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A rational account of perceptual compensation for coarticulation
Morgan Sonderegger (morgan@cs.uchicago.edu)

Department of Computer Science, University of Chicago, Chicago, IL 60637 USA

Alan Yu (aclyu@uchicago.edu)
Phonology Laboratory, Department of Linguistics, University of Chicago, Chicago, IL 60637 USA

Abstract
A model is presented that explains perceptual compensation
for context as a consequence of listeners optimally categoriz-
ing speech sounds given contextual variation. In using Bayes’
rule to pick the most likely category, listeners’ perception of
speech sounds, which is biased toward the means of phonetic
categories (Feldman & Griffiths, 2007; Feldman, Griffiths, &
Morgan, 2009), is conditioned by contextual variation. The
effect on the resulting identification curves of varying cate-
gory frequencies and variances is discussed. A simulation
case study of compensation for vowel-to-vowel coarticulation
shows the predictions of the model closely correspond to hu-
man perceptual data.
Keywords: Speech perception; perceptual compensation; ra-
tional analysis.

Introduction
A major challenge for models of speech perception is explain-
ing the effect of context on phonemic identification. Depend-
ing on their acoustic, phonological, semantic, syntactic, and
even socio-indexical contexts, identical acoustic signals can
be labeled differently and different acoustic signals can be la-
beled identically. One of the most investigated types of con-
textual effects stems from phonemes’ phonetic environments.
Because of coarticulation, a phoneme’s phonetic realization
is heavily context-dependent. To understand speech, the lis-
tener must take into account context-induced coarticulatory
effects to recover the intended message. The term perceptual
compensation (PC) has often been used to characterize this
type of context-induced adjustment in speech perception. For
example, the identification of an ambiguous target syllable as
/da/ or /ga/ is shifted by preceding /ar/ or /al/ contexts (Mann,
1980): the same /Ca/ token is less likely to be heard as /ga/ in
/arCa/ context than in /alCa/ context. This effect has been ar-
gued to result from perceptual reduction of the coarticulatory
fronting effects of /l/ on a following velar consonant: listen-
ers are compensating for the effect of /l/ on /g/. This paper
proposes a simple model in which PC effects emerge as an
optimal solution to the problem of categorization in the pres-
ence of context-induced variation. In this model, listeners
behave as if they are compensating because what is optimal
differs by context.

PC effects have been observed in many phonetic settings.
The fricative /S/ has lower noise frequencies than /s/, and lip
rounding lowers the resonant frequencies of nearby segments.
Synthetic fricative noises ranging from /S/ to /s/ are more of-
ten identified by English listeners as /s/ when followed by /u/
than by /a/ (Mann & Repp 1980; see also Mitterer 2006), pre-
sumably because listeners take into account the lowering ef-
fect of lip rounding from /u/ on the noise frequencies of /s/ in

natural coarticulated speech. As another example, the percep-
tion of a fundamental frequency (f0) contour can change as a
function of vowel height (Hombert, 1978; Silverman, 1987)
or consonant voicing (Pardo & Fowler, 1997): /i/ is perceived
as lower in pitch relative to an /a/ with the same f0, presum-
ably because high vowels typically have higher f0 than low
vowels.

Listeners’ language-specific experience crucially affects
the degree of perceptual compensation. In a study replicated
in part below, Beddor, Harnsberger, & Lindemann (2002)
found that English and Shona listeners compensate for the
coarticulatory effects of V2 on V1 in CV1CV2 sequences.
That is, listeners identified a continuum of synthesized vow-
els between /a/ and /e/ more often as /a/ when the following
vowel was /i/ than when the following vowel was /a/. Impor-
tantly, they observed that Shona listeners compensate more
for the vowel contexts that triggered larger acoustic influences
in speech production. Compensatory responses can affect lis-
teners’ rating judgments as well. English listeners are less
accurate in judging vowel nasality in nasal than in non-nasal
contexts, with nasal vowels in nasal contexts the most diffi-
cult (Beddor & Krakow, 1999; Kawasaki, 1986).

Explanations of PC effects have been advanced from sev-
eral theoretical perspectives. Some emphasize the lexical and
phonemic content of the context in determining the identifica-
tion of the target sound (Elman & McClelland, 1988; Samuel
& Pitt, 2003). Gestural theorists, who assume that listeners
parse the acoustics in terms of its articulatory sources, argue
that listeners attribute the acoustic properties of a target sound
to the coarticulatory context rather than to the target (Fowler,
1996, 2006). Auditorists attribute context-induced shifts in
category boundaries to general auditory processes such as fre-
quency contrast or spectral contrast (Diehl & Kluender, 1989;
Kingston, 1992; Kingston & Diehl, 1995; Lotto & Kluender,
1998). Such auditory explanations are unavailable for com-
pensation effects such as vowel-dependent pitch height com-
pensation (Fowler, 2006; Lotto & Holt, 2006). Motivated by
such cases, Lotto & Holt (2006) suggest that the spectral con-
trast explanation be supplemented with a “general learning”
mechanism for category formation from correlations between
stimulus parameters.

The generality of PC effects is accentuated by evidence for
contextual compensation with speech and non-speech sounds
in human and non-humans (Holt, Lotto, & Kluender, 2000;
Lotto, 2004). For example, when /da/–/ga/ syllables are pre-
ceded by tone glides matching in frequency to the third for-
mant (F3) transition of /al/ or /ar/, listeners’ syllable identi-
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fication responses shifted in the same direction as when tar-
gets were preceded by real speech (/al/ or /ar/). The same
effect was observed even when steady-state tones at the off-
set frequency of /al/ or /ar/ F3 were used (Lotto & Kluender,
1998; cf. Viswanathan, Fowler, & Magnuson, 2009) . Lotto,
Kluender, & Holt (1997) conditioned four Japanese quails to
exemplars of /da/ and /ga/ syllables. Two birds were trained
to peck a key when presented with good /da/ exemplars and
to not peck when presented with good /ga/ stimuli while two
other quails were trained in the reverse condition (/ga/ posi-
tive, /da/ negative). After reaching a preset criterion of 10:1
ratio of pecks to positive versus negative stimuli, birds were
presented with novel ambiguous CVs preceded by either /al/
or /ar/. All birds displayed a significant shift in peck rates
across the change in preceding liquid. The /da/-positive birds
pecked substantially more for CVs preceded by /ar/, while
/ga/-positive birds pecked more for CVs preceded by /al/.
Crucially, both the task and the results were essentially the
same as in Mann (1980)’s experiment with human subjects.
There is thus strong support for a language-independent, au-
ditory mechanism of compensation.

In this paper, we develop a computational model of PC ef-
fects using rational analysis of speech perception and produc-
tion. Rational analysis (RA; Anderson, 1990; Marr, 1982;)
attempts to explain aspects of cognition as adaptive responses
to the environment; its central claim is that much of people’s
behavior when performing some cognitive tasks can be under-
stood as optimal, according to some criterion. RA represents
a different type of explanation from existing theories of PC:
instead of explaining the behavioral locus (e.g. gestural pro-
cessing, lexical knowledge, general auditory processes) of PC
effects, the model presented here gives an account of why PC
effects occur, as a consequence of listeners optimally solv-
ing the problem of categorization given context-induced vari-
ation.

RA accounts have been developed for visual word recogni-
tion (Norris, 2006), spoken-word recognition (Norris & Mc-
Queen, 2008), perceptual magnet effects (Feldman & Grif-
fiths, 2007; Feldman et al., 2009), and other cognitive do-
mains, such as vision (Marr, 1982; Yuille & Kersten, 2006)
and manual movement (Trommershäuser, Gepshtein, Mal-
oney, Landy, & Banks, 2005). Our analysis of PC effects
grows out of the rational model of perceptual magnet effects
of Feldman et al. (2007, 2009). While “optimal” can be un-
derstood in Bayesian (e.g. Tenenbaum & Griffiths, 2001) or
maximum likelihood (e.g. Fried & Holyoak, 1984) terms, fol-
lowing Feldman et al. and other recent rational accounts of
speech perception (Clayards, Tanenhaus, Aslin, & Jacobs,
2008; Norris & McQueen, 2008), we use Bayesian inference
here.

Model
Our rational model for PC effects assumes a simple scenario
where an idealized optimal listener has to categorize some
signal as one of two phonetic categories; this is analogous to

the task listeners perform in the two-alternative forced choice
(2AFC) paradigm commonly used in PC experiments. The
model formalism is adapted from that used by Feldman et al.
(2009). We differ in allowing model parameters to change
with context, and focus on different aspects of the model’s
predictions.1

The modeled listener hears signal S in context k, and must
decide whether it belongs to category c1 or c2. Listeners in
this model assume S is normally distributed around a target
pronunciation T , itself normally distributed around a cate-
gory mean, and categorize based on the likelihood that S is
an instance of the speaker producing an example from ci in
context k, with target T . Formally,

T |ci,k ∼ N(µci,k,σc), S |T,ci ∼ N(T,σS)

where µci,k is the mean of category i mean in context k, σ2
C

is the variance in T around the category mean, and σ2
S is the

variance in S around T . We assume for simplicity that σC
and σS are the same for categories 1 and 2. Although we as-
sume that T is the variable shifting by context, if it is instead
assumed that S shifts by context in a similar way, all results
turn out the same.2 It thus does not matter under this analysis
whether contextual variation is in the target pronunciation, T ,
or the acoustic signal itself, S.

The probability S comes from category c1 can be calculated
with Bayes’ rule:

P(c1 |S,k) =
P(c1 |k)P(S |c1,k)

P(c2 |k)P(S |c2,k)+P(c1 |k)P(S |c1,k)
(1)

P(ci |k) is the probability of category i occurring in context k,
i.e. in the lexicon as a whole. The P(S |ci,k) are calculated by
integrating over all possible T , giving a logistic function:

P(c1 |S,k) =
(

1+
f2

f1
eb−Sg

)−1

(2)

where

b =
1
2

µ2
c1,k−µ2

c2,k

σ2
S +σ2

c
, g =

µc1,k−µc2,k

σ2
S +σ2

c

and fi = P(ci |k) is the frequency of category i in context k.
Studies of PC generally focus on locating the crossover

point, where S is maximally ambiguous between categories,
i.e. S′ (see Fig. 1) such that P(c1 |S′,k) = P(c2 |S′,k) = 0.5.
Solving from (2) gives

S′ =
µc1,k +µc2,k

2
+

σ2
S +σ2

C
µc1,k−µc2,k

ln(
f2

f1
) (3)

1Space constraints prevent us from giving detailed derivations
below; these are given by (Feldman et al., 2009).

2Specifically, if we assume compensation is in S, of the form

T |ci,k ∼ N(µci ,σc), S |T,ci,k ∼ N(T +∆i,k,σS).

That is, the distribution of T varies by category, but is not affected
by context. Given T , the distribution of S has a mean offset from T
by an amount ∆i,k, which depends on the context.
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Figure 1: Schematic of a modeled identification curve. µ1, µ2
are category means, S′ is the crossover point, and ∆1, ∆2 are
miscategorization probabilities.

Perceptual compensation is thus captured in this model in
terms of a shift in the crossover point as a function of the
context. Note that if it is assumed that f1 = f2, S′ is sim-
ply halfway between the category means, while if category
frequencies are not equal ( f1 6= f2), S′ is shifted.

The shape of the identification curve also changes as sys-
tem parameters are changed. Two important properties of the
curve, schematized in Fig. 1, are the slope at the crossover
point and the misclassification probabilities at the category
means.

The identification curve’s slope at the crossover point is a
rough measure of the “degree of uncertainty” (Clayards et al.,
2008) of the category boundary:

slope at S′ =
dP(c1 |S,k)

dS

∣∣∣
S=S′

=
µc1,k−µc2,k

4(σ2
S +σ2

c)

The shallower the slope, the greater the uncertainty. The
slope is steeper when the difference in category means is
larger relative to category variances. Unlike the crossover
point’s location, the slope does not change depending on
whether f1 = f2.

Categorization uncertainty can also be quantified as the
misclasssification probabilities ∆1 and ∆2, defined as the
probability a signal S produced at the mean of category i — a
“perfect” exemplar from ci — is misclassified. We find

∆1 = (1+
f1

f2
e

(µ1−µ2)2
2V )−1

∆2 = (1+
f2

f1
e

(µ1−µ2)2
2V )−1

where V = σC
2 +σS

2. The misclassification probabilities de-
crease as the ratio of the difference in category means to the
variance increases. When f1 > f2, ∆1 decreases and ∆2 in-
creases (and vice versa for f1 < f2).

To illustrate the adequacy of the proposed model and its
treatment of perceptual compensation, the next section re-

ports the results of a simulation study of PC for anticipatory
vowel-to-vowel coarticulation in English.

A Simulation Study
A modified replication study of Beddor et al. (2002)’s semi-
nal perception and production study of vowel-to-vowel coar-
ticulation in English was conducted. The perceptual results
serve as the observed PC responses. These were compared
to responses predicted by the rational model, using parameter
values obtained from two production studies.

Observed perceptual responses
Eighteen native English speakers at the University of Chicago
participated in a perception experiment, consisting of a train-
ing phase followed by a test phase. The training phase was
intended to expose subjects to speech in which each of V1=/a/
and V1=/e/ was equally likely to occur in the context of
following V2=/a/ or V2=/i/, corresponding to f1= f2 in our
model. The test phase asked listeners to classify an ambigu-
ous vowel V1 as /a/ or /e/, in the context of V2=/a/ or /i/.

In the training phase, listeners heard CV1CV2 tokens (C
=/p/, /t/, or /k/, V = /e/ or /a/, V2=/a/ or /i/). Tokens were con-
structed by splicing together CV syllables produced in isola-
tion by an adult male speaker of English. A total of thirty-
six tokens were constructed (=3C×2V1×3C×2V2). Each
CV1CV2 token was heard ten times, for a total of 360 to-
kens, presented in random order. To encourage attention to
the training stimuli, listeners performed a phoneme monitor-
ing task where they were asked to identify whether or not
each token contained a medial /t/.

In the test phase, listeners performed a 2AFC categoriza-
tion task on V1 in bV1bV2 context, with V1 varying in F1-
F3 along an 9-step /a-e/ continuum, and V2=/a/ or /i/. The
nine-step continuum was generated using Akustyk (Plichta
& Preston, 2004), an add-on program for vowel analysis in
Praat (Boersma & Weenink, 2001), by interpolating the for-
mant values between two syllables (/ba/ and /be/) produced in
isolation.3 The test tokens were then created by splicing to-
gether each individual continuum syllable with either a /bi/ or
a /ba/ syllable, also produced in isolation. The same speaker
produced the speech stimuli used in both the training and test
phases. Each subject heard each test stimulus ten times, for a
total of 180 tokens, presented in random order. Subjects were
paid a nominal fee to participate in the studies.

Fig. 2 shows empirical curves of the proportion of V1=/a/
responses in V2=/a/ and V2=/i/ contexts, as a function of po-
sition on the V1 continuum. Error bars correspond to 95%
confidence intervals over individual-subject proportions.

The V1 categorization responses (1=/a/) were modeled us-
ing a mixed-effects logistic regression (Baayen, 2008; Jaeger,

3The F1 values of the nine steps along the /a-e/ continuum were
713Hz, 682Hz, 635Hz, 606Hz, 592Hz, 563Hz, 522Hz, 500Hz, and
483 Hz. Values for the higher formants were adjusted as well to
create a more natural-sounding continuum. For simplicity, we focus
on the coarticulatory effect on F1 since the context vowels only vary
in height and not in backness.
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2008) with VOWEL CONTEXT (/a/ or /i/) and CONTINUUM
(1–9) as fixed effects, and random effects of SUBJECT and
BLOCK (test token number) on the intercept. As a measure of
model quality, Nagelkerke’s pseudo-R2 was 0.64, relative to a
model with only the intercept. There were significant effects
of CONTINUUM and VOWEL CONTEXT (p < 0.001), as well
as their interaction (p < 0.05) The effect of VOWEL CON-
TEXT was an increase in V1=/a/ responses for V2=/i/ com-
pared to V2=/a/, in agreement with the results of Beddor et al.
(2002): native English listeners appear to perceptually com-
pensate for the coarticulatory effects of a following vowel.

Model-predicted perceptual responses

To predict expected identification curves using Eqn. 2, we
need the category means of /a/ and /e/ (V1) in the context
of following /a/ or /i/ (V2), and category variances for V1
in V2=/a/ and V2=/i/ contexts.4 (Recall that we are assum-
ing equal variances of V1=/a/ and V1=/i/, given the following
context.) Eqn. 2 also includes the relative probability ( f1/ f2)
of V1=/a/ and V1=/i/ in each V2 context. We assume that
f1/ f2 = 1 following the training phase.

The category mean and variance parameters were esti-
mated from two production studies. Category means were
based on 40 productions of the form bV1bV2 (10 for each
combination of V1∈{a,e} and V2∈{a,i}) by the speaker
whose speech was the basis of the training and test tokens.
Category variances were calculated from productions of ini-
tial stressed /adV1CV2/ sequences (V1&2=/a/, /e/, or /i/ and
C=/p/ or /b/), each repeated ten times in random order, by
four male, phonetically-trained native English speakers. No
subjects who participated in the perception experiment par-
ticipated in the production studies as well.

We thus assumed that during the experiment, subjects
adjusted their expectation of category means to match the
speaker they were hearing, but that their category variances
reflected variation across speakers.5

For all production data, formant values were measured at
the midpoint of the target V1. Means and variances were cal-
culated over Bark-transformed F1 values for V1. Variances
for V1 when V2=/a/ were taken to be the mean of the vari-
ances for /aCa/ stimuli and for /eCa/ stimuli. Variances for V1
when V2=/i/ were calculated similarly. The resulting model
parameters are listed in Table 1.

The predicted identification curves for V2=/a/ and V2=/i/
contexts are given in Fig. 2. For comparison with the experi-
mental results, Step 1 was taken to be the mean of µc2 (where
c2 is “V1=/e/”) in V2=/a/ and V2=/i/ contexts, and Step 9 was

4Nearey & Hogan (1986) propose two models for deriving iden-
tification curves from production data. Their ‘NAPP’ model is sim-
ilar to the present model, but is not derived from an RA viewpoint.
We also map production data to model parameters differently.

5Another interpretation of these category variances, suggested
by a reviewer, is that subjects assume the tokens have category vari-
ances typical of a single speaker, but also account for some “noise”
in perception, beyond the variance observed in the production data
of an individual speaker.

Table 1: Model parameters obtained from the production
study, where c1 is “V1=/a/”, c2 is “V1=/e/.” B=Bark.

V2 µc1 µc2 σC
2 +σS

2

/a/ 6.69 B 4.67 B 0.568 B2

/i/ 6.76 B 4.26 B 0.619 B2

taken to be the mean of µc1 (where c1 is “V1=/a/”) in V2=/a/
and V2=/i/ contexts.

Qualitatively, the fit between the experimental and model-
predicted curves in Fig. 2 is very good, without fitting any free
model parameters to the production data. Both experimental
and model curves show a rightward shift for V2=/a/ context,
and the predicted slope at the crossover point for both pairs of
curves are approximately the same.6 However, the quality of
the fit depends on how rational model parameters are derived
from the production study, and should be interpreted with
caution. For example, category variances (σ2

C + σ2
S) would

be smaller if based on tokens from a single speaker rather
than several speakers, making the slope of the rational model
curves steeper.
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Figure 2: Dashed lines: Proportion of /a/ responses for V2=/a/
(right curve) and V2=/i/ (left curve) contexts, across all sub-
jects. Error bars are 95% confidence intervals, based on
individual-subject proportions. Solid lines: Predicted iden-
tification curves, based on production data. Dotted line:
Crossover point (rate=0.5).

Discussion
We have illustrated a rational model of perceptual compen-
sation effects and shown that, given a simple probabilistic
model for the observed values of an acoustic-phonetic cue

6The correlation between the two sets of curves is very high (r =
0.987, p < 0.001), indicating good qualitative agreement.
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(here, F1 values) associated with a speech sound, it is possible
to understand perceptual compensation as an idealized ratio-
nal listener arriving at an optimal solution based on evidence
from prior experience. In this model, by choosing the most
probable categorization response given the context, based on
their knowledge of the probability distribution of the relevant
cue in that context, listeners appear to ‘undo’ the effect of
coarticulation. Different contexts are associated with differ-
ent cue distributions, and hence difference categorization re-
sponses.

Rational models provide a very general expression of the
computational problem being solved when performing some
cognitive task, and are largely orthogonal to proposed mech-
anisms by which the task is performed. Our model proposes
an abstract explanation for why PC occurs, but is compatible
with a role for different proposed mechanisms for PC effects
via “prior knowledge” encoded in the cue distributions and
category frequencies. The model assumes that listeners have
different cue distributions for different contexts, but does not
specify the source of the distributions; it could be that knowl-
edge about gestures or general auditory capabilities generate
or underly the distributions. The category frequencies could
reflect knowledge of lexical or phonotactic probabilities, as
pointed out by Feldman et al. (2009).

The model is able to accommodate two types of PC ef-
fects — language-dependent and domain-general — usually
emphasized in opposing accounts of PC. That PC effects are
language-dependent is expected because many coarticulatory
effects are language-specific. Since language-specific coar-
ticulatory effects are reflected in acoustic-phonetic cues, lis-
teners’ categorization responses should mirror the (language-
specific) probability distributions of the relevant cues. The
model is general in that it is not restricted to linguistically-
relevant acoustic cues. As long as a non-linguistic acoustic
cue has a probability distribution, the idealized rational lis-
tener (human or non-human) would seem to compensate in
the same way as she would if the acoustic cue were linguis-
tic.

Our model predicts that compensation effects could be
ameliorated or even reversed via adjustments to the model
parameters. In general, an observed PC effect corresponds to
different values of S′ (the crossover point) in different con-
texts, say k1 and k2. The second term of (3) predicts that S′ in
k1 and S′ in k2 depend on the relative frequencies of c1 and c2
in these contexts. Thus, if f2/ f1 differs significantly by con-
text, the context-dependent PC effect can be exaggerated, di-
minished, canceled, or even reversed. Failure to compensate
could therefore occur for sudden change in f2/ f1 for k1 but
not k2. Since this proposed effect depends on the second term
of (3), compensation could also be undone by changes in vari-
ances (σ2

C + σ2
S) or category mean differences (µc1,k − µc2,k)

for k1 versus k2. We are currently running experiments to test
the predicted effects of category frequency on compensation.

This understanding of PC failure has serious implications
for current theories of sound change. Many researchers,

most notably Ohala (1993), argue that articulatory and per-
ceptual factors shape phonological systems through listener
misperception-induced sound changes, and that the syn-
chronic typology of sound patterns is a consequence of
the phonologization of such phonetic “precursors” (Barnes,
2006; Blevins, 2004; Blevins & Garrett, 1998, 2004; Kavit-
skaya, 2001; Yu, 2004). That is, sound change occurs when
listeners mistake as representative of the speaker’s target pro-
nunciation the effects of the speakers’ production system, the
listeners’ own perceptual system, or ambient distortion of the
acoustic stream. However, this account assumes that errors
in perception (i.e. failure to compensate for contextual varia-
tion) lead to adjustments in perceptual and production norms.
The fact that perceptual compensation is observed so robustly
in speech raises questions about the feasibility of this type
of model of sound change. Earlier work has assumed that
failure to compensate for contextually-induced variation oc-
curs when listeners do not detect the conditioning context.
Our model suggests that the relative magnitude of compen-
sation can be mediated by properties of the language’s lexi-
con (e.g. the relative frequencies of phones) as well as speak-
ers’ prior experience with the language (e.g. pronunciation
variation). That is, given certain lexical or contextual con-
ditions, a change in compensatory response may take place
even when the conditioning contextual information is accu-
rately perceived.

Conclusion
The model proposed here allows the incorporation of both
speech-specific and general auditory factors. It proposes that
perceptual compensation effects emerge as a consequence of
an optimal response to the problem of categorization in the
presence of context-induced variation. To be sure, the present
model is simplistic, and only a first step toward modeling
compensatory phenomena in general. Future work will de-
velop more general models, e.g. with unequal category vari-
ances and multiple (>2) categories, and explore their ef-
fects on predicted categorization behavior. Nonetheless, the
present model contributes to the growing number of studies
that attempt to understand speech perception from a rational-
ist point of view (Clayards et al., 2008; Feldman & Griffiths,
2007; Feldman et al., 2009; Norris & McQueen, 2008).
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