
UCLA
UCLA Electronic Theses and Dissertations

Title
Formal Synthesis and Data-Driven Verification of Cyber-Physical Systems

Permalink
https://escholarship.org/uc/item/0tb962w9

Author
Balkan, Ayca

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0tb962w9
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Formal Synthesis and Data-Driven Verification of

Cyber-Physical Systems

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical Engineering

by

Ayça Balkan

2017

c© Copyright by

Ayça Balkan

2017

ABSTRACT OF THE DISSERTATION

Formal Synthesis and Data-Driven Verification of

Cyber-Physical Systems

by

Ayça Balkan

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2017

Professor Paulo Tabuada, Chair

At a conference1 in March 2015, while advocating self-driving cars, Elon Musk, the chief

executive officer of Tesla Motors, referred to (traditional) cars as “two-ton death ma-

chines”. The biggest promise of autonomous systems is the elimination of, or compen-

sation for, the human-error factor. However, making sure that such systems which are

designed by humans themselves, will behave as we expect them to do, is an unarguably

challenging task. According to the RAND Corporation’s recent findings in [KP16], demon-

strating the failure rate of an autonomous vehicle to a particular degree of precision would

take about 8.8 billion miles of test driving, which corresponds to 400 years with a fleet of

100 autonomous vehicles. This suggests that, as engineers, we need to develop alternative

methods to excessive, brute force testing in order to fulfill the promise of bringing a safe

product to the market. Moreover, in safety-critical applications such as self-driving cars,

this promise should not only be filled, but it should be provably filled.

Most autonomous systems that are safety-critical also have a cyber-physical nature, mean-

ing that they involve an interplay between cyber and physical components. In fact, the

complex interactions between these components are what makes the design and verifi-

cation of Cyber-Physical Systems (CPS) notoriously difficult. In this thesis, we look at

the problem of correct design of CPS from two different angles. In the first chapter, we

position ourselves within a correct-by-design paradigm, where the idea is not to spend a

12015 NVIDIA GPU Technology Conference, San Jose

ii

heroic effort in the verification phase, by ensuring that the design process itself leads to a

certificate of correctness. In the second chapter, we concentrate on generating correctness

certificates for a completed design candidate. Here, with the challenges specific to the

CPS in mind, we do not take a model based approach, but instead, a data driven one.

In the first chapter the problem setting is as follows: “Given a CPS and a desired specifi-

cation in a formal language such as Linear Temporal Logic, can we synthesize provably-

correct controller software that will enforce the specification?” This question has already

been addressed in the literature by bringing tools from computer science into the realm of

control-theory. However, for an arbitrary specification the resulting methods are compu-

tationally expensive to a point that synthesis becomes intractable for large-scale systems.

In this thesis, we address this problem by studying a certain class of specifications, which

we call mode-target formulas. This class is small enough to lead to tractable algorithms,

yet rich enough to answer interesting control problems. It is inspired by numerous con-

trol applications where there are multiple modes and corresponding (possibly multiple)

targets to be reached and attained, hence the name. In Chapter 1, we formally define

the mode-target formulas and then propose a solution methodology to perform controller

synthesis, when the specifications are given in a mode-target setting.

In the second part of the thesis, we make use of a more traditional design tool for control

theorists: Lyapunov functions. These functions serve as certificates for stability and thus

have a significant role in the verification of dynamical systems. Even though stability

analysis using Lyapunov techniques is a well-studied problem, the majority of the cur-

rent literature only addresses it when the dynamics of the system is known and can be

expressed in the form of a differential or difference equation. This creates a gap between

the theory and practice because, for most industrial scale systems, there is no such simple

representation of the underlying dynamics. Instead, what is available to the engineers

in most scenarios is the ability to perform simulations. With this observation in mind,

in Chapter 2, we take the first step to close this gap. In particular, provided that the

underlying dynamics can be modeled as a switched linear system, we propose a technique

to analyze the stability of the system by observing the response of the system to uniformly

iii

randomly sampled initial conditions.

iv

The dissertation of Ayça Balkan is approved.

Todd Millstein

Vwani Roychowdhury

Lieven Vandenberghe

Paulo Tabuada, Committee Chair

University of California, Los Angeles

2017

v

Anne ve babama.

vi

Table of Contents

1 Controller Synthesis for Mode-Target Games 1

1 Preliminaries . 4

1.1 Linear Temporal Logic . 4

1.2 Games . 5

2 Mode-Target Games . 7

2.1 Motivation . 7

2.2 Mode-Target Formulas and Games 10

3 Solving Mode-Target Games . 12

3.1 Decomposition of the Winning Set 12

3.2 Computation of the Winning Set 16

4 Solving Mode-Target Games via GR(1) Games 17

5 Experimental Comparison . 20

5.1 Random Linear Time-Invariant Systems with Multiple Targets . . . 21

5.2 Unicycle Cleaning Robot . 22

5.3 Adaptive Cruise Control (ACC) . 24

6 Conclusions . 27

2 Data-Driven Stability Analysis of

Black-box Switched Linear Systems . 28

1 Preliminaries . 32

1.1 Notation . 32

1.2 Switched Linear Systems . 33

vii

2 A Deterministic Lower Bound for the JSR 35

3 A Probabilistic Stability Guarantee . 37

4 Experimental Results . 46

4.1 2-D Example . 46

4.2 4-D Example . 47

4.3 Average Behavior over Random Systems 47

4.4 Networked Control System . 51

5 Conclusions . 52

3 Conclusions and Future Work . 54

A Mode-Target Games . 56

1 Preliminary Lemmas . 56

2 Proof of Theorem 3.4 . 58

3 Strategy Synthesis . 60

4 Proof of Proposition 4.1 . 62

B Stability Analysis of Switched-Linear Systems 64

1 Notation and Background . 64

2 Preliminary Results . 65

3 Main Lemma . 67

4 Proof of limN→∞ δ(β, ωN) = 1 . 68

References . 70

viii

List of Figures

1.1 Comparison of the algorithms GR(1)-Emb and MT when there are mul-

tiple targets corresponding to one of the modes. 22

1.2 Mode dynamics for the cleaning robot, when there are two rooms (M1:

room 1 not clean, M2: room 2 not clean, M3 both rooms are not clean). . . 24

1.3 Comparison of the algorithms GR(1)-Emb and MT on the cleaning robot

case study for varying number of rooms. 25

1.4 The winning set computed by the MT Algorithm. 26

1.5 Simulation results in CarSim of the PESSOA controllers. The plots show,

from top to bottom, velocities, headway, time headway, and applied con-

trol input. Grayed areas indicate that the system is in specification mode

Mtimegap. Dashed green lines indicate target sets, solid green indicate safety

sets. 27

2.1 A simple dynamics and the level set of an “almost Lyapunov function”.

Even though this function decreases at almost all points in its level set,

almost all trajectories diverge to infinity. 31

2.3 The experimental evaluation of a randomly generated switched system with

n = 2, m = 4. 48

2.4 The upper and lower bounds on the JSR for a switched system with n = 4,

m = 6. 49

2.5 The comparison of the upper bounds computed in a black-box setting ver-

sus in a white-box setting using JSR toolbox [VHJ14]. 50

2.6 The time allocation structure of the modified IEEE 802.15.4 MAC layer. . 52

2.7 The evolution of the computed upper and lower bounds on the JSR with

respect to the number of simulations collected from the networked control

system. 53

ix

List of Tables

1.1 The modes and the corresponding target A/F ratios as given in [JDK14].

In this table, λref , λpwrref correspond to the optimal A/F ratios in normal

and power-enrichment mode. The corresponding atomic propositions are

written in parentheses. 8

1.2 The modes and the targeted concentration of chemicals in each mode as

given in [HRK09]. In parentheses, we provide the notation for the atomic

propositions corresponding to each mode and target. 10

x

Acknowledgments

Looking back at the last 6 years, I wouldn’t be able to create this thesis without the intellectual

and emotional help of many people. This section is for them.

I want to start with my brilliant, enthusiastic advisor and mentor Paulo Tabuada. Paulo will

always be an inspiration for me with his curious, rigorous and aesthetically pleasing approach

to scientific problems. I cannot thank him enough for his great intellectual input, patience,

extremely detailed feedback and availability. He made sure that the only thing I needed to

stress about was science and took care of the rest behind the curtains - what a great privilege

that was! Thank you for everything, Paulo.

Next, I want to thank my committee members Lieven Vandenberghe, Vwani Roychowdhury and

Todd Millstein for their valuable feedback and making this PhD possible. I also cannot emphasize

enough how helpful Electrical Engineering Graduate Student Office has been throughout my

whole PhD journey. Thank you Deeona, Mandy, Ryo for answering all my questions and helping

me navigate in this overly complicated world of rules and procedures.

I am very grateful that I got to collaborate with the smartest people I know. I want to thank

Moshe Vardi for a very inspiring and pleasant visit to Rice University, which led to the first

chapter of this thesis. My collaborators at Toyota Technical Center showed me that scientific

pursuit is still possible in the corporate world. I want to thank James Kapinski, Xiaoqing Jin

and Jyotirmoy Deshmukh for that. A special thanks goes to Jyotirmoy Deshmukh. With no

exaggeration, he is the most pleasant person that I have ever worked with! His intellectual

and emotional guidance is what kept me going at hard times. It has been an absolute pleasure

to know you, Jyo. This thesis wouldn’t have been possible without the generous support and

hard work of my labmates Omar Hussien, Joris Kenanian, Matthias Rungger, Yasser Shoukry

and Sina Caliskan. I especially want to thank my coauthors Omar Hussien and Joris Kenanian

for their open-handed help. I want to thank Raphael Jungers as well. I truly appreciate his

contributions to the second chapter of this thesis and feel so lucky to get to work with such a

bright and friendly human being.

The process of getting a PhD is not only filled with intellectual challenges but a ton of emotional

ones as well. Hence, I want to thank my friends who were with me along the way. Without them,

this thesis wouldn’t exist, that is for sure. I want to thank Can Karakus for always being there

xi

for me. Through Skype, through Google chat, through phone, through coffee breaks, through

grand meals. We got through this together. He supported me in every possible way and I want

to thank all the dices that were rolled in the universe for crossing our paths. Thank you Can.

Another big thank you goes to Jonathan Cheng. I don’t how what I would do without his

wisdom. He always gave me great perspective and massive emotional support through infinite

laughters. Thank you for being my pillar, Jon. I also want to thank Daniel O’Connor. He is the

full-package. Not only he answered all my optimization related questions, but he was always

there when I needed a friend. He inspired me more than he knows. I have never met someone

with so much willingness to learn. Thank you, Daniel. I also owe a great amount of thanks to

Natascha Chtena, Onur Guyaguler, Elif Semra Ceylan, Jed Lacktriz, Sezai Emre Tuna, Zach

Schlossberg, Laura Almagor, Zach Buchman, Kostya Bakhurin, Yifan Sun, Shaunak Mishra and

Caitlin Decker. You people are the reason why I was able to keep going at various stages in this

process. Thank you. Last but not least, Minnos, the bipolar yet the best cat in the world. The

smiles he put on my face really assisted me through all the bumps. Thanks my little cat friend.

Finally, my parents Ayse Balkan and Tuna Balkan. This thesis exists because of the sacrifices

they made, the support they provided and the infinite love they poured on me through these

years despite the continents between us. Thanks Balkans, this is for you.

xii

Vita

2010 B.Sc. (Electrical and Electronics Engineering),

Middle East Technical University, Ankara, Turkey.

2012 M.Sc. (Electrical Engineering),

University of California, Los Angeles, CA

Winter 2012 Preliminary Exam Fellowship, Electrical Engineering,

University of California, Los Angeles, CA

Summer 2015 Co-op, Model Based Development Group,

Toyota Technical Center, Gardena, CA

Summer 2016 Software Modeling Intern,

Medtronic Inc., Northridge, CA

October, 2016 Best Paper Awardee,

ACM SIGBED International Conference on Embedded Software,

EMSOFT 16’

Publications

Ayca Balkan, Paulo Tabuada, Jyotirmoy Deshmukh, Xiaoqing Jin, James Kapinski

“Underminer: A Framework for Identifying Non-converging Behaviors in Black Box Sys-

tem Models” (submitted to) ACM Transactions on Embedded Computing Systems.

Jonathan DeCastro, Rudiger Ehlers, Matthias Rungger, Ayca Balkan, Hadas Kress-

Gazit, “Automated generation of dynamics-based runtime certificates for high-level con-

trol” Journal of Discrete Event Dynamical Systems: Special Topical Issue on Formal

Methods in Control, June 2017, Volume 27, Issue 2, pp 371-405.

xiii

Ayca Balkan, Paulo Tabuada, Jyotirmoy Deshmukh, Xiaoqing Jin, James Kapinski

“Underminer: A Framework for Identifying Non-converging Behaviors in Black Box Sys-

tem Models” ACM SIGBED International Conference on Embedded Software, EMSOFT

16’.

Petter Nilsson, Omar Hussien, Ayca Balkan, Yuxiao Chen, Aaron Ames, Jessy Grizzle,

Necmiye Ozay, Huei Peng, Paulo Tabuada “Correct-By-Construction Adaptive Cruise

Control: Two Approaches” IEEE Transactions on Control Systems Technology, July 2016,

Volume: 24, Issue: 4, pp 1294 - 1307.

Ayca Balkan, Paulo Tabuada, Moshe Vardi, “Mode-Target Games: Reactive Synthesis

for Control Applications.” (conditionally accepted for publication in) IEEE Transactions

on Automatic Control.

Ayca Balkan, Jyotirmoy Deshmukh, James Kapinski, Paulo Tabuada, “Simulation-

Guided Contraction Analysis” 1st Indian Control Conference, ICC 15’.

Petter Nilsson, Omar Hussien, Yuxiao Chen, Ayca Balkan, Matthias Rungger, Aaron

Ames, Jessy Grizzle, Necmiye Ozay, Huei Peng, Paulo Tabuada “Preliminary Results on

Correct-by-Construction Control Software Synthesis for Adaptive Cruise Control” 53rd

IEEE Conference of Decision and Control, CDC ’14.

Paulo Tabuada, Ayca Balkan, Sina Yamac Caliskan, Yasser Shoukry and Rupak Ma-

jumdar, “Input-output robustness for discrete systems.” ACM SIGBED International

Conference on Embedded Software, EMSOFT 12’.

Ayca Balkan, Min Gao, Lei He, Paulo Tabuada “A Behavioral Algorithm for State of

Charge Estimation” 26th Electrical Vehicle Symposium, EVS 12’.

xiv

CHAPTER 1

Controller Synthesis for Mode-Target Games

The results in this chapter are developed under the correct-by-design philosophy for

Cyber-Physical Systems (CPS) advocating control design methodologies that produce,

not only the controller, but also a proof of its correctness. This design philosophy should

be contrasted with the widely used design-and-verify approach under which a designer

re-designs the controller to weed out the bugs that are found during multiple verification

rounds. By placing greater emphasis and effort in the design phase it is possible to greatly

reduce the verification efforts thereby reducing the design time and cost of complex CPS

[Var08, Ses15, Sif15, AHV15].

The correct-by-design philosophy, however, is not without its own challenges and the pur-

pose of this chapter is to address one of the most critical: computational complexity. If

one takes Linear Temporal Logic (LTL) as the specification formalism, it is known that

synthesizing a controller enforcing such specifications is doubly exponential in the length

of the formula. This led several researchers to seek fragments of LTL that are small

enough for the complexity of synthesis to be lower, yet large enough to be practically

relevant [AMP98, AL04, BJP12, Ehl11, WTM13, KE12]. Among these, the one that

had the biggest practical impact was the Generalized Reactivity (1) fragment, abbrevi-

ated as GR(1), for which the controller synthesis can be solved in polynomial time in the

size of the transition system [BJP12]. Even though the GR(1) fragment was not orig-

inally intended for control applications, several researchers demonstrated its usefulness

to synthesize correct-by-design controllers in practical scenarios [KF07, LOT13]. Later,

extending the ideas in [BJP12], the Generalized Rabin (1) fragment was shown to be

the largest class of LTL specifications for which the controller synthesis problem is still

polynomial in the size of the transition system, unless P=NP [Ehl11].

1

In this chapter, inspired by control applications, we introduce a new fragment of LTL

termed Mode-Target (MT). An MT formula describes a setting where there are modes

and corresponding targets for each mode. When the system is in a certain mode, the

specification requires the system to reach one of the possible targets for that mode and stay

there as long as the mode does not change. If the mode changes, there is no obligation to

reach or stay within the target region of the previous mode. We use MT formulas to define

mode-target games, a subclass of LTL games. The winning condition of an MT game is

an MT formula and, moreover, the game graph conforms to additional restrictions on the

structure of the modes. We believe that modeling the desired behavior of control systems

in this way, via modes and targets, is quite natural for designers. We support this claim

in Section 2 by giving three concrete examples from different application domains that

illustrate the usefulness of MT games. The first example is an adaptive cruise controller,

whose specifications are outlined by the International Standardization Organization (ISO).

The second example builds on [JDK14], where researchers from the Toyota Technical

Center described the desired behavior for an air-fuel-ratio controller in signal temporal

logic. The third example is the control of certain chemicals inside a nuclear power plant

during shutdown and startup operations as outlined in [HRK09]. We show that the

controller synthesis problem for all of these examples can be posed as finding a winning

strategy for an MT game.

The contributions of this chapter can be summarized as follows:

· We propose MT as a practically useful LTL fragment from a modeling perspective.

We provide three concrete control applications as an illustration of the large class

of problems that can be naturally modeled as MT games.

· We introduce the notion of simple games that abstracts the key properties of GR(1)

and MT games so as to prove the correctness and complexity of the proposed algo-

rithms in a transparent manner. In doing so, we provide a new and simpler proof

for the correctness and complexity estimates of the existing controller synthesis al-

gorithms for GR(1) while highlighting the commonalities and differences between

GR(1) and MT games. In particular, we show that MT games are also GR(1) games.
2

· We propose an algorithm to synthesize controllers enforcing MT specifications which

requires O(
∑

i tin
2) symbolic steps where n is the number of states in the game graph

and ti is the number of targets corresponding to mode i. In contrast, the complexity

of the algorithm resulting from embedding MT games into GR(1) games and using

existing synthesis algorithms for the GR(1) fragment is O(
∑

i tn
2) = O(mtn2) where

m is the number of modes and t is the largest number of targets across all the

modes. Although these two complexity upper bounds coincide when the number

of targets for each mode is the same, we empirically show in Section 5 that the

proposed synthesis algorithm still outperforms the synthesis algorithm obtained via

the GR(1) embedding in this situation.

The rest of the chapter is organized as follows. In Section 1, we review the syntax and

semantics of LTL and introduce LTL games. We formally define MT games in Section 2

and illustrate their usefulness via examples from control. In Section 3 we present an

algorithm for solving MT games. We then show in Section 4 that every MT game can

be formulated as a GR(1) game. This leads to an alternative solution for MT games via

existing algorithms to solve GR(1) games. We experimentally compare the two algorithms

for the solution of MT games in Section 5 and conclude this chapter with Section 6.

3

1 Preliminaries

We start by reviewing the syntax and semantics of Linear Temporal Logic (LTL) and

corresponding games.

1.1 Linear Temporal Logic

Consider a set of atomic propositions P . LTL formulas are constructed according to the

following grammar:

ϕ ::= p ∈ P | ¬ϕ |ϕ ∨ ϕ | eϕ |ϕU ϕ.
We denote the set 2P by Σ, where 2P is the set of all subsets of P . An infinite word is

an element of Σω where Σω denotes the set of all infinite strings or words obtained by

concatenating elements or letters in Σ. Similarly, the set of all finite strings is denoted by

Σ∗. We also regard elements w ∈ Σω as maps w : N → Σ. Using this interpretation we

denote w(i) by wi. In the context of LTL, the index i models time and wi is interpreted

as the set of atomic propositions that hold at time i.

The semantics of an LTL formula ϕ is described by a satisfaction relation |= that defines

when the string w ∈ Σω satisfies the formula ϕ at time i ∈ N, denoted by w, i |= ϕ:

· For p ∈ P , we have w, i |= p iff p ∈ wi,

· w, i |= ¬ϕ iff w, i 6|= ϕ,

· w, i |= ϕ ∨ ψ iff w, i |= ϕ or w, i |= ψ,

· w, i |= eϕ iff w, i+ 1 |= ϕ,

· w, i |= ϕU ψ iff there exists k ≥ i such that w, k |= ψ and for all i ≤ j < k, we have

w, j |= ϕ.

We write w |= ϕ when w, 0 |= ϕ. We use the short hand notation ϕ∧ψ, for ¬(¬ϕ∨¬ψ), and

True for ¬ϕ ∨ ϕ. We further abbreviate TrueU ϕ as 3ϕ which means that ϕ eventually

holds and ¬3¬ϕ by �ϕ, which says that ϕ always holds. We call the operators e, U , �,

and 3 temporal operators.
4

We write W (ϕ) to denote the set of all infinite words which satisfy ϕ, i.e., W (ϕ) := {σ ∈

Σω|σ |= ϕ}. We say that ψ1 and ψ2 are semantically equivalent, and write ψ1 ≡ ψ2, if

W (ψ1) = W (ψ2).

1.2 Games

A two-player player game over a game graph is a tuple G = (V,E, P, L) consisting of:

· A finite set V of states partitioned into V0 and V1, i.e., V = V0∪V1 and V0∩V1 = ∅;

· A transition relation E ⊆ V × V ;

· A finite set of atomic propositions P ;

· A labeling function L : V → 2P mapping every state in V to the set of atomic

propositions that hold true on that state.

In this definition, V0 and V1 are the states from which only player 0 and player 1 can

move, respectively. Thus, the state determines which player can move. We assume that

for every state v ∈ V , there exists some v′ ∈ V such that (v, v′) ∈ E. The function L can

be naturally extended to infinite strings r ∈ V ω by L(r) = L(r0)L(r1)L(r2) . . . ∈ Σω.

A play r in a game graph G is an infinite sequence of states r = v0v1 . . . ∈ V ω, such

that for all i ≥ 0, we have (vi, vi+1) ∈ E. A strategy for player 0 is a partial function

f : V ∗×V0 → V such that whenever f(r, v) is defined (v, f(r, v)) ∈ E. We denote the set

of all plays under strategy f starting from state v by Ωf,v(G), and the set of all possible

plays for a given game graph G by Ω(G). For a given LTL formula ϕ and a game graph

G = (V,E, P, L), we use WG(ϕ) as the short-hand notation for W (ϕ) ∩ L(Ω(G)).

For the purposes of this chapter, an LTL game is a pair (G,ϕ) consisting of a game graph

G, and a winning condition ϕ which is an LTL formula. A play r in a game (G,ϕ) is

winning for player 0 if L(r) ∈ W (ϕ). A strategy f for player 0 is winning from state

v, if all plays starting in v which follow f are winning for player 0. For a given game

(G,ϕ), JϕKG denotes the set of states from which player 0 has a winning strategy, this is

the winning set of player 0. When it is clear from the context which game graph we are
5

referring to, we drop the subscript and just write JϕK.

The sets from which player 0 can force a visit to a set of states V ′ is denoted by Pre(V ′),

i.e.,

Pre (V ′) = {v ∈ V0 | ∃v′∈V ′ (v, v′) ∈ E} ∪ {v ∈ V1 | ∀v′∈V (v, v′) ∈ E ⇒ v′ ∈ V ′}

We recall the following fixed-point notation for a given monotone mapping F : 2V → 2V :

νXF (X) = ∩iXi, whereX0 = V, and, Xi+1 = F (Xi), and

µXF (X) = ∪iXi, whereX0 = ∅, andXi+1 = F (Xi).

In other words, νXF (X) and µXF (X) are the greatest and least fixed-point of the

mapping F , respectively.

In the rest of the chapter, we abuse notation and sometimes use a set of states V ′ ⊆ V as

an LTL formula. In this case V ′ is to be interpreted as an atomic proposition that holds

only on the states in V ′. Whenever, V ′ defines an atomic proposition not in P , we can

always extend P to contain V ′. However, for the sake of simplicity we will not explicitly

do so.

We call ϕ a positional formula if it does not contain any temporal operators and a reacha-

bility formula if ϕ = 3p for some positional formula p. We say that ϕ is a GR(1) formula

if it has the following form:

ϕ =
∧
i1∈I1

�3ai1 =⇒
∧
i2∈I2

�3gi2 , (1.1)

for some positional formulas ai1 , gi2 and finite sets I1 and I2. We call games with winning

conditions given as a GR(1) formula GR(1) games. We refer the reader to [BJP12] for

further details on GR(1) formulas.

6

2 Mode-Target Games

2.1 Motivation

As the automotive technology evolves, conventional cruise control (CCC) is being replaced

by adaptive cruise control (ACC). ACC has two modes of operation: the speed mode and

the time-gap mode. In the speed mode, ACC behaves exactly like CCC, i.e., it reaches a

pre-set speed and maintains it. The time-gap mode is what differentiates ACC from CCC.

In this mode, ACC keeps pace with the car in front, the lead car. This pace is characterized

by the headway, the quantity that captures the time required by the ACC equipped vehicle

to brake and avoid a collision when the lead car suddenly slows down. We consider the

specifications for ACC set by the International Organization of Standardization (ISO)

in [ISO10]. Following these specifications, the target region corresponding to the speed

mode can be defined as {v : |v − vdes| ≤ εv}, where v, vdes and εv denote the velocity

of the car, the desired velocity, and the allowable tolerance for the velocity respectively.

Similarly, the target region of the time gap mode is formalized as {τ : |τ − τdes| ≤ ετ},

where τ is the headway, τdes is the desired headway, and ετ is the desired tolerance for

the headway.1 In each mode, the specification is to reach and stay in the desired target

region as long as the current mode does not change. We can express this specification as

the conjunction of individual specifications for the time-gap mode and the speed mode,

i.e., ϕtimegap ∧ ϕspeed, where:

ϕtimegap := (3�Mtimegap =⇒ 3�Ttimegap) , (1.2)

ϕspeed := (3�Mspeed =⇒ 3�Tspeed) . (1.3)

Here, Mtimegap and Mspeed are the atomic propositions that hold whenever the correspond-

ing modes are active. Similarly, Ttimegap and Tspeed are satisfied when τ ∈ {τ : |τ − τdes| ≤

ετ} and v ∈ {v : |v − vdes| ≤ εv}, respectively.

1In addition to the mode-target behavior, [ISO10] requires the headway to be kept above a certain value
regardless of the mode and at all times. However, this is a simple safety specification for which a controller can
be synthesized separately and composed with the mode-target controller afterwards.

7

Table 1.1: The modes and the corresponding target A/F ratios as given in [JDK14]. In this
table, λref , λpwrref correspond to the optimal A/F ratios in normal and power-enrichment mode.
The corresponding atomic propositions are written in parentheses.

Mode Target A/F Ratio

Start-up (Mstart-up) [0.9λref , 1.1λref] (Tstart-up)
Normal (Mnormal) [0.98λref , 1.02λref] (Tnormal)
Power-Enrichment (Mpower) [0.8λpwr

ref , 1.2λ
pwr
ref] (Tpower)

Fault (Mfault) [0.9λref, 1.1λref] (Tfault)

Implication (1.2) only requires the time gap to be reached if the system enters and stays in

the time gap mode forever. Hence, it seems that a controller may simply ignore the time

gap mode if it knows that this mode will be eventually left. However, since we synthesize

causal controllers, i.e., controllers that cannot foretell the future, any such controller will

start driving the system to the time gap target once the system enters the time gap mode.

Similarly, once the system leaves the time gap mode to enter the speed mode there is no

need to reach the time gap mode anymore and the controller starts driving the system to

the speed target. This is consistent with the ACC requirements in the ISO standard [12]

that do not require a target to be reached once the corresponding mode is left.

We now consider an engine control example: the control of a combustion engine. As

the researchers in the Toyota Technical Center argued in [JDK14], the specifications for

the air-fuel (A/F) ratio controller of an internal combustion engine can be naturally

expressed in terms of modes and corresponding targets. We now summarize these speci-

fications given in [JDK14]. There are four different modes of operation: start-up mode,

normal mode, power-enrichment mode, and fault mode. Only one of these modes is ac-

tive at any given time. Furthermore, for each mode there is a required A/F ratio. The

specification for the controller is to bring the A/F ratio to this target value and keep it

there unless the mode changes. We compile the target A/F ratios corresponding to each

mode in Table 1.1, where λref, and λpwr
ref are the optimal A/F ratios for normal and “full

throttle” driving conditions respectively. Defining the atomic propositions for modes and

targets according to Table 1.1, we get the following LTL formula that captures the desired

8

behavior: ϕstart-up ∧ ϕnormal ∧ ϕpower ∧ ϕfault, where

ϕstart-up := (3�Mstart-up =⇒ 3�Tstart-up) ,

ϕnormal := (3�Mnormal =⇒ 3�Tnormal) ,

ϕpower := (3�Mpower =⇒ 3�Tpower) ,

ϕfault := (3�Mfault =⇒ 3�Tfault) .

The last example we present is the control of a pressurized water reactor2 during shutdown

and start-up stages. Even though the chemical processes that take place in nuclear power

plants are well studied under normal conditions, they are still yet to be fully understood in

the presence of transient behaviors, particularly during shutdown and start-up. Therefore,

it is important to ensure correct operation during these critical phases. In [HRK09],

the authors document the specifications set by Électricité de France (EdF) for both of

these modes of operation. Here we present a simplified version of these specifications.

According to [HRK09], there are two shutdown procedures that can be followed based on

the current temperature and concentration of the materials in the plant: hot shutdown

and cold shutdown. In the hot shutdown mode, there is a target hydrogen concentration

that must be achieved. In the cold shutdown mode, the shutdown can be performed with

or without oxygenation depending on factors such as financial cost, risk, and specifics of

the power plant. For both of these modes the control objective is to attain and sustain

a certain chemical content in the reactor. Table 1.2 summarizes these target chemical

concentrations corresponding to each operation mode. Accordingly, in this case the LTL

formula describing the desired behavior is ϕstart-up ∧ ϕcold ∧ ϕhot, which is conjunction of

the specifications for the start-up mode, the hot shutdown mode, and the cold shutdown

2A pressurized water reactor is a type of nuclear power plant that constitutes the majority of nuclear power
plants in Western countries, including the US.

9

Table 1.2: The modes and the targeted concentration of chemicals in each mode as given in
[HRK09]. In parentheses, we provide the notation for the atomic propositions corresponding to
each mode and target.

Mode Target Chemical Content

Start-up (Mstart-up)
Sodium < 0.1 mg/kg

Hydrazine > 0.1 mg/kg (Tstart-up)

Hot shutdown (Mhot) 15cm3/kg < H2 < 50cm3/kg (Thot)

Cold shutdown (Mcold) O2 > 1 mg/kg (Tcold, w / oxy)
H2 > 50 N cm3kg (Tcold, w/o oxy)

mode, where

ϕstart-up := (3�Mstart-up =⇒ 3�Tstart-up) ,

ϕhot := (3�Mhot =⇒ 3�Thot) ,

ϕcold :=
(
3�Mcold =⇒

(
3�Tcold, w/ oxy ∨3�Tcold, w/o oxy

))
.

2.2 Mode-Target Formulas and Games

The preceding examples illustrate the scenarios that we want to capture with a suitable

LTL fragment. All of the control problems we just described share the following properties

that define our setting:

(P1) There are modes and corresponding targets.

(P2) If the system enters a mode, it should reach one of the targets associated with that

mode and remain there.

(P3) If the mode changes, there is no obligation to reach any of the targets of the previous

mode anymore.

We also make the following observation regarding the dynamics of the modes:

(P4) There is at most one mode active at any given time.

With these properties in mind, we now formally define mode-target formulas and games.

For a game to be a mode-target game, its winning condition must be given by a mode-

10

target formula and the corresponding game graph should have a specific structure cap-

turing (P1)-(P4).

Let T and M be finite sets of atomic propositions: T = ∪iTi and M = {M1,M2, . . .Mm},

where Ti = {Ti,1, Ti,2, . . . , Ti,ti}. Here, the Mi, Ti,j represent the mode i, and jth target of

mode i respectively. We start with a game graph G labeled with modes and targets, i.e.,

G = (V,E,M ∪ T, L) where L : V → 2M∪T . The winning condition for player 0 is given

by a mode-target formula.

Definition 2.1 (Mode-Target Formula). An LTL formula is a mode-target formula if it

has the form

ϕ :=
m∧
i=1

(
3�Mi =⇒

ti∨
j=1

3�Ti,j

)
. (1.4)

We can interpret ϕ as: if the system eventually settles in Mi, then it should eventually

settle in one of the modes in Ti. This formula captures (P2) because it guarantees that

the system will reach one of the target regions in Ti if the system stays in mode Mi from

a certain time onwards. As we explained previously, the left-hand side of the implication

in (1.4) ensures that if the mode changes, the system does not have to reach or stay in

any of the corresponding targets of the previous mode, as asserted by (P3). It is true

that ϕ can also be satisfied by switching between modes infinitely often. However, as it

is the case in the ACC, A/F ratio, and pressurized water reactor examples, the modes

can be partially if not fully determined by an external signal that the controller cannot

change. In these cases, by construction, the controller will make progress towards the

target of the current mode since it cannot predict if the system will remain in the current

mode or switch to a different mode. Also note that for the ACC and A/F ratio control

examples each Ti is simply a singleton, since there is only one target region that can be

reached for all modes. This is not the case, however, for the pressurized water reactor

control example.

To address (P4) we make the following assumption on the modes:

(A) Modes are mutually exclusive, i.e., Mi ∈ L(v) =⇒ Mj /∈ L(v), ∀j 6= i, ∀v ∈ V.

Definition 2.2 (Mode-Target Games). We call LTL games with winning condition given
11

by a mode-target formula and a labeling function L that satisfies (A), mode-target games.

Note that, a mode-target game is a Streett game [Str81] with additional structure imposed

by the assumption (A) on the labeling function.

3 Solving Mode-Target Games

3.1 Decomposition of the Winning Set

We start by introducing a few notions that are critical to understand the solution of MT

games described in this section.

Let S1 ⊆ Σ∗ and S2 ⊆ Σ∗ ∪ Σω. We define the concatenation of these sets as

S1S2 := {σ ∈ Σ∗ ∪ Σω|σ = σ1σ2, σ1 ∈ S1, σ2 ∈ S2}.

A property Φ is a subset of Σω. The set of suffixes of a property Φ is denoted by Post(Φ),

i.e., Post(Φ) := {σ′ ∈ Σω|σσ′ ∈ Φ, for some σ ∈ Σ∗} . A property Φ is an absolute liveness

property iff Σ∗Φ ⊆ Φ. We call ϕ an absolute liveness formula if W (ϕ) is an absolute

liveness property. A formula ϕ is an absolute liveness formula iff ϕ ≡ 3ϕ (see [Sis94]). It

follows that any formula of the form 3φ, for some φ is an absolute liveness formula.

We now introduce a class of games that includes both GR(1) games and MT games. The

definition of this class of games distills the properties that are essential for a simple and

transparent derivation of its solution.

Definition 3.1. An LTL game (G,ϕ) is said to be simple if the winning condition defined

by ϕ can be written as:

ϕ = �
∧
i∈I
ϕi, ϕi = 3pi ∨ ψi, (1.5)

where pi is a positional formula and ψi is an absolute liveness formula that satisfies:

WG(ψi) ⊆ W (ϕ). (1.6)

12

Lemma 3.2. Every GR(1) game is a simple game.

Proof. Given a GR(1) formula ϕ, the following holds:

ϕ ≡
∨
i1∈I1

3�¬ai ∨
∧
i2∈I2

�3gi2
(1)

≡ �
∧
i2∈I2

((∨
i1∈I1

3�¬ai1

)
∨3gi2

)
,

where
(1)

≡ follows from very similar arguments to those in the proof of Lemma 1.4 in Ap-

pendix A. Note that ∨i1∈I13�¬ai1 implies ϕ, i.e., W (∨i1∈I13�¬ai1) ⊆ W (ϕ). Therefore,

ϕ ≡ � ∧i2∈I2 (3gi2 ∨ ψi2), where ψi2 := ∨i1∈I13�¬ai1 , for all i2 ∈ I2, which completes the

proof of the lemma.

Lemma 3.3. Every mode-target game is simple.

Proof.

ϕ =
m∧
i=1

(
3�Mi =⇒ ∨tij=13�Ti,j

) (1)

≡
m∧
i=1

(
�3¬Mi ∨

ti∨
j=1

3�(Mi ∧ Ti,j)

)
(2)

≡ �
m∧
i=1

(
3¬Mi ∨

ti∨
j=1

3�(Mi ∧ Ti,j)

)
,

where
(1)

≡ is due to Lemma 1.5 in Appendix A, while
(2)

≡ follows from Lemma 1.4 in Ap-

pendix A and �ϕ1 ∧�ϕ2 ≡ �(ϕ1 ∧ ϕ2).

The last formula has the form given in the statement of the simple games, where pi is ¬Mi

and ψi is ∨tij=13� (Mi ∧ Ti,j). Then, we are only left with showing that WG(ψi) ⊆ WG(ϕ).

Recall that in MT games for all v ∈ V , if Mi ∈ L(v) then Mj 6∈ L(v) for all j 6= i. It

follows that for any r ∈ V ω we have: L(r) |= 3�Mi =⇒ L(r) |= 3�¬Mj, for all j 6= i.

13

Moreover, note that W (3�¬Mj) ⊆ W (�3¬Mj). Therefore, the following holds:

WG

(
ti∨
j=1

3�(Mi ∧ Ti,j)

)

⊆ W

�
∧
`∈I\i

3¬M`

 where I\i = {1, 2, . . . ,m} \ {i}

⊆ W

�

∧
`∈I\i

3¬M` ∨
t∨̀
j=1

3�(M` ∧ T`,j)

 .

(1.7)

Also note that

WG

(
ti∨
j=1

3�(Mi ∧ Ti,j)

)
⊆ WG

(
�3¬Mi ∨

ti∨
j=1

3�(Mi ∧ Ti,j)

)

= WG

(
�

(
3¬Mi ∨

ti∨
j=1

3�(Mi ∧ Ti,j)

))
,

(1.8)

where the last equality is due to Lemma 1.4 in Appendix A.

By combining the inclusions (1.8) and (1.7) we get

WG

(
ti∨
j=1

3�(Mi ∧ Ti,j)

)
⊆ WG

(
�

m∧
i=1

(
3¬Mi ∨

ti∨
j=1

3�(Mi ∧ Ti,j)

))
,

which completes the proof of the lemma.

The winning condition for simple games can be written as a conjunction of formulas ϕi

preceded by � where each ϕi can be decomposed as a disjunction between a reachability

formula and a formula ψ satisfying (1.6). We now show that it is easy to modify algorithms

that synthesize winning strategies for reachability games to obtain an algorithm for a

conjunction of reachability formulas preceded by �. The approach in this algorithm

remains valid even when we disjoin these reachability formulas with absolute liveness

formulas ψi’s, in virtue of (1.6). The inclusion given in (1.6) ensures that a play in

(G,ψi) that is winning for player 0, is also winning in (G,ϕ). Therefore, one can adopt

a compositional approach to the solution of simple games. A small modification to an

14

algorithm that computes JϕiK leads to an algorithm computing J�
∧
i∈I ϕiK. The next

result makes these ideas precise.

Theorem 3.4. The winning set for player 0 in a simple game (G,ϕ) is given by

JϕK = νZ
⋂
i∈I

Jψi ∨3(pi ∧ eZ)K . (1.9)

Proof. See Section 2 in Appendix A.

The proof of the first part of Theorem 3.4, follows the existing methods for constructing

winning strategies for Generalized Büchi games [DJW97], in which the winning condition

is given by ∧
i∈I

�3Bi ≡ �
∧
i∈I

3Bi, (1.10)

for some subset of states Bi ⊆ V . The winning condition we are interested in, given

in (1.5), is slightly different from the one given in (1.10) due to the additional ψi term.

However, inclusion (1.6) ensures that any play that is winning for (G,ψi) is also winning

for (G,ϕ). Hence, by simply computing νZ
⋂
i∈I Jψi ∨3(pi ∧ eZ)K we can obtain a win-

ning strategy for player 0 in a simple game. Moreover, this strategy can be seen as the

composition of the strategies for games with the simpler winning condition ψi∨3(pi∧ eZ).

Theorem 3.4 shows how the structure of simple games makes it possible to combine the

sets Jψi∨3piK as in (1.9) to compute the final winning set. In particular, we conclude that

modularity observed in the solution of GR(1) games is not due to the structure of GR(1)

formulas but rather to the structure of simple game formulas. Hence, this structure can be

leveraged beyond GR(1) games as we did for MT games. Note how Theorem 3.4 describes

the solution to both GR(1) and MT games. For later reference we instantiate (1.9) for

MT games:

JϕK = νZ
m⋂
i=1

t
ti∨
j=1

3�(Mi ∧ Ti,j) ∨3(¬Mi ∧ eZ)

|

(1.11)

15

and explain in the next section how to compute the winning sets

t
ti∨
j=1

3�(Mi ∧ Ti,j) ∨3(¬Mi ∧ eZ)

|

(1.12)

so as to make use of (1.11). Note that if we instead instantiate (1.9) for the GR(1)

formula (1.1) we obtain

νZ
⋂
i2∈I2

t ∨
i1∈I1

3�¬ai1 ∨3(¬gi2 ∧ eZ)

|

. (1.13)

The structures of the fixed-point expressions given in (1.13) and (1.11) are very much

alike, but not the same. While in GR(1) games for each i2 ∈ I2, i.e., for each guarantee,

the same persistency property is required to be satisfied (∨ii∈I132¬ai1), in the case of

MT games, the persistency part of the specification depends on the current mode, i.e.,

the index i, as in (1.11) (∨tij=13�(Mi ∧ Ti,j)).

3.2 Computation of the Winning Set

In [KPP05], Kesten, Piterman and Pnueli presented a µ-calculus formula which charac-

terizes J∨i∈I3�pi ∨3qK, where pi and q are positional formulas. This µ-calculus formula

yields the following fixed-point expression:

µY
⋃
i∈I

(νX(Pre(X) ∩ JpiK) ∪ JqK ∪ Pre(Y)) . (1.14)

Using (1.14) it is easy to see that the winning set (1.11) is given by the following fixed-

point:

JϕK = νZ

(
m⋂
i=1

µY

ti⋃
j=1

(νX(Pre(X) ∩ JMi ∧ Ti,jK) ∪ (J¬MiK ∩ Pre(Z)) ∪ Pre(Y))

)
.

(1.15)

16

We refer to the algorithm defined by the iterative computation of the preceding fixed-

point as the MT algorithm. In the worst case, the MT Algorithm can take O(
∑

i tin
2)

iterations, where ti is the number of targets dedicated to mode i and n is the number of

vertices in the game graph G. We summarize this in the following theorem.

Theorem 3.5. Mode-target games can be solved by the symbolic algorithm MT requiring

O(
∑m

i=1 ti n
2) Pre computations.

Proof. In [BCJ97] Browne et al. show that a fixed point expression with alternation depth

k can be computed in O(nb1+k/2c) iterations. Note that given a fixed-point expression

the alternation depth is simply the number of alternating greatest and least fixed point

operators.

The alternation depth of the fixed-point expression (1.15) is three. Moreover, the com-

putation of the fixed-point involves sequentially evaluating ti fixed-point expressions for

each mode, which results in O (
∑m

i=1 tin
2) Pre computations in the worst case.

Theorem (3.5) only addresses the computation of the winning set for the controller. How-

ever, the fixed-point computation given in (1.15) is constructive in the sense that we can

find a winning strategy by storing the intermediate sets that are computed during its

evaluation. The precise construction and implementation of the winning strategy follows

the same approach as in GR(1) games [BJP12]. However, for the sake of completeness we

provide the details of the winning strategy synthesis in Appendix A, Section 3. Note that

contrary to the winning strategy for GR(1) games, the winning strategy for MT games is

memoryless since player 0 only needs to know what the current mode is.

4 Solving Mode-Target Games via GR(1) Games

In this section, we describe how to transform a given MT game into a GR(1) game, thereby

obtaining another algorithm to solve MT games that is based on the existing synthesis

algorithms for the GR(1) fragment. To simplify the notation in the next proposition we

17

introduce the atomic proposition T̄i,j defined by:

T̄i,j =

Ti,j, if j ≤ ti

false otherwise.

Proposition 4.1. Every MT game with game graph G is equivalent to the GR(1) game

(G,ϕ), where

ϕ =

(
maxi ti∧
j=1

�3 ∧mi=1 (¬Mi ∨ ¬T̄i,j)

)
=⇒

(
m∧
i=1

�3¬Mi

)
, (1.16)

Proof. See Appendix A, Section 4.

The proof of (1.16) has two main steps. In the first step, we show that the MT game is

equivalent to the GR(1) game (G,ϕ1), where

ϕ1 =

(
m∨
i=1

maxi ti∨
j=1

3�(Mi ∧ T̄i,j)

)
∨

(
m∧
i=1

�3¬Mi

)
. (1.17)

The equivalence of (G,ϕ) to the MT game relies on assumption (A). Also note that the

formula in (1.17) is satisfied either when the system settles down in a mode and in one

of the corresponding targets or when it toggles between the modes indefinitely, which

matches the initial motivation of the MT fragment. Since the formula given in (1.17) is a

GR(1) formula with
∑

i ti assumptions and m guarantees, this part of the proof already

leads to a synthesis algorithm for MT games. In the second part of the proof we show3

how to construct a GR(1) game with fewer assumptions that is equivalent to (G,ϕ1) and

for which the statement of Proposition 4.1 holds. Again assumption (A) lies at the heart

of the proof. This assumption restricts the modes to be mutually exclusive and therefore

enforces additional structure on MT games, which lets us simplify the formula in (1.17).

The formula given in (1.16) is a GR(1) formula with maxi ti assumptions, and m guaran-

tees. Notice that this formula has at most the same number of assumptions as ϕ1 since

3This part of the proof is based on a comment we received from an anonymous reviewer of the preliminary
version of our results presented in [BVT16].

18

mmaxi ti ≤ m
∑

i ti. Due to Proposition 4.1 we can now simply apply the algorithm given

in [BJP12] to the game graph G with the winning condition (1.16) to solve the MT game.

This algorithm is based on the computation of the following fixed-point:

νZ

(
m⋂
i=1

µY

(
maxi ti⋃
j=1

νX
(
Pre(X) ∩∪m`=1JM` ∧ T̄`,jK

)
∪Pre(Y) ∪(J¬MiK ∩ Pre(Z))

))
.

(1.18)

We refer to the algorithm defined by the iterative computation of the preceding fixed-point

as the GR(1)-Emb algorithm for GR(1) Embedding. In the worst case, the GR(1)-

Emb algorithm can take O(mmaxi tin
2) iterations, where m is the number of modes in

the MT formula, ti is the number of targets dedicated to mode i, and n is the number

of vertices in the game graph G. This follows from the fact that solving GR(1) games

according to the fixed-point computation in [BJP12] takes O(nangn
2) symbolic steps

where ng is the number of guarantees and na is the number of assumptions. Then, the

bound O(mmaxi tin
2) follows from the fact that na = max ti and ng = m as in (1.16).

The following result summarizes the discussion in this section.

Theorem 4.2. Mode-target games can be solved by the symbolic algorithm GR(1)-Emb

requiring O(mmaxi tin
2) Pre computations.

Proof. Similar to the proof of Theorem 3.5, this result follows from the fact that the

given fixed-point expression is of alternation depth three. Moreover, in each iteration of

the algorithm we sequentially compute mmaxi ti fixed-point expressions which results in

O(mmaxi tin
2) Pre computations in the worst case.

Comparing the complexities of the MT and the GR(1)-Emb algorithms as given in

Theorem 4.2 and Theorem 3.5, we get

O

(
m∑
i=1

ti n
2

)
≤ O

(
mmax

i
ti n

2
)
. (1.19)

Although the GR(1)-Emb and the MT algorithms compute the same winning set, the

19

MT algorithm has better worst case complexity than the GR(1)-Emb algorithm. More-

over, the equality in (1.19) holds iff t` = maxi ti for all ` ∈ {1, 2, . . .m}, i.e., if the number

of targets associated with each mode is equal. In this special case, assuming the num-

ber of targets for each mode to be t, the fixed-point that needs to be computed for the

GR(1)-Emb algorithm is

νZ

(
m⋂
i=1

µY

t⋃
j=1

(νX(Pre(X) ∩ ∪m`=1JM` ∧ T`,jK) ∪(J¬MiK ∩ Pre(Z)) ∪ Pre(Y))

)
, (1.20)

while for the MT algorithm the fixed-point computation given in (1.15) becomes

νZ

(
m⋂
i=1

µY
t⋃

j=1

(νX(Pre(X) ∩ JMi ∧ Ti,jK) ∪ (J¬MiK ∩ Pre(Z)) ∪ Pre(Y))

)
. (1.21)

As can be seen from (1.20) and (1.21), even in this special case where the two different

approaches have the same worst-case complexity, the computations performed by GR(1)-

Emb and MT differ. While the fixed-point expression (1.21) has ∪m`=1JM`∧T`,jK for every

mode index i, the fixed-point in (1.21) replaces this set with JMi ∧ Ti,jK for each i. Since

JMi ∧ TiK ⊆ ∪m`=1JM` ∧ T`,jK for all i and j, due to the monotonicity of the given fixed-

point operator, the MT algorithm performs no worse than the GR(1)-Emb in terms of

number of iterations. Moreover, for a given i and j, in order to compute the fixed-point in

the variable X, the algorithm MT only requires the storage of the set JMi ∧ Ti,jK instead

of ∪m`=1JM` ∧ T`,jK. This suggests that the algorithm MT might also have better space

complexity. To investigate these differences in practice, we provide in the next section an

experimental comparison of two implementations for each of the two algorithms presented

in this chapter: GR(1)-Emb, and MT.

5 Experimental Comparison

The winning set and a corresponding winning strategy can be computed by iterating the

operators on the right hand sides of (1.15) and (1.18) until a fixed-point is reached. We

can improve the time efficiency of a direct implementation of this iteration by using two

20

important ideas from the literature. In [EL86], the authors make the following observation:

if one wants to compute the largest (smallest) fixed-point of an operator and one already

knows a set that contains (is contained in) this fixed-point, then the largest (smallest)

fixed-point computation can be started from this value instead of V (∅). By using this

idea, the authors showed that the complexity of their computation does not depend on the

number of fixed-point operators but rather the number of such fixed-point alternations,

i.e., alternation depth. Taking the same idea a step further, in [BCJ97], by exploiting

monotonicity, the authors point state that one can use the intermediate values of the

sets to initialize the fixed-point computations. This method also leads to improved time

efficiency, but now with the cost of the requirement to store the value of intermediate sets

that are not necessary for the computation of the final fixed-point. However, as mentioned

in Section 3.2, the construction of the winning strategy depends upon these intermediate

values. Therefore, in our experiments we use the method described in [BCJ97], since the

extra memory allocation is partly unavoidable when the desired end product is a winning

strategy, and not just the winning set.

In this section, we discuss the experimental time complexity of the algorithms GR(1)-

Emb and MT. We present three sets of experiments. The first two are designed to

compare the performance of the two algorithms in different scenarios, while the last one

demonstrates a concrete application of the MT fragment in the design of the ACC example

described in Section 5.3.

5.1 Random Linear Time-Invariant Systems with Multiple Targets

We start with the simplest class of dynamical systems: linear time-invariant systems.

We demonstrate how the performance of the two algorithms differs as the theoretical

worst-case gap between the GR(1)-Emb algorithm and MT algorithm deepens. To this

end, we consider a scenario where all modes but one have a single associated target.

For this remaining mode, starting from a single target we gradually increase the number

of associated targets in order to accentuate the difference between the two sides of the

inequality in (1.19). We provide the descriptions of all mode and target sets in [BVT].

21

In Fig. 1.1, we summarize our findings for the case when we have three, six and nine

modes. We plot in Fig. 1.1a the ratio between the number of iterations it takes for

the GR(1)-Emb algorithm versus the MT algorithm to compute the winning set. In

Fig. 1.1b we compare the two algorithms in the same fashion, but now in terms of the

elapsed time. Each data point represents the average value we obtained after computing

the winning set on 20 random linear time-invariant systems. All systems have the form

ẋ = Ax + Bu, where the entries of the matrices A and B are randomly chosen from

the set [−1, 1]. The state space and the input space are the sets [−6, 6] × [−6, 6], and

[−4, 4], respectively. As can be seen from both figures, MT outperforms GR(1)-Emb,

and the performance difference becomes progressively more prominent as the number of

extra targets and modes increase.

0 5 10
1

2

3

4

5

6

7

Number of extra targets of the last mode

G
R

(1
)−

E
m

b
A

lg
or

ith
m

 /
M

T
 A

lg
or

ith
m

Number of Iterations

m=3

m=6

m=9

(a) The ratio of number of iterations of GR(1)-
Emb to MT.

0 5 10
1

2

3

4

5

6

7

Number of extra targets of the last mode

G
R

(1
)−

E
m

b
A

lg
or

ith
m

 /
M

T
 A

lg
or

ith
m

Elapsed Time

m=3

m=6

m=9

(b) The ratio of elapsed time until convergence of
GR(1)-Emb to MT.

Figure 1.1: Comparison of the algorithms GR(1)-Emb and MT when there are multiple targets
corresponding to one of the modes.

5.2 Unicycle Cleaning Robot

We consider a scenario where a unicycle robot cleans the rooms on a hotel floor. The

robot has to reach one of the rooms that is not clean and stay there, until an external

signal indicates that the current room has been cleaned. We now explain how we model

this scenario as an MT game. Assume that there are two rooms, defined by the atomic

propositions T1 and T2. Each mode-target pair corresponds to a different subset of rooms

that need to be cleaned. Specifically, M1, M2, and M3 indicate that only the first room,
22

only the second room, and both of the rooms need to be cleaned, respectively. Accordingly,

the MT formula corresponding to this scenario is:

∧2
i=1(3�Mi =⇒ 3�Ti) ∧ (3�M3 =⇒ (3�T1 ∨3�T2)).

Note that, if there are k rooms, the number of modes is 2k − 1.

We first construct the game graph corresponding to the dynamics of the cleaning robot.

The differential equations:

ẋ = v cos(θ), ẏ = v sin(θ), θ̇ = ω,

offer a simplified model for a 3-wheel robot equipped with differential drive. The pair

(x, y) ∈ R2 denotes the position of the robot, θ ∈ [−π, π[denotes its orientation, and

(v, ω) ∈ R2 are the control inputs, linear velocity v and angular velocity ω. For this

example we restrict the position (the location of the rooms) to the set [1, 7.5] × [1, 7.5],

input to the set [0, 0.5]×[−0.5, 0.5] and create an abstraction4 using the PESSOA [MDT10]

tool. This abstraction is stored as an Ordered Binary Decision Diagram [Ake78] (OBDD)

and constitutes the game graph describing the dynamics of the cleaning robot. It has

21141 vertices or states and 6 inputs that are available at each state.

We now describe the dynamics of the modes. When the robot is in room i that has not

yet been cleaned, the mode can change to the mode where the room i does not need

to be cleaned anymore. The nondeterminism in this change models an external signal

indicating whether the cleaning in the current room has been completed or not. When all

the rooms are cleaned, a nondeterministic mode transition can occur to any other mode

to restart the process. In Fig. 1.2, we illustrate the dynamics of the modes when there are

two rooms. As can be seen, there is a nondeterministic transition from M3 to M2 as the

robot enters the room 1 (T1). Similarly, if the system is in M1 (only room 1 is not clean),

when the robot reaches room 1, the system can take a nondeterministic transition to any

of the other modes, i.e., we restart the cleaning process once all the rooms are cleaned.

4The parameters used for the abstraction were η = 0.25, µ = 0.5, and τ = 0.5. An explanation of the meaning

23

M1 M2 M3

true

T1

T1

T2

true
T2

true
T1

T2

Figure 1.2: Mode dynamics for the cleaning robot, when there are two rooms (M1: room 1 not
clean, M2: room 2 not clean, M3 both rooms are not clean).

To obtain the final game graph describing the dynamics of both the modes and the cleaning

robot, we compose the game graph describing the modes and the game graph describing

the dynamics of the robot. Note that, the second player in this game arises due to the

conservative nature of the abstraction, as explained in [Tab09], and the nondeterminism

in the mode changes, both of which can be modeled as an adversarial disturbance.

We compare the performance of the GR(1)-Emb, and the MT algorithms as we increase

the number of rooms from 2 to 5. The rooms are boxes of various dimensions, whose

descriptions can be found at [BVT].

Fig. 1.3 summarizes our findings. Fig. 1.3a and Fig. 1.3b illustrate that, as the number of

rooms increases, the gap between the performance of the algorithm MT and the algorithm

GR(1)-Emb increases significantly both in terms of number of iterations of the fixed-

point algorithms as well as the computation time. Note that, when there are k rooms

we have, mmaxi ti = (2k − 1)k, and
∑

i ti =
k∑
j=1

(
k
j

)
k. Therefore, the widening of the

performance gap is expected, since as the number of rooms increases, so does the difference

between the worst case time complexities of GR(1)-Emb and MT.

5.3 Adaptive Cruise Control (ACC)

The last example demonstrates the usefulness of the MT fragment by applying it on the

ACC design problem that we detailed in Section 2. We model the dynamics of the ACC

equipped vehicle by a hybrid system with two discrete states which specify whether there

of these parameters is given in [MDT10].

24

Number of Rooms
2 3 4 5

N
um

be
r

of
 It

er
at

io
ns

0

1000

2000

3000

4000

5000

6000

7000

8000

GR(1) Alg.
MT Alg.

(a) The number of iterations until convergence for
the algorithms GR(1)-Emb and MT.

Number of Rooms
2 3 4 5

E
la

ps
ed

 T
im

e
(in

 m
in

ut
es

)

0

200

400

600

800

1000

GR(1) Alg.
MT Alg.

(b) Elapsed time until convergence for the algo-
rithms GR(1)-Emb and MT.

Figure 1.3: Comparison of the algorithms GR(1)-Emb and MT on the cleaning robot case
study for varying number of rooms.

is a lead car or not. The continuous states describe the evolution of the velocity of the

ACC equipped vehicle (v) as well as the velocity of the lead car (vL), and the distance

to the lead car (h) whenever there is one. The net action of braking and engine torque

applied to the wheels (Fw) is viewed as the control input and is assumed to satisfy the

bound −0.3mg ≤ Fw ≤ 0.2mg, where m is the mass of the ACC equipped vehicle and

g is the gravitational constant. Via PESSOA, we constructed a discrete abstraction of

this hybrid system, which together with the dynamics of the modes constitutes the game

graph of the MT game. The abstraction contains over 1.5 million states. We refer the

reader to [NHB16] for the details of the construction of this abstraction and a complete

description of the corresponding hybrid model. The winning condition of the game is the

conjunction of the safety specification ϕsafety with the MT formula ϕspeed∧ϕtimegap, where

ϕsafety ≡ �[τ ≥ τsafe],

ϕspeed ≡ (3�Mspeed =⇒ 3�[vdes − εv, vdes + εv]) ,

ϕtimegap ≡ (3�Mtimegap =⇒ 3�[τdes − ετ , τdes + ετ]) .

(1.22)

The values of the parameters appearing in (1.22) are τsafe = 1 s, vdes = 25 m/s, εv = 1,

τdes = 1.6, and ετ = 1. Note that the additional safety formula, ϕsafety, can be handled

separately by first synthesizing a safety controller and then composing this controller with

a controller synthesized solely for the MT formula, ϕspeed ∧ ϕtimegap.

In Figure 1.4, we present the winning set computed via the MT Algorithm. As can

25

0 10 20 300
100

200

0

10

20

v
h

v L

Figure 1.4: The winning set computed by the MT Algorithm.

be seen, the domain does not contain the points where h, the headway, is small and v,

the velocity of the ACC vehicle, is high, since there is no sequence of control inputs to

maintain a safe headway starting from these states. We simulated the MT controller

on CARSIM, an industry standard car dynamics simulation package, for the following

scenario: at time t = 0 s, a lead car is present driving below the desired speed vdes = 25

m/s of the ACC car, then leaves the lane at t = 3 s, allowing the ACC car to reach and

attain its desired speed. At t = 13 s, a new lead car cuts in 30 m in front of the ACC

car and starts decelerating. This means that the ACC car should slow down in order to

increase the headway. Fig. 1.5 presents the behavior of the MT controller. Notably, all

constraints, which are indicated by green lines, are satisfied throughout the simulations.

For a detailed discussion on hardware implementation of the MT controller and further

experimental results, we refer the reader to [NHB16].

The different experimental results suggests the following: (1) MT is consistently better

than GR(1)-Emb. Even for the case when the theoretical worst case complexities of

both algorithms are the same, MT outperforms GR(1)-Emb. However, the performance

increase is not always considerable in this case; (2) as the gap between maxi ti and
∑

i ti

widens, so does the performance difference between GR(1)-Emb and MT, which is in

accordance with the results in Section 3.2.

26

0 5 10 15 20 25 30
0

10

20

30

t

v

Lead

ACC-CarSim

0 5 10 15 20 25 30
0

20

40

t

h

0 5 10 15 20 25 30

1

2

3

tm
in

(3
,h
/
v
)

0 5 10 15 20 25 30

−0.2
0

0.2

t

F
w
/
m
g

Figure 1.5: Simulation results in CarSim of the PESSOA controllers. The plots show, from top
to bottom, velocities, headway, time headway, and applied control input. Grayed areas indicate
that the system is in specification mode Mtimegap. Dashed green lines indicate target sets, solid
green indicate safety sets.

6 Conclusions

We introduced a new class of LTL games called mode-target games and argued that

these games can be used to model a variety of control design problems encountered in

practice. We provided two algorithms to solve MT games. The first algorithm is based

on transforming MT games to simple games, a class of LTL games for which we provide

a synthesis algorithm. This leads to an algorithm that solves MT games in a number of

steps polynomial in the size of the game graph. We next provided a different algorithm,

that relies on the fact that every MT game can be embedded into a GR(1) game. We also

showed that the direct algorithm has better worst case complexity than the algorithm

obtained via the GR(1) embedding. These observations were validated through multiple

simulations. As future work, we plan on investigating whether additional structure arising

in control problems can lead to further simplifications both in MT games as well as other

LTL games.

27

CHAPTER 2

Data-Driven Stability Analysis of

Black-box Switched Linear Systems

Today’s complex cyber-physical systems are characterized by the interaction of a large

number of heterogeneous components. Consequently, the models used to analyze these

systems are equally complex and consist of heterogeneous sub-models relying on different

assumptions and based on principles from different scientific disciplines. It is not un-

common to encounter a patchwork of differential equations, difference equations, hybrid

automata, lookup tables, custom switching logic, low-level legacy code, etc. To further

compound the difficulty in analyzing these systems, different components of a complex

engineered system are typically designed by different suppliers. Although a high-level

specification for these components may be known, detailed models are not available for

intellectual property reasons. We are thus faced with a tremendous gap between the

existing analysis techniques that rely on closed-form models and the models available in

industry. It is, therefore, not surprising the emphasis that industry places on simulation

since despite the complexity of models, it is always possible to simulate them. This raises

the question of whether we can provide formal guarantees about certain properties of

these complex systems based solely on the information obtained via their simulations. In

this thesis, we focus on one of the most important of such properties in the context of

control theory: stability.

More formally, we consider a dynamical system as in:

xk+1 = f(k, xk), (2.1)

where, xk ∈ X is the state and k ∈ N is the time index. In this thesis, we study switched

28

systems, but we believe that the presented results can be extended to more general classes

of dynamical systems. We start with the following question to serve as a stepping stone:

Given N pairs, (x1, y1), (x2, y2), . . ., (xN , yN) belonging to the behavior of the system

(2.1), (i.e., yk = f(k, xk) for some k), what can we say about the stability of the system

(2.1)? For the rest of the chapter, we use the term black-box to refer to models where we

do not have access to the model, i.e., to f , yet we can indirectly learn information about

f by observing pairs of points (xk, yk) as defined in (2.1).

A potential approach to this problem is to first identify the dynamics, i.e., the function

f , and then apply existing techniques from the model-based stability analysis literature.

However, unless f is a linear function, there are two main reasons behind our quest to

directly work on system behaviors and bypass the identification phase: 1) Even when

the function f is known, in general, stability analysis is a very difficult problem [BT99];

2) Identification can potentially introduce approximation errors, and can be algorithmi-

cally hard as well. Again, this is the case for switched systems [Lau15]. A fortiori, the

combination of these two steps in an efficient and robust way seems far from obvious.

In recent years, increasing number of researchers started addressing various verification

and design problems in control of black-box systems [BFG16, BTD16, HM14, DMV13].

In particular, the initial idea behind this chapter was influenced by the recent efforts in

[TPS08, KDS14], and [BL15] on using simulation traces to find Lyapunov functions for

systems with known dynamics. In these works, the main idea is that a Lyapunov func-

tion candidate decreasing along several finite trajectories starting from different initial

conditions should also decrease along every other trajectory. Then, once a Lyapunov

function candidate is constructed, this intuition is put to test by verifying the candidate

function either via off-the-shelf tools as in [TPS08] and [KDS14], or via sampling-based

techniques as in [BL15]. This also relates to almost-Lyapunov functions introduced in

[LLZ16], which presents a relaxed notion of stability proved via Lyapunov functions de-

creasing everywhere except on a small set. Note that, since we do not have access to the

dynamics, these approaches cannot be directly applied to black-box systems. However,

these ideas raise the following problem that we address in this chapter: By observing that

29

a candidate Lyapunov function decreases on a large number of observations, we empir-

ically build a certain confidence that such candidate Lyapunov function is a bona-fide

Lyapunov function. Can we translate this confidence into a confidence in the stability of

the underlying system?

Note that, even in the case of a 2D linear system, the connection between these two beliefs

is nontrivial. In fact, one can easily construct an example where a candidate Lyapunov

function decreases everywhere on its levels sets, except for an arbitrarily small subset,

yet, almost all trajectories diverge to infinity. For example, the system

x+ =

0.14 0

0 1.35

x,
admits a Lyapunov function candidate on the unit circle except on the two red areas

shown in Fig. 2.1. Moreover, the size of this “violating set” can be made arbitrarily small

by changing the magnitude of the unstable eigenvalue. Nevertheless, the only trajectories

that do not diverge to infinity are those starting on the stable eigenspace, i.e., on the x

axis, has zero measure.

In this work, we take the first steps to infer stability from observations of switched linear

systems. In addition to the preceding example, there are other reasons to temper our

expectations for proving stability from data: identifying and deciding stability of arbitrary

switched linear systems is NP-hard [Jun09].

The stability of switched systems is closely related to the joint spectral radius (JSR) of the

matrices modeling the dynamics in each mode. Deciding stability amounts to deciding

whether the JSR is less than one [Jun09]. In this chapter, we present an algorithm to

bound the JSR of a switched linear system from a finite number N of observations. This

algorithm partly relies on tools from the random convex optimization literature (also

known as chance-constrained optimization, see [Cal10, NS06, CG08]), and provides an

upper bound on the JSR with a user-defined confidence level. As N increases, this bound

gets tighter. Moreover, with a closed form expression, we characterize what is the exact

trade-off between the tightness of this bound and the number of samples. In order to

30

x1
-1 -0.5 0 0.5 1

x2

-1

-0.5

0

0.5

1

Figure 2.1: A simple dynamics and the level set of an “almost Lyapunov function”. Even
though this function decreases at almost all points in its level set, almost all trajectories diverge
to infinity.

understand the quality of our upper bound, the algorithm also provides a deterministic

lower bound. Finally, we provide an asymptotic guarantee on the gap between the upper

and the lower bound, for large N .

The organization of this chapter is as follows: We start Section 1 by introducing the

notations that will be used for the rest of this chapter. We then provide the necessary

background in stability of switched systems and its relationship with JSR. In Section 2, we

present a deterministic lower bound for the JSR. Section 3 presents the main contribution

of this chapter of the thesis where we provide a probabilistic stability guarantee for a

given switched system, based on finite observations. In Section 4, we experimentally

demonstrate the performance of the presented techniques on randomly generated switched

linear systems as well as on a concrete example from networked control domain.

31

1 Preliminaries

1.1 Notation

We consider the usual finite normed vector space (Rn, `2), n ∈ N>0, with `2 the classical

Euclidean norm. We denote the set of linear functions in Rn by L(Rn), and the set of

real symmetric matrices of size n by Sn. A symmetric matrix P is called positive definite

iff xTPx > 0 for all x ∈ Rn \ {0} and it is called positive semi-definite iff xTPx ≥ 0 for

all x ∈ Rn. We denote the set of positive definite matrices is denoted by Sn++. We write

P � 0 to state that P is positive definite, and P � 0 to state that P is positive semi-

definite. Given a set X ⊂ Rn, and r ∈ R>0 we write rX := {x ∈ X : rx} to denote the

scaling of this set. We denote by B (respectively S) the ball (respectively sphere) of unit

radius centered at the origin. We denote the ellipsoid described by the matrix P ∈ Sn++

as EP , i.e., EP := {x ∈ Rn : xTPx = 1}. Finally, we denote the spherical projector on S

by ΠS := x/‖x‖.

For an ellipsoid centered at the origin, and for any of its subsets A, the sector defined by

A is the subset

{tA, t ∈ [0, 1]} ⊂ Rn.

We denote by EAP the sector induced by A ⊂ EP . In the particular case of the unit

sphere, we instead write SA. We can notice that EEP
P is the volume in Rn defined by EP :

EEP
P = {x ∈ Rn : xTPx ≤ 1}.

The spherical Borelian σ-algebra denoted by BS is defined by:

A ∈ BS ⇐⇒ SA ∈ BRn .

We provide (S,BS) with the classical unsigned and finite uniform spherical measure on S,

denoted by σn−1. It is associated to BS, the spherical Borelian σ-algebra, and is derived

from the Lebesgue measure λ.

∀ A ∈ BS, σ(A) =
λ(SA)

λ(B)
.

32

In other words, the spherical measure of a subset of the sphere is related to the Lebesgue

measure of the sector of the unit ball it induces. Notice that σn−1(S) = 1. Since P ∈ Sn++,

it can be written in its Cholesky form

P = LTL, (2.2)

where L is an upper triangular matrix. Note that, L−1 maps the elements of S to EP .

Then, we define the measure on the ellipsoid σP on the σ-algebra BEP := L−1BS, where

∀A ∈ BEP , σP (A) = σn−1(LA).

For m ∈ N>0, we denote by M the set M = {1, 2, . . . ,m}. Set M is provided with the

classical σ-algebra associated to the finite sets: ΣM = ℘(M), where ℘(M) is the set of

subsets of M . We consider the uniform measure µM on (M,ΣM).

We define Z = S×M as the Cartesian product of the unit sphere and M . We denote the

product σ-algebra BS
⊗

ΣM generated by BS and ΣM : Σ = σ(π−1
S (BS), π−1

M (ΣM)), where

πS : Z → S and πM : Z → M are the standard projections. On this set, we define the

product measure µ = σn−1⊗µM . Note that, µ is a uniform measure on Z and µ(Z) = 1.

1.2 Switched Linear Systems

A switched dynamical system is collection of dynamical systems with a switching mecha-

nism specifying which dynamical system is active at each time instant. Such a dynamical

system with a set of modes M = {fi, i ∈M} can be mathematically modeled by the

discrete-time system:

xk+1 = fτ(k)(xk), (2.3)

where xk ∈ X ⊆ Rn, k is the time index, and τ(k) is the switching sequence τ : N→M .

Such multimodal systems appear frequently in practice. Some common scenarios include

sudden parameter changes, subcomponent failures or changes in the environment. For ex-

ample, as explained in [ZB98], the dynamics of the two-wheeled Hilare-type mobile robot

changes depending on whether the wheels are rolling or sliding. Switched dynamical sys-

tems also emerge due to control techniques that include switching between different control

33

laws [ZB98, KDF03, Mor98b]. Such control techniques have applications in automotive

industry, power converters, various mechanical systems as reported in [Mor98a, HZD04].

The particular realization of the switched system in (2.3), where all the subsystems are lin-

ear time-invariant is called a switched linear system. Given a set of modesM = {Ai, i ∈M},

such system is of the form:

xk+1 = f(k, xk), (2.4)

with f(k, xk) = Aτ(k)xk and switching sequence τ : N→M . We next define homogeneity

which is an important concept for some of the upcoming results in this chapter.

Definition 1.1. A function g : Rp → Rq is called homogenous of degree ` if it satisfies:

∀α > 0,∀x ∈ Rp, g(αx) = α`g(x).

Property 1.1. Let ξ(x, k, τ) denote the state of the system (2.4) at time k starting from

the initial condition x and with switching sequence τ . The dynamical system (2.4) is

homogeneous: ξ(γx, k, τ) = γξ(x, k, τ).

It is well-known that the joint spectral radius of the set of matrices M closely relates to

the stability of the system (2.4). Joint spectral radius is the maximum asymptotic growth

rate of the norm of the state under the dynamics (2.4) over all possible initial conditions

and sequences of matrices of M.

Definition 1.2 (from [Jun09]). Given a finite set of matricesM⊂ Rn×n, its joint spectral

radius (JSR) is given by

ρ(M) = lim
k→∞

max
i1,...,ik

{
||Ai1 . . . Aik ||1/k : Aij ∈M

}
.

Property 1.2 (Corollary 1.1, [Jun09]). Given a finite set of matricesM, the corresponding

switched dynamical system is stable if and only if ρ(M) < 1.

Property 1.3 (Proposition 1.3, [Jun09]). Given a finite set of matricesM, and any invert-

ible matrix T ,

ρ(M) = ρ(TMT−1),
34

i.e., the JSR is invariant under similarity transformations (and is a fortiori a homogeneous

function: ∀γ > 0, ρ (M/γ) =M/γ).

2 A Deterministic Lower Bound for the JSR

We start by computing a lower bound for ρ which is based on the following theorem from

the switched linear systems literature.

Theorem 2.1. [Jun09, Theorem 2.11] For any finite set of matrices such that ρ(M) < 1√
n
,

there exists a Common Quadratic Lyapunov Function (CQLF) for M, that is, a P � 0

such that:

∀ A ∈M, ATPA � P.

CQLFs are useful because they can be computed (if they exist) with semidefinite pro-

gramming (see [BV04]), and they constitute a stability guarantee for switched systems as

we formalize next.

Theorem 2.2. [Jun09, Prop. 2.8] Consider a finite set of matrices M. If there exist a

γ ≥ 0 and P � 0 such that

∀ A ∈M, ATPA � γ2P,

then ρ(M) ≤ γ.

Note that the smaller γ is, the tighter is the upper bound we get on ρ(M). Therefore, we

can consider, in particular, the optimal solution γ∗ of the following optimization problem:

minγ,P γ

s.t. (Ax)TP (Ax) ≤ γ2xTPx, ∀ A ∈M, ∀x ∈ Rn,

P � 0, γ ≥ 0.

(2.5)

Even though this upper bound is more difficult to obtain in a black-box setting where

only a finite number of observations are available, in this section we leverage Theorem 2.1

in order to derive a straightforward lower bound.
35

The following theorem shows that the existence of a CQLF for the system in (2.4) can be

checked by considering N pairs (xi, ji) ∈ Rn×M , where i ∈ {1, . . . N}. Recall that in our

setting, we assume that we observe pairs of the form (xk, xk+1), but we do not observe

the mode applied to the system during this time step.

Theorem 2.3. For a given uniform sampling:

ωN := {(x1, j1), (x2, j2), . . . , (xN , jN)} ⊂ Rn ×M,

let WωN = {(x1, y1), . . . , (xN , yN)} be the corresponding available observations, which sat-

isfy

yi = Ajixi ∀(xi, yi) ∈ WωN .

Also let γ∗(ωN) be the optimal solution of the following optimization problem:

minP γ

s.t. (yi)
TP (yi) ≤ γ2xTi Pxi, ∀(xi, yi) ∈ WωN

P � 0, γ ≥ 0.

(2.6)

Then, we have:

ρ(M) ≥ γ∗(ωN)√
n

.

Note that, (2.6) can be efficiently solved by semidefinite programming and bisection on

the variable γ (see [BV04]).

Proof. Let ε > 0. By definition of γ∗, there exists no matrix P ∈ Sn++ such that:

(Ax)TP (Ax) ≤ (γ∗(ωN)− ε)2xTPx, ∀x ∈ Rn,∀A ∈M.

Since joint spectral radius is a homogenous function as described in Property 1.3, this

means that there exists no CQLF for the scaled set of matrices M
(γ∗(ωN)−ε) . Then, using

Theorem 2.1, we conclude:
ρ(M)

γ∗(ωN)
≥ 1√

n
.

36

3 A Probabilistic Stability Guarantee

In this section, we show how to compute an upper bound on ρ, with a user-defined

confidence β ∈ (0, 1). We do this by constructing a CQLF which is valid with probability

at least β. Note that, the existence of a CQLF implies ρ ≤ 1 due to Theorem 2.2.

Even though the solution of the optimization problem in (2.5) provides a CQLF, solving

this problem as stated is not possible since it involves infinitely many constraints and we

do not have access to the set of matrices M. Nevertheless, we show that the solution of

the optimization problem (2.6) allows us to not only compute a lower bound, but also a

(probabilistic) upper bound on the JSR.

We now analyze the relationship between the solutions of the optimization problem (2.5)

with infinitely many constraints and the following optimization problem with finitely

many constraints:

minP λmax(P)

s.t. (Ajx)TP (Ajx) ≤ ((1 + η)γ∗(ωN))2xTPx, ∀(x, j) ∈ ωN ⊂ Z,

P � I,

(2.7)

where Z := S×M , η > 0, and γ∗(ωN) is the optimal solution to the optimization problem

(2.6). Recall that ωN is an N -uniform random sampling of the set Z. Note that, instead

of the set Rn we sample on the unit sphere S. This is due to homogeneity of the dynamics

stated in Property 1.1, since it implies that it is sufficient to show the decrease of a CQLF

on an arbitrary set enclosing the origin, e.g., S.

For the rest of the discussion, we refer to the optimization problem (2.7) by Opt(ωN). We

denote its optimal solution by P (ωN). We drop the explicit dependence of P on ωN when

it is clear from the context. There are a few points that are worth noting about (2.7).

Firstly, due to Property 1.1, we can replace the constraint P � 0 with the constraint

P � I. Moreover, for reasons that will become clear later in the discussion, we chose the

37

objective function as λmax(P), instead of solving a feasibility problem in P . Lastly, the

additional η factor is introduced to ensure strict feasibility of (2.7), which will be helpful

in the following discussion. However, since our results are valid for arbitrarily small values

of η, introduction of this factor will not hamper the practical accuracy of our technique.

The curious question whether the optimal solution of the sampled problem Opt(ωN) is a

feasible solution to (2.5) has been widely studied in the literature [Cal10]. It turns out

that under certain technical assumptions, one can bound the proportion of the constraints

of the original problem (2.5) that are violated by the optimal solution of (2.7), with some

probability which is a function of the sample size N .

In the following theorem, we adapt a classical result from random convex optimization

literature to our problem.

Theorem 3.1 (adapted from Theorem 3.3, [Cal10]). Let d be the dimension of Opt(ωN)

and N ≥ d + 1. Consider the optimization problem Opt(ωN) given in (2.7), where ωN is

a uniform random sampling of the set Z. Then, for all ε ∈ (0, 1) the following holds:

µN
{
ωN ∈ ZN : µ(V (ωN)) ≤ ε

}
≥ 1−

d∑
j=0

(
N

j

)
εj(1− ε)N−j, (2.8)

where µN denotes the product probability measure on ZN , and V (ωN) is defined by

V (ωN) = {z ∈ Z : (Ajz)TP (ωN)(Ajz) > ((1 + η)γ∗)2zTP (ωN)z},

i.e., it is the set of constraints of (2.5) that are violated by the optimal solution of Opt(ωN).

Theorem 3.1 states that the optimal solution of the sampled problem Opt(ωN) violates

no more than an ε fraction of the constraints in the original optimization problem (2.5)

with probability β, where β goes to 1 as N goes to infinity. This means that, the ellipsoid

computed by Opt(ωN) is “almost invariant” except a set of measure ε. The rest of this

section builds on this, and it has three intermediate results leading us to our main theorem.

In Proposition 3.2, we start by showing how to upper bound the measure of points that

are violating the constraints on the set S in terms of the measure of the points that are
38

violating the constraints in the product space Z.

Proposition 3.2. Let ε ∈ (0, 1) and γ ∈ R>0. Consider the set of matrices M and

Aj ∈M satisfying:

(Ajx)TP (Ajx) ≤ γ2xTx, ∀x ∈ Z \ V, ∀ j ∈M, (2.9)

for some V ⊂ Z where µ(V) ≤ ε, then the following holds:

(Ajx)TP (Ajx) ≤ γ2xTx, ∀x ∈ S \ S′, ∀ j ∈M, (2.10)

for some S′ ⊂ S where σn−1(S′) ≤ mε.

Proof. Let VS = πS(V) and VM = πM(V). We know that ΣM is the disjoint union of

its 2m elements {Mi, i ∈ {1, 2, . . . 2m}}. Then V can be written as the disjoint union

V = t1≤i≤2m(Si,Mi) where Si ∈ ΣS. We notice that VS = t1≤i≤2mSi, and

σn−1(VS) =
∑

1≤i≤2m

σn−1(Si).

We have

µ(V) = µ(t1≤i≤2m(Si,Mi)) =
∑

1≤i≤2m

µ(Si,Mi)

=
∑

1≤i≤2m

σn−1 ⊗ µM(Si,Mi)

=
∑

1≤i≤2m

σn−1(Si)µM(Mi).

Note that we have minj∈M µM({j}) = 1
m
. Then since ∀ i, µM(Mi) ≥ minj∈M µM({j}) = 1

m
,

we get:

σn−1(VS) ≤
µ(V)

1
m

≤ mε. (2.11)

This means that

(Ajx)TP (Ajx) ≤ γ2xTPx, ∀x ∈ S \ VS, ∀m ∈M, (2.12)
39

where σn−1(VS) ≤ mε.

Remark 3.3. If the modes are not sampled uniformly random, then Proposition 3.2

and the subsequent results still hold by simply replacing the factor 1
m

in (2.11) with

minj∈M µM({j}), i.e., the probability of sampling the mode that is least likely to be ac-

tive.

Having established an upper bound on the measure of the violating set on S, by exploiting

convexity-preserving structure of the dynamics, we next show in Lemma 3.4 how one can

compute an upper bound on the JSR when this “almost invariant” set is the unit sphere,

i.e., S.

Lemma 3.4. Let ε ∈ (0, 1
2
) and γ ∈ R>0. Consider the set of matrices M and A ∈ M

satisfying:

(Ajx)T (Ajx) ≤ γ2xTx, ∀x ∈ S \ S′, ∀ j ∈M, (2.13)

where S′ ⊂ S and σn−1(S′) ≤ ε, then we have:

ρ(M) ≤ γ

α(ε)

where α(ε) is given in (B.4).

Proof. Note that, (2.13) implies that: Aj(S\S′) ⊂ γB. Note that, the dynamics of switched

linear systems is convexity-preserving, meaning that for any set of points X ⊂ Rn we have:

Ajconvhull (X) ⊂ convhull (Aj(X)), ∀ j ∈M.

Therefore, we get:

Ajconvhull (S \ S′) ⊂ convhull (Aj(S \ S′)) ⊂ γB, ∀ j ∈M.

Let α(ε) := infX∈Xε sup{r : rB ⊂ convhull (S \X)}, where Xε = {X ⊂ S : σn−1(X) ≤ ε}.

40

Then, by Lemma 3.1 in Appendix B, we have:

Aj(α(ε)B) ⊂ Aj(convhull (S \ S′)) ⊂ γB, ∀ j ∈M,

where α(ε) is given as in (B.4). Therefore, we get:

α(ε)Aj(B) ⊂ γB, ∀ j ∈M,

which implies that ρ(M) ≤ γ
α(ε)

.

We now know how to compute an upper bound on the JSR when the “almost invariant”

ellipsoid is S. Thanks to invariance of ρ under similarity transformations as stated in

Property 1.3, if this is not the case, we can simply perform a change of coordinates

mapping this ellipsoid to S and compute the JSR in the new coordinates system instead.

To do this, in the next theorem, we bound the measure of violating constraints on S after

the change of coordinates, in terms of the measure of the violated constraints on S×M

in the original coordinates.

Proposition 3.5. Let γ ∈ R>0. Consider a set of matrices A ∈M, and a matrix P � 0

satisfying:

(Ajx)TP (Ajx) ≤ γ2xTPx, ∀ (x, j) ∈ S \ S′,∀ j ∈M (2.14)

for some S′ ⊂ S where σn−1(S′) ≤ ε. Then, by defining L as in (2.2) and Āj = L−1AjL,

the following also holds:

(Ājx)T (Ājx) ≤ γ2xTx, ∀x ∈ S \ S′,∀ j ∈M,

for some S′ ⊂ S such that: σ(S′) ≤ εκ(P), where

κ(P) =

√
λmax(P)n

det(P)
.

Proof. We perform the change of coordinates defined by L−1 ∈ L(Rn) which maps S to

41

EP , defined as in (2.2). We can then rewrite (2.14) in this new coordinates system as in:

(Ājx)T (Ājx) ≤ γ2xTx, ∀x ∈ EP \ L−1(VS), ∀m ∈M. (2.15)

Due to the homogeneity of the dynamics described in Property 1.1, this implies:

(Ājx)T (Ājx) ≤ γ2xTx, ∀x ∈ S \ ΠS(L
−1(VS)), ∀m ∈M. (2.16)

We now show how to relate σn−1(VS) to σn−1(ΠS(L
−1(VS))). Consider SVS , the sector of

B defined by VS. We denote C := L−1(SVS) and V ′ := ΠS(L
−1(VS)). We have ΠS(C) = V ′

and SV ′ ⊂ 1
λmin(L−1)

C. This leads to:

σn−1(V ′) = λ(SV ′) ≤ λ

(
1

λmin(L−1)
C

)
.

Then, the following holds:

σn−1(V ′) ≤ 1

λmin(L−1)n
λ(C)

≤ 1

λmin(L−1)n
λ(L−1(SVS))

=
| det(L−1)|
λmin(L−1)n

λ(SVS), (2.17)

=

√
λmax(P)n

det(P)
σn−1(VS) (2.18)

where (2.17) follows from the fact that

λ(Q(X)) = | det(Q)|λ(X),

for any set X ⊂ Rn and Q ∈ L(Rn) (see e.g. [Rud87]). Putting together (2.16) and (2.18)

we get the statement of the theorem where S′ = ΠS(L
−1(VS)).

We are now ready to prove our main theorem by putting together all the above pieces. For

a given level of confidence β, we prove that the upper bound γ∗(ωN), which is valid solely

42

on finitely many observations, is in fact a true upper bound, at the price of increasing it

by the factor 1
δ(β,ωN)

. Moreover, as expected, this factor gets smaller as we increase N

and decrease β.

Theorem 3.6. Consider an n-dimensional switched linear system as in (2.4) and a uni-

form random sampling ωN ⊂ Z, where N ≥ n(n+1)
2

+1. Let γ∗(ωN) be the optimal solution

to (2.7). Then, for any given β ∈ (0, 1) and η > 0, we can compute δ(β, ωN), such that

with probability at least β we have:

ρ ≤ γ∗(ωN)(1 + η)

δ(β, ωN)
,

where limN→∞ δ(β, ωN) = 1 with probability 1.

Proof. By definition of γ∗(ωN) we have:

(Ajx)TP (Ajx) ≤ (γ∗(1 + η))2xTPx, ∀ (x, j) ∈ ωN

for some P � 0. Then, by rewriting Theorem 3.1 we also have:

µN
{
ωN ∈ ZN : µ(V (ωN)) ≤ ε

}
≥ 1− I(1− ε;N − d, d+ 1), (2.19)

where I(`; a, b) is the regularized incomplete beta function. Let

ε(β,N) = 1− I−1(1− β;N − d, d+ 1).

Then, by Proposition 3.1 with probability at least β the following holds:

(Ajx)TP (Ajx) ≤ (γ∗(1 + η))2xTPx, ∀(x, j) ∈ Z \ V.

By Proposition 3.2 and Proposition 3.5, this implies that with probability at least β the

following also holds:

(Ājx)T (Ājx) ≤ γ2xTx, ∀x ∈ S \ S′, ∀ j ∈M,

43

for some S′ where σn−1(S′) ≤ mεκ(P). Then, applying Lemma 3.4, we can compute

δ(β, ωN) = α(ε′(β, ωN)),

where

ε′(β, ωN) =
1

2
mκ(P (ωN))ε(β,N) (2.20)

such that with probability at least β we have:

ĀjB ⊂
γ∗(ωN)(1 + η)

δ(β, ωN)
B, ∀ j ∈M.

As stated in Property 1.3, since the JSR is invariant under similarity transformations,

this means that with probability at least β:

ρ ≤ γ∗(ωN)(1 + η)

δ(β, ωN)
,

which completes the proof of the first part of the theorem. Note that, the ratio 1
2

in-

troduced in the expression of ε′ is due to the homogeneity of the system described in

Property 1.1, which implies that x ∈ VS ⇐⇒ −x ∈ VS. We refer the interested

reader to Appendix B, Section 4 for the second part of this proof, namely showing that

limN→∞ δ(β, ωN) = 1 with probability 1.

In Fig. 2.2a and Fig. 2.2b, we examine the “best-case” convergence of δ(β, ωN), with

respect to N when we fix β = 0.95. This corresponds to the scenario where P = I,

i.e., the level sets of the computed CQLF are hyperspheres. Note that, for this case

κ(P (ωN)) = 1, and hence δ is only a function of N and β when we fix n and m. Fig. 2.2a

illustrates the evolution of δ(0.95, N) for varying n and m = 2 . As can be seen, the

convergence of δ slows down when we increase the state dimension n. This is intuitive

because it means that for a given N , as we increase the state dimension, the price we have

to pay in order to obtain an upper bound on the JSR using N observations is higher. We

illustrate in Fig. 2.2b that the convergence of δ also becomes slower as we increase m for

n = 3. Comparing Fig. 2.2a and Fig.2.2b, we see that the decrease in the convergence

44

Number of Samples(N)
100 101 102 103 104 105

/
(0

:9
5
;N

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n=2
n=3
n=4
n=5
n=6

(a) The convergence of δ(0.95, N) for m = 2, with increasing n.

Number of Samples(N)
100 101 102 103 104 105

/
(0

:9
5
;N

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m=2
m=3
m=4
m=5
m=6

(b) The convergence of δ(0.95, N) for n = 3, with increasing m.

45

speed due to the increase in number of modes is much less significant compared to that

of due to the increase in the dimension.

4 Experimental Results

In this section, we provide an experimental evaluation of the bounds we provided in

Theorem 2.3 and Theorem 3.6 on various discrete time switched linear systems. We also

provide a concrete example from the networked control systems domain to illustrate the

applicability of our technique. For all experiments, we set the confidence level to β = 0.95.

4.1 2-D Example

We first illustrate our technique on a two dimensional switched linear system with 4

modes, where M is given by:

M =

−0.25 −0.35

0.345 0.009

 ,
−0.25 −0.35

0.345 0.001

0.702 0.43

0.477 0.011

 ,
0.7016 0.43

0.4767 0.0106

 .

We compute a lower and an upper bound on the JSR for N := 8 + 25k, k ∈ {0, . . . , 19},

according to Theorem 2.3 and Theorem 3.6, respectively. In Fig. 2.3, we illustrate the

average performance of our technique over 10 different samplings. Fig. 2.3a shows the

evolution of δ(β, ωN) as N increases. Note that, δ converges to 1 as expected. We plot

the upper bound and lower bound for the JSR of the system in Fig. 2.3b. To demonstrate

the performance of our technique, we also provide an estimate on the JSR computed by

the JSR toolbox [VHJ14] with a precision of 0.0001, which turns out to be 0.9556. Note

that, the plot for the upper bound starts from N = 58. This is due to the fact for N = 8,

and N = 33, δ(β, ωN) = 0, hence it is not possible to compute a nontrivial upper bound

for these small values of N . As can be seen, the upper bound approaches a close vicinity

of the real JSR with approximately 300 samples and after N = 350 samples, we can decide

that the system is stable with probability 0.95. In addition, the gap between the upper

and lower bound converges to a multiplicative factor of 1√
n

as expected. This gap could

46

be improved by considering a more general class of common Lyapunov functions, such

as those that can be described by sum-of-squares polynomials [PP02]. We leave this for

future work.

4.2 4-D Example

We now consider a four dimensional switched linear system with 6 modes, where M is

defined by:

M =

0.05 0.24 −0.21 −0.31

0.1 0.26 0.25 −0.31

0.07 0.23 0.02 0.12

−0.29 −0.21 −0.18 0.15

 ,

0.14 −0.06 −0.01 0.09

−0.03 0.35 0.22 0.28

0.01 0.06 0.33 0.02

0.15 0.13 0 0.04

 ,

−0.15 −0.01 0.35 −0.46

−0.31 0.09 −0.42 0.06

−0.01 −0.32 −0.05 0.16

−0.34 0.05 0.08 0.17

∪

0.13 0.24 −0.38 −0.09

0.09 −0.02 −0.25 0.15

−0.1 −0.05 0.27 −0.16

0.19 0.11 0.02 −0.19

−0.59 0.46 0.2 0.16

0.07 −0.64 0.12 0.28

0.3 0.22 −0.51 −0.31

0.24 0.13 −0.2 0.67

 ,

−0.57 −0.01 0.03 −0.2

−0.14 0.03 0.02 0.49

0.13 0.06 −0.38 0.05

−0.03 0.47 0.12 −0.32

.

We again compute the lower and and the upper bound on the JSR for N := 22 + 200k,

k ∈ {0, . . . , 24} given by Theorem 2.3 and Theorem 3.6, respectively. Fig. 2.4 illustrates

the results. As expected, we can observe from Fig. 2.4a that even though the upper

bound does converge to the real JSR (0.845), the convergence is much slower compared

to the previous two dimensional example. Only after N = 4750, we can decide that the

system is stable with probability β = 0.95. The slower convergence is also reflected in the

evolution of δ as can be seen in Fig. 2.4b.

4.3 Average Behavior over Random Systems

We now apply our technique to randomly generated switched linear systems and investi-

gate how its performance compares to the existing algorithms for switched systems with

known dynamics, i.e., white-box systems. We perform three sets of experiments for differ-

ent n, and m, and summarize our results in Fig. 2.5. For each set of experiments, we plot

the average ratio of the upper bound given by Theorem 3.6 (black-box) to those computed

by the JSR toolbox (white-box) [VHJ14], over 10 randomly generated switched systems.

47

Number of samples (N)
0 100 200 300 400 500

/
(0

:9
5
;!

N
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Evolution of δ(β, ωN) with increasing N , for β = 0.95.

Number of samples (N)
0 100 200 300 400 500

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 Lower bound
Upper bound
;
; / n

(b) Evolution of the upper and lower bounds on the JSR with increasing N , for β = 0.95.

Figure 2.3: The experimental evaluation of a randomly generated switched system with n = 2,
m = 4.

48

Number of samples (N)
0 1000 2000 3000 4000 5000

0

1

2

3

4

5

6

Lower bound
Upper bound
;
; / n

(a) Evolution of the upper and lower bounds on the JSR with increasing N , for β = 0.95.

Number of samples (N)
0 1000 2000 3000 4000 5000

/
(0

:9
5
;!

N
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) Evolution of δ(β, ωN) with increasing N , for β = 0.95.

Figure 2.4: The upper and lower bounds on the JSR for a switched system with n = 4, m = 6.

49

Number of samples (N)
500 1000 1500 2000 2500U

pp
er

 b
ou

nd
 (

bl
ac

k-
bo

x)
/U

pp
er

 b
ou

nd
 (

w
hi

te
-b

ox
)

1

1.5

2

2.5

3

3.5

4

4.5

5

n=3, m=5
n=4, m=5
n=4, m=6

Figure 2.5: The comparison of the upper bounds computed in a black-box setting versus in a
white-box setting using JSR toolbox [VHJ14].

As can be seen in Fig. 2.5, while increasing the number of modes does not significantly

affect the quality of the bounds, the performance degrades considerably and consistently

when the state dimension increases. Nevertheless, after 2500 samples, all upper bounds

are within 25% of the upper bound on the JSR computed by the JSR toolbox.

Finally, we randomly generate 10, 000 test cases with switched linear systems of dimen-

sion between 2 and 7, number of modes between 2 and 5, and size of samples N between

30 and 800. We take β = 0.95 and check if the upper bound computed by our tech-

nique is greater than the actual JSR of the system. We get 9897 positive tests, out of

10, 000. The probability of success is 0.9897, which is significantly above the provided β.

This is expected, since our techniques are based on worst-case analysis and thus fairly

conservative.

50

4.4 Networked Control System

We now consider a linear time-invariant control system given as xk+1 = Axk +Buk, where

we do not have access to its dynamics given by the matrices A and B. The control law is

of the form uk = Kxk, where K is also unknown. The open-loop system is unstable with

eigenvalues at {0.45, 1.1}. The controller stabilizes the system by bringing its eigenvalues

to {0.8,−0.7}. The control input is transmitted over a wireless communication channel

that is utilized by ` users, including the controller. The communication between the users

and the recipients is performed based on the IEEE 802.15.4 MAC layer protocol [mac06],

which is used in some of the proposed standards for control over wireless, e.g., Wire-

lessHART [CNM10]. This MAC layer integrates both guaranteed slots and contention

based slots. In this example, we consider a beacon-enabled mode of the MAC protocol.

In this setup, a centralized control user periodically synchronizes and configures all the

users. This period is named Beacon Interval. This interval is divided into two intervals:

active and inactive period. The active period is divided into 6 slots. The first 2 slots

correspond to the contention access period (CAP), and the next 4 slots correspond to the

contention free period (CFP). In the CAP, the users can only send their message if the

channel is “idle” with carrier-sense multiple access with collision avoidance (CSMA/CA).

In the CFP however, each user has guaranteed time slots, during which there are no

packet losses. In our example, the third and fourth slots are designated for the controller,

while the fifth and sixth slots are allocated to the other users. Finally, during the inac-

tive period, all users enter a low-power mode to save energy. We illustrate the overall

structure of this communication protocol in Fig. 2.6. We now want to decide whether

the resulting closed-loop networked control system is stable by simulating it starting from

different initial conditions.

Note that, the closed-loop dynamics of the underlying system when the controller is active

is Ac = A+BK. Then, we can model the overall networked control system by the linear

switched system xk+1 = Āxk, where Ā ∈M and

M = {A2A2
cA

4, AcAA
2
cA

4, AA3
cA

4, A4
cA

4}. (2.21)

51

CAP CFP

Beacon Interval

Inactive
period

1 2 3 4 5 6 7 8

Active period

Figure 2.6: The time allocation structure of the modified IEEE 802.15.4 MAC layer.

Note that, in (2.21), each mode corresponds to a different utilization of the CFP by the

users. For example, the mode defined by AcAA
2
cA

4 is active when the first slot in the

CFP is assigned to the controller and the second slot is assigned to the other users. We

assume that all of the users using the channel have an equal probability of being assigned

to a time slot during the CFP. Therefore, the probability of each mode inM being active

is
{

1
(`−1)2

, 1
`(`−1)

, 1
(`−1)`

, 1
`2

}
, i.e., the modes given in (2.21) will not be active with the

same probability. Hence, we make use of Remark 3.3 and update our bounds accordingly.

Fig. 2.7 demonstrates the resulting upper and lower bounds on the JSR. As can be seen,

approximately after 500 samples, the upper bound on the JSR drops below 1, which lets

us decide that the given closed-loop networked control system is stable, with probability

0.95.

5 Conclusions

In this chapter, we investigated the question of how one can conclude stability of a dy-

namical system when a model is not available and, instead, we have randomly generated

state measurements. Our goal is to understand how the observation of well-behaved tra-

jectories intrinsically implies stability of a system. It is not surprising that we need some

standing assumptions on the system, in order to allow for any sort of nontrivial stability

certificate solely from a finite number of observations.

The novelty of our contribution is twofold: First, we use as standing assumption that the

unknown system can be described by a switching linear system. This assumption covers

52

Number of samples (N)
0 100 200 300 400 500 600 700

0

0.5

1

1.5

2

2.5

Lower bound
Upper bound
;
; / n

Figure 2.7: The evolution of the computed upper and lower bounds on the JSR with respect to
the number of simulations collected from the networked control system.

a wide range of systems of interest, and to our knowledge no such “black-box” result has

been available so far on switched systems. Second, we apply powerful techniques from

chance constrained optimization. The application is not obvious, and relies on geometric

properties of linear switched systems.

We believe that this guarantee is quite powerful, in view of the hardness of the general

problem. In the future, we plan to investigate how to generalize our results to more com-

plex or realistic systems. We are also improving the numerical properties of our technique

by incorporating sum-of-squares optimization, and relaxing the sampling assumptions

on the observations. We finally note that we can get asymptotically tighter bounds by

considering longer trajectories as opposed to only observing a state and its successor.

53

CHAPTER 3

Conclusions and Future Work

In this thesis, we addressed two important problems in the context of cyber-physical sys-

tems: synthesis of correct-by-design controllers and stability verification of closed-loop

system. In the first chapter of the thesis, we introduced mode-target specifications as

a natural way of modeling the desired behavior of various dynamical systems from nu-

merous application domains. Relying on the extensive literature in the abstraction based

controller design for cyber-physical systems, we introduced an algorithm to synthesize

controllers enforcing such mode-target specifications. The running time of this algorithm

is polynomial in the number of states of the abstraction describing the dynamical system of

interest. We showed the practicality of the algorithm on the design of an adaptive cruise

controller system. At the core of this chapter was the observation that the specificity

of control systems can be exploited when building upon ideas from the formal methods

literature. This of course leads to the interesting question and important future direc-

tion: What are other specific properties of control systems that we can exploit to develop

more efficient control specific formal synthesis algorithms compared to the generic ones

developed by the computer science community?

In the second chapter, we steered away from the model based approach in the first chap-

ter and studied the stability of switched linear systems based solely on their uniformly

randomly sampled state trajectories. Given a user-defined confidence level and a switched

linear system, we proposed an algorithm that informs the user about how stable the given

system is. The algorithm closes the gap between the information obtained from finitely

many state trajectories and the stability of the overall system. This is possible due to

specific properties of switched linear systems that lets us infer the behavior of the tra-

jectories starting between the sampled points. We hope that our technique serves as the

54

beginning of a worthwhile quest to discover similar properties arising in more general

classes of dynamical systems.

55

APPENDIX A

Mode-Target Games

1 Preliminary Lemmas

A property Φ is a stable property iff Post(Φ) ⊆ Φ, i.e., if Φ is closed under suffixes. We

call ϕ a stable formula if W (ϕ) is a stable property. It is proved in [Sis94] that a formula

ϕ is a stable formula iff �ϕ ≡ ϕ. Then it follows that any formula of the form �φ, for

some φ is a stable formula. Moreover, the conjunction of stable formulas is also a stable

formula. Take two stable formulas ϕ1 and ϕ2; then ϕ1 ∧ ϕ2 ≡ �ϕ1 ∧�ϕ2 ≡ �(ϕ1 ∧ ϕ2),

which is a stable formula. Also recall that a property Φ is an absolute liveness property iff

Σ∗Φ ⊆ Φ. We call ϕ an absolute liveness formula if W (ϕ) is an absolute liveness property.

Lemma 1.1. Given the formulae ϕ1 and ϕ2, if we have WG(ϕ1 ∧ ϕ2) = ∅, then the

following holds:

WG(¬ϕ1 ∨ ϕ2) = WG(¬ϕ1).

Proof.

WG(¬ϕ1 ∨ ϕ2)

= WG((¬ϕ1 ∧ ϕ2) ∨ (¬ϕ1 ∧ ¬ϕ2) ∨ (ϕ1 ∧ ϕ2))

= WG((¬ϕ1 ∧ ϕ2) ∨ (¬ϕ1 ∧ ¬ϕ2)) = WG(¬ϕ1).

Lemma 1.2. Given the sets of LTL formulae ∪i∈I{ϕi}, ∪i∈I{ψi}, and a game graph G,

if for all i ∈ I we have WG

(
ϕi ∧

∨
j∈I\{i} ψj

)
= ∅, then the following holds:

WG (∨i∈Iϕi =⇒ ∨i∈Iψi) = WG (∧i∈I (ϕi =⇒ ψi))
56

Proof. The following holds:

WG (∨i∈Iϕi =⇒ ∨i∈Iψi)

= WG ((∧i∈I¬ϕi) ∨ (∨j∈Iψj))

= WG

(∧
i∈I

¬ϕi ∨ ψi

)
∨

∧
i∈I

¬ϕi ∨
∨

j∈I\{i}

ψj

= WG

(∧
i∈I

(¬ϕi ∨ ψi)

)
∪WG

∧
i∈I

¬ϕi ∨∨
j∈I\{i}

ψj

(1)
= WG

(∧
i∈I

(¬ϕi ∨ ψi)

)
∪WG

(∧
i∈I

¬ϕi

)
(2)
= WG (∧i∈I(¬ϕi ∨ ψi)) = WG (∧i∈I (ϕi =⇒ ψi))

where
(1)
= follows from the fact that

WG

ϕi ∧ ∨
j∈I\{i}

ψj

 = ∅,∀ i ∈ I,

and Lemma 1.1, while
(2)
= follows from the inclusion WG (∧i∈I¬ϕi) ⊆ WG (∧i∈I(¬ϕi ∨ ψi)) .

Lemma 1.3. Given a stable formula ϕ, and a winning strategy f for player 0 in (G,ϕ),

we have JϕK = V ∗, where V ∗ := ∪v∈JϕK ∪r∈Ωf,v(G) ∪i∈Nri, i.e., the set of all states visited

under the strategy f .

Proof. We note that it suffices to show V ∗ ⊆ JϕK. The other direction is immediate due

to the definition of V ∗. Note that since ϕ is a stable formula, it is closed under suffixes.

This means that any strategy f that is winning for (G,ϕ) is winning for (G,�JϕK) as well.

Therefore, any play r ∈ ∪v∈JϕK∪r∈Ωf,v(G) always stays inside the set JϕK, hence V ∗ ⊆ JϕK,

and the result follows.

Lemma 1.4. Let p and q be positional formulas, then

�(3p ∨3�q) ≡ �3p ∨3�q.
57

Proof.

�(3p ∨3�q)
(1)

≡ �(3(p ∨�q)) ≡ �3(p ∨�q)

(2)

≡ �3p ∨�3�q
(3)

≡ �3p ∨3�q,

where
(1)

≡ holds since 3ϕ1 ∨ 3ϕ2 ≡ 3(ϕ1 ∨ ϕ2),and
(2)

≡ is true because �3(ϕ1 ∨ ϕ2) ≡

�3ϕ1 ∨�3ϕ2. Finally,
(3)

≡ follows from �3�q ≡ 3�q.

Lemma 1.5. Let p and q be positional formulas, then

(3�p =⇒ 3�q) ≡ (3�p =⇒ 3�(p ∧ q)).

Proof.

(3�p =⇒ 3�(p ∧ q)) ≡ (3�p =⇒ (3�p ∧3�q)) ≡ (¬(3�p) ∨ (3�p ∧3�q))

(1)

≡ (¬(3�p) ∨3�p) ∧ (¬(3�p) ∨3�q) ≡ True ∧ (¬(3�p) ∨3�q) ≡ (3�p =⇒ 3�q),

where
(1)

≡ holds because ∨ distributes over ∧.

2 Proof of Theorem 3.4

Let Z∗ = νZ
⋂
i∈I

Jψi ∨3(pi ∧ eZ)K. We start by proving Z∗ ⊆ J� ∧i∈I ϕiK. We make the

following observation:

(
(Σ∗p1)(Σ∗p2) . . . (Σ∗p|I|)

)ω
= W

(
�
∧
i∈I

3pi

)
⊆W

(
�
∧
i∈I

3pi ∨ ψi

)
.

This suggests that a strategy that visits all pi’s in a circular fashion is winning for player

0. We pick the visiting order p1p2 . . . pi . . . p|I|, since it is enough to find one winning

strategy. Therefore, whenever a play visits a state that satisfies pi player 0 should be

able to switch to a strategy that is winning for the game with the winning condition

3pi+1(mod|I|). Next, we explain that this is in fact possible on Z∗.

58

The game starts at a state in Z∗. Player 0 follows the strategy that is winning for the

game (G,ψi ∨ 3(pi ∧ eZ∗)), from Z∗. If the game reaches a state v ∈ JpiK, then player

0 forces a visit to Z∗. After that player 0 starts following a strategy that is winning for

the game with the winning condition: ψi+1(mod|I|) ∨ 3(pi+1(mod|I|) ∧ eZ∗). This switching

is possible since Z∗ ⊆ Jψi ∨ 3(pi ∧ eZ∗)K, for all i ∈ I. The circular switching can be

implemented using a counter, with |I| states.

Due to the disjunction of the reachability part of the formula with ψi, it is true that a

play that follows the above strategy can be winning for (G,ψi) for some i ∈ I, instead of

(G,3pi) for some i ∈ I. However, since we assumed that for each i ∈ I, ψi is an absolute

liveness formula, and WG(ψi) ⊆ W (� ∧i∈I ϕi), even in this case the play is winning for

�
∧
i∈I
ϕi. Therefore, Z∗ ⊆ J� ∧i∈I ϕiK.

Now, we show that the other direction, i.e., J� ∧i∈I ϕiK ⊆ Z∗. To show that

J� ∧i∈I ϕiK ⊆ Z∗, it is sufficient to show J� ∧i∈I ϕiK ⊆ F (J� ∧i∈I ϕiK), where

F (Z) := ∩i∈I Jψi ∨3(pi ∧ eZ)K (see e.g. [Tar55]). Since � ∧i∈I ϕi is a stable formula,

we can invoke Lemma 1.3, with ϕ = � ∧i∈I ϕi and conclude that

J� ∧i∈I ϕiK = V ∗,

where V ∗ = ∪v∈J�∧i∈IϕiK ∪r∈Ωv,f (G) ∪i∈Nri. Then, we get:

J� ∧i∈I ϕiK = V ∗
(1)

⊆
⋂
i∈I

J(ψi ∨3pi) ∧�V ∗K ⊆
⋂
i∈I

J(ψi ∨3(pi ∧ eV ∗)K = F (V ∗),

where
(1)

⊆ follows from the definition of V ∗, since it includes all states visited under the

winning strategy for player 0 in (G,ϕ). We just proved that V ∗ ⊆ F (V ∗). Note that,

for any S ⊆ V we have S ⊆ F (S) =⇒ S ⊆ Z∗ due to [Tar55]. This shows that

V ∗ = J� ∧i∈I ϕiK ⊆ Z∗, which completes the proof.

59

3 Strategy Synthesis

Recall that a strategy is a partial function f : V ∗ × V0 → V such that whenever f(r, v)

is defined, (v, f(r, v)) ∈ E. We next construct a strategy with finite memory that can

also be described by a finite-state automaton Af = (S, s0, δM , δ), where S is a finite set

that represents the memory, s0 ∈ S is the initial memory content, δ : V0 × S → V is the

transition function which determines the next state to be visited based on the current

memory content and the current state of the game, and δM : S × V → S is the transition

function that describes how the memory content should be updated according to the

current memory content and current state of the game. We denote the natural extension

of δM from S × V to S × V ∗ by δ∗M . Once we specify Af we can construct f as

f(v0 . . . vi−1, vi) := δ(vi, δ
∗
M(s0, v0 . . . vi−1)). (A.1)

We now consider the problem of constructing Af . The set of memory states S is given

by S = {1, 2, . . . ,m} and the initial memory state is s0 = 1. The memory state being

i indicates that the player 0 should follow a strategy that is winning for the game with

the winning condition ∨tij=13�(Mi ∧ Ti,j) ∨3¬Mi. If the play satisfies 3¬Mi then the

memory state is incremented. Otherwise, the play satisfies ∨tij=13�(Mi ∧ Ti,j) and the

memory state remains the same. Moreover, we decide (other choices lead to equally valid

solutions) that the memory states should evolve according to 1, 2, . . . ,m, 1, 2, . . . This

leads us to define the transition function δM by

δM(v, i) =

 i+ 1(modm) if v ∈ J¬MiK

i if v /∈ J¬MiK

The final step is the definition of δ. It will be based on a set of edges that can be computed

from the intermediate results obtained when computing the fixed-point in (1.15).

We start with some additional notation. We use Y ∗`i to denote the set computed at the

60

`th iteration of the following fixed-point computation over Y :

µY

(
t⋃̀
j=1

νX(Pre(X) ∩ JMi ∧ Ti,jK) ∪(J¬MiK ∩ JϕK)∪Pre(Y)

)
.

Similarly, X∗`∗i,j denotes

νX(Pre(X) ∩ JMi ∧ Ti,jK) ∪ (J¬MiK ∩ JϕK) ∪ Pre(Y ∗`i)).

For each counter value k ∈ {1, 2, . . . ,m}, we define the set of edgesEk := Ek,1 ∪ Ek,2 ∪ Ek,3,

where

Ek,1 = {(v, v′) ∈ E | v ∈ J¬MkK, ∧ v′ ∈ JϕK} ,

Ek,2 =
⋃
`>1

{(v, v′) ∈ E | v ∈ Y ∗`k ∧ v 6∈ Y ∗<`k ∧ v′ ∈ Y ∗<`k

}
,

Ek,3 =

tk⋃
j=1

⋃
`

{(v, v′) ∈ E |v ∈ X∗`∗k,j ∩ JMk ∧ Tk,jK ∧ v 6∈ X∗<`∗k,j ∧ v′ ∈ X∗`∗k,j
}
,

where Y ∗<`k =
⋃

0≤i<`
Y ∗ik and X∗<`∗k,j =

⋃
0≤`<k

X∗`∗k,j . The set Ek,1 contains the transitions that

player 0 can use to force the game to move from a state in J¬MkK to a state in JϕK. Ek,2

corresponds to the transitions, that player 0 can force the game to make progress towards

a state in J¬MkK or a state that will not leave JMk ∧ Tk,jK forever for some j. The edges

in Ej,3 are the transitions, where the game is at a state in JMk ∧ Tk,jK, and player 0 can

force the game to stay in JMk ∧Tk,jK but cannot force it to make progress towards a state

in J¬MkK. Note that player 0 still wins by always taking the transitions in Ej,3 since even

if there is no progress towards J¬MkK, the game stays in JMk ∧ Tk,jK forever as well.

We make use of edges Ek to define δ when the memory state is at k as δ(v0, k) = v′,

where (v0, v
′) ∈ Ek. Now, we have all the ingredients to construct the winning strategy f

according to (A.1).

61

4 Proof of Proposition 4.1

We prove this proposition in two main steps. In the first step, we show that every mode-

target game can be transformed into an equivalent GR(1) game.

Let (G,ϕ) be a mode-target game. Then the following holds:

ϕ =
m∧
i=1

(
3�Mi =⇒

ti∨
j=1

3�Ti,j

)
(1)

≡
m∧
i=1

(
3�Mi =⇒

ti∨
j=1

3�(Mi ∧ Ti,j)

)
(A.2)

Let ϕi = 3�(Mi ∧ Ti) and ψi =
∨ti
j=1 3�(Mi ∧ Ti,j). Since the modes are mutually

exclusive, i.e., Mi ∈ L(v) =⇒ Mj 6∈ L(v), ∀ j 6= i and ∀v ∈ V, the following holds:

WG

ϕi ∧ ∨
i∈I\{j}

ψj

 = ∅,∀i ∈ I. (A.3)

Then due to Lemma 1.2 we get: ϕ ≡
(∨m

i=1 3�Mi =⇒
∨m
i=1

∨ti
i=1 3�(Mi ∧ Ti,j)

)
. Next

we show:

WG

(∨m
i=1 3�Mi =⇒

∨m
i=1

∨ti
j=1 3�(Mi ∧ Ti,j)

)
= WG

(∨m
i=1 3�Mi =⇒

∨maxi ti
j=1 3� ∨mi=1 (Mi ∧ T̄i,j)

)
where T̄i,j = Ti,j if j ≤ ti and T̄i,j = false, otherwise.

The inclusion:

WG(ϕ) ⊆ WG

(
m∨
i=1

3�Mi =⇒
maxi ti∨
j=1

3� ∨mi=1 (Mi ∧ T̄i,j)

)

is immediate since
m∨
i=1

ti∨
j=1

3�(Mi∧Ti,j) ≡
maxi ti∨
j=1

m∨
i=1

3�(Mi∧T̄i,j) and
maxi ti∨
j=1

m∨
i=1

3�(Mi ∧ T̄i,j)

implies
maxi ti∨
j=1

3�∨mi=1 (Mi∧ T̄i,j). To show the other direction, we start with the following

observation. Suppose r ∈ V ω, and let I be a finite index set. Then the following semantic

62

relation holds:

L(r) |= �
∨
i∈I

pi =⇒ L(r) |=
∨
i∈I

�pi ∨
∨
J⊆I,
|J |>1

∧
j∈J

�3pj, (A.4)

where each pi is a positional formula. Note that this follows from the fact that any word

satisfying � ∨i∈I pi should either always stay in one of the pi’s forever, and hence satisfy

∨i∈I�pi or shuffle between at least two different pi’s, i.e., satisfy
∨

J⊆I,
|J |>1

∧
j∈J �3pj. Let

I := {1, 2, . . .m}. We are now ready to show the other direction as follows:

WG

(
m∨
i=1

3�Mi =⇒
maxi ti∨
j=1

3�
m∨
i=1

(Mi ∧ T̄i,j)

)
(1)

⊆ WG

(
maxi ti∨
j=1

m∨
i=1

3�(Mi ∧ T̄i,j) ∨
maxi ti∨
j=1

m∨
i=1

∨
J⊆Im,
|J |>1

∧
s∈J

�3(Ms ∧ T̄s,j) ∨
m∧
i=1

�3¬Mi

)
(2)

⊆ WG

(
m∨
i=1

maxi ti∨
j=1

3�(Mi ∧ T̄i,j) ∨
m∧
i=1

�3¬Mi

)
,

where
(1)

⊆ follows from the inclusion given in (A.4), distributivity of 3 with respect to ∨

and the syntactic equivalence

3
∧
s∈J

�3(Ms ∧ T̄s,j) ≡
∧
s∈J

�3(Ms,j ∧ T̄s,j).

Due to the disjointness of modes we have WG(Mi) ⊆ WG(¬Mj), ∀j 6= i, and therefore
(2)

⊆ follows from the fact that
∨

J⊆Im,
|J |>1

∧
s∈J

�3(Ms ∧ T̄s,j) implies ∧mi=1�3¬Mi. Therefore we

have:

WG(ϕ) = WG

(
m∨
i=1

3�Mi =⇒
maxi ti∨
j=1

3� ∨mi=1 (Mi ∧ T̄i,j)

)
. (A.5)

This completes the proof since we can rewrite the formula on the right hand side of the

equality (A.5) and get and get the equality in (1.16).

63

APPENDIX B

Stability Analysis of Switched-Linear Systems

1 Notation and Background

Before proceeding to the main lemmas we use to prove Lemma 3.1, we first introduce

some necessary definitions and related background.

Let d be a distance on Rn. The distance between a set X ⊂ Rn and a point p ∈ Rn is

d(X, p) := infx∈X d(x, p). Note that the map p 7→ d(X, p) is continuous on Rn. Given a

set X ⊂ Rn, ∂X denotes the boundary of set X.

Definition 1.1. We define the spherical cap on S for a given hyperplane cTx = k as:

Cc,k := {x ∈ S : cTx > k}.

Remark 1.2. Consider the spherical caps Cc,k1 and Cc,k2 such that k1 > k2, then we have:

σn−1(Cc,k1) < σn−1(Cc,k2).

Remark 1.3. The distance between the point x = 0 and the hyperplane cTx = k is |k|‖c‖ .

We now define the function ∆ : ℘(S)→ [0, 1] as:

∆(X) := sup{r : rB ⊂ convhull (S \X)}. (B.1)

Note that, ∆(X) can be rewritten as:

∆(X) = d(∂convhull (S \X), 0). (B.2)

64

Lemma 1.4. Consider the spherical cap Cc,k. We have:

∆(Cc,k) = min

(
1,
|k|
‖c‖

)
.

Proof. Note that:

convhull (S \ Cc,k) =
{
x ∈ B : cTx ≤ k

}
.

Then the following equalities hold:

∆(Cc,k) = d(∂convhull (S \ Cc,k), 0)

= min(d(∂B, 0), d(∂{x : cTx ≤ k}, 0))

= min(d(S, 0), d({x : cTx = k}, 0))

= min

(
1,
|k|
‖c‖

)
.

Corollary 1.5. Consider the spherical caps Cc,k1 and Cc,k2 such that k1 ≤ k2. Then we

have:

∆(Cc,k1) ≤ ∆(Cc,k2).

2 Preliminary Results

Lemma 2.1. For any set X ⊂ S, there exist c and k such that Cc,k satisfies: Cc,k ⊂ X,

and ∆(Cc,k) = ∆(X).

Proof. Let X̃ := convhull (S \X). Since d is continuous and the set ∂X̃ is compact, there

exists a point x∗ ∈ ∂X̃, such that:

∆(X) = d(∂X̃, 0) = min
x∈∂X̃

d(x, 0) = d(x∗, 0).

Next, consider the hyperplane which is tangent to the ball ∆(X)B at x∗, which we denote

65

by
{
x : cTx = k

}
. Then we have:

∆(X) = d(x∗, 0) = d({x : cTx = k}, 0) = min

(
1,
|k|
‖c‖

)
.

Now, consider the spherical cap defined by this tangent plane i.e., Cc,k. Then, by Lemma

1.4 we have ∆(Cc,k) = min
(

1, |k|‖c‖

)
. Therefore, ∆(X) = ∆(Cc,k).

We next show Cc,k ⊂ X. We prove this by contradiction. Assume x ∈ Cc,k and x /∈ X.

Note that, if x /∈ X, then x ∈ S \X ⊂ convhull (S \X). Since x ∈ Cc,k, we have cTx > k.

But due to the fact that x ∈ convhull (S \ X), we also have cTx ≤ k, which leads to a

contradiction. Therefore, Cc,k ⊂ X.

Proposition 2.2. Let Xε = {X ⊂ S : σn−1(X) ≤ ε}. Then, for any ε ∈ (0, 1), the

function ∆(X) attains its minimum over Xε for some X which is a spherical cap.

Proof. We prove this via contradiction. Assume that there exists no spherical cap in Xε

such that ∆(X) attains its minimum. This means there exists an X∗ ∈ Xε, where X∗

is not a spherical cap and arg minX∈Xε(∆(X)) = X∗. By Lemma 2.1, we can construct

a spherical cap Cc,k such that Cc,k ⊂ X∗ and Cc,k = ∆(X∗). Note that, we further have

Cc,k (X∗, since X∗ is assumed not to be a spherical cap. This means that, there exists

a spherical cap σn−1(Cc,k) such that σn−1(Cc,k) < ε.

Then, the spherical cap Cc,k̃ with σn−1(Cc,k̃) = ε, satisfies k̃ < k by Remark 1.2. This

implies

∆(Cc,k̃) < ∆(Cc,k) = ∆(X∗)

by Corollary 1.5. Therefore, ∆(Cc,k̃) < ∆(X∗). This is a contradiction since we initially

assumed that ∆(X) attains its minimum over Xε at X∗.

66

3 Main Lemma

Lemma 3.1. Let ε ∈ (0, 1
2
) and α : (0, 1)→ R≥0 be defined by:

α(ε) := inf
X∈Xε

sup{r : rB ⊂ convhull (S \X)}, (B.3)

where Xε = {X ⊂ S : σn−1(X) ≤ ε}. Then, α(ε) is given by the formula:

α(ε) =

√
1− I−1

(
2ε;

n− 1

2
,
1

2

)
, (B.4)

where I is the regularized incomplete beta function.

Proof. By Proposition 2.2 we know that:

α(ε) = ∆(Cc,k), (B.5)

for some spherical cap Cc,k ⊂ S, where σn−1(Cc,k) = ε. It is known (see e.g. [Li11]) that

the area of such Cc,k, is given by the equation:

σn−1(Cc,k) =
I
(
1−∆(Cc,k)2; n−1

2
, 1

2

)
2

. (B.6)

Since, σn−1(Cc,k) = ε, we get the following set of equations:

ε =
I
(
1−∆(Cc,k)2; n−1

2
, 1

2

)
2

1−∆(Cc,k)2 = I−1

(
2ε;

n− 1

2
,
1

2

)
∆(Cc,k)2 = 1− I−1

(
2ε;

n− 1

2
,
1

2

)
. (B.7)

Then, the equalities (B.5) and (B.7) imply (B.3).

67

4 Proof of limN→∞ δ(β, ωN) = 1

Recall that, δ(β, ωN) = α(mκ(P (ωN))ε(β, ωN)). We first show that κ(P (ωN)) is uniformly

bounded in N . The optimization problem Opt(ωN) given in (2.7), with γ∗(ωN) replaced

by γ∗(Z)(1 + η
2
) is strictly feasible, and thus admits a finite optimal value K for some

solution Pη/2. Note that, limN→∞ γ
∗(ωN) = γ∗(Z) with probability 1. Thus, for large

enough N , γ∗(ωN)(1 + η) > γ∗(Z)(1 + η
2
). This also means that, for large enough N ,

Opt(ωN) admits Pη/2 as a feasible solution and thus the optimal value of Opt(ωN) is

bounded by K. In other words, λmax(P (ωN)) ≤ K. Moreover, since λmin(P (ωN)) ≥ 1, we

also have det(P (ωN)) ≥ 1, which means that

κ(P (ωN)) =

√
λmax(P (ωN))n

det(P (ωN))
≤
√
Kn. (B.8)

We next show that for a fixed β ∈ (0, 1) limN→∞ ε(β,N) = 0. Note that, ε(β,N) satisfies

the following equation:

1− β =
d∑
j=0

(
N

j

)
εj(1− ε)N−j.

We can then upper bound the term 1− β as in:

1− β ≤ (d+ 1)Nd(1− ε)N−d. (B.9)

We prove limN→∞ ε(β,N) = 0 by contradiction. Assume that limN→∞ ε(β,N) 6= 0. This

means that, there exists some c > 0 such that ε(β,N) > c infinitely often. Then, consider

the subsequence Nk such that ε(β,Nk) > c, ∀ k. Then, by (B.9) we have:

1− β ≤ (d+ 1)Nd
k (1− ε)Nk−d≤(d+ 1)Nd

k (1− c)Nk−d ∀ k ∈ N.

Note that limk→∞(d+ 1)Nd
k (1− c)Nk−d = 0. Therefore, there exists a k′ such that:

(d+ 1)Nd
k′(1− c)N

′
k−d < 1− β,

68

which is a contradiction. Therefore, we must have limN→∞ ε(β,N) = 0.

Putting this together with (B.8), we get:

lim
N→∞

mκ(P (ωN))ε(β, ωN) = 0.

By the continuity of the function I−1 this also implies: limN→∞ α(mκ(P (ωN))ε(β, ωN)) = 1.

69

References

[AHV15] R. Alur, T. A. Henzinger, and M. Y. Vardi. “Theory in Practice for System
Design and Verification.” ACM SIGLOG News, 2(1):46–51, January 2015.

[Ake78] S.B. Akers. “Binary Decision Diagrams.” Computers, IEEE Transactions on,
C-27(6):509–516, June 1978.

[AL04] R. Alur and S. La Torre. “Deterministic Generators and Games for LTL Frag-
ments.” ACM Trans. Comput. Logic, 5(1):1–25, January 2004.

[AMP98] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. “Controller Synthesis For Timed
Automata.”, 1998.

[BCJ97] A. Browne, E.M. Clarke, S. Jha, D.E. Long, and W. Marrero. “An improved
algorithm for the evaluation of fixpoint expressions.” Theoretical Computer
Science, 178(1-2):237 – 255, 1997.

[BFG16] F. Blanchini, G. Fenu, G. Giordano, and F. A. Pellegrino. “Model-Free Plant
Tuning.” IEEE Transactions on Automatic Control, PP(99):1–1, 2016.

[BJP12] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Saar. “Synthesis of
Reactive(1) Designs.” J. Comput. Syst. Sci., 78(3):911–938, May 2012.

[BL15] R. Bobiti and M. Lazar. “A Delta-sampling Verification Theorem for Discrete-
time, Possibly Discontinuous Systems.” In Proceedings of the 18th Interna-
tional Conference on Hybrid Systems: Computation and Control, HSCC ’15,
pp. 140–148, New York, NY, USA, 2015. ACM.

[BT99] V. D. Blondel and J. N. Tsitsiklis. “Complexity of stability and controllability
of elementary hybrid systems.” Automatica, 35(3):479 – 489, 1999.

[BTD16] A. Balkan, P. Tabuada, J. V. Deshmukh, X. Jin, and J. Kapinski. “Under-
miner: A framework for automatically identifying non-converging behaviors
in black box system models.” In 2016 International Conference on Embedded
Software (EMSOFT), pp. 1–10, Oct 2016.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, New York, NY, USA, 2004.

[BVT] A. Balkan, M. Vardi, and P. Tabuada. “Mode-Target Games: Reactive Syn-
thesis for Control Applications.” arXiv:1504.07702v4 [math.OC], 2016.

[BVT16] A. Balkan, M. Vardi, and P. Tabuada. “Controller Synthesis for Mode-Target
Games.” In Proceedings 5th IFAC Conference on Analysis and Design of Hy-
brid Systems, ADHS, 2016.

[Cal10] G. Calafiore. “Random Convex Programs.” SIAM Journal on Optimization,
20(6):3427–3464, 2010.

70

http://arxiv.org/abs/1504.07702v4

[CG08] M. C. Campi and S. Garatti. “The Exact Feasibility of Randomized Solutions
of Uncertain Convex Programs.” SIAM Journal on Optimization, 19(3):1211–
1230, 2008.

[CNM10] D. Chen, M. Nixon, and A. Mok. WirelessHART: Real-Time Mesh Network
for Industrial Automation. Springer Publishing Company, Incorporated, 1st
edition, 2010.

[DJW97] S. Dziembowski, M. Jurdzinski, and I. Walukiewicz. “How much memory is
needed to win infinite games?” In Logic in Computer Science, 1997. LICS ’97.
Proceedings., 12th Annual IEEE Symposium on, pp. 99–110, Jun 1997.

[DMV13] P. S. Duggirala, S. Mitra, and M. Viswanathan. “Verification of Annotated
Models from Executions.” In Proceedings of the Eleventh ACM International
Conference on Embedded Software, EMSOFT ’13, pp. 26:1–26:10, Piscataway,
NJ, USA, 2013. IEEE Press.

[Ehl11] R. Ehlers. “Generalized Rabin(1) Synthesis with Applications to Robust Sys-
tem Synthesis.” In M. Bobaru, K. Havelund, G. J. Holzmann, and R. Joshi,
editors, NASA Formal Methods, volume 6617 of Lecture Notes in Computer
Science, pp. 101–115. Springer Berlin Heidelberg, 2011.

[EL86] E. A. Emerson and C. Lei. “Efficient Model Checking in Fragments of the
Propositional Mu-Calculus (Extended Abstract).” In Proceedings of the First
Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 267–278,
June 1986.

[HM14] Z. Huang and S. Mitra. “Proofs from Simulations and Modular Annotations.”
In Proceedings of the 17th International Conference on Hybrid Systems: Com-
putation and Control, HSCC ’14, pp. 183–192, New York, NY, USA, 2014.
ACM.

[HRK09] H.Venz, W. Ruhle, and J. Kysela. “Start-up and Shutdown Practices in BWRs
as well as in Primary and Secondary Circuits of PWRs, VVERs and CANDUs.”
Technical report, ANT International, 2009.

[HZD04] Z. Hu, B. Zhang, and W. Deng. “Output controllability of switched power
converters as switched linear systems.” In The 4th International Power Elec-
tronics and Motion Control Conference, 2004. IPEMC 2004., volume 3, pp.
1665–1668 Vol.3, Aug 2004.

[ISO10] ISO 15622:2010 (E). “Intelligent transport systems – Adaptive Cruise Control
systems – Performance requirements and test procedures.” Technical report,
International Organization for Standardization, 2010.

[JDK14] X. Jin, J. V. Deshmukh, J. Kapinski, K. Ueda, and K. Butts. “Powertrain
Control Verification Benchmark.” In Proceedings of the 17th International
Conference on Hybrid Systems: Computation and Control, HSCC ’14, pp. 253–
262, New York, NY, USA, 2014. ACM.

71

[Jun09] R. M. Jungers. “The joint spectral radius, Theory and applications.” In Lec-
ture Notes in Control and Information Sciences, volume 385. Springer-Verlag,
Berlin, 2009.

[KDF03] N. S. Kumpati, A. O. Driollet, M. Feiler, and G. Koshy. “Adaptive control us-
ing multiple models, switching and tuning.” International Journal of Adaptive
Control and Signal Processing, 17(2):87–102, 2003.

[KDS14] J. Kapinski, J. V. Deshmukh, S Sankaranarayanan, and N. Arechiga.
“Simulation-guided Lyapunov Analysis for Hybrid Dynamical Systems.” In
Proceedings of the 17th International Conference on Hybrid Systems: Com-
putation and Control, HSCC ’14, pp. 133–142, New York, NY, USA, 2014.
ACM.

[KE12] J. Křet́ınský and J. Esparza. Deterministic Automata for the (F,G)-Fragment
of LTL, pp. 7–22. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[KF07] H. Kress-Gazit and G. E. Fainekos. “Where’s Waldo? sensor-based temporal
logic motion planning.” In in IEEE International Conference on Robotics and
Automation, pp. 3116–3121, 2007.

[KP16] N. Kalra and S. M. Paddock. “Driving to Safety: How Many Miles of Driving
Would It Take to Demonstrate Autonomous Vehicle Reliability?” 2016.

[KPP05] Y. Kesten, N. Piterman, and A. Pnueli. “Bridging the gap between fair sim-
ulation and trace inclusion.” Information and Computation, 200(1):35 – 61,
2005.

[Lau15] F. Lauer. “On the complexity of switching linear regression.” arXiv preprint
arXiv:1510.06920, 2015.

[Li11] S. Li. “Concise Formulas for the Area and Volume of a Hyperspherical Cap.”
Asian Journal of Mathematics & Statistics, 4:66–70, 2011.

[LLZ16] S. Liu, D. Liberzon, and V. Zharnitsky. “On almost Lyapunov functions for
non-vanishing vector fields.” In 2016 IEEE 55th Conference on Decision and
Control (CDC), pp. 5557–5562, Dec 2016.

[LOT13] Jun L., N. Ozay, U. Topcu, and R.M. Murray. “Synthesis of Reactive Switching
Protocols From Temporal Logic Specifications.” Automatic Control, IEEE
Transactions on, 58(7):1771–1785, July 2013.

[mac06] “IEEE Standard for Information Technology- Telecommunications and Infor-
mation Exchange Between Systems- Local and Metropolitan Area Networks-
Specific Requirements Part 15.4: Wireless Medium Access Control (MAC) and
Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Net-
works (WPANs).” Technical report, 2006.

72

[MDT10] M. Mazo, A. Davitian, and P. Tabuada. “PESSOA: A Tool for Embedded
Controller Synthesis.” In Proceedings of the 22Nd International Conference on
Computer Aided Verification, CAV’10, pp. 566–569, Berlin, Heidelberg, 2010.
Springer-Verlag.

[Mor98a] A. S. Morse. “Control Using Logic-Based Switching.” In Trends in Control:
A European Perspective, pp. 69–113. Springer-Verlag, 1998.

[Mor98b] A. S. Morse. “Supervisory Control of Families of Linear Set-Point Controllers -
Part 1: Exact Matching.” IEEE Trans. Automat. Contr, 41:1413–1431, 1998.

[NHB16] P. Nilsson, O. Hussien, A. Balkan, Y. Chen, A. Ames, J. Grizzle, N. Ozay,
H. Peng, and P. Tabuada. “Correct-By-Construction Adaptive Cruise Control:
Two Approaches.” IEEE Transactions on Control Systems Technology, 2016.

[NS06] A. Nemirovski and A. Shapiro. “Convex approximations of chance constrained
programs.” SIAM Journal on Optimization, 17(4):969–996, 2006.

[PP02] A. Papachristodoulou and S. Prajna. “On the construction of Lyapunov func-
tions using the sum of squares decomposition.” In Proceedings of 41st IEEE
Conference on Decision and Control, pp. 3482–3487, Las Vegas, Nevada USA,
December 2002.

[Rud87] W. Rudin. Real and complex analysis. McGraw-Hill Book Co., New York,
third edition, 1987.

[Ses15] S. A. Seshia. “New Frontiers in Formal Methods: Learning, Cyber-Physical
Systems, Education, and Beyond.” CSI Journal of Computing, 2(4):R1:3–
R1:13, June 2015.

[Sif15] J. Sifakis. “System Design Automation: Challenges and Limitations.” Pro-
ceedings of the IEEE, 103(11):2093–2103, 2015.

[Sis94] A.P. Sistla. “Safety, liveness and fairness in temporal logic.” Formal Aspects
of Computing, 6(5):495–511, 1994.

[Str81] R. S. Streett. “Propositional Dynamic Logic of Looping and Converse.” In
Proceedings of the Thirteenth Annual ACM Symposium on Theory of Comput-
ing, STOC ’81, pp. 375–383, New York, NY, USA, 1981. ACM.

[Tab09] P. Tabuada. Verification and control of hybrid systems: a symbolic approach.
Springer, 2009.

[Tar55] A. Tarski. “A lattice-theoretical fixpoint theorem and its applications.” Pacific
J. Math., 5(2):285–309, 1955.

[TPS08] U. Topcu, A. Packard, and P. Seiler. “Local stability analysis using simulations
and sum-of-squares programming.” Automatica, 44(10):2669 – 2675, 2008.

[Var08] M. Y. Vardi. From Verification to Synthesis, pp. 2–2. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2008.

73

[VHJ14] G. Vankeerberghen, J. Hendrickx, and R. Jungers. “JSR: A Toolbox to Com-
pute the Joint Spectral Radius.” In Proceedings of the 17th International Con-
ference on Hybrid Systems: Computation and Control, HSCC ’14, pp. 151–156,
New York, NY, USA, 2014. ACM.

[WTM13] E.M. Wolff, U. Topcu, and R.M. Murray. “Efficient reactive controller synthesis
for a fragment of linear temporal logic.” In IEEE International Conference on
Robotics and Automation (ICRA), pp. 5033–5040, May 2013.

[ZB98] M. Zefran and J. W. Burdick. “Design of switching controllers for systems with
changing dynamics.” In Proceedings of the 37th IEEE Conference on Decision
and Control (Cat. No.98CH36171), volume 2, pp. 2113–2118 vol.2, Dec 1998.

74

	Controller Synthesis for Mode-Target Games
	Preliminaries
	Linear Temporal Logic
	Games

	Mode-Target Games
	Motivation
	Mode-Target Formulas and Games

	Solving Mode-Target Games
	Decomposition of the Winning Set
	Computation of the Winning Set

	Solving Mode-Target Games via GR(1) Games
	Experimental Comparison
	Random Linear Time-Invariant Systems with Multiple Targets
	Unicycle Cleaning Robot
	Adaptive Cruise Control (ACC)

	Conclusions

	Data-Driven Stability Analysis of Black-box Switched Linear Systems
	Preliminaries
	Notation
	Switched Linear Systems

	A Deterministic Lower Bound for the JSR
	A Probabilistic Stability Guarantee
	Experimental Results
	2-D Example
	4-D Example
	Average Behavior over Random Systems
	Networked Control System

	Conclusions

	Conclusions and Future Work
	Mode-Target Games
	Preliminary Lemmas
	Proof of Theorem 3.4
	Strategy Synthesis
	Proof of Proposition 4.1

	Stability Analysis of Switched-Linear Systems
	Notation and Background
	Preliminary Results
	Main Lemma
	Proof of limN (, N) = 1

	References

