes; it is a relaxation

of the DCSBM [35]. This model has intuitive interpretation when applied to real-world

networks, especially social networks. For example, the connections could represent co-workers,

classmates, family members, and friendships, etc. Under the LCM, the existence of mixed

membership communities is caused by the existence of multiple types of edge. Unlike the

MMSBM and OSBM, under which the edge generation probabilities are determined based on

the node memberships, in LCM, the mixed membership node memberships and the mixed

membership edge memberships are determined simultaneously. Mathematically, in a network

with N nodes and K communities, each node i is assigned by a propensity vector ηi with

each element ηik representing the propensity of node i connected by edges of a group k, and

the number of edges of a group k between node i and j is Poisson-distributed with mean

value at ηikηjk. And the number of edges of all groups between node i and j are generated

by:

Aij ∼ Poisson(
∑
k

ηikηjk) (3.8)

The author uses an EM algorithm to maximize the log-likelihood, and the estimated

membership vectors contain non-negative values.

Above, we have introduced several types of mixed membership SBMs. Next, we will

discuss the methods developed for detecting mixed membership communities, which are mainly

divided into two groups: model-based methods (based on variants of SBMs) and algorithm-

based methods. The model-based methods focus on fitting a generative model to an observed

network and estimating the parameters by maximizing the (approximated) log-likelihood. For

example, under the MMSBM, few studies [48, 127] have used the variational EM algorithms

to maximize the approximated posterior distributions of latent variables. On the other hand,

several algorithmic-based methods for detecting mixed membership communities have been

developed, including non-negative matrix factorization (NMF) based approaches [51, 54, 128],

spectral clustering based approaches [53, 56–59, 129], and tensor-based approaches [52].
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NMF is a dimension reduction technique, and it can be used for clustering. In general,

given a data matrix V ∈ RM×N
+ with N data points and M features, NMF solves the

optimization problem: arg minW≥0,H≥0‖V−WHT‖2
F , where W ≥ 0 and H ≥ 0. In terms

of the network clustering problem, NMF has been proven that it is basically equivalent to

Kernel K-means clustering and Laplacian spectral clustering [130, 131]. In particular, the

objective function reduces to a symmetric factorization: arg minH≥0‖A−HHT‖2
F which is

called symmetric NMF (SNMF). SNMF has been widely studied in the context of mixed

membership communities. For example, Psorakis et al. [51] proposed a Bayesian variant of

SNMF (BNMF). Specifically, each entry Hik here represents the participation strength of

node i into community k and normalizing each row in H gives each node a soft membership

vector. Also, under the MMSBM, GeoNMF [54] algorithm uses the SNMF to estimate the

node memberships consistently under specific conditions. Note that this method assumes Ω

is a diagonal matrix to guarantee the unique solution of SNMF.

The spectral algorithm [16] is the most well-studied technique for detecting both non-

overlapping and overlapping communities due to its computational scalability and theoretical

properties [27, 132–135]. The general procedures of a spectral algorithm are summarized as

follow:

1. Calculate the first K leading eigenvectors of the adjacency matrix A or the Laplacian

matrix L = D−1/2AD−1/2, where D is the diagonal matrix with Dii = ∑
j Aij

2. Integrate the eigenvectors by columns into a N ×K matrix, denoted by U

3. Apply a clustering algorithm on the rows of U, and find K vectors representing the

centers of K clusters in the low dimensional space

4. Project each row of U onto the K representative cluster centers, and determine the

membership vector for the corresponding node

It may include the regularization [27] of L in Step 1 and normalization [15, 24] of U in

Step 2 for adapting the network sparsity [136] and node degree heterogeneity, respectively.
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While K-means clustering in Step 4 is usually applied in the non-overlapping case, it is not

expected to work in the overlapping case due to the existence of mixed memberships. For

this reason, researchers have tried several modifications to replace K-means clustering. For

example, Fuzzy C-Means (FCM) [137] is the first spectral algorithm to find mixed membership

communities, which replaces the K-means with a heuristic fuzzy clustering algorithm.

Recently, approaches have been proposed under the framework of the SBM, and the

theoretical consistency of parameter estimation is studied given specific assumptions. In

summary, these methods are built on the rationale that each latent node position in the low-

dimensional space (each row in U) is a mixture combination of pure nodes in K communities

(we call a node i “pure” if πik = 1 for some k and all other elements are 0). The OCCAM

by Zhang et al. [58] replaces K-means by K-medians, and the node membership vectors in

this model have unit l2 norm: ‖πi‖2 = 1. Their method is able to recover the representative

cluster centers corresponding to the pure nodes, given the assumption that each community

contains a proportion of pure nodes. Based on the OCCAM, Arroyo et al. [59] estimate a non-

orthogonal sparse eigenbasis of the principal subspace of A instead of directly calculate the

eigenvectors of A, which lead to computational efficiency but in the sacrifice of identifiability.

The Spectral Algorithm with Additive Clustering (SAAC) [53] models each node membership

vector as a binary vector, πi ∈ {0, 1}K ; this algorithm is based on the property that each row

of node i in U is the sum of rows of pure nodes that share the mixed membership communities

with node i. Anandkumar et al. [52] propose a tensor-based spectral decomposition approach;

this method is built on the MMSBM and has been shown theoretically consistent, but the

computational complexity prohibits its implementation on large-scale network data.

Besides, three papers [55–57] focus on studying an interesting property about the

eigenspace of A, that is: the rows of U form a low-dimensional simplex geometrical

structure [57]. In particular, the row in U which corresponds to a pure node will fall

on one of the K corners (vertices) of the simplex, and the row corresponding to a mixed node

will fall in the interior of the simplex. The corners can be found by running a corner-finding

(vertex-hunting) method such as the successive projection algorithm (SPA) on U [138, 139].
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After finding the corners, these methods will reconstruct all node memberships by projecting

the rows of U onto those of the pure nodes. As proved by Jin et al. [57], including the node

heterogeneity will complicate the situation, and they normalize each row of U based on the

first leading eigenvector to retain the simplex structure.

MMSBM is not identifiable, and identification constraints have also been discussed among

those methods [53, 54]. In general, the sufficient conditions for identifiability (up to a

permutation of the group labels) of MMSBM includes: (1) Ω has full rank (rank(Ω) = K); (2)

there is at least one “pure” node in each community (i.e., for each k ∈ [K], there exists at least

one i such that πik = 1). Additionally, few methods also include the degree-correction into

their model [55, 57, 58], which will introduce more free parameters (node degree parameters)

and thus require more restricted constraints to be identifiable. In this case, the above

constraint (1) becomes: Ω is full rank and has unit diagonals (rank(Ω) = K and Ωkk = 1,∀k);

and with addition constraint on the degree parameters (3) equation (3.1). Also, for those

methods based on the property of the simplex structure of eigenspace, the extension to the

node degree-correction case is not simple and intuitive as in [35, 126]. In this case, the node

degree heterogeneity will blur the simplex structure and challenge the original theoretical

proof [55–57].

Note that even some of these papers study the asymptotic consistency theoretically

under method-specific assumptions and conditions. Their corresponding algorithms are

not guaranteed to perform as perfectly as the theoretical analysis (see the summarized

comparison of these methods in Table 3.1). Also, It is worth pointing out that all methods

for finding overlapping communities can also be adapted to find non-overlapping communities

by assigning each node solely to the community to which it most strongly belongs in the

overlapping division. Also, continuous community membership can be converted to binary

type by thresholding each element in πi.

The Latent Position Cluster Model (LPC) of Handcock et al. [10] is very similar to the

idea of mixed membership SBM [41]. Under the LPC, each node i has a latent position vector

πi in K-dimensional Euclidean latent space [140], where πi is drawn from a finite mixture of
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K multivariate Gaussian distribution. The edge generation probability between node i and j

is a function of their Euclidean distance in the latent space.

3.5 Bipartite SBM

In general, a bipartite network can be viewed as a special case of a unipartite network, with

the constraint that nodes within the same type cannot connect with each other. Similar to

unipartite networks, community detection in bipartite networks aims to find node groups

with similar connectivity patterns to other groups. With the flexible and intuitive structure

of SBM, the effort in studying (degree-corrected) SBM has been extended to the bipartite

case, such as biSBM [60] extended from DCSBM, biLCM [141] extended from LCM and

BiMPCA [142] extended from Mixed-SCORE.

We let N1 and N2 denote the number of nodes in two types. We denote N := N1 +N2.

Without loss of generality, we let 1 ≤ i ≤ N1 to index type 1 nodes and N1 < i ≤ N to index

type 2 nodes. We define ti ∈ {1, 2} as a function of node index i, where ti = 1 indicating type

1 node and ti = 2 indicating type 2 node. Then the adjacency matrix presents a structure

with zero diagonal blocks:

A =

 0 B

BT 0

 (3.9)

where B is N1 ×N2 bipartite adjacency matrix with each entry equal to 1 if corresponding

two nodes are connected and 0 otherwise. Let K1 and K2 be the number of groups in type 1

and type 2 (without loss of generality, we assume K1 ≤ K2), and the connectivity matrix of a

bipartite SBM is defined by a K1 ×K2 matrix Ω where Ωgh represents the expected number

of edges between two nodes lying in group g and group h, g ∈ [K1], h ∈ [K2]. Thus, from a

block model point of view, a bipartite SBM is simply an SBM where diagonal blocks equal to

0.

In general, when studying the community detection in bipartite networks under the

framework of SBMs, a natural way is to directly apply community detection methods for

SBMs to bipartite networks, as the SBM is capable of producing bipartite structure by
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forcing nodes from the same type not to connect each other. However, Larremore et al. [60]

have shown that simply applying unipartite community detection methods to the bipartite

case using the adjacency matrix in Equation (3.9) will lose the information. In particular,

they compare two types of model fitting approaches, one with an explicit constraint on

the bipartite structure and one without. The two types of cases have numerically identical

likelihood functions. However, they have different solution spaces as the former takes the

bipartite structure as given and the latter does not. The authors find that compared to the

bipartite case, the non-bipartite counterpart is likely to group nodes of the same type into

the same community (i.e., there exist communities which only contains nodes of the same

type), and computation, in this case, is less efficient as it solves the problem in a larger space.

In their analysis, the algorithm fitted based on the biSBM outperforms the one fitted based

on the non-bipartite SBM.

Similar to the unipartite scenario, community detection in the bipartite network can be

divided into two types: algorithm-based methods and model-based methods. Algorithm-based

methods involve optimizing an objective function over all possible network partitions such as

modularity based method [143, 144], spectral based methods [28, 29, 85, 145–148] and NMF

based method [149–151]. In particular, several literatures focus on studying the theoretical

property of bipartite spectral clustering. For example, Zhou et el. [147] propose that in

the bipartite case, spectral clustering performs better by replacing the first step singular

value decomposition by principal component analysis; the authors also develop a data-driven

approach to choose the regularization parameter. In another paper [29], the same authors use

this type of spectral clustering as an initial method for the EM algorithm. On the other hand,

Model-based methods fit the probabilistic generative model to the observed network and

estimate the model parameters by optimizing a log-likelihood function [42, 60, 86, 141, 152].

In general, we do not assume any correspondence between communities in type-1 and type-

2. In other words, there is no requirement for a diagonal block structure in Ω. Like in SBM [22],

in biSBM we assume that the connectivity matrix Ω cannot have two columns equal and

the corresponding rows also equal. That is, ∀ g, g′ ∈ [K1], g 6= g′, ∃h ∈ [K2], s.t. Ωgh 6= Ωg′h
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and ∀h, h′ ∈ [K2], h 6= h′, ∃ g ∈ [K1], s.t. Ωgh 6= Ωgh′ . This is a necessary constraint

for defining K1 distinct clusters on side 1 and K2 distinct clusters on side 2 with different

structural properties. Therefore, settings where this assumption is violated correspond

to ill-specified models with redundant clusters. Note that it will recover an one-to-one

matching structure when Ω is symmetric (K1 = K2 = K) and has the assortative structure:

Ω = q · 1K1T
K + (p− q) · IK (the variables p and q are positive constants, and p > q), see a

detailed study about this special case in [152].

3.6 Summary and discussion

This chapter mainly introduces the current methods developed for detecting mixed membership

communities under the SBM framework. We summarize them in Table 3.1. Even these

methods, in general, share the same goal, in practice, it still remains a challenge to compare

them systematically. The first issue lies in the fact that there is no unified generative model

for defining the mixed membership community structure, as different models rely on different

assumptions. And we are not clear about how similar the mixed membership community

structure produced by the generative models with that existed in real-world data sets. The

users’ domain knowledge of the data is important to decide which method to apply or

not. Another issue is due to the lack of universal evaluation criteria for mixed membership

communities. Early efforts [117, 153] focus on comparing clustering methods that output a

nonfuzzy node membership vector (the element in πi can either be 0 or 1) rather than a

fuzzy vector (the element in πi can be a continuous positive value). Besides, extending the

quality measures for disjoint to mixed membership communities is nontrivial. Compared to

disjoint community detection, there are only two widely used measures for the overlapping

case, which are the extended Normalized Mutual Information (NMI) [153] and the Omega

index [154]. These two measurements are the extension of NMI and the extension of the

Adjusted Rand Index (ARI) [110], respectively. Note that when there is no overlap, the

extended NMI does not coincide with the standard NMI, but the Omega index does reduce to

the ARI. Also, note that these two criteria cannot be directly applied to the fuzzy overlapping
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scenario unless the node memberships are thresholded to binary vectors.

In addition, the extension of mixed membership SBM to the bipartite network is an

important research direction, which is also the focus of Chapter 4. The main motivation is

that real-world bipartite networks are frequently observed to have overlapped communities,

and the methods designed based on the general unipartite networks should not be directly

applied to bipartite networks [60]. For example, in the paper-author network, a researcher

could work as a statistician in a biology paper, and he/she could also work as a software

engineer in a computer science paper. In the gene orthology network, a gene could also

belong to multiple functional groups.

The relevant efforts have been made to study the bipartite mixed membership stochastic

block models. In particular, Whang et al. [86] formulate a mixed membership SBM with hard

(binary) node memberships. Moreover, this model takes a nonparametric Bayesian approach

to avoid inputting the number of clusters K. However, the resultant number of clusters,

in this case, usually tends to be much greater than necessary. Compared to the mixed

membership case, some of the communities here may be less interpretable or meaningful.

They validate the model based on the link prediction task of drug-protein data, and their

model does not consider the node degree heterogeneity.

Besides, Godoy-Lorite et al. [155] formulate a bipartite structure based on MMSBM

to study the user-item recommender system. In this model, each node (user or item) is

assigned with a mixture membership vector, and the edge (rating) between a pair of user and

item is generated from a categorical distribution parameterized by the corresponding node

membership vectors. This idea is intuitive as a user or item could belong to multiple groups.
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Table 3.1: List of (degree-corrected) mixed membership stochastic block models and

(degree-corrected) bipartite stochastic block models.

Model

Node

Membership

Parameter

Estimation Bipartite1

Degree

Correction2 Consistency3

MMSBM [48] ‖πi‖1 = 1 variational EM 7 7 7

OSBM [49] πik ∈ {0, 1} variational EM 7 7 7

LCM [50] πik ∈ R+ EM 7 7 7

HMMB [125] ‖πi‖1 = 1 MCMC 7 7 7

biSBM [60] ∃! k, s.t. πik = 1 Kernighan-Lin 3 3 7

mbiSBM [152] ∃! k, s.t. πik = 1 variational EM 3 3 7

SC-RRE [29] ∃! k, s.t. πik = 1 spectral algorithm + EM 3 7 3

biLCM [141] πik ∈ R+ EM 3 7 7

GeoNMF [54] ‖πi‖1 = 1 NMF based method 7 7 3

SPACL [56] ‖πi‖1 = 1 spectral algorithm 7 7 3

SPOC [55] πik ∈ {0, 1} spectral algorithm 7 7 3

Tensor-Spectral [52] ‖πi‖1 = 1 tensor power iteration 7 7 3

SAAC/SBMO [53]) πik ∈ {0, 1} spectral algorithm 7 7 3

SPCA [59] ‖πi‖1 = 1 spectral algorithm 7 3 7

Mixed-SCORE [57] ‖πi‖1 = 1 spectral algorithm 7 3 3

OCCAM [58] ‖πi‖2 = 1 spectral algorithm 7 3 3

1 The method is applied to bipartite network or not
2 The method considers degree-correction or not
3 The method justifies the consistent estimation or statistical optimality under theoretical limits or not
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CHAPTER 4

A Bipartite Mixed Membership Stochastic Block

Model

In this chapter, we focus on designing an algorithm that detects overlap communities from a

bipartite network and accounts for node degree heterogeneity. As discussed in Section 3.6,

studying the mixed membership communities in the bipartite networks has an increasing need

in real-world applications, such as the bipartite networks of user-item, drug-protein, paper-

author, etc. In Chapter 3, we have shown that the SBM is flexible enough to be extended to

accommodate the characteristics existing in the real-world networks. Here we would like to

construct a general and interpretable model, based on the SBM, to simultaneously capture

the following three key features prevalent in real-world networks: (1) heterogeneous node

degrees; (2) mixed membership communities; (3) bipartite structure.

4.1 Model

Here, we propose a new model: bipartite mixed membership stochastic block model with

degree correction. Four well-cited papers serve as the foundation:

• The degree-corrected stochastic block model (DCSBM) [35]. See details in Chapter 3.3.

• The mixed membership stochastic block model (MMSBM) [48]. See details in Chapter 3.4.

• The bipartite stochastic block model (biSBM) [60]. See details in Chapter 3.5.

• The matched bipartite stochastic block model (mbiSBM) [152]. See details in Chapter 3.5.
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The bayesian generative model is stated as follows.

For each node i on the side 1 and node j on the side 2, let πi denote the mixed membership

vector of node i and let πj denote the mixed membership vector of node j, then both of

them are generated from the Dirichlet prior:

πi
i.i.d∼ Dirichlet(α1) (4.1)

πj
i.i.d∼ Dirichlet(α2) (4.2)

Between each pair of node i on side 1 and node j on side 2, the edge is generated from a

Poisson distribution:

Aij ∼ Poisson(θiθjzT
i→jΩzi←j) (4.3)

where zi→j denotes the latent group membership of node i when interacting with node j,

and zi←j (or zj→i) denotes the latent group membership of node j when interacting with

node i. Both of them are generated from the multinomial distributions in (4.4) and (4.5):

zi→j
i.i.d∼ Multinomial(1,πi) (4.4)

zi←j
i.i.d∼ Multinomial(1,πj) (4.5)

Note that the group membership of each node defined in (4.4) and (4.5) are edge-specific,

and each node can have different membership when interacting with nodes on the other side.

With abuse of notation, we denote π := {πi, i ∈ [N ]}, z := {zi→j, ti 6= tj, i, j ∈ [N ]},

θ := {θi, i ∈ [N ]} and α := {α1,α2}. The observed data are A, the latent variables are

{z,π} and the hyperparameters are {θ,Ω}. The joint probability function is

p(A, z,π|θ,Ω,α) =
∏
i<j
ti 6=tj

p(Aij|θi, θj, zi→j, zi←j,Ω)p(zi→j|πi)p(zi←j|πj)
N∏
i=1

p(πi|αti) (4.6)

As shown in (3.5) in Chapter 3.4, the latent variable z in the bipartite case could also be

integrated out analytically, which leads to estimation over a smaller set of latent parameters

(see (4.7)). Here we choose to keep the z to simplify inference (see discussion in [48]).

Aij ∼ Poisson(θiθjπT
i Ωπj) (4.7)
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Following the exact definition in Section 3.5, the adjacency matrix A of the bipartite network

contains zero diagonal blocks

A =

 0 B

BT 0

 (4.8)

where B is the N1×N2 bi-adjacency matrix. Figure 4.1 presents a diagram on the generation

process under our model. As illustrated in (4.3), one can multiply θi and θj by a scalar c,

and divide Ω by c2 without changing the edge distribution [45] (note that the elements in Ω

do not represent probabilities here). Given this, we set the following normalization constraint

for θi without loss of generality:

∑
i: ti=1

πiθi =
∑
i: ti=1

πi

∑
i: ti=2

πiθi =
∑
i: ti=2

πi (4.9)

Note that Equation (4.9) and Equation (3.1) are basically equivalent, except that πi here

is mixed rather than binary. When θi = 1,∀i, we recover the non degree-corrected model.

In general, the constraint (4.9) is not strictly held as we assume πi is random rather than

deterministic. Instead, we view (4.9) in the sense of average. In the following study, we use

constraint (4.9) by taking the expectation with respect to the variational distribution of πi
(see (4.20) for details). Note that the general form (4.7) can include the following models as

special cases with additional constraints:

• When all nodes are pure, N1 = N2, and Ω = ΩT, it recovers DCSBM

• When N1 = N2, Ω = ΩT, and θi = 1,∀i, it recovers MMSBM

• When all nodes are pure, it recovers biSBM

• When all nodes are pure and Ω = ΩT, it recovers mbiSBM

Recall Section 3.2, a node i is pure if there is only one entry in πi is 1 and all other entries

are 0. Mathematically, a node i is pure if ∃ k, s.t., πik = ∑
l πil = 1.
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Figure 4.1: A diagram of the generative bipartite degree-corrected mixed membership

stochastic block model.

4.2 Model fitting and variational EM algorithm

In our question, we are interested in finding the posterior distribution of the per-node mixed

membership vectors π and the per-pair membership indicators z. Moreover, the posterior

inference allows us to form a predictive distribution of unobserved edges and evaluate the latent

structures of the observed network. Also, we are interested in estimating the connectivity

matrix Ω and the Dirichlet parameters α. Let Σ := {z,π} be the collection of the latent

variables. Let ∆ := {θ,Ω,α} be the collection of model parameters. Then the posterior

distribution of Σ given the observed data A can be written as:

p(Σ|A,∆) = p(A,Σ|∆)
p(A|∆) (4.10)

However, the marginal distribution of A in the denominator requires the integration of the

numerator over all the latent variables Σ, which will cost exponential time to compute [156,

157]. One way to avoid calculating the marginal distribution while estimating the posterior

distribution is to use Markov chain Monte Carlo (MCMC), which is not scalable to large

networks. Following the idea of how the MMSBM is originally fitted by [48], we derive a

mean-field variational Bayes method for implementing the posterior inference and parameter

estimation. See detailed reviews about the variational inference in [157–159].
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The main idea lies in the variational method is to approximate a posterior distribution by

a tractable family of distributions that has a simpler format than the true posterior. More

specific, the variational distribution q(Σ) is parameterized by the variational parameters ∆′

(see details later). The variational parameters are fitted so that the variational distribution is

as close as possible in Kullback-Leibler (KL) divergence to the true posterior. In detail, KL

divergence is given by:

KL(q(Σ) ‖ p(Σ|A,∆)) = Eq
[
log q(Σ)

p(Σ|A,∆)

]

= Eq [log q(Σ)]− Eq [log p(Σ|A,∆)]

= Eq [log q(Σ)]− Eq [log p(Σ,A|∆)] + log p(A|∆) (4.11)

Note that KL divergence itself is not solvable as it involves calculating the marginal distribution

of the data. However, minimizing KL divergence is equivalent to maximizing the negative of

the first two items in Equation (4.11), defined by:

L(q,∆) := Eq [log p(Σ,A|∆)]− Eq [log q(Σ)]

= Eq [`(∆)]− Eq [log q(Σ)] (4.12)

Here `(·) denotes the complete log likelihood function. As KL ≥ 0, then log p(A|∆) ≥ L(q,∆),

so L(q,∆) can be considered as a lower bound on the log likelihood log p(A|∆). One maximizes

the objective function in (4.12) over likelihood parameters and the variational parameters

iteratively until convergence. Under the scheme of mean-field variational inference, each

latent variable is mutually independent, the fully factored variational density is defined as:

q(z,π|φ,γ) =
∏
i<j
ti 6=tj

q1(zi→j|φi→j)q1(zi←j|φi←j)
N∏
i=1

q2(πi|γi) (4.13)

where q1(·) is the Multinomial distribution and q2(·) is the Dirichlet distribution (See

Figure 4.2 for an illustration). With abuse of notation, we denote γ := {γi, i ∈ [N ]}

and φ := {φi→j, ti 6= tj, i, j ∈ [N ]}. We use ∆′ := {γ,φ} to collect the variational

parameters which need to be estimated. In the following step, we apply an iterative coordinate

ascent variational expectation-maximization (EM) algorithm by alternatively optimizing the
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likelihood parameters ∆ and the variational parameters ∆′, while holding the others fixed.

The E-step and M-step are repeated until the lower bound (4.13) converges. Plugging in

the log likelihood function (4.6) and the variational distribution (4.13) into the objective

function (4.12), we get:

L(q,∆) = Eq [`(∆)]− Eq [log q(Σ)]

= Eq [log p(A, z,π|θ,Ω,α)]− Eq [log q(z,π|φ,γ)]

= Eq log

 ∏
i<j
ti 6=tj

p(Aij|θi, θj, zi→j, zi←j,Ω)p(zi→j|πi)p(zi←j|πj)
N∏
i=1

p(πi|αti)



− Eq log

 ∏
i<j
ti 6=tj

q1(zi→j|φi→j)q1(zi←j|φi←j)
N∏
i=1

q2(πi|γi)



= Eq

∑
i<j
ti 6=tj

[log p(Aij|θi, θj, zi→j, zi←j,Ω) + log p(zi→j|πi) + log p(zi←j|πj)] +
N∑
i=1

log p(πi|αti)



− Eq

∑
i<j
ti 6=tj

[
log q1(zi→j|φi→j) + log q1(zi←j|φi←j)

]
+

N∑
i=1

log q2(πi|γi)


=
∑
i<j
ti 6=tj

Eq
[
Aij log(θiθjzTi→jΩzi←j)− θiθjzTi→jΩzi←j − log(Aij)!

]

+
∑
i<j
ti 6=tj

Eq

K1∑
k=1

zi→jk log πik +
K2∑
k=1

zi←jk log πjk



+
N∑
i=1

Eq
[
log Γ(∑k αtik)∏

k Γ(αtik)
+
∑
k

(αtik − 1) log πik
]

−
∑
i<j
ti 6=tj

Eq

K1∑
k=1

zi→jk log φi→jk +
K2∑
k=1

zi←jk log φi←jk



−
N∑
i=1

Eq
[
log Γ(∑k γik)∏

k Γ(γik)
+
∑
k

(γik − 1) log πik
]
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Figure 4.2: The diagram of the variational distribution. The latent variables are assumed to

be mutually independent. Each variable is governed by its own variational parameter. That

is, ∀i, j ∈ [N ], πi ∼ Dirichletq(γi), zi→j ∼ Multinomialq(φi→j).

Take each expectation, and we have:

L(q,∆) =
∑
i<j
ti 6=tj

K1∑
g=1

K2∑
h=1

φi→jgφi←jhf(Aij, θiθjΩgh)

+
∑
i<j
ti 6=tj

K1∑
k=1

φi→jk

[
ψ(γik)− ψ(

∑
k

γik)
]

+
∑
i<j
ti 6=tj

K2∑
k=1

φi←jk

[
ψ(γjk)− ψ(

∑
k

γjk)
]

+
N∑
i=1

[
log Γ(

∑
k

αtik)−
∑
k

log Γ(αtik)
]

+
N∑
i=1

∑
k

(αtik − 1)
[
ψ(γik)− ψ(

∑
k

γik)
]

−
∑
i<j
ti 6=tj

K1∑
k=1

φi→jk log φi→jk +
K2∑
k=1

φi←jk log φi←jk



−
N∑
i=1

[
log Γ(

∑
k

γik)−
∑
k

log Γ(γik)
]
−

N∑
i=1

∑
k

(γik − 1)
[
ψ(γik)− ψ(

∑
k

γik)
]

(4.14)

where f(x, y) = x log(y)− y − log(x!) and ψ(·) = d log Γ(x)
dx

is the derivative of the log-gamma

function, also called digamma function.

4.2.1 Variational E step

In this section, we derive the updating steps for the variational parameters ∆′ by using the

coordinate ascent algorithm. Basically, for each variational parameter, we will first isolate

the terms in the objective function (4.14) containing the parameter and then set the first

derivative equal to zero and solve the equation.
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Update φ We update the variational parameters φ. We collect the terms in L(q,∆) that

are related to {φi→j,φi←j}, ∀(i, j), i < j, ti 6= tj . Then we maximize the following objective

functions:

Lφi→j
=

K1∑
g=1

K2∑
h=1

φi→jgφi←jhf(Aij, θiθjΩgh) +
K1∑
k=1

φi→jk

[
ψ(γik)− ψ(

∑
k

γik)
]
−

K1∑
k=1

φi→jk log φi→jk

Lφi←j
=

K1∑
g=1

K2∑
h=1

φi→jgφi←jhf(Aij, θiθjΩgh) +
K2∑
k=1

φi←jk

[
ψ(γjk)− ψ(

∑
k

γjk)
]
−

K2∑
k=1

φi←jk log φi←jk

subject to the normalization constraint:

K1∑
k=1

φi→jk =
K2∑
k=1

φi←jk = 1 (4.15)

Apply the Lemma 1 in [152] (see details about this lemma in Section 4.A) and we have the

updating steps for {φi→j,φi←j} with constraint (4.15):

φi→jk ∝ exp


K2∑
h=1

φi←jhf(Aij, θiθjΩkh) +
[
ψ(γik)− ψ(

∑
k

γik)
] , k ∈ [K1] (4.16)

φi←jk ∝ exp


K1∑
g=1

φi→jgf(Aij, θiθjΩgk) +
[
ψ(γjk)− ψ(

∑
k

γjk)
] , k ∈ [K2] (4.17)

Update γ We update the variational parameters γ. We collect the terms in L(q,∆) that

are related to γi, ∀i ∈ [N ]. And we have:

Lγi
=

∑
j:tj 6=ti

∑
k

φi→jk

[
ψ(γik)− ψ(

∑
k

γik)
]

+
∑
k

(αtik − 1)
[
ψ(γik)− ψ(

∑
k

γik)
]

−
[
log Γ(

∑
k

γik)−
∑
k

log Γ(γik)
]
−
∑
k

(γik − 1)
[
ψ(γik)− ψ(

∑
k

γik)
]

=
∑
k

[
ψ(γik)− ψ(

∑
k

γik)
] ∑

j:tj 6=ti
φi→jk + (αtik − 1)− (γik − 1)

−
[
log Γ(

∑
k

γik)−
∑
k

log Γ(γik)
]

=
∑
k

ψ(γik)

 ∑
j:tj 6=ti

φi→jk + αtik − γik

− ψ(
∑
k

γik)
∑
k

 ∑
j:tj 6=ti

φi→jk + αtik − γik


−
[
log Γ(

∑
k

γik)−
∑
k

log Γ(γik)
]
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Take the derivative of Lγi
with respect to γik, ∀k ∈ [Kti ], we have:

∂L
∂γik

= ψ′(γik)

 ∑
j:tj 6=ti

φi→jk + αtik − γik

+ ψ(γik)(−1)

− ψ′(
∑
k

γik)
∑
k

 ∑
j:tj 6=ti

φi→jk + αtik − γik

− ψ(
∑
k

γik)(−1)

− ψ(
∑
k

γik) + ψ(γik)

= ψ′(γik)

 ∑
j:tj 6=ti

φi→jk + αtik − γik

− ψ′(∑
k

γik)
∑
k

 ∑
j:tj 6=ti

φi→jk + αtik − γik


Set ∂L

∂γik
= 0

=⇒ γik =
∑

j:tj 6=ti
φi→jk + αtik, k ∈ [Kti ] (4.18)

where ψ′(x) = dψ(x)
dx

is the first derivative of digamma function, also called trigamma function,

and it is a positive function.

4.2.2 Variational M step

In this section, we update the likelihood parameters based on the idea of empirical Bayes

estimation. We maximize the objective function with respect to the model parameters ∆,

given the variational parameters ∆′ fixed.

Update θ We update the degree correction parameters θ. With an abuse of notation, we

denote θ1 := (θ1, θ2, . . . , θN1)T and θ2 := (θN1+1, θN1+2, . . . , θN)T. We first isolate the terms

in L(q,∆) related to θ1, and maximize the objective function below:

Lθ1 =
∑
i<j
ti 6=tj

K1∑
g=1

K2∑
h=1

φi→jgφi←jh [Aij log(θiθjΩgh)− θiθjΩgh]

=
N1∑
i=1

log θi

 N∑
j=N1+1

K1∑
g=1

K2∑
h=1

φi→jgφi←jhAij


︸ ︷︷ ︸

ai

−
N1∑
i=1

θi

 N∑
j=N1+1

K1∑
g=1

K2∑
h=1

φi→jgφi←jhθjΩgh


︸ ︷︷ ︸

bi

(4.19)
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subject to the constraint:

∑
i: ti=1

γ̄iθi =
∑
i: ti=1

γ̄i (4.20)

where γ̄i := γi∑
k
γik

and γ̄i = Eq[πi]. Note that above normalization constraint holds

by taking expectation of (4.9) under πi ∼ Dirq(γi), ∀i. To integrate the notations into

matrix or vector format, we denote ΓT
1 :=

[
γ̄1, γ̄2, . . . , γ̄N1

]
, a1 := (a1, a2, . . . , aN1)T, and

b1 := (b1, b2, . . . , bN1)T. Then maximizing the objective function (4.19) with respect to θ1

becomes solving the optimization problem:

minimize
θ1

− aT
1 log θ1 + bT

1θ1

subject to ΓT
1θ1 = ΓT

11
(4.21)

which is suitable for an application of the Douglas-Rachford (DR) splitting algorithm [160].

This implementation is motivated by Razaee et al. [152], which for the first time propose

to apply the DR splitting algorithm for updating degree heterogeneity parameters in their

research context. We refer the reader to the detailed derivation of this algorithm in Appendix

C.2 in [152]. In particular, it iterates the following updates from (θ1, ξ1,u1) to (θ+
1 , ξ

+
1 ,u

+
1 )

until convergence (the same updating steps apply to θ2, with subscript 1 replaced by 2):

θ+
1 = ft(ξ1 − u1; a1, b1)

ξ+
1 = θ+

1 + u1 − γ̄1(γ̄T1 γ̄1)−1
[
γ̄T1 (θ+

1 + u1)− γ̄T1 1
]

u+
1 = u1 + θ+

1 − ξ+
1 (4.22)

where [ft(x; a, b)]i := 1
2

[
−(bit− xi) +

√
(bit− xi)2 + 4ait

]
, t > 0. We set t = 1 in our

implementation.

Update α We update the Dirichlet parameters α. We first isolate the terms in the objective

function related to α1 (the same updating steps apply to α2, with subscript 1 replaced by 2)

and obtain:

Lα1 =
N1∑
i=1

[
log Γ(

∑
k

α1k)−
∑
k

log Γ(α1k)
]

+
N1∑
i=1

∑
k

(α1k − 1)
[
ψ(γik)− ψ(

∑
k

γik)
]

(4.23)
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For each k ∈ [K1], taking the first derivative of (4.23) with respect to α1k gives us:

∂L
∂α1k

= N1

[
ψ(
∑
k

α1k)− ψ(α1k)
]

+
N1∑
i=1

[
ψ(γik)− ψ(

∑
k

γik)
]

(4.24)

This derivative depends on α1k′ , where k′ 6= k, k′ ∈ [K1], and we therefore must use an

iterative method to find the maximal α1. Here we apply the linear-time Newton-Raphson

method for estimating the Dirichlet distribution, which has been implemented in LDA [156]

and MMSBM [48]). We refer the reader to the detailed derivation in [161, 162]. Take the

second derivatives with respect to each entry in α1 and get:

∂2L
∂(α1k)2 = N1

[
ψ′(
∑
k

α1k)− ψ′(α1k)
]

∂2L
(∂α1k)∂(α1j)

= N1ψ
′(
∑
k

α1k), j 6= k

Here the Hessian matrix H is given by:

H = Q + c11T

Q = diag (−N1ψ
′ (α1))

c = N1ψ
′(
∑
k

α1k)

Then the updating for α1 is written as:

αnew
1 = αold

1 −H−1 · ∇L (4.25)

where we take the inverse of Hessian matrix by:

H−1 = Q−1 − Q−111TQ−1

1/c+ 1TQ−11

(H−1∇L)k = (∇L)k − b
Qkk

where b = 1TQ−1∇L
1/c+ 1TQ−11

=
∑
j(∇L)j/Qjj

1/c+∑
j 1/Qjj
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Update Ω We update the connectivity matrix Ω. For each entry Ωgh, g ∈ [K1], h ∈ [K2],

we collect the related terms in the objective function and get:

LΩgh
=
∑
i<j
ti 6=tj

φi→jgφi←jh [Aij log(θiθjΩgh)− θiθjΩgh]

=
∑
i<j
ti 6=tj

φi→jgφi←jh [Aij log(Ωgh)− θiθjΩgh]

Take the first derivative with respect to Ωgh and set it to zero, and we get:

Ω̂gh =

∑
i<j
ti 6=tj

φi→jgφi←jhAij∑
i<j
ti 6=tj

φi→jgφi←jhθiθj
(4.26)

4.2.3 Parameter estimation

Algorithm 3 summarizes the above updates for fitting the model. As we know, the variational

inference will converge to a local optimum and is sensitive to the choice of initial values [124,

157]. Therefore, we need to pay attention to the initialization of the variational parameters

φ. In general, trying multiple starting values and choosing the one with the optimal

value of L(q,∆) as the final output is feasible but is time-consuming. Previous researches

[124, 152] suggest that taking the results from some pre-analysis results such as spectral

clustering [24, 28] will improve the algorithm performance. In our study, we apply the

spectral clustering algorithm developed in [15] to the adjacency matrix A. Besides, in the

simulation study (Section 4.3), as we know the true node memberships z, so we can try a

perturbed version of the truth as an initialization (note that this is motivated by the idea in

the simulation study of [152]). Specifically, ∀i, j ∈ [N ], we initialize φi→j with a mixture of

the true label and the Dirichlet noise, i.e., φi→j = ωzi→j + (1− ω)εi, where εi ∼ Dir(0.5 · 1)

and ω ∈ [0, 1] is the proportion of the correct labels. In summary, to study the sensitivity of

the algorithm, we try the following initialization for φ:

• The result of bipartite spectral clustering [15, 28]

• The perturbed truth: φi→j = ωπi + (1− ω)εi; in our study, we set ω = 10%
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Algorithm 3 The variational EM algorithm

Input: B, K1, K2, convergence criteria ε, maximum number of iterations T

Initialization: ∀ i < j, i, j ∈ [N ], ti 6= tj

1. θi = 1, θj = 1

2. α1 = 50
K1
· 1, α2 = 50

K2
· 1

3. φi→j = 1
K1
· 1, φi←j = 1

K2
· 1

4. γi = α1 + N1
K1
, γj = α2 + N2

K2

while not Converge, nor Max Iterations T Reached do

1. Update φ by (4.16)

2. Update γ by (4.18)

3. Update θ by repeating (4.22) till convergence

4. Update α by repeating (4.25) till convergence

5. Update Ω using (4.26)

6. Converge←
[

(Lold−L)
Lold

< ε
]

end
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• The uninformative Dirichlet distribution: φi→j ∼ Dirichlet(Nti

Kti
· 1)

4.3 Preliminary simulation study

Recall that our main interest is to estimate the per-node membership vectors π, per-pair

membership indicators z, and the latent block structure Ω. In order to test the effectiveness

of our method in recovering the truth, we design the simulation as follows. We generate

the network data from the model introduced in Section (4.1). We set the network size at

(N1, N2) = (100, 200), and set the number of communities at (K1, K2) = (4, 4). We use a

easily identifiable planted community structure with Ω = q · 141T4 + (p− q) · I4, and we set

(p, q) = (0.7, 0.1). Following the idea of the simulation study in [48], we set α1 = α2 = α · 1

and we try three values of α = (0.05, 0.10, 0.25) to simulate different settings of the node

memberships. As α increases, each node membership vector is more likely to be diffused. We

design two scenarios for data generation, including node degree heterogeneity (Figure 4.3)

and not including node degree heterogeneity (Figure 4.4). In the first scenario, we generate

the node degree parameters θ from a Pareto distribution (see details in Section 4.C).

The final output of the algorithm includes the estimated variational parameters φ̂ and γ̂,

and the estimated likelihood parameter Ω̂ and θi,∀i ∈ [N ] (the degree-corrected case). The

posterior expectation of per-node membership vector πi is approximated by E[πi|B] ≈ γ̂i∑
γ̂i
,

also denoted by π̂i. And the posterior expectation of per-pair node membership indicator

zi→j is approximated by E[zi→j|B] ≈ φ̂i→j, also denoted by ẑi→j.

We evaluate the model fitting results by illustrating five types of heatmaps; see Figure 4.3

and Figure 4.4 for non-degree-correction and degree-correction cases, respectively. In sum,

we compare the observed bi-adjacency matrix B with two types of predicted bi-adjacency

matrices B̂. The detailed steps are stated as follows. We first assign each node i to the group

it is most associated with, according to its true mixed membership vector πi; that is, we

convert each node i to a pure node. And then, we use the converted node memberships to

reorder the matrices to make the block structure more explicit in the heatmaps. For example,
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Figure 4.3 contains five columns, corresponding to the following five types of heatmaps: (a)

the observed bi-adjacency matrix B; (b) the predicted bi-adjacency matrix, with each entry

(i, j) equal to θ̂iθ̂jẑT
i→jΩ̂ẑi←j; (c) the predicted bi-adjacency matrix, with each entry (i, j)

equal to θ̂iθ̂jπ̂T
i Ω̂π̂j; (d) the posterior-mean of mixed membership vectors of type-1 nodes,

with each row equal to π̂i; (e) the posterior-mean of mixed membership vectors of type-2

nodes. Rows and columns of matrices in (a)-(c) are reordered by the most likely memberships

of the nodes. Rows of matrices in (d)-(e) are reordered by the most likely memberships of

the nodes. To have a distinctive view, we threshold entries in each bi-adjacency matrix at

the value of 5. In Figure 4.3 and Figure 4.4, three parts (numbered by 1, 2, 3, from top to

bottom) are corresponding to the results (heatmaps in columns (b)-(e)) conducted by three

types of initialization: the results in part 1 are initialized by the bipartite spectral clustering;

the results in part 2 are initialized by the perturbed truth; the results in part 3 are initialized

by the random Dirichlet noise. Also, within each part, there are three rows of heatmaps,

corresponding to α equal to 0.05, 0.10, 0.25 (from top to bottom).

Based on the heatmaps in Figure 4.3, we summarize the results as follows. First, we

observe that the algorithm is sensitive to the initialization. In particular, when the starting

values are initialized by the spectral clustering results (heatmaps in part 1), the block

structures in the predicted bi-adjacency matrices (columns (b) and (c)) are more clearly

revealed compared to the ones in parts 2 and 3. And when the starting values are almost

noises (heatmaps in parts 2 and 3), the block structures are less obvious. This is because the

algorithm initialized with a bad starting point gets stuck at a local optimum rather than

a global optimum. Second, we notice that, under each scenario (each row), the predicted

bi-adjacency matrix based on the edge-specific membership indicators z (column (b)) exhibits

a more clear block structure than the one based on the node-specific mixed membership

vectors π (column (c)). In particular, when the initial values are not of good quality (part 2

and 3), compared to column b, the block structures of the predicted bi-adjacency matrix in

column c are not recovered, with all entries concentrated around 0.25. Given this, we further

visualize the heatmaps of node-specific membership vectors of type-1 nodes (column d) and
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type-2 nodes (column e). And we find that in each case (row) where the prediction of the

bi-adjacency matrix (column c) is bad, the corresponding estimated node membership vectors

are almost uniform (i.e., each π̂i is approximately equal to 0.25 · 14). Intuitively, θ̂iθ̂jπ̂T
i Ω̂π̂j

and θ̂iθ̂jẑ
T
i→jΩ̂ẑi←j are basically the posterior expectation of the bi-adjacency matrix at

different levels of resolution [48], and this phenomenon makes sense as the edge generation

probabilities are conditional on the z rather than π. We also observed a similar phenomenon

in the degree-corrected case in Figure 4.4. For future work, we intend to investigate this

phenomenon at a more detailed level to get a better understanding.

4.4 Conclusion and future work

In this chapter, we study the bipartite community detection problem in the context of Bayesian

inference, where we use the mean-field variational inference technique to approximate the

posterior distribution. The first step postulates a family of variational distributions over the

latent variables, which are independently distributed. In the second step, we use CAVI to

iteratively optimize each type of variational parameter marginally. This step aims to find

the variational distribution, which is the closest in KL divergence to the exact posterior

distribution. However, in general, CAVI only guarantees to converge to a local optimum of

the objective and is sensitive to the initialization in practice. Moreover, the independence

assumption made by the mean-field variational inference will make the issue of local optima

even more worse [157]. Based on our current simulation results, the performance of the

variational EM algorithm indeed highly depends on the quality of the initial values. In our

next step, we need to consider proposing a good initialization strategy (i.e., close to the truth)

for users to implement the algorithm. Besides, as discussed in Section 3.4 in Chapter 3, the

sufficient conditions of identifiability in MMSBM include a full rank Ω with unit diagonals

and the existence of at least one pure node in each community. In future work, we would like

to include a rigorous proof of the identifiability of our model.

Also, we will explore whether there exists a better posterior approximation than the

mean-field approximation. It worth nothing that how to develop such approximation while
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a b c d e

a b c d e

a b c d e

1

2

3

Figure 4.3: The simulated bi-adjacency matrices in column (a) are generated without node degree heterogeneity, and the

algorithm is performed without degree correction. Part (1) results are based on the initialization of spectral clustering. Part

(2) results are based on the initialization of the perturbed truth. Part (3) results are based on the initialization of the random

Dirichlet noise. Within each part, from top to bottom, the matrices in column (a) are generated using α = 0.05, 0.10, 0.25,

respectively. See main text (Page 86) for the detailed legend of columns (a)-(e).
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a b c d e

1
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Figure 4.4: The simulated bi-adjacency matrices in column (a) are generated with node

degree heterogeneity, and the algorithm is performed with degree correction. See Figure 4.3

for the detailed legend.
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maintaining the optimization scalability remains an open research direction in the variational

inference field [157].

On the other hand, it has been shown that CAVI is closely related to Gibbs sampler [163,

164], which enjoys rigorous statistical properties and can asymptotically sample from the

exact posterior distribution; but the Gibbs sampler is computationally intensive. In future

work, we may consider comparing these two techniques on a small data set. When it comes

to massive data sets, we may consider upgrading variational inference to include statistical

optimization [165] or parallel computation. Besides, in our current Bayesian generative

model, the hyperparameters like the connectivity matrix Ω are assumed to be fixed. In a

more general scenario, we may consider a conjugate prior for Ω to smooth the connectivity

probabilities between communities [7].

Also, following the current simulation study, we can test the robustness of the algorithm

performance by varying the level of edge sparsity, etc. Two types of evaluation criteria can

be used: extended NMI and Omega index (see Section 3.6) by first thresholding each mixed

membership vector π̂i; or calculating a relative error rate such as ‖Π̂−Π‖F/‖Π‖F , where

we denote Π := [. . .πi . . . ]T and Π̂ := [. . . π̂i . . . ]T. Note that for the bipartite network case,

we will evaluate the performance for nodes in each type separately and then take an average

between the two.

4.5 Code

The code for implementing the algorithm is available on GitHub: https://github.com/

edensunyidan/Bipartite-mixed-membership-SBM
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APPENDIX

4.A Details of updating φ

Here we closely follow the statement and proof of Lemma 1 from [152]. We use PK :={
p | p ∈ RK

+ , ‖p‖1 = 1
}
to denote the set of K-dimensional probability vectors.

Lemma 4.A.1 (Razaee et al. [152], Lemma 1). For any vector a = (a1, . . . , aK)T ∈ RK ,

define a function fa : PK → R by fa(p) := ∑K
k=1 pk(ak − log pk). Then the solution of

maximizing fa(p) over PK is given by:

arg max
p∈PK

fa(p) = C (ea1 , . . . , eaK ) (4.27)

where C = 1/∑k e
ak

Proof.

fa(p) =
K∑
k=1

pk(ak − log pk)

= −
K∑
k=1

pk log pk
eak

= −
K∑
k=1

pk log pk
Ceak

− logC

where the first term in the last equation is the KL divergence between two discrete probability

distributions, and the function achieves the maximization when the KL divergence is equal

to 0, as indicated by (4.27).

4.B Details of updating θ

In this section, we briefly review the concepts in convex optimization used in this chapter.

We mainly focus on the Douglas-Rachford splitting method used in Section 4.2.2. There are

many good reference books, including those by [160, 166, 167].
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4.B.1 Definitions

A set C is convex if the line segment between any two points in C lies in C, i.e., ∀x1,x2 ∈ C

and ∀ρ ∈ [0, 1], ρx1 + (1 − ρ)x2 ∈ C. A function f : Rn → R is convex if the domain of f

(denoted by dom f) is a convex set if ∀x1,x2 ∈ dom f and ∀ρ ∈ [0, 1], f(ρx1 + (1− ρ)x2) ≤

ρf(x1) + (1 − ρ)f(x2). A convex function f is proper convex if f(x) < +∞ for at least

one x and f(x) > −∞ for every x. A function f : Rn → R is closed if for each α ∈ R, the

sublevel set {x ∈ dom f | f(x) ≤ α} is a closed set.

Given a function f , the proximal mapping (or prox-operator) of f is defined by:

proxf (v) = arg min
x

(
f(x) + 1

2‖x− v‖2
2

)
(4.28)

The proximal operator of the scaled function λf , where λ > 0 is defined by

proxλf (v) = arg min
x

(
f(x) + 1

2λ‖x− v‖2
2

)
(4.29)

Remark. The proximal operator is summative, meaning that for a separable function

f(x1,x2) = f1(x1) + f2(x2), then proxf (x1, x2) =
(
proxf1(x1), proxf2(x2)

)
.

An example:

f(x) =
n∑
i=1
−ai log xi + bixi, (proxtf (v))i =

−(bit− vi) +
√

(bit− vi)2 + 4ait
2 , i = 1, . . . , n

An example: when f is the indicator function of a set C:

f(x) = IC(x) :=


0 if x ∈ C

+∞ if x /∈ C
(4.30)

Then the proximal operator proxf (v) reduces to Euclidean projection onto C:

proxf (v) = arg min
x∈C

‖x− v‖2
2 := ΠC(v) (4.31)

In particular, if C = {x ∈ Rn | Ax = b,A ∈ Rm×n}. Suppose m < n and A has full rank,

then:

ΠC(v) =
(
I−AT(AAT)−1A

)
v + AT(AAT)−1b

= v−AT(AAT)−1(Av− b)
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4.B.2 Douglas-Rachford splitting method

Consider the problem

minimize f(x) + g(x)

where the extended-valued functions f, g : Rn → R ∪ {+∞} are closed convex. f and g can

be used to encode constraints on the variable x. Then Douglas-Rachford splitting is (see

Section 3.2 in [167] for details):

xt+1 := proxλf (zt − ut)

zt+1 := proxλg(xt+1 + ut)

ut+1 := ut + xt+1 − zt+1

where t is an iteration index. This algorithm is useful when the proximal operators of f and

g can be efficiently evaluated but the proximal operator for f + g is not easy to evaluate.

Remark. Here we present a special case. When g is the indicator function of a closed convex

set C, its proximal operator proxλg reduces to projection onto C (see (4.31)). In this case,

Douglas-Rachford splitting is a method for solving the generic convex constrained problem of

minimizing f over C that only uses the proximal operator of the objective and projection

onto the constraint set. And it directly matches to the situation of (4.21) in Section 4.2.2.

Given this, the Douglas-Rachford splitting becomes:

xt+1 := proxλf (zt − ut)

zt+1 := ΠC(xt+1 + ut)

ut+1 := ut + xt+1 − zt+1

4.C The power law and the Pareto distribution

In statistics, the power law usually used to describe the distribution changing inversely as a

power of the variable. A distribution whose cumulative format exhibits power law is known as
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a Pareto distribution (see [121, 168] for the detailed review). In network analysis, the Pareto

distribution is widely used to generate the node degree distribution[45, 152]. Specifically, the

probability density function of a Pareto distribution (Pareto(a, xmin)) is:

p(x) =


axa

min
xa+1 if x ≥ xmin

0 if x < xmin

where xmin is the positive minimum bound of the support, and a is a positive parameter. a

and xmin are called as shape and scale parameters. The expected value of a random variable

following a Pareto distribution Pareto(a, xmin) is:

E(x) =


∞ if a ≤ 1

axmin
a−1 if a > 1

The variance of a random variable following a Pareto distribution is:

Var(x) =


∞ if a ∈ (1, 2](
xmin
a−1

)2
a
a−2 if a > 2

If a ≤ 1, the variance does not exist.

In our simulation study (Section 4.3), we generate the θi from a Pareto distribution with

average value equal to 1, i.e., θi iid∼ Pareto(a, a−1
a

). This is because if we assume θi is a random

variable, then the constraint (4.9) can be viewed as E[θi] = 1. In this case, the variance is

[a(a− 2)]−1 and we set a = 2 to maximize the degree heterogeneity.
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CHAPTER 5

Discussion

In this thesis, we focus on developing bipartite network community detection methods,

covering both algorithm-based and SBM-based approaches.

In Chapter 2, we develop an algorithm-based bipartite spectral clustering method BiTSC

to identify informative and tight clusters without forcing all nodes to be grouped into one of

the clusters. It combines the node covariate information with edge information together to

enhance the algorithm performance, given the underlying assumption that node covariate

information is consistent with the community structure information; that is, node covariates

of each type within the same cluster are more similar. In our current work, we interpret

the efficacy of BiTSC in the context of gene orthology network in comparative genomics. In

general, BiTSC applies to any bipartite network formulation with node covariates.

In Chapter 3, we focus on the SBM-based approaches for community detection. In

particular, we introduce the existing extensions of the SBM, including degree-correction SBM,

mixed membership SBMs, and bipartite SBMs. We discuss and summarize the relevant

existing methods. In Chapter 4, we propose a new model by combining the mixed membership

SBM with the bipartite SBM and use the idea of CAVI and empirical Bayes to fit the new

model. In this model, each node is assigned with a soft membership indicating its participation

weight in the corresponding community. Introducing the soft membership in the generative

model makes the clustering more interpretable and informative, as many real-world bipartite

networks contain overlapping communities. In general, we can extend this model to include

more complex characteristics such as edge sparsity, noisy nodes, and node covariates. However,

this may result in overfitting and increase computational complexity in implementation. In
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this case, identifiability would also be a concern as more parameters were introduced into the

formulation. Besides, recent works [23, 126, 169] have studied the theoretical justification of

the mean-field coordinate ascent variational inference in community detection under the SBM,

which would greatly benefit future studies on the asymptotic consistency of our algorithm.

For the practical implementations, the user’s domain knowledge and prior information on the

data are essential for deciding which type of models or methods works best for their situation.
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