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Abstract

Facing an Altered Future:
Essays on the Economic Impacts of Climate Change and Adaptation

by

Andrew B. Hultgren

Doctor of Philosophy in Agricultural and Resource Economics

University of California, Berkeley

Professor Maximilian Auffhammer, Co-chair
Professor Solomon Hsiang, Co-chair

In this dissertation, the reader will find four essays examining the empirical effects of
future climate change, while accounting for both adaptation as well as its costs. In three of
these essays, we uncover climate impacts that result in a substantially altered future from
our present reality: crop yields in sharp decline (while accounting for costly adaptation);
cropped areas shifted away from present-day locations; and increased human mortality, with
costly adaptations undertaken to avoid even further excess deaths. In one essay, we estimate
that the impact of climate change on global energy consumption will be small in aggregate
due to offsetting effects from more hot days but fewer cold days, though regional disparities
may be important.

Several conclusions follow. First, accounting for both adaptation and its costs is impor-
tant for grounding an accurate estimate of the social cost of carbon. Second, performing
these analyses at a global scale and with high spatial resolution reveals important sources
of heterogeneity – both in impacts as well as in the magnitude of adaptation. Third, re-
sults such as these may be useful inputs to the Integrated Assessment Modeling community,
improving the empirical grounding of the damage functions employed.

In these essays, we seek to include information from as globally representative a sample
as possible, and where possible estimate heterogeneous effects for the global rich versus the
global poor. We also seek to graphically illustrate projected effects so that non-expert readers
can locate themselves within the empirical estimates we produce.
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Chapter 1:
Introduction

Future climate change is a problem with the potential for civilization-altering conse-
quences: end-of-century sea level rise under a high emissions scenario could leave over 600
million people at risk of coastal flooding, based only on present-day population (Kulp and
Strauss, 2019); weather-induced spikes in the price of wheat may already have played a
key role in the “Arab Spring” regional destabilization (Johnstone and Mazo, 2011); and
carbon-cycle feedbacks could irreversibly push the planet into a “hothouse” pathway of 4-
5◦C warming and 10-60 meters of sea level rise – a climate not seen since the Mid-Miocene
period 15 million years ago (Steffen et al., 2018). Clearly, understanding the economic im-
pacts of climate change and appropriately pricing the greenhouse gas externality is critically
important to the welfare of future generations (Interagency Working Group on Socal Cost
of Carbon, 2010; National Academies of Sciences, Engineering, and Medicine, 2017).

The last decade has seen growth in the literature estimating the effects of weather shocks
on a range of economic and social outcomes (Deschênes and Greenstone, 2007; Schlenker and
Roberts, 2009; Feng, Krueger, and Oppenheimer, 2010; Auffhammer and Aroonruengsawat,
2011; Deschênes and Greenstone, 2011; Hsiang, Meng, and Cane, 2011; Dell, Jones, and
Olken, 2012; Graff Zivin and Neidell, 2014). However, understanding how agents might adapt
to slow-moving changes in climate (Mendelsohn, Nordhaus, and Shaw, 1994) has proven to
be difficult (Auffhammer and Schlenker, 2014; Carleton and Hsiang, 2016). Importantly,
agents may be able to take a range of actions to mitigate the harm of a slow-moving change
in temperature that would be unavailable to them in the context of a short-run weather
shock (Mendelsohn, Nordhaus, and Shaw, 1994; Hsiang, 2016). If these adaptive actions
effectively mitigate the effects of extreme heat on social outcomes of interest, then empirical
estimates derived from short-run weather shocks may overstate the economic losses associated
with future climate change. However, adaptive actions are not costless (Schlenker, Roberts,
and Lobell, 2013); if they were, then rational agents would already have undertaken them.
Understanding the capacity for adaptation to climatic changes as well as the costs of adaptive
actions is, therefore, of first-order importance in determining optimal climate policy today.

This dissertation comprises a body of work focused on empirically estimating the scope
for human adaptation to slow-moving climatic changes, including both the magnitude of
mitigated impacts afforded by adaptation as well as the implied costs of adaptive actions,
at a global scale. Three chapters focus on estimating climate impacts, net of adaptation
and its costs, on three important aspects of human society: global grain yields, global
energy consumption, and non-market-valued human mortality. An additional chapter on
agriculture and climate focuses on an important but poorly understood potential mechanism
for adaptation: the poleward shifting of cropped areas to follow optimal growing climates.

Across these studies, two key patterns emerge. First, adaptation is, in general, important.
Confirming the intuition of Mendelsohn, Nordhaus, and Shaw (1994), we find that adapta-
tion mitigates the effects of weather shocks on grain yields and on human mortality, and that
cropped areas do shift with a shifting climate. In addition, we find that energy consumption
helps enable adaptation, with moderately increased hot-day demand for electricity in rela-
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tively hot places, and substantially increased cold-day demand for non-electricity (heating)
fuels in relatively cold places. Second, adaptation is costly: substantial losses due to climate
change – net of adaptation and its costs – persist.

The key findings in each study are briefly summarized below.

1.1 Chapter Summaries

The Impacts of Climate Change on Global Grain Production Accounting for Adaptation
This study presents the first granular and globally comprehensive analysis of crop yields

under climate change, accounting for farmer adaptation and its costs along the critical di-
mensions of slow-moving changes to temperature and precipitation, income growth, and
irrigation. To do this, we assemble once of the largest datasets of subnational crop produc-
tion available to researchers, covering over 10,000 administrative units from 55 countries and
representing two thirds of global crop caloric production.

Across crops, we find consistent patterns of adaptation to climatic changes and through
growth in incomes and access to irrigation. However, we also find that globally widespread
yield declines persist, in spite of these adaptive efforts. We show this by adapting simple
machine learning techniques to a causal inference context, enabling us to for the first time
systematically assess a rich set of channels through which temperature and precipitation
shocks might causally affect yields in each of our crops, while also systematically assessing
the extent to which farmers might use income growth, irrigation, or expectations of long-run
temperature and precipitation to mitigate the extent of these yield losses.

Projecting our empirical estimates into the future, we find that even after accounting for
costly adaptation, RCP 8.5 end-of-century yield losses are projected to be severe in the key
cropped areas of the U.S. grain belt and Eastern China (40% or greater losses), important in
the major cropped areas of South America and Australia (10% losses), and mixed in Europe,
Sub-Saharan Africa, India, and Southeast Asia.

Overall, while costly adaptation is protective for the major grain producing regions of the
world relative to no adaptation at all, yield impacts in spite of adaptation are still generally
negative and for many regions of the world they are substantially so.

Climate Change and Crop Choice: Evidence from the United States
This study examines how farmers adjust the land they allocate to crops when climatic

conditions change. We analyze subnational longitudinal data for two globally important
cereals from one of the world’s major agricultural regions, the United States. Consistent
with theory, we find that more land is allocated to producing a specific crop when the
climatological conditions for growing that crop improve, although the timescales for these
adjustments are long, on the order of 20 or more years. When we estimate the effectiveness
of land use change as an adaptive strategy, we find that these adjustments reclaim 5-10%
of climate-induced losses to producer surplus. The availability of adaptation via land use
fails to generate more value because enduring climate-induced yield losses is less costly than
altering land use practices for most farmers, indicating that land use adjustment costs may
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be high.

Valuing the Global Mortality Consequences of Climate Change Accounting for Adaptation
Costs and Benefits

This paper develops the first globally comprehensive and empirically grounded estimates
of mortality risk due to future temperature increases caused by climate change. Using 40
countries’ subnational data, we estimate age-specific mortality-temperature relationships
that enable both extrapolation to countries without data and projection into future years
while accounting for adaptation. We uncover a U-shaped relationship where extreme cold and
hot temperatures increase mortality rates, especially for the elderly, that is flattened by both
higher incomes and adaptation to local climate (e.g., robust heating systems in cold climates
and cooling systems in hot climates). Further, we develop a revealed preference approach to
recover unobserved adaptation costs. We combine these components with 33 high-resolution
climate simulations that together capture scientific uncertainty about the degree of future
temperature change. Under a high emissions scenario, we estimate the mean increase in
mortality risk is valued at roughly 3.2% of global GDP in 2100, with today’s cold locations
benefiting and damages being especially large in today’s poor and/or hot locations. Finally,
we estimate that the release of an additional ton of CO2 today will cause mean [interquartile
range] damages of $36.6 [-$7.8, $73.0] under a high emissions scenario and $17.1 [-$24.7,
$53.6] under a moderate scenario, using a 2% discount rate that is justified by US Treasury
rates over the last two decades. Globally, these empirically grounded estimates substantially
exceed the previous literature’s estimates that lacked similar empirical grounding, suggesting
that revision of the estimated economic damage from climate change is warranted.

Estimating a Social Cost of Carbon for Global Energy Consumption
The global marginal damage caused by emitting a single ton of carbon dioxide (CO2), or

its equivalent, is key to climate policy,Nordhaus (1992); Interagency Working Group on Socal
Cost of Carbon (2010); National Academies of Sciences, Engineering, and Medicine (2017)
but our current understanding of its value is based on spatially-coarse theoretical-numerical
modelsStern (2006); Tol (2009); Pindyck (2013) that are not tightly linked to dataNational
Academies of Sciences, Engineering, and Medicine (2017); Burke et al. (2016). We develop
the first architecture that integrates best-available data, econometrics, and climate science to
estimate climate damages worldwide at the local level, as well as aggregated global marginal
damages. Here we apply this architecture to construct the first global empirical estimates
of the impact of climate change on total non-transport end-use energy consumption, one of
the most uncertain impacts in current models.Anthoff and Tol (2013) At end-of-century, we
project annual global electricity consumption to rise roughly 4 EJ (1100 TWh, 6% of current
global consumption) for each 1◦C increase in global mean temperature, reflecting increased
cooling demand, while direct consumption of other fuels declines 10.1 EJ (6% of current
global consumption) per 1◦C, reflecting reduced heating. Together, these estimates indicate
that emission of 1 ton of CO2 today produces global net savings in future aggregate energy
consumption of about $1 in net present value (3% discount rate). This finding is largely
driven by a sharply nonlinear relationship between income and temperature-induced energy
consumption, which indicates that for most of the 21st century, much of the world is expected
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to remain too poor to increase energy consumption in response to warmer temperatures. By
end-of-century, emerging economies in the tropics (e.g. India) are projected to increase
electricity consumption dramatically, but these rising costs are offset by heating reductions
in the wealthy economies of North America and Europe.

1.2 Conclusions and Directions for Future Research

Relying on the Ricardian approach, the seminal work of Mendelsohn, Nordhaus, and Shaw
(1994) found that climate impacts on U.S. agricultural profits, net of adaptation, would likely
only be modestly negative and possibly beneficial. Using fixed effects estimators more robust
to omitted variables bias (Deschênes and Greenstone, 2007), the subsequent literature has
found negative climate impacts across a range of outcomes, though estimates are generally
unable to account for adaptation (Auffhammer and Schlenker, 2014; Carleton and Hsiang,
2016).

Similar to Auffhammer (2018), the studies presented here combine elements of both
the Ricardian and within-estimator approaches: we use cross-sectional variation in long-run
climate to uncover heterogeneity in the response to short-run (within-estimator) weather
shocks. In so doing, we find that adaptation does indeed mitigate the effects of weather
relative to the effect of an unanticipated shock.

However, for the first time we also uncover the implied costs of these adaptive actions.
In contrast to Mendelsohn, Nordhaus, and Shaw 1994, we find that accounting for both
adaptation and its costs, negative effects of climate change persist and are widespread. Severe
(∼40%) yield losses persist for major grain growing regions of the world; the costly migration
of cropped areas is substantial, but only offsets ∼10% of producer losses; human mortality
effects persist and are valued at 3.2% of end-of-century global GDP. Only in the case of
global energy consumption do we find gains from climate change – in this case increases in
the consumption of electricity on hot days as locations become hotter on average is offset by
the decreased consumption of heating fuels as cold places both warm and experience fewer
cold days.

Several conclusions follow. First, accounting for both adaptation and its costs is clearly
important for grounding an accurate estimate of the social cost of carbon (SCC). Second,
performing these analyses at a global scale and with high spatial resolution reveals important
sources of heterogeneity – both in impacts as well as in the magnitude of adaptation – that
regionally focused or geographically coarse studies might miss. Third, results such as these
may be useful inputs to the Integrated Assessment Modeling community (Nordhaus, 1992;
Tol, 1997; Hope, 2002), who may be able to incorporate estimates like these into their damage
functions, improving their empirical grounding.

A shortcoming of the approaches applied in this dissertation is that the variation used
to estimate adaptive responses is typically cross-sectional in nature. That is, we use cross-
sectional variation in long-run climate to parameterize the heterogeneity in the short-run
response function. If omitted variables are correlated with heterogeneity in the short-run
response function and the outcome of interest, these omitted variables could be a source of
bias in our estimates of the magnitude of adaptation and its implied costs.
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Future research can take a number of different directions. Valuation of the grain yield
losses presented here will be important for their incorporation into an estimate of a partial-
SCC. Additional economic outcomes can be investigated, such as labor supply, human mi-
gration, or vector-borne diseases. Risk preferences can be incorporated to reflect curvature
in the social welfare function of a planner, or in the utility function of a representative con-
sumer. Finally, following Burke and Emerick (2016); Shrader (2018); Hagerty (2020), natural
experiments over dimensions of adaptation (or the information set that forms expectations)
can be used to improve identification in our estimates of adaptation.

This concludes the summary of the dissertation research itself. Given the extraordinary
nature of the moment in which I am completing my doctorate, I turn below to a brief
reflection on a potential role for economics research in the present social context. This
reflection is of a more editorial nature; the disinterested reader may, of course, disregard it.
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Fiat Lux.1

– Motto, U.C. Berkeley

“If you do away with the yoke of oppression,
with the pointing finger and malicious talk,

and if you spend yourselves in behalf of the hungry
and satisfy the needs of the oppressed,

then your light will rise in the darkness,
and your night will become like the noonday.”

– Isaiah Chapter 58 (Israel, 8th century BCE)

Reflection: Research during a period of social upheaval2

I am completing my doctorate during a time of turmoil without precedent in recent decades:
the emergence of COVID-19 has led to widespread unemployment, economic upheaval, and a
new leading cause of death; the murder of George Floyd and subsequent Black Lives Matter
protests have brought into sharp relief the failing of U.S. society to confront ongoing systemic
racism; and the Me Too movement has brought the same sharp focus on systemic sexism.

What, at a time like this, could possibly be the point of engaging in academic research?

Like many, I believe that research can be used effectively to improve policy and enhance
social welfare. Fiat Lux, and may the knowledge it affords lead to better-informed decisions.
However, the policy-making process takes many inputs; information is but one of them.
Optimal policy may be compromised to obtain votes. Politicians may be concerned with
how they will finance the coming political campaign. Regulators may be swayed by the
persistence of a well-organized lobby. The currying of political influence with the objective
of shaping policy to an individually favorable outcome is a long-standing human practice:
in the chaos of the policy-making process, it is those with the means to protect and expand
their private positions who frequently come out as winners. When hard choices need to be
made, those without a voice at the table are distinctly disadvantaged.

This is where we as researchers can be of service: through our research, we can help give
voice to the voiceless. Let me be clear, I am not advocating anything less than the clear-eyed,
unswerving pursuit of truth. We should be our own harshest critics, and then look to our
colleagues and peer review to test the soundness of our findings even further. However, as
experts, we can do more to make our findings accessible to those who might benefit from
them but who may lack the means to place those findings in their own contexts. In so doing,
we can focus the beam of light created by newfound knowledge and illuminate particularly
those parts of society that have been conveniently ignored in the policy-making process.

1“Let there be light.”
2I thank Kira Dominguez-Hultgren and my dissertation committee for helpful comments on this reflection.
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What might research that gives voice to the voiceless look like? I propose a non-exhaustive
and certainly flawed set of characteristics, to which I hope others will add.3

Estimate heterogeneity over historically marginalized groups, where possible.
First, researchers might ask whether the question at hand exhibits heterogeneity over

historically marginalized groups, and a sufficiently powered empirical analysis could estimate
such heterogeneous treatment effects. For example, in Chapter 4 of this dissertation, Figure
10, we use our estimates of heterogeneous treatment effects to show how human deaths
(Panel A) and mortality adaptation costs (Panel B) are differentially distributed over the
global poor vs. the global rich. In particular, we find that today’s wealthy countries are
largely able to pay to adapt away the mortality effects of future climate change; however we
project today’s poor countries to largely bear the mortality effects of climate change through
human deaths, rather than costly adaptation.

Create figures for non-expert readers.
Second, we might present our results in such a way that a non-expert reader can locate

themselves within the data. Maps of intuitively accessible outcomes can be particularly
effective tools in this regard. For example, in Chapter 2 of this dissertation, Figure 4, we
display global maps of projected crop yield losses or gains (net of adaptation and its costs)
under climate change. Such a map – especially if communicated through the media – makes
it possible for policymakers and the public in Argentina or Malaysia or Tanzania to see how
climate change is projected to affect the yields of key global grains in their home towns.

Train in science communication.
Third, we could treat science communication as an integral part of the research process,

and explicitly train our doctoral students in it. Thoughtfully engaging the press with an
accurate and well-honed message – including accessible graphics and illustrative analogies –
can increase the chances that research findings will be heard and used accurately by those
most affected by a given policy. The papers in this dissertation have not yet reached the pub-
lication stage, so I cannot speak to the science communication and media preparation process
for them. However, a recent paper on the effectiveness of COVID-19 anti-contagion policies
has been published, and our team spent many hours honing our ability to communicate the
key findings of the paper,4 including discussing word pictures, creating new graphics, and
repeatedly giving mock-interviews to practice the accurate yet accessible communication of
our key results.

3This discussion is inspired by many interactions, however two critical sources stand out. One is the science
communication training incorporated into the NSF DS421 traineeship, including a particularly insightful talk
given by Trevor Houser, along with other formal communication workshops. The other is preparation with
the Global Policy Lab for the release of our paper on coronavirus anti-contagion policies, which included
reading the book Escape from the Ivory Tower: A Guide to Making Your Science Matter by Nancy Baron.

4http://www.globalpolicy.science/covid19
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Four essays: Giving voice to future generations
In this dissertation, the reader will find four essays examining the empirical effects and

costs of future climate change; that is, seeking to give voice to the future generations who
will bear the consequences of our collective decisions today. In three of these essays, we
uncover climate impacts that result in a substantially altered future from our present reality:
crop yields in sharp decline (while accounting for costly adaptation); cropped areas shifted
away from present-day locations; and increased human mortality, with costly adaptations
undertaken to avoid even further excess deaths. In one essay, we estimate that the impact
of climate change on global energy consumption will be small in aggregate, though regional
disparities may be important. In these essays, we seek to include information from as globally
representative a sample as possible, and where possible estimate heterogeneous effects for the
global rich versus the global poor. We also seek to graphically illustrate projected effects so
that individuals can locate themselves, and perhaps their own children, within the empirical
estimates we produce. We cannot force global leaders to act on this information. But perhaps
constituents and local leaders, inspired by accurate and compelling media reporting, can.

I leave for reflection the words recorded by the Hebrew prophet Isaiah, whose reinter-
pretation of Fiat Lux will, I hope, never cease to structure my own motivation to engage in
research.

Andrew B. Hultgren
August 14, 2020
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Chapter 2:
The Impacts of Climate Change on
Global Grain Production
Accounting for Adaptation

Chapter Summary

In this opening chapter, we present the first granular and globally comprehensive analysis
of crop yields under climate change, accounting for farmer adaptation and its costs along
the critical dimensions of slow-moving changes to temperature and precipitation, income
growth, and irrigation.1 To do this, we assemble once of the largest datasets of subnational
crop production available to researchers, covering over 10,000 administrative units from 55
countries and representing two thirds of global crop caloric production.

Across crops, we find consistent patterns of adaptation to climatic changes and through
growth in incomes and access to irrigation. However, we also find that globally widespread
yield declines persist, in spite of these adaptive efforts. We show this by adapting simple
machine learning techniques to a causal inference context, enabling us to for the first time
systematically assess a rich set of channels through which temperature and precipitation
shocks might causally affect yields in each of our crops, while also systematically assessing
the extent to which farmers might use income growth, irrigation, or expectations of long-run
temperature and precipitation to mitigate the extent of these yield losses.

Projecting our empirical estimates into the future, we find that even after accounting for
costly adaptation, RCP 8.5 end-of-century yield losses are projected to be severe in the key
cropped areas of the U.S. grain belt and Eastern China (40% or greater losses), important in
the major cropped areas of South America and Australia (10% losses), and mixed in Europe,
Sub-Saharan Africa, India, and Southeast Asia.

Overall, while costly adaptation is protective for the major grain producing regions of the
world relative to no adaptation at all, yield impacts in spite of adaptation are still generally
negative and for many regions of the world they are substantially so.

1This material first appeared as a working paper of the same title, with authors Andrew Hultgren, Tamma Carleton, Michael
Delgado, Michael Greenstone, Trevor Houser, Solomon Hsiang, Amir Jina, Robert Kopp, Kelly McClusker, Ishan Nath, James
Rising, Ashwin Rode, and Jiacan Yuan. This project is an output of the Climate Impact Lab consortium that gratefully
acknowledges funding from the Carnegie Corporation, Energy Policy Institute of Chicago (EPIC), International Growth Centre,
National Science Foundation (#SES1463644), Sloan Foundation, and Tata Center for Development. We thank Laura Alcocer,
Thomas Bearpark, Trinetta Chong, Greg Dobbels, Radhika Goyal, Simon Greenhill, Dylan Hogan, Azhar Hussain, Theodor
Kulczycki, Maya Norman, Sebastien Phan, Yuqi Song, Jingyuan Wang, and Jong-kai Yang for invaluable research assistance
during all stages of this project, and we thank Jack Chang, Megan Land́ın, and Terin Mayer for excellent project management.
We acknowledge the World Climate Research Programme’s Working Group on Coupled Modeling, which is responsible for
CMIP, and we thank the climate modeling groups for producing and making available their model output. For CMIP, the
U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and
led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.
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2.1 Introduction

One of the most threatening impacts of climate change centers on human food systems
(Lobell et al., 2008; Lobell, Schlenker, and Costa-Roberts, 2011). Absent any adaptation,
global grain production is anticipated to decline sharply under climate change (Deschênes
and Greenstone, 2007; Schlenker and Roberts, 2009; Schlenker and Lobell, 2010; Welch et al.,
2010; Lobell, Schlenker, and Costa-Roberts, 2011; Auffhammer, Ramanathan, and Vincent,
2012; Burke and Emerick, 2016; Gammans, Mérel, and Ortiz-Bobea, 2016; Fishman, 2016;
Burgess et al., 2017; Auffhammer and Schlenker, 2014; Carleton and Hsiang, 2016). However,
it is not known to what extent producers can mitigate against the effects of slow-moving and
foreseeable climatic changes, especially as global incomes grow and adaptive resources in-
crease; indeed the limited empirical evidence (Butler and Huybers, 2013; Burke and Emerick,
2016) on farmer adaptation has shown mixed results (Auffhammer and Schlenker, 2014).

We present the first granular and globally comprehensive analysis of crop yields under
climate change, accounting for farmer adaptation and its costs along the critical dimensions
of slow-moving changes to temperature and precipitation, income growth, and irrigation. To
do this, we assemble once of the largest datasets of subnational crop production available
to researchers, covering over 10,000 administrative units from 55 countries and representing
two thirds of global crop caloric production.

Across crops, we find consistent patterns of adaptation to climatic changes and through
growth in incomes and access to irrigation. However, we also find that globally widespread
yield declines persist, in spite of these adaptive efforts. We show this by adapting simple
machine learning techniques to a causal inference context, enabling us to for the first time
systematically assess a rich set of channels through which temperature and precipitation
shocks might causally affect yields in each of our crops, while also systematically assessing
the extent to which farmers might use income growth, irrigation, or expectations of long-run
climate to mitigate the extent of these yield losses.

Our approach to adaptation and its costs (Carleton et al., 2019) does not require us to
observe which adaptive measures farmers might employ, nor does it require us to observe the
costs of these measures. We employ reduced-form empirical techniques to uncover the mag-
nitude of farmer adaptation without requiring knowledge of the particular measures farmers
might take across the broad span of geographies and socioeconomic contexts represented in
our data.

This analysis overcomes three key hurdles that have faced the literature on climate change
and agriculture. First, rather than focusing on a single country or region, our broad data
represents yield responses to weather across a wide range of climactic and socioeconomic
contexts, and its granularity enables us to match to high-resolution historical temperature
and precipitation data, allowing us to conduct robust causal inference at a global scale. Sec-
ond, this rich data uniquely enables us to systematically distinguish which weather channels
are most impactful on crop yields across a broad set of key global crops – weather chan-
nels that have only been evaluated piecemeal in the existing literature. Finally, we are for
the first time able to recover reduced-form effects of farmer adaptive efforts, as well as the
costs of these efforts, as they have been practiced in the full range of global climactic and
socioeconomic contexts.
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2.2 Data

We assemble one of the largest datasets on subnational agricultural production available to
researchers, acquiring data from the statistical offices of 55 countries and assembling a panel
of observations from over 10,000 administrative units spanning all continents and a wide
range of socioeconomic contexts (Figure 2.1a). Our data covers the four major global grains
(maize, rice, soy, and wheat2) and two regionally important crops (cassava and sorghum),
representing two-thirds of global crop caloric production.

We match this granular crop production data to global, high resolution (0.1 degree)
weather data from the Global Mean Forcing Dataset for Land Surface Modeling version 1
(Sheffield, Goteti, and Wood, 2006) reanalysis product, providing us with measures of daily
maximum and minimum temperatures and daily precipitation at high resolution going back
to the year 1948. Matching these datasets gives a panel of highly resolved yields and weather
with global coverage, enabling the systematic analyses described below.

Additional data is described in the Supplementary Methods and in Appendix Table 2.A.1.

2.3 Summary of Our Approach

Beyond the coarse measures of growing season temperature and precipitation, a range of
finely resolved weather measures have been examined in various studies for their potential
effect on grain yields, including measures such as extreme heat degree days, vapor pressure
deficit, drought extremes, or the count of rainy days (Schlenker and Roberts, 2009; Auffham-
mer, Ramanathan, and Vincent, 2012; Roberts, Schlenker, and Eyer, 2013; Fishman, 2016).
However, because these weather measures are all correlated with one another and have not
been systematically evaluated, it is unclear which are most determinative of crop yields.
Further, we seek to allow for a rich set of interaction terms with our weather measures, to
capture the various dimensions (long run temperature, long run precipitation, income, and
irrigation) over which farmers might make adaptive decisions that modulate the effects of
weather on yields. To resolve these issues while also reducing the combinatorial space of the
problem, we break our analysis up into two cross validation steps.

Selection of weather measures
In the first cross validation step, we use k-fold cross validation to systematically evaluate a
broad range of weather measures. We select those weather measures that: 1) are important
determinants of yields, and 2) are able to be reliably projected into the future by climate
models. In this step, weather terms are each interacted with a fixed set of covariates:
growing season average daily maximum temperature (“long-run temperature”), log(GDPpc)
(“income”), and the share of cropped area equipped for irrigation (“irrigation”). This fixed
set of covariate interactions allows us to capture some of the flexibility that will be required
of the model in the second cross validation step, without having to simultaneously explore
the full set of potential combinations of weather measures and covariate interactions.

2The wheat analysis is not included at present.
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Selection of adaptation dimensions
In our second cross validation step, select a set of covariate interactions to model farmer
adaptation, where covariates reflect the information set over which farmers make their adap-
tive decisions. For example, if a given location is on average quite hot, farmers are likely
to chose to plant crop varietals that are more resilient to heat stress, anticipating that the
coming growing season will be similar to past growing seasons. In this cross validation step,
we take as given the set of weather parameters carried forward from the first step. We allow
for the previously described interactions with income, irrigation, and long-run temperature,
as well as growing season average monthly precipitation (“long-run precipitation”) and an
interaction between long-run temperature and long-run precipitation. Further, we allow for
the nonlinear precipitation response to vary over the growing season (under month-grouping
determined through a sequential set of F-tests) or to be constant; and we allow for interaction
terms between degree-day responses and precipitation. In this step, we use a country-fold
cross validation procedure, in which each fold of the data reflects all data from a single coun-
try. Here, the test of model performance is the ability to model yields for a country which is
held out of the data. This matches one of the intended uses of our interaction surface, which
is to model the response of yields to weather for locations with no yield data available.

Cross validation in a causal inference context
Cross validation is most typically applied in prediction problems where causal inference is
not the primary interest. We adapt the cross validation procedure in the following manner
in order to apply it to our causal inference problem. We first select our controls for unob-
servables (fixed effects and time trends) so as to isolate plausibly random variation in our
set of weather measures. We do not select these controls in our cross validation procedure,
as the objective in this step is to isolate random variation in weather shocks for the purpose
of causal inference; the objective is not to best predict yields through our controls. Next,
relying on the Frisch-Waugh (1933) and Lovell (1963) result for partitioned regression, we
partial out the variation in our outcomes yit and our vector of regressors Xit that is associated
with our controls for unobservables Φit.

yit = Φit + ỹit (2.1)

Xit = Φit + X̃it (2.2)

We then use the residual variation ỹit and X̃it in our cross validation procedures, re-
gressing ỹit on elements of X̃it. In our specification, yit is log yields in administrative unit i
and year t, and Xit is the vector of weather measures shown in Figure 2.1b, with potential
interactions as described above. Φit is a vector of controls composed of administrative unit
i (typically county) fixed effects, absorbing time-invariant confounds such as soil quality;
country-year fixed effects, absorbing price and trade policy confounds; and state/province
quadratic time trends, absorbing slow-moving, local confounds such as the diffusion of new
technologies.
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2.4 Results

Selection of weather measures
Figure 2.1b presents the results of our cross validation procedure for the selection of weather
measures, which searched over more than 2,800 models across all five crops. Of all the
weather measures examined, degree days (top row, constructed following Schlenker and
Roberts 2009) most strongly improve model out-of-sample fit across all crops except rice,
where fit improvements are present but more modest. Inclusion of linear (third row) and
quadratic (fourth row) precipitation also substantially improve out-of-sample fit across all
crops, with more modest gains from higher order polynomial terms. (Note: inclusion of a
higher order polynomial term implies inclusion of the lower order terms.) For all crops, we
carry the degree day terms and quadratic precipitation polynomials forward to the selection
of adaptation dimensions.

Daily minimum temperatures and vapor-pressure deficit contribute quite modest gains
in fit, and we generally do not carry them forward in the analysis. The exception is rice;
some improvement in fit is observed with tmin (see Figure 2.2c), and given the balance of
the literature on minimum temperature effects on rice yields (Peng et al., 2004; Welch et al.,
2010; Auffhammer, Ramanathan, and Vincent, 2012; Dong et al., 2014) we do carry this
term forward to our second step cross-validation selection of adaptation dimensions.

We include results for terms that are not well-projected by existing climate models as well,
in part to point out where advances in climate modeling might yield large information gains
for society. Of particular note is the importance of the growing season drought measure
for cassava (bottom row, far right). Cassava yields are not very responsive to weather
overall, but drought appears to be a relatively important determining factor in yields for
this regionally important crop. Drought is also of some importance in understanding rice
yields, as is the number of rainy days during the growing season. Finally, the number of
growing season rainy days appears to be a moderately import determinant of maize yields,
with lesser contributions from the number of extreme rain days and the amount of extreme
rain the crop is exposed to.

Overall, Figure 2.1b is a surprisingly strong affirmation of the seminal Schlenker and
Roberts 2009 model. The inclusion of additional weather terms for different crops does
further improve model fit, but the strongest gains clearly result from the degree day terms
and precipitation quadratics. And, even more surprisingly, this generally holds across the
more broad set of crops examined in this study.

The general importance of the degree day and quadratic precipitation measures can also
be seen in Figure 2.2, which displays the rank-ordering of model out-of-sample fits for all
models examined in the cross validation procedure for each crop. In each plot, the model
that we carry forward is vertically offset only slightly below the best-fit “projectable” model
(the highest red dot). Because we will take the weather measures selected here and carry
them forward into a rich interaction surface, parsimony at this stage is important. Figure
2.2 reinforces our finding that the degree day and quadratic precipitation measures are the
weather measures that are most determinative of yields for the crops in our study, and so
will be those measures over which adaptation will be most important to model.
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(a)

(b)

Figure 2.1: Panel (a) Coverage of our subnational yield data. Most country data is reported at the equivalent county level for
that country. Many administrative units are too small to be clearly visible. Panel (b) The results of our first cross validation
procedure for selecting weather variables. Pink represents the kernal density of out-of-sample R2 for all model permutations
including a given weather term; grey represents the analogous density for all model permutation exluding a given term. Columns
are crops, rows are weather terms. Starred terms were carried forward to the next cross validation procedure. The bottom four
rows represent weather terms that cannot be reliably projected by existing climate models.
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Dimensions of adaptation
Figure 2.3 displays the temperature and precipitation response surfaces that are selected by
our second step cross validation procedure. The top panel displays the temperature response
surfaces estimated for each of our crops. The first row shows how the temperature response is
modulated across the terciles of long-run temperature in our data (blue, lower tercile; yellow,
mean; red, upper tercile). Likewise, the second row shows the the temperature response is
modulated across the terciles of long-run precipitation in our data. Across crops, we see that
the temperature response function flattens for locations that are hotter on average (first
row, blue to red). For maize, soy, rice, and cassava the temperature response also flattens
for places that are drier on average (second row, red to blue).

The third and fourth rows shows how the temperature response is modulated across the
terciles of average income and access to irrigation. Income can have competing effects on a
crop’s temperature response function: on the one hand, it is possible that income captures
average borrowing and liquidity constraints, and technology availability, to farmers in our
sample. In this case, temperature response functions might become steeper as incomes rise,
as wealthier farmers are able to access higher yielding (but more temperature sensitive) seed
varietals of a given crop. We see this behavior in maize and sorghum. On the other hand,
income may allow farmers to better access protective technologies, such as better tilling
and irrigation technologies, or increased ability to pay for additional labor, which could
flatten the temperature response function. This appears to be the case for rice and cassava.
Regarding irrigation, gains from access to irrigation almost always manifest as increased
gains from moderate temperatures, which is consistent with the enhanced ability of a crop
to keep stomata open and transpire CO2 for photosynthetic activity when it is not water
stressed (see Osakabe et al 2014 for an overview).

The bottom panel of Figure 2.3 show how the precipitation response function is modu-
lated by long-run average temperature (top row) and long-run average precipitation (second
row). For maize, soy, and rice, precipitation responses differ by growing season phases; pre-
cipitation in the middle of the growing season is particularly important for these three grains
and is shown here. For these middle portions of the growing season, the yield losses from a
dry month are larger for places that are on average hotter (top row, blue to red) and drier
(second row, red to blue). Cassava and sorghum are less responsive to precipitation overall,
though the pattern of increased losses from a dry month in places that are on average drier
does appear to hold for these crops as well. For all crops, greater access to income (third row)
and irrigation (fourth row) flatten the precipitation response, indicating that both income
and irrigation are protective against yield losses during a particularly dry month.

Projected climate impacts
Figure 2.4 displays the results of projected log yields at the year 2090 under RCP 8.5 using
the CCSM4 climate model (a “middle of the road” warming model, Gent et al. 2011), for
each of the crops we study. The first column displays yield impacts if adaptation does not
occur; that is, if the temperature and precipitation response functions are fixed at their
present day (2010) values. In this scenario, we find widespread and substantial yield losses
for all crops in nearly all major growing regions of the world, with losses in major growing
regions ranging from 25 log points (22% losses) to upwards of 150 log points (78% losses).

7



gdd/kdd

gdd/kdd tmin

tmin

vpd

poly5 extremerain countextremerain countraindays drought_p14 vpd

extremerain

gdd/kdd
gdd/kdd tmin

tmin

poly2

poly5 vpd

vpd

.0
1

.0
2

.0
3

.0
4

.0
5

R_
sq

ua
re

d

0 50 100 150 200 250 300 350 400 450 500 550
Rank Order

Unprojectable Projectable

Corn Cross-Validation R_squared  (K-Fold)

(a)

gdd/kdd

gdd/kdd tmin

tmin

extremerain

poly5 extremerain countextremerain countraindays drought_p18 vpd

countraindays

gdd/kdd
gdd/kdd tmin

tmin

poly2

poly5 vpd

poly1

0
.0

5
.1

.1
5

R_
sq

ua
re

d

0 50 100 150 200 250 300 350 400 450 500 550
Rank Order

Unprojectable Projectable

Soy Cross-Validation R_squared  (K-Fold)

(b)

gdd/kdd

gdd/kdd tmin

vpd

poly4 extremerain countextremerain countraindays drought_p24 vpd

gdd/kdd
gdd/kdd tmin

gdd/kdd tmin

tmin

poly2
poly2

poly5 vpd

vpd

.0
2

.0
3

.0
4

.0
5

.0
6

R_
sq

ua
re

d

0 50 100 150 200 250 300 350 400 450 500 550
Rank Order

Unprojectable Projectable

Rice Cross-Validation R_squared  (K-Fold)

(c)

gdd/kdd

gdd/kdd tmin

vpd

poly5 extremerain countextremerain countraindays drought_p8

gdd/kdd

gdd/kdd tmin

tmin

poly2

poly5

vpd

.0
05

.0
1

.0
15

.0
2

R_
sq

ua
re

d

0 50 100 150 200 250 300 350 400 450 500 550
Rank Order

Unprojectable Projectable

Cassava Cross-Validation R_squared  (K-Fold)

(d)

gdd/kdd

gdd/kdd tmin

tmin

vpd

poly5 extremerain countextremerain countraindays drought_p12 vpd

extremerain

gdd/kdd

gdd/kdd tmin

tmin

poly2

poly5 vpd

poly1

.0
2

.0
4

.0
6

.0
8

R_
sq

ua
re

d

0 50 100 150 200 250 300 350 400 450 500 550
Rank Order

Unprojectable Projectable

Sorghum Cross-Validation R_squared  (K-Fold)

(e)

Figure 2.2: Rank ordering of out-of-sample R2 performance of different models in the first step cross validation (selection
of weather measures). Models where all weather measures are projectable by climate models are plotted as red dots, those
that contain at least one detailed precipitation measure that is not well-projected by climate models are plotted as grey dots.
Generally, the model carried forward for selection of adaptation dimensions is the model labeled “gdd/kdd, poly2,” with
exception of rice, where we also carry forward tmin. Plots are for: (a) Maize, (b) Soy, (c) Rice, (d) Cassava, (e) Sorghum.
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The one exception is rice in Northern Europe, which may benefit from climate change.
The second column displays yield impacts allowing for adaptation, but assuming it is

costless (Butler and Huybers, 2013; Schlenker, Roberts, and Lobell, 2013). Here we can see
that adaptation in some places fully mitigates the impacts of climate change, even flipping
the impact from negative to positive in parts of South America, Central Africa, Southeast
Asia, and the U.S. Elsewhere, adaptation increases exposure to climate impacts, in places
like Northern Europe, Central Asia, and the Middle East.

The third column of Figure 2.4 displays yield impacts allowing for adaptation and in-
corporating our estimates of the costs of adaptation (in terms of yields). Here we see that
places that gained from adaptation by reducing their exposure to climate change lose from
costs, and those places that increase their climate exposure under adaptation gain from costs.
Intuitively, a “gain” from costs can be thought of as an upward shift in average yields, as
might result from switching to a seed varietal that is more exposed to extreme heat but also
higher yielding on average.

In this third column of Figure 2.4, we see for all grains for which costs have been estimated
(maize, soy, and rice) that most of the major crop growing regions of the world see projected
yield losses under climate change, even after accounting for costly adaptation. Losses in the
grain belt of the U.S. and Eastern China are severe, around 50 log points (40%) for maize
and even higher for soy. Losses in the major cropped regions of South America are more
moderate for maize and soy, around 10%. Soy impacts in Europe are moderate to severe
(10-40%) while for maize they are mixed. Maize in Sub-Saharan Africa, and India are mixed
and near zero; soy may see some yield gains in these regions. Rice, primarily grown in India
and Southeast Asia, sees mixed impacts in these regions. Yields in North American show
moderate declines, while those in Europe show moderate gains.

Relying on the Ricardian approach, the seminal work of Mendelsohn, Nordhaus, and
Shaw (1994) found that climate impacts on U.S. agricultural profits, net of adaptation, would
be modestly negative and possibly beneficial. Using fixed effects estimators more robust to
omitted variables bias (Deschênes and Greenstone, 2007), the subsequent literature has found
negative climate impacts across a range of contexts, though estimates are generally unable
to account for adaptation (Auffhammer and Schlenker, 2014; Carleton and Hsiang, 2016).

Similar to Auffhammer (2018), the study presented here combines elements of both the
Ricardian and within-estimator approaches: we use cross-sectional variation in long-run
climate to uncover heterogeneity in the response to short-run (within-estimator) weather
shocks. In so doing, we find that adaptation does indeed mitigate the effects of weather
relative to the effect of an unanticipated shock.

However, for the first time we also uncover the implied costs of these adaptive actions
in agricultural yields. In contrast to Mendelsohn, Nordhaus, and Shaw 1994, we find that
accounting for both adaptation and its costs, negative effects of climate change persist and
are widespread.
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Figure 2.3: Results from the second cross validation step: empirically estimated temperature and precipitation response surfaces,
by crop and by adaptation parameter. Columns are crops, rows are adaptation parameters (covariates). Yellow: all covariates
evaluated at the sample mean; blue: covariate of interest evaluated at its lower tercile; red: covariate of interest evaluated at its
upper tercile. Note the top panel includes an extra column for rice (tmin). Standard errors robust to correlated shocks within
state and within country-year.
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(a) (b)

Figure 2.4: Projected climate impacts under: (a) No adaptation, (b) Income and climate adaptation, (c) Income and climate
adaptation including adaptation costs. Rows are maize, soy, rice, cassava, and sorghum. Incomes taken from Shared Socioe-
conomic Pathway 3 (SSP3), emissions from the RCP 8.5 warming scenario. Note: costs for sorghum and cassava have not yet
been projected. All projections use the CCSM4 climate model except the rice projections, for which CCSM4 was not available
at the time of writing and CESM1-BGC was used instead.
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2.5 Supplementary Methods

Here we provide additional details for each of the steps in our analysis.

Weather terms
Here we briefly describe the construction of the weather terms that entered our first-stage
cross validation procedure. For all weather terms, weighting and aggregation to administra-
tive units were done as described in Carleton et al. 2019 (but using cropped area weights
from SAGE rather than population weights).

Degree day terms were constructed following Schlenker and Roberts 2009, with kink
points selected for each crop by a 10-fold cross validation search over potential kinks. Con-
struction of vapor pressure deficit followed Roberts, Schlenker, and Eyer 2013. Extreme rain
was identified by constructing the 1980-2010 rainfall distribution for each grid cell in the
GMFD daily precipitation data, and aggregating the amount of rainfall or number of days
of rainfall in excess of the 95th percentile of this distribution. Drought was defined using
a 10-fold cross validation search over percentile cutoffs in the administrative-unit growing
season precipitation distribution.

Cross validation for the selection of weather measures
When using cross validation to select weather measures, each model was required to have
at least one temperature term (degree days and/or tmin) and one “precipitation” term
(precipitation polynomials, amount of extreme rain, count of extreme rain days, count of
rain days, and/or vapor pressure deficit).

Cross validation for the selection of adaptation dimensions
Before the cross validation selection of adaptation dimensions (covariate interactions), po-
tential groupings of months were determined, to allow the effect of precipitation to optionally
differ by phase of the growing season. Month groupings were determined by constructing
the following sequence of F-tests:

1. Test for a differential precipitation response between the first month and all remaining
months of the growing season.

2. If the result from (1) indicates a significant difference, insert a “phase” break in the
growing season and restart this procedure with the remaining months.

3. If not, group this month with any earlier months and restart with the next month in
the season.

Whether to use growing season total precipitation or to allow the precipitation response
to vary by these phases of the growing season was then selected as part of the second cross
validation procedure.

In the cross validation selection of adaptation dimensions (covariate interactions), models
were required to include at least long-run temperature, long-run precipitation, income, and
irrigation interactions. The search was to additionally include long-run temperature x long-
run precipitation interactions, degree day x precipitation terms, and whether these models
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should allow precipitation to enter as a growing season total or differentially by phase of
the growing season. Early work suggested that the main covariate interactions were always
included in the final model selection, so to save computational time they were simply taken
as required. We may in the future relax that requirement to show the full search.

Projections
Projections were conducted as described in Carleton et al. 2019.

Adaptation costs
Our adaptation costs estimation followed Carleton et al. 2019. Because the context differs
(farmer profit maximization versus individuals maximizing lifetime utility), the cost theory
is briefly outlined in the Appendix 2.B.

Chapter Review and Looking Ahead

In this first chapter, we presented the first granular and globally comprehensive analysis of
crop yields under climate change, accounting for farmer adaptation and its costs. Overall,
while costly adaptation is protective for the major grain producing regions of the world
relative to no adaptation at all, yield impacts in spite of adaptation are still generally negative
under the RCP 8.5 high emissions scenario. Further, for many important grain-producing
regions of the world, yield impacts from climate change are projected to be severe.

In the next chapter, we will examine a particular channel of climate adaptation in agricul-
tural production; a channel which is widely discussed but for which there is little empirical
evidence: the migration of cropped areas as climatic suitability shifts.
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Appendix

2.A Data

The table below describes the various datasets used in this analysis. For further details, see
Carleton et al. 2019.

Dataset Variables Resolution

Historical
GMFD v1 Temp, precip 0.25◦×0.25◦
National Stat. Agencies Crop production ADM2, ADM1
Gennaioli et al. (2014) GDP ADM1
NASA DMSP-OLS Nighttime lights 30 arcsecond
SAGE Cropped area & growing seasons 0.1◦×0.1◦
FAO Aquastat Irrigation (area equipped) 0.1◦×0.1◦

Future
NASA NEX-GDDP Temp, precip 0.25◦×0.25◦
OECD Env-Growth GDP National

Table 2.A.1: Sources of data used in this analysis.
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2.B Adaptation costs

Profit maximization

The following assumes adaptation actions b are continuous, do not have fixed costs, and are
not durable (do not persist over time). Area planted and prices are held fixed, for simplicity.

Let profits π be determined by area planted A, yield per acre y, prices p, and costs per
acre c. Denote climate C as the vector (T̄ , P̄ ). Then in each period, profit is given by

π = Ay(T, P,b, α)p− Ac(b, α)

Where α represents a vector of weather-invariant cost and/or yield shifters (such as soil
type). Profit maximizing farmers choose b at the start of the growing season, giving the
following equalization of marginal benefits and marginal costs of adaptation:

∂π

∂b
= A

[
∂E[y]

∂b
p− ∂c

∂b

]
= 0

∂E[y]

∂b
p =

∂c

∂b
(2.B.1)

=⇒ b∗ = b∗(C, E[T ], E[P ])

Climate Change

To think about damages from climate change, we will need an expression for
dπ

dT̄
.

dπ

dT̄
= A

[(
∂y

∂T

∂T

∂T̄
+
∂y

∂b

∂b∗

∂T̄

)
p− ∂c

∂b

∂b∗

∂T̄

]
Plugging in3 for

∂c

∂b
from Eq. 2.B.1:

3Taking the familiar total derivative:

dy

dT̄
=

∂y

∂b

∂b∗

∂T̄︸ ︷︷ ︸
Indirect effect

+
∂y

∂T

∂T

∂T̄︸ ︷︷ ︸
Direct effect

So,

∂y

∂b

∂b∗

∂T̄
=

dy

dT̄
−

∂y

∂T

∂T

∂T̄

That is, the marginal gains from adaptation to T̄ are equal to the observable fully adapted effects of climate change minus
the losses when the long run adaptation channel is shut down. This, of course, equals the marginal cost of adaptation under the
Eq. 2.B.1. Note that empirically we cannot disentangle the direct effects of temperature changes from short-run adjustments,
because we only observe end-of-season yields. This means our adaptation costs are estimated net of any short-run adjustments
farmers might make.
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dπ

dT̄
= A

[
dy

dT̄
p︸︷︷︸

Fully adapted effects
of climate change

−
(
dy

dT̄
− ∂y

∂T

∂T

∂T̄

)
p︸ ︷︷ ︸

Estimated adaptation costs

]
(2.B.2)

Note that this equation embeds the estimated adaptation costs for a marginal change in
T̄ . A similar expression exists for P̄ .

We now turn to damages from climate change. Damages from climate change over the
period from time 1 to time 2 are given by:

π(T (C2), b(C2, I2))− π(T (C1), b(C1, I2))

=

∫ C2
C1

dπ

dC
dC

=

∫ T̄2

T̄1

∫ P̄2

P̄1

dπ

dT̄
+
dπ

dP̄
dP̄ dT̄

Plugging in from Eq. 2.B.2 gives the final form of climate damages.
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Chapter 3:
Climate Change and Crop Choice:
Evidence from the United States

Chapter Summary

In this chapter, we examine how farmers adjust the land they allocate to crops when climatic
conditions change.1 We analyze subnational longitudinal data for two globally important
cereals from one of the world’s major agricultural regions, the United States. Consistent
with theory, we find that more land is allocated to producing a specific crop when the
climatological conditions for growing that crop improve, although the timescales for these
adjustments are long, on the order of 20 or more years. When we estimate the effectiveness
of land use change as an adaptive strategy, we find that these adjustments reclaim 5-10%
of climate-induced losses to producer surplus. The availability of adaptation via land use
fails to generate more value because enduring climate-induced yield losses is less costly than
altering land use practices for most farmers, indicating that land use adjustment costs may
be high.

3.1 Introduction

Understanding how the global food supply responds to climatic changes has important impli-
cations for all societies. An extensive literature has examined how weather fluctuations affect
agricultural production in the short-run (Deschênes and Greenstone, 2007; Schlenker and
Roberts, 2009; Schlenker and Lobell, 2010; Welch et al., 2010; Lobell, Schlenker, and Costa-
Roberts, 2011; Auffhammer, Ramanathan, and Vincent, 2012; Burke and Emerick, 2016;
Gammans, Mérel, and Ortiz-Bobea, 2016; Fishman, 2016; Burgess et al., 2017; Auffhammer
and Schlenker, 2014; Carleton and Hsiang, 2016) and has widely found substantial losses
under future warming. However, these estimates hold farmer adaptive decisions fixed: un-
derstanding the full impact of a persistent change in the climate requires that we understand
farmers’ adjustments in the long-run (Mendelsohn, Nordhaus, and Shaw, 1994). Estimat-
ing the scope for farmer adaptation to slow-moving climatic changes has proven difficult
(Auffhammer and Schlenker, 2014). Some evidence suggests that cost-effective adjustments
are available in the long run (Mendelsohn, Nordhaus, and Shaw, 1994; Olmstead and Rhode,
2011); other evidence suggests that adaptive adjustments are too costly to employ (Schlenker
and Roberts, 2009; Burke and Emerick, 2016), suggesting that short-run effects may be a
good approximation for long-run effects. In this paper, we examine the historical scale
and scope of a specific type of adaptation that is frequently raised by both academics and
policy-makers: land-use changes that lead to the migration of crops.

1This material first appeared as a working paper of the same title, with authors Andrew Hultgren, Solomon Hsiang, David
Lobell, Michael Roberts, and Wolfram Schlenker. We are grateful to Maximillian Auffhammer, Larry Karp, Jon Proctor, and
Jerrod Welch for helpful comments.
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It is often suggested that if climatic zones shift in space, the crops that perform well in
those climatic zones will follow (Patt et al., 2010), yet this intuition has not been widely
tested (Olmstead and Rhode, 2011). We wish to empirically test the extent to which this
intuition holds in data; and if it does hold, to characterize the speed and effectiveness of
this response. Specifically, we examine two major cereal crops at subnational scales in on
of the world’s major agricultural regions: the United States. We begin by estimating crop
yield response functions for two key global grains, maize and soy, so that we can summarize
historical climate changes in terms of their effects on yields. We then model changes in the
area planted with each crop as a function of yield changes induced by climate. We implement
this second step using two different approaches. First, we use the cross-section to examine
whether trends in area planted reflect trends in climate-induced yield anomalies. Second,
we use panel models to estimate the area planted response to an abrupt and permanent
change in a climate-induced yield anomaly. Both of our approaches lead to the conclusion
that farmers adjust their land use practices in response to climatic changes: if climate
changes cause yields in a specific crop to decrease, then farmers will plant less of that crop.
Further, these adjustments may large in the long run, with crop areas changing by as much
as ∼20% in response to a 1% change in predicted yields. However, they tend to be slow, with
adjustment periods ranging from 10 years to more than 25 years. This suggests that farmers
face substantial frictions to land use adjustments, that suboptimal land use allocations may
persist for decades, and that when adjustments do occur farmers may still face a substantial
loss in surplus.

Our findings provide support for the notion that crop land distributions will shift in
response to climate changes, and may shift at socially substantial scales. However our
analysis points to a second important conclusion: on its own, the movement of crop lands
does little to mitigate the welfare losses from climatic changes. Because the pecuniary and
opportunity costs of agricultural production are variable across space, the first farmers to
reduce their cultivated area in response to falling yields are marginal producers who have
little to lose (or gain) by changing their land use practice. In contrast, inframarginal farmers
facing adjustment costs may not find it optimal to change their land use practices, and may
instead lose a portion of their surplus. Building on this insight, we apply our empirical
estimates to calculate the welfare value of crop movements, and we find that long run land
use changes only eliminate 5-10% of the losses from marginal climatic changes; the remaining
90-95% of losses persist unmitigated.

We begin by presenting prima facie evidence that farmers face adjustment costs that af-
fect their land use decisions, preventing the distribution of crops from instantly and perfectly
adjusting to every climatic shift.

3.1.1 Prima facie evidence from the global cross-section

Exogenous environmental factors, such as local climate, play an important role in the alloca-
tion of land to agricultural production. However, there are other constraints on agricultural
land use, such as access to transportation or irrigation infrastructure, land protections based
on cultural or biodiversity value, or geopolitical boundaries embedding competing policy-
maker priorities. Furthermore, high opportunity costs of using land for agriculture may
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prevent agricultural production on land that has good environmental properties. Because
these costs and constraints may or may not be strongly linked to climate or other environ-
mental factors, it is unclear whether land will be reallocated with respect to agriculture if
climatological conditions change. In a frictionless world with no costs to land reallocation,
we would expect every change in climate to be reflected in changes to agricultural land use,
since farmers would quickly re-optimize their planting practices to maximize profits given a
slightly adjusted climate. But if the costs and constraints to land use change are substantial,
we expect to observe imperfect correlations between climatological suitability and agricul-
tural land use, since incremental changes in climate will not always alter the optimality of a
given planting practice.

The importance of non-climatological factors in determining land is easily observed in
the global cross-section. Using high-resolution global data (Figure 3.A.1) on the suitability
of land for agriculture (Ramankutty et al., 2008), and the fraction of land allocated to
agriculture (Ramankutty and Foley, 1998), we treat every pixel as a separate observation
and estimate a nonlinear regression of land fraction planted on crop suitability (Figure 3.1,
top panel). We observe a highly statistically significant linear correlation, indicating that
the influence of environmental factors on land use is clearly detectable. However, this high
statistical significance does not imply that environmental factors explain all of the variation
in land use. In the lower panel of Figure 3.1, we plot the raw data used to estimate this
regression and it is immediately obvious that residual variations around the central tendency
are large. It seems implausible that all of the residual variance is due to measurement error,
suggesting that this unexplained variance in land use must be driven by factors other than
climate and soil. This residual variance reflects the costs and constraints of agricultural land
use.

3.2 Data

3.2.1 Climate data

We obtain temperature and precipitation data from the National Center for Atmospheric
Research reconstruction (GFMD) which contains daily temperatures and precipitation for
every 0.1◦ × 0.1◦ pixel during 1950-2012 (Sheffield, Goteti, and Wood, 2006). For each
pixel-crop pair, we compute the average temperature and precipitation rate during each
month of the growing season2 of each crop. We obtain pixel-specific growing season dates
from the University of Wisconsin Center for Sustainability and the Global Environment
(SAGE) (Sacks et al., 2010). Within each subnational unit, we then average growing season
temperature and precipitation across pixels using as weights the distribution of croplands in
2000, also obtained from SAGE (Ramankutty et al., 2008). For small administrative units,
this crop-weighting is relatively unimportant since these units are similar in scale to the
size of GMFD pixels. However, for large administrative units, this weighting is important
because crops may be present in only a small fraction of a large administrative unit.

2We define growing season to be from the first day of planting to the last day of the harvest.
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Figure 3.1: Prima facie evidence of frictions to land use changes: the strong but imperfect correlation between area
planted and cropland suitability. Top: Non-linear cross-sectional regression (Nadaraya, 1964; Watson, 1964) of area cropped
on a crop suitability index based on climate and soil (1 is best). Data same as in Figure 1. Standard errors are bootstrapped.
Bottom: Despite the strong correlation between cropped area and cropland suitability, a large amount of residual variance in
cropped area is unexplained by cropland suitability.
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3.2.2 Agricultural data

We assemble subnational data files for U.S. counties from the USDA National Agricultural
Statistics Service, and restrict our attention to the major crops maize and soy. We plot
maps of cropped area fraction in Figure 3.2, where the coloring denotes the fraction of area
cropped in 2000.

 

 

Figure 3.2: Cropped area fraction. Colors represent the fraction of area planted with any crop (Ramankutty et al., 2008).

3.3 First stage: Summarizing climate with yields

We begin our analysis by collapsing growing season climate variables, temperature and pre-
cipitation, into predicted crop yield estimates Ŷ . We do this for three reasons. First, tem-
perature and precipitation both influence crop yields but may vary independently. However,
because we are primarily interested in the land-use response to yields, it is unnecessarily
difficult to keep track of both parameters independently when Ŷ can be used to summarize
their joint effects. Second, both temperature and precipitation influence yields in non-linear
ways, making it difficult to compare the marginal effects of a 1C change in temperature or a
1 mm/month change in rainfall when different locations have different initial climates. It is
more natural to compute the marginal effect of a 1% change in yields. Finally, different crops
respond differently to temperature and precipitation changes, making across-crop compar-
isons of effect-sizes difficult if temperature and precipitation are retained as the independent
variables. In contrast, it is intuitive to compare the effects of a 1% change in soy yields and
a 1% change in maize yields.

We compute yield perturbations due to climatic fluctuations Ŷ ′C with a flexible statistical
model that we estimate from the data. We estimate percentage changes in yields around
a location-specific baseline by using a model that contains administrative unit fixed effects
(Deschênes and Greenstone, 2007; Schlenker and Roberts, 2009; Schlenker and Lobell, 2010).
We also flexibly account for common trends, such as technological changes, and common
shocks, such as the El Niño-Southern Oscillation, by including year fixed effects. For crop k
and sample s, we estimate the model

Y ks
it = fks(T kit) + gks(P k

it) + µksi + γkst + εksit (3.1)

where observations are indexed by their administrative unit i and year t. Temperature T k

and precipitation P k are specific to the growing season of crop k. The effect of temperature
and precipitation are unique to each crop and are described by fks(.) and gks(.), respectively.
We model the effects of temperature and precipitation as additively separable for parsimony,
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however we model both response functions flexibly using restricted cubic splines with six
knots placed over the support of the data. Administrative unit fixed effects are µ and year
fixed effects are γ. ε is a disturbance.

Because we describe Y using the natural logarithm of yields, our estimates f̂ and ĝ rep-
resent location-specific fractional deviations in yields due to temperature and precipitation.
Figures 3.3 and 3.4 plot these estimated response functions for each crop. Consistent with
earlier findings, yields tend to exhibit an optimum at moderate temperatures and moderate
precipitation, with sharp declines occurring at high temperatures (Schlenker and Roberts,
2009; Schlenker and Lobell, 2010). More moderate declines tend to occur at low temperatures
and very low or very high levels of precipitation.
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Figure 3.3: Crop yield responses to temperature. Horizontal axis is average monthly temperature over the growing season
of each crop in degrees Celsius. Vertical axis is log yields. Estimates are restricted cubic splines with a common set of six knots
per weather variable. Grey region is ±2σ, standard errors robust to state-year correlated shocks.
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Figure 3.4: Crop yield responses to precipitation. Horizontal axis is average monthly precipitation over the growing
season of each crop in mm. Vertical axis is log yields. Estimates are restricted cubic splines with a common set of six knots per
weather variable. Grey region is ±2σ, standard errors robust to state-year correlated shocks.

Because we would like to isolate the percentage yield deviations due only to climatological
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fluctuations (Y ′C in Equation 3.B.2), we use only f̂ and ĝ to predict historical climate-driven
deviations in yields by constructing

Ŷ ′∗Cit = f̂ks(T kit) + ĝks(P k
it). (3.2)

We then use these estimates for Ŷ ′∗Cit to identify R−1 in Equation 3.B.3.
We estimate climate-driven changes in the land allocated to farming crop using two

approaches. First, we correlate climate driven trends in yields with trends in area planted.
In this cross-sectional approach, we examine whether gradual changes in average yields
are associated with gradual changes in area planted. In a second approach, we use the
within administrative unit variation in yields to estimate a distributed lag model. Using this
longitudinal approach, we explicitly estimate the transitional dynamics of land use under an
abrupt and permanent change in climate.

3.4 Cross-sectional results: Land use trends vs. cli-

mate trends

In recent decades, many locations have exhibited substantial trends in yields that can be at-
tributed to gradual changes in local climatological conditions (Lobell, Schlenker, and Costa-
Roberts, 2011). We examine whether these gradual changes in yields are reflected in the
gradual growth or contraction of cropped area. To do this, we first must estimate a location-
specific trend in predicted yield perturbations Ŷ ′kCit, which we take to be exogenous. For each

administrative unit and each crop, we estimate a linear yield trend ˆY T
k

i

Ŷ ′kCit = Y k
0i + Y T ki + εkit. (3.3)

Because ˆY T
k

i is in log points relative to the administrative unit fixed effect in Equation
3.1, Y T is in units of “log points per year.”

Next, we estimate the trend in area planted ÂT
k

i for the same administrative unit and
crop

Âkit = Ak0i + AT ki + εkit. (3.4)

where Ak is the log of area planted with crop k. Similar to Y T , the units of AT are “log
points per year.”

After estimating Equations 3.3 and 3.4, we have a single observation for the pair of
trends for each location-crop pair (i, k). This new dataset is a cross-sectional sample of trend

estimates ( ˆY T
k

i , ÂT
k

i ). Here it is important to note that for each sample s, we estimate the
trend in predicted yields for the entire sample of years for which we have area planted data,
but we also include the ten years preceding the agricultural sample. We do this because
trends in climate will be difficult for farmers to detect above sampling noise, so if farmers
are responding trends in their climate, they will likely base their cropping choices on trends
over several preceding years. Thus each observation contains two trends, however ˆY T is
estimated for a window of time ten years longer than ÂT .
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Using the cross section of ( ˆY T
k

i , ÂT
k

i )
s for crop k in sample s, we regress the trend in

area planted on the trend in predicted yields:

AT ki = AT sk0 + βsk × Y T ki + εki , (3.5)

where ÂT
sk

0 is the average trend in area planted for reasons unrelated to climate and
βsk is the marginal effect of a trending climate on trends in area planted, our parameter of
interest.

If farmers decrease their area planted in response to a falling trend in their yields (Equa-
tion 3.B.1), we would expect βsk to be positive. We acknowledge that Equation 3.5 describes
a cross-sectional estimate, so it is possible that some unobserved omitted variable will be
correlated with both trends in predicted yields and trends in area planted. However, we ar-
gue that systematic biases will be unlikely to persist across crops since the response function
for each crop is a unique nonlinear function of both temperature and precipitation (Figures
3.3 and 3.4). Furthermore, secular trends in area planted, which might be driven by devel-

opment or population growth, will be described by the constant term ÂT
sk

0 and should not
influence our estimate of βsk.

We present ordinary least-squares (OLS) estimates of Equation 3.5 for both crops in
Figure 3.5. We also present nonlinear estimates of both the mean and median tendencies.
Both cross-sectional estimates exhibit a positive correlation as predicted by Equation 3.B.1.
The estimated elasticity for soy (19.7, heteroskedasticity-robust s.e. 3.77) suggests a large
response of area planted to trends in climate: if predicted yields rise by 1% per year then area
planted is predicted to rise by 20% per year. The estimate for maize (6.2, heteroskedasticity-
robust s.e. 2.27) suggests a still substantial, but more moderated, area response.

To put the magnitude of this response in perspective, we note that our estimated trends
in predicted yields are on the order of ±0.1% per year (see histograms in Figure 3.5). Taking
0.1% per year as a representative trend in predicted yields, these estimates suggest that a
representative administrative unit (with β = 13) would experience changes in area planted
on the scale of ±1.3% per year due to climate changes.

Broadly speaking, while we acknowledge that these cross-sectional estimate are imper-
fectly identified, we find the consistency of positive correlations across crops as suggestive
evidence that farmers respond to climate changes by adjusting their use of land (Equation
3.B.1). We now turn to a longitudinal approach that is better identified because it utilizes
within-location variation in weather and area planted (Deschênes and Greenstone, 2007).
It is less clear whether or not farmers respond to high-frequency variations in weather the
same way that they respond to low-frequency trends in climate; however, if the responses
are similar, the longitudinal approach has the added benefit that it allows us to explicitly
estimate the rate at which farmers adjust their land use choices.

3.5 Longitudinal results: Land use vs. weather

We estimate the land use response to exogenous and idiosyncratic variations in weather by
using a within-estimator similar to the approach used in Equation 3.1, but capturing the
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Figure 3.5: Trends in area planted vs. trends in yields. Horizontal axis is the trend in log predicted yields due to climate
(trend in Ŷ ′C), units are in log-points per year. Vertical axis is the trend in log area planted, units are log-points per year. All
plots are cross-sectional, with each subnational unit represented only once. Samples are restricted to ±1.5 standard deviations
in the independant variable (grey histograms show distribution of estimates). Solid lines are mean regressions: OLS and local
linear regressions (lowess). Dashed line is a median band plot.

dynamic response of farmers to a permanent shift in weather. We implement this approach
by estimating the distributed lag model

Akit =
20∑

L=−3

[
ψskt−L × Ŷ ′kCi,t−L

]
µksi + ρkspt + εksit ,

where A is again log of area planted and Ŷ ′kCi,t−L is the predicted perturbation in log
yields (Equation 3.2) at a lag L relative to the current observation. µ is an administrative
unit fixed effect that absorbs unobserved differences between locations and ρ is a state-
year fixed effect that flexibly accounts for local secular trends, such as differential rates of
technological diffusion, and common shocks, such as changes in agricultural trade policy. ε
is a disturbance, which we allow to have an arbitrary correlation structure within a given
state-year. We estimate Equation 3.5 separately for each crop and compute the sum of
coefficients

Ω̂sk(x) =
x∑

L=0

ψ̂skt−L (3.6)

because we are interested in the effect of permanent climate changes. Ω̂(x) represents the
cumulative effect on area planted x years after an abrupt and permanent change in yields
caused by an abrupt and permanent change in weather (that is, climate).

In a world with no frictions, we would expect that farmers instantly adjust to a permanent
change in climate. This would imply that Ω(x) is discontinuous at zero and flat thereafter.
However, if there are frictions that prevent farmers from instantly adjusting the area of land
they farm, for example they may be uncertain whether an abrupt change in climate will
persist, or there may be costly search and contracting requirements to adjust land use, then
Ω(x) will be a more gradual function. If our estimates in the previous section were accurate
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estimates of long-run adjustments, we would expect that β̂sk = Ω̂sk(∞).
In Figure 3.6 we plot Ω̂(x), the cumulative effect on area planted of an abrupt and

permanent 1% yield increase, as estimated by applying an instrumental variables estimator
of Equation 3.5, in which the lagged temperature and precipitation splines of Equation 3.1
are used as instruments for the lagged values of yields Ŷ ′kCi,t−L. Results for maize and soy both
suggest that area planted exhibits a persistent increase in response to a permanent change
in weather-induced yields. Responses, however, are more muted than the cross sectional
estimates, with elasticities of 1-3% rather than 6-20%. This could be due to omitted variables
in the cross-sectional estimates, or it could be that farmers receive a noisier signal from the
variation used in the distributed lag estimator (a single year deviation in weather) versus that
used in the cross-sectional estimator (a long run trend in climate). In addition, it should be
noted that pre-trends present in the maize estimate suggest that temporally trending effects
have not yet been fully controlled for.
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Figure 3.6: Transition dynamics of the land use response to a permanent yield change induced by climate.
Horizontal axis is years relative to a permanent 1% yield increase (induced by climate) that occurs in year zero. Vertical axis is
the cumulative effect on area planted (% change) relative to the first lead year. Estimates are from Equation 3.5. Grey region
is ±2σ, standard errors robust to state-year correlated shocks.

3.6 Projections

To illustrate the magnitude of the cropped area changes we find, we use the estimates of
Equation 3.5 to project cropped area changes at the year 2050 under the RCP 8.5 warming
scenario. To do this, we take temperature and precipitation projections from the CCSM4
climate model (Gent et al., 2011) and predict the associated yield trend for each adminis-
trative unit using 2010 to 2050 projected weather and the estimates in Figures 3.3 and 3.4.
We then use the estimates in Figure 3.5 to predict the cropped area trend for each crop.

Figure 3.7 shows the projected cropped area changes by 2050 for each crop, as a percent-
age of the total administrative unit land area. Cropped area losses are widespread across
the heavily cropped areas of the grain belt, southern Mississippi River, and Southeastern
coastal states (compare to Figure 3.2), with the grain belt experiencing the largest cropped
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area losses. Note that many parts of the U.S. do not grow maize or soy, and so the change
in cropped area in these counties is zero.

Figure 3.7: Projections of crop migration under the RCP 8.5 warming scenario. Projected changes in area cropped
by 2050 under the RCP 8.5 warming scenario, using the CCSM4 climate model. Projections based on empirical estimates of
Equation 3.5.

3.7 Discussion

Using data from one of the world’s major agricultural regions, we measure changes in agri-
cultural land use in response to climatic changes. We find that farmers respond to declining
yields by reducing their planted area, and to increasing yields by increasing their planted
area. That is, we find that cropped areas do qualitatively “migrate” with the climate, with
substantial losses in cropped area projected for almost all maize- and soy-growing regions of
the U.S.

However, quantitatively, we find that these adjustments have a limited impact on the
welfare losses that producers suffer from climate change. In Equation 3.B.7 we present a
simple statistic α to summarize the effectiveness of land use change as an adaptive strategy
in response to climate changes: the fraction of gross climate-induced losses that are avoided
by land use change. Recall that the mean elasticity across all estimates of Equation 3.5 is
13%; this implies a mean value of α across our estimates of 6.5%. This representative value
suggests that if climatic changes caused a marginal reduction in producer surplus via yield
losses, in the long run farmers would change their planting practices to avoid 6.5% of these
damages. This is small number, however its small size is consistent with the basic intuition
of how land use changes can mitigate climate change losses. Note that in Figure 3.B.1, the
value of avoided damages was represented by the area of the triangle c− d− e. Because the
change area planted A′∗C is small, this triangle ends up being small compared to the gross
loss represented by rectangle a− c−d−f . The only situation in which α approaches a large
value is if the slope of R becomes very shallow, however our empirical estimates suggest
that the slope of R is substantially steeper. These results are consistent with analyses from
other contexts that suggest the high costs of otherwise effective adaptive strategies limits
their value for mitigating climate-induced losses (Hsiang and Narita, 2012; Anttila-Hughes
and Hsiang, 2013).
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This study is a partial equilibrium analysis, a fact that limits its scope in important
ways. First, we have not explicitly modeled how farmers adjust when the costs of land
use changes themselves respond to climate changes. This may be important because the
opportunity cost of planting one crop may be the value from planting another crop which is
also affected by the climate. Also, we have not accounted for responses in productive factors
other than yields, such as changes in the labor market (Hornbeck, 2012; Feng, Krueger, and
Oppenheimer, 2010; Graff Zivin and Neidell, 2014), which may respond to either climatic
changes or land use changes. In addition, we have not accounted for possible changes in
prices which may alter both producer and consumer surplus as well as affect farmers’ land
use decisions; this may be especially important in the dynamic models we estimate. Finally,
we note that because the land use adjustments we estimate occur slowly, their value as an
adaptive strategy declines if their benefits, which mainly accrue in the future, are discounted.
Future work should address these issues.

Chapter Review and Looking Ahead

In this chapter, we examined a particular channel of climate adaptation in agricultural pro-
duction; a channel which is widely discussed but for which there is little empirical evidence:
the migration of cropped areas as climatic suitability shifts. Analyzing subnational longitudi-
nal data for two globally important cereals from one of the world’s major agricultural regions,
we found that more land is allocated to producing a specific crop when the climatological
conditions for growing that crop improve, although the timescales for these adjustments are
long, on the order of 20 or more years. Further, we found that these adjustments reclaim
only 5-10% of climate-induced losses to producer surplus. The availability of adaptation via
land use fails to generate more value because enduring climate-induced yield losses is less
costly than altering land use practices for most farmers, indicating that land use adjustment
costs may be high.

In the next chapter, we will shift away from agriculture to examine how climate change
and adaptation affect a different outcome of substantial social importance: human mortality.
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Appendix

3.A Global patters in crop suitability and area planted

The importance of non-climatological factors in determining land is easily observed in the
global cross-section. In Figure 3.A.1 we plot high-resolution (5 minute × 5 minute) global
maps of the suitability of land for agriculture, based on local soil and climate (Ramankutty
et al., 2008), and the fraction of land allocated to agriculture (Ramankutty and Foley, 1998).
Visual inspection suggests that the fraction of land dedicated to agriculture is correlated
with the suitability of that land, however many regions with high suitability are not heavily
farmed, and visa versa, suggesting the presence of sometimes substantial frictions. Figure
3.1 of the main text makes this comparison more precise.
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Figure 3.A.1: Global patterns in crop suitability and area planted. Global high-resolution (5” × 5”) datasets of a crop
suitability index based on climate and soil (1 is best) in 2000 (Ramankutty et al., 2008) and the fraction of land dedicated to
any crop (Ramankutty and Foley, 1998). The latter is used to compute cropland area weights for weather variables.
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3.B Theoretical framework

To clarify our analysis, we develop a simple framework for understanding how land is allo-
cated to agricultural production. For simplicity, we focus on the producer’s problem and
all losses to climate are losses to producer surplus. This focus on producer welfare is con-
sistent with our important simplifying assumption that prices remain fixed. If prices are
fixed, consumers face no welfare changes and all climatological welfare losses are borne by
producers. The assumption that prices are unaffected by local climatic changes is reasonable
if local changes are idiosyncratic, however it becomes less tenable in scenarios where climate
changes are spatially correlated on a global scale [Brunner, 2002, Hsiang et al., 2011]. How-
ever, for the sake of this analysis, we argue that assuming fixed prices is both reasonable and
clarifying.

We assume one crop. Let yields Y by uniform over the location of interest. Let the total
cost of cultivation, pecuniary cost plus opportunity cost, be R. Define the function R(A)
such that R is increasing in A ∈ [0, 1], the fractional area planted. Note that we cannot
observe R(A) directly. For notational parsimony, let the price of crops be fixed equal to one.
This framework is illustrated in Figure 3.

area fraction planted

A*₀ 10

log yield

Y₁

R

A*₁

Y₀c

def

a b
Y’c

A’*c

Figure 3.B.1: Theoretical framework for evaluating land use changes in response to yield changes. The shift in
yields Y0 → Y1 causes the adjustment in area planted A∗0 → A∗1 because the value of planting falls relative to the cost (pecuniary
plus opportunity) of planting R.

Profit maximizing land use means that land will be cultivated only if the value of farming
a hectare of land exceeds the cost of farming that hectare, that is Y > R(A). Because
production of the marginal hectare at A∗ generates no profit, we have Y = R(A∗) which can
be inverted if we assume R is strictly increasing in A. Thus optimal land use requires
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A∗ = R−1(Y ). (3.B.1)

This tells us that if yields change, then farmers will adjust A∗, the amount of land they
plant. Therefore it is useful to consider the yield perturbation Y ′ which we decompose
into a climatologically-driven component Y ′C and a residual component Y ′T that is driven by
non-climatological changes, such as technology:

Y ′ = Y ′C + Y ′T . (3.B.2)

Assuming that we can isolate Y ′C , we can define a land-use response that is driven only
by climatological changes as

A′∗C = R−1(Y0 + Y ′C)−R−1(Y0). (3.B.3)

Similarly, we can define A′∗T , the response in area planted to all non-climatological yield
changes.

Because the pecuniary and opportunity cost of farming land may vary by location, the
function R may vary across space. This means that even if yields are higher in one region,
the area planted is not necessarily larger since R may also be higher. Thus, as we observed
in the global cross-section, yields alone will not predict area planted. To predict the area
planted we must also know the structure of R, the costs (and constraints) to farming.

The central exercise of this paper is to evaluate the structure of R near the current
equilibrium R(A∗). Essentially, we try to estimate the slope of R (actually R−1) near R(A∗).
We do this by examining the response in area planted, A′∗C , to variations in yields Y ′C that
are driven by exogenous climatic changes. This allows us to infer the local structure of R
because

∂R−1(Y0)

∂YC
=
A′∗C
Y ′C

= A′∗C (3.B.4)

where the last equality holds when we normalize the yield perturbation Y ′C to unity.

3.B.1 The effectiveness of land use change as adaptation to cli-
mate changes

The adjustment A′∗C represents a type of adaptation to climatological changes that alter
yields. This adaptive adjustment generates value relative to a counterfactual world without
this adjustment. Assuming Y ′C is small so that R is approximately linear, the value generated
by this adjustment is

Vadapt =
Y ′C × A′∗C

2
. (3.B.5)

This can be seen in Figure 3, where the shift in yields Y 0 → Y 1 causes the adjustment
A∗0 → A∗1. Following the change in yields, land area between A∗0 and A∗1 had costs of
production R that exceeded the value of yields. So by stopping production over this area
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and employing it for its next best use, the value in the triangle c−d−e is recovered (Vadapt).
Note that Vadapt > 0 if farmers always increase area planted when yields rise and visa versa.

Had there been no adjustment in area planted, all of the value in the rectangle a−c−d−f
would have been lost. We denote the value of this climatological change VC :

VC = Y ′C × A′∗0 (3.B.6)

Where A∗0 is the area planted prior to any climate changes. Since area planted is always
positive, VC always has the same sign as Y ′C , which may be either positive or negative.

By comparing Vadapt to VC we obtain α, the fraction of climate change losses that are
recovered through land use change:

α =
Vadapt
VC

=
A′∗C
2A∗0

. (3.B.7)

Thus, for any climatological change, we can infer the fraction of value that is preserved
by observing the land use response A′∗C and comparing it to twice the original area planted.
Note that α is a particularly convenient measure for the effectiveness of adaptation because it
is normalized to gross climate change losses and because it is equal to one-half the elasticity
of area planted to climate change.

Also note that if yields were to increase because the climate improved, say Y1 → Y0 in
Figure 3, then these results would continue to hold with this notation. However, the triangle
of recovered value would be b− c− e since land would be reallocated from non-farming uses
to farming.
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Chapter 4:
Valuing the Global Mortality
Consequences of Climate Change
Accounting for Adaptation Costs
and Benefits

Chapter Summary

This chapter develops the first globally comprehensive and empirically grounded estimates
of mortality risk due to future temperature increases caused by climate change.1 Using
40 countries’ subnational data, we estimate age-specific mortality-temperature relationships
that enable both extrapolation to countries without data and projection into future years
while accounting for adaptation. We uncover a U-shaped relationship where extreme cold and
hot temperatures increase mortality rates, especially for the elderly, that is flattened by both
higher incomes and adaptation to local climate (e.g., robust heating systems in cold climates
and cooling systems in hot climates). Further, we develop a revealed preference approach to
recover unobserved adaptation costs. We combine these components with 33 high-resolution
climate simulations that together capture scientific uncertainty about the degree of future
temperature change. Under a high emissions scenario, we estimate the mean increase in
mortality risk is valued at roughly 3.2% of global GDP in 2100, with today’s cold locations
benefiting and damages being especially large in today’s poor and/or hot locations. Finally,
we estimate that the release of an additional ton of CO2 today will cause mean [interquartile
range] damages of $36.6 [-$7.8, $73.0] under a high emissions scenario and $17.1 [-$24.7,
$53.6] under a moderate scenario, using a 2% discount rate that is justified by US Treasury
rates over the last two decades. Globally, these empirically grounded estimates substantially
exceed the previous literature’s estimates that lacked similar empirical grounding, suggesting
that revision of the estimated economic damage from climate change is warranted.
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Avi Ebenstein, Nolan Miller, Wolfram Schlenker, and and numerous workshop participants at University of Chicago, Stanford,
Princeton, UC Berkeley, UC San Diego, UC Santa Barbara, University of Pennsylvania, University of San Francisco, University
of Virginia, University of Wisconsin-Madison, University of Minnesota Twin Cities, NBER Summer Institute, LSE, PIK, Oslo
University, University of British Columbia, Gothenburg University, the European Center for Advanced Research in Economics
and Statistics, the National Academies of Sciences, and the Econometric Society for comments, suggestions, and help with
data. Corresponding Author: Michael Greenstone; 1126 E. 59th Street, Chicago, IL 60637; Telephone: 773-702-8250; Email:
mgreenst@uchicago.edu. Word count: 21,495.

39

www.impactlab.org


4.1 Introduction

Understanding the likely global economic impacts of climate change is of tremendous prac-
tical value to both policymakers and researchers. On the policy side, decisions are currently
made with incomplete and inconsistent information on the societal benefits of greenhouse gas
emissions reductions. These inconsistencies are reflected in global climate policy, which is at
once both lenient and wildly inconsistent. To date, the economics literature has struggled
to mitigate this uncertainty, lacking empirically founded estimates of the economic damages
from climate change. This problem is made all the more difficult because emissions today
influence the global climate for hundreds of years, as Figure 4.1 illustrates. Thus, any reliable
estimate of the damage from climate change must include long-run projections of economic
impacts at global scale.
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Figure 4.1
Temperature change due to a marginal emissions pulse in 2020 persists for centuries. The impact of a 1GtC
emissions pulse (equivalent to 3.66Gt CO2) pulse of CO2 in 2020 on temperature is shown. Median change is the dif-
ference in temperature of the “pulse” scenario relative to a high-emissions baseline scenario. The levels are anomalies
in global mean surface temperature (GMST) in Celsius using our modification of the FAIR climate model. The shaded
area indicates the inter-quartile range due to uncertainty in the climate’s sensitivity to CO2 (see Section 4.6 for details).

Decades of study have accumulated numerous insights and important findings regarding
the economics of climate change, both theoretically and empirically, but a fundamental
gulf persists between the two main types of analyses pursued. On the one hand, there
are stylized models able to capture the global and multi-century nature of problem, such
as “integrated assessment models” (IAMs) (e.g., Nordhaus, 1992; Tol, 1997; Stern, 2006),
whose great appeal is that they provide an answer to the question of what the global costs
of climate change will be. However, the many necessary assumptions of IAMs weaken the
authority of these answers. On the other hand, there has been an explosion of highly resolved
empirical analyses whose credibility lie in their use of real world data and careful econometric
measurement (e.g., Schlenker and Roberts, 2009; Deschênes and Greenstone, 2007).2 Yet
these analyses tend to be limited in scope and rely on short-run changes in weather that
might not fully account for adaptation to gradual climate change (Hsiang, 2016). At its

2For a comprehensive review, see Dell, Jones, and Olken (2014); Carleton and Hsiang (2016); Auffhammer (2018b).
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core, this dichotomy persists because researchers have traded off between being complete
in scale and scope or investing heavily in data collection and analysis. The result is that
no study has delivered estimated effects of climate change that are at the scale of IAMs,
while simultaneously being grounded in detailed econometric analyses using high-resolution
globally representative micro-data.

The paper sets out to accomplish two major goals that require resolving the tension be-
tween these approaches in the context of mortality risk due to climate change. Specifically, it
strives to provide the temporal and global scale of IAMs, but transparently built upon highly
resolved econometric foundations. In so doing, it aims to account for both the benefits and
costs of adaptation. The first goal is to produce local and global estimates of the mortality
risk of climate change and its monetized value. The spatial resolution, based on dividing
the world into 24,378 regions,3 marks a substantial improvement upon existing IAMs, which
represent (at most) 16 heterogeneous global regions (Tol, 1997). Using these calculations,
we are able to accomplish the second goal, which is to estimate marginal willingness-to-pay
(MWTP) to avoid the alteration of mortality risk associated with the release of an additional
metric ton of CO2. We call this the excess mortality “partial” social cost of carbon (SCC);
a “full” SCC would encompass impacts across all affected outcomes.

In order to make these contributions, the analysis overcomes four fundamental challenges
that have prevented the construction of empirically-derived and complete estimates of the
costs of climate change to date. The first two of these challenges are due to the global
extent and long timescale of both the causes and the impacts of climate change. For the first
challenge, we note that CO2 is a global pollutant, meaning that the costs of climate change
must necessarily be considered at a global scale; anything less will lead to an incomplete
estimate of the costs. The second challenge is that populations exhibit various levels of
adaptation to current climate across space and adaptation levels are likely to be different
in the future as populations become exposed to changes in their local climate. The extent
to which investments in adaptation can limit the impacts of climate change is a critical
component of cost estimates; ignoring this would lead to overstating costs.

We address both of these challenges simultaneously with a combination of extensive data
and an econometric approach that models heterogeneity in the mortality-temperature rela-
tionship. We estimate this relationship using the most comprehensive dataset ever collected
on annual, subnational mortality statistics from 41 countries that cover 55% of the global
population. These data allow us to estimate age-specific mortality-temperature relationships
with substantially greater resolution and coverage of the human population than previous
studies; the most comprehensive econometric analyses to date have been for a few coun-
tries within a single region or individual cities from several countries. The analysis relies on
inter-annual variation in temperature and uncovers a plausibly causal U-shaped relationship
where extreme cold and hot temperatures increase mortality rates, especially for the elderly
(those aged 65 and older).

We quantify the benefits of adaptation to gradual climate change and the benefits of pro-
jected future income growth by jointly modeling heterogeneity in the mortality-temperature
response function with respect to the long-run climate (e.g., Auffhammer, 2018a) and income

3In the U.S., these impact regions map onto a county.
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per capita (e.g., Fetzer, 2014). This cross-sectional modeling of heterogeneity allows us to
predict the structure of the mortality-temperature relationship across locations where we
lack data, as well as into the future, both of which are necessary to assess the global impacts
of climate change. Such out-of-sample extrapolation of temperature-mortality relationships
delivers the first empirically-based approach to including these populations in global climate
impacts analysis, although a causal interpretation requires stronger econometric assump-
tions. Using readily available data and projections for current and future climate, income,
and population projections, we estimate that the effect of an additional very hot day (35◦C
/ 95◦F) on elderly mortality is ∼50% larger in regions of the world where mortality data are
unavailable. This finding underlines that current estimates may understate climate change
impacts because they disproportionately rely on data from wealthy economies and temperate
climates. Furthermore, accounting for changing mortality-temperature relationships is cru-
cial to projecting the effect of warming in the future, as we expect the mortality consequences
of heat to decline over time due to adaptations that individuals are predicted to undertake
in response to warmer climates and higher incomes. Consistent with this intuition we find
that climate adaptation and income growth have substantial benefits, marking a departure
from previous literature that has often assumed that the mortality-temperature relationship
was constant over space and time (e.g., Deschênes and Greenstone, 2011).

The third challenge is that the adaptation responses discussed in the previous paragraph
are costly, and these costs, along with the direct mortality impacts, must be accounted for
in a full assessment of climate change impacts. We develop a general revealed preference
method to estimate the costs incurred to achieve the benefits from adapting to climate
change, even though these costs cannot be directly observed. This is a critical step because
a full accounting of the mortality-related costs of climate change necessarily accounts for the
direct mortality impacts, the benefits of adaptation, and the opportunity costs of all resources
deployed in order to achieve those adaptations. This is an advance on the previous literature
that has either quantified adaptation benefits without estimating costs (e.g., Heutel, Miller,
and Molitor, 2017) or tried to measure the costs of individual adaptations (e.g., Barreca
et al., 2016). The latter approach is informative of individual costs, but poorly equipped
to measure total adaptation costs, because the range of potential responses to warming –
whether defensive investments (e.g., building cooling centers) or compensatory behaviors
(e.g. exercising earlier in the morning) – is enormous, making a complete enumeration of
their costs extraordinarily challenging.

The revealed preference approach is based on the assumption that individuals undertake
adaptation investments when the expected benefits exceed the costs and that for the marginal
investment, benefits and costs are equal. Because we can empirically observe adaptation
benefits by measuring reduced mortality sensitivities to temperature, we can therefore infer
their marginal cost. Then by integrating marginal costs, we can compute total costs for
non-marginal climate changes. A simplified but illustrative example comes from comparing
Seattle, WA and Houston, TX, which have similar income levels, but very different climates:
on average, Seattle has less than 1 day per year where the daily average temperature exceeds
30◦C (85◦F), while Houston experiences over 8 of these days annually.4 Our empirical analysis

4These values of average daily temperature are calculated from the GMFD dataset, described in Section 4.3.
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below finds that Houston is relatively adapted to this hotter climate, with an individual hot
day leading to much lower mortality than in temperate Seattle. By revealed preference, it
must be the case that the costs required to achieve Houston-like adaptation exceeds the
value of the lives Seattle would save by adopting similar practices. Similarly, the costs of
adapting in Houston must be less than or equal to the value of the additional deaths that
they would otherwise have to endure. These bounds shrink for smaller differences in climate
(e.g. Seattle vs. Tacoma), such that we can show that for infinitesimally small differences
in climate, these bounds collapse to a single value where the estimable marginal benefits
and unobserved marginal costs are equal. Using this result, we are able to reconstruct non-
marginal adaptation costs for each location, relying only on empirically recovered reduced-
form estimates.

Together, addressing these three challenges allows us to achieve the first goal of this
analysis: to develop measures of the full mortality-related costs of future climate change for
the entire world, reflecting both the direct mortality costs accounting for adaptation and
all adaptation costs. This exercise is done using 33 global climate models that together
reflect current scientific uncertainty about the degree of temperature change5 and results
are expressed in “death equivalents”, i.e., the number of deaths plus the adaptation costs
incurred expressed in avoided deaths. We find that under a high emissions scenario (i.e.,
Representative Concentration Pathway (RCP) 8.5, in which CO2 emissions growth is sus-
tained) and a socioeconomic scenario with future global income and population growth rates
approximately matching recent observations (i.e., Shared Socioeconomic Pathway (SSP) 3),
the mean estimate of the total mortality burden of climate change is projected to be worth
85 death equivalents per 100,000, at the end of the century. Accounting for econometric and
climate uncertainty leads to an interquartile range of [16, 121].6 This is equal to roughly
3.2% of global GDP at the end of the century when death equivalents are valued using an
age-varying value of a statistical life (VSL). Further, failing to account for income and cli-
mate adaptation would overstate the mortality costs of climate change by a factor of about
2.6, on average.

The analysis uncovers substantial heterogeneity in the full mortality costs of climate
change around the globe. For example, mortality risk in Accra, Ghana is projected to
increase by 19% of its current annual mortality rate at the end of the century under a high
emissions scenario, while Oslo, Norway is projected to experience a decrease in mortality
risk due to milder winters that is equal to 28% of its current annual mortality rate today
(United Nations, 2017). Further, the share of the full mortality-related costs of climate
change that are due to deaths, rather than adaptation costs, is 86% globally but varies
greatly, with poor countries disproportionately experiencing impacts through deaths and
wealthy countries disproportionately experiencing impacts through adaptation costs.

The last of the four challenges facing the literature is the calculation of an SCC that
is based upon empirical evidence, the calculation of which is the second goal of our analy-
sis. We develop and implement a framework to estimate the excess mortality partial SCC
using empirically-based projections. The mortality partial SCC is defined as the marginal

5See Burke et al. (2015) for a discussion of combining physical climate uncertainty with econometric estimates.
6For reference, all cancers are responsible for approximately 125 deaths per 100,000 globally today (WHO, 2018). Of course,

the full costs of cancer, including all adaptations incurred to avoid risk, would be even larger if expressed in death equivalents.
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willingness-to-pay to avoid an additional ton of CO2. A central element of this procedure
is the construction of empirically grounded “damage functions,” (Hsiang et al., 2017), each
of which describes the costs of excess mortality risk in a given year as a function of the
overall level of global climate change. Such damage functions have played a central role
in the analysis of climate change as an economic problem since seminal work by Nordhaus
(1992), but existing estimates have been criticized for having little or no empirical foundation
(Pindyck, 2013). To our knowledge, ours is the first globally representative and empirically
grounded partial damage function, enabling us to calculate a partial SCC when combined
with a climate model.

Our estimates imply that the excess mortality partial SCC is roughly $36.6 (in 2019
USD) with a high emissions scenario (RCP8.5) under a 2% discount rate and using an age-
varying VSL. This value falls to $17.1 with a moderate emissions scenario (i.e., Representative
Concentration Pathway (RCP) 4.5, in which CO2 emissions are stable through 2050 and then
decline), due to the nonlinearity of estimated damage functions. The respective interquartile
ranges are [-$7.8, $73.0] for RCP8.5 and [-$24.7, $53.6] for RCP4.5. These assumptions
regarding discount rate and VSL are justified by US Treasury rates over the last two decades7

and by standard economic reasoning regarding mortality risk valuation (Jones and Klenow,
2016; Murphy and Topel, 2006), respectively. However, under a higher discount rate of 3%
and an age-invariant VSL, valuation assumptions used by the United States Government to
set the SCC in 2009, the mortality partial SCC is approximately $22.1 [-$5.6, $53.4] under
RCP8.5 and $6.7 [-$15.7, $32.1] under RCP4.5.

These empirically grounded estimates of the costs of climate-induced mortality risks
substantially exceed available estimates from leading IAMs. For example, the total mortality-
related damages from climate change under RCP8.5 in 2100 amount to about 49-135% of
the comparable damages reported for all sectors of the economy in the IAMs currently
determining the U.S. SCC (Interagency Working Group on Social Cost of Carbon, 2010).
When considering the full discounted stream of damages from the release of an additional
metric ton of CO2, this paper’s excess mortality partial SCC with a high emissions scenario
amounts to ∼73% of the Obama Administration’s full SCC (under a 2% discount rate and
age-varying VSL); this value falls to ∼44% when using a 3% discount rate and age-invariant
VSL.

The rest of this paper is organized as follows: Section 4.2 outlines a conceptual framework
for the two key problems of the paper: projecting climate damages into the future, accounting
for adaptation and its cost, and estimating a mortality partial SCC; Section 4.3 describes
the data used in the estimation of impacts and in the climate change projected impacts;
Section 4.4 details the econometric approach and explains how we extrapolate mortality
impacts across space and project them over time while computing adaptation costs and
benefits; Section 4.5 describes the results of the econometric analysis and presents global
results from projections that use high-resolution global climate models; Section 4.6 details
the calculation of a damage function based on these projections and computes a mortality
partial SCC; Section 4.7 discusses limitations of the analysis; and Section 4.8 concludes.

7The average 10-year Treasury Inflation-Indexed Security value over the available record of this index (2003-present) is 1.01%
(Board of Governors of the US Federal Reserve System, 2020).
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4.2 Conceptual framework

Climate change is projected to have a wide variety of impacts on well-being, including al-
tering the risk of mortality due to extreme temperatures. The ultimate effect on particular
outcomes like mortality rates will be determined by the adaptations that are undertaken.
Specifically, as the climate changes, individuals and societies will weigh the costs and benefits
of undertaking actions that allow them to exploit new opportunities (e.g., converting land
to new uses) and protect themselves against new risks (e.g., investments in air conditioning
to mitigate mortality risks). The full cost of climate change, and hence the social cost of
carbon, will thus reflect both the realized direct impacts (e.g., changes in mortality rates),
which depend on the benefits of these adaptations, and the costs of these adaptations in
terms of foregone consumption. However, to date it has proven challenging to develop a
theoretically founded and empirically credible approach to explicitly recover the full costs of
climate change and to incorporate such costs into an SCC.8

This section develops a simple framework to define (i) the full value of mortality risk due
to climate change, and (ii) the mortality partial SCC, such that each reflects both the costs
and benefits of adaptation. In both cases, we are able to derive expressions for these objects
that are composed of terms that can be estimated with data.

4.2.1 Setup

We define the climate as the joint probability distribution over a vector of possible condi-
tions that can be expected to occur over a specific interval of time. Following the notation
of Hsiang (2016), let Ct be a vector of parameters describing the entire joint probability
distribution over all relevant climatic variables in time period t (e.g., C might contain the
mean and variance of daily average temperature and rainfall, among other parameters). The
climate is determined both by natural variations in the climate system, and by the history
of anthropogenic emissions. Thus, we write Ct = ϕ(E0, E1, E2, ...Et) where Et represents
total global greenhouse gas emissions in period t and ϕ(·) is a general function determined
by the climate system that links past emissions to present climate.9

Define weather realizations as a random vector ct drawn from a distribution characterized
byCt. Emissions therefore influence realized weather by shifting the probability distribution,
Ct. Mortality risk is a function of both weather c and a composite good b = ξ(b1, ..., bK)
comprising all bk, where each bk is an endogenous economic variable that influences adap-
tation. The composite b thus captures all adaptive behaviors and investments that interact
with individuals’ exposure to a warming climate, such as installation of air conditioning and
time allocated to indoor activities. Mortality risk is captured by the probability of death
during a unit interval of time ft = f(bt, ct).

Consider a single representative global agent who derives utility in all time periods t from
consumption of the numeraire good xt and who faces mortality risk ft = f(bt, ct).

10 Because

8See Deschênes and Greenstone (2011); Hsiang and Narita (2012); Schlenker, Roberts, and Lobell (2013); Lobell et al. (2014);
Guo and Costello (2013); Deschênes, Greenstone, and Shapiro (2017); Deryugina and Hsiang (2017) for different theoretical
discussions of this issue and some of the empirical challenges.

9For more discussion, see Hsiang and Kopp (2018).
10Note that our empirical analysis relies on heterogeneous agents exposed to different climates, realizing different incomes,
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weather realizations ct are a random vector, this agent simultaneously chooses consumption
of the numeraire xt and of the composite good bt in each period to maximize utility given
her expectations of the weather, subject to an exogenous budget constraint, conditional on
the climate.11 We let f̃(bt,Ct) = Ect [f(bt, c(Ct)) | Ct] represent the expected probability
of death, where c(C) is a random vector c drawn from a distribution characterized by C.
This agent chooses their adaptations by solving:

max
bt,xt

u(xt)
[
1− f̃(bt,Ct)

]
s.t. Yt ≥ xt + A(bt), (4.1)

where climate is determined by the history of emissions, where A(bt) represents expenditures
for all adaptive investments, and Y is an income we take to be exogenous.12

The following framework relies on a key set of assumptions. First, we assume that
adaptation costs are a function of technology and do not depend on the climate. Additionally,
we assume that f̃(·) is continuous and differentiable, that markets clear for all technologies
and investments represented by the composite good b, as well as for the numeraire good
x, and that all choices b and x can be treated as continuous. Importantly, Equation 4.1 is
static, because we assume that there is a competitive and frictionless rental market for all
capital goods (e.g., air conditioners), so that fixed costs of capital can be ignored, and that
all rental decisions are contained in b. As long as agents have accurate expectations over
their current climate, markets will clear efficiently in each period. Under these assumptions,
the first order conditions of Equation 4.1 define optimal adaptation as a function of income
and the climate: b∗(Yt,Ct), which we sometimes denote below as b∗t for simplicity.

4.2.2 The full value of mortality risk due to climate change

We first use the representative agent’s problem in Equation 4.1 to derive an empirically
tractable expression for the full value of mortality risk due to climate change. Before doing
so, we highlight how this expression builds upon prior work quantifying the impacts of
climate change.

Climate change will influence mortality risk f = f(b, c) through two pathways. First, a
change in C will directly alter realized weather draws, changing c. Second, as implied by
Equation 4.1, a change inC will alter individuals’ beliefs about their distribution of potential
weather realizations, shifting how they act, and ultimately changing the optimal endogenous

and exhibiting different demographics. However, for expositional simplicity here we derive the full mortality risk of climate
change and the mortality partial SCC using a globally representative agent.

11The assumption of exogenous emissions implies that we rule out the possibility that the agent will choose an optimal E∗.
This is unrealistic with a single agent. But in practice, the world is comprises a continuum of agents or countries and the
absence of coordinated global climate policy today is consistent with agents failing to choose optimal b∗.

12The specification in Equation 4.1 imposes the assumption that there are no direct utility benefits or costs of adaptation
behaviors or investments b. In an alternative specification detailed in Appendix 4.A.4, we allow agents to derive utility both
from x and from the choice variables in b; for example, air conditioning may increase utility directly, in addition to lowering
mortality risk. We show that under this alternative framework, the costs of adapting to climate change that we can empirically
recover include pecuniary expenditures on adaptation, A(b), net of any changes in direct utility benefits or costs. All other
aspects of the framework presented here are unaffected. Additionally, in a variant of this model in which agents derive utility
directly from the climate, the interpretation of empirically recovered adaptation costs is modified to include an additional
component representing changes in utility derived directly from the changing climate. However, this change of interpretation
to include another term that is “netted out” in estimated adaptation costs is the only implication of adding climate directly to
the utility function.
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choice of b∗. Therefore, since the climate C influences both c and b∗, the probability of
death at the initial time period t = 1 is:

Pr(death | C1) = f(b∗(Y1,C1), c(C1)) (4.2)

Many previous empirical estimates of the effects of climate assume no adaptation takes
place (e.g., Deschênes and Greenstone, 2007; Hsiang et al., 2017), such that projections of
future impacts are computed assuming economic decisions embodied by b do not change.
In reality, optimizing agents will update their behaviors and technologies b to attenuate
climate-induced increases in mortality risk. Several analyses have empirically confirmed that
accounting for endogenous changes to technology, behavior, and investment mitigates the
direct effects of climate in a variety of contexts (e.g., Barreca et al., 2016; Park et al., 2020).13

However, existing climate change projections accounting for these adaptation benefits do not
account for the costs of adaptation, i.e., A(b).

A full measure of the economic burden of climate change must account not only for the
benefits generated by adaptive reactions to these changes but also their cost. Thus, the total
cost of changing mortality risks that result from climate change between time periods t = 1
and t = 2 is:

full value of mortality risk due to climate change =

V SL2 [f(b∗(Y2,C2), c(C2))− f(b∗(Y2,C1), c(C1))]︸ ︷︷ ︸
observable change in mortality rate

+

A(b∗(Y2,C2))− A(b∗(Y2,C1)),︸ ︷︷ ︸
adaptation costs

(4.3)

where V SL2 is the value of a statistical life in time period 2, or the willingness to pay for
a marginal increase in the probability of survival, and is used to convert mortality risk to
dollar value (Becker, 2007). Importantly, this definition includes changes in mortality risk
and adaptation costs due only to changes in the climate, as income Y is held fixed at its
t = 2 level. This ensures, for example, that increases in air conditioning prevalence due to
rising incomes are not included in adaptation benefits or costs of climate change. Note that
the omission of the costs of adaptation, A(b), would underestimate the overall economic
burden of warming.

The first key objective of this paper is to empirically quantify the total costs of climate
change impacts on mortality risk, following Equation 4.3. However, the changes in adapta-
tion costs between time periods (second term in Equation 4.3) are unobservable, practically
speaking. In principle, data on each adaptive action could be gathered and modeled (De-
schênes and Greenstone, 2011, e.g.,), but since there exists an enormous number of possible
adaptive margins that together make up the composite good b, computing the full cost of
climate change using such an enumerative approach quickly becomes intractable.

To circumvent this challenge, we use a revealed preference approach derived from the
first order conditions of the agents’ problem (Equation 4.1) to construct empirical estimates

13For additional examples, see Schlenker and Roberts (2009); Hsiang and Narita (2012); Hsiang and Jina (2014); Barreca
et al. (2015); Heutel, Miller, and Molitor (2017); Burgess et al. (2017); Auffhammer (2018a).

47



of changes in adaptation costs due to climate change. We begin by rearranging the agent’s
first order conditions and using the conventional definition of the VSL (i.e., u(x)

[1−f̃(b,C)]∂u/∂x

(Becker, 2007)) to show that in any time period t,

∂A(b∗t )

∂b
=

−u(x∗t )

∂u/∂x[1− f̃(b∗t ,Ct)]

∂f̃(b∗t ,Ct)

∂b
= −V SLt

∂f̃(b∗t ,Ct)

∂b
(4.4)

That is, marginal adaptation costs (lefthand side) equal the value of marginal adaptation
benefits (righthand side), when evaluated at the optimal level of adaptation b∗ and consump-
tion x∗. This expression enables us to use estimates of marginal adaptation benefits infer
estimates of marginal adaptation costs.

To make the expression in Equation 4.4 of greater practical value, we note that the total
derivative of expected mortality risk with respect to a change in the climate is the sum of
two terms:

df̃(b∗t ,Ct)

dC
=
∂f̃(b∗t ,Ct)

∂b

∂b∗t
∂C

+
∂f̃(b∗t ,Ct)

∂C
(4.5)

The first term on the righthand side of Equation 4.5 represents the expected impacts on mor-
tality of all changes in adaptive investments induced by the change in climate; as discussed,
this is of limited practical value because of data and estimation limitations.14 The second
term is the direct effect that the climate would have if individuals did not adapt (i.e., the
partial derivative).15 For example, if climate change produces an increase in the frequency
of heat events that threaten human health, it would be natural to expect the first term to
be negative, as people make adjustments that save lives, and the second term to be positive,
reflecting the impacts of heat on fatalities absent those adjustment. Equation 4.5 makes clear

that we can express the unobservable mortality benefits of adaptation (i.e.,
∂f̃(b∗t ,Ct)

∂b

∂b∗t
∂C

) as
the difference between the total and partial derivatives of the expected probability of death
with respect to climate.

We use this fact in combination with Equation 4.4 to develop an expression for the total
adaptation costs incurred as the climate changes gradually from t = 1 to t = 2, which is
composed of elements which can be estimated:16

A(b∗(Y2,C2))− A(b∗(Y2,C1)) =

∫ 2

1

∂A(b∗t )

∂b

∂b∗t
∂C

dCt

dt
dt

= −
∫ 2

1

V SLt

[
df̃(b∗t ,Ct)

dC
− ∂f̃(b∗t ,Ct)

∂C

]
dCt

dt
dt (4.6)

The practical value of Equation 4.6 is that it outlines how we can use estimates of the total
and partial derivatives of mortality risk—with respect to the climate—to infer net adapta-
tion costs, even though adaptation itself is not directly observable. In the following sections,

14This term is often known in the environmental health literature as the effect of “defensive behaviors” (Deschênes, Greenstone,
and Shapiro, 2017) and in the climate change literature as “belief effects” (Deryugina and Hsiang, 2017); in our context these
effects result from changes in individuals’ defensive behaviors undertaken because their beliefs about the climate have changed.

15This term is known in the climate change literature as the “direct effect” of the climate (Deryugina and Hsiang, 2017).
16Note that x is fully determined by b and income Y through the budget constraint.
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we develop an empirical panel model exploiting both short-run and long-run variation in

temperature through which the total derivative df̃
dC

can be separated from the partial deriva-

tive ∂f̃
∂C

. The details of implementing Equation 4.6 are discussed in Section 4.4.5 and we
empirically quantify these values globally in Section 4.5.3.

Before proceeding, a few details are worth underscoring. First, while we integrate over
changes in climate in Equation 4.6, we hold income fixed at its endpoint value. This is because
the goal is to develop an estimate of the additional adaptation expenditures incurred due
to the changing climate only. In contrast, changes in expenditures due to rising income will
alter mortality risk under climate change, but are not a consequence of the changing climate;
therefore not included in our calculation of the total mortality-related costs of climate change.

Second, the revealed preference approach for recovering adaptation costs relies on the
first order condition that guarantees that marginal costs of adaptation are equal to marginal
benefits at the optimal choice {x∗, b∗}. Since we can estimate marginal benefits, we can back
out marginal costs.

Third, the total adaptation costs associated with the climate shifting from C1 to C2 are
calculated by integrating marginal benefits of adaptation for a series of infinitesimal changes
in climate (Equation 4.6), where marginal benefits continually evolve with the changing
climate C. Thus, total adaptation costs in a given period, relative to a base period, are the
sum of the adaptation costs induced by a series of small changes in climate in the preceding
periods (see Appendix 4.A.1 for a visual description).

Finally, the total adaptation benefits associated with the climate shifting from C1 to C2

are defined as the dollar value of the difference between the effects of climate change with op-
timal adaptation and without any adaptation: −V SL2[f̃(b∗(Y2,C2),C2)–f̃(b∗(Y2,C1),C2)].
In contrast to total adaptation costs, this expression relies on the relationship between mor-
tality and temperature that holds only at the final climate, C2. Therefore, when the marginal
benefits of adaptation are greater at the final climate than at previous climates, the total
benefits of adaptation will exceed total adaptation costs, generating an adaptation “surplus”.
For example, at a climate between C1 and C2, the marginal unit of air conditioning (a key
form of adaptation) purchased will have benefits that are exactly equal to its costs. However,
at the warmer climate C2, this same unit of air conditioning becomes inframarginal, and
may have benefits that exceed its costs. Appendix 4.A.2 derives a formal expression for this
adaptation surplus.

4.2.3 The mortality partial social cost of carbon

The second objective of this paper is to quantify the mortality partial SCC. Here, we use the
representative agent’s problem in Equation 4.1 to derive an expression for the partial SCC,
which we empirically estimate using a procedure outlined in Section 4.6.

Given the agent’s expectations of the weather, the indirect utility function for the problem
in Equation 4.1 in each period t is:

vt(Yt, A(b∗t ),Ct) = u(x∗t )
[
1− f̃(b∗t ,Ct)

]
+ λt[Yt − x∗t − A(b∗t )], (4.7)

where, as above, climate is determined by the prior evolution of global emissions through
Ct = ϕ(E0, E1, E2, ...Et) and λt is the marginal utility of income. The mortality partial SCC
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is defined as the marginal willingness-to-pay (MWTP) in period t to avoid the mortality
consequences from a marginal increase in emissions. Because emissions released in period t
influence the trajectory of global emissions for hundreds of years (see Figure 4.1), this MWTP
includes impacts of carbon emissions on utility in future time periods s > t. Thus, we derive
the MWTP to avoid a marginal change in emissions in period t by differentiating the indirect
utility function in each future period s with respect to emissions Et, and integrating over
time:17

Mortality partial SCCt (utils) =

∫ ∞
t

e−δ(s−t)
−dvs
dEt

ds

=

∫ ∞
t

e−δ(s−t)u(x∗s)

(
∂f̃s
∂b

∂b∗s
∂C

+
∂f̃s
∂C

)
∂Cs

∂Et
ds︸ ︷︷ ︸

discounted damages of emissions from
change in mortality rates

+

∫ ∞
t

e−δ(s−t)λs
∂As
∂b

∂b∗s
∂C

∂Cs

∂Et
ds︸ ︷︷ ︸

discounted damages of emissions
from adaptation costs

, (4.8)

where δ indicates the discount rate.18

The two terms in Equation 4.8 show that increases in emissions cause damages through
two channels. First, emissions change mortality rates, net of optimal adaptation, for all
future time periods. Second, emissions change the expenditures that the agent must incur
in order to update her optimal adaptation.

Some manipulation allows us to convert Equation 4.8 into dollars. Using the standard
definition of the VSL and the first order conditions from Equation 4.1, we divide Equation
4.8 by [1− f̃ ]∂u/∂x to rewrite the mortality partial SCC in units of dollars:

Mortality partial SCCt (dollars) =

∫ ∞
t

e−δ(s−t)

[
V SLs

(
∂f̃s
∂b

∂b∗s
∂C

+
∂f̃s
∂C

)
+
∂As
∂b

∂b∗s
∂C

]
︸ ︷︷ ︸

total monetized mortality-related damages
from a marginal change in climate

∂Cs

∂Et
ds

=

∫ ∞
t

e−δ(s−t)
dD(Cs, s)

dC

∂Cs

∂Et
ds, (4.9)

where D(Cs, s) represents a damage function describing total global economic losses due to
changes in mortality risk in year s, as a function of the global climate C. Critically, this
damage function is inclusive of adaptation benefits and costs.

In practice, we approximate Equation 4.9 by combining empirically grounded estimated
damage functions D(·) with climate model simulations of the impact of a small change in
emissions on the global climate, i.e., ∂Cs

∂Et
. Expressing the mortality partial SCC using a

17For display purposes only we have omitted the arguments of f̃(·) in Equations 4.8 and 4.9.
18Equation 4.8 assumes a constant discount rate δ. This approach is taken because it is standard in policy applications of

the SCC (Interagency Working Group on Social Cost of Carbon, 2010), although future work should explore the implications of
more complex discounting procedures, such as declining discount rates (e.g., Newell and Pizer, 2004; Millner and Heal, 2018).
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damage function has three key practical advantages. First, the damage function represents a
parsimonious, reduced-form description of the otherwise complex dependence of global eco-
nomic damage on the global climate. Second, as we demonstrate in Section 4.6, it is possible
to empirically estimate damage functions from the climate change projections described in
Section 4.2.2. Finally, because they are fully differentiable, empirical damage functions can
be used to compute marginal costs of an emissions impulse released in year t by differen-
tiation. The construction of these damage functions, as well as the implementation of the
mortality partial SCC, are detailed in Section 4.6.

4.3 Data

We believe that we have collected the most comprehensive data file ever compiled on mortal-
ity, historical climate data, and climate, population, and income projections. Section 4.3.1
describes the data necessary to estimate the relationship between mortality and tempera-
ture. Section 4.3.2 outlines the data we use to predict the mortality-temperature relationship
across the entire planet today and project its evolution into the future as populations adapt to
climate change. Appendix 4.B provides a more extensive description of all of these datasets.

4.3.1 Data to estimate the mortality-temperature relationship

4.3.1 Mortality Data.

Our mortality data are collected independently from 41 countries.19 Combined, this dataset
covers mortality outcomes for 55% of the global population, representing a substantial in-
crease in coverage relative to existing literature; prior studies investigate an individual coun-
try (e.g., Burgess et al., 2017) or region (e.g., Deschenes, 2018), or combine small nonrandom
samples from across multiple countries (e.g., Gasparrini et al., 2015). Spatial coverage, res-
olution, and temporal coverage are shown in Figure 4.2A, and each dataset is summarized
in Table 4.1 and detailed in Appendix 4.B.1. We harmonize all records into a single multi-
country panel dataset of age-specific annual mortality rates, using three age categories: <5,
5-64, and >64, where the unit of observation is ADM2 (e.g., a county in the U.S.) by year.
Note that the India mortality data lacks age-specific rates, and therefore is used for out-of-
sample tests rather than in the main analysis.

4.3.2 Historical Climate Data.

We perform analyses with two separate groups of historical data on precipitation and temper-
ature. First, we use the Global Meteorological Forcing Dataset (GMFD) (Sheffield, Goteti,
and Wood, 2006), which relies on a weather model in combination with observational data.
Second, we repeat our analysis with climate datasets that strictly interpolate observational
data across space onto grids, combining temperature data from the daily Berkeley Earth

19Our main analysis uses age-specific mortality rates from 40 of these countries. We use data from India as cross-validation
of our main results, as the India data do not have records of age-specific mortality rates. The omission of India from our main
regressions lowers our data coverage to 38% of the global population.
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Figure 4.2
Mortality statistics and future climate projections used in generating empirically-based climate change mor-
tality impact projections. Panel A shows the spatial distribution and resolution of mortality statistics from all coun-
tries used to generate regression estimates of the temperature-mortality relationship. Temporal coverage for each country is
shown under the map (the dotted line for the European Union (EU) time series indicates that start dates vary for a small
subset of countries). Panel B shows the 21 climate models (outlined maps) and 12 model surrogates (maps without out-
lines) that are weighted in climate change projections so that the weighted distribution of the 2080 to 2099 global mean
surface temperature anomaly (∆GMST) exhibited by the 33 total models matches the probability distribution of estimated
∆GMST responses (blue-gray line) under RCP8.5. For this construction, the anomaly is relative to values in 1986-2005.

Surface Temperature dataset (BEST) (Rohde et al., 2013) with precipitation data from the
monthly University of Delaware dataset (UDEL) (Matsuura and Willmott, 2007). Table
4.1 summarizes these data; full data descriptions are provided in Appendix 4.B.2. We link
climate and mortality data by aggregating gridded daily temperature data to the annual mea-
sures at the same administrative level as the mortality records using a procedure detailed
in Appendix 4.B.2.4 that preserves potential nonlinearities in the mortality-temperature
relationship.

4.3.3 Covariate Data.

Our analysis allows for heterogeneity in the age-specific mortality-temperature relationship
as a function of two long-run covariates: a measure of climate (in our main specification,
long-run average temperature) and income per capita. We assemble time-invariant measures
of both these variables at the ADM1 unit (e.g., state) level using GMFD climate data and a
combination of the Penn World Tables (PWT), Gennaioli et al. (2014), and Eurostat (2013).
The construction of the income variable requires some estimation to downscale to ADM1
level; details on this procedure are provided in Appendix 4.B.3.
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Mortality records
Average annual Average
mortality rate∗† covariate values∗�

Global GDP Avg. Annual
pop. per daily avg. days

Country N Spatial scale× Years Age categories All-age >64 yr. share� capita⊗ temp.� > 28◦C
Brazil 228,762 ADM2 1997-2010 <5, 5-64, >64 525 4,096 0.028 11,192 23.8 35.2

Chile 14,238 ADM2 1997-2010 <5, 5-64, >64 554 4,178 0.002 14,578 14.3 0

China 7,488 ADM2 1991-2010 <5, 5-64, >64 635 7,507 0.193 4,875 15.1 25.2

EU 13,013 NUTS2‡ 1990.-2010 <5, 5-64, >64 1,014 5,243 0.063 22,941 11.2 1.6

France⊕ 3,744 ADM2 1998-2010 0-19, 20-64, >64 961 3,576 0.009 31,432 11.9 0.3

India∧ 12,505 ADM2 1957-2001 All-age 724 – 0.178 1,355 25.8 131.4

Japan 5,076 ADM1 1975-2010 <5, 5-64, >64 788 4,135 0.018 23,241 14.3 8.3

Mexico 146,835 ADM2 1990-2010 <5, 5-64,>64 561 4,241 0.017 16,518 19.1 24.6

USA 401,542 ADM2 1968-2010 <5, 5-64, >64 1,011 5,251 0.045 30,718 13 9.5

All Countries 833,203 – – – 780 4,736 0.554 20,590 15.5 32.6

Historical climate datasets
Dataset Citation Method Resolution Variable Source
GMFD, V1 Sheffield, Goteti, and Wood (2006) Reanalysis & 0.25◦ temp. & Princeton University

Interpolation precip.
BEST Rohde et al. (2013) Interpolation 1◦ temp. Berkeley Earth
UDEL Matsuura and Willmott (2007) Interpolation 0.5◦ precip. University of Delaware

Table 4.1
Historical mortality & climate data

∗In units of deaths per 100,000 population.
†To remove outliers, particularly in low-population regions, we winsorize the mortality rate at the 1% level at high end of the
distribution across administrative regions, separately for each country.
� All covariate values shown are averages over the years in each country sample.
× ADM2 refers to the second administrative level (e.g., county), while ADM1 refers to the first administrative level (e.g.,
state). NUTS2 refers to the Nomenclature of Territorial Units for Statistics 2nd (NUTS2) level, which is specific to the
European Union (EU) and falls between first and second administrative levels.
� Global population share for each country in our sample is shown for the year 2010.
⊗ GDP per capita values shown are in constant 2005 dollars purchasing power parity (PPP).
� Average daily temperature and annual average of the number of days above 28◦C are both population weighted, using
population values from 2010.
‡ EU data for 33 countries were obtained from a single source. Detailed description of the countries within this region is
presented in Appendix 4.B.1.
. Most countries in the EU data have records beginning in the year 1990, but start dates vary for a small subset of countries.
See Appendix 4.B.1 and Table 4.B.1 for details.
⊕ We separate France from the rest of the EU, as higher resolution mortality data are publicly available for France.

∧ It is widely believed that data from India understate mortality rates due to incomplete registration of deaths.

4.3.2 Data for projecting the mortality-temperature relationship
around the world & into the future

4.3.1 Unit of Analysis for Projections.

We partition the global land surface into a set of 24,378 regions onto which we generate
location-specific projected damages of climate change. These regions (hereafter, impact
regions) are constructed such that they are either identical to, or are a union of, existing
administrative regions. They (i) respect national borders, (ii) are roughly equal in population
across regions, and (iii) display approximately homogenous within-region climatic conditions.
Appendix 4.C details the algorithm used to create impact regions.
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4.3.2 Climate Projections.

We use a set of 21 high-resolution bias-corrected, downscaled global climate projections pro-
duced by NASA Earth Exchange (NEX) (Thrasher et al., 2012)20 that provide daily tem-
perature and precipitation through the year 2100.21 We obtain climate projections based on
two standardized emissions scenarios: Representative Concentration Pathways 4.5 (RCP4.5,
an emissions stabilization scenario) and 8.5 (RCP8.5, a scenario with intensive growth in
fossil fuel emissions) (Van Vuuren et al., 2011; Thomson et al., 2011)).

These 21 climate models systematically underestimate tail risks of future climate change
(Tebaldi and Knutti, 2007; Rasmussen, Meinshausen, and Kopp, 2016).22 To correct for this,
we follow Hsiang et al. (2017) by assigning probabilistic weights to climate projections and use
12 surrogate models that describe local climate outcomes in the tails of the climate sensitivity
distribution (Rasmussen, Meinshausen, and Kopp, 2016). Figure 4.2B shows the resulting
weighted climate model distribution. The 21 models and 12 surrogate models are treated
identically in our calculations and we describe them collectively as the surrogate/model
mixed ensemble (SMME). Gridded output from these projections are aggregated to impact
regions; full details on the climate projection data are in Appendix 4.B.2.

4.3.3 Socioeconomic Projections.

Projections of population and income are a critical ingredient in our analysis, and for these
we rely on the Shared Socioeconomic Pathways (SSPs), which describe a set of plausible
scenarios of socioeconomic development over the 21st century (see Hsiang and Kopp (2018)
for a description of these scenarios). We use SSP2, SSP3, and SSP4, which yield emissions
in the absence of mitigation policy that fall between RCP4.5 and RCP8.5 in integrated as-
sessment modeling exercises (Riahi et al., 2017). For population, we use the International
Institute for Applied Systems Analysis (IIASA) SSP population projections, which provide
estimates of population by age cohort at country-level in five-year increments (IIASA Energy
Program, 2016). National population projections are allocated to impact regions based on
current satellite-based within-country population distributions from Bright et al. (2012) (see
Appendix 4.B.3.3). Projections of national income per capita are similarly derived from the
SSP scenarios, using both the IIASA projections and the Organization for Economic Co-
operation and Development (OECD) Env-Growth model (Dellink et al., 2015) projections.
We allocate national income per capita to impact regions using current nighttime light satel-
lite imagery from the NOAA Defense Meteorological Satellite Program (DSMP). Appendix
4.B.3.2 provides details on this calculation.

20The dataset we use, called the NEX-GDDP, downscales global climate model (GCM) output from the Coupled Model
Intercomparison Project Phase 5 (CMIP5) archive (Taylor, Stouffer, and Meehl, 2012), an ensemble of models typically used
in national and international climate assessments.

21See Hsiang and Kopp (2018) for a description of climate model structure and output, as well as the RCP emissions scenarios.
22The underestimation of tail risks in the 21-model ensemble is for several reasons, including that these models form an

ensemble of opportunity and are not designed to sample from a full distribution, they exhibit idiosyncratic biases, and have
narrow tails. We are correcting for their bias and narrowness with respect to global mean surface temperature (GMST)
projections, but our method does not correct for all biases.
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4.4 Methods

Here we describe a set of methods designed to generate future projections of the impacts
of climate change on mortality across the globe, relying on empirically estimated historical
relationships. In the first subsection, we detail the estimating equation used to recover the
average treatment effect of temperature on mortality rates across all administrative regions
in our sample. This gives us the casual estimate of temperature’s impact upon mortality
using historical data. In the second subsection, we describe a model of heterogeneous treat-
ment effects that allows us to capture differences in temperature sensitivity across distinct
populations in our sample, and thus to quantify the benefits of adaptation as observed in
historical data. The remaining sections detail how we combine this empirical information
with the theoretical framework from Section 4.2 to generate global projections of mortality
risk under climate change, accounting for both benefits and costs of adaptation, in addition
to how we account for uncertainty in these projections.

4.4.1 Estimating a pooled multi-country mortality-temperature
response function

We begin by estimating a pooled, multi-country mortality-temperature response function.
The model exploits year-to-year variation in the distribution of daily weather to identify
the response of all-cause mortality to temperature, following, for example, Deschênes and
Greenstone (2011). Specifically, we estimate the following equation on the pooled mortality
sample from 40 countries,23

Mait = ga(Tit) + qac(Rit) + αai + δact + εait (4.10)

where a indicates age category with a ∈ {< 5, 5-64, > 64}, i denotes the second adminis-
trative level (ADM2, e.g., county),24 c denotes country, and t indicates years. Thus, Mait is
the age-specific all-cause mortality rate in ADM2 unit i in year t. αai is a fixed effect for
age× ADM2, and δact a vector of fixed effects that allow for shocks to mortality that vary
at the age× country × year level.

Our focus in Equation 4.10 is the effect of temperature on mortality, represented by
the response function ga(·), which varies by age. Before describing the functional form of
this response, we note that our climate data are provided at the grid-cell-by-day level. To
align gridded daily temperatures with annual administrative mortality records, we first take
nonlinear functions of grid-level daily average temperature and sum these values across the
year. This is done before the data are spatially averaged in order to accurately represent the
distributions at grid cell level. We then collapse annual observations across grid cells within
each ADM2 using population weights in order to represent temperature exposure for the
average person within an administrative unit (see Appendix 4.B.2.4 for details). This process
results in the annual, ADM2-level vector Tit. We then choose ga(·) to be a linear function

23We omit India in our main analysis because mortality records do not record age.
24This is usually the case. However, as shown in Table 4.1, the EU data is reported at Nomenclature of Territorial Units for

Statistics 2nd (NUTS2) level, and Japan reports mortality at the first administrative level.
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of the nonlinear elements of Tit. This construction allows us to estimate a linear regression
model while preserving the nonlinear relationship between mortality and temperature that
takes place at the grid-cell-by-day level (Hsiang, 2016). The nonlinear transformations of
daily temperature captured by Tit determine, through their linear combination in ga(·), the
functional form of the mortality-temperature response function.

In our main specification, Tit contains polynomials of daily average temperatures (up to
fourth order), summed across the year. We emphasize results from the polynomial model
because it strikes a balance between providing sufficient flexibility to capture important
nonlinearities, parsimony, and limiting demands on the data when covariate interactions
are introduced (see Section 4.4.2). Results for alternative functional form specifications
are very similar to the fourth-order polynomial and are provided in Appendices 4.D.1 and
4.F. Analogous to temperature, we summarize daily grid-level precipitation in the annual
ADM2-level vectorRit. We constructRit as a second-order polynomial of daily precipitation,
summed across the year, and estimate an age- and country-specific linear function of this
vector, represented by qac(·).

The core appeal of Equation 4.10 is that the mortality-temperature response function
is identified from the plausibly random year-to-year variation in temperature within a geo-
graphic unit (Deschênes and Greenstone, 2007). Specifically, the age× ADM2 fixed effects
αai ensure that we isolate within-location year-to-year variation in temperature and rainfall
exposure, which is as good as randomly assigned. The age × country × year fixed effects
δact account for any time-varying trends or shocks to age-specific mortality rates which are
unrelated to the climate.

We fit the multi-country pooled model in Equation 4.10 using weighted least squares,
weighting by age-specific population so that the coefficients correspond to the average person
in the relevant age category and to account for the greater precision associated with mortality
estimates from larger populations.25 Standard errors are clustered at the first administrative
level (ADM1, e.g., state), instead of at the unit of treatment (ADM2, e.g., county), to account
for spatial as well as temporal correlation in error structure. Robustness of this model to
alternative fixed effects and error structures is shown in Section 4.5, and to alternative
climate datasets in Appendix 4.D.1.

4.4.2 Heterogeneity in the mortality-temperature response func-
tion based on climate and income

The average treatment effect identified through Equation 4.10 is likely to mask important
differences in the sensitivity of mortality rates to changes in temperature across the di-
verse populations included in our sample. These differences in sensitivity reflect differential
investments in adaptation – i.e., different levels of b∗. We cannot observe the level of b
directly, but we can observe those factors that influence how poplations select an optimal
b∗ and condition on those directly to model heterogeneity in the temperature-mortality re-
lationship. We develop a simple two-factor interaction model using average temperature

25We constrain population weights to sum to one for each year in the sample, across all observations. That is, our weight for
an observation in region i in year t for age group a is ωait = popait/

∑
i

∑
a pop

a
it. This adjustment of weights is important in

our context, as we have a very unbalanced panel, due to the merging of heterogeneous country-specific mortality datasets.
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(i.e., long-run climate) and average per capita incomes to explain cross-sectional variation in
the estimated mortality-temperature relationship. This approach provides provides separate
estimates for the effect of climate-driven adaptation and income growth on shape of the
temperature-mortality relationship, as they are observed in the historical record.

The two factors defining this interaction model come directly from the theoretical frame-
work in Section 4.2. First, a higher average temperature incentivizes investment in heat-
related adaptive behaviors, as the return to any given adaptive mechanism is higher the more
frequently the population experiences days with life-threatening temperatures. In Section
4.2, this was represented by b∗ being a function of climate C. In our empirical specification,
we use a parsimonious parameterization of the climate, interacting our nonlinear tempera-
ture response function with the location-specific long-run average temperature.26 Second,
higher incomes relax agents’ budget constraints and hence facilitate adaptive behavior. In
Section 4.2, this was captured by optimal adaptation b∗ being an implicit function of income
Y . To capture this effect, we interact the temperature polynomial with location-specific per
capita income.

In addition to these theoretical arguments, there is a practical reason to restrict ourselves
to these two covariates when estimating this interaction model. In order to predict responses
around the world and inform projections of damages in the future, it is necessary for all key
covariates in the specification to be available globally today, at high spatial resolution, and
that credible projections of their future evolution are available. Unlike other covariates that
may be of interest, average incomes and climate can be extracted from the SSPs and the
climate simulations, respectively. These two factors have been the focus of studies modeling
heterogeneity across the broader climate-economy literature.27

We capture heterogeneous patterns of temperature sensitivity via the interaction model:

Mait =ga(Tit | TMEANs, log(GDPpc)s) + qca(Rit) + αai + δact + εait (4.11)

where s refers to ADM1-level (e.g., state or province), TMEAN is the sample-period average
annual temperature, GDPpc is the sample-period average of annual GDP per capita, and
all other variables are defined as in Equation 4.10. We implement a form of ga(·) that
exploits linear interactions between each ADM1-level covariate and all nonlinear elements of
the temperature vector Tit. The model does not include uninteracted terms for TMEAN
and GDPpc because they are collinear with αai. In contrast to the uninteracted models
in Equation 4.10, we estimate Equation 4.11 without any regression weights since we are
explicitly modeling heterogeneity in treatment effects rather than integrating over it (Solon,
Haider, and Wooldridge, 2015). This specification allows for the same flexibility in the
functional form of temperature as in Equation 4.10, it is just conditional on income and
climate. More details on implementation of this regression are given in Appendix 4.D.4.28

26In Appendix 4.D.5, we show robustness of this parsimonious characterization of the long-run climate to a more complex
specification.

27See Mendelsohn, Nordhaus, and Shaw (1994); Kahn (2005); Auffhammer and Aroonruengsawat (2011); Hsiang, Meng, and
Cane (2011); Graff Zivin and Neidell (2014); Moore and Lobell (2014); Davis and Gertler (2015); Heutel, Miller, and Molitor
(2017); Isen, Rossin-Slater, and Walker (2017).

28To see how we implement Equation 4.11 in practice, note that in Equation 4.10, we estimate ga(·) as the inner product
between the nonlinear functions of temperature Tit and a vector of coefficients βa; that is, ga(Tit) = βaTit. For example, in
the polynomial case, Tit is a vector of length P and contains the annual sum of daily average temperatures raised to the powers
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Equation 4.11 relies on both plausibly random year-to-year fluctuations in temperature
within locations and cross-sectional variation in climate and income between administrative
units. We rely on cross-sectional variation to identify the interaction effects, because a
representative sample of modern populations have not experienced an alternative climate
that could be exploited to identify these terms. The consequence is that the case for causally
interpreting the coefficients capturing interactions in Equation 4.11 is weaker than for other
coefficients in Equation 4.11 and those in Equation 4.10.

We nonetheless view the resulting estimates as informative for at least two reasons. First,
the objects of interest are the interactions, not the level of mortality, so while unobserved
factors like institutions undoubtedly affect the overall mortality rate (Acemoglu, Johnson,
and Robinson, 2001), their potential influence on the mortality sensitivity of temperature
is less direct, particularly after adjustment for income and climate. Second, we probed the
reliability of the interaction coefficients in several ways and found them to be robust. For
example, we found that the estimation off Equation 4.11 in the main sample provides reliable
estimates of the mortality temperature sensitivity in India (see Appendix section 4.D.6), pro-
viding an out-of-sample test of Equation 4.11. Additionally, the coefficients are qualitatively
unchanged when we use alternative characterizations of the climate (see Appendix 4.D.5)
and weather (see Appendix 4.F).

4.4.3 Spatial extrapolation: Constructing a globally representa-
tive response

The fact that carbon emissions are a global pollutant requires that estimates of climate
damages used to inform an SCC must be global in scope. A key challenge for generating such
globally-comprehensive estimates in the case of mortality is the absence of data throughout
much of the world. Often, registration of births and deaths does not occur systematically.
Although we have, to the best of our knowledge, compiled the most comprehensive mortality
data file ever collected, our 40 countries only account for 38% of the global population (55%
if India is included, although it only contains all-age mortality rates). This leaves more than
4.2 billion people unrepresented in the sample of available data, which is especially troubling
because these populations have incomes and live in climates that may differ from the parts
of the world where data are available.

To achieve the global coverage essential to understanding the costs of climate change, we
use the results from the estimation of Equation 4.11 on the observed 38% global sample to
estimate the sensitivity of mortality to temperature everywhere, including the unobserved
62% of the world’s population. Specifically, the results from this model enable us to use

p = 1, ..., P and aggregated across grid cells. The coefficients βa therefore fully describe the age-specific nonlinear response
function. In Equation 4.11, we allow ga(Tit) to change with climate and income by allowing each element of βa to be a linear
function of these two variables. Using this notation, our estimating equation is:

Mait = (γ0,a + γ1,aTMEANs + γ2,a log(GDPpc)s)︸ ︷︷ ︸
βa

Tit + qca(Rit) + αai + δact + εait

where γ0,a,γ1,a, and γ2,a are each vectors of length P , the latter two describing the effects of TMEAN and log(GDPpc) on
the sensitivity of mortality Mait to temperature Tit.
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two observable characteristics – average temperature and income – to predict the mortality-
temperature response function for each of our 24,378 impact regions. Importantly, it is not
necessary to recover the overall mortality rate for these purposes.

To see how this is done, we note that the projected response function for any impact region
r requires three ingredients. The first are the estimated coefficients ĝa(·) from Equation 4.11.
The second are estimates of GDP per capita at the impact region level.29 And third is the
average annual temperature (i.e., a measure of the long-run climate) for each impact region,
where we use the same temperature data that were assembled for the regressions in Equations
4.10 and 4.11.

We then predict the shape of the response function for each age group a, impact region
r, and year t, up to a constant: ĝart = ĝa(Trt | TMEANrt, log(GDPpc)rt) for t = 2015. The
various fixed effects in Equation 4.11 are unknown and omitted, since they were nuisance
parameters in the original regression. This results in a unique, spatially heterogeneous, and
globally comprehensive set of predicted response functions for each location on Earth.

The accuracy of the predicted response functions will depend, in part, on its ability to
capture responses in regions where mortality data are unavailable. An imperfect but helpful
exercise when considering whether our model is representative is to evaluate the extent of
common overlap between the two samples. Figure 4.3A shows this overlap in 2015, where
the grey squares reflect the joint distribution of GDP and climate in the full global partition
of 24,378 impact regions and orange squares represent the analogous distribution only for
the impact regions in the sample used to estimate Equations 4.10 and 4.11. It is evident
that temperatures in the global sample are generally well-covered by our data, although
we lack coverage for the poorer end of the global income distribution due to the absence of
mortality data in poorer countries. We explore this extrapolation to lower incomes with a set
of robustness checks in Appendix 4.D; we find the model to perform well in an out-of-sample
test and to be robust to alternative functional form assumptions. We do a similar type of
prediction when we project temperature-mortality relationships into the future, discussed in
the next section, and thus make a similar comparison of samples. We find that, at the end
of the century, the overlap is generally better, although unsurprisingly the support of our
historical data does not extend to the highest projected temperatures and incomes. Thus,
in our projections of the future, in some location and year combinations, we must make out-
of-sample predictions about how temperature sensitivity will diminish beyond that observed
anywhere in the world today, as temperatures and incomes rise outside of the support in
existing global cross-section. We assess the robustness of our results to different assumptions
regarding out-of-sample temperatures in Section 4.5.4 and Appendix 4.F.3.

4.4.4 Temporal projection: Accounting for future adaptation ben-
efits

As discussed in Section 4.2, a measure of the full mortality risk of climate change must
account for the benefits that populations realize from optimally adapting to a gradually
warming climate, as well as from income growth relaxing the budget constraint and enabling

29The procedure is described in Section 4.3.2 and Appendix 4.B.3.2
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Figure 4.3

Joint coverage of income and long-run average temperature for estimating and full samples.

Joint distribution of income and long-run average annual temperature in the estimating sample (red-orange), as compared to
the global sample of impact regions (grey-black). Panel A shows in grey-black the global sample for regions in 2015. Panel
B shows in grey-black the global sample for regions in 2100 under a high-emissions scenario (RCP8.5) and a median growth
scenario (SSP3). In both panels, the in-sample frequency in red-orange indicates coverage for impact regions within our data
sample in 2015.

compensatory investments. Thus, we allow each impact region’s mortality-temperature re-
sponse function to evolve over time, reflecting how we might plausibly expect climate and
incomes to change—as described in a set of internationally standardized and widely used
scenarios. We model the evolution of response functions based on projected changes to av-
erage climate and GDP per capita, again using the estimation results from fitting Equation
4.11.

We allow the response function in region r and in year t to evolve over time as follows.
First, a 13-year moving average of income per capita in region r is calculated using national
forecasts from the Shared Socioeconomics Pathways (SSP), combined with a within-country
allocation of income based on present-day nighttime lights (see Appendix 4.B.3.2), to gen-
erate a new value of log(GDPpc)rt. The length of this time window is chosen based on a
goodness-of-fit test across alternative window lengths (see Appendix 4.E.1). Second, a 30-
year moving average of temperatures for region r is updated in each year t to generate a new
level of TMEANrt. Finally, the response curves ĝart = ĝa(Trt | TMEANrt, log(GDPpc)rt)
are calculated for each region for each age group in each year with these updated values of
TMEANrt and log(GDPpc)rt.

The calculation of future mortality-temperature response functions is conceptually straight-
forward and mirrors the procedure used to extrapolate response functions across locations
that do not have historical data. However, as we are generating projections decades into
the future, we must impose a set of reasonable constraints on this calculation in order to
ensure plausible out-of-sample projections. The following two constraints, guided by eco-
nomic theory and by the physiological literature, ensure that future response functions are
consistent with the fundamental characteristics of mortality-temperature responses that we
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observe in the historical record and demonstrate plausible out-of-sample projections.30 First,
we impose the constraint that the response function must be weakly monotonic around an
empirically estimated, location-specific, optimal mortality temperature, called the minimum
mortality temperature (MMT). That is, we assume that temperatures farther from the MMT
(either colder or hotter) must be at least as harmful as temperatures closer to the MMT.
This assumption is important because Equation 4.11 uses within-sample variation to param-
eterize how the U-shaped response function flattens; with extrapolation beyond the support
of historically observed income and climate, this behavior could go “beyond flat” and the
response function would invert (Figure 4.E.1). In fact, this is guaranteed to occur mechani-
cally if enough time elapses, because our main specification only allowed income and climate
to interact with the response functions linearly. However, such behavior, in which extreme
temperatures are less damaging to mortality rates than more moderate temperatures, is
inconsistent with a large body of epidemiological and econometric literature recovering U-
shaped response functions for mortality-temperature relationships under a wide range of
functional form assumptions and across diverse locations globally (Gasparrini et al., 2015;
Burgess et al., 2017; Deschênes and Greenstone, 2011), as well as what we observe in our data.
As a measure of its role in our results, the weak monotonicity assumption binds for the >64
age category at 35◦C in 9% and 18% of impact regions in 2050 and 2100, respectively.31,32

Second, we assume that rising income cannot make individuals worse off, in the sense
of increasing the temperature sensitivity of mortality. Because increased income per capita
strictly expands the choice set of individuals considering whether to make adaptive invest-
ments, it should not increase the effect of temperature on mortality rates. We place no
restrictions on the cross-sectional effect of income on the temperature sensitivity when es-
timating Equation 4.11, but we constrain the marginal effect of income on temperature
sensitivity to be weakly negative in future projections. This assumption never binds for
temperature sensitivity to hot days (>35◦C).33

Under these two constraints, we estimate projected impacts separately for each impact
region and age group for each year from 2015 to 2100 by applying projected changes in the
climate to these spatially and temporally heterogeneous response functions. We compute the
nonlinear transformations of daily average temperature that are used in the function ga(Trt)
under both the RCP4.5 and RCP8.5 emissions scenarios for all 33 climate projections in
the SMME (as described in Section 4.3.2). This distribution of climate models captures
uncertainties in the climate system through 2100.

30See Appendix 4.E.2 for details on these assumptions and their implementation.
31The frequency with which the weak monotonicity assumption binds will depend on the climate model and the emissions

and socioeconomic trajectories used; reported statistics refer to the CCSM4 model under RCP8.5 with SSP3.
32In imposing this constraint, we hold the MMT fixed over time at its baseline level in 2015 (Figure 4.E.1D). We do so

because the use of spatial and temporal fixed effects in Equation 4.11 implies that response function levels are not identified;
thus, while we allow the shape of response functions to evolve over time as incomes and climate change, we must hold fixed
their level by centering each response function at its time-invariant MMT. Note that these fixed effects are by definition not
affected by a changing weather distribution. Thus, their omission does not influence estimates of climate change impacts.

33The assumption that rising income cannot increase the temperature sensitivity of mortality does not bind for hot days
because our estimated marginal effects of income are negative for high temperatures (see Table 4.D.3). However, it does bind
for the >64 age category under realized temperatures in 30% and 24% of impact regions days in 2050 and 2100, respectively.
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4.4.5 Computing adaptation costs using empirical estimates

As shown in Section 4.2, the full cost of the mortality risk due to climate change is the sum
of the observable change in mortality and adaptation costs (Equation 4.3). The latter cannot
be observed directly; however, as derived in Section 4.2.2, we can recover an expression for
adaptation costs that is, in principle, empirically tractable. Specifically, these costs can be
computed by taking the difference between the total and partial derivative of expected mor-
tality risk with respect to changes in the climate, and integrating this difference (Equation
4.6). Here, we describe a practical implementation for this calculation.

Our empirical approximation of the adaptation costs incurred as the climate changes
gradually from t = 1 to t = 2 is:

̂A(b∗(Y2,C2))− A(b∗(Y2,C1))

≈ −
∫ 2

1

V SLt

[
d ˆ̃f(b∗t ,Ct)

dC
− ∂ ˆ̃f(b∗t ,Ct)

∂C

]
dCt

dt
dt

≈ −
t2∑

τ=t1+1

V SLτ

(
∂E[ĝ]

∂TMEAN

∣∣∣∣
Cτ ,Y2

)
︸ ︷︷ ︸

γ̂1E[T ]τ

(TMEANτ − TMEANτ−1) ,

(4.12)

where the first line of Equation 4.12 is identical to Equation 4.6, except that we use “hat”

notation to indicate that ˆ̃f(·) is an empirical estimate of expected mortality risk. The
second (approximate) equality follows from (i) taking the total and partial derivative of our
estimating equation (Equation 4.11) with respect to climate — where the total derivative
accounts for adaptation while the partial does not, (ii) substituting terms and simplifying
the expression, and (iii) implementing a discrete-time approximation for the continuous
integral (see Appendix 4.A.3 for a full derivation). The under-braced object, γ̂1E[T ]τ , is the
product of the expectation of temperature and the coefficient associated with the interaction
between temperature and climate from estimating equation 4.11: it represents our estimate
of marginal adaptation benefits.34 This derivative is then multiplied by the change in average
temperature between each period.35

In implementation of Equation 4.12, we treat the VSL as a function of income, which
evolves with time, but as invariant to changes in the climate (see Section 4.6). Note that these
adaptation cost estimates are calculated for each impact region, age group, and year, using
t = 2015 as the baseline year, for each of our 33 high-resolution climate model projections.

34Recall that the specific functional form we use to estimate mortality risk as a function of temperature, climate, and income

is g(·) = (γ0 + γ1TMEANt + γ2 log(GDPpc)t)Tt. Thus, the partial derivative
∂E[ĝ]

∂TMEAN
is equivalent to γ̂1E[T ]τ .

35We assume that individuals use the recent past to form expectations about current temperature realizations, so this
expectation is computed over the prior 15 years, with weights of historical observations linearly declining in time.

62



4.4.6 Accounting for uncertainty in projected mortality effects of
climate change

An important feature of the analysis is to develop estimates of the mortality impacts of cli-
mate change that reflect the inherent uncertainty in these future projections.36 As discussed
in Sections 4.4.4 and 4.4.5, we construct estimates of the mortality risk of climate change
for each of 33 distinct climate projections in the SMME, capturing uncertainty in the cli-
mate system.37 Additionally, there exists an important second source of uncertainty in our
projected impacts that is independent of physical uncertainty, arising from the econometric
estimates of response functions; i.e., uncertainty in the estimate of ĝa(·).

In order to account for both of these sources of uncertainty, we execute a Monte Carlo
simulation following the procedure in Hsiang et al. (2017). First, for each age category, we
randomly draw a set of parameters, corresponding to the terms composing ĝa(·), from an
empirical multivariate normal distribution characterized by the covariance between all of the
parameters from the estimation of Equation 4.11.38 Second, using these parameters in com-
bination with location- and time-specific values of income and average climate provided by a
given SSP scenario and RCP-specific climate projection from each of the 33 climate projec-
tions in the SMME, we construct a predicted response function for each of our 24,378 impact
regions. Third, with these response functions in hand, we use daily weather realizations for
each impact region from the corresponding simulation to predict an annual mortality impact.
Finally, this process is repeated until approximately 1,000 projection estimates are complete
for each impact region, age group, and RCP-SSP combination.

With these ∼1,000 response functions, we calculate the full mortality risk (i.e., inclusive
of adaptation benefits and costs) for each impact region for each year between 1981 and
2100. The resulting calculation is computationally intensive (requiring ∼94,000 hours of
CPU time across all scenarios reported in the main text and Appendix) but incorporates
important uncertainty from climate and econometric sources. When reporting projected
impacts in any given year, we report summary statistics (e.g., mean, median) of this entire
distribution.

4.5 Results I: Full mortality risk of climate change

This section presents results describing temperature’s impact on mortality, heterogeneity in
that impact, and projections of the full mortality risk of climate change into the future.
Projections of global climate change impacts rely on extrapolation of mortality-temperature
responses to parts of the world where historical mortality data are unavailable and to future

36See Burke et al. (2015) for a discussion of combining physical uncertainty from multiple models in studies of climate change
impacts.

37Note that while the SMME fully represents the tails of the climate sensitivity distribution as defined by a probabilistic
simple climate model (see Appendix 4.B.2.3), there remain important sources of climate uncertainty that are not captured in
our projections, due to the limitations of both the simple climate model and the GCMs. These include some climate feedbacks
that may amplify the increase of global mean surface temperature, as well as some factors affecting local climate that are poorly
simulated by GCMs.

38Note that coefficients for all age groups are estimated jointly in Equation 4.11, such that across-age-group covariances are
accounted for in this multivariate distribution.
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time periods; applying the approaches described in Sections 4.4.3 and 4.4.4. Using the
approach outlined in Sections 4.4.5 and 4.4.6, we then calculate the full global mortality risk
of climate change, accounting for the benefits and costs of adaptation and for climate model
and econometric uncertainty.

4.5.1 The mortality-temperature relationship: Pooled multi-country
results

4.5.1 Pooled Results.

Pooling subnational mortality records across 40 countries and all age groups, we first estimate
a version of Equation 4.10 in which g(Tit) does not depend on age, showing results for the
all-age mortality-temperature response function obtained with a fourth-order polynomial in
daily average temperature. Table 4.2 displays this result, showing marginal effects at various
temperatures. These estimates can be interpreted as the change in the number of deaths per
100,000 per year resulting from one additional day at each temperature, compared to the
reference day of 20◦C (68◦F). Columns (1)-(3) increase the saturation of temporal controls
in the model specification, ranging from country-year fixed effects in column (1) to country-
year-age fixed effects in column (2) and adding age-specific state-level linear trends in column
(3). Our preferred specification is column (2), as column (1) does not account for differential
temporal shocks to mortality rates by age group, while in column (3) we cannot reject the
null of equal age-specific, ADM1-level trends.

The data reveal the U-shaped response that is common in the prior literature across all
specifications. This is noteworthy because the previous literature has relied on samples with
much more restrictive geographic and population coverage. Examining column (2), we find
that a day at 35◦C (95◦F) leads to an increase in the all-age mortality rate of approximately
0.4 deaths per 100,000, relative to a day at 20◦C. A day at -5◦C (23◦F) similarly increases
the all-age mortality rate by 0.3 deaths per 100,000. This result is robust to alternative
functional form assumptions (i.e., different nonlinear functions of Tit), including a non-
parametric binned regression, as well as to the use of alternative, independently-sourced,
climate datasets (Figure 4.D.1).

4.5.2 Age Group Heterogeneity.

As prior work has shown that age cohorts respond differently to temperature, and because we
expect considerable demographic transitions in the future, we test for heterogeneity across
age groups using Equation 4.10. Specifically, we allow for separate mortality-temperature
response functions ga(Tit) for each of three age categories. Figure 4.4 displays the mortality-
temperature responses for each of our three age categories (<5, 5-64, >64) estimated from
Equation 4.10 and using the pooled 41-country sample. These curves correspond with our
primary specification (equivalent to column (2) in Table 4.D.1).39 This reveals substantial
heterogeneity across age groups within our multi-country sample. In our preferred specifica-
tion, people over the age of 64 experience approximately 4.7 extra deaths per 100,000 for a

39Regression results for all specifications shown in Table 4.2 are also shown for the age-specific model in Table 4.D.1.
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Table 4.2

Temperature-mortality response function estimated using pooled subnational data across 40 countries.

All-age mortality rate (per 100,000)

(1) (2) (3) (4) (5)

35◦ C 0.410*** 0.446*** 0.210* 0.675** 0.470***
(0.128) (0.168) (0.118) (0.274) (0.163)

30◦ C 0.305*** 0.307*** 0.130** 0.338*** 0.323***
(0.068) (0.080) (0.065) (0.106) (0.075)

25◦ C 0.147*** 0.141*** 0.054 0.119*** 0.150***
(0.037) (0.035) (0.039) (0.031) (0.034)

20◦ C – – – – –
– – – – –

0◦ C 0.121 0.114 0.108 0.144** 0.070
(0.125) (0.128) (0.100) (0.067) (0.122)

-5◦ C 0.307** 0.275* 0.193* 0.244** 0.212
(0.152) (0.158) (0.105) (0.096) (0.148)

Adj R-squared 0.983 0.989 0.991 0.999 0.989
N 820697 820237 820237 820237 820237
Age × ADM2 FE Yes Yes Yes Yes Yes
Country × Year FE Yes
AGE × Country × Year FE Yes Yes Yes Yes
Age × ADM1 linear trend Yes
Precision weighting (FGLS) Yes
13-month exposure Yes

Notes: This table shows coefficient estimates (standard errors) for a
temperature-mortality response function estimated using pooled subnational
data across 40 countries and 38% of the global population. Regression esti-
mates are from a fourth-order polynomial in daily average temperature and
are estimated using GMFD temperature data with a sample that was win-
sorized at the top 1% level. Point estimates indicate the effect of a single
day at each daily average temperature value shown, relative to a day with an
average temperature of 20◦C (68◦F). Standard errors clustered at the ADM1
(e.g., state) level. Regressions in columns (1)-(3), and (5) are population-
weighted. Column (4) weights use a precision-weighting approach (see text).

day at 35◦C compared to a day at 20◦C, a substantially larger effect than that for younger
cohorts, which exhibit little response. This age group is also more severely affected by cold
days; estimates suggest that people over the age of 64 experience 3.4 deaths per 100,000 for a
day at −5◦C compared to a day at 20◦C, while there is a relatively weak mortality response
to these cold days for other age categories. Overall, these results demonstrate that the el-
derly are disproportionately harmed by additional hot days and disproportionately benefit
from reductions in cold days, consistent with prior evidence from the U.S. (Deschênes and
Moretti, 2009; Heutel, Miller, and Molitor, 2017). It is important to note, however, that the
oldest age group (over 64 years) accounts for just 12% of the population in our historical
sample, causing it to differ from the average treatment effect in Table 4.2.
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Figure 4.4
Mortality-temperature response function with demographic heterogeneity. Mortality-temperature response func-
tions are estimated for populations <5 years of age (green), between 5 and 64 years of age (blue), and >64 years of
age (red). Regression estimates shown are from a fourth-order polynomial in daily average temperature and are es-
timated using GMFD weather data with a sample that was winsorized at the 1% level. All response functions are
estimated jointly in a stacked regression model that is fully saturated with age-specific fixed effects (Equation 4.10).

4.5.3 Alternative Specifications.

In both Tables 4.2 and 4.D.1, columns (4) and (5) provide results from alternative specifi-
cations. In column (4), we address the fact that some of our data are drawn from countries
which may have less capacity for data collection than others in the sample. Because our mor-
tality data is collected by institutions in different countries, it is possible that some sources
are systematically less precise. To account for this, we re-estimate our model using Fea-
sible Generalized Least Squares (FGLS) under the assumption of constant variance within
each ADM1 unit.40 In column (5), we address the possibility that temperatures can exhibit
lagged effects on health and mortality (e.g., Deschênes and Moretti, 2009; Barreca et al.,
2016; Guo et al., 2014). Lagged effects within and across months in the same calendar year
are accounted for in the net annual mortality totals used in all specifications. However, it is
possible that temperature exposure in December of each year affects mortality in January of
the following year. To account for this, in column (5) we define a 13-month exposure window
to additionally account for temperatures previous December.41 Tables 4.2 and 4.D.1 show
that the results for both of these alternative specifications are similar in sign and magnitude
to those from column (2).

40To do this, we estimate the model in Equation 4.10 using population weights and our preferred specification (column (2)).
Using the residuals from this regression, we calculate an ADM1-level weight that is equal to the average value of the squared
residuals, where averages are taken across all ADM2-age-year level observations that fall within a given ADM1. We then
inverse-weight the regression in a second stage, using this weight. All ADM2-age-year observations within a given ADM1 are
assigned the same weight in the second stage, where ADM1 locations with lower residual variance are given higher weight. For
some ADM2s, there are insufficient observations to identify age-specific variances; to ensure stability, we dropped the ADM2s
with less than 5 observations per age group. This leads us to drop 246 (of >800,000) observations in this specification.

41The specification in column (5) defines the 13-month exposure window such that for a given year t, exposure is calculated
as January to December temperatures in year t and December temperature in year t− 1.
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Figure 4.5

Heterogeneity in the mortality-temperature relationship (age >64 mortality rate).

Each panel represents a predicted mortality-temperature response function for the >64 age group for a subset of the income-
average temperature covariate space within our data sample. Response functions in the lower left apply to the low-income, cold
regions of our sample, while those in the upper right apply to the high-income, hot regions of our sample. Regression estimates
are from a fourth-order polynomial in daily average temperature and are estimated using GMFD weather data with a sample
that was winsorized at the 1% level on the top end of the distribution only. All response functions are estimated jointly in a
stacked regression model that is fully saturated with age-specific fixed effects, and where each temperature variable is interacted
with each covariate. Values in the top left-hand corner of each panel show the percentage of the global population that reside
within each tercile of average income and average temperature in 2010 (black text) and as projected in 2100 (red text, SSP3).

4.5.2 Subnational heterogeneity in the mortality-temperature re-
sponse

It is likely that Equation 4.10 obscures heterogeneity in the mortality-temperature response
function; this subsection evaluates whether mortality sensitivity to temperature varies with
average climate and average income through estimation of Equation 4.11. Tabular results
are reported in Table 4.D.3 for each of three age groups. As these terms are difficult to
interpret, we visualize this heterogeneity by dividing the sample into terciles of income
and climate (i.e., the two interaction terms), creating nine discrete bins that partition the
log(GDPpc) × TMEAN space. We plot predicted response functions at the mean value
of climate and income within each of these nine bins, using the coefficients in Table 4.D.3.
This results in a set of predicted response functions that vary across the joint distribution of
income and average temperature within our sample data. The resulting response functions
are shown in Figure 4.5 for the >64 age category (other age groups are shown in Appendix
4.D.4), where average incomes are increasing across bins vertically and average temperatures
are increasing across bins horizontally.

The Figure 4.5 results are broadly consistent with the predictions from the theoretical
framework in Section 4.2. Recall that we expect increased frequency of exposure to higher
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temperatures to incentivize investment in adaptive behaviors or technologies, as the marginal
mortality benefit of adaptation is higher in hotter locations. This would lead to lower
temperature sensitivities to heat in places which are warmer. A striking visual finding is
that within each income tercile, the effect of hot days (e.g., days >35◦C) declines as one
moves from left (cold climates) to right (hot climates). Similarly, a loosening of the budget
constraint, as proxied by increasing GDP per capita, should enable individuals to invest
further in adaptation. Indeed, Figure 4.5 reveals that moving from the bottom (low income)
to top (high income) within a climate tercile causes a substantial flattening of the response
function, especially at high temperatures.

Two statistics help to summarize the findings from Figure 4.5. First, in the >64 age
category across all income values, moving from the coldest to the hottest tercile saves on
average 7.9 (p-value=0.06) deaths per 100,000 at 35◦C. Second, moving from the poorest
to the richest tercile across all climate values in the sample saves approximately 5.0 (p-
value=0.1) deaths per 100,000 at 35◦C for the > 64 age category.

4.5.3 Spatial extrapolation of temperature sensitivity

Figure 4.6 reports on our extrapolation of mortality-temperature response functions to the
entire globe. In panel A, these predicted mortality-temperature responses are plotted for
each impact region for 2015 values of income and climate for the oldest age category and
for the impact regions that fall within the countries in our mortality dataset (“in-sample”).
Despite a shared overall shape, panel A reveals substantial heterogeneity across regions in
this temperature response. Panel B shows an analogous figure for the youngest age category.
Geographic heterogeneity within our sample is shown for hot days in the maps in panels C
and D, where colors indicate the marginal effect of a day at 35◦C day, relative to a day at a
location-specific minimum mortality temperature. Grey areas are locations where mortality
data are unavailable.

Figure 4.6E–H show analogous plots, but now extrapolated to the entire globe. We can
fill in the estimated mortality effect of a 35◦C day for regions without mortality data by using
location-specific information on income and climate during 2015. The predicted responses
at the global scale imply that a 35◦C day increases the average mortality rate across the
globe for the oldest age category by 10.1 deaths per 100,000 relative to a location-specific
minimum mortality temperature.42 It is important to note that the effect in locations without
mortality data is 11.7 deaths per 100,000, versus 7.8 within the sample of countries for which
mortality data are available, largely driven by the fact that our sample represents wealthier
populations where temperature responses are more muted. Overall, there is substantial
heterogeneity across the planet and it is evident that the effects of temperature on human
well-being are quite different in places where we are and are not able to obtain subnational
mortality data.

42This average impact of a 35◦C is derived by taking the unweighted average level of the mortality-temperature response
function evaluated at 35◦ across each of 24,378 impact regions globally.
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Figure 4.6

Using income and climate to predict current response functions globally.

In panels A, B, E and F, grey lines are predicted response functions for impact regions, each representing a population of 276,000
on average. Solid black lines are the unweighted average of the grey lines, where the opacity indicates the density of realized
temperatures (Hsiang, 2013). Panels C, D, G and H show each impact region’s mortality sensitivity to a day at 35◦C, relative
to a location-specific minimum mortality temperature. The top row shows all impact regions in the sample of locations with
historical mortality data (included in main regression tables), and the bottom row shows extrapolation to all impact regions
globally. Column titles indicate corresponding age categories. Predictions shown are averages over the period 2001-2015.

4.5.4 Projection of future climate change impacts and adaptation

The previous subsection demonstrated that the model of heterogeneity outlined in Equation
4.11 allows us to extrapolate mortality-temperature relationships to regions of the world
without mortality data today. However, to calculate the full global mortality risks of cli-
mate change, it is also necessary to allow these response functions to change through time to
capture the benefits of adaptation and the effects of income growth. We use our model of het-
erogeneity and downscaled projections of income and climate to predict impact region-level
response functions for each age group and year, as described in Section 4.4.4. Uncertainty
in these estimated response functions is accounted for through Monte Carlo simulation, as
described in Section 4.4.6. Throughout this subsection, we show results relying on income
and population projections from the socioeconomic scenario SSP3; see Appendix 4.F for
results using SSP2 and SSP4. The methodology we develop to estimate future impacts of
climate change on mortality, as well as a partial mortality-only SCC, can be applied to any
available socioeconomic scenario. We show results relying on SSP3 throughout the main text
because its historic global growth rates in GDP per capita and population match observed
global growth rates over the 2000-2018 period much more closely than either SSP2 or SSP4
(see Table 4.B.3).

4.5.1 Projected Adaptation Benefits.

Figure 4.7 provides an initial look into changes in the mortality-temperature relationship
over time, which is a key ingredient for projections of future damages and adaptation. In
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Figure 4.7

Spatial and temporal heterogeneity in temperature sensitivity.

Panels A and B indicate the change in mortality sensitivity to hot days (35◦C) for the oldest age category (>64) between 2015
and 2050 (A), and between 2015 and 2100 (B). Darker colors signify larger predicted adaptation to heat. All values shown refer
to the RCP8.5 emissions scenario and the SSP3 socioeconomic scenario.

particular, we plot the spatial distribution of the change in the mortality-temperature rela-
tionship evaluated at 35◦C between 2015 and 2050 (panel A) and 2015 and 2100 (panel B)
for the >64 age category.43 The maps reveal that in most regions of the world, there is a
clear downward trend in the sensitivity of mortality rates to high temperatures, as locations
get both richer and hotter as the century unfolds. For the >64 age group, the average global
increase in the mortality rate on a 35◦C day (relative to a day at location-specific minimum
mortality temperatures) declines by roughly 75% between 2015 and 2100, going from 10.1
per 100,000 to just 2.4 per 100,000 in 2100. Increasing incomes account for 77% of the de-
cline in marginal damages for the >64 age category with adaptation to climate explaining
the remainder; income gains account for 89% and 82% of the decline for the <5 and 5-64
categories, respectively.44

4.5.2 Defining Four Measures of Expected Climate Change Impacts.

We now use our estimates of adaptation benefits, adaptation costs, and changes in climate
exposure to develop measures of the expected costs of climate change induced mortality risk.
In so doing, we separate the role of income growth from that of adaptation to warming. While
the central welfare metric of concern is the full mortality-related costs of climate change, i.e.,
the sum of the increase in deaths and adaptation costs (Equation 4.3), we also derive three
other measures of climate change impacts that elucidate the roles of adaptation and income
growth in determining the full mortality-related costs. The empirical estimation of each of
these measures is first reported in units of deaths per 100,000, although it is straightforward
to monetize these measures using estimates of the value of a statistical life (VSL), and we

43Specifically, these values are ĝa(T |TMEANr,2050, log(GDPpc)r,2050) − ĝa(T |TMEANr,2015, log(GDPpc)r,2015) and
ĝa(T |TMEANr,2100, log(GDPpc)r,2100) − ĝa(T |TMEANr,2015, log(GDPpc)r,2015), all evaluated at daily temperature T =
35◦C for age group a >64.

44These values apply to socioeconomic scenario SSP3.
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do so at the end of this section.
Note that in all expressions of climate change impacts below, the first term represents

the predicted mortality rate under a future warming climate. The second term represents a
counterfactual predicted mortality rate that would be realized under current temperatures,
but in a population that benefits from rising incomes over the coming century. These coun-
terfactuals thus include the prediction, for example, that air conditioning will become much
more prevalent in a country like India as the economy grows, regardless of whether climate
change unfolds or not. One exception is expression (i), where the counterfactual is identical
to that under current temperatures and incomes, as in this case the climate change projec-
tion ignores income growth and adaptation entirely. By subtracting off these counterfactuals,
our predicted changes in mortality rates isolate the additional cost of climate change on a
population experiencing economic growth.

The first measure is the mortality effects of climate change with neither adaptation nor
income growth, which provides an estimate of the increases in mortality rates when each
impact region’s response function in each year t is a function of their 2015 level of income
and average climate. In other words, mortality sensitivity to temperature is assumed not
to change with future income or temperature. This is a benchmark model often employed
in previous work. Specifically, the expected climate induced mortality risk that we estimate
for an impact region and age group in a future year t under this measure are (omitting
subscripts for impact regions and age groups for clarity):45

(i) Mortality effects of climate change with neither adaptation nor income growth:

ĝ(Tt | TMEAN2015, log(GDPpc)2015)︸ ︷︷ ︸
mortality risk with climate change

and without adaptation

− ĝ(T2015 | TMEAN2015, log(GDPpc)2015)︸ ︷︷ ︸
current mortality risk

The second measure is the mortality effects of climate change with benefits of income
growth, which allows response functions to change with future incomes. This measure cap-
tures the change in mortality rates that would be expected from climate change if populations
became richer, but they did not respond optimally to warming by adapting above and be-
yond how they would otherwise cope with their historical climate. This measure is defined
as:

(ii) Mortality effects of climate change with benefits of income growth:

ĝ(Tt | TMEAN2015, log(GDPpc)t)︸ ︷︷ ︸
mortality risk with benefits of income growth

and climate change

− ĝ(T2015 | TMEAN2015, log(GDPpc)t)︸ ︷︷ ︸
mortality risk with benefits of income growth,

without climate change

The third measure is the mortality effects of climate change with benefits of income
growth and adaptation, and in this case populations adjust to experienced temperatures in
the warming scenario. This metric is an estimate of the observable deaths that would be
expected under a warming climate, accounting for the benefits of optimal adaptation and
income growth:

45Note that in all estimates of climate change impacts in (i)–(iv), population growth is accounted for as an exogenous
projection that does not depend on the climate.
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(iii) Mortality effects of climate change with benefits of income growth and adaptation:

ĝ(Tt | TMEANt, log(GDPpc)t)︸ ︷︷ ︸
mortality risk with benefits of income growth

and adaptation to climate change

− ĝ(T2015 | TMEAN2015, log(GDPpc)t)︸ ︷︷ ︸
mortality risk with benefits of income growth,

without climate change

The final measure is the most complete, as it captures both the benefits and costs of
adaptation. Recall that adaptation costs cannot be observed directly, but that we construct
estimates using the revealed preference methodology detailed in Section 4.2. We call this
measure the full mortality risk of climate change, and it captures the opportunity costs of
investing in the adaptation benefits described by (iii):

(iv) Full mortality risk of climate change (including adaptation costs, recall Equation 4.3):

ĝ(Tt | TMEANt, log(GDPpc)t)− ĝ(T2015 | TMEAN2015, log(GDPpc)t)︸ ︷︷ ︸
mortality effects of climate change with benefits of income growth and adaptation (iii)

+
1

V SL

[
̂A(TMEANt, GDPpct)− A(TMEAN2015, GDPpct)

]
︸ ︷︷ ︸

estimated adaptation costs

In all of these measures, year t = 2015 is treated as the baseline year, meaning that
climate change impacts are defined to be zero in this year. These four measures are all
reported below in units of human lives. Using human lives serves as a natural numeraire in
this revealed preference framework since we estimate adaptation costs based on lives that
could be saved via adaptation, but are not. We refer to these as “death equivalents”, i.e.,
the number of avoided deaths equal in value to the adaptation costs incurred. Note that the
use of these units is why adaptation costs in expression (iv) are multiplied by 1

V SL
, as the

definition of adaptation costs A(·) in Equation 4.6 is given in dollars.

4.5.3 The Full Mortality Risk of Climate Change for 24,378 Global Regions.

Figure 4.8 shows the spatial distribution of the full mortality risk of climate change (expres-
sion (iv)) in 2100 under the emissions scenario RCP8.5, expressed in death-equivalents per
100,000. All other measures of climate change impacts (expressions (i)–(iii)) are mapped
in Appendix Figure 4.F.1. To construct these estimates, we generate impact-region specific
predictions of mortality damages from climate change for all years between 2015 and 2100
(equal to expression (iii)), separately for each age group. Following the approach outlined in
Section 4.4.3, we simultaneously compute associated measures of adaptation costs for each
location and age at each point in time and add them to expression (iii). The map displays
the spatial distribution of the climate-induced death equivalent (expression (iv)), depicting
the mean estimate across our ensemble of Monte Carlo simulations, accounting for both cli-
mate and statistical uncertainty and pooling across all age groups.46 The density plots for
select cities show the full distribution of impacts across all Monte Carlo simulations, with
the white line equal to the mean estimate displayed on the map.

46When calculating mean values across estimates generated for each of the 33 climate models that form our ensemble, we use
model-specific weights. These weights are constructed as described in Appendix 4.B.2.3 in order to accurately reflect the full
probability distribution of temperature responses to changes in greenhouse gas concentrations.
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Figure 4.8

The mortality risk of future climate change.

The map indicates the full mortality risk of climate change, measured in units of deaths per 100,000 population, in the year
2100. Estimates come from a model accounting for both the costs and the benefits of adaptation, and the map shows the
climate model weighted mean estimate across Monte Carlo simulations conducted on 33 climate models; density plots for select
regions indicate the full distribution of estimated impacts across all Monte Carlo simulations. In each density plot, solid white
lines indicate the mean estimate shown on the map, while shading indicates one, two, and three standard deviations from the
mean. All values shown refer to the RCP8.5 emissions scenario and the SSP3 socioeconomic scenario. See Figure 4.F.4 for a
comparison of impacts to RCP4.5 and SSP3

Figure 4.8 makes clear that the costs of climate change-induced mortality risks are dis-
tributed unevenly around the world. Despite the gains from adaptation shown in Figure 4.7,
there are large increases in mortality risk in the global south. For example, in Accra, Ghana,
climate change is predicted to cause damages equivalent to approximately 160 additional
deaths per 100,000 annually under RCP8.5 in 2100. In contrast, there are gains in many
impact regions in the global north, including in Oslo, Norway, where we predict that the
equivalent of approximately 230 lives per 100,000 are saved annually. These changes are
equal to an 18% increase in Accra’s annual mortality rate and a 28% decline in Oslo’s.

4.5.4 Aggregate Global Mortality Consequences of Climate Change.

Figure 4.9 plots predictions of global increases in the mortality rate (deaths per 100,000,
including death equivalents for adaptation costs) for all four measures of climate change
impacts, under emissions scenario RCP8.5. The measures are calculated for each of the
24,378 impact regions and then aggregated to the global level. In panel A, each line shows a
mean estimate for the corresponding climate change impact measure and year. Averages are
taken across the full set of Monte Carlo simulation results from all 33 climate models, and
all draws from the empirical distribution of estimated regression parameters, as described in
Section 4.4.6. In panel B, the 25th-75th and 10th-90th percentile ranges of the Monte Carlo
simulation distribution are shown for the full mortality risk of climate change (expression
(iv)); the black line represents the same average value in both panels. Boxplots to the
right summarize the distribution of mortality impacts for both RCP8.5 and the moderate
emissions scenario of RCP4.5, and Figure 4.F.5 replicates the entire figure for RCP4.5.
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Figure 4.9

Time series of projected mortality risk of climate change.

All lines show predicted mortality effects of climate change across all age categories and are represented by a mean estimate
across a set of Monte Carlo simulations accounting for both climate model and statistical uncertainty. In panel A, each colored
line represents a partial mortality effect, while the black line shows the full mortality risk due to climate change, accounting
for both adaptation costs and benefits. Orange (expression (i)): mortality effects without adaptation. Yellow (expression (ii)):
mortality effects with benefits of income growth. Green (expression (iii)): mortality effects with benefits of income growth and
adaptation. Black (expression (iv)): full mortality risk calculated as the sum of mortality effects with adaptation and income
growth benefits plus estimates of costs incurred to achieve adaptation, measured in units of death equivalents. Panel B shows
the 10th-90th percentile range of the Monte Carlo simulations for the full mortality risk of climate change (black line in panel
A), as well as the mean and interquartile range. The boxplots show the distribution of full mortality risk impacts in 2100 under
both RCPs. All line estimates shown refer to the RCP8.5 emissions scenario and all line and boxplot estimates refer to the
SSP3 socioeconomic scenario. Figure 4.F.5 shows the equivalent for SSP3 and RCP4.5.

Figure 4.9A illustrates that the mortality cost of climate change would be 221 deaths per
100,000 by 2100, on average across simulation runs (orange line), if the beneficial impacts
of adaptation and income are shut down. This is an enormously large estimate; if it were
correct, the mortality costs of climate change would be roughly equivalent in magnitude to
all global deaths from cardiovascular disease today (WHO, 2018). However, we estimate that
future income growth and adaptation to climate substantially reduce these impacts. Higher
incomes lower the mortality effect of climate change to an average of 104 deaths per 100,000
in 2100 (yellow line); climate adaptation reduces this further to 73 deaths per 100,000 (green
line). Although substantially lower than the no adaptation projection, these smaller counts
of direct mortality remain economically meaningful—for comparison, the 2017 mortality rate
from automobile accidents in the United States was 11.4 per 100,000.

Figure 4.9A also demonstrates that climate adaptation is projected to be costly. Our
estimates of climate adaptation costs are valued at 12 death-equivalents per 100,000 in 2100.
The net result is that the full mortality risk due to climate change (i.e., expression (iv)) is
projected to equal to 85 deaths per 100,000 by the end of the century under RCP8.5. Had we
accounted for the benefits of adaptation but failed to account for their costs, we would have
underestimated the total aggregate impact of these changes, particularly in regions of the
world where adaptation costs compose a substantial share of total damages.47 Nonetheless,
our estimate for the global average benefits of adaptation (31 deaths per 100,000) outweighs

47We previously noted considerable heterogeneity across age-groups in our results. We will take this into account in our
approach to valuing mortality damages monetarily in subsequent sections, and we display the underlying age group heterogeneity
of these projections in Appendix 4.F.
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the costs of these adjustments (12 death-equivalents per 100,000), demonstrating that the
adaptation surplus discussed in Section 4.2 and detailed in Appendix 4.A.2 is substantial.

The values in Figure 4.9A are mean values aggregated across results from 33 high-
resolution climate models and all Monte Carlo simulation runs. However, the full distribution
of our estimated damages across climate models (panel B of Figure 4.9) is right-skewed with
a tail of potential mortality risk far higher than our central estimate. As evidence of this,
the median value of the full mortality risk of climate change under RCP8.5 at end of century
is 56 deaths per 100,000, as compared to a mean value of 85 and a 10th to 90th percentile
range of [-21, 202].

Figure 4.9B and Appendix Figure 4.F.3 show the expected implications of emissions
mitigation. The average estimate of the full mortality risk of climate change of 85 deaths per
100,000 by the end of the century under RCP8.5 falls to 14 under the emissions stabilization
scenario of RCP4.5 (where emissions decline after 2050). For RCP4.5, the median end-
of-century estimate is 9, and the 10th to 90th percentile range is [-30, 65]. As a point of
comparison to the prior literature, we compare these results to the FUND model, which is
unique among the IAMs for calculating separate mortality impacts as a component of its
SCC calculation. Although it is difficult to make a direct comparison due to differences
in scenarios and lack of adaptation costs in the FUND estimates, the closest analog is to
compare our estimates including adaptation benefits but not adaptation costs, a change of
73 deaths per 100,000 by 2100, to FUND’s change of -2 deaths per 100,000 in the same year
(Tol, 1997).48

A limit of our empirical approach is that we must sometimes extrapolate response func-
tions to temperatures outside of those historically observed within our data. To address the
concern that out-of-sample behavior is disproportionately influencing our results, we repeat
the projections of mortality risk changes with two extra sets of restrictions imposed upon
our empirically-estimated response functions. These two restrictions, described in Appendix
4.F.3, involve either forcing the response function to be flat for all temperatures outside the
observed range, or setting the marginal effect to be linearly increasing in the out-of-sample
regions with a slope equal to the slope at the edge of the observed range. Figure 4.F.9 reveals
that these two restrictions on out-of-sample behavior have negligible effects on our overall
impacts. The value of the mortality impact of climate change including benefits of income
growth and adaptation is approximately 1 death per 100,000 smaller by 2100 under RCP 8.5
in the case of the flat out-of-sample restriction.

4.5.5 Unequal Distribution of Mortality Risk from Climate Change.

Whether the full mortality risk caused by climate change is realized through actual deaths
(first term in expression (iv)), as opposed to costly compensatory investments (second term
in expression (iv)), differs substantially across the globe. While some locations suffer large
increases in mortality rates, others avoid excess mortality through expensive adaptation.
Figures 4.10A-C demonstrate that present day income is strongly correlated with the com-
position of future damages. In panel A, the negative correlation indicates that today’s poor
locations tend to suffer large increases in mortality rates by end of century, while mortality

48This value was calculated by running the FUND model and extracting quantities from each sector of the model separately.
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rates tend to decline due to climate change in today’s rich locations. However, there is large
variance across impact regions within each income decile, implying that some poor regions
are projected to experience mortality rate declines, and some wealthy regions mortality rate
increases. In panel B, the positive correlation indicates that wealthier locations are predicted
to pay for future adaptive investments, while such costs are predicted to be much smaller
in poor parts of the globe. Panel C shows that the full mortality risk of climate change,
the sum of both deaths and adaptation costs measured in death-equivalents, is still borne
disproportionately by regions that are poor today. On average, we find that in the poorest
decile of today’s income distribution, just 9% of the total burden of climate change induced
mortality risk is borne as adaptation costs. In contrast, in the richest decile, on average
approximately 3 lives are saved per 100,000 in 2100 due to climate change, while adaptation
costs are three times larger than they are in today’s poorest regions. It is also apparent that
poorer regions face higher uncertainty in the magnitude of their projected impacts (Figure
4.F.6). Similar figures in panels D–F demonstrate that the hottest locations today suffer
the largest increase in death rates, while the coldest pay the highest adaptation costs. The
impacts in the top decile of the current long-run climate distribution are noteworthy and
raise questions about the habitability of these locations at the end of the century.

4.5.6 Climate Change Projection Scenarios.

The results in this section illustrate a single benchmark emissions and socioeconomic scenario
(RCP8.5, SSP3). In Appendix 4.F we report on the sensitivity of the results to alternative
choices about the economic and population scenario, the emissions scenario, and assumptions
regarding the rate of adaptation. These exercises underscore that the projected impacts
of climate change over the remainder of the 21st century will depend greatly on difficult-
to-predict factors such as policy, technology, and demographics. However, we note that
under both emissions scenarios RCP8.5 and RPC4.5, under all SSP scenarios, and under an
alternative projection in which the rate of adaptation is deterministically slowed, the average
estimate of the full mortality risk due to climate change is positive (both RCPs) and steadily
increasing (RCP8.5) throughout the 21st century.

4.5.7 Monetized Value of the Full Mortality Risk of Climate Change

To monetize the full mortality risk of climate change, we use the value of a statistical life
(VSL) to convert changes in mortality rates into dollars. Our primary approach relies on
the U.S. EPA’s VSL estimate of $10.95 million (2019 USD).49 We transform the VSL into
a value per life-year lost using a method described in Appendix 4.H.1, which allows us to
compute the total value of expected life-years lost due to climate change, accounting for
the different mortality- temperature relationships among the three age groups documented
above. We allow the VSL to vary with income, as the level of consumption affects the
relative marginal utilities of a small increment of consumption and a small reduction in the

49This VSL is from the 2012 U.S. EPA Regulatory Impact Analysis (RIA) for the Clean Power Plan Final Rule, which
provides a 2020 income-adjusted VSL in 2011 USD, which we convert to 2019 USD. This VSL is also consistent with income-
and inflation-adjusted versions of the VSL used in the U.S. EPA RIAs for the National Ambient Air Quality Standards (NAAQS)
for Particulate Matter (2012) and the Repeal of the Clean Power Plan (2019), among many other RIAs.
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Figure 4.10

Climate change impacts and adaptation costs are correlated with present-day income and climate.

Panels A and D show the change in annual mortality rates due to climate change in 2100 (RCP8.5, SSP3), accounting for
the benefits of adaptation and income growth, against deciles of 2015 per capita income (A) and average annual temperature
(D). Panels B and E show the annual adaptation costs incurred due to climate change in 2100, measured in death equivalents,
from the same regions. Panels C and F show the full mortality risk due to climate change, which is the sum of deaths and
adaptation costs measured in death equivalents. The income and average temperature deciles are calculated across 24,378 global
impact regions and are population weighted using 2015 population values. All box plots show statistics of the distribution of
estimated mean impacts across impact regions within a decile, where means are taken for each impact region across Monte
Carlo simulations that account both for econometric and climate model uncertainty. Solid vertical lines in each box plot extend
to the 5th and 95th percentiles of this distribution, boxes indicate the interquartile range, white horizontal lines indicate the
median, and white circles indicate the mean.
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probability of death. Consistent with existing literature (e.g., Viscusi, 2015), in our primary
estimate we use an income elasticity of unity to adjust the U.S. estimates of the VSL to
different income levels across the world and over time.50 When computing the mortality
partial SCC in Section 4.6, we provide multiple alternative valuation scenarios in addition
to this benchmark case.

Using the SSP3 socioeconomic scenario, we find that under RCP8.5, our benchmark
monetized value of the full mortality risk of climate change in 2100 amounts to 3.2% of global
GDP on average, with an interquartile range of [-5.4%, 9.1%]. In contrast, under RCP4.5,
this value falls to just 0.6% [-3.9%, 4.6%] of global GDP in 2100. While a direct comparison
to leading IAMs is made difficult by the use of distinct socioeconomic scenarios and climate
models, among many other factors, these mortality-related damages amount to ∼49-135%
of the damages reported for all sectors of the economy in FUND, PAGE, and DICE, when
the damage functions from each model are evaluated at the mean end-of-century warming
observed in our multi-model ensemble under RCP8.5. Under RCP4.5, our mortality-related
damages amount to 32-61% of the damages from DICE and PAGE, while damages from
FUND are negative at RCP4.5 levels of warming.51 It is apparent that this paper’s results
indicate that the mortality risks from climate change are much greater than had previously
been understood. Some plausible scenarios suggest that, by themselves, they are larger than
previous understanding of climate change’s full impacts in 2100. The uncertainty around
these estimates is also meaningful and while we leave explicit pricing of this uncertainty to
future work, accounting for it would only increase the estimated welfare loss.

4.6 Results II: Partial mortality social cost of carbon

Section 4.5.3 provided results for the first key goal of this analysis: empirical estimates of the
full mortality risk of climate change at high resolution across the globe, for individual years
and two emissions scenarios. Here, we take on the second goal of the analysis: to monetize
the full mortality-related social cost generated by emitting a marginal ton of CO2 (defined
in Equation 4.9). This represents the component of the total SCC that is mediated through
excess mortality, but it leaves out adverse impacts in other sectors of the economy, such as
reduced labor productivity or changing food prices. Hence, it is a mortality partial SCC.

One of two key building blocks of this exercise is an empirically-derived “damage func-
tion” (Nordhaus, 1992; Hsiang et al., 2017), which describes economic losses to an economy
as a function of the change in the global climate. It is necessary to develop time-varying
damage functions in our context, because the mortality sensitivity of temperature and total
monetized impacts of climate change evolve over time due to changes in per capita income
and the underlying population. Thus, the damages from a marginal change in emissions

50The EPA considers a range of income elasticity values for the VSL, from 0.1 to 1.7 (U.S. Environmental Protection Agency,
2016b), although their central recommendations are 0.7 and 1.1 (U.S. Environmental Protection Agency, 2016). A review by
Viscusi (2015) estimates an income-elasticity of the VSL of 1.1.

51To conduct this comparison, we use the damage functions reported for each IAM in the Interagency Working Group on
Social Cost of Carbon (2010), which are indexed against warming relative to the pre-industrial climate. We evaluate each
damage function at the mean end-of-century warming (4◦C for RCP8.5 and 1.8◦C for RCP4.5) across the SMME climate model
ensemble used in our analysis, after adjusting warming to align pre-industrial temperature anomalies from the IAMs with the
anomalies relative to 2001-2010 from our analysis (Lenssen et al., 2019).
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will vary depending on the year in which they are evaluated. Importantly, these damage
functions are fully differentiable, so when they are combined with climate model output
determining the change in warming arising from any emissions trajectory, it is possible to
determine the losses from a marginal increase in emissions. The second key building block is
a climate model that is capable of simulating climate trajectories far into the future, and can
capture the global climate response of a marginal emission today. Combined, these two ele-
ments characterize a trajectory of global impacts, which can then be valued and discounted
to inform decisions today.

In this section, we transform monetized projections of deaths due to climate change from
Section 4.5.3 into damage functions for excess mortality risk. We then use these time-varying
empirical damage functions to compute marginal costs from a marginal CO2 emission, which
is the mortality partial SCC.

4.6.1 Constructing damage functions for excess mortality risk

For this paper, damage functions describe the total monetized losses due to changes in
mortality risk, inclusive of adaptation benefits and costs, as a function of the change in
global mean surface temperature (∆GMST), our empirical estimate of the change in the
global climate.52 Due to differences in the character of climate projections pre- and post-
2100, and lack of available socioeconomic projections after 2100, this subsection details some
important differences in the approach for calculation of damage functions before and after
2100. Additionally, it explains the approach to account for damage function uncertainty.

4.6.1 Computing Damage Functions through 2100.

We estimate a set of time-varying quadratic damage functions that relate the total global
value of mortality-related climate change damages (D) to the magnitude of global warming
(∆GMST):

D(∆GMST, t)irmt = αt + ψt1∆GMSTrmt + ψt2∆GMST 2
rmt + εirmt (4.13)

To construct the data necessary to estimate Equation 4.13, damages (Dirmt) are computed
in each year (t) using many climate models (m), two emissions scenarios (r), and a resam-
pling of the econometric parameters recovered from estimation of the mortality-temperature
relationship in Equation 4.6 (i). These multiple simulations lead to an empirically-derived
distribution of potential economic outcomes that are conditional on the ∆GMST value de-
termined by each climate model in each year for each emissions scenario.53 To estimate
Equation 4.13 for year t, we fit a quadratic function through these simulated outcomes,
using all 9,750 Monte Carlo simulation runs within a 5-year window of t, thereby allowing

52Global mean surface temperature is defined as the global area-weighted average of surface air temperature over land and sea
surface temperature over the oceans. Our climate change impacts are calculated relative to a baseline of 2001-2010. Therefore,
we define changes in global mean surface temperature (∆GMST) as relative to this same period.

53Note that the ∆GMST value in each climate model is a summary parameter, resulting from the complex interaction of
many physical elements of the model, including the equilibrium climate sensitivity, a number that describes how much warming
is associated with a specified change in greenhouse gas emissions. Differences in the spatial distributions of warming across
models, and their mapping on populations around the world, remain an additional unresolved uncertain element of climate
models that are idiosyncratic to each model.
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D(∆GMST, t)irmt to evolve flexibly over the century. We note that pre-2100 damage func-
tions are indistinguishable if we use a third-, fourth- or fifth-order polynomial, and we show
robustness of our mortality partial SCC estimates to functional form choice in Appendix
4.H.4.

Figure 4.11A illustrates the procedure for t = 2097, with Dirmt estimates from all Monte
Carlo simulations shown as points54 located along the horizontal axis based on their cor-
responding ∆GMSTirmt. The median end-of-century warming relative to 2001-2010 under
RCP8.5 (red points) across our climate models is +3.7◦C, while under RCP4.5 (blue points)
it is +1.6◦C. The black line is the quadratic damage function estimated for the year 2097, the
latest year for which a full 5-year window of damage estimates can be constructed. The esti-
mated damage function in 2097 recovers total (undiscounted) damages with an age-varying
VSL at 3.7◦C and 1.6◦C of $7.8 and $1.2 trillion USD, respectively. Analogous curves are
constructed for all years, 2015 to 2100.

4.6.2 Computing Post-2100 Damage Functions.

Even with standard discount rates, a meaningful fraction of the present discounted value of
damages from the release of CO2 today will occur after 2100 (Kopp and Mignone, 2012), so
it is important to develop post-2100 damage functions. The pre-2100 approach cannot be
used for these later years because only 6 of the 21 GCMs that we use to build our SMME
ensemble (see Section 4.3.2) simulate the climate after 2100 for both RCP scenarios. Simi-
larly, the SSPs needed to project the benefits of income growth and changes in demographic
compositions also end in 2100.

To estimate post 2100-damages, we develop a method to extrapolate changes in the
damage function beyond 2100 using the observed evolution of damages near the end of the
21st century. The motivating principle of our extrapolation approach is that these observed
changes in the shape of the damage function near the end of the century provide plausible
estimates of future damage function evolution after 2100. This reduced-form approach allows
our empirical results to constrain and guide a projection to years beyond 2100. To execute
this extrapolation, we pool values Dirmt from 2085-2100 and estimate a quadratic model
similar to Equation 4.13, but interacting each term linearly with year t.55 This allows
estimation of a damage surface as a parametric function of year, which can then be used to
predict extrapolated damage functions for all years after 2100, smoothly transitioning from
our climate model-based damage functions prior to 2100. Appendix 4.G provides a detailed
explanation of the approach.

The approach produces post-2100 damage functions that become more convex over time,
suggesting larger damages for a given level of warming. This finding comes directly from
the estimation of Equation 4.13 that found that in the latter half of the 21st century the
full mortality damages are larger when they occur later, holding constant the degree of

54This scatterplot includes realizations under all RCP4.5 and RCP8.5 scenarios for all projections in our 33-member ensemble
under our benchmark method of valuation – the age-invariant EPA VSL with an income elasticity of one applied to all impact
regions – in the end-of-century years 2095-2100. See Appendix 4.H for results across different valuation assumptions. Due to
the dependence of damages D on GDP per capita and on demographics, we estimate separate damage functions for every SSP
scenario. Results across different scenarios are shown in Appendix 4.H.

55We use 2085-2100 because the time evolution of damages becomes roughly linear conditional on ∆GMST by this period.
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Figure 4.11

Empirically-derived mortality-only damage functions.

Both panels show damage functions relating empirically-derived total global mortality damages to anomalies in global mean
surface temperature (∆GMST). In panel A, each point (red = RCP8.5, blue = RCP4.5) indicates the value of the full mortality
risk of climate change in a single year (ranging from 2095 to 2100) for a single simulation of a single climate model, accounting
for both costs and benefits of adaptation. The black line is the quadratic damage function estimated through these points.
The distribution of temperature anomalies at end of century (2095-2100) under two emissions scenarios across our 33 climate
models is in the bottom panel. In panel B, the end-of-century damage function is repeated. Damage functions are shown in
dark blue for every 10 years pre-2100, each of which is estimated analogously to the end-of-century damage function and is
shown covering the support of ∆GMST values observed in the SMME climate models for the associated year. Damage functions
are shown in light grey for every 50 years post-2100, each of which is extrapolated. Our projection results generate mortality
damages only through 2100, due to limited availability of climate and socioeconomic projections for years beyond that date. To
capture impacts after 2100, we extrapolate observed changes in damages over the 21st century to generate time-varying damage
functions through 2300. The distribution of temperature anomalies around 2200 (2181-2200) under two emissions scenarios
using the FAIR simple climate model is in the bottom panel. To value lives lost or saved, in both panels we use the age-varying
U.S. EPA VSL and an income elasticity of one applied to all impact regions.
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warming. This finding that mortality costs rise over time is the net result of countervailing
forces. On the one hand, damages are larger in later years because there are larger and
older populations56 with higher VSLs due to rising incomes. On the other hand, damages
are smaller in later years because populations are better adapted due to higher incomes and
a slower rate of warming projected in later years. Our results suggest the former dominates
by end of century, causing damages to be trending upward when high-resolution simulations
end in 2100.

Panel B of Figure 4.11 illustrates damages functions every 10 years prior to 2100, as
well as extrapolated damage functions for the years 2150, 2200, 2250, and 2300. In dollar
terms, these extrapolated damages continue to rise post-2100 and become steeper, as they
did pre-2100. In Appendix 4.H, we explore the importance of this extrapolation by using
an alternative approach to estimating post-2100 damages, instead calculating partial SCC
estimates using a damage function frozen at its 2100 shape for all years 2101-2300. With this
alternative approach, our central estimate of the mortality partial SCC falls 21%, indicating
that extrapolation of the damage function has a modest impact on our partial SCC estimates,
due in part to the important role of discounting (Table 4.H.6).

4.6.3 Accounting for Uncertainty in Damage Function Estimation.

As discussed, there is substantial uncertainty in projected mortality effects of climate change
due to statistical uncertainty in the estimation of mortality-temperature response functions.
The approach described above details the estimation of a damage function using the condi-
tional expectation function through the full distribution of simulation results. In addition
to reporting the predicted damages resulting from this damage function describing (condi-
tional) expected values, we also estimate a set of quantile regressions to capture the full
distribution of simulated mortality impacts.57 Just as above for the mean damage function,
extrapolation past the year 2100 is accomplished using a linear time interaction, estimated
separately for each quantile. Central estimates of the mortality partial SCC reported below
use the mean regression, while ranges incorporating damage uncertainty use the full set of
time-varying quantile regressions.

4.6.2 Computing marginal damages from a marginal carbon diox-
ide emissions pulse

We empirically approximate the mortality partial SCC for emissions that occur in the year
2020 (Equation 4.9) as:

Mortality partial SCC2020 ≈
2300∑
t=2020

e−δ(t−2020)∂D̂(∆GMST, t)

∂∆GMSTt

d∆GMSTt
dCO22020

, (4.14)

56In SSP3, the share of the global population in the >64 age category rises from 8.2% in 2015 to 16.2% in 2100.
57We estimate a damage function for every 5th percentile from the 5th to 95th.

82



where ∆GMST approximates the multi-dimensional climate vectorC, we use changes in CO2

to represent changes in global emissions E,58 we assume that discounted damages from an
emissions pulse in year 2020 become negligible after 2300, and we approximate the integral

in Equation 4.9 with a discrete sum using time steps of one year. The values ∂D̂(∆GMST,t)
∂∆GMSTt

are the marginal damages at each moment in time that occur as a result of this small change
in all future global temperatures; they are computed using the damage functions described
in the last subsection.

The term d∆GMSTt
dCO22020

is the increase in ∆GMST that occurs at each moment in time along
a baseline climate trajectory as a result of a marginal unit of emissions in 2020, which we
approximate with an “infinitesimally small” pulse of CO2 emissions. Its estimation requires a
climate model capable of estimating the global temperature response in each year to a single
pulse of CO2 emissions. Because we are interested in computing this value for a large number
of scenarios, including ones that reflect scientific uncertainty about the physical magnitude
and timing of warming, referred to as the global climate sensitivity, we use a “simple climate
model” to estimate d∆GMSTt

dCO22020
.

4.6.1 Applying a Simple Climate Model to the Damage Function.

To calculate the change in ∆GMSTt due to a marginal pulse of CO2 in 2020, we use the
Finite Amplitude Impulse Response (FAIR) simple climate model that has been developed
especially for this type of calculation (Millar et al., 2017).59 We use FAIR to calculate
∆GMSTt trajectories for emissions scenarios RCP4.5 and RCP8.5, both with and without
an exogenous impulse of 1 gigaton C (equivalent to 3.66Gt CO2) in the year 2020, an approx-
imation of an infinitesimal emission for which the model numerics are stable. In FAIR, this
emissions impulse perturbs the trajectory of atmospheric CO2 concentrations and ∆GMST
for 2020-2300, with dynamics that are influenced by the baseline RCP scenario. In each
scenario, the trajectory of ∆GMSTt in the “RCP + pulse” simulation is differenced from
the baseline “RCP only” simulation to compute d∆GMSTt

dCO2t
, and the resulting damages are

converted into USD per one ton CO2. There is naturally uncertainty in these trajectories,
and our approach accounts for uncertainty associated with four key parameters of the FAIR
model (i.e., the transient climate response, equilibrium climate sensitivity, the short ther-
mal adjustment time, and the time scale of rapid carbon uptake by the ocean mixed layer).
This approach, detailed in Section 4.G, ensures that the distribution of transient warming
responses we use to generate partial SCC values matches the corresponding distributions
from the IPCC Assessment Report 5 (AR5).

58We use CO2 to represent changes in all global greenhouse gas (GHG) emissions as it is the most abundant GHG and the
warming potential of all other GHGs are generally reported in terms of their CO2 equivalence.

59FAIR is a zero-dimensional structural representation of the global climate designed to capture the temporal dynamics and
equilibrium response of ∆GMST to greenhouse gas forcing. Appendix 4.G shows that our simulation runs with FAIR create
∆GMST distributions that match those from the climate projections in the high-resolution models in the SMME.
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Figure 4.12

Change in emissions, concentrations, temperature, and damages due to a marginal emissions pulse in 2020.

Panel A shows a 1GtC emissions pulse (equivalent to 3.66Gt CO2) in 2020 for emissions scenario RCP8.5. Panel B displays
the effect of this pulse on atmospheric CO2 concentrations, relative to the baseline. In panel C, the impact of the pulse of
CO2 on temperature is shown where the levels are anomalies in global mean surface temperature (GMST) in Celsius. In
panels A-C, shaded areas indicate the inter-quartile range due to climate sensitivity uncertainty, while solid lines are median
estimates. Panel D shows the change in discounted damages over time due to a 1 Gt pulse of CO2 in 2020, as estimated by
our empirically-derived damage functions, using a 2% annual discount rate and the age-varying EPA VSL. The shaded area
indicates the inter-quartile range due to climate sensitivity and damage function uncertainty, while the solid line is the median
estimate.

4.6.2 Summarizing the Impacts of a Marginal Increase in CO2 Emissions.

Figure 4.12 graphically depicts the difference between the “RCP + pulse” and baseline RCP
trajectories for four key outcomes.60 The pulse in emissions is shown in panel A. Its influence
on CO2 concentrations is reported in panel B; the immediate decline followed by a century-
long increase is largely due to dynamics involving the ocean’s storage and release of emissions.
Panel C displays the resulting change in temperature, which makes clear that a pulse today
will influence temperatures for over three centuries. The shaded green area in panels A-C
represents the inter-quartile range of each year’s outcome, and reflects uncertainty in the
climate system (see Appendix 4.G for details).

Panel D plots the discounted (2% discount rate) stream of damages due to this marginal
pulse of emissions. The temporal pattern of the present value of mortality damages reflects
the nonlinearity of the damage function (e.g., Figure 4.11), which itself depends on nonlin-
earities in location-specific mortality-temperature relationships (e.g., Figure 4.5), as well as
the discount rate and the dynamic temperature response to emissions (panel C). The peak
damages from a ton of CO2 emissions are $0.16 in year 2104; by year 2277, annual damages
are always less than $0.02. It is noteworthy that 67.9% of the present value of damages
occur after the year 2100. The shaded grey area represents the inter-quartile range of each
year’s outcome, and reflects uncertainty in the climate system as well as uncertainty in the
damage function. RCP 4.5 results are shown in Figure 4.G.3 and additional details are in
Appendix 4.G.

60Using the trajectories in Figure 4.12 is consistent with the “SCC experiment” that is used in IAMs to calculate an SCC
(National Academies of Sciences, Engineering, and Medicine, 2017). We discuss uncertainties in FAIR configuration parameters
below and in Appendix 4.G. The median values of parameter-specific distributions used for the central mortality partial SCC
estimate include a transient climate response (TCR) of 1.6 and an equilibrium climate sensitivity (ECS) of 2.7.
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4.6.3 Estimates of the partial social cost of carbon due to excess
mortality risk

Table 4.3 reports mortality partial SCC estimates. The columns apply four different annual
discount rates – three used in prior estimates of the SCC (2.5%, 3%, and 5%) (Interagency
Working Group on Social Cost of Carbon, 2010; National Academies of Sciences, Engineering,
and Medicine, 2017), and one lower rate that aligns more closely with recent global capital
markets (2%) (Board of Governors of the US Federal Reserve System, 2020). Panel A uses
the U.S. EPA’s VSL of $10.95 million (2019 USD), transformed into value per life-year
lost (see Appendix 4.H.1 for details). This accounts for the different mortality-temperature
relationships among the three age groups documented above.61 Panel B uses age-invariant
values of the VSL. Both valuations adjust for cross sectional variation in incomes among
contemporaries and global income growth. Appendix 4.H presents results under a wide
range of additional valuation scenarios, including an alternative and lower Ashenfelter and
Greenstone (2004) VSL of $2.39 million (2019 USD),62 and an approach where the VSL
is adjusted only based on global average income such that the lives of contemporaries are
valued equally, regardless of their relative incomes.

The estimates in Table 4.3 utilize the median values of FAIR’s four key parameter dis-
tributions and the mean global damage function. Interquartile ranges (IQRs) are reported,
reflecting uncertainty in climate sensitivity (uncertainty in the simple climate model FAIR)
and in the damage function (which includes uncertainty arising from econometric estimation
and from climate model uncertainty regarding the spatial distribution of warming). All val-
ues represent the global sum of each impact region’s MWTP today (2019 USD) to avoid the
release of an additional metric ton of CO2 in 2020, including both the costs and benefits of
adaptation.

In column 1 and panel A of Table 4.3, we report partial SCC values under a δ = 2%
discount rate and using an age-varying VSL. Under this valuation approach, the mortality
partial SCC is $17.1 [-$24.7, $53.6] for the low to moderate emissions scenario and $36.6
[-$7.8, $73.0] for the high emissions scenario. We highlight a 2% discount rate because it
conservatively reflects changes in global capital markets over the last several decades: while
the Interagency Working Group on Social Cost of Greenhouse Gases (2016) recommends a
discount rate of 3%, the average 10-year Treasury Inflation-Indexed Security value over the
available record of this index (2003-present) is just 1.01% (Board of Governors of the US Fed-
eral Reserve System, 2020). We show results for a discount rate of 1.5% in Appendix Table
4.H.5. We emphasize the age-varying VSL approach because standard economic reasoning
implies that valuation of life lost should vary by age (Jones and Klenow, 2016; Murphy and
Topel, 2006).

When following the Interagency Working Group on Social Cost of Greenhouse Gases
(2016) preference for a discount rate of δ = 3% and the use of an age-invariant VSL, the

61In the main text, a simple life-years calculation that assigns each life-year lost the same economic value is used. In Appendix
4.H, we also show calculations that adjust the value of remaining life by age at death using the estimates of age-specific value
of remaining life from Murphy and Topel (2006), which produces results that differ only slightly from those under the primary
approach.

62See Appendix Table 4.H.1 for a comparison of these VSL values with values from the OECD, which are higher than
Ashenfelter and Greenstone (2004), but lower than the U.S. EPA’s VSL.
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Table 4.3

Estimates of a partial social cost of carbon for excess mortality risk incorporating the costs and benefits of
adaptation

Annual discount rate
δ = 2% δ = 2.5% δ = 3% δ = 5%

Panel A: Age-adjusted globally varying VSL (2019 US Dollars)

Moderate emissions scenario
(RCP4.5)

17.1 11.2 7.9 2.9

Full uncertainty IQR [-24.7, 53.6] [-18.9, 36.0] [-15.2, 26.3] [-8.5, 11.5]
High emissions scenario (RCP8.5) 36.6 22.0 14.2 3.7
Full uncertainty IQR [-7.8, 73.0] [-10.6, 46.8] [-11.4, 32.9] [-8.9, 13.0]

Panel B: Globally varying VSL (2019 US Dollars)

Moderate emissions scenario
(RCP4.5)

14.9 9.8 6.7 1.7

Full uncertainty IQR [-21.2, 63.5] [-17.9, 43.5] [-15.7, 32.1] [-11.8, 14.7]
High emissions scenario (RCP8.5) 65.1 36.9 22.1 3.5
Full uncertainty IQR [3.0, 139.0] [-2.4, 83.1] [-5.6, 53.4] [-9.3, 16.0]

Notes: In both panels, an income elasticity of one is used to scale the U.S. EPA VSL value (alternative values using the
VSL estimate from (Ashenfelter and Greenstone, 2004) are shown in Appendix 4.H). All regions thus have heterogeneous
valuation, based on local income. All SCC values are for the year 2020, measured in PPP-adjusted 2019 USD, and are
calculated from damage functions estimated from projected results under the socioeconomic scenario SSP3 (alternative
values using other SSP scenarios are shown in Appendix sec:appsccrobustness). In panel A, SCC estimates use an age
adjustment that values deaths by the expected number of life-years lost, using an equal value per life-year (see Appendix
4.H.1 for details and Appendix 4.H.2 for alternative calculations that allow the value of a life-year to vary with age, based
on Murphy and Topel (2006)). In panel B, SCC calculations use value of a statistical life estimates that do not vary
with age. Point estimates rely on the median values of the four key input parameters into the climate model FAIR and a
conditional mean estimate of the damage function. The uncertainty ranges are interquartile ranges [IQRs] including both
climate sensitivity uncertainty and damage function uncertainty (see Appendix 4.G for details).

central estimate of the mortality partial SCC is $6.7 per metric ton of CO2 for the low
to moderate emissions scenario (RCP4.5), with an IQR of [-$15.7, $32.1], and $22.1 [-$5.6,
$53.4] per metric ton for the high emissions scenario (RCP8.5).

Some other features of these results are worth underscoring. First, mortality partial
SCC estimates for RCP4.5 are systematically lower than RCP8.5 primarily because the
damage function is convex, so marginal damages increase in the high emissions scenario.
Second, the combination of this convexity, which itself is accentuated at higher quantiles
of the damage function, and the skewness of the climate sensitivity distribution causes the
distribution of partial SCCs to also be right skewed with a long right tail. For example,
the 95th and 99th percentiles of the partial SCC for δ = 2% and an age-varying VSL for
RCP8.5 are $290.3 and $704.1, respectively; with δ = 3% and an age-invariant VSL these
values are $175.3 and $391.9. Third, in Appendix 4.G we show that uncertainty in the
partial SCC is consistently dominated by uncertainty in the damage function, as opposed
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to uncertainty in climate sensitivity. Finally, while Table 4.3 reflects what we believe to
be mainstream valuation and socioeconomic scenarios, Appendix Tables 4.H.2-4.H.7 report
estimates based on multiple alternative approaches. Naturally, the resulting SCC estimates
vary under different valuation assumptions and baseline socioeconomic trajectories, and we
point readers to these specifications for a more comprehensive set of results.

4.7 Limitations

As the paper has detailed, the mortality risk changes from climate change and the mortality
partial SCC have many ingredients. We have tried to probe the robustness of the results to
each of them, but there are four issues that merit special attention when interpreting the
results, because they are outside the scope of the analysis.

4.7.1 Migration Responses.

First, the estimates in the paper do not reflect the possibility of migration responses to
climate change. If migration were costless, it seems likely that the full mortality risk and
mortality partial SCC would be smaller, as people from regions with high damages (e.g., sub-
Saharan Africa) may move to regions with low or even negative damages (e.g., Scandinavia).
However, both distant and recent history in the U.S. and around the globe underscores
that borders are meaningful and that there are substantial costs to migration which might
limit the scale of feasible migrations. Indeed, existing empirical evidence of climate-induced
migration, based on observable changes in climate to date, is mixed (Carleton and Hsiang,
2016).

4.7.2 Humidity.

Second, our estimates do not directly incorporate the role of humidity in historical mortality-
temperature relationships nor in projections of future impacts. There is growing evidence
that humidity influences human health through making it more difficult for the human
body to cool itself during hot conditions (e.g., Sherwood and Huber, 2010; Barreca, 2012).
While temperature and humidity are highly correlated over time, they are differentially
correlated across space, implying that our measures of heterogeneous mortality-temperature
relationships may be influenced by the role of humidity. To date, lack of high-resolution
historical humidity data and highly uncertain projections of humidity under climate change
(Sherwood and Fu, 2014) have limited our ability to include this heterogeneity in our work.
However, emerging work on this topic (Yuan, Stein, and Kopp, 2019; Li, Yuan, and Kopp,
2020) will provide opportunities to explore humidity in future research.

4.7.3 Technological Change.

Third, the paper’s projections incorporate advancements in technology that enhance adap-
tive ability, even though we have not explicitly modeled technological change. In particular,
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we allow mortality-temperature response functions to evolve in accordance with rising in-
comes and temperatures and do not restrict them to stay within the bounds of the current
observed distribution of temperature responses. However, while our estimates reflect tech-
nical advancement as it historically relates to incomes and climate, they do not reflect the
likely passing of climate-biased technical change that lowers the relative costs of goods which
reduce the health risks of high temperatures. Therefore, the paper’s results will overstate
the mortality risk of climate change if directed technological innovations lower the relative
costs of adapting to high temperatures.

4.7.4 Uncertainty.

Throughout this paper, we have emphasized central estimates of the mortality risk damages
of climate change and the partial SCC, but also noted the meaningful uncertainty associated
with these estimates. However, this does not reflect efforts to price this uncertainty. With
risk averse agents, this uncertainty would undoubtedly increase the estimates of the climate
change mortality risk damages and the mortality partial SCC (Weitzman, 2011; Traeger,
2014).

4.8 Conclusion

This paper has outlined a new method for empirically estimating the costs of climate change
for a single sector of the economy and implemented it in the context of mortality risks as-
sociated with temperature change. Specifically, we highlight two primary contributions: a
framework for estimating the total impact of climate change on mortality risk both globally
and for more than 24,000 regions that comprise the planet, and a framework for estimat-
ing a mortality partial SCC. There are several noteworthy methodological innovations and
intermediate findings.

First, the relationship between mortality rates and temperature is highly nonlinear and
varies with a location’s income and climate. These findings were only possible due to the
collection and analysis of highly resolved data covering roughly half of the world’s popu-
lation, which enabled us to estimate flexible empirical models relating mortality rates to
temperature, climate, and income.

Second, the costs of climate change-induced mortality risks are distributed unevenly
across the 24,378 regions that we use to create local-level projections. For example, by
2100, we project that climate change will cause annual damages equivalent to approximately
160 additional deaths per 100,000 in Accra, Ghana, but will also generate annual benefits
equivalent to approximately 230 lives per 100,000 in Oslo, Norway. To put these numbers
in perspective, Figure 4.13 reveals that the projected impact of climate change on mortality
will be comparable globally to leading causes of death today, such as cancer and infectious
disease. It also demonstrates the benefits from mitigation, as the end of century estimate of
mortality risk of climate change falls from 85 deaths per 100,000 under RCP 8.5 to just 14
per 100,000 under RCP 4.5, though much of the inequality in impacts evidence here remains
under RCP4.5 (see Figure 4.F.7). Today’s poor bear a disproportionately high share of
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Figure 4.13

The impact of climate change in 2100 is comparable to contemporary leading causes of death.

Impacts of climate change (grey, teal, and coral) are calculated for the year 2100 for SSP3 and include changes in death rates
(solid colors) and changes in adaptation costs, measured in death equivalents (light shading). Global averages for RCP 8.5 and
RCP 4.5 are shown in grey, demonstrating the gains from mitigation. Income and average climate groups under RCP8.5 are
separated by tercile of the 2015 global distribution across all 24,378 impact regions. Blue bars on the right indicate average
mortality rates globally in 2018, with values from WHO (2018). Figure 4.F.7 provides an RCP4.5 version of this figure.
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the global mortality risks of climate change, as current incomes (as well as current average
temperatures) are strongly correlated with future climate change impacts.

Third, the heterogeneous impacts appear to reflect investments that individuals and soci-
eties make based on the costs and benefits of responding to differences in climate. Estimated
mortality impacts that do not account for adaptation overstate the mortality impacts of cli-
mate change in 2100 by more than a factor of 2.6. We outline and implement a revealed
preference method to recover the costs of these adaptation investments, even though they
cannot be directly observed. Notably, the degree to which the full mortality risk of climate
change is realized through actual deaths, as opposed to costly adaptation, varies widely
across space and time. For example, Figure 4.13 shows that today’s poor locations tend to
bear a larger share of the projected burden in the form of direct mortality impacts, while
today’s rich face large increases in projected adaptation costs.

Fourth, there is substantial climate and statistical uncertainty around these estimates
and we find that the distribution of projected losses is right skewed; for example the mean
loss in 2100 is about 51% larger than the median loss. Although we do not account for risk
aversion, it is evident that doing so would increase the valuations of these impacts.

The paper’s ultimate goal is to develop the first empirically grounded estimates of climate
damages and partial SCC that reflects the consequences of climate change on mortality
and investments in adaptation. The estimates suggest that the mortality risk damages
account for 3.2% of global GDP in 2100 under a high emissions scenario (RCP8.5) and 0.6%
under a moderate one (RCP4.5). Our estimate of the mortality risk partial SCC with a 2%
discount rate and age-varying VSL, implies that the present value of excess mortality risk
due to climate change imposed by a marginal metric ton of CO2 emissions in 2020 is roughly
$36.6 [-$7.8, $73.0] (in 2019 USD) with a high emissions scenario and $17.1 [-$24.7, $53.6]
with a moderate one, where brackets indicate interquartile ranges accounting for climate
sensitivity and damage function uncertainty. Under a 3% discount rate and age-invariant
VSL, assumptions preferred by the Interagency Working Group on Social Cost of Carbon
(2010), these values are $22.1 [-$5.6, $53.4] and $6.7 [-$15.7, $32.1], respectively.

These findings suggest that previous research has significantly understated climate change
damages due to mortality. For example, the mortality damages we estimate in 2100 account
for 49% to 135% of total damages across all sectors of the economy according to leading
IAMs. Moreover, the mortality partial SCC reported here, under comparable valuation
assumptions, is more than 10 times larger than the total health impacts embedded in the
FUND IAM (Diaz, 2014).63 Further, the high emissions and 3% discount rate partial SCC
that is most similar to the scenario underlying the Obama Administration SCC produces an
excess mortality partial SCC that is 44% of the Administration’s full SCC.

The climate change challenge is considered existential by some and a relatively small risk
by others, yet much of what is known about overall impacts, particularly the SCC, comes
from IAMs that do not sit on robust empirical foundations. In particular, many models
currently used to compute the SCC are either not calibrated against data, have a calibration
that is not documented, or are calibrated against empirical estimates that are not derived
from modern empirical techniques and are unlikely to be globally representative. Advances

63Diaz (2014) computes comparable partial SCC values for FUND (δ = 3%, “business as usual” emissions) and reports values
for three comparable health impacts (diarrhea, vector borne diseases, and cardiopulmonary) that total less than $2 (2019 USD).
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in access to data and computing render these modeling choices unnecessary.
We believe that this paper has highlighted a key role for systematic empirical analysis

in providing a clearer picture of how, why, and where costs of climate change are likely to
emerge in the future. Looking ahead, this general approach developed in this paper can
be applied to other aspects of the global economy besides mortality risk, and doing so is a
promising area for future research.

Chapter Review and Looking Ahead

In this chapter, we presented the first globally comprehensive and empirically grounded
estimates of mortality risk due to future temperature increases caused by climate change.
Under a high emissions scenario, we estimate the mean increase in mortality risk is valued
at roughly 3.2% of global GDP in 2100, with today’s cold locations benefiting and damages
being especially large in today’s poor and/or hot locations. We estimate that the release
of an additional ton of CO2 today will cause mean [interquartile range] damages of $36.6
[-$7.8, $73.0] under a high emissions scenario. Globally, these empirically grounded esti-
mates substantially exceed the previous literature’s estimates that lacked similar empirical
grounding, suggesting that revision of the estimated economic damage from climate change
is warranted.

In the next chapter, we will examine another channel through which climate change is
expected to impact society – energy consumption – where we will find a sector of the economy
for which gains from reduced cold days offset losses from increased hot days.
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growth projections in the Shared Socioeconomic Pathways.” Global Environmental Change
.

Deryugina, Tatyana and Solomon Hsiang. 2017. “The Marginal Product of Climate.” NBER
Working paper .

Deschenes, Olivier. 2018. “Temperature Variability and Mortality: Evidence from 16 Asian
Countries.” Asian Development Review 35 (2):1–30.
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Deschênes, Olivier and Enrico Moretti. 2009. “Extreme weather events, mortality, and
migration.” The Review of Economics and Statistics 91 (4):659–681.

Diaz, Delavane. 2014. “Evaluating the Key Drivers of the US Government’s Social Cost of
Carbon: A Model Diagnostic and Inter-Comparison Study of Climate Impacts in DICE,
FUND, and PAGE.” Working paper

Eurostat. 2013. Europe in Figures: Eurostat Yearbook 2013. Publications Office of the
European Union.

Fetzer, Thiemo. 2014. “Can workfare programs moderate violence? Evidence from India.” .

93

http://www.nber.org/papers/w13178


Gasparrini, Antonio, Yuming Guo, Masahiro Hashizume, Eric Lavigne, Antonella Zanobetti,
Joel Schwartz, Aurelio Tobias, Shilu Tong, Joacim Rocklöv, Bertil Forsberg et al. 2015.
“Mortality risk attributable to high and low ambient temperature: A multicountry obser-
vational study.” The Lancet 386 (9991):369–375.

Gennaioli, Nicola, Rafael La Porta, Florencio Lopez De Silanes, and Andrei Shleifer. 2014.
“Growth in regions.” Journal of Economic Growth 19 (3):259–309. URL https://ideas.

repec.org/a/kap/jecgro/v19y2014i3p259-309.html.

Graff Zivin, Joshua and Matthew Neidell. 2014. “Temperature and the allocation of time:
Implications for climate change.” Journal of Labor Economics 32 (1):1–26.

Guo, Christopher and Christopher Costello. 2013. “The value of adaption: Climate change
and timberland management.” Journal of Environmental Economics and Management
65 (3):452–468.

Guo, Yuming, Antonio Gasparrini, Ben Armstrong, Shanshan Li, Benjawan Tawatsupa,
Aurelio Tobias, Eric Lavigne, Micheline de Sousa Zanotti Stagliorio Coelho, Michela Leone,
Xiaochuan Pan et al. 2014. “Global variation in the effects of ambient temperature on
mortality: a systematic evaluation.” Epidemiology (Cambridge, Mass.) 25 (6):781.

Heutel, Garth, Nolan H Miller, and David Molitor. 2017. “Adaptation and the Mortality Ef-
fects of Temperature Across US Climate Regions.” National Bureau of Economic Research
.

Hsiang, Solomon. 2013. “Visually-weighted regression.” SSRN Working Paper .

———. 2016. “Climate econometrics.” Annual Review of Resource Economics 8:43–75.

Hsiang, Solomon, Robert Kopp, Amir Jina, James Rising, Michael Delgado, Shashank
Mohan, DJ Rasmussen, Robert Muir-Wood, Paul Wilson, Michael Oppenheimer et al.
2017. “Estimating economic damage from climate change in the United States.” Science
356 (6345):1362–1369.

Hsiang, Solomon and Robert E Kopp. 2018. “An Economist’s Guide to Climate Change
Science.” Journal of Economic Perspectives 32 (4):3–32.

Hsiang, Solomon M and Amir S Jina. 2014. “The causal effect of environmental catastrophe
on long-run economic growth: Evidence from 6,700 cyclones.” Tech. rep., National Bureau
of Economic Research.

Hsiang, Solomon M, Kyle C Meng, and Mark A Cane. 2011. “Civil conflicts are associated
with the global climate.” Nature 476 (7361):438.

Hsiang, Solomon M and Daiju Narita. 2012. “Adaptation to cyclone risk: Evidence from the
global cross-section.” Climate Change Economics 3 (02):1250011.

94

https://ideas.repec.org/a/kap/jecgro/v19y2014i3p259-309.html
https://ideas.repec.org/a/kap/jecgro/v19y2014i3p259-309.html


IIASA Energy Program. 2016. “SSP Database, Version 1.1 [Data set].” Tech. rep.,
National Bureau of Economic Research. URL https://tntcat.iiasa.ac.at/SspDb.

Accessed25December,2016.

Interagency Working Group on Social Cost of Carbon. 2010. “Social Cost of Carbon for
Regulatory Impact Analysis - Under Executive Order 12866.” Tech. rep., United States
Government.

Interagency Working Group on Social Cost of Greenhouse Gases. 2016. “Technical Sup-
port Document: Technical Update of the Social Cost of Carbon for Regulatory Impact
Analysis.” Tech. rep., United States Government.

Isen, Adam, Maya Rossin-Slater, and Reed Walker. 2017. “Relationship between season
of birth, temperature exposure, and later life wellbeing.” Proceedings of the National
Academy of Sciences 114 (51):13447–13452.

Jones, Charles I and Peter J Klenow. 2016. “Beyond GDP? Welfare across countries and
time.” American Economic Review 106 (9):2426–57.

Kahn, Matthew E. 2005. “The death toll from natural disasters: the role of income, geogra-
phy, and institutions.” Review of Economics and Statistics 87 (2):271–284.

Kopp, Robert E and Bryan K Mignone. 2012. “The US government’s social cost of carbon
estimates after their first two years: Pathways for improvement.” Working paper .

Lenssen, N., G. Schmidt, J. Hansen, M. Menne, A. Persin, R. Ruedy, and D. Zyss. 2019. “Im-
provements in the GISTEMP uncertainty model.” J. Geophys. Res. Atmos. 124 (12):6307–
6326.

Li, Dawei, Jiacan Yuan, and Robert Bob Kopp. 2020. “Escalating global exposure to com-
pound heat-humidity extremes with warming.” Environmental Research Letters .

Lobell, David B, Michael J Roberts, Wolfram Schlenker, Noah Braun, Bertis B Little, Roder-
ick M Rejesus, and Graeme L Hammer. 2014. “Greater sensitivity to drought accompanies
maize yield increase in the US Midwest.” Science 344 (6183):516–519.

Matsuura, Kenji and Cort Willmott. 2007. “Terrestrial Air Temperature and Precipitation:
1900-2006 Gridded Monthly Time Series, Version 1.01.” University of Delaware. URL
http://climate.geog.udel.edu/climate.

Mendelsohn, Robert, William D Nordhaus, and Daigee Shaw. 1994. “The impact of global
warming on agriculture: A Ricardian analysis.” The American Economic Review :753–771.

Millar, Richard J, Zebedee R Nicholls, Pierre Friedlingstein, and Myles R Allen. 2017. “A
modified impulse-response representation of the global near-surface air temperature and
atmospheric concentration response to carbon dioxide emissions.” Atmospheric Chemistry
and Physics 17 (11):7213–7228.

95

https://tntcat.iiasa.ac.at/SspDb. Accessed 25 December, 2016
https://tntcat.iiasa.ac.at/SspDb. Accessed 25 December, 2016
http://climate. geog. udel. edu/climate


Millner, Antony and Geoffrey Heal. 2018. “Time consistency and time invariance in collective
intertemporal choice.” Journal of Economic Theory 176:158–169.

Moore, Frances C and David B Lobell. 2014. “Adaptation potential of European agriculture
in response to climate change.” Nature Climate Change 4 (7):610.

Murphy, Kevin M and Robert H Topel. 2006. “The value of health and longevity.” Journal
of Political Economy 114 (5):871–904.

National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate
Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington,
DC: The National Academies Press. URL https://www.nap.edu/catalog/24651/

valuing-climate-damages-updating-estimation-of-the-social-cost-of.

Newell, Richard G and William A Pizer. 2004. “Uncertain discount rates in climate policy
analysis.” Energy Policy 32 (4):519–529.

Nordhaus, William D. 1992. “An optimal transition path for controlling greenhouse gases.”
Science 258 (5086):1315–1319.

Park, R Jisung, Joshua Goodman, Michael Hurwitz, and Jonathan Smith. 2020. “Heat and
learning.” American Economic Journal: Economic Policy 12 (2):306–39.

Pindyck, Robert S. 2013. “Climate change policy: What do the models tell us?” Journal of
Economic Literature 51 (3):860–872.

Rasmussen, D. J., Malte Meinshausen, and Robert E. Kopp. 2016. “Probability-weighted
ensembles of U.S. county-level climate projections for climate risk analysis.” Journal of Ap-
plied Meteorology and Climatology 55 (10):2301–2322. URL http://journals.ametsoc.

org/doi/abs/10.1175/JAMC-D-15-0302.1.

Riahi, Keywan, Detlef P Van Vuuren, Elmar Kriegler, Jae Edmonds, Brian C O’neill,
Shinichiro Fujimori, Nico Bauer, Katherine Calvin, Rob Dellink, Oliver Fricko et al. 2017.
“The shared socioeconomic pathways and their energy, land use, and greenhouse gas emis-
sions implications: an overview.” Global Environmental Change 42:153–168.

Rohde, Robert, Richard Muller, Robert Jacobsen, Saul Perlmutter, Arthur Rosenfeld,
Jonathan Wurtele, J Curry, Charlotte Wickham, and S Mosher. 2013. “Berkeley Earth
temperature averaging process.” Geoinfor Geostat: An Overview 1 (2):1–13.

Schlenker, Wolfram and Michael J Roberts. 2009. “Nonlinear temperature effects indicate
severe damages to US crop yields under climate change.” Proceedings of the National
Academy of Sciences 106 (37):15594–15598.

Schlenker, Wolfram, Michael J Roberts, and David B Lobell. 2013. “US maize adaptability.”
Nature Climate Change 3 (8):690–691.

96

https://www.nap.edu/catalog/24651/valuing-climate-damages-updating-estimation-of-the-social-cost-of
https://www.nap.edu/catalog/24651/valuing-climate-damages-updating-estimation-of-the-social-cost-of
http://journals.ametsoc.org/doi/abs/10.1175/JAMC-D-15-0302.1
http://journals.ametsoc.org/doi/abs/10.1175/JAMC-D-15-0302.1


Sheffield, Justin, Gopi Goteti, and Eric F Wood. 2006. “Development of a 50-year high-
resolution global dataset of meteorological forcings for land surface modeling.” Journal of
Climate 19 (13):3088–3111.

Sherwood, Steven and Qiang Fu. 2014. “A drier future?” Science 343 (6172):737–739.

Sherwood, Steven C and Matthew Huber. 2010. “An adaptability limit to climate change
due to heat stress.” Proceedings of the National Academy of Sciences 107 (21):9552–9555.

Solon, Gary, Steven J Haider, and Jeffrey M Wooldridge. 2015. “What are we weighting
for?” Journal of Human Resources 50 (2):301–316.

Stern, Nicholas. 2006. The Economics of Climate Change: The Stern Review. Cambridge
University Press.

Taylor, Karl E, Ronald J Stouffer, and Gerald A Meehl. 2012. “An overview of CMIP5 and
the experiment design.” Bulletin of the American Meteorological Society 93 (4):485.

Tebaldi, Claudia and Reto Knutti. 2007. “The use of the multi-model ensemble in prob-
abilistic climate projections.” Philosophical Transactions of the Royal Society of Lon-
don A: Mathematical, Physical and Engineering Sciences 365 (1857):2053–2075. URL
http://rsta.royalsocietypublishing.org/content/365/1857/2053.

Thomson, Allison M., Katherine V. Calvin, Steven J. Smith, G. Page Kyle, April Volke,
Pralit Patel, Sabrina Delgado-Arias, Ben Bond-Lamberty, Marshall A. Wise, Leon E.
Clarke, and James A. Edmonds. 2011. “RCP4.5: a pathway for stabilization of radia-
tive forcing by 2100.” Climatic Change 109 (1):77. URL https://doi.org/10.1007/

s10584-011-0151-4.

Thrasher, Bridget, Edwin P Maurer, C McKellar, and PB Duffy. 2012. “Technical note: Bias
correcting climate model simulated daily temperature extremes with quantile mapping.”
Hydrology and Earth System Sciences 16 (9):3309–3314.

Tol, Richard S.J. 1997. “On the optimal control of carbon dioxide emissions: an application
of FUND.” Environmental Modeling & Assessment 2 (3):151–163. URL http://dx.doi.

org/10.1023/A:1019017529030.

Traeger, Christian P. 2014. “Why uncertainty matters: discounting under intertemporal risk
aversion and ambiguity.” Economic Theory 56 (3):627–664.

United Nations. 2017. “World Mortality 2017.” Tech. rep., United Nations Economic and
Social Affairs.

U.S. Environmental Protection Agency. 2016a. “Recommended Income Elasticity and In-
come Growth Estimates: Technical Memorandum.” Tech. rep., U.S. Environmental Pro-
tection Agency Office of Air and Radiation and Office of Policy.

97

http://rsta.royalsocietypublishing.org/content/365/1857/2053
https://doi.org/10.1007/s10584-011-0151-4
https://doi.org/10.1007/s10584-011-0151-4
http://dx.doi.org/10.1023/A:1019017529030
http://dx.doi.org/10.1023/A:1019017529030


———. 2016b. “Valuing mortality risk reductions for policy: A meta-analytic approach.”
Tech. rep., U.S. Environmental Protection Agency Office of Policy, National Center for
Environmental Economics.

Van Vuuren, Detlef P, Jae Edmonds, Mikiko Kainuma, Keywan Riahi, Allison Thomson,
Kathy Hibbard, George C Hurtt, Tom Kram, Volker Krey, Jean-Francois Lamarque et al.
2011. “The representative concentration pathways: An overview.” Climatic Change 109 (1-
2):5.

Viscusi, W Kip. 2015. “The role of publication selection bias in estimates of the value of a
statistical life.” American Journal of Health Economics .

Weitzman, Martin L. 2011. “Fat-tailed uncertainty in the economics of catastrophic climate
change.” Review of Environmental Economics and Policy 5 (2):275–292.

WHO. 2018. “Global Health Estimates 2016: Deaths by cause, age, sex, by country and by
region, 2000–2016.” Tech. rep., World Health Organization.

Yuan, Jiacan, Michael L Stein, and Robert E Kopp. 2019. “The evolving distribution of
relative humidity conditional upon daily maximum temperature in a warming climate.” .

98



Appendix

4.A Using revealed preference to estimate adaptation

costs

4.A.1 Graphical solution to inferring unobserved adaptation cost

In Section 4.2, we lay out a framework for recovering the costs of adapting to climate change
that is micro-founded by a standard utility maximization problem. Figure 4.A.1 depicts this
optimal adaptation problem faced by individuals and illustrates how we overcome two key
empirical challenges to measuring adaptation costs: (1) the universe of adaptation adjust-
ments and their costs are not directly observable and (2) adaptive adjustments are continuous
for continuous changes in climate. The problem must be displayed in three dimensions be-
cause it involves at least three orthogonal subspaces: climate (C), adaptive adjustments
to climate (b), and an outcome (expressed in dollars of WTP). For illustrative simplicity,
here we assume income is held fixed, and we consider a simplified example with univariate
climate and univariate adaptation. Further, for this example, higher C = C indicates higher
temperatures and higher b = b indicates greater adaptation (i.e., greater protection) from
high temperatures, where these terms are unbolded to indicate that they are scalars.

In the lower left panel of Figure 4.A.1, the green surface illustrates adaptation costs A(b)
which are not directly observable to the econometrician. The height of this surface represents
the costs that households would bear to obtain a level of adaptation b. Because we assume
markets for adaptive technologies are competitive, A(b) could represent64 the lower envelope
of all firm cost-functions (offer curves) that would supply b, as illustrated by the projection of
the surface onto the A×b plane. Because adaptation costs are a function of technology, they
do not depend on the climate and so ∂A/∂C = 0 everywhere, i.e., individuals in Seattle can
purchase the same adaptation technology (e.g., air conditioners) as individuals in Houston.

In the lower right panel of Figure 4.A.1, the red surface illustrates the expected benefits
an individual would accrue for inhabiting some climate C and selecting adaptation b. The
height of this surface is a total WTP for adaptation, conditional on the climate: it is equal
to the VSL times the expected survival probability 1 − f̃(b, C) at each position (b, C). For
notational simplicity, we refer to this WTP surface as V . At low levels of adaptation, V
declines rapidly with higher temperature C because survival probability declines quickly. At
higher levels of adaptation, V declines more gradually with C because adaptation protects
individuals against temperature. The solid black lines follow this WTP surface at fixed
temperatures, showing how an individual in a given climate would benefit from additional
adaptation (bid curves).

Agents at each climate endogenously adapt by selecting the optimal level of b such that
the marginal costs equal the marginal benefits. This can be seen on the lower left panel at
climates C1 and C2, where slices of the benefits surface V are drawn overlaid in red and are
tangent to A(b) at the blue circles. Corresponding slices of the adaptation cost surface A are
overlaid in green on the benefits surface in the lower right panel. The blue line traces out the

64In Appendix 4.A.4 below, A are net costs since they are net any utility benefits or costs of b.
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Figure 4.A.1
Use of revealed preference to recover WTP for an unobservable adaptation. Horizontal dimensions are climate C,
representing temperature, and adaptation level b. Vertical dimensions are adaptation costs A(b) in the left panel and expected
survival benefits V (b, C) = V SL[1 − f̃(b, C)] in the right panel, both in units of dollars of WTP. Tangency planes at the top

depict infinitesimal surfaces spanning ∂C × ∂b∗

∂C
at a point along the equilibrium adaptation path b∗(C), which is drawn in

blue. Adaptation costs, as a function of the climate, are the height of the green wedge on the A × C plane in the lower left
panel. The value of mortality risk imposed by the climate is the red wedge on the V × C plane in the lower right panel.

equilibrium at different climates. For each climate C there is an optimal level of adaptation
b∗(C) endogenously chosen, illustrated by the projection of the equilibrium downward onto
the C×b plane in both panels. The projection of the equilibrium onto the A×C plane on the
left panel illustrates how adaptation expenditures rise with temperature, and the projection
onto the V × C plane on the right panel illustrates how expected survival benefits decline
with temperature, or equivalently, how mortality costs rise with temperature. The sum of
changes to these adaptation expenditures and the value of mortality costs is the full cost of
changes to the climate.

A key innovation to our analysis is fully accounting for adaptation costs A(b) even though
neither A(.) nor b is observed. Indeed, there may be a very large, even infinite, number of
ways that populations adapt to climate that cannot be feasibly enumerated by the econo-
metrician. All the econometrician can observe are the effects of adaptation on survival
probability 1 − f̃ . If a climate were gradually warmed from C1 to C2, individuals would
continuously respond by adapting along b∗(C) and traveling up the cost surface in the lower
left panel, eventually incurring costs A(b∗(C2)) rather than the initial costs A(b∗(C1)) that
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they incurred prior to warming. We point out that the change in this total adaptation cost
A(b∗(C2))−A(b∗(C1)) can be inferred based only on the shape of the benefits surface along
the equilibrium, information that is recoverable by the econometrician.

To show this, at the top of Figure 4.A.1 we draw tangency planes for both the costs
and benefits surfaces for a single location along the equilibrium adaptation locus between
C1 and C2, indicated by black squares on the two surfaces in the lower left and lower right
panels. Both tangency planes span an area ∂C × ∂b∗

∂C
, indicating how much additional adap-

tation populations undertake (∂b
∗

∂C
) for an exogenous change in climate (∂C), changes that

would cause them to traverse each of these planes from their respective left-most corner to
their right-most corner. The corresponding change in survival benefits is dV

dC
= ∂V

∂C
+ ∂V

∂b
∂b∗

∂C

(downward pink arrow on the right), which the econometrician can observe by computing the
change in survival probability due to climate between two adjacent locations after allowing
them both to fully adapt to their respective climates. If the cooler location is heated by
∂C but not permitted to adapt, its survival benefits change by ∂V

∂C
(downward red arrow), a

counterfactual outcome that the econometrician can compute by simulating a warmer envi-
ronment without allowing for adaptation. The difference between these two changes is equal
to the benefits of marginal adaptations ∂V

∂b
∂b∗

∂C
(upward green arrow, right panel). Along the

equilibrium b∗(C), these marginal benefits of adaptation must equal their marginal costs,
thus we know the corresponding increase in unobserved adaptation costs ∂A

∂b
∂b∗

∂C
(upward

green arrow, left panel) must be equal in magnitude to ∂V
∂b

∂b∗

∂C
. By continuously computing

and differencing the total and partial derivatives of V with respect to an incremental change
in climate dC (i.e., dV

dC
− ∂V

∂C
), we recover the marginal benefits of unobserved incremental

adaptations (∂V
∂b

∂b∗

∂C
), which we know must also equal their marginal costs (∂A

∂b
∂b∗

∂C
). Then by

integrating these marginal costs with respect to the climate (shown in the A×C plane of the
lower left panel) we can compute the total change in adaptation costs A(b∗(C2))−A(b∗(C1))
for the non-marginal change in climate from C1 to C2. This intuition holds for an unknown
number of margins of adaptation and a climate of arbitrary dimension, which we allow for
in the main text and in derivations below.

4.A.2 Surplus generated from compensatory investments

As discussed in the main text, the equivalence of marginal adaptation benefits and marginal
adaptation costs at each point along the equilibrium pathway b∗(Y,C) (Equation 4.4) does
not imply that our estimates of total adaptation costs are equivalent to total adaptation
benefits for any given population at fixed climate C. In general, we expect total adaptation
benefits to exceed total adaptation costs, generating surplus from compensatory investments.
Here, we define this surplus and illustrate why it is not zero. Empirically, we find that this
surplus is substantial (see Section 4.5.3).

We define adaptation surplus as the total benefits of adapting to climate change (i.e., the
dollar value of the difference between mortality effects of climate change with and without
the benefits of adaptation) minus the total cost of adaptation (i.e., the integral of marginal
adaptation costs along the climate change trajectory, as shown in Equation 4.6). This
surplus can be evaluated at any future climate Ct. That is, adaptation surplus under a
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climate changing from time period t = 1 to t = 2 can be written as:65

Adaptation surplus (C1 → C2) = −V SL[f̃(b∗(C2),C2)− f̃(b∗(C1),C2)]︸ ︷︷ ︸
total adaptation benefits

−

[A(b∗(C2))− A(b∗(C1))]︸ ︷︷ ︸
total adaptation costs

= −
∫ b∗(C2)

b∗(C1)

V SL
df̃(b,C2)

db
db−

∫ b∗(C2)

b∗(C1)

∂A(b)

∂b
db∗

(4.A.1)

where both integrals represent line integrals, and where db∗ indicates that the line integral
is calculated along the optimal pathway b∗(C).

The first term in the definition of adaptation surplus in Equation 4.A.1 is the total benefits
of adaptation, defined as [minus] the mortality effects of climate C2 with optimal adaptation
(i.e. b∗(C2)) minus the mortality effects of that same climate, but with adaptation fixed at
its initial level (i.e., b∗(C1)). The second term is the total costs of adaptation, defined as
the adaptation costs under optimal adaptation in climate C2 minus adaptation costs under
optimal adaptation in the initial climate C1. Adaptation benefits (the first term) can be

computed by integrating df̃(b,C2)
db

, the marginal mortality effect of adaptation evaluated at
fixed climate C2. Note that this integration is not computed over the optimal pathway, as
the climate is fixed at C2 and any b 6= b∗(C2) is thus off-equilibrium. Adaptation costs
(the second term) can be computed by integrating marginal adaptation costs of b along the
optimal pathway b∗(C).

The expression for adaptation surplus in Equation 4.A.1 is represented as the difference
between two integrals, each computed over the unobserved choice vector b. To empirically
identify adaptation surplus, we aim to rewrite this expression as a difference between integrals
which are computed over the multi-dimensional climateC, which changes over time t. This is
an important step, as changes in the climateC are empirically identifiable, while adjustments
to b are unobserved by the econometrician. As shown below (as well as in Section 4.2 in the
main text), total adaptation costs, the second term in Equation 4.A.1, can be rewritten as
an integral over time using a simple change of variables. However, rewriting total adaptation
benefits, the first term in Equation 4.A.1, as an integral over time (and hence, climate C)
requires multiple steps, which we outline below.

To see how we construct an empirically tractable expression for total adaptation benefits
(first term in Equation 4.A.1), we first consider a visual illustration. Figure 4.A.2 shows the
construction of total adaptation benefits using the same notation and format as the lower
right panel of Figure 4.A.1. As in Figure 4.A.1, the red surface represents how expected
survival benefits V (b, C) = V SL[1− f̃(b(C), C)] depend on both climate C and adaptation
b, in the case where both climate and adaptation are univariate. The basic idea is that we

65Note that income only influences the calculation of surplus arising from climate-driven adaptation via changes in the VSL.
Therefore, we abstract away from income changes throughout this section, including omitting Y as an argument of b∗, for
simplicity of exposition.
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V(b*(C1),C1)

V(b*(C2),C2)

Total benefits of adaptation

V(b*(C1),C2)

b*(C2)b*(C1)

Figure 4.A.2
Recovering total benefits of adaptation using revealed preference. Horizontal dimensions are climate C, representing
temperature, and adaptation level b. The vertical dimension is expected survival benefits V (b, C) = V SL[1− f̃(b, C)], in units
of dollars of WTP. The equilibrium adaptation path {b∗(C), C} is drawn in blue (line q → s), and the off-equilibrium path
{b∗(C1), C} is drawn in black (line q → r). To derive the total benefits of adaptation under a change in climate from C1 to C2, we
integrate the surface along the green line (line r → s), evaluating changes in survival benefits at a fixed climate C2, as adaptation
evolves from b∗(C1) to b∗(C2). The magnitude of total adaptation benefits is shown on the V × C plane on the right panel.

want to quantify the vertical difference between points s and r (i.e., s − r), which can be
computed empirically as the vertical difference q− r minus the difference q− s. To see why,
note that the total benefits of adaptation incurred under a climate change from C1 to C2

are represented by the vertical difference between points s and r (shown on the V ×C plane
on the right panel), because this height measures the total mortality benefits realized from
optimally investing in adaptation b∗(C2) when experiencing climate C2, instead of holding
adaptation fixed at its initial level b∗(C1). This difference can be computed in two ways.
First, total benefits of adaptation can be computed by traversing along the off-equilibrium
green line between points r and s; that is, by holding C fixed at C2 and integrating V (b, C)
over b from b∗(C1) to b∗(C2). This integration along the green line represents the definition
of total adaptation benefits written in Equation 4.A.1. However, this same vertical distance
can alternatively be calculated by traversing along the off-equilibrium black line between
points q and r (i.e., holding b fixed at b∗(C1) and integrating V (b, C) over C from C1 to C2),
and then subtracting off the value of the survival impacts of the optimal pathway from C1 to
C2 (i.e., the height of the surface at point q minus point s). This integration over C (twice)
is empirically identifiable, as changes in climate can, in principle, be observed.

Now, consider the construction of total adaptation benefits in an arbitrary multi-
dimensional b × C space. We first note that the Gradient Theorem implies path indepen-
dence of line integrals on smooth functions; thus, for a continuous and differentiable surface
V SL[1− f̃(b,C)], the integral along any path on this surface depends only on the endpoints
of that path. Equation 4.A.1 writes total adaptation benefits using a path along the surface
in the b dimension between the end points {b∗(C2),C2} and {b∗(C1),C2}.66 However, as

66Note that while Figure 4.A.2 illustrates total adaptation benefits using the expected survival benefits surface V SL[1 −
f̃(b,C)], the definition can be equivalently written using [minus] the expected mortality costs surface, −V SL[f̃(b,C)], as in
Equation 4.A.1. For parsimony, we use the latter notation here and in the subsequent expressions.
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discussed above, we cannot compute traversing of this path, as changes in b are unobservable.
Thus, we need to define an alternative computable path between the same endpoints. If we
can construct a loop on the surface that connects the two endpoints, the sum of the desired
segment and the remaining segments defining that loop must equal zero, because the line
integral over any closed loop L must, by construction, equal zero. We can then rearrange
this identity to isolate the computable segments of the loop, allowing us to back out the
unobserved segment defining the total benefits of adaptation.

We define such a loop that begins at {b∗(C1),C1} (analogous to point q in Figure 4.A.2)
and traverses along the off-equilibrium path from C1 to C2 with adaptation fixed at b∗(C1)
(analogous to the black line between q and r in Figure 4.A.2). In the second segment, it
traverses in the b dimension, holding C fixed at C2, to arrive at {b∗(C2),C2} (analogous
to the green line in Figure 4.A.2 and equal to the total benefits of adaptation). Finally,
our path arrives back at its starting point by integrating along the optimal pathway b∗(C)
(analogous to the blue line between q and s in Figure 4.A.2):∮

L

∇[V SLf̃(b,C)] · ∂b∂C =

∫ 2

1

V SL
∂f̃(b∗(C1),Ct)

∂C

dCt

dt
dt+

∫ b∗(C2)

b∗(C1)

V SL
df̃(b,C2)

db
db

+

∫ 1

2

V SL
df̃(b∗(Ct),Ct)

dC

dCt

dt
dt

= 0 (4.A.2)

By rearranging Equation 4.A.2 (including changing the direction of integration for the third
segment), we can use this closed loop, which is composed of two computable segments and
a third that is unobservable, to calculate the total benefits of adaptation:

Total adaptation benefits = −
∫ b∗(C2)

b∗(C1)

V SL
df̃(b,C2)

db
db

= −
∫ 2

1

V SL

[
df̃(b∗(Ct),Ct)

dC
− ∂f̃(b∗(C1),Ct)

∂C

]
dCt

dt
dt (4.A.3)

Using Equation 4.A.3 and a change of variables to rewrite the total costs of adaptation as
an integral over C, we can rewrite Equation 4.A.1 as:

Adaptation surplus (C1 → C2) = −
∫ 2

1

V SL

df̃(b∗(Ct),Ct)

dC︸ ︷︷ ︸
mortality risk
w/ adaptation

− ∂f̃(b∗(C1),Ct)

∂C︸ ︷︷ ︸
mortality risk

w/o adaptation

 dCt

dt
dt

−
∫ 2

1

∂A(b∗(Ct))

∂b

∂b∗t
∂C

dCt

dt
dt (4.A.4)

While the total adaptation benefits term in Equation 4.A.4 (the first term) is composed
of values that are, in principle, empirically identifiable, the adaptation cost expression (the
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second term) remains unobservable because the net cost function A(b∗(C)) is unknown.
Thus, we take a final step to rewrite the entire adaptation surplus expression in Equation
4.A.4 in terms of objects that are measurable, using Equation 4.6 from the main text to
substitute for the object

∫ 2

1
∂A(b∗(Ct))

∂b

∂b∗t
∂C

dCt
dt
dt:

Adaptation surplus (C1 → C2) = −
∫ 2

1

V SL

[
df̃(b∗(Ct),Ct)

dC
− ∂f̃(b∗(C1),Ct)

∂C

]
dCt

dt
dt

+

∫ 2

1

V SL

[
df̃(b∗(Ct),Ct)

dC
− ∂f̃(b∗(Ct),Ct)

∂C

]
dCt

dt
dt

=

∫ 2

1

V SL

[
∂f̃(b∗(C1),Ct)

∂C
− ∂f̃(b∗(Ct),Ct)

∂C

]
dCt

dt
dt

(4.A.5)

In Equation 4.A.5, the first term inside the integral represents the marginal mortality
effect of a change in climate evaluated at climate C, but holding adaptation actions fixed
at the levels that were optimal under the original climate, C1. In contrast, the second
term represents the marginal mortality effect of a change in climate evaluated at climate
C, allowing adaptation actions b∗(C) to evolve optimally with the changing climate. Note
that because the second term is a partial derivative, its integral is not the total change in
the mortality rate. While the two partial derivatives in Equation 4.A.5 will be identical
when C = C1, if they diverge at some point after C warms beyond C1, then surplus will be
nonzero. Thus, a sufficient condition for positive surplus is:

∂f̃(b∗(C1),Ct)

∂C
>
∂f̃(b∗(Ct),Ct)

∂C
∀t ∈ (1, 2] (4.A.6)

This condition says that mortality risk must rise more with changes in the climate at lower
levels of adaptation. If this condition holds, the difference between the two partial derivatives
in Equation 4.A.6 is weakly positive, and the total adaptation surplus over the climate
trajectory C1 → C2 is positive.

4.A.3 Implementation details for the empirical estimation of adap-
tation costs

In Section 4.4.5, we describe how we use econometric estimation of Equation 4.11 in combi-
nation with climate model projections to construct empirical estimates of changes in adap-
tation costs due to climate change, following the theoretical derivation in Section 4.2. Here,
we provide some additional details on this implementation.

Theoretically, adaptation costs can be computed by taking the difference between the
total and partial derivative of expected mortality risk with respect to changes in the climate
(Equation 4.6), and integrating this difference. To empirically construct an estimate of these
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costs, we begin by taking expectations of Equation 4.11 over weather realizations T , to
specify our empirically estimated expected mortality risk for an age group a in region r for
year t:

ˆ̃f(.)art ≡ E[f̂(.)art] = E[ĝa (Trt | TMEANrt, log(GDPpc)rt)︸ ︷︷ ︸
ĝart(·)

] + ... (4.A.7)

where we omit the various estimated terms orthogonal to temperature, which fall out after
differentiation. Recall that the estimates ĝart(·) describe the shape of the annual response
function in region r and year t for age group a, taking as inputs the summary climate
parameter TMEAN and log income per capita, where the coefficients used to construct
ĝart(·) are recovered from the regression in Equation 4.11. The expectation of ĝ(·) is computed
over realizations of temperature for region r in year t from the prior 15 years, with weights
of historical observations linearly declining in time. Below we omit subscripts for clarity, but
the following calculation is conducted yearly for each age and region separately, for each of
our 33 high-resolution climate models.

We differentiate expected mortality risk ˆ̃f(.) with respect to a small change in climate

C, by computing how ˆ̃f(.) would change if the distribution of daily temperatures shifted due
to a change in climate. The climate directly affects mortality by altering the distribution
of daily temperatures to which populations are exposed and indirectly affects mortality risk
by altering the shape of the mortality-temperature response function. Importantly, our
econometric framework allows us to develop estimates of both the partial derivative, which
captures the direct effect only where no adaptation is allowed to take place, and the total
derivative, which reflects both direct effects and the changing slope of the response function.

In our econometric framework, the partial derivative of expected mortality risk with
respect to the climate is captured through a change in events T , the argument of E[ĝ(·)],
and conditional on climate C (TMEAN) and income Y (log(GDPpc)). The partial effect
of the climate on expected mortality risk is then:

∂ ˆ̃ft
∂C

=
∂ ˆ̃ft
∂T

∂Tt
∂C

=
∂E[ĝ]

∂T

∣∣∣∣
Ct,Yt

∂Tt
∂C

(4.A.8)

Here, ∂T
∂C

is the change in the all nonlinear elements of T that describe the daily temperature
distribution, resulting from an incremental change in climate.

In contrast, the total derivative of expected mortality risk with respect to a change in
climate reflects endogenous adaptations through adjustments to b, which in turn change the
shape of the response function. Our econometric framework captures these effects through
the TMEAN interactions in g(·), which modify the shape of a region’s response function

based on long run average conditions. When we compute the total derivative of ˆ̃f(.) with
respect to the climate, we consider both the partial effect of changes to T and the effect of
adaptive adjustments captured by the effect of TMEAN . The total effect of the climate on
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expected mortality risk is:

d ˆ̃ft
dC

=
∂ ˆ̃ft
∂C

+
∂ ˆ̃ft
∂b

∂b∗t
∂C

=
∂ ˆ̃ft
∂T

∂Tt
∂C

+
∂ ˆ̃ft

∂TMEAN

∂TMEAN t

∂C

=
∂E[ĝ]

∂T

∣∣∣∣
Ct,Yt

∂Tt
∂C

+
∂E[ĝ]

∂TMEAN

∣∣∣∣
Ct,Yt

∂TMEAN t

∂C
(4.A.9)

where ∂E[ĝ]
∂TMEAN

captures the ways in which incremental changes in TMEAN affect the shape
of the mortality response function, multiplied by the distribution of daily temperatures, T .
∂TMEAN

∂C
is the amount that long-run average temperatures are estimated to change during

a period of incremental climatic change.
As shown in Equation 4.12 in the main text, the difference between the total and par-

tial derivatives of expected mortality risk with respect to the climate is thus the difference
between Equations 4.A.9 and 4.A.8:

d ˆ̃ft
dC
− ∂ ˆ̃ft
∂C

=
∂E[ĝ]

∂TMEAN

∣∣∣∣
Ct,Yt

∂TMEAN t

∂C
(4.A.10)

The righthand side of Equation 4.A.10 is fully computable for years in our projection
using a combination of empirically estimated parameters, ĝ(·), and climate projections,
{T , TMEAN}. Substituting Equation 4.A.10 into Equation 4.6 from the main text al-
lows us to estimate non-marginal changes in adaptation costs incurred as the climate of each
population changes. In each projection, we solve for adaptation costs as a region’s climate
evolves from time period t = 1 to t = 2:

̂A(b∗(Y2,C2))− A(b∗(Y2,C1))

≈ −
∫ 2

1

V SLt

[
d ˆ̃ft
dC
− ∂ ˆ̃ft
∂C

]
dCt

dt
dt

≈ −
t2∑

τ=t1+1

V SLτ

(
∂E[ĝ]

∂TMEAN

∣∣∣∣
Cτ ,Y2

)
(TMEANτ − TMEANτ−1)

≈ −
t2∑

τ=t1+1

V SLτ γ̂1E[T ]τ (TMEANτ − TMEANτ−1) , (4.A.11)

where the second equality results from substitution of Equation 4.A.10 into Equation 4.6
and from employing a discretized approximation of the continuous integral (we use discrete
time-steps of one year). As noted in the main text, recall that we hold income fixed at
its endpoint value in the calculation of Equation 4.A.11. This is because the goal of the
calculation is to develop an estimate of the additional adaptation expenditures incurred due
to the changing climate only. Changes in adaptation expenditures due to rising incomes may
change mortality risk under climate change, but these changes are voluntary and are not the
consequence of the changing climate, and are therefore not included in our calculation of
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the total mortality-related costs of climate change. These income effects are accounted for
econometrically in the estimation of Equation 4.11 through the interaction with income and
they influence predicted temperature-mortality relationships in all of our calculations, but
we do not track the cost of these effects and these costs are intentionally excluded from our
calculation of climate-change-induced adaptation spending.

As noted in the main text, we treat the VSL as invariant to changes in the climate,
although we allow it to be a function of income, which evolves with time. These adaptation
cost estimates are calculated for each impact region, age group, and year, using t1 = 2015
as the baseline year, for each of our 33 high-resolution climate model projections.

4.A.4 Alternative specification: Including adaptation in the util-
ity function

Throughout the main text, we construct estimates of adaptation costs derived from a repre-
sentative agent’s problem in which utility is a function only of a consumption good x. In this
simple model (see Equation 4.1), there is no direct utility benefit of adaptation behaviors or
investments b; instead, the actions represented by this composite good influence the agent’s
problem only through changing mortality risk. In an alternative specification shown here, we
allow agents to derive utility both from consumption of x and also possibly from the choice
variables in b (for example, air conditioning might increase utility directly, regardless of its
effect on mortality risk). We demonstrate that the implications of this alternative model
are purely in the interpretation of our empirically derived adaptation cost estimates; the
calculation described in Section 4.4.5 of the main text does not change.

As in Section 4.2 of the main text, we consider a single representative global agent who
faces mortality risk ft = f(bt, ct) in each period t. We further assume there exists some
numeraire good xt for which utility u(xt, bt) is quasilinear. As above, this agent maximizes
utility conditional on expected weather realizations, subject to an exogenous budget con-
straint and exogenously determined emissions. Letting f̃(bt,Ct) = Ect [f(bt, c(Ct)) | Ct]
represent the expected probability of death, the agent solves:

max
bt,xt

u(xt, bt)
[
1− f̃(bt,Ct)

]
s.t. Yt ≥ xt + A(bt), (4.A.12)

where A(bt) is the composite price of all adaptive investments and Y is exogenously deter-
mined income. As in the main text, we assume that f̃(·) is continuous and differentiable,
that markets clear for all technologies and investments represented by the composite b, as
well as for the numeraire good x, and that all choices b and x can be treated as continuous.

Rearranging the agent’s first order conditions and using the conventional definition of
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the VSL,67 we can write:

∂A(b∗t )

∂bt
− ∂u/∂b

∂u/∂x︸ ︷︷ ︸
net marginal cost of b

=
−u(x∗t , b

∗
t )

∂u/∂x[1− f̃(b∗t ,Ct)]

∂f̃(b∗t ,Ct)

∂b
= −V SLt

∂f̃(b∗t ,Ct)

∂b︸ ︷︷ ︸
marginal survival

benefit of b

(4.A.13)

This expression governs expenditures on adaptation. Its righthand side is the product of the
negative of the VSL and the marginal change in expected mortality risk due to a change in
adaptation, so it represents the expected marginal benefit (in dollar value) of adjusting b
through its effect on mortality risk. This object is identical to its counterpart in Equation
4.4 in the main text. The lefthand side has two parts. The first term represents the marginal
cost of all pecuniary expenditures incurred due to a marginal change in adaptation b, such
as spending on units of air conditioning. The second term represents [minus] the dollar value
of all non-mortality marginal utility benefits or costs derived from a marginal change in b,
such as the utility of enjoying air conditioning or the disutility of exercising at midnight
to avoid daytime heat (note that this object is expressed in dollars of WTP by dividing
through by the marginal utility of consumption, ∂u/∂x). Together, these two terms can
be interpreted as the net marginal cost of all adaptive actions composing the composite b,
because non-mortality marginal benefits and costs are removed from the marginal pecuniary
expenditures term ∂A/∂b.

Both terms composing net marginal costs in Equation 4.A.13 are unobservable. In con-
trast, the marginal survival benefit can be rewritten as the product of the negative of the
VSL and the difference between the total and partial derivatives of mortality risk with re-

spect to the climate – i.e., df̃
dC
− ∂f̃

∂C
(see Equation 4.5). As discussed in the main text, we

develop an empirical model that allows us to estimate both the total and partial derivates,
rendering the marginal survival benefits empirically tractable.

In the main text, we use this insight to develop an expression for the additional adaptation
costs incurred as the climate changes gradually, which is composed of observable terms. This
expression remains unchanged under the alternative model specification described here, with
the exception that the adaptation costs recovered are net of utility benefits or costs incurred
due to changes in optimal adaptation b∗. Here, the additional net adaptation costs incurred
as the climate changes gradually from period t = 1 to period t = 2 are:

A(b∗(Y2,C2))− A(b∗(Y2,C1))− 1

∂u/∂x
[u(x∗(Y2,C2), b∗(Y2,C2))− u(x∗(Y2,C1), b∗(Y2,C1))]

=

∫ 2

1

[
∂A(b∗t )

∂b
− ∂u(x∗t , b

∗
t )/∂b)

∂u(x∗t , b
∗
t )/∂x)

]
db∗t
dC

dCt

dt
dt

= −
∫ 2

1

V SLt

[
df̃(b∗t ,Ct)

dC
− ∂f̃(b∗t ,Ct)

∂C

]
dCt

dt
dt, (4.A.14)

67As described in the main text, the value of a statistical life is defined as the willingness to pay for a marginal increase in
the probability of survival (Becker, 2007). Mathematically, this object is utility divided by the product of the probability of

survival and the marginal utility of consumption: V SL =
u(x)

[1−f̃(b,C)]∂u/∂x
.
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where the last line relies on substitution from Equations 4.A.13 and 4.5. The righthand side
of Equation 4.A.14 can be approximated empirically as shown in Section 4.4.5 in the main
text. Thus, the only implication of this alternative model specification is that adaptation
cost estimates should be interpreted as pecuniary expenditures net of direct utility benefits
and costs.

Similarly, the derivation of the mortality partial social cost of carbon shown in main
text Section 4.2, which relies on an empirically tractable estimate of adaptation costs, is
unchanged under this alternative model specification. However, as in Equation 4.A.14, the
mortality partial SCC should be interpreted here as the marginal willingness to pay to avoid
a marginal increase in greenhouse gas emissions inclusive of adaptation benefits and net
adaptation costs.

110



4.B Data appendix

4.B.1 Mortality data

Our mortality data represent 41 countries. In some cases our data represent the universe
of reported deaths in those countries, while in others (e.g., China), data are representative
samples, as no vital statistics registry system exists. Combined, our dataset covers mortality
outcomes for 55% of the global population. Data are drawn from multiple, often restricted,
national and international sources, all mortality datasets contain information on deaths per
100,000 population from all causes at a monthly or annual frequency, and all except India
contain age-specific mortality rates. Each of the countries’ data are drawn from distinct
databases, details of which are provided below.

4.B.1.1 Brazil

Brazilian mortality data at the ADM2-month level were obtained from the Mortality In-
formation System (SIM) of the Ministry of Health in Brazil (Ministry of Health in Brazil,
2019).68 We use data from 1997-2010 and aggregate the monthly data to annual frequency.
Data were provided for both place of death and place of residence. As with all subsequent
datasets, we assign weather exposure to deaths in our data at the place of residence, as this
is provided for all sources. Data were downloaded in 5-year age groups which were then
aggregated to the age groups used in the analysis. ADM2-level populations were obtained
from the same source. Administrative boundary files were downloaded from GADM (Global
Administrative Areas, 2012). Brazilian death data as downloaded contained a number of
ADM2 units with missing values for deaths and no values of zero, implying that these are a
mix of true zeros and missing values. To ascertain whether they are more likely to be the
former, we examined the relationship between death counts and population in all ADM2
units, and then in only those ADM2 units that ever show a missing value in any year. We
found that missing values are more likely to occur in low population ADM2 units, suggesting
that these are places that should have recorded zero deaths. We consequently treat these
missing values as zeros, but in robustness tests find that treating them as missing does not
substantially change any of our results.

4.B.1.2 Chile

Chilean mortality data at the ADM2 level are obtained from the vital registration system
maintained by the Department of Statistics and Information (Departmento de Estad́ısticas
e Información de Salud, DEIS) at the Ministry of Health (Ministry of Health, Chile, 2015).69

We use data at the ADM2 level for 1997-2012. The vital registration system contains informa-
tion on individual dates of deaths (often with missing values for days but always containing
years) which we aggregate within administrative units to provide the ADM2 total count of
deaths in each unit. This also provides data with arbitrarily accurate age grouping, and we

68http://datasus.saude.gov.br/sistemas-e-aplicativos/eventos-v/sim-sistema-de-informacoes-de-mortalidade.
69Data are available here: http://www.deis.cl/bases-de-datos-defunciones/.
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aggregate in accordance with the age groups in our analysis. ADM2 population data were
downloaded from the National Institute of Statistics (Instituto Nacional de Estad́ısticas,
INE) 70 and merged with the death counts to calculate mortality rates. Administrative
boundary files were downloaded from GADM (Global Administrative Areas, 2012).

4.B.1.3 China

Chinese mortality data are the same as those used in Chen et al. (2013), and were provided
by the authors of that paper. The data come from the Chinese Disease Surveillance Points
system and are not the universe of mortality as in much of the rest of our sample, but rather
a representative sample of the Chinese population benchmarked to the 1990 Chinese census.
Locations are given as geographic coordinates relating to the centroid of the surveillance area.
Data used in Chen et al. (2013) span from 1991-2000 and cover 145 points to which we assign
a climate exposure at the level of the ADM2 unit containing that point. We supplement this
with data on a further 161 points from 2004-2012 which were benchmarked to the 2000 census
to reflect population changes. This gives us a total of 203 disease surveillance points due to
overlap in some points across both periods. Due to the difficulty of establishing consistency
between the overlapping points in the two time periods, we include a time-period specific
fixed effect in our regressions to allow for unobservable differences in disease and mortality
monitoring extent and capacity across time periods. The data record deaths in 5 year age
groups, as well as population estimates required to calculate mortality rates. Administrative
boundaries for the ADM2 and ADM1 level are obtained from Chen et al. (2013) for the
2000 census boundaries, and points are assigned to an administrative unit based on being
contained within those boundaries.

4.B.1.4 European Union

The EU maintains a centralized statistical database known as EuroStat (Eurostat, 2013)71

which contains data on mortality counts and rates for all member countries at EU-specific
administrative regions known as “Nomenclature of territorial units for statistics” (NUTS)
boundaries.72 Data on mortality were obtained at NUTS2 level for all member states between
the years 1990-2014, though individual countries start and end years vary, as described in
Table 4.B.1. Population data for each NUTS2 region were obtained through the EuroStat
database. We download age-specific data according to the age groups used in the main
analysis (<5, 5-64, >64). It is noted in the metadata that populations for NUTS2 regions
are estimated to be applicable to the first day of each year, whereas mortality data are
counted at the end of that year. Because of this, we offset the assignment of population and
mortality by one year, so that, for example, 2005 mortality is matched with 2006 population
on January 1st. Administrative shapefiles are downloaded from the same source, and the
2013 version is used in the analysis. We drop the data on France from the EU dataset, as
we obtain a higher spatial resolution source directly from the French government.

70Data are available here: http://www.ine.cl/estadisticas/demograficas-y-vitales
71Data are available here: http://ec.europa.eu/eurostat/data/database.
72Administrative boundary files were downloaded from: http://ec.europa.eu/eurostat/web/gisco/geodata/

reference-data/administrative-units-statistical-units/nuts.
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4.B.1.5 France

Mortality data for France are obtained at the ADM2-month level from the Institut National
D’etudes Demographiques (National Institute for the Study of Demography (INED), 2019)73

for the years 1998-2010. Data from this source do not have a categorization of mortality for a
<5 year old age group, as used in the main analysis. The youngest age group for which there
are data is ages 0-19. In the main analysis, we assign the mortality rates in the French data
for the 0-19 age group to the <5 age group when pooling across countries. As this introduces
some measurement error, we perform a robustness check in which we alternatively assign the
deaths in the 0-19 age group to our 5-64 age group; this leads to a minimal change in the
multi-country pooled results shown in Tables 4.2 and 4.D.1. We aggregate the monthly
data to the annual level for consistency with other countries’ mortality records, and obtain
administrative boundary files from GADM (Global Administrative Areas, 2012).

4.B.1.6 India

Annual data on Indian mortality rates at the district (i.e., ADM2) level were obtained from
Burgess et al. (2017). A more thorough description of the data is given by the authors. The
Indian data are not used in our main analysis, due to the absence of age-specific mortality
rates and the importance of age in defining the mortality-temperature response function
(e.g., see Figure 4.4). However, these data are used to assess the external validity of our
extrapolation methods, as discussed in Appendix 4.D.6.

4.B.1.7 Japan

Japanese data on mortality and population at the prefecture-year74 level were obtained from
the National Institute of Population and Social Security Research75 for the years 1975-2012.
Data are available for all 47 prefectures of Japan, with no changes to administrative bound-
aries in that time. Mortality rates were downloaded as single-year age groups, which were
then aggregated into the age groups used in the main analysis (<5, 5-64, >64). Prefecture
(i.e., ADM1) boundaries were obtained from GADM (Global Administrative Areas, 2012).

4.B.1.8 Mexico

Mexican data on municipality-month deaths were obtained for the years 1990-2010 from
the National Institute of Statistics and Geographical Information (INEGI), whose open-
microdata repository contains the raw mortality files.76 The data contain detailed informa-
tion, including the municipality of occurrence and of residence, date, and age at death. We
assign locations of deaths based on municipalities of residence. Data were downloaded as

73Data are available here: https://www.ined.fr/en/.
74Japanese mortality data are the only data in our sample at first administrative level (i.e., ADM1). Though this is equivalent

administratively to states in the U.S., the small size of the prefectures makes them comparable in geographic scale to large U.S.
counties or EU NUTS2 regions.

75Data are available here: http://www.ipss.go.jp/index-e.asp.
76The initial link we used was http://www3.inegi.org.mx/sistemas/microdatos/encuestas.aspx?c=33388&s=est as of July,

2015. This link has been moved since, and now is being maintained at http://en.www.inegi.org.mx/proyectos/registros/

vitales/mortalidad/ as of June, 2018.
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monthly mortality counts, then aggregated into municipality-age-year counts, using the age
groups from the main analysis (<5, 5-64, >64). These counts were merged with municipality-
by-year population values estimated from the Mexican census and as maintained at Min-
nesota Population Center’s Integrated Public Use Microdata Series, International.77 There
were seven municipalities (less than 0.5% of total municipalities) that had inharmonious
borders across data sets and years due to administrative splits or mergers; we assigned these
municipalities into their respective unions before the splits or after the mergers.

4.B.1.9 United States

U.S. data on the universe of mortality and population at the county-year level were obtained
from the Center for Disease Control (CDC) Compressed Mortality Files (CMF)78 for the
years 1968-2010. CDC removes values for county-year-age totals that are fewer than 10
deaths to preserve anonymity in the data in public files, and we obtain these through a data
user agreement with CDC. There is some overlap in years available in the restricted and
unrestricted datasets, and where both are available we use the restricted data due to better
spatial coverage. In the restricted data, zeros are coded as missing, and so we reassign all
missing values to zero. Data were downloaded in 5-year age groups and then aggregated to
the age groups used in the main analysis (<5, 5-64, >64). The CMF reports deaths at the
county of residence. Administrative boundaries are obtained from the TIGER datasets of
the U.S. Census Bureau.79

4.B.1.10 Aggregate data

Data from each country were standardized as annual rates for the age groups <5, 5-64, and
>64, and were merged into a single file. We note that in all cases, place of residence is
used for the assignment of temperature exposure to death records. In cases of inharmonious
borders between years, we assign exposure based on a temporally consistent set of boundaries
that are chosen to be in the most aggregate form, i.e., before administrative units split or
after they merge. A full list of these administrative boundaries is available upon request.

77Minnesota Population Center. Integrated Public Use Microdata Series, International: Version 7.0 [dataset]. Minneapolis,
MN: IPUMS, 2018. http://doi.org/10.18128/D020.V7.0.

78Partial data are freely available through the CDC Wonder database.
79Data are available here: https://www.census.gov/geo/maps-data/data/tiger-line.html.
80France is estimated using data from a different source and the EuroStat version of the France data is not used.
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Table 4.B.1
Details of the European Union mortality sample

Code Country Number of NUTS2 regions Years

AT Austria 9 1990-2014 (no data for 1995)
BE Belgium 11 1990-2014
BG Bulgaria 6 1990-2014
CH Switzerland 7 1991-2014
CY Cyprus 1 1993-2014 (data before 1993 is not dis-

aggregated by age group)
CZ Czech Republic 8 1992-2014
DE Germany 50 2002-2014 (2 regions are only available

from 2011-2014)
DK Denmark 5 2007-2014
EE Estonia 1 1990-2014
EL Greece 4 1990-2014 (data after 2013 is disaggre-

gated into 13 regions)
ES Spain 19 1990-2014
FI Finland 5 1990-2014
FR France 22 1990-2014 (an additional 4 regions are

available in 2014)80

HR Croatia 2 2001-2014
HU Hungary 7 1990-2014
IE Ireland 2 1997-2014
IS Iceland 1 1990-2014
IT Italy 21 1990-2014 (2 regions only have age-

specific information after 2001)
LI Liechtenstein 1 1994-2014
LT Lithuania 1 1990-2014
LU Luxembourg 1 1990-2014
LV Latvia 1 2002-2014
ME Montenegro 1 2005-2014
MK Macedonia 1 1995-2014
MT Malta 1 1995-2014 (mortality rates for ages <5

are only available from 1995)
NL Netherlands 12 2001-2014
NO Norway 7 1990-2014
PL Poland 16 1991-2014
PT Portugal 7 1992-2014
RO Romania 8 1990-2014
SE Sweden 8 1990-2014
SI Slovenia 2 2014
SK Slovakia 4 1997-2014
TR Turkey 26 2009-2014
UK United Kingdom 40 1999-2014 (4 regions only have data

available after 2000, 2 after 2002, 5 for
2014 only)
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4.B.2 Climate data

This appendix describes the climate data that we use throughout our analysis, as well as the
methods that we use to make these data spatially and temporally consistent with the reso-
lution of both historical mortality records and with future projection information. Broadly
speaking, we use two classes of climate data: the first is historical data that we use to esti-
mate the mortality-temperature relationship; the second is projected data on future climate,
which we use to generate climate change damage estimates under various emissions scenar-
ios. In this appendix, we describe the historical data, describe the projection data, detail
our method for constructing a probabilistic ensemble of future climate projections at high
resolution using these projection data, and finally we outline our method for spatial and
temporal aggregation of both historical and projection climate data.

4.B.2.1 Historical climate data

Data on historical climate exposure is used to estimate the mortality-temperature response
function as well as the heterogeneity in these responses across income and climate spaces.
We use two separate groups of historical data on precipitation and temperature from in-
dependent sources. First, we use a reanalysis product, the Global Meteorological Forcing
Dataset (GMFD) (Sheffield, Goteti, and Wood, 2006), which relies on a climate model in
combination with observational data to create globally-comprehensive data on daily mean,
maximum, and minimum temperature and precipitation (see Auffhammer et al. (2013) for
a discussion of reanalysis data). Second, we repeat our analysis with climate datasets that
strictly interpolate observational data across space onto grids. This comparison is important,
as the sources of measurement error are likely to differ across reanalysis (which relies in part
on a physical climate model) and interpolation (which relies purely on statistical methods
such as kriging). For interpolated products, we use the daily Berkeley Earth Surface Tem-
perature dataset (BEST) (Rohde et al., 2013) in combination with the monthly University
of Delaware precipitation dataset (UDEL) (Matsuura and Willmott, 2007).

The GMFD dataset serves as our primary historical climate data source for analysis.
A primary reason for this choice is that GMFD is used to bias-correct the climate model
projections (described below), and using any other estimated relationship with these projec-
tion data would consequently be inconsistent. We use BEST and UDEL in order to ensure
consistency of our estimated response surfaces across climate datasets.

Global Meteorological Forcing Dataset for Land Surface Modeling The main
dataset used in this analysis is the Global Meteorological Forcing Dataset (GMFD) (Sheffield,
Goteti, and Wood, 2006). These data provide surface temperature and precipitation infor-
mation using a combination of both observations and reanalysis. The reanalysis process
takes observational weather data and uses a weather forecasting model to interpolate both
spatially and temporally in order to establish a gridded dataset of meteorological variables.
The particular reanalysis used is the NCEP/NCAR reanalysis, which is downscaled and bias-
corrected using a number of station-based observational datasets to remove biases in monthly
temperature and precipitation (Sheffield, Goteti, and Wood, 2006). Data are available on a
0.25◦×0.25◦ resolution grid from 1948-2010. The temporal frequency is up to 3-hourly, but
the daily data are used for this analysis. We obtain daily average temperatures and monthly
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average precipitation for all grid cells globally.
Berkeley Earth Surface Temperature The Berkeley Earth Surface Temperature

(BEST) dataset provides temperatures from 1701-2018 over land from a combination of
observational records (Rohde et al., 2013), with spatially disaggregated data available from
1753.81 During the time periods used within this paper (varying between 1957-2014), as many
as 37,000 station records, representing 14 separate databases of station data, are incorporated
into the BEST data. Station data are incorporated using a kriging methodology that allows
for the incorporation of more stations with shorter time series than other well-known global
surface temperature interpolation data (like the UDEL temperature dataset). In particular,
the spatial averaging method uses close neighbors of a station to identify discontinuities
in a particular time series that may be due to instrumental change or re-positioning, and
decreases the influence of these changes in the spatially averaged grid (Rohde et al., 2013).
This does have the potential drawback of over-smoothing the spatial heterogeneity in tem-
peratures (National Center for Atmospheric Research Staff (Eds), 2015). BEST data are
provided at daily frequency on a 1◦×1◦ resolution grid, and we utilize the daily average 2m
air temperature variable for each grid cell.

University of Delaware Climate Dataset The University of Delaware climate dataset
(UDEL) (Matsuura and Willmott, 2007) is used for precipitation in combination with the
BEST data. UDEL provides gridded, interpolated data derived from weather stations on
many variables at a monthly frequency and on a 0.5◦×0.5◦ resolution grid. Data are available
from 1900-2014. The UDEL data are based on two underlying datasets of stations and have
fewer observations underlying the interpolated grid, as compared to BEST. This is likely
to lead to some decrease in interpolation accuracy in areas where the spatial coverage of
weather stations is low (e.g., sub-Saharan Africa). The interpolation procedure used is
based on inverse distance weighting to the central point of each grid cell, and the authors
note that other data, like altitude and atmospheric characteristics, are used to improve that
interpolation. The monthly average precipitation is obtained for all grid cells globally.

4.B.2.2 Climate projection data

Data on the future evolution of the climate is obtained from a multi-model ensemble of Global
Climate Model (GCM) output. However, two important limitations arise when integrating
GCM outputs into the current analysis. First, the relatively coarse resolution (∼ 1◦ of longi-
tude and latitude) of GCMs limits their ability to capture small-scale climate patterns, which
render them unsuitable for climate impact assessment at high spatial resolution. Second,
the GCM climate variables exhibit large local bias when compared with observational data.

To address both of these limitations, we use a high-resolution (0.25◦ X 0.25◦) set of global,
bias-corrected climate projections produced by NASA Earth Exchange (NEX): the Global
Daily Downscaled Projections (GDDP) (Thrasher et al., 2012).82 The NEX-GDDP dataset
comprises 21 climate projections, which are downscaled from the output of global climate
model (GCM) runs in the Coupled Model Intercomparison Project Phase 5 (CMIP5) archive

81Data are available here: http://berkeleyearth.org/data/.
82Climate projections used were from the NEX-GDDP dataset, prepared by the Climate Analytics Group and NASA Ames

Research Center using the NASA Earth Exchange, and distributed by the NASA Center for Climate Simulation (NCCS).

117

http://berkeleyearth.org/data/


(Taylor, Stouffer, and Meehl, 2012). The statistical downscaling algorithm used to gener-
ate the NEX-GDDP dataset is the Bias-Correction Spatial Disaggregation (BCSD) method
(Wood et al., 2004; Thrasher et al., 2012), which was developed to address the aforemen-
tioned two limitations. This algorithm first compares the GCM outputs with observational
data on daily maximum temperature, daily minimum temperature, and daily precipitation
during the period 1950-2005. NEX-GDDP uses a climate dataset from GMFD for this pur-
pose (Sheffield, Goteti, and Wood, 2006). A daily, quantile-specific relationship between
GCM outputs and observations is derived from this comparison. This relationship is then
used to adjust the GCM outputs in historical and in future time periods so that the systemic
bias of the GCM is removed. To disaggregate the bias-corrected GCM outputs to higher
resolution, this algorithm interpolates the daily changes relative to climatology in GCM out-
puts into the spatial resolution of GMFD, and merges the fine-resolution changes with the
climatology of the GMFD data.

For each GCM, three different datasets are generated. The first uses historical emissions
to simulate the response of the climate to historical forcing from 1850 to 2005. The second
and third use projected emissions from Representative Concentration Pathways 4.5 and 8.5
(RCP4.5 and RCP8.5) to simulate emissions under those two emissions scenarios up to 2100.
RCP 4.5 represents a “stabilization” scenario in which total radiative forcing is stabilized
around 2100 (Riahi et al., 2011; Van Vuuren et al., 2011); RCP8.5 simulates climate change
under intensive growth in fossil fuel emissions from 2006 to the end of the 21st century. We
use daily average temperature and daily precipitation in the RCP4.5 and RCP8.5 scenarios
from this dataset, where the daily average temperature is approximated as the mean of daily
maximum and daily minimum temperatures.

4.B.2.3 SMME and model surrogates

The CMIP5 ensemble of GCMs described above is an “ensemble of opportunity”, not a
systematic sample of possible futures. Thus, it does not produce a probability distribution of
future climate change. Moreover, relative to simple climate models designed for probabilistic
sampling of the global mean surface temperature (GMST) response to radiative forcing, the
CMIP5 ensemble systematically fails to sample tail outcomes (Tebaldi and Knutti, 2007;
Rasmussen, Meinshausen, and Kopp, 2016). To provide an ensemble of climate projections
with a probability distribution of GMST responses consistent with that estimated by a
probabilistic simple climate model, we use the surrogate model mixed ensemble (SMME)
method (Rasmussen, Meinshausen, and Kopp, 2016) to assign probabilistic weights to climate
projections produced by GCMs and to improve representation of the tails of the distribution
missing from the ensemble of GCMs. Generally speaking, the SMME uses (1) a weighting
scheme based on a probabilistic projection of global mean surface temperature from a simple
climate model (in this case, MAGGIC6) (Meinshausen, Raper, and Wigley, 2011) and (2)
a form of linear pattern scaling (Mitchell, 2003) that preserves high-frequency variability to
construct model surrogates to fill the tails of probability distribution that are not captured
by the GCM ensembles. This method provides us with an additional 12 surrogate models.

The SMME method first divides the unit interval [0,1] into a set of bins. For this anal-
ysis, the bins are centered at the 1st, 6th, 11th, 16th, 33rd, 50th, 67th, 82nd, 89th, 94th, and
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99th percentiles. Bins are narrower in the tails to ensure samples are created for portions
of the GMST probability distribution function that are not captured by CMIP5 models.
The bounds and center of each bin are assigned corresponding quantiles of GMST anoma-
lies for 2080-2099 from simple climate model (SCM) output; in the application here and
that of Rasmussen, Meinshausen, and Kopp (2016), this output came from the MAGICC6
(Meinshausen, Raper, and Wigley, 2011) model, constrained to match historical temperature
observations and the conclusions of the IPCC Fifth Assessment Report regarding equilib-
rium climate sensitivity. The GMST of CMIP5 models are categorized into bins according
to their 2080-2099 GMST anomalies.

If the number of CMIP5 models in a bin is less than 2, surrogate models are generated
to raise the total number of models to 2 in that bin. The surrogate models are produced
by using the projected annual GMST of the SCM that is consistent with the bin’s central
quantile to scale the spatial pattern of a selected CMIP5 model, then adding the intercept
and residual from the same model. There are two cases of selecting CMIP5 models for pattern
and residual. When there is only one CMIP5 model in a bin, an additional model is selected
that has a GMST projection close to GMST in the bin and a precipitation projection over
the region of interest complementary to the model already in the bin (i.e., if the model in the
bin is relatively dry, then a relatively wet pattern is selected, and vice versa.) When there
is no CMIP5 model, two models are picked with GMST projections close to that of the bin,
with one model being relatively wet and one being relatively dry. In the final probabilistic
distribution, the total weight of the bin is equally divided among the CMIP5 models and
surrogate models in the bin. For instance, if four models are in the bin centered at the 30th
percentile, bounded by the 20th – 40th percentiles, each will be assigned a probability of
20%÷ 4 = 5%. The resulting distribution of GMST for all members of the SMME is shown
in Figure 4.2B.

4.B.2.4 Aggregation of gridded climate data to administrative boundaries

We link gridded historical climate data to administrative mortality records by aggregating
grid cell information to the same spatial and temporal level as the mortality records (see
Table 4.1). Similarly, to generate future climate change impact projections at each of our
24,378 custom impact regions (impact regions are administrative regions or agglomerations
of administrative regions; see Appendix 4.C for details), we aggregate grid cell information
to impact region scale. In both cases, nonlinear transformations of temperature and rainfall
are computed at the grid cell level before averaging values across space using population
weights and finally summing over days within a year. This procedure recovers grid-by-day-
level nonlinearities in the mortality-temperature (and mortality-precipitation) relationship,
because mortality events are additive (Hsiang, 2016).

To see how this calculation is operationalized, consider the fourth-order polynomial spec-
ification for temperature used in our main set of results for estimation of Equations 4.10 and
4.11. In this case, we begin with data on average temperatures for each day d at each grid cell
z, generating observations Tzd. These grid-level values must then be aggregated to the level
of an administrative unit i in year t. To do this, we first raise grid-level temperature to the
power p, computing (Tzd)

p for p ∈ {1, 2, 3, 4}. We then take a spatial average of these values
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over administrative unit i, weighting the average by grid-level population (and accounting
for fractional grid cells that fall partially within administrative units). Population weights
are time-invariant and calculated from the 2011 Landscan dataset (Bright et al., 2012). We
then sum these daily polynomial terms T pzd over days in the year t. The vector of annual,
administrative-level-by-year temperature variables we use for estimation is thus:

Tit =

[∑
d∈t

∑
z∈i

wzi(Tzd)
1,
∑
d∈t

∑
z∈i

wzi(Tzd)
2, ...,

∑
d∈t

∑
z∈i

wzi(Tzd)
P

]

where wzi is the share of i’s population that falls into grid cell z, and where superscripts
indicate polynomial powers. This nonlinear transformation performed prior to aggregation
allows the aggregated measure of temperature to capture grid-by-day level exposure to very
hot and very cold temperatures. In the econometric estimation of Equations 4.10 and 4.11,
quadratic polynomials in precipitation are similarly calculated and weighted averages are
taken over administrative units. In Appendix Figure 4.D.1, we show robustness of the
mortality-temperature relationship to four different nonlinear functional forms of temper-
ature, all of which undergo an analogous grid-level transformation before averaging across
space and summing over time. In future projections, all daily gridded climate projection
data from each of the 33 members of the SMME are analogously aggregated across space
and time.

4.B.3 Socioeconomic data and downscaling methodologies

This appendix provides details of the socioeconomic data used throughout our analysis, which
includes historical subnational incomes, future projections of incomes, and future projections
of population counts and age distributions. Additionally, because we require these variables
at high spatial resolution both for econometric estimation and for future projections, we
detail the downscaling procedures we use to disaggregate available socioeconomic data, which
is generally provided at relatively low resolution.

4.B.3.1 Historical income data

Our main specification (Equation 4.11) estimates heterogeneity in mortality-temperature
responses as a function of income and long-run average temperature in each location. In
order to obtain income data for each subnational region in our mortality records, we draw
subnational incomes from three main sources, using a combination of subnational GDP
datasets as well as globally-comprehensive national GDP data:

� Penn World Tables (PWT) national GDP.83 This dataset provides national level
incomes from 1950 to 2014 for most of the countries in the world. We use Penn World
Tables version 9.0 to obtain national level income for all countries in our sample (Brazil,
Chile, China, France, India, Japan, Mexico, USA, and the 33 EU countries listed in
Table 4.B.1).

83Penn World Tables (PWT) database: https://www.rug.nl/ggdc/productivity/pwt/.
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� Eurostat (2013) subnational GDP.84 This dataset provides national and sub-
national level income data for the European countries in our dataset. We use this
dataset to obtain subnational income at the NUTS2 level of aggregation, which is the
level at which we observe mortality records.

� Gennaioli et al. (2014) subnational GDP. This dataset provides national and
sub-national income data for 1,503 administrative regions from 83 countries. We use
this dataset to obtain subnational level income data for all countries outside the EU:
Brazil, Chile, China, France,85 India, Japan, Mexico, and USA. Data are provided by
the authors at the first administrative subdivision for each country (i.e., ADM1).

Using these data, we construct a consistent multi-country panel of subnational incomes
at the NUTS2 level for EU countries and ADM1 level for the non-EU countries, which can be
used for estimation of Equation 4.11. To do so, we use Eurostat (2013) and Gennaioli et al.
(2014) to downscale the PWT national-level incomes. We prefer this approach to using the
subnational data directly, as there are known inconsistencies in measurement of subnational
GDP across countries. Thus, we make the assumption that the within-country distributions
of GDP recorded in Eurostat (2013) and Gennaioli et al. (2014) are accurate, but the exact
levels may not be. We rely on the PWT data as a consistent measure of GDP levels for
all countries; thus, our subnational GDP estimates sum to national GDP from PWT for all
countries in the sample. For administrative region s in country c in year t we calculate a
weight, νsct that will apportion national income to subnational regions as follows:

νsct =


GDPpcEurostatsct∑
s∈cGDPpc

Eurostat
sct

if c ∈ EU

GDPpcGennaiolisct∑
s∈cGDPpc

Gennaioli
sct

otherwise

GDPpcsct =νsct ×GDPpcPWT
ct

where GDPpcPWT corresponds to per capita GDP drawn from the PWT dataset. Using
these estimates of administrative-level GDP per capita, we construct the time-invariant
income covariate log(GDPpc)s used for estimation of Equation 4.11 as follows. First, we
take the log of our GDP per capita estimate for year t and region s. Second, we use a
Bartlett kernel to compute a weighted average of lagged values of log(GDPpc)st, where the
length of the kernel is empirically derived as described in Appendix 4.E.1. We take this
approach because changes in income are unlikely to immediately translate into changes in
mortality-temperature sensitivity. Finally, we average this Bartlett kernel value across all
years in the sample for each region s (note that the length of the panel varies by country, as
shown in Figure 4.2A).

Note that data in Eurostat (2013) are an annual panel. However, the data collected by
Gennaioli et al. (2014) are drawn from disparate sources, often using census data, which are

84Eurostat database: http://ec.europa.eu/eurostat/data/database.
85As noted in Appendix 4.B.1, we use higher resolution mortality data from France than that which is available through

EuroStat. Therefore, we also rely on administrative income data from Gennaioli et al. (2014) instead of lower resolution income
data from EuroStat.
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typically not annual, leading to an unbalanced panel. To construct annual values of income
per capita using the Gennaioli et al. (2014) data, we linearly interpolate between years,
before constructing the Bartlett kernel and taking averages across all years. For instances
where we need to extrapolate backwards in time (i.e., when mortality data are available
earlier than income data), we extrapolate backwards logarthmically. All subnational income
data are in constant 2005 dollars PPP. A summary of the available years of data before
interpolation is given in Table 4.B.2.

Country ISO code Years in mortality sample Years in income sample86

Brazil BRA 1997-2009 1995, 2000, 2005, 2010

China CHN 1991-2012 1990, 1995, 2000, 2005, 2010

Chile CHL 1997-2012 1995, 2000, 2010

EU 1990-2012 2003-2012

France FRA 1998-2012 1995, 2000, 2005, 2010

India IND 1957-2001 1980, 1985, 1990, 1995, 2000,
2005, 2010

Japan JPN 1975-2012 1975, 1980, 1985, 1990, 1995,
2000, 2005, 2009

Mexico MEX 1990-2012 1995, 2000, 2005, 2010

USA USA 1968-2013 1965, 1970, 1975, 1980, 1985,
1990, 1995, 2000, 2005, 2009

Table 4.B.2
Temporal coverage of mortality records and years of available subnational income data.

4.B.3.2 Income projections and downscaling methodology

Future projections of national incomes are derived from the Organization for Economic
Co-operation and Development (OECD) Env-Growth model (Dellink et al., 2015) and the
International Institute for Applied Systems Analysis (IIASA) GDP model (Samir and Lutz,
2014), as part of the “socioeconomic conditions” (population, demographics, education, in-
come, and urbanization projections) of the Shared Socioeconomic Pathways (SSPs). The
SSPs propose a set of plausible scenarios of socioeconomic development over the 21st cen-
tury in the absence of climate impacts and policy for use by the Integrated Assessment
Modeling (IAM) and Impacts, Adaptation, and Vulnerability (IAV) scientific communities.

While there are many models within the SSP database, only the IIASA GDP model
and OECD Env-Growth model provide GDP per capita projections for a wide range of
countries. The IIASA GDP model describes incomes that are lower than the OECD Env-
Growth model, so we produce results for both of these models to capture uncertainty within

86EU subnational income data come from Eurostat (2013). For all other countries, subnational income data are obtained
from Gennaioli et al. (2014).
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each socioeconomic scenario (we compute results for three socioeconomic scenarios: SSP2,
SSP3, and SSP4). To construct annual estimates, we smoothly interpolate between the time
series data in the SSP database, which are provided in 5-year increments. For each 5-year
period, we calculate the average annual growth rate, and apply this growth rate to produce
each year’s estimate of GDP per capita.87

Throughout the main text, we show results relying on SSP3, although sensitivity of all
main results to socioeconomic scenario are shown in the Appendix. While the methodology
we develop to estimate future impacts of climate change on mortality, as well as a partial
mortality-only SCC, can be applied to any available socioeconomic scenario, we emphasize
SSP3 because its historic global growth rates in GDP per capita and population match
observed global growth rates over the 2000-2018 period much more closely than either SSP2
or SSP4, as shown below in Table 4.B.3.

Table 4.B.3
Comparison of SSP growth rates to observed data in the historical record This table shows global
average growth rates in GDP per capita and in population from observational data (World Bank), as well as
from each SSP scenario used in our analysis. Note that International Institute for Applied Systems Analy-
sis (IIASA) GDP model (Samir and Lutz, 2014) only provides GDP per capita estimates after 2010. For
both GDP per capita and population, and for each historical time period, SSP3 matches historical data more
closely; we therefore show climate change projection results using this scenario throughout the main text.

Reference Scenario

World Bank SSP2 SSP3 SSP4

GDP per capita
OECD (2000-2018) 2.39% 2.65% 2.57% 2.63%
OECD (2010-2018) 2.37% 3.01% 2.85% 2.98%
IIASA (2010-2018) 2.37% 3.69% 3.17% 3.55%

Population
IIASA (2000-2018) 1.21% 1.13% 1.18% 1.12%
IIASA (2010-2018) 1.17% 1.04% 1.13% 1.02%

Although the SSP scenarios provide national-level income projections, our high-resolution
analysis requires estimates of location-specific GDP within country borders. To generate
values of income for each of our 24,378 impact regions over time, we allocate national GDP
per capita values from the SSPs across impact regions within a country through a downscaling
procedure that relies on nightlights imagery from the NOAA Defense Meteorological Satellite
Program (DMSP). This approach proceeds in two steps. First, we use available subnational
income data from Gennaioli et al. (2014) in combination with higher-resolution income data
from the U.S., China, Brazil, and India, to empirically estimate the relationship between
GDP per capita and nightlight intensity.88 Second, we use this estimated relationship to
allocate national-level GDP data across impact regions within each country, based on relative
intensity of night lights in the present. While this approach models heterogeneity in income

87OECD estimates of income are provided for 184 countries and IIASA’s GDP projections cover 171 countries. For the
remaining countries, we apply the average GDP per capita from the available countries for the baseline period, and allow this
income to grow at the globally averaged growth rate.

88Due to cross-country inconsistencies in subnational income data, the income data for the US are primarily used to estimate
the relationship between GDP per capita and nightlights intensity; other countries’ data provide validation only.
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levels across impact regions, each region grows in the future at the same rate as the national
country projection from the SSPs. We detail these two steps below.

Estimation of the GDP-nightlights relationship While there exists a growing lit-
erature linking economic output to nightlights intensity, we take an unconventional regres-
sion approach to recovering this relationship because our goal is to apportion national in-
come within a country, as opposed to predict the level of income at any given location. In
particular, we are interested in the ratio GDPpcrc∑

r∈c wrcGCPpcrc
for impact region r in country c

(where wrc is a region-specific population weight), which will allow us to predict income
at the impact region level, given projections of national GDP per capita from the SSPs,∑

r∈cwrcGDPpcrc = GDPpcSSPc . Thus, we estimate a regression relating relative GDP per
capita to relative nightlights intensity, where each administrative region’s values are calcu-
lated as relative to the country mean. The dependent variable for administrative region i in
country c and year t is thus GDPpcict∑

i∈c wictGDPpcict
.89 To construct a measure of location-specific rel-

ative nightlight intensity, we calculate a z-score of nightlights (ZNL) for each administrative
region i within a country c using:

ZNLict =
NLict −NLct
σ(NLct)

where NLct is the country average nightlights intensity, σ(NLct) is the standard deviation
of nightlights intensity across all administrative regions within country c, and where the
stable nightlights data product from 1992-2012 is used to construct time-varying measures
of average nightlights intensity across an administrative region, NLict.

The regression we estimate is as follows:

GDPpcict∑
i∈cwictGDPpcict

= α + βZNLict + εict (4.B.1)

where β represents the impact of a one standard deviation increase in a region’s nightlights
intensity, relative to its country average, on that region’s relative GDP per capita.

Allocation of national GDP to impact regions using relative nightlight inten-
sity We use the estimated coefficients from Equation 4.B.1 to compute income at impact
region level. To do so, we construct values ZNLrct = NLrct−NLct

σ(NLct)
for each impact region r

using the average of stable nightlights from DMSP across the years 2008-2012. We then
estimate GDPpcrct as follows:

ĜDPpcrct =
[
α̂ + β̂ZNLrct

]
×GDPpcSSPct

where
∑

r∈cwrcGDPpcrc comes from one of the SSP projected income scenarios. The result
of this approach is that the subnational downscaled incomes will sum to the national income
from the SSPs, as these ratios sum to one, by construction.

89As discussed, the income data available from Gennaioli et al. (2014) are at the first administrative level (i.e. ADM1).
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4.B.3.3 Population projections and downscaling methodology

Future projections of national populations are derived from the International Institute for
Applied Systems Analysis (IIASA) (Samir and Lutz, 2014) population projections as part
of the Shared Socioeconomic Pathways (SSPs).90 The IIASA SSP population projections
provide estimates of population by age cohort, gender, and level of education for 193 countries
from 2010 to 2100 in five-year increments. Each projection corresponds to one of the five
SSPs, as defined in O’Neill et al. (2014). These populations are mapped to impact regions
by country code using 3-digit country ISO-codes.

To assemble population projections for each of our 24,378 impact regions, we downscale
the country-level projections from the SSPs using 2011 high-resolution LandScan estimates
of populations (Bright et al., 2012). Populations for impact regions in countries or areas not
given in the SSP database are held constant at the values estimated by LandScan in 2011.
Thus, for any given impact region r in year t, population for scenario v (poprtv) is estimated
as:

p̂oprtv =

{
popSSPctv

(
popLandScanr,2011∑
r∈c pop

LandScan
r,2011

)
, if r ∈ C

popLandScanr,2011 , if r /∈ C
(4.B.2)

where popSSPctv is the SSP population given for country c and year t for scenario v, popLandScanr,2011

is the LandScan estimate for impact region r, and C is the set of 193 countries available
in the SSP Database. Note that while this approach distributes country-level projections
of population heterogeneously to impact regions within a country, it fixes the relative pop-
ulation distribution within each country at the observed distribution today. The division
of population totals into the three age categories used throughout the analysis (0-4, 5-64,
>64) is assumed to be constant across all impact regions within a country, and is thus taken
directly from the SSPs.

90The population data are accessed from the SSP database (IIASA Energy Program, 2016).
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4.C Spatial units for projection: “Impact regions”

We create a set of custom boundaries that define the spatial units for which location-specific
projected damages of climate change are computed. To do so, we utilize politically de-
fined regions, as opposed to a regular grid, as socioeconomic data are generally collected at
this scale and because administrative regions are relevant to policy-makers. These regions,
hereafter referred to as “impact regions”, are constructed such that they are identical to
existing administrative regions or are a union of a small number of administrative regions.
We use version 2 of the Global Administrative Region dataset (GADM) (Global Administra-
tive Areas, 2012), which contains 218,328 spatial units, to delineate boundaries. However,
for computational feasibility and greater comparability across regions, we agglomerate these
regions to create a set of 24,378 custom impact regions. To conduct this agglomeration, we
establish a set of criteria that ensures these impact regions have approximately comparable
populations and are internally consistent with respect to mean temperature, diurnal tem-
perature range, and mean precipitation. A map of these regions is shown in Figure 4.C.1,
and we detail this agglomeration algorithm below.

Figure 4.C.1
Map of the 24,378 “impact regions” for which location-specific projections are calculated.
We use a clustering algorithm to form these regions from the full set of GADM administrative re-
gions, such that they are roughly similar in total population, and so that they are approximately inter-
nally homogenous with respect to mean temperature, diurnal temperature range, and mean precipitation.

4.C.1 Algorithm for construction of impact region boundaries

We develop an algorithm which agglomerates administrative units from GADM into a smaller
set of impact regions. Our goal is to create a set of approximately 20,000 impact regions
that are spatially compact, of approximately equal population, and exhibit internally homo-
geneous climates. This procedure is conducted in three steps.

Step 1: Constructing a target region count for each country First, for each
country, we generate a target number of regions; this is the number of regions that a country
should roughly be divided into, based on its spatial extent, population, and climatic vari-
ability, and conforming to the goal of constructing approximately 20,000 global regions. We
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create this target for country c as the arithmetic mean of a population-based target and a
climate-based target:

targetc =
1

2
[population target+ climate target]

=
1

2

[
20000

popc∑
c popc

+ 20000
AcVc∑
cAcVc

]
where popc is population of country c in 2011 from Landscan (see Appendix 4.B.3.3) and Ac
is the total area of country c. The variable Vc is a measure of a country’s internal climate
variability, relative to the global average, and is defined as follows:

Vc =
V arz[T ]

Ec[V arz[T ]]
+

V arz[D]

Ec[V arz[D]]
+

V arz[R]

Ec[V arz[R]]
+

V arz[Q]

Ec[V arz[Q]]

where T is mean daily temperature, D is the diurnal temperature range, R is precipitation
in the wettest month of the year, Q is precipitation in the driest month of the year, and
where variances are taken over grid cells z within country c and expectations are taken over
all countries c.

Step 2: Categorization of countries based on their target region count Second,
we categorize countries based on whether there exists an administrative level in the GADM
dataset (e.g. ADM1, which are equivalent to U.S. states; ADM2, which are equivalent to U.S.
counties) for which the number of administrative units is roughly equivalent to the target
number of regions. This categorization process leads to each country being divided into one
of three cases, as shown in Figure 4.C.2. First, if there exists a GADM administrative level
l, in country c, for which Nl, the number of administrative regions at level l, lies within
the range 1

2
targetc ≤ Nl ≤ 2targetc, we simply use the administrative level l as our set of

impact regions for country c. Countries which fall into this category are shown in shades of
blue in Figure 4.C.2. This categorization includes the case where targetc ≤ 1, in which case
the entire country (i.e. ADM0 in GADM) is one impact region (shown in the lightest blue).
Second, if the target number of regions for country c exceeds the maximum available region
disaggregation in GADM, we simply use the highest resolution administrative level available
from GADM. Countries which fall into this category are shown in dark blue in Figure 4.C.2.
Finally, for all other countries, administrative units from GADM must be agglomerated to
construct impact regions at a lower level of spatial resolution; these countries are shown in
red in Figure 4.C.2. The agglomeration algorithm is described below.

Step 3: Agglomeration algorithm for impact region construction The third step
in the process of constructing impact regions is to develop an agglomeration algorithm that
will cluster administrative units from GADM into lower spatial resolution regions. Note that
this third step only has to be conducted for the countries shown in red in Figure 4.C.2, as all
other countries have a target number of impact regions that is well approximated by existing
GADM administrative regions at some level l. For these remaining counties, the algorithm
proceeds as follows.

First, we calculate a set of attributes at the highest administrative level available from
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By$decision$type$

Figure 4.C.2
Categorization of countries based on the method used to construct impact regions out of GADM admin-
istrative regions. A country’s target number of impact regions is targetc, as computed in the text. Countries in
shades of blue have target values that can be approximated by one of the available GADM administrative levels l, such as
ADM1 or ADM2, as there exists a level l such that the total number of administrative regions, Nl, falls within the range
1
2
targetc ≤ Nl ≤ 2targetc. Darker shades denote higher administrative levels, which have more regions. The ADM0 (country)

level is also used if targetc ≤ 1, and the highest available administrative level is used if targetc is greater than the maximum
Nl for country c. Finally, countries in red require agglomeration from the native GADM regions, as there is no administra-
tive level l which satisfies the range criterion above, given the target region count targetc. This agglomeration algorithm is
described in the text. We make an exception for the United States, shown in red, and represent it at ADM2 (county) level.

GADM within each country. As the agglomerations are performed, the attributes of each
new agglomerated region are generated from its component regions. These attributes are as
follows:

� The set of GADM regions within the agglomeration

� The set of neighboring agglomerated regions

� Population (pop),91 and area (A)

� Socioeconomic and climatic traits ({T}): population density, average temperature,
diurnal temp range, wet season precipitation, and dry season precipitation

� Centroids of all GADM regions contained within the agglomeration ({(Lat, Lon)})

The agglomeration process is a greedy algorithm, which performs the following steps:

1. A set of proposed agglomerations is generated. For a given region r within a containing
administrative region Sl of administrative level l, these consist of:

� The combination of r with each of its neighbors within Sl.

� The next higher administrative region, Sl+1 (e.g., all counties within the same
state).

� If neither of the above is available (e.g., an island state, with Sl equalling the coun-
try), the combination of r and the closest neighbor also at the first administrative
level.

91Population data are from Landscan (Bright et al., 2012), as in Appendix 4.B.3.3.
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2. Each proposed agglomeration from step 1, across all regions, is scored. For a region
r containing subregions indexed by j, the scores consist of a weighted sum of the
following:

Attribute Expression Weight
Area (

∑
j
Aj/A0)2, where A0 is the average US county area 0.01

Population (
∑

j
popj/pop0)2, where pop0 is the average US county

population
1

Dispersion V ar[Lat] + V ar[Lon cos E[Lat]] 10
Other traits

∑
T
V ar[Tr]/T0, where T0 is 1 for population density,

100 for elevation, 8.0 for mean temperature, 2.1 for
diurnal temperature range, 25.0 for wet season pre-
cipitation and 2.6 for dry season precipitation

100

Circumference M n
6
√
M

, where M is the number of contained regions
and n is the number of neighboring regions

1

3. The agglomeration with the smallest score from step 2 is identified.

4. The regions within the new agglomeration are merged, and new properties are applied
to the new region.

5. This process repeats until the target number of regions targetc for country c is reached.
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4.D Econometric estimation: Additional results, ro-

bustness, and out-of-sample validation

This appendix provides additional illustrations of and tabular results for the main econo-
metric regressions used and discussed throughout the main text (Table 4.D.1, Figures 4.D.2
and 4.D.3, and Table 4.D.3), shows a set of robustness checks for those main results (Figures
4.D.1 and 4.D.4 and Table 4.D.4), and discusses an out-of-sample validation test designed
to evaluate the accuracy with which our estimates predict mortality-temperature responses
in locations that are not used for estimation (Figure 4.D.5).

4.D.1 Robustness of the pooled multi-country mortality-temperature
response function

Figure 4.D.1 displays the results of estimating a version of Equation 4.10 using a set of dif-
ferent functional forms of temperature (i.e., different formulations of the temperature vector
Tit) and using two different climate datasets to obtain those temperatures (see Appendix
4.B.2 for details on these climate datasets). Here we show results for an all-age mortality
response g(Tit) in which an average treatment effect across all age categories is recovered
(as in Table 4.2 in the main text). The four functional forms estimated are fourth-order
polynomials, bins of daily average temperature, restricted cubic splines, and piecewise linear
splines (details on these functional forms are in Section 4.4 of the main text). All regressions
include age×ADM2 fixed effects and age× country×year fixed effects, and are population
weighted. Robustness to alternative fixed effects specifications is shown in Table 4.2.

4.D.2 Age-specific pooled multi-country mortality-temperature re-
sponse functions

Table 4.D.1 displays the regression results from estimation of Equation 4.10 in the main
text. These regression results reveal substantial heterogeneity across age groups within our
multi-country sample (responses for column (2) are plotted in Figure 4.4). Selecting column
(2) as our preferred specification, people over the age of 64 experience approximately 4.7
extra deaths per 100,000 for a day at 35◦C compared to a day at 20◦C, a substantially larger
effect than that for younger cohorts, which exhibit little response.

4.D.3 Heterogeneity in the mortality-temperature response func-
tion across countries

The administrative regions in our sample display substantial heterogeneity in incomes, cli-
mates, and demographics, among many other characteristics. To begin to examine this het-
erogeneity before estimating the two-factor model of heterogeneous mortality-temperature
responses in Equation 4.11, here we investigate variation in mortality responses to temper-
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Figure 4.D.1
Robustness of the all-age mortality-temperature relationship to alternative functional forms and to dif-
ferent historical climate datasets. Row 1 shows the mortality-temperature response function as estimated using
daily temperature and precipitation data from the Global Meteorological Forcing Dataset (GMFD). Row 2 shows the
same response, using daily temperatures from Berkeley Earth Surface Temperature (BEST), and monthly precipitation
from the University of Delaware. Each column displays a distinct functional form, with the fourth-order polynomial
shown in column 1 overlaid in teal on each subsequent column. See Section 4.4 for details on each functional form.

ature at the country level across our sample.92 Table 4.D.2 displays differential mortality-
temperature response functions for each of the 9 countries or regions (i.e., the EU, which is
composed of 33 countries) in our data.

92For exposition purposes, we treat the EU here as a single “country”. A dummy variable is used to estimate the EU only
response, but each of the 33 countries in the EU sample have their own set of country-year-age fixed effects.
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Table 4.D.1
Temperature-mortality response function with demographic heterogeneity estimated using pooled subna-
tional data. Regression estimates are from a fourth-order polynomial in daily average temperature and are estimated us-
ing GMFD weather data with a sample that was winsorized at the top 1% level. Point estimates indicate the effect of a
single day at each daily average temperature value shown, relative to a day with an average temperature of 20◦C (68◦F).

Age-specific mortality rate (per 100,000)

(1) (2) (3) (4) (5)
Panel A: <5 years of age

35◦ C 2.218*** -0.003 0.041 0.074 -0.060
(0.487) (0.252) (0.157) (0.212) (0.252)

30◦ C 1.303*** -0.077 0.009 0.027 -0.076
(0.217) (0.102) (0.065) (0.092) (0.102)

20◦C – – – – –
– – – – –

0◦ C -2.098*** -0.030 -0.083 -0.051 -0.094
(0.312) (0.122) (0.108) (0.044) (0.118)

-5◦ C -2.224*** -0.141 -0.117 -0.011 -0.195
(0.380) (0.121) (0.104) (0.075) (0.121)

Panel B: 5 - 64 years of age
35◦ C 4.551*** 0.017 0.019 0.089 0.035

(0.656) (0.110) (0.067) (0.182) (0.110)
30◦ C 2.583*** 0.057 0.034 0.039 0.069

(0.253) (0.065) (0.036) (0.081) (0.064)
20◦C – – – – –

– – – – –
0◦ C -4.116*** -0.124* -0.094* -0.008 -0.126**

(0.292) (0.064) (0.050) (0.040) (0.059)
-5◦ C -4.689*** -0.116 -0.093* -0.002 -0.115

(0.364) (0.079) (0.051) (0.056) (0.073)

Panel C: >64 years of age
35◦ C -3.686** 4.712** 2.059 4.868*** 4.855**

(1.773) (1.939) (1.318) (1.884) (1.885)
30◦ C -1.870** 2.691*** 1.003* 2.446*** 2.772***

(0.770) (0.828) (0.587) (0.706) (0.800)
20◦C – – – – –

– – – – –
0◦ C 8.282*** 2.023*** 1.751*** 1.242*** 1.691**

(0.762) (0.731) (0.510) (0.373) (0.713)
-5◦ C 10.458*** 3.431*** 2.493*** 2.014*** 2.909***

(0.905) (0.959) (0.579) (0.523) (0.909)

Adj R-squared 0.982 0.987 0.989 0.999 0.987
N 820697 820237 820237 819991 820237
Age×ADM2 FE Yes Yes Yes Yes Yes
Country×Year FE Yes – – – –
Age×Country×Year FE – Yes Yes Yes Yes
Age×ADM1 linear trend – – Yes – –
Precision weighting (FGLS) – – – Yes –
13-month exposure – – – – Yes

Standard errors clustered at the ADM1 (e.g., state) level.
Regressions in columns (1)-(3), and (5) are population-weighted.
Column (4) weights use a precision-weighting approach (see text).
*** p<0.01, ** p<0.05, * p<0.1
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Table 4.D.2
Heterogeneity by country in the mortality-temperature response function. Regression estimates shown are
from a fourth-order polynomial in daily average temperature and are estimated using GMFD weather data with a
sample that was winsorized at the 1% level. Point estimates indicate the effect of a single day at each daily
average temperature value shown, relative to a day with an average temperature of 20◦C. Country-specific coeffi-
cients are generated by interacting all climate variables and fixed effects with country dummies. Point estimates
are only shown for daily average temperatures that are actually experienced in each country over our sample period.

Temperature BRA CHL CHN FRA JPN MEX USA EUR

35◦ 0.684 0.212 0.547**
(0.452) (0.286) (0.244)

30◦ 0.018 -1.009** 0.343 0 0.268* -0.068 0.362*** 0.863**
(0.1) (0.485) (0.677) (0.525) (0.16) (0.117) (0.106) (0.414)

25◦ 0.023 -0.152** -0.191 0.308* 0.055 -0.023 0.165*** 0.287**
(0.08) (0.077) (0.237) (0.172) (0.059) (0.068) (0.039) (0.144)

20◦ – – – – – – – –
– – – – – – – –

0◦ -0.204 1.12*** -0.419* 0.272* 4.526*** 0.017 1.426
(0.284) (0.421) (0.249) (0.154) (0.991) (0.119) (1.063)

-5◦ -1.058 0.817* -0.478 0.451* 10.829*** 0.161 1.968
(0.732) (0.456) (0.377) (0.24) (2.801) (0.146) (1.435)

-10◦ -3.34* 0.435 -1.341* 0.773* 21.986*** 0.299* 2.248
(1.736) (0.541) (0.782) (0.437) (6.384) (0.175) (1.575)

Adj R-squared .989
Observations 820237
Adm2-Age FE YES
Cntry-Year-Age FE YES

Standard errors clustered at ADM1 level. Stacked regression is run with population weighting.
*** p<0.01, ** p<0.05, * p<0.1
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4.D.4 Age-specific heterogeneity of the mortality-temperature re-
sponse function by average income and average climate

The estimation of Equation 4.11 tests for systematic heterogeneity in the mortality-temperature
response function by modeling interactions between the temperature variables (T ) and the
ADM1-level covariates of average climate (TMEAN) and average income (log(GDPpc)).
To see how we implement Equation 4.11 in practice, note that in Equation 4.10, we estimate
ga(·) as the inner product between the nonlinear functions of temperature Tit and a vector of
coefficients βa; that is, ga(Tit) = βaTit. For example, in the polynomial case, Tit is a vector
of length P and contains the annual sum of daily average temperatures raised to the powers
p = 1, ..., P and aggregated across grid cells. The coefficients βa therefore fully describe
the age-specific nonlinear response function. In Equation 4.11, we allow ga(Tit) to change
with climate and income by allowing each element of βa to be a linear function of these two
variables. We do not include a triple interaction between temperature, climate and income.
Using this notation, our estimating equation is:

Mait = (γ0,a + γ1,aTMEANs + γ2,a log(GDPpc)s)︸ ︷︷ ︸
βa

Tit + qca(Rit) + αai + δact + εait

where γ0,a,γ1,a, and γ2,a are each vectors of length P , the latter two describing the effects
of TMEAN and log(GDPpc) on the sensitivity of mortality Mait to temperature Tit.

Tabular results from this estimation are reported in Table 4.D.3 for each of the three age
groups of interest. Each coefficient represents the change in the temperature-sensitivity of
mortality rates associated with a marginal increase in the relevant covariate (e.g., TMEAN),
evaluated at the daily temperature shown. All temperature sensitivities are shown relative
to a moderate day at 20◦C. For example, higher incomes correspond with lower sensitivity
of infant mortality to both cold temperatures (coefficient of -0.87 on a -5◦C day), and to
hot temperatures (coefficient of -0.93 on a 35◦C day).93 Although not all of the coefficients
would be judged statistically significant by conventional criteria, it is noteworthy that higher
incomes and warmer climates are associated with lower mortality consequences of hot days
for all age categories. Income and climate are associated with cold day mortality differentially
across age groups, with some evidence that higher income locations exhibit more extreme
cold day sensitivity for the oldest age group. This relationship may arise due to age being
positively correlated with income within the over 64 category, as older individuals are more
susceptible to cold-related death risks (Deschênes and Moretti, 2009).

As these terms are difficult to interpret, we visualize this heterogeneity in the main text in
Figure 4.5 by dividing the sample into terciles of income and climate (i.e., the two interaction
terms), creating nine discrete bins describing the log(GDPpc) × TMEAN space. We plot
the predicted response functions at the mean value of covariates within each of these nine
bins, using the coefficients shown in Table 4.D.3. This results in a set of predicted response
functions that vary across the joint distribution of income and average temperature within
our sample data, shown in Figure 4.5 for the >64 age category. Here we replicate this figure

93Because our covariates are linearly interacted with the full vector of temperature variables describing the nonlinear mortality-
temperature response, the effect of each covariate depends on the realized daily temperature.
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Table 4.D.3
Marginal effect of covariates on temperature sensitivity of mortality rates. Coefficients (standard errors) represent the
marginal effect of increasing each covariate by one unit on the temperature sensitivity of mortality, evaluated at each of the shown
daily average temperatures. Temperature sensitivity is defined as the impact of a particular temperature on mortality rates, rel-
ative to a moderate day at 20◦C. Regression is a fourth-order polynomial in daily average temperature, estimated using GMFD
weather data with a sample that was winsorized at the top 1% level. All response functions are estimated jointly in a stacked re-
gression model that is fully saturated with age-specific fixed effects. Each temperature variable is interacted with each covariate.

Age < 5 Age 5-64 Age >64
log(GDPpc) TMEAN log(GDPpc) TMEAN log(GDPpc) TMEAN

35◦ C -0.887* -0.099* -0.236 -0.031* -3.881 -0.624*
(0.536) (0.053) (0.160) (0.018) (2.380) (0.331)

30◦C -0.280 -0.044 -0.019 -0.014 -0.189 -0.292**
(0.277) (0.028) (0.068) (0.009) (0.910) (0.141)

20◦C – – – – – –
– – – – – –

0◦C -0.973* 0.029 0.050 -0.030* 0.269 -0.731***
(0.536) (0.031) (0.150) (0.018) (2.019) (0.153)

-5◦C -1.165* 0.028 0.216 -0.040** 3.097 -0.920***
(0.629) (0.032) (0.210) (0.020) (2.956) (0.202)

Regression includes age×ADM2 fixed effects and age× country × year fixed effects. Adjusted R2 = 0.933; N=820,237.

Standard errors clustered at the ADM1 level. *** p<0.01, ** p<0.05, * p<0.1

for the other two age groups in our analysis.
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Figure 4.D.2
Heterogeneity in the mortality-temperature relationship (ages <5 mortality rate). Each panel represents
a predicted response function for the ages <5 mortality rate for a subset of the income-average temperature covari-
ate space within our data sample. Response functions in the lower left are the predicted mortality-temperature sensi-
tivities for low income, cold regions of our sample, while those in the upper right apply to the high income, hot re-
gions of our sample. Regression estimates are from a fourth-order polynomial in daily average temperature and are esti-
mated using GMFD weather data with a sample that was winsorized at the 1% level on the top end of the distribution
only. All response functions are estimated jointly in a stacked regression model that is fully saturated with age-specific
fixed effects, and where each temperature variable is interacted with each covariate and a dummy for each age category.

4.D.5 Robustness of estimates of subnational heterogeneity in the
mortality-temperature response function to an alternative
characterization of long-run average climate

Our primary results rely on a parsimonious representation of the climate: to capture adapta-
tion to long-run climate, we interact our nonlinear temperature variables (T ) with the long
run average annual temperature (TMEAN), conditioning on income (log(GDPpc)). In this
specification, TMEAN acts as a summary statistic of the long-run average climate, and we
find that the mortality sensitivity to high temperatures declines as TMEAN rises. To test
the robustness of this finding, here we use a richer characterization of the climate, replacing
our climate interaction term TMEAN in Equation 4.11 with two interaction terms: long-run
average heating degree days (HDDs), calculated relative to a 20◦C threshold, and long-run
average cooling degree days (CDDs), also calculated relative to 20◦C. We re-estimate Equa-
tion 4.11 with these characterizations of average exposure to cold (HDD) and hot (CDD)
days, linearly interacting each climate covariate with each element of T , as is done in the
main specification using TMEAN .

The marginal effect of each climate variable on the temperature sensitivity of mortality
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Figure 4.D.3
Heterogeneity in the mortality-temperature relationship (ages 5-64 mortality rate). Each panel represents
a predicted response function for the ages 5-64 mortality rate for a subset of the income-average temperature covari-
ate space within our data sample. Response functions in the lower left are the predicted mortality-temperature sensi-
tivities for low income, cold regions of our sample, while those in the upper right apply to the high income, hot re-
gions of our sample. Regression estimates are from a fourth-order polynomial in daily average temperature and are esti-
mated using GMFD weather data with a sample that was winsorized at the 1% level on the top end of the distribution
only. All response functions are estimated jointly in a stacked regression model that is fully saturated with age-specific
fixed effects, and where each temperature variable is interacted with each covariate and a dummy for each age category.

is shown in Table 4.D.4. Consistent with our main results in Table 4.D.3, warmer climates
(as captured by higher CDDs) are associated with lower sensitivity of mortality rates to high
daily temperatures. This finding is particularly true for the older age group.
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The coefficients in Table 4.D.4 determine the spatial and temporal heterogeneity in re-
sponse functions that we predict at the impact region, age, and year level across the globe.
To see a visual example of how this alternative model compares to our primary specification,
in Figure 4.D.4 we show the slope of the response function evaluated at 35◦C under the
primary specification (y-axis) and the alternative HDD/CDD specification (x-axis), for each
age group. Each scatter point represents one ADM1 region within our estimating sample.
Consistent with Tables 4.D.3 and 4.D.4, we see that across age groups, the more nuanced
characterization of the climate using cooling and heating degree days has a minimal effect
on our predicted response functions.
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Figure 4.D.4
Predicted mortality-temperature response functions in-sample are similar under alternative characteriza-
tions of long-run average annual temperature. Each panel contains a scatter plot of the slope (i.e., derivative)
of the predicted mortality-temperature response function, evaluated at 35◦C, under two distinct characterizations of the
long-run average climate. On the y-axis, the response function is predicted using coefficients from a version of Equa-
tion 4.11 in which all nonlinear temperature variables are interacted with long-run annual average temperature (this is
the main specification used throughout the analysis). On the x-axis, the response function is predicted using coeffi-
cients from a version of Equation 4.11 in which all nonlinear temperature variables are interacted with long-run an-
nual average heating degree days (HDDs) below 20◦C and cooling degree days (CDDs) above 20◦C. Predictions shown
are for all ADM1 regions within our estimating sample. Each column shows predictions for a different age category.

4.D.6 Replication of Burgess et al. (2017) and out-of-sample
model validation in India

Throughout our analysis, we use coefficients estimated from Equation 4.11 in the main
text, in combination with local-level observations of TMEAN and log(GDPpc), to generate
predicted response functions in all regions of the world, including where mortality data are
unavailable (see Section 4.4.3 for details). The accuracy of this extrapolation depends in
part on the representativeness of the observed sample; as shown in Figure 4.3 in the main
text, our observed sample lacks coverage for the poorest and hottest regions of the global
income-climate distribution. To evaluate the performance of our interaction model in this
region of the global distribution, we use mortality data from India to conduct an out-of-
sample validation exercise. India represents the poorest and hottest country for which we
have been able to obtain mortality records, and therefore provides an important check on
our extrapolation performance.
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To execute this validation test, we use data from Burgess et al. (2017), and begin by
replicating the analysis conducted by those authors to confirm consistency with the exist-
ing literature. To allow for direct comparison with Burgess et al. (2017), in place of the
fourth order polynomial we use as our main specification, here we estimate the mortality-
temperature relationship using the Indian data with binned daily temperatures, where annual
values are calculated as the number of days in region i in year t that have an average tem-
perature within a bin range k. Bin edges in degrees Celsius are given by the following set:
K = {−∞,−15,−10,−5, 0, 5, 10, 15, 20, 25, 30, 35,+∞}. We cluster our standard errors at
the ADM1 level (in India, this is equivalent to the state level), as in all our specifications
throughout the main text. Burgess et al. (2017) estimate a similar binned regression model
using 2◦C bins, with clustering at the ADM2 (i.e., district) level.

After constructing an all-age mortality-temperature response function for India alone, we
compare this result to the predicted response functions generated from our main analysis.
These impact region-level response functions are generated using estimation of Equation
4.11, which relies on mortality, climate, and income data from the sample of countries shown
in Table 4.1, but excludes India.

In Figure 4.D.5, we show the result of this replication and out-of-sample validation ex-
ercise for India. Figure 4.D.5 compares our predicted responses for all impact regions in
India (in grey) to the mortality-temperature response estimated using India’s data alone
(in red). We generate the all-age average response function for each impact region from
our age-specific interaction model by taking a population-weighted average of the responses
predicted for each age category, using age-specific population values for the year 2015. Our
model performs remarkably well, despite containing no information on Indian mortality rates:
for the hotter end of the response function, where much of the low income world resides,
our prediction is, if anything, conservative in extrapolating out-of-sample. Moreover, our
results are very similar to the findings in Burgess et al. (2017), with an approximately linear
increase in deaths for temperatures above 20◦C.
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Figure 4.D.5
Out-of-sample validation of the mortality-temperature response function in India. Grey lines indicate predicted
response functions for each impact region in India, predicted using coefficients from the interaction model in Equation 4.11
and using an estimation sample without Indian data. The solid black line is the unweighted average across all regions, while
the red line is the estimated response function using only all-age mortality data from India. The red line is estimated using
a nonparametric binned regression, as described in the text, to enable comparison with Burgess et al. (2017). The relative
congruence between red and black lines shows that our interaction model generates reasonable predicted response functions
in the poorest and hottest regions of the world, the subset of the covariate space for which we have the least representation.
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4.E Implementation details for projection of future adap-

tation and benefits of income growth

In the main analysis, our estimates of the full mortality risk of climate change account for
both the benefits and the costs of adaptation, as well as the benefits of income growth. In
this appendix, we provide details on our implementation of adaptation and income benefits
in future climate change projections. In Appendix 4.E.1 we detail the procedure we use to
determine the temporal dynamics of income effects on the mortality-temperature relationship
in future years, and in Appendix 4.E.2 we describe the assumptions we impose on the process
of adaptation and income benefits over the course of the 21st century.

4.E.1 Determining the temporal dynamics of income effects

We estimate the relationship between long-run average climate, average income, and mortality-
temperature sensitivity via the estimation of Equation 4.11 using cross-sectional variation
in climate and income in combination with year-to-year variation in daily average temper-
atures. In generating future projections of climate change impacts (i.e. results in Section
4.5.3), we apply the estimated coefficients from Equation 4.11 over time, allowing impact
region response functions to evolve as the climate warms and incomes grow. To do so, we
must make an assumption regarding the rate at which the income and average climate co-
variates update. Here, we detail how we define this speed of adjustment in the case of income
growth. While we can derive a duration over which updating occurs in the case of income
due to substantial time series variation in incomes in our observed data, the historical trends
for temperature have been small to date, making a similar derivation infeasible. Thus, for
the case of updating based on long-run average climate, we use the standard definition of
“climate” and assume a duration of 30 years.

In future projections, we estimate impact region response functions using time-varying
measures of log(GDPpc)rt (see Section 4.4.4 for details):

ĝart = ĝa(Trt | TMEANrt, log(GDPpc)rt).

The temporal structure of the covariate log(GDPpc)rt mediates the rate of income-based
adaptation. If the income covariate were held fixed at historical levels, no income-based
adaptation would be implemented. At the other extreme, if the contemporaneous income
for year t were applied in each year, then changes in income would be assumed to translate
into immediate changes in mortality-temperature sensitivity. This case is also implausible,
as benefits of income are likely to take multiple years to manifest, as richer governments and
citizens invest in adaptive capital and enjoy greater health. To allow for this intermediate
case, we construct the income covariate used for future projections with a weighted average
of recent year incomes, according to a Bartlett kernel. Specifically, to calculate the covariate
log(GDPpc)rt, we compute:

log(GDPpc)rt =

∑L
s=1(L− s+ 1) ˚log(GDPpc)r,t−s∑L

s=1(L− s+ 1)
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where L is the total number of lags (in years) and ˚log(GDPpc)rt is the instantaneous log
income for region r in year t.

To find a plausible length L for the Bartlett kernel, we study changes in the response
of mortality for people over 64 to temperature in the United States, where we have access
to a long panel of mortality rates and income data (1968 to 2010). First, we estimate the
following model:

Mait −Mai,t−1 = βt [Tit − Ti,t−1] + qa(Rit) + εit (4.E.1)

where Mait is the mortality rate for region i in period t and age group a > 64, Tit is the
vector of polynomials of daily average temperatures (up to the fourth order), Rit is the
vector of cumulative monthly precipitation (up to the second order), as in the main text
(see Equation 4.10). Coefficients are estimated for the difference between each pair of years
in order to remove the year fixed effect. This produces a series of coefficients, βt, and their
standard errors, σt. We then use a Bayesian model to estimate the length of the Bartlett
kernel that best explains the change in these coefficients over time. Under the model, each
coefficient βpt of vector βt is a draw from a Gaussian distribution with a mean that varies
with national average income. That is,

βpt ∼ N (θp + φp log(GDPpc)t, τp + σpt)

In this model, θp and φp correspond to the uninteracted and income-interacted coefficients
from our standard model in Equation 4.11, respectively. τp is a hyper-parameter which
controls the rate of pooling of the data; if it is 0, inverse-variance weighting is used across
individual year estimates.

The covariate log(GDPpc)t is calculated as a Bartlett kernel over a maximum of 25 years
of delayed income levels. National real income data from the U.S. Bureau of Economic
Analysis is used to construct log(GDPpc)t. The kernel is characterized by the unknown
lag parameter L, which is also estimated by the model. The maximum likelihood estimate
for the Bartlett kernel length is 13 years, with a 95% confidence interval of 9.7 years. We
therefore use a Bartlett kernel of length 13 when constructing the income covariate used to
predict future response functions for all impact regions in all years and for all age groups.

4.E.2 Adaptation constraints imposed in the projection of climate
change impacts

As discussed in Section 4.4.3, we impose two assumptions when applying our econometrically-
derived model of adaptation to generate projections of future climate change. These assump-
tions are guided by economic theory as well as the physiological literature and are used to
ensure plausible out-of-sample projections over the 21st century. Graphical intuition for these
constraints is shown in Figure 4.E.1.

Assumption #1: Weak monotonicity. A large body of epidemiological and econo-
metric literature has recovered U-shaped relationships between mortality rates and daily
temperatures, where both extreme cold and extreme heat increase the risk of death. These
parabolic response functions have been recovered in studies using a wide range of functional
form assumptions (e.g., binned daily temperatures, restricted cubic splines, or polynomi-

143



2020 2040 2060 2080 2100

Unconstrained linear 
extrapolation causes 
hot days to save lives

Mortality rate sensitivity to hot days

Constrained extrapolation defines 
full adaptation as a flat line

0

A

D
ea

th
s 

pe
r 1

00
,0

00

No assumptionsB C Rising income cannot increase 
temperature sensitivity of mortality

Mortality-temperature Response Function

2010
2050
2090−10

−5

0

5

10

15

−10 0 10 20 30 40 −10 0 10 20 30 40

Panel C + weak monotonicity
with fixed minimum mortality temperature

D

Temperature (˚C)
−10 0 10 20 30 40

Year

Temperature (˚C)Temperature (˚C)

Figure 4.E.1
Two assumptions imposed in climate projections ensure that full adaptation is defined as a flat-line re-
sponse function and that responses conform to basic physical and economic constraints. Panel A demon-
strates heuristically the importance of imposing assumptions on the shape of response functions under adaptation over
the 21st century. As shown, linearly declining mortality rate sensitivity to hot days occurs over the course of the
century as populations adapt. However, linear extrapolation can lead to mortality benefits on hot days, as shown
with the dashed line and grey dots. Our assumptions (shown in teal) ensure that full adaptation is realized when
hot days impose zero additional mortality risk. Panels B through D represent an empirical example of how the im-
position of these constraints can change the shape of the adapted response function, for the Chicago, Illinois im-
pact region. Panel B has no assumptions, panel C imposes the assumption that income is weakly protective, and
panel D imposes the assumption of weak monotonicity around a time-invariant minimum mortality temperature (MMT).

als) and across diverse locations globally (e.g., Gasparrini et al., 2015; Burgess et al., 2017;
Deschênes and Greenstone, 2011). As shown in Section 4.5, we also recover U-shaped rela-
tionships between mortality rates and daily temperatures across our multi-country sample.
In our projections of future mortality responses to daily temperature, we ensure consistency
with this literature and with our own estimates from historical data by imposing the con-
straint that the response function must remain weakly monotonic around an empirically
estimated minimum mortality temperature. That is, we assume that temperatures farther
from the minimum mortality temperature (either colder or hotter) must be at least as harm-
ful as temperatures closer to the minimum mortality temperature.

To implement this assumption, we first identify a range of physiologically optimal tem-
peratures. Drawing on extensive research across epidemiology and medicine (e.g., Curriero
et al., 2002; Guo et al., 2014), as well as ergonomics (e.g., Seppanen, Fisk, and Lei, 2006;
Hancock, Ross, and Szalma, 2007), we let this range of possible minimum mortality risk
cover the temperatures 10◦C to 30◦C. We then search, within this range, for the tempera-
ture at which the location-specific response function in each impact region r in the baseline
years of 2001-2015 is minimized. Because distinct populations may differ substantially in
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the temperature at which mortality is minimized,94 it is important to note that we allow
these minimum mortality temperatures (MMTs) to be spatially heterogeneous. With these
optimal temperatures in hand, we impose the assumption that mortality rates must remain
weakly increasing in daily temperatures to both the left and the right of this minimum. To
operationalize this, we calculate impacts along an adjusted response function that is defined
as the cumulative maximum to the right and left of the minimum mortality temperature
along each region- and year-specific response function derived from our response surface
estimated in Equation 4.11. Consistent with prior literature (Heutel, Miller, and Molitor,
2017; Curriero et al., 2002; Gasparrini et al., 2015), we find that these minimum mortality
temperatures are highly correlated both with both long-run average temperature (positively)
and with income (negatively).

This assumption is important because Equation 4.11 parameterizes the flattening of the
U-shaped response function such that, with enough warming or sufficiently high income,
the mortality-response function could become an inverted-U-shape. This is guaranteed to
occur mechanically at some future date, as a result of extrapolating response functions out
of the support of historically observed data. To avoid this unrealistic behavior, we impose
weak monotonicity. An example of this assumption in practice is given in panel E of Figure
4.E.1.95

In imposing the weak monotonicity constraint, we fix the MMT at its baseline level in
2015 for each impact region. We do so because the use of spatial and temporal fixed effects
in Equation 4.11 implies that response function levels are not identified; thus, while we allow
the shape of response functions to evolve over time as incomes and climate change, we must
hold fixed their level by centering each response function at its time-invariant MMT.96

Assumption #2: Rising income cannot increase the temperature sensitivity
of mortality. We assume that because increased income per capita strictly expands the
choice set of individuals considering whether to make adaptive investments, future increases
in income cannot raise the impacts of temperature on mortality rates. While we place no
restrictions on the cross-sectional effect of income on the temperature sensitivity as estimated
in Equation 4.11, we do not allow any income gains through time to raise the marginal effect
of temperature on mortality. Note that this condition will only be binding if the marginal
effect of income estimated in Equation 4.11 is positive for some nonempty set of temperatures.
Further note that we impose this assumption first, before imposing weak monotonicity, as
described under assumption #1. An example of this assumption in practice is given in panel
C of Figure 4.E.1.

A visual example of the influence of these constraints can be seen for one example impact
region (Chicago, Illinois) in Figure 4.E.1. Under these assumptions, we estimate projected
daily impacts separately for each impact region, and then aggregate these high resolution
effects to state, country, and global levels, using population weighting.

94E.g., Guo et al. (2014) demonstrate that mortality risk is smallest around the 75th percentile of local temperatures in 12
different countries.

95See Appendix 4.F.4 for results in which we explore a scenario with slower rates of adaptation. Under this alternative
scenario, Assumption #1 binds much less frequently.

96Note that these fixed effects are by definition not affected by a changing weather distribution. Thus, their omission does
not influence estimates of climate change impacts.
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4.F Climate change projections: Additional results and

robustness

This appendix provides additional illustrations of the main climate change projection results
used and discussed throughout the main text (i.e., Section 4.5.3), as well as a robustness
check and sensitivity analysis regarding the functional form of the mortality-temperature
relationship, different assumptions about the behaviour of the relationship outside of the
historical sample values, and assumptions regarding the rate of adaptation.

4.F.1 Additional climate change projection results

Alternative measures of climate change impacts In Figure 4.8 of the main text, we
show a map of impact region-level mean estimates of the full mortality risk of climate change,
accounting both for adaptation and income benefits as well as adaptation costs. However,
in Section 4.5.3 we also define three other measures of expected climate change impacts: (i)
mortality effects of climate change with neither adaptation nor income growth; (ii) mortality
effects of climate change with benefits of income growth; (iii) mortality effects of climate
change with benefits of income growth and adaptation. Panels A-C in Figure 4.F.1 below
show projected impacts for each of these three alternative measures; for comparison, panel
D repeats the full mortality risk of climate change map from the main text.

Climate change projections by age group In the main text, Figure 4.9 displays a
time series of climate change impacts on the global average mortality rate. This aggregate
value represents, in each year, the sum across age-specific projections, where death rates
are population weighted by age-specific population values. Below in Figure 4.F.2, we show
each of these age-specific projections for SSP3 and RCP8.5 (for reference, Table 4.1 shows
that the average mortality rate for the oldest age group is 4,736 deaths per 100,000 in our
estimation sample). While all age groups have a mean estimate that is above zero by end-
of-century, the oldest age group dominates our projections in terms of death rates. These
large demographic differences are taken into account in our valuation steps (see Section 4.6
and Appendix 4.G).

Climate change projections by socioeconomic scenario Throughout Section 4.5.3
of the main text, we display climate change projection results under the socioeconomic sce-
nario SSP3. Each SSP scenario models a different possible pathway of economic development,
population growth, and demographics; here, we show the global mortality effects of climate
change under two alternative scenarios (SSP2 and SSP4, alongside SSP3). In each column,
we show results for two separate modeling groups that produce projections for each SSP
(IIASA and OECD, as discussed in Appendices 4.B.3.2 and 4.B.3.3).

Gains from mitigation on climate change impacts spatially and in aggregate.
Figure 4.8, displays climate change impacts spatially under the socioeconomic scenario SSP3
for the entire globe. Figure 4.F.4 shows a comparison between impacts under RCP8.5 and
RCP4.5, showing the gains from mitigation. As expected, reducing emissions to the level of
RCP4.5 would have substantial benefits in terms of reduced impacts. However, the spatial
pattern of impacts remains, with clearly unequal distribution of impacts between places that
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Figure 4.F.1
Mortality costs of climate change under alternative adaptation scenarios. All maps show predicted mortality effects of
climate change and colors in each impact region represent the mean estimate across a set of Monte Carlo simulations accounting
for both climate model and statistical uncertainty. Panel A shows estimates of the change in mortality rates when each impact
region does not adapt. Panel B shows estimates of the change in mortality rates when impact region mortality sensitivity
to temperature changes with future income, but not to future temperatures. Panel C allows populations to additionally
adjust to experienced temperatures in the warming scenario, showing mortality rate changes when mortality sensitivity to
temperature evolves with both future income and temperature. Finally, panel D shows the full mortality risk of climate change.
This measure allows the mortality sensitivity to temperature to change with future income and future temperature, while
also accounting for the costs of adapting to a warming climate. Adaptation costs are calculated are measured in units of
death equivalents. All projections shown refer to the RCP8.5 emissions scenario and the SSP3 socioeconomic scenario and
are calculated as the climate model weighted mean estimate across Monte Carlo simulations conducted on 33 climate models.

are relatively poorer today versus places that are relatively richer. Figure 4.F.5 replicates
the aggregate timeseries (Figure 4.9 in the main text) for RCP4.5 under the SSP3 scenario.
Clearly, the gains from reducing emissions are evident here, as is implied by Figure 4.F.4.

Correlation of uncertainty in climate change projections with present day
income As shown in Figure 4.10 in the main text, there is a strong correlation between
present day income and the composition of future damages between deaths and adaptation
costs. In general, low income locations tend to suffer relatively large increases in mortality
rates by end of century, while high income locations incur relatively large adaptation costs.
In Figure 4.F.6 below, we examine whether low income locations also face higher uncertainty
in projected impacts of climate change. We do so by demeaning each Monte Carlo simulation
by an impact region-specific mean, and showing the spread in demeaned impacts for each
decile of today’s income distribution. As in Figure 4.10, panel A in Figure 4.F.6 shows
projected deaths, panel B shows adaptation costs, and panel C shows the full mortality risk
of climate change (the sum of deaths and adaptation costs measured in death equivalents);
each panel shows impacts plotted against deciles of today’s income distribution. There is
some evidence that lower income regions face higher uncertainty in the magnitude of their
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Figure 4.F.2
Heterogeneity in climate change impacts on mortality by age group. All lines show predicted mortality
effects of climate change across all age categories and are represented by a mean estimate across a set of Monte
Carlo simulations accounting for both climate model and statistical uncertainty. Each line represents one of the
three age groups used in the analysis: <5, 5-64, and >64. Results are shown for the combination of SSP3 and
RCP8.5 with a fourth-order polynomial functional form of temperature. Figure 4.9 in the main text represents the
sum across these age-specific projections, where death rates are population weighted by age-specific population values.

projected full mortality risk of climate change, arising from higher uncertainty in impacts
on death rates.

The impact of climate change in 2100 under RCP4.5 compared to contempo-
rary leading causes of death. Figure 4.F.7 presents the same results as Figure 4.13 in
the main text, but for RCP4.5. As can be seen, despite the overall decrease in the average
impact under SSP3 and RCP4.5 when compared to RCP8.5, much of the inequality in both
the impacts and the adaptation costs that was evident in Figure 4.13 remains.
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Figure 4.F.3
The full mortality risk of climate change under different scenarios of population growth, economic growth,
and emissions. Rows denote different Shared Socioeconomic Pathway (SSP) scenarios, columns denote two separate modeling
groups that produce data for each SSP, and each panel shows a time series of the total mortality costs of climate change for
RCP 4.5 and RCP 8.5. Both lines indicate total predicted mortality costs due to climate change, accounting for both adaptation
benefits and costs, and indicate the mean estimate across a set of Monte Carlo simulations accounting for both climate model and
statistical uncertainty. RCP8.5 is a high-emissions scenario, while RCP4.5 is a scenario with aggressive emissions reductions. The
OECD economic projections tends to exhibit slightly higher income growth than the IIASA economic projections. Throughout
the main analysis, projection results relying on IIASA and OECD socioeconomic projections are both used and weighted equally.
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Full mortality risk of climate change: SSP3-RCP4.5 (2100) Full mortality risk of climate change: SSP3-RCP8.5 (2100)

Figure 4.F.4
The mortality risk of future climate change under RCP4.5 and RCP8.5 for SSP3. These maps in-
dicates the full mortality risk of climate change, measured in units of deaths per 100,000 population, in the year
2100. Estimates come from a model accounting for both the costs and the benefits of adaptation, and the map
shows the climate model weighted mean estimate across Monte Carlo simulations conducted on 33 climate mod-
els; density plots for select regions indicate the full distribution of estimated impacts across all Monte Carlo simu-
lations. In each density plot, solid white lines indicate the mean estimate shown on the map, while shading indi-
cates one, two, and three standard deviations from the mean. All values shown refer SSP3 socioeconomic scenario.
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Figure 4.F.5
Time series of projected mortality risk of climate change under RCP4.5 for SSP3. All lines show predicted mortality
effects of climate change across all age categories and are represented by a mean estimate across a set of Monte Carlo simulations
accounting for both climate model and statistical uncertainty. In panel A, each colored line represents a partial mortality effect,
while the black line shows the full mortality risk due to climate change, accounting for both adaptation costs and benefits.
Orange (expression (i)): mortality effects without adaptation. Yellow (expression (ii)): mortality effects with benefits of income
growth. Green (expression (iii)): mortality effects with benefits of income growth and adaptation. Black (expression (iv)):
full mortality risk calculated as the sum of mortality effects with adaptation and income growth benefits plus estimates of
costs incurred to achieve adaptation, measured in units of death equivalents. Panel B shows the 10th-90th percentile range
of the Monte Carlo simulations for the full mortality risk of climate change (black line in panel A), as well as the mean and
interquartile range. The boxplots show the distribution of full mortality risk impacts in 2100 under both RCPs. All line estimates
shown refer to the RCP4.5 emissions scenario and all line and boxplot estimates refer to the SSP3 socioeconomic scenario.
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Figure 4.F.6
Uncertainty in climate change impacts and adaptation costs across present-day income groups. All three panels
show impacts by present-day income decile for impact region estimates that have been demeaned across the full set of Monte
Carlo simulations in order to demonstrate how uncertainty in future impacts may be correlated with contemporary incomes. This
figure is analogous to Figure 4.10 in the main text, which shows distributions of impact region mean estimates. Panel A shows the
range of annual mortality rates due to climate change in 2100, accounting for the benefits of adaptation, against deciles of 2015
income. Panel B shows the range of annual adaptation costs incurred due to climate change in 2100, measured in death equiva-
lents. Panel C shows the range of full mortality risk due to climate change estimates, which are the sum of deaths and adaptation
costs measured in death equivalents. Income deciles are calculated as in Figure 4.10. All box plots show moments of the distribu-
tion of impact region-specific demeaned impacts within an income decile. Solid vertical lines in each box plot extend to the 5th

and 95th percentiles of this distribution, boxes indicate the interquartile range, white horizontal lines indicate the median, and
white circles indicate the mean. All values shown refer to the RCP8.5 emissions scenario and the SSP3 socioeconomic scenario.
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Figure 4.F.7
The impact of climate change in 2100 under RCP4.5 compared to contemporary leading causes of death.
Impacts of climate change (grey, teal, and coral) are calculated for the year 2100 for SSP3 and include changes in
death rates (solid colors) and changes in adaptation costs, measured in death equivalents (light shading). Global av-
erages for RCP 8.5 and RCP 4.5 are shown in grey, demonstrating the gains from mitigation. Income and aver-
age climate groups under RCP4.5 are separated by tercile of the 2015 global distribution across all 24,378 impact
regions. Blue bars on the right indicate average mortality rates globally in 2018, with values from WHO (2018).
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4.F.2 Robustness: Alternative functional form for the mortality-
temperature relationship

As discussed in Section 4.4, we experiment with four distinct nonlinear transformations of
daily temperature captured by Tit in Equations 4.10 and 4.11 in the main text. The fourth
order polynomial is our main specification because it strikes a balance between providing
sufficient flexibility to capture important nonlinearities, parsimony, and limiting demands
on the data when covariate interactions are introduced in Equation 4.11 (see Section 4.4.2).
However, the binned specification, in which Tit contains binned daily temperatures with a
fixed set of 5◦C bins, is the most flexible functional form. In Figure 4.D.1, we show that the
binned and fourth order polynomial functional forms recover remarkably similar mortality-
temperature response functions across our pooled multi-country sample. Below in Figure
4.F.8, we show that this similarity carries through to generate very similar climate change
impact projections across the binned and polynomial functional forms. Both projections
are constructed using estimation of the interaction model in Equation 4.11 in combination
with high-resolution covariates TMEAN and log(GDPpc) to generate impact region-specific
response functions (see Section 4.4.3 for details).
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Figure 4.F.8
Robustness of impact projections to alternate functional forms of temperature. Each line represents the time
series of changes to the mortality rate due to climate change under the socioeconomic scenario SSP3 and the emissions
scenario RCP 8.5. Results shown are for a single climate model (CCSM4). Lines shown refer to estimates of mortality
effects of climate change without adaptation or benefits of income growth, in which response functions do not evolve over
time. In orange is the projected impact of climate change estimated using a fourth-order polynomial functional form of
temperature in estimation of the regression model in Equation 4.11. In green is the same object, but with binned daily
temperatures used as a functional form in estimation. While the binned regression imposes far fewer restrictions on the
regression than does the polynomial, the projected impacts under these two sets of parameterizations are strikingly similar.
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4.F.3 Sensitivity analysis: Alternative assumptions on out-of-sample
extrapolation of response functions

The paper uses historical data to estimate the mortality-temperature response and uses the
results to project the impacts of temperatures in the future. A key challenge, however, is that
climate change will cause locations to experience temperatures that have not been observed
in the historical record (e.g., see Figure 3), thus necessitating out of sample predictions.

Figure 4.F.9 probes the sensitivity of the projections of mortality risk changes up to 2100
to alternative assumptions about the relationship between mortality and temperature at
temperatures that are not observed in available data sets. Specifically, for all temperatures
above the maximum and below the minimum daily temperatures within our dataset, we alter
the slope of the impact region-specific response functions in two ways. First for “constant out-
of-sample extrapolation’‘, we set the marginal effect of temperature fluctuations to equal the
value at the maximum if above the maximum temperature, and vice versa for temperatures
below the minimum (Figure 4.F.9B). This implies that the response function is flat for
all temperatures outside the observed range. For “linear out-of-sample” extrapolation, we
set the marginal effect to be linearly increasing in the out-of-sample regions with a slope
equal to the slope between the response function evaluated at the maximum (minimum) and
the maximum minus 0.1C (plus 0.1C) (Figure 4.F.9C). It is apparent that neither of these
alternatives have a meaningful effect on the overall projected impacts; looking at projections
from a single GCM, the projected impact of climate change on mortality rates, including the
benefits of income growth and adaptation, is 13.6 per 100,000 in 2100 under RCP8.5 in the
paper’s main specification (Panel A) and 12.6 per 100,000 and 13.4 per 100,000 in Panels B
and C.

4.F.4 Sensitivity analysis: Alternative assumptions on the rate of
adaptation

In our main results, we use the estimated coefficients from Equation 4.11 in combination with
high-resolution data on the covariates TMEAN and log(GDPpc) to extrapolate response
functions both across space (to capture spatial heterogeneity in the mortality-temperature
relationship) and over time (to capture future changes in the mortality-temperature rela-
tionship due to adaptation and benefits of income growth). As discussed in Section 4.4, the
estimation of Equation 4.11 relies on cross-sectional variation in TMEAN and log(GDPpc),
in combination with plausibly random year-to-year variation in daily temperatures. However,
as discussed in Appendix 4.E.1, we apply the estimated coefficients from Equation 4.11 over
time when computing future climate change impacts; in doing so, we must make an assump-
tion regarding the rate at which mortality sensitivity to temperature declines with changing
covariates. As discussed previously, our main specification relies on a 13-year Bartlett kernel
for log(GDPpc) and a 30-year Bartlett kernel for TMEAN .

Here, we conduct a sensitivity analysis where the speed at which the mortality-temperature
response function changes with time-varying covariates is deterministically reduced by half.
This exercise is used to understand how climate change impact projections change if the
evolution of the response function towards zero (see Figure 4.E.1) occurs more slowly.
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Figure 4.F.9
Two alternative assumptions on out-of-sample extrapolation of response functions. A) Time series projection of
main model with no out-of-sample restrictions. B) Time series projection of response functions with constant out-of-sample
restrictions above the maximum and below the minimum temperatures in our estimating sample. C) Time series projection of
response functions with linearly increasing out-of-sample restrictions above the maximum and below the minimum temperatures
in our estimating sample, with a slope equal to the slope between the response function evaluated at the maximum (minimum)
and the maximum minus 0.1C (plus 0.1C). All projections rely on the CCSM4 climate model under RCP 8.5 and SSP3.

In the main model, income grows for each impact region r according to GDPrt =
ρctGDPr,t−1, where c indicates the country that region r falls into, and ρct is a country-
and year-specific growth rate given exogenously by the SSP scenarios. The kernel-averaged
climatic temperature for region r used in the main model is TMEANrt = TMEANr,t−1 +
∆TMEANrt. In this “slow adaptation” alternative approach, we replace income growth
with GDPrt =

(
ρct−1

2
+ 1
)
GDPr,t−1 after the year 2015, and we reduce linear growth in tem-

perature by replacing it with TMEANrt = TMEANr,t−1 + ∆TMEANrt
2

. Note that both the
primary specification and reduced growth analyses generate identical covariates (and hence,
response functions) in 2015.
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Figure 4.F.10
Impacts of climate change on mortality are qualitatively similar with a model of slower adaptation rates. Time
series of projected mortality costs of climate change (black line), as compared to partial estimates from incomplete accounting
of the costs and benefits of adaptation (other colors). All lines show predicted mortality impacts of climate change across all
age categories under the RCP8.5 emissions scenario, for the socioeconomic scenario SSP3, and using a single climate model
(CCSM4). Panel A shows results for our standard model of adaptation, as described in Section 4.4.3. Panel B shows results for
an alternative model of adaptation in which the rate of adaptation to both income growth and to warming climate is cut in half.
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4.G Calculation of a mortality partial social cost of

carbon

In principle, one could compute a mortality partial social cost of carbon (SCC) estimate
by perturbing each global climate model (GCM) in the Surrogate Mixed-Model Ensemble
(SMME) with a pulse of CO2 and projecting mortality for each location in both the original
and perturbed simulations. However, in practice, such a procedure is both prohibitively
costly from a computational standpoint and would also prevent the calculation of an SCC
for any climate trajectory that did not exactly coincide with one of the 33 models. Instead,
we rely on a “simple climate model”,97 in combination with our empirically-derived damage
functions, to construct mortality partial SCC estimates. We detail this implementation
below.

4.G.1 Computing post-2100 damage functions

For data availability reasons, it is necessary to develop an alternative approach to estimate
post-2100 damage functions. Only 6 of the 21 GCMs that we use to build our SMME
ensemble (see Section 4.3.2) are run by their respective modeling teams to simulate the
climate after the year 2100 for both RCP scenarios and post-2100 data are not available in
the NEX-GDDP downscaled and bias-corrected projections that we use for generating high-
resolution impact projections. Similarly, the SSPs needed to project the benefits of income
growth and changes in demographic compositions also end in 2100. While one approach
is to simply end economic cost calculations in 2100, as was done in Hsiang et al. (2017),
neglecting post-2100 damages is a substantial omission because a large fraction of costs, in
NPV, are thought to occur after 2100 at 3% discount rates (Kopp and Mignone, 2012).

To estimate post 2100-damages, we develop a method to extrapolate changes in the
damage function beyond 2100 using the observed evolution of damages near the end of the
21st century. The year-specific damage functions estimated using Equation 4.13 reveal that
in the latter half of the 21st century, full mortality damages are larger for a given level of
warming if warming occurs later in time and damage functions become more convex with
time at the end of the 21st century. The finding that mortality costs rise over time is the net
result of countervailing forces. On the one hand, later years are projected to have larger and
older98 populations with higher VSLs due to rising income, facts that raise damages. On
the other hand, populations are better adapted due to higher incomes and a slower rate of
warming projected in later years, an effect that would lower damages. Our results suggest
the former dominates by end of century, causing damages to be trending upward at the
moment that our high-resolution simulations end in 2100.

The motivating principle of our extrapolation approach is that these observed changes
in the shape of the damage function near the end of the century provide plausible estimates
of future damage function evolution after 2100. To execute this extrapolation, we pool

97See Hsiang and Kopp (2018) for a description of climate model classes.
98In SSP3, the share of the global population in the most vulnerable >64 age category rises from 8.2% in 2015 to 16.2% in

2100.
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values Dirmt from 2085-2100 and estimate a quadratic model similar to Equation 4.13, but
interacting each term linearly with year t (we use 2085-2100 because the evolution of damages
over time becomes roughly linear conditional on ∆GMST by this period). The temporal
trend over the entire 21st century is convex, implying that our linearization is, if anything,
conservative. The specific interaction model we estimate is:

D(∆GMST, t)irmt = α + ν1∆GMSTrmt × t+ ν2∆GMST 2
rmt × t+ εirmt

This allows us to estimate a damage surface as a parametric function of year. We then
predict extrapolated damage functions for all years after 2100, smoothly transitioning from
our flexible climate model-based damage functions prior to 2100.

4.G.2 Set up of the climate module using a simple climate model

A core component of any analysis of the SCC is the climate module used to estimate both the
baseline climate and the response of the climate system to a marginal change in greenhouse
gas emissions. The Finite Amplitude Impulse Response (FAIR) model (Millar et al., 2017)
satisfies key criteria for such a module, including those outlined by the National Academies
of Sciences, Engineering, and Medicine (2017). In particular, the National Academies of
Sciences, Engineering, and Medicine (2017) recommends that the climate module be trans-
parent, simple, and “consistent with the current, peer-reviewed scientific understanding of
the relationships over time between CO2 emissions, atmospheric CO2 concentrations, and
CO2-induced global mean surface temperature change, including their uncertainty” (National
Academies of Sciences, Engineering, and Medicine, 2017, p.88). For this last criterion, the
authors recommend that the module be “assessed on the basis of its response to long-term
forcing trajectories (specifically, trajectories designed to assess equilibrium climate sensi-
tivity, transient climate response and transient climate response to emissions, as well as
historical and high- and low-emissions scenarios) and its response to a pulse of CO2 emis-
sions.” The authors specifically point to the FAIR model as an example of a model that is
structurally capable of meeting all these criteria.

The FAIR model is defined by five equations that represent the evolution of global mean
variables over time t. Global mean surface temperatureGMST is the sum of two temperature
variables, T0 and T1, representing the slow and fast climate system response to forcing F :

dTi
dt

=
qiF − Ti

di
, i ∈ {0, 1}, (4.G.1)

where the qi values collectively define the equilibrium climate sensitivity (ECS), and where
the di values (the thermal adjustment times) along with qi define the transient climate
response (TCR). The ECS is the sensitivity of the climate (as measured by GMST increases)
to a doubling of atmospheric CO2, relative to some initial state. The TCR is the average
temperature response to a doubling of CO2 in which the CO2 increases by 1% each year.
The ECS is larger than the TCR, as it captures the time taken for the climate system to
fully adjust to increased CO2.

The CO2 concentration above the pre-industrial baseline, R, is the sum of four fractions,
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Rj, representing different uptake timescales:

dRj

dt
= ajE −

Rj

αjτj
, j ∈ {0, 1, 2, 3} (4.G.2)

where E is the CO2 emissions rate, aj values represent the fraction of emissions that enter
each atmospheric fraction, τj values represent the base uptake time scale for each fraction,
and where αj is a state-dependent coefficient that reflects feedbacks from temperature onto
uptake timescales. The remaining three equations describe forcing F as a function of R and
of exogenous non-CO2 forcing, and α as a function of global mean surface temperature and
atmospheric CO2 concentrations (see Millar et al. (2017) for details).

We obtain the latest release of the FAIR model, which was version 1.3.2 at the time
of computation, from its online repository.99 As described below in Section 4.G.2.1, we
develop a methodology to generate mortality partial SCC estimates that capture uncertainty
in climate sensitivity by varying four core parameters in FAIR: the equilibrium climate
sensitivity (ECS), the transient climate response (TCR), the short thermal adjustment time
(d2), and the time scale of rapid carbon uptake by the ocean mixed layer (τ3). By varying
these four parameters across thousands of Monte Carlo simulations, we are able to capture
uncertainty in the short and long term response of temperature and the carbon cycle to
changes in emissions. The median values across our uncertainty distributions (described in
detail below) for each core model parameter are as follows: ECS is 2.72◦C per CO2 doubling,
TCR is 1.58◦C per CO2 doubling, d2 is 3.66 years, and τ3 is 4.03 years. Throughout our
implementation, all other parameters in FAIR are held fixed at their default values.

The two scenarios considered in this analysis, RCP4.5 and RCP8.5, represent two widely
divergent emissions and climatic pathways, especially in years beyond 2050. Following the
method used in previous estimates of the SCC, including in the National Academies of
Sciences, Engineering, and Medicine (2017), we include projections starting in the current
period (here defined as 2020) through the year 2300. Due to the long residence times of
CO2 in the atmosphere and the changes in global mean surface temperature associated with
CO2 emissions, SCC estimates can vary significantly depending on the definition of this
window, especially when low discount rates are applied. To illustrate the large differences
across RCP scenarios, Figure 4.G.1 shows fossil CO2 emissions, CO2 concentrations, total
radiative forcing (the difference between incoming solar radiation and outgoing terrestrial
radiation), and temperature as anomalies from FAIR’s reference state, which is year 1765,
for the median climate parameters listed above and under each emissions scenario.

In order to estimate the marginal effect of CO2 emissions, we add two additional scenarios
to the “control scenarios” of RCP4.5 and RCP8.5. Each additional scenario adds a 1 GtC
(3.66 Gt CO2) pulse of fossil CO2 emissions in 2020 to each of the control scenarios described
above. The FAIR model is then run again for these pulse scenarios, resulting in a new time
series of concentrations, forcing, and temperature anomalies. The difference between the
control and pulse scenarios, including climate uncertainty (discussed below), is shown in
the main text Figure 4.12; as described below and in Section 4.6, this difference is used to
construct mortality partial SCC estimates.

99https://github.com/OMS-NetZero/FAIR/tree/v1.3.2.
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Figure 4.G.1
Behavior of key variables in the FAIR simple climate model under median climate parameters. Each panel
shows the temporal trajectory of key variables in FAIR that are used in our calculation of the social cost of carbon. The
trajectories shown arise under FAIR run with median climate parameter values calculated from our uncertainty distributions
for the equilibrium climate sensitivity, transient climate response, short thermal adjustment time, and time scale of rapid
carbon uptake by the ocean mixed layer. The values are shown as anomalies from the year 1765, FAIR’s reference state.

4.G.2.1 Methodology for capturing uncertainty in climate sensitivity within the
simple climate model FAIR

A complete study of the mortality partial SCC should represent the uncertainty in key model
parameters, including the joint probability distribution of the ECS and TCR. We discuss
here our approach to modeling this climate sensitivity uncertainty.

The analysis described above relies solely on the simple climate model FAIR with key cli-
mate parameters set to median values that are computed from their uncertainty distributions.
We now discuss the development of those uncertainty distributions and the representation
of climate uncertainties in FAIR. To represent climate uncertainties, we vary TCR, ECS, d2,
and τ3 such that our climate uncertainties conform to those of the literature. These four pa-
rameters represent the behavior of the short and long timescales of response of temperature
and the carbon cycle. For TCR and ECS, we draw upon constraints from the IPCC Fifth
Assessment Report (AR5) (Collins, Knutti et al., 2013); for d2 and τ3 we follow Millar et al.
(2017), based on analysis of Joos et al. (2013) and Geoffroy et al. (2013).

In general, we produce initial distributions of these parameters based on the literature
constraints. However, a key difference between our approach and those in the existing litera-
ture is that we explicitly model the tails of the climate sensitivity uncertainty distributions.
The AR5 synthesis generally regards the 5–95% ranges of variables in the CMIP5 models
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as representing the “likely” range (central at least 66% probable range) due to structural
uncertainty. Previous studies based on CMIP5 results (e.g., Joos et al. (2013); Ricke and
Caldeira (2014)) and those using the CMIP5 5–95% range of TCR and ECS as 5-95% input
ranges to their models (e.g., Millar et al. (2017)) thus show results that characterize only
the central 66% of possibilities. Here we explicitly model the tails of the input and out-
put distributions by generating TCR and ECS distributions with likely ranges as specified
by the AR5 report. To preserve the expected correlation between TCR and ECS, rather
than sampling ECS directly, we follow Millar et al. (2015) and instead sample the realized
warming fraction (RWF, the ratio of TCR/ECS), which is nearly independent of TCR. We
subsequently filter the parameter sets to ensure consistency with expectations regarding the
initial pulse adjustment timescale (the time it takes the climate system to reach a warming
peak following a pulse emission of CO2).

Below we outline the sources used to construct the distributions of each parameter.
TCR: Collins, Knutti et al. (2013) conclude that “TCR is likely in the range 1◦C to

2.5◦C... is positive and extremely unlikely greater than 3◦C” (p. 1112). In IPCC terminology
(Mastrandrea et al., 2010), likely refers to a probability of at least 66%, very likely to a
probability of at least 90%, and extremely likely to a probability of at least 95%. Thus we
construct a log-normal distribution for TCR with the 17th to 83rd range of 1.0-2.5 ◦C.

RWF: As noted by the National Academies of Sciences, Engineering, and Medicine
(2017), a RWF likely range of 0.45 to 0.75 is approximately consistent with the ECS likely
range of 1.5 – 4.5◦C (Collins, Knutti et al., 2013). We construct a normal distribution for
RWF following this central 66% likelihood range, and sample this distribution, along with
TCR, to construct the ECS distribution as TCR/RWF .

ECS: Collins, Knutti et al. (2013) conclude that “ECS is positive, extremely unlikely
less than 1◦C (high confidence), and very unlikely greater than 6◦C (medium confidence)”
(p. 1111) and likely between 1.5 and 4.5◦C. To construct our sampling distribution, we
randomly draw samples from the TCR and RWF distributions, and obtain ECS samples
by calculating TCR/RWF . The constructed ECS samples follow a log-normal distribution
with the 17th-83rd range of 1.60-4.65 ◦C.

d2:d2:d2: The AR5 does not assess the range of d2. Following Millar et al. (2017), we construct
our distribution of d2 as a log-normal distribution with a 5-95th percentile range of 1.6-8.4
years.

τ3:τ3:τ3: Joos et al. (2013) summarized τ3 in three comprehensive Earth System Models
(HADGEM2-ES, MPI-ESM, NCARCSM1.4), seven Earth System Models of Intermediate
Complexity (EMICs), and four box-type models (ACC2, Bern-SAR, MAGICC, TOTEM).
Using the mean (4.03) and standard deviation (1.79) of these values, we construct a normal
distribution for τ3.

After defining these distributions, we generate a 100,000-member ensemble of parameter
sets via Monte Carlo sampling. As τ3 should be larger than 0, we sample from a truncated
normal distribution, and discard parameter sets in which τ3 < 0 or > 2 × 4.03 to keep the
mean of τ3 in parameter sets consistent with the multi-model mean in Joos et al. (2013).
About 2.4% of parameter sets are filtered by this constraint. Similarly, RWF must be less
than 1. We therefore truncate its distribution at 1, which is the 99.4th percentile, and truncate
at the 0.06th percentile to keep symmetry (which also removes unrealistic RWF values near
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and less than 0 that cause unrealistic, large and/or negative ECS values). About 1.2% of
parameter sets are filtered by this constraint. After applying the τ3 and RWF filters, which
have a small overlap, we are left with 96,408 parameter samples. Using these remaining
parameter samples, we evaluate model performance according to several criteria.

Our criteria for evaluating model performance are described in detail below, and sum-
marized in Table 4.G.1 and Figure 4.G.2.

Initial pulse-adjustment timescale (IPT): The National Academies of Sciences, En-
gineering, and Medicine (2017) report highlights the IPT as a measure that is important
for SCC computations, yet does not provide a clear, consistent definition. It “measures the
initial adjustment timescale of the temperature response to a pulse emission of CO2” and is
“the time over which temperatures converge to their peak value in response to the pulse.”
(National Academies of Sciences, Engineering, and Medicine, 2017, p.88). This could either
be the time to an initial peak, or the ultimate maximum temperature change over the dura-
tion of a simulation, which also depends on simulation length. Here we catalogue multiple
versions of a potential IPT metric, comparing with previous literature where appropriate.

To assess the IPT, we set CO2 concentrations to 2010 levels (389 ppm) and hold them
constant throughout the simulation. To provide an emissions baseline to which a pulse will
be added, we numerically solve the CO2 emissions pathway in FAIR to meet the CO2 concen-
tration pathway for each parameter sample. We then construct a pulse experiment, in which
100 GtC of CO2 is injected instantaneously in the year 2015. The difference in temperature
between the pulse and control run measures the temperature response to a CO2 pulse. To
quantify the time to initial peak, we define the IPT as the time at which the time derivative
of the temperature response first becomes negative (noting that, in many simulations, feed-
backs between temperature and the carbon cycle mean that the temperature rises again after
the initial peak and decline, and reaches the maximum temperature later. Therefore, the
time to initial peak is not necessarily the same as the time to maximum temperature). The
resulting IPT has a median of 9.0 years, with a central 90% probability range of 0–24.0 years.
We drop parameter sets that lead to simulations in which the first negative time derivative of
temperature occurs after 100 years post-pulse, indicative of temperatures that only increase
throughout the experiment (in contrast to the simulations with an initial post-pulse decrease
in temperature that begins increasing again after a time). This results in a filtering out of
112 additional parameter samples on top of the τ3 and RWF filters, yielding a total number
of post-filtering simulations of 96,306 for examination in the remaining discussion.

We also evaluate other potential metrics: the time to maximum temperature considering
the full 500 year simulation, the time to maximum temperature considering just the 100
years post-pulse, and the time to maximum temperature considering 100 years post-pulse
but excluding simulations reaching max at year 100. We find central 90% probable ranges of
4.0–485 (median 19.0), 4.0–100 (median 12.0), and 3.0–23.0 (median 9.0), respectively. The
results of Joos et al. (2013) and subsequent analysis by Ricke and Caldeira (2014) indicate
that a peak in warming in response to a pulse emission occurs within about a decade after
emission. In particular, Ricke and Caldeira (2014) estimate a central 90% range for time to
peak warming of 6.6–30.7 years, with a median of 10.1 years, and 2% of simulations reaching
maximum at the end of their 100-year simulations. Ricke and Caldeira (2014), however, do
not sample from continuous distributions of ECS and TCR, but rather use narrower discrete
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distributions of parameters based on individual CMIP5 GCMs; thus, we expect their range
to be narrower than that in our analysis. Considering the first 100-years of simulation, our
median time to peak warming is comparable to Ricke and Caldeira (2014), but spans a wider
range of outcomes, as expected, with 24% of simulations reaching their peak at 100 years
post-pulse (44% reach peak warming at simulation’s end in year 2500).

Transient climate response to emissions (TCRE): The TCRE measures the ratio
of transient warming to cumulative carbon emissions at the time of CO2 doubling in a
simulation with a 1% /year increase (year 70). Collins, Knutti et al. (2013) concluded that
TCRE is between 0.8 and 2.5◦C per 1000 GtC with at least 66% probability. To assess
TCRE, we set up an experiment that increases CO2 concentrations at 1%/year until CO2

concentrations double in year 70. Again, for each parameter sample, we numerically solve
the CO2 emissions pathway in FAIR to meet the CO2 concentration pathway. The resulting
TCRE exhibits a likely range of 0.88–2.34◦C per 1000 GtC, which is consistent with the
central 66% probable range assessed by AR5.

Longevity of pulse warming: The coupled climate-carbon cycle experiments of Joos
et al. (2013) indicate that a majority (about 70% in the multimodel mean) of peak warming
persists 500 years after emissions. In our IPT experiments, the central 66% probable range
is 72.9 – 137.6 percent of initial peak warming persists after 500 years.

Representative Concentration Pathway (RCP) experiments: We assess the warm-
ing in the RCP experiments relative to those in the CMIP5 multi-model ensemble, noting
that we compare the central 66% probability ranges from our ensemble to those of the CMIP5
5th–95th percentile range (Table 4.G.1).

The final reduced sample set constitutes 96,306 samples as noted above, and the diagnos-
tic metrics are essentially unchanged from the pre-filtering distributions (see Table 4.G.1).
Based on this post-filtering evaluation, we conclude that the resulting distribution is ad-
equately consistent with our target constraints and the recommendations of the National
Academies of Sciences, Engineering, and Medicine (2017). We apply the retained parameter
sets to FAIR to produce climate projections that represent climactic uncertainties and are
further used in calculating the SCC uncertainty, as described in the next section. The in-
terquartile range of the final SCC values across the entire distribution of parameter sets are
shown in Table 4.3 in the main text.
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Figure 4.G.2
Distributions of key FAIR parameters for climate sensitivity uncertainty both before (red curve) and after
(blue shading) applying constraints. Each panel indicates the distribution of a key parameter in the FAIR simple climate
model, both before (in red) and after (in blue) the imposition of constraints described in the text. Distributions shown are:
A transient climate response (TCR); B realized warming fraction (RWF) used to define ECS (=TCR / RWF); C equilibrium
climate sensitivity (ECS) shown only after applying constraints due to unrealistic values in the initial distribution occurring
as RWF→ 0; D short thermal adjustment time (d2); E time scale of rapid carbon uptake by the ocean mixed layer (τ3).
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Figure 4.G.3
Change in emissions, concentrations, temperature, and damages due to a marginal emissions pulse in 2020.
Panel A shows a 1GtC emissions pulse (equivalent to 3.66Gt CO2) in 2020 for emissions scenario RCP 4.5. Panel B displays
the effect of this pulse on atmospheric CO2 concentrations, relative to the baseline. In panel C, the impact of the pulse of
CO2 on temperature is shown where the levels are anomalies in global mean surface temperature (GMST) in Celsius. In
panels A-C, shaded areas indicate the inter-quartile range due to climate sensitivity uncertainty, while solid lines are median
estimates. Panel D shows the change in discounted damages over time due to a 1 Gt pulse of CO2 in 2020, as estimated by our
empirically-derived damage functions, using a 2% annual discount rate and the age-varying EPA VSL. The shaded area indicates
the inter-quartile range due to climate sensitivity and damage function uncertainty, while the solid line is the median estimate.

Graphical SCC calculation for RCP 4.5 Figure 4.G.3 replicates the SCC calculation
graphically shown in Figure fig:pulse for RCP 4.5.
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Parameter Distribution from literature Pre-IPT distribution Post-IPT distribution Distribution Source

TCR (C) [1.00, 2.50] [1.00, 2.49] [1.00, 2.50] Lognormal AR5
RWF [0.45, 0.75] [0.45, 0.75] N/A Normal NAS (2017)
ECS (C) [1.5, 4.5] [1.60, 4.65] [1.61, 4.61] Lognormal AR5
d2 (years) (1.6, 8.4) (1.6, 8.4) (1.6, 8.3) Lognormal Millar et al. (2017)
τ3 (years) Joos et al. (2013) 4.04 (1.07, 6.96) 4.04 (1.25, 6.79) Normal Joos et al. (2013)

point estimates

Key metrics
TCRE (C/TtC) [0.8, 2.5] N/A [0.88, 2.34] Normal AR5
Time to Tmax (years) (6.6, 30.7) (4.0, 100.0)∗ (4.0, 100.0)∗ N/A Ricke and Caldeira (2014)

RCP 4.5 GMST

2046− 2065 1.4 [0.9, 2.0] N/A 1.38 [0.73, 1.98] (0.51, 2.88) Normal AR5
2081− 2100 1.8 [1.1, 2.6] N/A 1.81 [0.93, 2.60] (0.65, 3.88) Normal AR5
2181− 2200 2.3 [1.4, 3.1] N/A 2.37 [1.13, 3.46] (0.78, 5.41) Normal AR5
2281− 2300 2.5 [1.5, 3.5] N/A 2.73 [1.24, 4.01] (0.85, 6.45) Normal AR5

RCP 8.5 GMST

2046− 2065 2.0 [1.4, 2.6] N/A 2.05 [1.09, 2.90] (0.77, 4.20) Normal AR5
2081− 2100 3.7 [2.6, 4.8] N/A 3.71 [1.96, 5.31] (1.39, 7.73) Normal AR5
2181− 2200 6.5 [3.3, 9.8] N/A 7.34 [3.82, 10.60] (2.69, 15.35) Normal AR5
2281− 2300 7.8 [3.0, 12.6] N/A 8.86 [4.48, 12.84] (3.11, 18.84) Normal AR5

Table 4.G.1
Comparisons of the distributions of key FAIR parameter values. This table compares the distributions of key FAIR parameter values that pass the initial pulse-
adjustment timescale (IPT) constraint against the relevant distributions from the literature (included in the IPT constraint is filtering of τ3 and RWF as specified in the
text). Distributions shown are: transient climate response (TCR); realized warming fraction (RWF); equilibrium climate sensitivity (ECS); short thermal adjustment time
(d2); time scale of rapid carbon uptake by the ocean mixed layer (τ3); transient climate response to emissions (TCRE); and the change in global mean surface temperature
(GMST) from the reference period 1986-2005 at various points in the projections. Note that RWF is only used to create our ECS distribution, and so the post-IPT
distribution of RWF is not reported. Distributions reported are determined by the reference values from the literature, so that different parameters have different descriptions
of their associated distributions: 5 to 95% ranges are given in ( ), 17 to 83% ranges (likely ranges for AR5) are given in [ ], and means are given without ( ) or [ ].

∗ We only consider the first 100 years post-pulse to be consistent with the length of the simulations in Ricke and Caldeira (2014).
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Finally, we assess the reasonableness of the “handoff” between the SMME models, on
which the damage function is estimated, and FAIR, with which future damages due to a pulse
of CO2 are calculated using the difference in temperature between the pulse and control runs.
A comparison of climate sensitivity uncertainty across these two climate projections is im-
portant, as the climate sensitivity uncertainty captured in the empirically-based projections
of mortality damages derives from the SMME, while the uncertainty we proliferate through
to the SCC relies on the simple climate model FAIR. Figure 4.G.4 shows the distribution of
GMST changes relative to 2001-2010 (∆GMST) over time, according to the SMME (top row)
and the simple climate model FAIR (bottom two rows). To ensure comparability, here and
in damage function estimation we use smoothed values of the ∆GMST realizations from each
SMME model, where smoothing is done using a 20-year centered moving average. SMME
data are available until the year 2100; thus, the top two rows show a direct comparison
between FAIR and the SMME models for these years, showing a strong amount of overlap in
both RCP4.5 and RPC8.5 distributions of warming and indicating the handoff is reasonable
(as would be expected based on the construction of the SMME).
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4.G.3 Converting temperature scenarios to mortality partial SCC

We convert the temperature scenarios developed in the climate module into estimates of
mortality-related damages using the global damage functions described in Section 4.6. These
damage functions characterize valued mortality damages as a function of ∆GMST (changes
in GMST relative to 2001-2010). Figure 4.G.5 shows these functions in 5-year time steps for
each combination of valuation assumptions using the US EPA VSL (see Sections 4.5.3 and 4.6
for discussion of valuation of mortality-related costs of climate change). This figure contains
the same information as Figure 4.11 in the main text, while additionally demonstrating
substantial heterogeneity across distinct valuation scenarios (our primary valuation method
uses an age-varying VSL in which impact region-specific VSLs are constructed using an
income elasticity of one; this valuation is shown in the bottom row and second column of
Figure 4.G.5) .
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Figure 4.G.5
Temporal evolution of empirically derived damage functions (trillion USD) as a function of global mean
surface temperature anomaly. Each panel shows estimates of quadratic damage functions estimated independently for
each 5-year period from 2015 to 2100 under various valuation assumptions regarding the valuation of lives lost or saved.

The coefficients on these quadratic damage functions are constructed for each year
from 2020 to 2300, as described in the main text. We then generate annual estimates of
temperature-related mortality damages by applying the ∆GMST values from both the con-
trol FAIR scenarios (RCP4.5 and RCP8.5), as well as pulse scenarios, to the empirically
derived damage functions. After computing mortality damages associated with each sce-
nario, we subtract each pulse scenario from the corresponding control scenario and divide
by the pulse amount to estimate the marginal effect of the pulse. This time series is then
discounted using 2.0%, 2.5%, 3% and 5% discount rates, and summed through time to create
a net present value, following Equation 4.14 in Section 4.6. This final value is the net present
value of the full mortality risks caused of a marginal emission of CO2. A more robust esti-
mate would make use of Ramsey-like discounting, accounting for the relationship between
consumption growth and the discount rate, but we leave this for future study.
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In the main text, we report uncertainty in the mortality partial SCC in three ways:
accounting for climate sensitivity uncertainty only, damage function uncertainty only, and
full uncertainty (both climate and economic). Here we briefly describe how these values are
generated.

Mortality partial SCC estimates accounting for both climate sensitivity and
damage function uncertainty: Using our Monte Carlo projections of damages, for each
year from 2015 to 2100 we pool all Monte Carlo results for the associated 5-year window.
We then run quantile regressions to fit quantile-specific damage functions for 19 quantiles
(i.e., every 5th percentile from the 5th to 95th). As in the mean damage function estimation,
extrapolation past the year 2100 is accomplished using a time interaction model (see Section
4.6). In this extrapolation, we allow each quantile of the Monte Carlo distribution to evolve
over time heterogeneously, based on the observed changes over time that we estimate at the
end of the 21st century.

We run each quantile-specific damage function through each of the 96,306 sets of FAIR
parameters and up-weight runs in order to reflect probability mass in the damage function
uncertainty space. This process reflects a joint sampling from the full space of damage
function uncertainty and climate sensitivity uncertainty. The relevant SCC interquartile
range (IQR) is resolved from the resulting distribution of mortality partial SCCs.

Mortality partial SCC estimates accounting for climate sensitivity uncertainty
only: To isolate uncertainty in the mortality partial SCC that derives from climate sensi-
tivity uncertainty, we run the central estimate of our damage function through each of the
96,306 sets of FAIR parameters. The corresponding SCC IQR is resolved from the resulting
distribution of mortality partial SCCs.

Mortality partial SCC estimates accounting for damage function uncertainty
only: To isolate uncertainty in the mortality partial SCC that derives from uncertainty in
the damage function, we run the set of quantile-year damage functions through FAIR with
each climate parameter fixed at its median value (as is done in the central mortality partial
SCC estimates). The corresponding SCC IQR is resolved from the resulting distribution of
mortality partial SCCs.
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4.H Sensitivity of the mortality partial social cost of

carbon

The mortality partial social cost of carbon (SCC) estimates shown in the main text depend
upon a set of valuation and functional form assumptions and are reported for a particular
socioeconomic scenario (SSP3). In this appendix, we detail our valuation approach and pro-
vide a wide range of additional mortality partial SCC estimates under alternative valuation
approaches, alternative functional forms and extrapolation approaches for the damage func-
tion, and under multiple different socioeconomic scenarios. In all cases, we show multiple
discount rates and emissions trajectories.

4.H.1 Methodology for constructing value of life-years lost from
value of a statistical life (VSL)

As described in Section 4.6, panel A of Table 4.3 utilizes a valuation approach that adjusts
the VSL by the total value of expected life-years lost. We provide this metric in order to
accommodate the large heterogeneity in mortality-temperature relationships that we uncover
across age groups. To adjust VSL values accordingly (see Table 4.H.1 for a set of commonly
used VSLs), we first calculate the value of lost life-years by dividing the U.S. EPA VSL
by the remaining life expectancy of the median-aged American. This recovers an implied
value per life-year. We then apply an income elasticity of one100 to convert this life-year
valuation into a per life-year VSL for each impact region in each year. To calculate life-years
lost for a given temperature-induced change in the mortality rate, we use the SSP projected
population values, which are provided in 5-year age bins, to compute the implied conditional
life expectancy for people in each age bin. We take the population-weighted average of
remaining life expectancy across all the 5-year age bins in our broader age categories of <5,
5-64, and >64. This allows us to calculate total expected life-years lost, which we multiply
by the impact-region specific VSL per life-year to calculate total damages. Note that this
procedure assumes that our estimated climate change driven deaths occur with uniform
probability for all people within an age category.

The above methodology values each life-year lost identically. In an alternative set of
calculations (see results in Appendix 4.H.2), we adjust the life-year values based on the age-
specific value of remaining life derived by Murphy and Topel (2006). Murphy and Topel
(2006) provide estimates of the value of remaining life for each age group. The authors do
not estimate the level of the VSL, but instead provide age-specific values relative to a given
population-wide VSL. We use these relative values of remaining life by age to adjust the
U.S. EPA VSL, such that life-years lost are heterogeneously valued for each impact region
in each year, by age. The resulting SCC calculations are shown in Tables 4.H.2 and 4.H.3.

100As noted in the main text, the EPA recommends VSL income elasticities of 0.7 and 1.1 (U.S. Environmental Protection
Agency, 2016), while a review by Viscusi (2015) estimates an income-elasticity of the VSL of 1.1.
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Table 4.H.1
Value of statistical life estimates. VSL values are converted to 2019 USD using the Federal Reserve’s US GDP Deflator.

VSL (Millions USD)

Unadjusted 2019 Dollars

EPA ($2011) $9.90 $10.95

Ashenfelter and Greenstone ($1997) $1.54 $2.39

OECD (OECD Countries; $2005)

Base $3.00 $3.82

Range $1.50 - $4.50 $1.91 - $5.73

OECD (EU27 Countries; $2005)

Base $3.60 $4.58

Range $1.80 - $5.40 $2.29 - $6.88

4.H.2 Mortality partial social cost of carbon under alternative
valuation approaches and socioeconomic scenarios

In the main text, mortality partial SCC values are shown using a combination of the US EPA
VSL, an income elasticity of one, and valuation methods that value deaths using both an
age-varying and an age-invariant value of a statistical life calculation (see Appendix 4.H.1).
This appendix shows a range of mortality partial SCC estimates under alternative VSL
values, alternative assumptions about the role of income in valuation, and with a life-years
adjustment to the VSL that allows for age-specific values of remaining life, as derived by
Murphy and Topel (2006).

Table 4.H.2 provides mortality partial SCC estimates across these distinct valuation
approaches under the method shown in the main text Table 4.3, in which an income elasticity
of one is used to adjust VSLs across the globe and over time.

Table 4.H.3 provides mortality partial SCC estimates across distinct valuation approaches
under a globally uniform valuation method in which a globally homogeneous VSL is used in
each year, which evolves over time based on global income growth. Under this alternative, the
lives of contemporaries are valued equally, regardless of their relative incomes. The method
shown in the main text is most consistent with the revealed preference approach we use to
estimate costs of adaptation, given that we observe how individuals make private tradeoffs
between their own mortality risk and their own consumption (recall Equation 4.4). However,
the latter approach might be preferred by policymakers interested in valuing reductions in
mortality risk equally for all people globally, regardless of how individuals value their own
mortality risk.

Table 4.H.4 shows mortality partial SCC estimates under various socioeconomic projec-
tions (SSP3 is used throughout the main text; see Appendix 4.B.3.2 for a discussion of this
choice). We note that under SSP4 and a moderate emissions scenario (RCP4.5), the cen-
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tral estimate of the partial SCC is negative under all discount rates shown. While SSP4
shows global average increases in the full mortality risk of climate change by 2100 under
both emissions scenarios (see Figure 4.F.3), the negative SCC is driven by different income
and demographic changes projected under SSP4 relative to the other SSPs, both of which
influence the valuation of lives lost. In particular, SSP4 projects that today’s wealthy and
relatively cold locations will experience dramatically higher future incomes, with much older
populations, when compared to SSP2 or SSP3. This increase in income and rapid aging of
the population leads to many lives saves in cold regions of the world as the climate warms,
and each life is valued highly due to income growth raising the VSL (recall that we use an
income elasticity of one for the VSL throughout the text). In contrast, SSP4 projects very
low income growth in today’s hot and poor locations, such that lives lost due to warming in
these regions receive little value in this scenario. Note that with sufficiently high emissions
(RCP8.5), heat-related deaths outweigh cold-related lives saved even in today’s wealthy and
relatively cold regions of the world, such that the partial SCC for SSP4 is no longer negative.

Finally, Table 4.H.5 shows mortality partial SCC estimates using a 1.5% discount rate,
which more accurately reflects recent global capital markets than the discount rates shown
in the main text (the average 10-year Treasury Inflation-Indexed Security value from 2003
to present is just 1.01% (Board of Governors of the US Federal Reserve System, 2020)).
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Table 4.H.2
Globally varying valuation: Estimates of a mortality partial Social Cost of Carbon (SCC) under different valuation assumptions. An income elas-
ticity of one is used to scale either the U.S. EPA VSL, or the VSL estimate from (Ashenfelter and Greenstone, 2004). All SCC values are for the year 2020, mea-
sured in PPP-adjusted 2019 USD, and are calculated from damage functions estimated from results using the socioeconomic scenario SSP3. All regions have het-
erogeneous valuation, based on local income. Value of life years estimates (panel A) adjust death valuation by expected life-years lost. Value of statistical life es-
timates (panel B) use age-invariant death valuation. Murphy-Topel life years adjusted estimates (panel C) add an age-specific adjustment that allows the value of
a life-year to vary with age, based on Murphy and Topel (2006) and described in Appendix 4.H.1. The first row of every valuation shows our estimated mortality
partial SCC using the median values for the four key input parameters of the simple climate model FAIR and a conditional mean estimate of the damage function.
The uncertainty ranges are interquartile ranges [IQRs] showing the influence of climate sensitivity and damage function uncertainty (see Appendix 4.G for details).

Valuation EPA A & G

Discount rate δ = 2% δ = 2.5% δ = 3% δ = 5% δ = 2% δ = 2.5% δ = 3% δ = 5%

Globally varying valuation of mortality risk (2019 US Dollars)
Panel A: Value of life years

RCP 4.5 17.1 11.2 7.9 2.9 7.9 5.2 3.7 1.3
Climate sensitivity uncertainty [8.3, 39.3] [5.9, 24.1] [4.4, 15.8] [2.0, 4.3] [3.9, 18.3] [2.8, 11.2] [2.1, 7.4] [0.9, 2.0]
Damage function uncertainty [-21.9, 50.8] [-19.2, 32.1] [-12.1, 26.6] [-6.3, 12.0] [-10.2, 23.7] [-9.0, 15.0] [-5.6, 12.4] [-2.9, 5.6]
Full uncertainty [-24.7, 53.6] [-18.9, 36.0] [-15.2, 26.3] [-8.5, 11.5] [-11.5, 25.0] [-8.8, 16.8] [-7.1, 12.2] [-3.9, 5.3]

RCP 8.5 36.6 22.0 14.2 3.7 17.0 10.2 6.6 1.7
Climate sensitivity uncertainty [18.8, 76.6] [11.6, 45.2] [7.7, 28.3] [2.4, 6.2] [8.7, 35.7] [5.4, 21.0] [3.6, 13.2] [1.1, 2.9]
Damage function uncertainty [-8.4, 74.2] [-8.7, 48.2] [-6.4, 35.6] [-7.3, 14.1] [-3.9, 34.6] [-4.0, 22.4] [-3.0, 16.6] [-3.4, 6.6]
Full uncertainty [-7.8, 73.0] [-10.6, 46.8] [-11.4, 32.9] [-8.9, 13.0] [-3.6, 34.0] [-5.0, 21.8] [-5.3, 15.3] [-4.1, 6.1]

Panel B: Value of statistical life
RCP 4.5 14.9 9.8 6.7 1.7 7.0 4.6 3.1 0.8

Climate sensitivity uncertainty [2.4, 52.9] [2.7, 30.4] [2.5, 18.3] [1.0, 2.1] [1.1, 24.6] [1.2, 14.2] [1.2, 8.5] [0.5, 1.0]
Damage function uncertainty [-12.8, 44.1] [-11.8, 33.1] [-11.1, 25.6] [-6.8, 12.6] [-6.0, 20.5] [-5.5, 15.4] [-5.2, 11.9] [-3.2, 5.9]
Full uncertainty [-21.2, 63.5] [-17.9, 43.5] [-15.7, 32.1] [-11.8, 14.7] [-9.9, 29.6] [-8.3, 20.3] [-7.3, 15.0] [-5.5, 6.9]

RCP 8.5 65.1 36.9 22.1 3.5 30.3 17.2 10.3 1.6
Climate sensitivity uncertainty [30.0, 147.0] [17.5, 82.3] [10.8, 48.3] [2.2, 5.6] [14.0, 68.5] [8.1, 38.3] [5.0, 22.5] [1.0, 2.6]
Damage function uncertainty [18.4, 98.2] [8.3, 63.1] [2.3, 43.7] [-7.0, 14.5] [8.6, 45.7] [3.9, 29.4] [1.1, 20.3] [-3.3, 6.7]
Full uncertainty [3.0, 139.0] [-2.4, 83.1] [-5.6, 53.4] [-9.3, 16.0] [1.4, 64.7] [-1.1, 38.7] [-2.6, 24.9] [-4.3, 7.5]

Panel C: Murphy-Topel life years adjusted
RCP 4.5 17.5 11.6 8.3 3.1 8.1 5.4 3.9 1.5

Climate sensitivity uncertainty [8.8, 39.6] [6.3, 24.5] [4.7, 16.3] [2.1, 4.8] [4.1, 18.4] [2.9, 11.4] [2.2, 7.6] [1.0, 2.2]
Damage function uncertainty [-16.4, 56.2] [-16.6, 35.8] [-12.2, 27.4] [-6.0, 12.4] [-7.7, 26.2] [-7.7, 16.7] [-5.7, 12.8] [-2.8, 5.8]
Full uncertainty [-25.3, 56.6] [-19.3, 37.9] [-15.6, 27.7] [-8.6, 12.2] [-11.8, 26.4] [-9.0, 17.7] [-7.3, 12.9] [-4.0, 5.7]

RCP 8.5 36.3 22.0 14.3 4.0 16.9 10.3 6.7 1.9
Climate sensitivity uncertainty [18.8, 75.5] [11.7, 44.8] [7.9, 28.3] [2.6, 6.6] [8.7, 35.2] [5.5, 20.9] [3.7, 13.2] [1.2, 3.1]
Damage function uncertainty [-8.2, 67.4] [-7.5, 46.8] [-8.3, 33.3] [-5.5, 14.0] [-3.8, 31.4] [-3.5, 21.8] [-3.9, 15.5] [-2.6, 6.5]
Full uncertainty [-8.0, 70.9] [-11.0, 46.4] [-11.6, 33.0] [-8.8, 13.6] [-3.7, 33.0] [-5.1, 21.6] [-5.4, 15.4] [-4.1, 6.3]
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Table 4.H.3
Globally uniform valuation: Estimates of a mortality partial Social Cost of Carbon (SCC) under different valuation assumptions. An income elas-
ticity of one is used to scale either the U.S. EPA VSL, or the VSL estimate from (Ashenfelter and Greenstone, 2004). All SCC values are for the year 2020, mea-
sured in PPP-adjusted 2019 USD, and are calculated from damage functions estimated from results using the socioeconomic scenario SSP3. All regions are given the
global median VSL, after scaling using income. Value of life years estimates (panel A) adjust death valuation by expected life-years lost. Value of statistical life es-
timates (panel B) use age-invariant death valuation. Murphy-Topel life years adjusted estimates (panel C) add an age-specific adjustment that allows the value of
a life-year to vary with age, based on Murphy and Topel (2006) and described in Appendix 4.H.1. The first row of every valuation shows our estimated mortality
partial SCC using the median values for the four key input parameters of the simple climate model FAIR and a conditional mean estimate of the damage function.
The uncertainty ranges are interquartile ranges [IQRs] showing the influence of climate sensitivity and damage function uncertainty (see Appendix 4.G for details).

Valuation EPA A & G

Discount rate δ = 2% δ = 2.5% δ = 3% δ = 5% δ = 2% δ = 2.5% δ = 3% δ = 5%

Globally uniform valuation of mortality risk (2019 US Dollars)
Panel A: Value of life years

RCP 4.5 37.5 26.4 19.9 9.0 17.5 12.3 9.3 4.2
Climate sensitivity uncertainty [19.4, 82.2] [14.5, 54.4] [11.4, 38.7] [5.8, 15.1] [9.0, 38.3] [6.8, 25.3] [5.3, 18.0] [2.7, 7.1]
Damage function uncertainty [-15.7, 87.9] [-10.9, 63.1] [-11.4, 44.2] [-2.4, 23.1] [-7.3, 40.9] [-5.1, 29.4] [-5.3, 20.6] [-1.1, 10.7]
Full uncertainty [-13.3, 101.7] [-10.2, 68.7] [-8.4, 50.0] [-5.0, 21.7] [-6.2, 47.4] [-4.8, 32.0] [-3.9, 23.3] [-2.3, 10.1]

RCP 8.5 72.3 46.3 32.0 11.5 33.6 21.6 14.9 5.3
Climate sensitivity uncertainty [37.8, 149.0] [24.9, 93.4] [17.7, 62.8] [7.0, 20.1] [17.6, 69.4] [11.6, 43.5] [8.2, 29.2] [3.2, 9.4]
Damage function uncertainty [7.2, 127.1] [4.3, 86.3] [-1.9, 59.0] [-4.8, 24.8] [3.4, 59.2] [2.0, 40.2] [-0.9, 27.5] [-2.2, 11.5]
Full uncertainty [4.6, 141.1] [-0.5, 92.1] [-2.9, 64.6] [-4.6, 24.9] [2.2, 65.7] [-0.2, 42.9] [-1.4, 30.1] [-2.1, 11.6]

Panel B: Value of statistical life
RCP 4.5 46.2 33.7 25.9 11.9 21.5 15.7 12.1 5.5

Climate sensitivity uncertainty [15.3, 134.1] [14.0, 86.6] [12.3, 60.2] [7.2, 21.4] [7.1, 62.4] [6.5, 40.3] [5.7, 28.0] [3.4, 10.0]
Damage function uncertainty [14.3, 102.0] [12.9, 75.4] [3.5, 56.9] [-0.7, 26.9] [6.6, 47.5] [6.0, 35.1] [1.6, 26.5] [-0.3, 12.5]
Full uncertainty [2.8, 148.2] [-1.8, 98.6] [-4.1, 71.0] [-4.2, 30.2] [1.3, 69.0] [-0.8, 45.9] [-1.9, 33.1] [-2.0, 14.1]

RCP 8.5 143.9 87.5 57.5 17.6 67.0 40.8 26.8 8.2
Climate sensitivity uncertainty [68.8, 317.6] [43.1, 189.7] [29.2, 121.7] [10.1, 32.9] [32.0, 147.9] [20.1, 88.3] [13.6, 56.7] [4.7, 15.3]
Damage function uncertainty [59.5, 197.8] [38.1, 130.2] [23.8, 94.9] [3.1, 33.2] [27.7, 92.1] [17.7, 60.6] [11.1, 44.2] [1.5, 15.4]
Full uncertainty [39.0, 287.0] [21.8, 176.9] [11.9, 117.4] [-2.0, 37.9] [18.2, 133.7] [10.1, 82.4] [5.5, 54.7] [-1.0, 17.6]

Panel C: Murphy-Topel life years adjusted
RCP 4.5 35.8 25.3 19.0 8.6 16.7 11.8 8.8 4.0

Climate sensitivity uncertainty [18.4, 79.1] [13.8, 52.1] [10.9, 37.0] [5.5, 14.4] [8.6, 36.8] [6.4, 24.3] [5.1, 17.2] [2.6, 6.7]
Damage function uncertainty [-15.1, 90.6] [-8.0, 61.1] [-4.9, 46.8] [-4.1, 21.5] [-7.0, 42.2] [-3.7, 28.4] [-2.3, 21.8] [-1.9, 10.0]
Full uncertainty [-14.2, 99.9] [-10.8, 67.2] [-9.0, 48.8] [-5.7, 21.3] [-6.6, 46.5] [-5.0, 31.3] [-4.2, 22.7] [-2.7, 9.9]

RCP 8.5 70.1 44.6 30.7 10.9 32.6 20.8 14.3 5.1
Climate sensitivity uncertainty [36.6, 144.7] [24.0, 90.0] [17.0, 60.2] [6.6, 19.1] [17.1, 67.4] [11.2, 41.9] [7.9, 28.0] [3.1, 8.9]
Damage function uncertainty [7.0, 123.2] [0.0, 79.4] [-0.8, 59.5] [-4.4, 22.5] [3.3, 57.4] [0.0, 37.0] [-0.4, 27.7] [-2.0, 10.5]
Full uncertainty [3.7, 134.5] [-0.8, 87.9] [-2.7, 61.7] [-5.2, 24.0] [1.7, 62.7] [-0.4, 40.9] [-1.3, 28.7] [-2.4, 11.2]
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Table 4.H.4
Estimates of a mortality partial Social Cost of Carbon (SCC) under various socioeconomic projec-
tions. In both panels, an income elasticity of one is used to scale the U.S. EPA VSL value. All SCC val-
ues are for the year 2020, measured in PPP-adjusted 2019 USD. In panel A, SCC estimates use an age adjust-
ment that values deaths by the expected number of life-years lost, using an equal value per life-year (see Ap-
pendix 4.H.1 for details). In panel B, SCC calculations use value of a statistical life estimates that do not vary
with age. Each row shows, for a different SSP scenario, our estimated SCC using the median values for the four
key input parameters of the simple climate model FAIR and a conditional mean estimate of the damage function.

Annual discount rate
δ = 2% δ = 2.5% δ = 3% δ = 5%

Panel B: Age-adjusted globally VSL (2019 USD)

RCP 4.5
SSP2 25.7 15.8 10.4 2.9
SSP3 17.1 11.2 7.9 2.9
SSP4 -14.5 -10.0 -7.5 -3.7

RCP 8.5
SSP2 33.3 18.7 11.0 1.2
SSP3 36.6 22.0 14.2 3.7
SSP4 22.5 13.0 7.9 1.2

Panel A: Globally varying VSL (2019 USD)

RCP 4.5
SSP2 2.0 0.3 -0.9 -3.3
SSP3 14.9 9.8 6.7 1.7
SSP4 -64.3 -46.6 -36.1 -18.5

RCP 8.5
SSP2 43.9 22.0 10.7 -2.5
SSP3 65.1 36.9 22.1 3.5
SSP4 23.1 8.6 1.2 -6.4
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Table 4.H.5
Estimates of a partial Social Cost of Carbon (SCC) for excess mortality risk incorporating the costs and
benefits of adaptation, 1.5% discount rate. In both panels, an income elasticity of one is used to scale the U.S. EPA VSL
value. All regions thus have heterogeneous valuation, based on local income. All SCC values are for the year 2020, measured in
PPP-adjusted 2019 USD, and are calculated from damage functions estimated from projected results under the socioeconomic
scenario SSP3. In panel A, SCC estimates use an age adjustment that values deaths by the expected number of life-years
lost, using an equal value per life-year (see Appendix 4.H.1 for details). In panel B, SCC calculations use value of a statistical
life estimates that do not vary with age. Point estimates rely on the median values of the four key input parameters into
the climate model FAIR and a conditional mean estimate of the damage function. The uncertainty ranges are interquartile
ranges [IQRs] including both climate sensitivity uncertainty and damage function uncertainty (see Appendix 4.G for details).

Annual discount rate
δ = 1.5%

Panel A: Age-adjusted globally varying VSL (2019 US Dollars)

Moderate emissions scenario (RCP
4.5)

28.5

Full uncertainty IQR [-35.6, 88.5]
High emissions scenario (RCP 8.5) 66.4

Full uncertainty IQR [-2.8, 126.5]

Panel B: Globally varying VSL (2019 US Dollars)

Moderate emissions scenario (RCP
4.5)

24.6

Full uncertainty IQR [-25.5, 102.9]
High emissions scenario (RCP 8.5) 123.9
Full uncertainty IQR [13.7, 253.6]
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4.H.3 Alternative approach to estimating post-2100 damages

As discussed in Section 4.6, we rely on an extrapolation of estimated damage functions to
capture mortality impacts of climate change after the year 2100, due to data limitations.
In this appendix, we explore the importance of this extrapolation by using an alternative
approach to estimating post-2100 damage functions. Here, we calculate mortality partial
SCC estimates using a set of damage functions in which the estimated 2100 damage function
is applied to all years from 2100-2300. Effectively, this freezes the damage function at its
2100 level for all later years. Values shown are for SSP3, RCP8.5, with a discount rate of
2% and an age-varying VSL. Table 4.H.6 shows that this alternative approach to post-2100
damage estimation causes our central estimate of the SCC to fall by 21%.

Table 4.H.6
The influence of damage function extrapolation in years after 2100 on estimates of a mortality partial So-
cial Cost of Carbon (SCC). In this table, an income elasticity of one is used to scale the U.S. EPA VSL value, and all
SCC values are for the year 2020, measured in PPP-adjusted 2019 USD, and are calculated from damage functions estimated
from projected results under the socioeconomic scenario SSP3. The VSL is age-varying, so that these values are directly
comparable to panel A in Table 4.3 in the main text. For the first column, damage functions continue to evolve over time
in the years after 2100, according to the method described in Section 4.6. In the second column, the damage function es-
timated for the year 2100 is used for all years after 2100. All mortality partial SCC estimates use the median values for
the four key input parameters of the simple climate model FAIR and a conditional mean estimate of the damage function.

Extrapolating post-2100 damage
function

Holding post-2100 damage
function fixed

Pre-2100 damages $12.8 $12.8
Post-2100 damages $23.8 $16.0
Total damages $36.6 $28.8
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4.H.4 Robustness of the mortality partial SCC to an alternative
functional form of the damage function

Throughout the main text, we report mortality partial SCC estimates that rely on a quadratic
damage function estimated through all damage projections from all Monte Carlo simulation
runs (see Section 4.6 for details). In Table 4.H.7, we show mortality partial SCC estimates
for our central valuation approach using a cubic polynomial damage function in place of
a quadratic. Across emissions scenarios and discount rates, we find that this alternative
functional form has a minimal impact on mortality partial SCC estimates.

Table 4.H.7
Estimates of a mortality partial Social Cost of Carbon (SCC) using a cubic polynomial damage function
In this table, an income elasticity of one is used to scale the U.S. EPA VSL value. All SCC values are for the year
2020, measured in PPP-adjusted 2019 USD, and are calculated from damage functions estimated from projected results
under the socioeconomic scenario SSP3. Damage functions are estimated as a cubic polynomial, instead of a quadratic
(as in the main text). In panel A, SCC estimates use an age adjustment that values deaths by the expected num-
ber of life-years lost, using an equal value per life-year (see Appendix 4.H.1 for details). In panel B, SCC calcula-
tions use value of a statistical life estimates that do not vary with age. Estimates rely on the median values of the
four key input parameters into the simple climate model FAIR and a conditional mean estimate of the damage function.

Annual discount rate
δ = 2% δ = 2.5% δ = 3% δ = 5%

Panel A: Age-adjusted globally varying VSL (2019 USD)

RCP 4.5 9.4 6.5 4.9 2.4
RCP 8.5 44.5 25.7 16.1 4.0

Panel B: Globally varying VSL (2019 USD)

RCP 4.5 18.7 12.5 9.1 3.8
RCP 8.5 68.4 37.6 21.9 2.8
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Sophie Tytéca. 2013. “Transient climate response in a two-layer energy-balance model.
Part I: Analytical solution and parameter calibration using CMIP5 AOGCM experiments.”
Journal of Climate 26 (6):1841–1857.

Global Administrative Areas. 2012. “GADM database of Global Administrative Areas, ver-
sion 2.0.” Accessed 25 December, 2016 URL www.gadm.org.

Guo, Yuming, Antonio Gasparrini, Ben Armstrong, Shanshan Li, Benjawan Tawatsupa,
Aurelio Tobias, Eric Lavigne, Micheline de Sousa Zanotti Stagliorio Coelho, Michela Leone,
Xiaochuan Pan et al. 2014. “Global variation in the effects of ambient temperature on
mortality: a systematic evaluation.” Epidemiology (Cambridge, Mass.) 25 (6):781.

Hancock, Peter A, Jennifer M Ross, and James L Szalma. 2007. “A meta-analysis of per-
formance response under thermal stressors.” Human Factors: The Journal of the Human
Factors and Ergonomics Society 49 (5):851–877.

Heutel, Garth, Nolan H Miller, and David Molitor. 2017. “Adaptation and the Mortality Ef-
fects of Temperature Across US Climate Regions.” National Bureau of Economic Research
.

Hsiang, Solomon. 2016. “Climate econometrics.” Annual Review of Resource Economics
8:43–75.

Hsiang, Solomon, Robert Kopp, Amir Jina, James Rising, Michael Delgado, Shashank
Mohan, DJ Rasmussen, Robert Muir-Wood, Paul Wilson, Michael Oppenheimer et al.
2017. “Estimating economic damage from climate change in the United States.” Science
356 (6345):1362–1369.

Hsiang, Solomon and Robert E Kopp. 2018. “An Economist’s Guide to Climate Change
Science.” Journal of Economic Perspectives 32 (4):3–32.

IIASA Energy Program. 2016. “SSP Database, Version 1.1 [Data set].” Tech. rep.,
National Bureau of Economic Research. URL https://tntcat.iiasa.ac.at/SspDb.

Accessed25December,2016.

180

http://ec.europa.eu/eurostat/data/database
http://ec.europa.eu/eurostat/data/database
https://ideas.repec.org/a/kap/jecgro/v19y2014i3p259-309.html
https://ideas.repec.org/a/kap/jecgro/v19y2014i3p259-309.html
www.gadm.org
https://tntcat.iiasa.ac.at/SspDb. Accessed 25 December, 2016
https://tntcat.iiasa.ac.at/SspDb. Accessed 25 December, 2016


Joos, Fortunat, Raphael Roth, JS Fuglestvedt, GP Peters, IG Enting, W von Bloh,
V Brovkin, EJ Burke, M Eby, NR Edwards et al. 2013. “Carbon dioxide and climate
impulse response functions for the computation of greenhouse gas metrics: A multi-model
analysis.” Atmospheric Chemistry and Physics 13 (5):2793–2825.

Kopp, Robert E and Bryan K Mignone. 2012. “The US government’s social cost of carbon
estimates after their first two years: Pathways for improvement.” Working paper .

Mastrandrea, Michael D, Christopher B Field, Thomas F Stocker, Ottmar Edenhofer,
Kristie L Ebi, David J Frame, Hermann Held, Elmar Kriegler, Katharine J Mach, Patrick R
Matschoss et al. 2010. “Guidance note for lead authors of the IPCC fifth assessment report
on consistent treatment of uncertainties.” Tech. rep., Intergovernmental Panel on Climate
Change.

Matsuura, Kenji and Cort Willmott. 2007. “Terrestrial Air Temperature and Precipitation:
1900-2006 Gridded Monthly Time Series, Version 1.01.” University of Delaware. URL
http://climate.geog.udel.edu/climate.

Meinshausen, M., S. C. B. Raper, and T. M. L. Wigley. 2011. “Emulating coupled
atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 – Part 1:
Model description and calibration.” Atmospheric Chemistry and Physics 11 (4):1417–1456.
URL http://www.atmos-chem-phys.net/11/1417/2011/.

Millar, Richard J, Zebedee R Nicholls, Pierre Friedlingstein, and Myles R Allen. 2017. “A
modified impulse-response representation of the global near-surface air temperature and
atmospheric concentration response to carbon dioxide emissions.” Atmospheric Chemistry
and Physics 17 (11):7213–7228.

Millar, Richard J., Alexander Otto, Piers M. Forster, Jason A. Lowe, William J. Ingram, and
Myles R. Allen. 2015. “Model structure in observational constraints on transient climate
response.” Climatic Change 131 (2):199–211.

Ministry of Health, Chile. 2015. “Department of Statistics and Information.” Available at
http://www.deis.cl/bases-de-datos-defunciones/.

Ministry of Health in Brazil. 2019. “Mortality Information System (SIM).”
Available at http://datasus.saude.gov.br/sistemas-e-aplicativos/eventos-v/

sim-sistema-de-informacoes-de-mortalidade.

Mitchell, Timothy D. 2003. “Pattern Scaling: An Examination of the Accuracy of the
Technique for Describing Future Climates.” Climatic Change 60 (3):217–242. URL http:

//link.springer.com/article/10.1023/A%3A1026035305597.

Murphy, Kevin M and Robert H Topel. 2006. “The value of health and longevity.” Journal
of Political Economy 114 (5):871–904.

181

http://climate. geog. udel. edu/climate
http://www.atmos-chem-phys.net/11/1417/2011/
http://www.deis.cl/bases-de-datos-defunciones/
http://datasus.saude.gov.br/sistemas-e-aplicativos/eventos-v/sim-sistema-de-informacoes-de-mortalidade
http://datasus.saude.gov.br/sistemas-e-aplicativos/eventos-v/sim-sistema-de-informacoes-de-mortalidade
http://link.springer.com/article/10.1023/A%3A1026035305597
http://link.springer.com/article/10.1023/A%3A1026035305597


National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate
Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington,
DC: The National Academies Press. URL https://www.nap.edu/catalog/24651/

valuing-climate-damages-updating-estimation-of-the-social-cost-of.

National Center for Atmospheric Research Staff (Eds). 2015. “Global surface temperatures:
BEST: Berkeley Earth Surface Temperatures.” The Climate Data Guide .

National Institute for the Study of Demography (INED). 2019. “Vital Registration System.”
Available at https://www.ined.fr/en/.

O’Neill, Brian C, Elmar Kriegler, Keywan Riahi, Kristie L Ebi, Stephane Hallegatte, Timo-
thy R Carter, Ritu Mathur, and Detlef P van Vuuren. 2014. “A new scenario framework
for climate change research: The concept of shared socioeconomic pathways.” Climatic
Change 122 (3):387–400.

Rasmussen, D. J., Malte Meinshausen, and Robert E. Kopp. 2016. “Probability-weighted
ensembles of U.S. county-level climate projections for climate risk analysis.” Journal of Ap-
plied Meteorology and Climatology 55 (10):2301–2322. URL http://journals.ametsoc.

org/doi/abs/10.1175/JAMC-D-15-0302.1.

Riahi, Keywan, Shilpa Rao, Volker Krey, Cheolhung Cho, Vadim Chirkov, Guenther Fischer,
Georg Kindermann, Nebojsa Nakicenovic, and Peter Rafaj. 2011. “RCP 8.5—A scenario
of comparatively high greenhouse gas emissions.” Climatic Change 109 (1-2):33–57.

Ricke, Katharine L and Ken Caldeira. 2014. “Maximum warming occurs about one decade
after a carbon dioxide emission.” Environmental Research Letters 9 (12):124002.

Rohde, Robert, Richard Muller, Robert Jacobsen, Saul Perlmutter, Arthur Rosenfeld,
Jonathan Wurtele, J Curry, Charlotte Wickham, and S Mosher. 2013. “Berkeley Earth
temperature averaging process.” Geoinfor Geostat: An Overview 1 (2):1–13.

Samir, KC and Wolfgang Lutz. 2014. “The human core of the shared socioeconomic path-
ways: Population scenarios by age, sex and level of education for all countries to 2100.”
Global Environmental Change .

Seppanen, Olli, William J Fisk, and QH Lei. 2006. “Effect of temperature on task perfor-
mance in office environment.” Lawrence Berkeley National Laboratory 1 (LBNL-60946).

Sheffield, Justin, Gopi Goteti, and Eric F Wood. 2006. “Development of a 50-year high-
resolution global dataset of meteorological forcings for land surface modeling.” Journal of
Climate 19 (13):3088–3111.

Taylor, Karl E, Ronald J Stouffer, and Gerald A Meehl. 2012. “An overview of CMIP5 and
the experiment design.” Bulletin of the American Meteorological Society 93 (4):485.

182

https://www.nap.edu/catalog/24651/valuing-climate-damages-updating-estimation-of-the-social-cost-of
https://www.nap.edu/catalog/24651/valuing-climate-damages-updating-estimation-of-the-social-cost-of
https://www.ined.fr/en/
http://journals.ametsoc.org/doi/abs/10.1175/JAMC-D-15-0302.1
http://journals.ametsoc.org/doi/abs/10.1175/JAMC-D-15-0302.1


Tebaldi, Claudia and Reto Knutti. 2007. “The use of the multi-model ensemble in prob-
abilistic climate projections.” Philosophical Transactions of the Royal Society of Lon-
don A: Mathematical, Physical and Engineering Sciences 365 (1857):2053–2075. URL
http://rsta.royalsocietypublishing.org/content/365/1857/2053.

Thrasher, Bridget, Edwin P Maurer, C McKellar, and PB Duffy. 2012. “Technical note: Bias
correcting climate model simulated daily temperature extremes with quantile mapping.”
Hydrology and Earth System Sciences 16 (9):3309–3314.

U.S. Environmental Protection Agency. 2016. “Recommended Income Elasticity and Income
Growth Estimates: Technical Memorandum.” Tech. rep., U.S. Environmental Protection
Agency Office of Air and Radiation and Office of Policy.

Van Vuuren, Detlef P, Jae Edmonds, Mikiko Kainuma, Keywan Riahi, Allison Thomson,
Kathy Hibbard, George C Hurtt, Tom Kram, Volker Krey, Jean-Francois Lamarque et al.
2011. “The representative concentration pathways: An overview.” Climatic Change 109 (1-
2):5.

Viscusi, W Kip. 2015. “The role of publication selection bias in estimates of the value of a
statistical life.” American Journal of Health Economics .

Wood, Andrew W, Lai R Leung, V Sridhar, and DP Lettenmaier. 2004. “Hydrologic impli-
cations of dynamical and statistical approaches to downscaling climate model outputs.”
Climatic Change 62 (1-3):189–216.

183

http://rsta.royalsocietypublishing.org/content/365/1857/2053


Chapter 5:
Estimating a Social Cost of
Carbon for Global Energy
Consumption

Chapter Summary

The global marginal damage caused by emitting a single ton of carbon dioxide (CO2),
or its equivalent, is key to climate policy,1–3 but our current understanding of its value
is based on spatially-coarse theoretical-numerical models4–6 that are not tightly linked to
data.3,71 We develop the first architecture that integrates best-available data, economet-
rics, and climate science to estimate climate damages worldwide at the local level, as well
as aggregated global marginal damages. Here we apply this architecture to construct the
first global empirical estimates of the impact of climate change on total non-transport
end-use energy consumption, one of the most uncertain impacts in current models.8 At
end-of-century, we project annual global electricity consumption to rise roughly 4 EJ
(1100 TWh, 6% of current global consumption) for each 1◦C increase in global mean
temperature, reflecting increased cooling demand, while direct consumption of other fuels
declines 10.1 EJ (6% of current global consumption) per 1◦C, reflecting reduced heating.
Together, these estimates indicate that emission of 1 ton of CO2 today produces global
net savings in future aggregate energy consumption of about $1 in net present value (3%
discount rate). This finding is largely driven by a sharply nonlinear relationship between
income and temperature-induced energy consumption, which indicates that for most of
the 21st century, much of the world is expected to remain too poor to increase energy con-
sumption in response to warmer temperatures. By end-of-century, emerging economies
in the tropics (e.g. India) are projected to increase electricity consumption dramatically,
but these rising costs are offset by heating reductions in the wealthy economies of North
America and Europe.

1This material first appeared as a working paper of the same title, with authors Ashwin Rode, Tamma Carleton,
Michael Delgado, Michael Greenstone, Trevor Houser, Solomon Hsiang, Andrew Hultgren, Amir Jina, Robert Kopp,
Kelly McCusker, Ishan Nath, James Rising, Justin Simcock, Jiacan Yuan. This project is an output of the Climate
Impact Lab consortium that gratefully acknowledges funding from the Carnegie Corporation, Energy Policy Institute
of Chicago (EPIC), International Growth Centre, National Science Foundation (#SES1463644), Sloan Foundation, and
Tata Center for Development. Tamma Carleton acknowledges funding from the US Environmental Protection Agency
Science To Achieve Results Fellowship (#FP91780401). James Rising acknowledges funding from the H2020-MSCA-RISE
project GEMCLIME-2020 GA No. 681228. We thank Laura Alcocer, Thomas Bearpark, Trinetta Chong, Greg Dobbels,
Radhika Goyal, Simon Greenhill, Dylan Hogan, Azhar Hussain, Theodor Kulczycki, Maya Norman, Sebastien Phan,
Yuqi Song, Jingyuan Wang, and Jong-kai Yang for invaluable research assistance during all stages of this project, and
we thank Jack Chang, Megan Land́ın, and Terin Mayer for excellent project management. We acknowledge the World
Climate Research Programme’s Working Group on Coupled Modeling, which is responsible for CMIP, and we thank the
climate modeling groups for producing and making available their model output. For CMIP, the U.S. Department of
Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of
software infrastructure in partnership with the Global Organization for Earth System Science Portals. We thank seminar
participants at the UC Berkeley Energy Camp, University of Chicago EPIC Lunch Series, LSE Workshop in Environmental
Economics, International Energy Workshop, International Workshop on Empirical Methods in Energy Economics, and
University of Michigan Sustainability and Development Conference for helpful comments. The authors declare that data and
code for replicating the findings of this study are available at GitLab: https://gitlab.com/ClimateImpactLab/Impacts/

energy-code-release/.
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5.1 Introduction

Quantifying the benefits of greenhouse gas mitigation is a topic of considerable impor-
tance to researchers and policy makers alike. The “social cost of carbon” (SCC), defined
as the dollar value of climate change damages imposed globally by an additional (i.e.
“marginal”) ton of CO2 emissions (or its equivalent), provides the means to determine
the global social benefits of any mitigation policy.3 To date, our understanding of the SCC
has been informed by theoretical-numerical integrated assessment models4,9, 10 (IAMs).
These pioneering models have produced numerous valuable insights and guided research
and policy for decades.2,11 Yet as research has progressed with advances in data and
computing, new challenges and opportunities have emerged.7,12

Recent assessments3,6, 12,13 have raised the concerns that current IAMs are not tightly
constrained by data, do not utilize best-available Earth System models, do not capture
many known linkages between climate change and society, and only resolve damages at
the geographic scale of large regions (e.g. continents). We address these concerns by
designing a fully modular “bottom-up” architecture to develop “partial” SCC estimates
for individual sub-sectors of the global economy (e.g. agriculture, health, labor), using
representative data and detailed climate models.14–22 Each global partial SCC is built
up from econometrically derived, probabilistic, local damage estimates for thousands of
geographic regions. In ongoing work, we are integrating these partial SCC estimates23

to compute a total SCC, taking into account inter-sector and spatial dynamics. To our
knowledge, no existing IAM transparently assembles a bottom-up SCC based on local
econometric-based projections of damage.3

Here we develop the first empirically-derived estimates of the net cost of global en-
ergy consumption associated with an additional ton of CO2 emissions, i.e. a partial SCC
for energy consumption. IAM developers have themselves argued that uncertainty over
this number is the most important uncertainty to resolve in the total SCC,8 in part be-
cause some models predict that rising energy demand will be the single largest global
cost from warming.24 Prior econometric studies have measured the effect of local tem-
peratures on local electricity consumption,14,25–28 although they often omit non-electric
energy consumption (e.g. natural gas used for heating) because the data are difficult to
obtain. Moreover, these studies generally focus on residential end uses in regions that are
wealthy and thus not globally representative (e.g. California). In contrast, an appealing
feature of non-econometric studies using process-based models is that they simulate how
climate change will affect all aspects of the production, conversion, delivery, and use of
energy.29–32 However, similar to IAMs, their drawback is that they are not generally con-
strained by plausibly causal econometric estimates of consumption behavior in response
to warming. This analysis is the first to recover globally representative measurements
of total energy consumption in response to rising temperatures, accounting for economic
development and adaptive behavior, and to use these results to compute a partial SCC
for energy consumption.

5.1.1 Implementation

Our modular approach to computing partial-SCC values has five steps, each of which
can be implemented for each sector of the global economy. Here we apply these steps to
compute the energy consumption component of the SCC.

First, we match globally representative, longitudinal data on energy consumption
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with 0.25◦ × 0.25◦ globally harmonized historical climate data.33 This represents, to
our knowledge, the most comprehensive global dataset compiled on energy consumption
and temperature (Methods ; Appendix 5.A). Energy consumption data are derived from
International Energy Agency (IEA) data files34 that describe electricity and direct fuel
consumption across residential, commercial, industrial, and agricultural end-uses (ex-
cluding transportation) in 146 countries during 1971-2010. To make these data usable
for global analysis, we harmonize data across diverse reporting systems and use economet-
ric methods that minimize the influence of errors in record keeping (Methods ; Appendix
5.A.1).

Second, we econometrically estimate the effect of historical temperature distribu-
tions on energy consumption using random year-to-year variation,20 and measure how
this energy-temperature response differs across energy types (electricity and other fuels),
income levels, and climate zones.23 This allows us to observe the effects of adaptive
behaviors that populations undertake as they become richer25,35 and/or are exposed to
warmer climates28 (e.g. AC adoption). Our approach accounts for all permanent differ-
ences between countries in energy consumption (e.g. due to geography or history) and
all common trends in energy consumption (e.g. due to macroeconomic fluctuations, price
changes, or technological innovations), thereby identifying a plausibly causal effect14 of
temperature distributions on energy consumption (Methods ; Appendix 5.C).

Third, we project impacts of climate change in 24,378 geographic regions (e.g., US
counties, See Appendix Figure 5.B.1) through 2099 (the final year high-resolution climate
simulations are available) by combining the econometric results above with a probabilistic
ensemble of downscaled climate projections (Appendix Figure 5.A.3)36 based on CMIP5
models.15 When projecting these impacts, we account for how the energy-temperature
response will evolve as populations become richer and exposed to warmer climates (Meth-
ods). Standard socioeconomic scenarios18 forecast that 95% of the end-of-century popu-
lation will still remain within the range of historical temperatures and incomes that we
currently observe around the world (See Appendix 5.C.3, Figure 5.C.3). In isolating the
impact of future climate change on energy consumption, we hold constant the current
energy supply mix, an assumption that should be relaxed in future work.

Fourth, we pool the empirically-derived damage estimates from the last step and
fit global energy damage functions by aggregating impacts across locations and index-
ing them against the global mean surface temperature anomaly (∆GMST) expressed in
each climate model realization.37 These functions describe the full distribution of global
damage conditional on ∆GMST. We estimate damage functions that evolve over time to
reflect expected changes in socioeconomics and adaptation23 ( Methods ; Appendix 5.E).

Fifth, we adapt a probabilistic, simple climate-carbon cycle model22 to project the
distribution of annual ∆GMST up to 2300 that results from the release of 1 additional
GtC of CO2 (Methods ; Appendix 5.F). Applying the distribution of impulse-responses
of ∆GMST to damage functions from the last step generates a probability distribution
for the stream of total global damages that result from the emission of a marginal ton
of CO2 today. This probability distribution accounts for uncertainty in our econometric
estimates at all stages of the analysis as well as climatological uncertainty. Finally, the
value of the flow of damage is discounted3 to capture the partial SCC for global energy
consumption.
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5.2 Results

Empirically, we find that a population’s average income per capita is a key determinant
of how its end-use energy consumption responds to temperature. Electricity-temperature
responses (Figure 5.1A) are “U”-shaped (i.e. increasing with hot and cold temperatures),
but only in the seventh decile or higher of the global income distribution (annual per-
capita income≥$11,258, 2019 USD PPP), while the other fuels-temperature response is
“L-shaped” (i.e. increasing with cold temperatures) in the third decile or higher (an-
nual per-capita income≥$2,849, 2019 USD PPP). Above these thresholds, rising incomes
appear to amplify both responses, such that in the top decile, electricity consumption
rises 0.017 GJ-per-capita (4.6 kWh-per-capita) on a 35◦C day (relative to a 20◦C day)
and 0.0068 GJ-per-capita (1.9 kWh-per-capita) on a 0◦C day, on average, while direct
consumption of other fuels increases 0.034 GJ per-capita on a 0◦C day. These differing
responses likely reflect the use of electricity for cooling and heating, compared to the
use of other fuels (e.g. natural gas, oil, and coal) for heating. Prior research has doc-
umented similarly “U”-shaped electricity-temperature responses in the top decile14,26–28

(See Appendix 5.J for comparisons), but our data reveal that such responses do not gen-
eralize to other income levels nor do they capture the substantial other fuels-temperature
response, which dominates on cold days (Figure 5.1B). To our knowledge, these find-
ings represent the first empirical demonstration of how economic development shapes
energy-temperature responses on a global, macroeconomic scale.

While income per capita is the dominant driver of the energy-temperature response,
long-run climate also plays a smaller role in how populations adapt. For instance, higher
AC adoption in hot locations may increase electricity use on hot days.25,28 We em-
pirically recover how income and long-run climate continuously and jointly shape the
energy-temperature response (Methods, Equation 5.1; Appendix 5.C.3), thereby account-
ing simultaneously for effects of economic development and climate (Figure 5.1C). We
find evidence that populations adapt to their long-run climate in ways that change their
energy consumption during hot and cold periods, conditional on their income level. For
instance, on a 35◦C day, per capita electricity consumption is 0.0029 GJ greater in the
hottest climate tercile relative to the coldest. Conversely, on a 0◦C day, per capita con-
sumption of electricity and other fuels are respectively 0.0024 GJ and 0.037 GJ greater in
the coldest tercile relative to the hottest. These results are consistent with populations
adopting more heating or cooling technologies when their climate is cooler or hotter,
respectively.

Combining the measured relationships depicted in Figure 5.1C with projections for
how incomes and climate will change over the next century, we project how the structure
of all 24,378 local energy-temperature responses will evolve (See Figure 5.2A inset, Meth-
ods, and Appendix 5.C.3). This spatial granularity contrasts with existing IAMs used to
develop SCC estimates, which partitioned the world into at most 16 units10 (Appendix
5.B). Applying the ensemble of downscaled climate models and surrogates (Methods ;
Appendix 5.A.2.2) to our evolving projections of local energy-temperature responses, we
isolate the additional energy consumption in each region caused by changes in the temper-
ature distribution, over and above any changes to consumption that would occur without
climate change, such as those increases associated with economic development (Methods,
Equation 5.2).

In a high emissions scenario (RCP8.5), we project that by end-of-century, most of the
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world is expected to increase net annual per-capita electricity consumption and decrease
consumption of other fuels due to climate change (Figure 5.2A). The amplitude of these
effects reflects differences in incomes and climates across locations. Hot and wealthy loca-
tions exhibit large net increases in electricity consumption, although very cold locations
exhibit net declines where warming does not increase the number of hot days enough to
offset the loss of cold days. Low income regions, such as much of Sub-Saharan Africa, do
not increase electricity consumption as dramatically because they are projected to still
have relatively low incomes at end-of-century (e.g. see Ethiopia in Figure 5.1A). Declines
in consumption of other fuels are projected throughout the world, consistent with the use
of these fuels for heating across a wider range of incomes.

To understand the scale of these impacts, they can be compared to current levels of
energy consumption (Figure 5.2B). In many of today’s rich countries, impacts at end-of-
century are projected to be modest relative to current consumption, e.g. a +2% relative
increase in annual US electricity consumption. This small magnitude is both due to high
current consumption levels in conjunction with the fact that many rich countries are in
temperate climates, where large projected increases and decreases in electricity consump-
tion – from more hot and fewer cold days, respectively – offset one another. In contrast,
in many of the poorest and/or most populous countries, the additional consumption im-
posed by climate change is projected to be substantial relative to current consumption,
e.g. a +1600% relative increase in annual Nigerian electricity consumption. This is due
both to uniformly hot temperatures and very low levels of current energy use.

Aggregating energy impacts globally, we project that in a high emissions scenario,
annual electricity consumption will increase due to climate change by 0.97 GJ per capita
(90% C.I. = [0.40, 2.02], p<0.001) in 2099 (RCP8.5), while consumption of other fuels
will decline 2.80 GJ per capita ([−5.81,−0.99], p<0.01) (Figure 5.2C). Estimates in a
moderate emissions scenario (RCP4.5) are 0.33 and 1.07 GJ per capita, respectively.
(Electricity impacts do not include the primary energy lost in conversion to electricity.)
It is notable that ignoring the effects of income growth and climate adaptation on the
energy-temperature response would have resulted in dramatic underestimation of pro-
jected changes to global energy consumption due to warming (green lines, Figure 5.2C).

We monetize the climate-change induced changes in total energy consumption (elec-
tricity and other fuels combined) to develop a measure of the economic damages from
climate change, i.e. all economic resources that would be available for other purposes in
the absence of warming. In a baseline scenario of future real energy price growth of 1.4%
per year (the historical growth rate of US energy prices), we project that end-of-century
warming will cause net energy expenditure declines in much of the world, although there
are net increases in many tropical and subtropical middle-income regions, such as por-
tions of India, China, Indonesia and Mexico (Figure 5.3A). This pattern occurs because
currently low income countries will likely be rich enough by end-of-century to consume
other fuels on cold days but not rich enough to consume electricity on hot days, thus
they experience savings from warming because it reduces other fuel costs (e.g. Ethiopia
in Figure 5.1A). Hot middle income countries will be rich enough to spend on electricity
for cooling in the future, so in some regions the additional spending on electricity during
hot days outweighs the savings on cold days (e.g. India in Figure 5.1A). The largest
overall savings are projected to occur among today’s richest locations (Appendix 5.H).

Aggregating damages globally, we project modest net savings at end-of-century due
to climate change, amounting to 0.2 % ([−0.5%, 0.1%], p<0.2) and 0.1 % ([−0.2%, 0.0%],
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p<0.15) of 2099 world GDP in RCP 8.5 and RCP 4.5, respectively (Figure 5.3B). The
magnitude of net global savings is similar across alternative pricing scenarios (Appendix
5.D, Figure 5.D.1). This result differs qualitatively from the increased energy spending
reported in prior studies14,24,26–28,37 that focused on electricity consumption in wealthy
regions. Because low and middle-income populations spend little on electricity to cool and
other fuels are consumed everywhere almost exclusively for heating, projections that use
only electricity-temperature responses from high-income populations will overestimate
new cooling expenditures and underestimate savings from reduced heating, leading to
systematic overestimation of the total energy damages from climate change.

Damage functions describe the relationship between ∆GMST and global aggregate
damages in a sector or the economy as a whole—they are at the heart of all IAMs used to
develop SCC estimates,1,4, 9, 10 informing mitigation policy implications by summarizing
the costs of additional warming. We construct the first empirically-based global damage
functions for energy consumption using the method in refs. [23,37], organizing global ag-
gregate costs into functions of realized ∆GMST across 33,000 simulations (Figure 5.3C).
These damage functions evolve over time, thereby capturing the influence of changing
demographics, rising incomes, and warming local climates (See Methods). Damages are
slightly quadratic in GMST anomaly, although essentially linear, with an additional +1◦

∆GMST warming at end-of-century (relative to 2001-2010 average) increasing annual
consumption of electricity 3.96 EJ ([3.92, 4.01], p<0.001) and decreasing consumption
of other fuels 10.15 EJ ([10.03, 10.26], p<0.001), causing a net reduction in energy con-
sumption costs by $181 billion ([177, 185], p<0.001). Earlier and later damage functions
are less and more steep, respectively, primarily due to trends in income and population
(Appendix 5.E, Figure 5.E.1).

Since CO2 is long-lived in the atmosphere, the US National Academy of Sciences
recommends computing SCC values that capture damages through to the year 2300.3 To
do this, we combine our empirically-derived damage functions with the Finite Amplitude
Impulse Response (FAIR) climate model22 to project through to 2300 the distribution
of ∆GMST responses to the emission of a marginal 1 GtC of CO2 (Appendix 5.F) (The
high-resolution CMIP5 model runs used above to project spatially granular impacts end
in 2100.) A CO2 pulse emitted today perturbs the future trajectory of atmospheric CO2

concentrations nonlinearly, affected by the half life of CO2 in the atmosphere as it is
stored and released in the oceans and biosphere (Figure 5.4A-B). This results in future
∆GMST that deviates from the baseline scenario, which in turn causes a stream of energy
damages in future years (Figure 5.4C-D). The partial SCC from energy consumption is
the net present value of these annual damages.

We find that one ton of CO2 emitted today generates a total energy consump-
tion burden valued at -$1.16 ([−4.76,−0.14], p<0.05) in net present value under the
high-emissions RCP8.5 scenario and -$1.08 ([−4.29,−0.26], p<0.05) under a moderate-
emissions RCP4.5 scenario (3% discount rate, 1.4% price growth scenario, Table 5.4E,
Panel I). Our finding that the partial SCC from energy consumption is negative and small
in magnitude is broadly robust across multiple pricing scenarios (Table 5.4E, Panels II-
III; Table 5.G.1), although it is possible to obtain positive values (e.g. $1.20-9.96) by
assuming that cooling and heating energy uses trend continuously at historical rates for
the next several centuries, after accounting for the effects of income levels and climate
(Appendix Table 5.I.1). This could occur, in principle, if the price of cooling technology
falls indefinitely relative to other goods and services without a corresponding trend in
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efficiency (Appendix 5.I.3), although we believe such a scenario is unlikely.

5.3 Discussion

Our estimates are the first, to our knowledge, to make use of globally comprehensive
data and empirical relationships to compute a global partial SCC for energy consump-
tion. This approach reveals the critical role of economic development in shaping how
energy consumption patterns respond to climate change, as we find that much of the
world will remain too poor in coming decades to spend substantially on energy-intensive
cooling technologies. Our approach also demonstrates the importance of accounting for
non-electricity energy consumption since global populations use other fuels to cope with
cold temperatures even at low income levels. Together, these two factors explain why our
analysis indicates that total global energy expenditures are not likely to increase dramat-
ically in response to warming, and why marginal emissions today may in fact produce
savings in global energy expenditures.

The modest magnitude of the aggregate global impacts, however, masks substantial
important shifts in projected energy consumption. Most notably, projected impacts of
warming in many of today’s emerging economies may impose substantial costs and rep-
resent a large fraction of current consumption. For instance, we project that climate
change will increase end-of-century electricity consumption in India by over 100% of its
current consumption (Figure 5.2B).

Our approach is designed to isolate the effect of future climate change on energy
consumption under given emissions and socioeconomic pathways. However, a natural
area for future exploration is to account for feedback effects that climate change and
climate policy may introduce via changes in the energy supply mix, the trajectory of
CO2 emissions, and technological innovation.38,39 While future work should explore the
potential for these factors to alter the partial SCC for energy consumption, we believe
at least the CO2 emissions feedbacks are likely immaterial, given the small size of our
aggregate estimated impacts (Appendix 5.K).

Another extension to this analysis would be to account for additional types of fu-
ture technological advancements that may affect the energy consumption response to
climate change (e.g. changes in the relative cost of cooling technologies). Because we
allow energy-temperature responses to evolve with rising incomes and temperatures in
our projection, our estimates reflect historical trends in advancement and diffusion of
technology that occur with changes in these two factors. In Appendix 5.I.3, we econo-
metrically model more aggressive assumptions about technological change and find that
substantially larger values of the partial SCC for energy consumption can arise. How-
ever, the particular assumptions required to generate this result (i.e. falling cost without
efficiency gains) are unlikely to hold. The difficulty of predicting the direction and mag-
nitude of unprecedented technological innovation under climate change underscores the
critical need for further research in this area.40

The results of our analysis contrast with estimates derived from alternative approaches.
For example, the numerical-theoretical FUND IAM41 — the only modeling framework
where direct comparison is possible — estimates a partial SCC for energy consumption24

of $8 per ton of CO2, which constitutes 90% of its total SCC estimate (high emissions
scenario, 3% discount rate). However, its developers acknowledge enormous uncertainty
in this number.8 Our findings are consistent with the concern that such prior estimates
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rely on a limited empirical basis for calibration42–45 and underscore the importance of
developing a representative empirical approach.

We demonstrate the feasibility of combining global data, econometrics, detailed cli-
mate models, and modern computing to estimate a partial SCC for energy consumption.
However, a total SCC, composed of many partial SCCs for different sectors of the econ-
omy, would be required to determine the full social cost of warming to global society. Our
approach can be extended to the full range of outcomes potentially affected by climate
(e.g. mortality,23 agriculture, labor), thereby providing an empirically-based characteri-
zation of the total SCC.
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Figure 5.1: Energy consumption and temperature. Figure 5.1 displays various estimates of energy-temperature
responses for electricity and end-use other fuels consumption that together account for all energy consumption. The height
of each curve represents the additional per-capita daily consumption (in GJ) at a daily average temperature denoted on the
horizontal axis, relative to a reference daily average temperature of 20◦C. Shaded areas indicate 95% confidence intervals.
(A) The energy-temperature response by income (Appendix Equation 5.C.3). Separate response curves are displayed for
each decile of 15-year moving-average annual GDP per-capita in our sample, which consists of 146 countries over 1971-
2010. The positions of selected country-years across these in-sample income deciles are indicated, with future income
drawn from the Shared Socioeconomic Pathway 3 (SSP3) scenario.18 (B) Reproduction of the electricity- and other fuels-
temperature responses for the richest decile on a common scale. (C) The results from an econometric specification that
models heterogeneity in the energy-temperature response due to both income and long-run climate (Methods, Equation
5.1. Each cell within a matrix illustrates a predicted response for a level of income and long-run climate. Cells are
ordered vertically by income terciles (increasing income from bottom to top) and horizontally by terciles of annual cooling
degree-days (increasingly warm climate from left to right, see Methods and Appendix 5.C.3).
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5.4 Methods

Here we provide an overview of the data and methods used to complete each of the five
stages of analysis that compose our modular approach to constructing a partial SCC.
Details on each stage can be found in the Online Appendix.

5.4.1 Step 1: Data assembly

We compile a comprehensive dataset on historical energy consumption, climate, and in-
come, as well as future projections of climate, income, populations, and energy prices (Ap-
pendix 5.A). Historical data are used to econometrically estimate the energy-temperature
response, and how it differs by energy type (electricity and other fuels), income, and cli-
mate. Future projection data are used to generate high-resolution projected impacts of
climate change, accounting for the effects of income growth and warming on the shape of
the energy-temperature response.

Historical datasets Annual data on final consumption of electricity and other fu-
els for 146 countries from 1971 to 2010 were obtained from the International Energy
Agency’s (IEA) World Energy Balances dataset.34 We take electricity consumption di-
rectly from the dataset, while other fuels consumption is constructed by aggregating over
coal, peat, oil shale and oil sands, oil products, natural gas, solar, wind, goethermal, bio-
fuels and waste, heat, and heat production from non-specified combustible fuels. For both
electricity and other fuels, we aggregate over the industrial, commercial/public services,
residential, agricultural, forestry, fishing, and non-specified sectors. Data inconsistencies
and quality issues in the IEA’s records are extensively documented.34 We classify every
such change in record-keeping methodology and employ specific data preparation and
econometric techniques to address each individually (Appendix 5.A.1).

Historical data on daily average temperature and precipitation, as well as historical cli-
matologies, are obtained from the Global Meteorological Forcing Dataset, v1 (GMFD),33

a global gridded (0.25◦ × 0.25◦) daily climate record available from 1948 to 2010.16 We
link high-resolution daily climate data to country-level annual energy consumption data
using a procedure detailed in Appendix 5.A.2.4 that preserves nonlinearity in the energy-
temperature response (Appendix 5.A.2.4).

We obtain historical values of country-level annual income per capita from within the
International Energy Agency’s World Energy Balances dataset, which in turn sources
these data from the World Bank.

Datasets of future projections We use a set of 21 high-resolution (0.25◦ × 0.25◦)
bias-corrected global climate projections that provide daily temperature and precipitation
through the year 2099 from the NASA Earth Exchange (NEX) Global Daily Downscaled
Projections (GDDP) dataset.47 We obtain climate projections based on two standardized
emissions scenarios: Representative Concentration Pathways 4.5 (RCP4.5, an emissions
stabilization scenario) and 8.5 (RCP8.5, a scenario with intensive growth in fossil fuel
emissions).48–50 Because this set of 21 climate models systematically underestimates tail
risks of future climate change,36,51 we assign probabilistic weights to climate projections
and use 12 surrogate models that describe local climate outcomes in the tails of the
climate sensitivity distribution.36 The 21 models and 12 surrogate models are treated
identically in our calculations and are referred to as the surrogate/model mixed ensemble
(SMME). Full details on the SMME climate projections are in Appendix 5.A.2.3. Gridded
output from these projections is aggregated to 24,378 globally comprehensive agglomer-
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ated political units we call impact regions using the same method applied to historical
climate data (Appendix 5.A.2.4). Impact regions are constructed to (i) respect national
borders, (ii) be roughly equal in population across regions, and (iii) have approximately
homogenous within-region climatic conditions (Appendix 5.B).

Projections of national populations and income per capita are derived from the Shared
Socioeconomic Pathways (SSPs),52 a set of scenarios of socioeconomic development over
the 21st century in the absence of climate impacts or policy. We utilize scenarios SSP2,
SSP3, and SSP4.53 National population and income per capita projections are respec-
tively allocated to 24,378 impact regions based on current satellite-based within-country
population distributions54 (Appendix 5.A.3.3) and current nighttime light satellite im-
agery from the NOAA Defense Meteorological Satellite Program (DMSP) (Appendix
5.A.3.2).

The price trajectories we use to monetize estimated impacts of climate change are
constructed based on either of two distinct data sources— present-day statistics from the
IEA or price projections from integrated assessment models (IAMs). We obtain present-
day average electricity generation costs by region of the world from the IEA’s World
Energy Outlook 2017 (Figure 6.25); prices for other fuels are obtained from the IEA’s
Energy Prices and Taxes Statistics dataset. Price projections of electricity and other fuels’
prices from 5 IAMs were obtained from IIASA’s Scenario Explorer database.46 Details
on how prices are assigned across countries and over time can be found in Appendix 5.D.

5.4.2 Step 2: Econometric estimation of energy-temperature
responses

Using historical data on energy consumption, climate, and income, we flexibly model an-
nual electricity and other fuels consumption each as a function of daily average tempera-
tures within a year, while accounting for heterogeneity in energy-temperature responses
along the dimensions of both income and long-run climate. Let Ejtc denote consumption
in GJ per capita in country j, year t, and fuel category c (electricity, other fuels). The
temperature and precipitation vectors Tjt and Pjt contain country-by-year aggregations
of nonlinear grid-cell-level transformations of daily temperature and precipitation, re-
spectively. These vectors thus summarize the full distribution of daily average weather
in country j, year t (Appendix 5.A.2.4).

To model heterogeneity by income, we use the 15-year moving average of a country’s
natural log of per-capita GDP (LogGDPPCjt), and to model heterogeneity by long-
run climate we use a country’s average annual cooling degree days and heating degree
days over the sample period (CDDj and HDDj). Annual cooling (heating) degree days
are a common measure of exposure to warm (cold) temperatures and are defined as the
cumulative deviations of daily average temperatures from a benchmark of 20◦ C, over
all days in the year where the average temperature exceeded (fell below) 20◦ C. Because
these measures do not change substantially over the historical record, we do not rely
on long-run temporal variation within the timespan of the sample and instead use the
average over the sample period (Appendix 5.C.3).

We estimate a specification of the following form:

Ejtc = fc(Tjt|LogGDPPCjt, CDDj, HDDj) + gc(Pjt) + αjic + δwtc + εjtc. (5.1)

In our main specifications, Tjt contains linear and quadratic terms of daily average tem-
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peratures, each summed across the year, and Pjt contains linear and quadratic terms
of daily cumulative precipitation, also each summed annually. Exploiting flexible in-
teractions between the three income and long-run climate covariates (LogGDPPCjt,

CDDj, and HDDj) and all terms in the temperature vector (Tjt), we estimate an energy-
temperature response fc for fuel category c that is conditional on income and long-run
climate. Details of this procedure can be found in Appendix 5.C.3.

All our econometric specifications include a full set of country-by-reporting regime
intercepts, referred to here as “fixed effects” (αjic), where reporting regimes (i) are time
spans within a country where observations for a given fuel category are documented by
the IEA to be comparable (Appendix 5.A.1). These fixed effects flexibly account for all
permanent differences in energy consumption across country-regimes. In addition, we
include world region-by-year fixed effects (δwtc) for each fuel category, where w indexes
world regions based on UN classifications (Oceania, N. America, N. Europe, S. Europe,
W. Europe, E. Europe, E. Asia, S.E. Asia, Central America/Caribbean, South America,
sub-Saharan Africa, N. Africa/W. Asia, S. Asia). These fixed effects flexibly account
for all world region-level trends and shocks in energy consumption. The use of fixed
effects is more reliable than trying to individually control explicitly for determinants
of energy consumption because it accounts for time-invariant and time-trending factors
non-parametrically. We thus exploit random within-country, year-to-year variation in
realized daily temperatures to identify a plausibly causal effect of historical temperature
distributions on energy consumption. Finally, εjtc denotes the stochastic error term.

Due to evidence of unit root behavior in the dependent variable, we estimate Equa-
tion 5.1 in first-differences (Appendix 5.A.1). Furthermore we employ inverse variance
weighting to address differences in data quality across reporting regimes (Appendix 5.C.1).
Standard errors are clustered by country-fuel category-reporting regime.

While Equation 5.1 is designed to causally identify the effect of daily temperatures
on energy consumption, it does not identify overall levels of energy consumption as these
are absorbed in the spatial and temporal fixed effects. We therefore express estimated
electricity- or other fuels-temperature responses as predicted consumption relative to a
“mild” day with an average temperature of 20◦C. The matrices of electricity- and other
fuels-temperature responses in Figure 5.1C summarize the results from estimating Equa-
tion 5.1, while Figures 5.1A and 5.1B display responses that are estimated for each decile
of the in-sample income distribution, but do not differ by long-run climate (Appendix
5.C.2).

Estimating Equation 5.1 enables us to use observable characteristics – LogGDPPC,
CDD, and HDD – to predict energy-temperature responses at different points in time for
each of 24,378 impact regions. For each impact region r and year t, we use the estimated
function f̂c(·) from Equation 5.1, along with 15-year moving averages of the covariates
(LogGDPPCrt,CDDrt,HDDrt), to predict energy-temperature responses for each fuel
category. Responses evolve over time as 15-year moving averages of the covariates change
for a given impact region r, thereby reflecting the effects of adaptive behaviors that pop-
ulations undertake as they become richer and/or are exposed to warmer climates. Figure
5.2A (inset) plots examples of such evolving responses for impact regions corresponding
to the cities of Stockholm, Sweden (exhibiting small changes) and Guangzhou, China
(exhibiting large changes).
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5.4.3 Step 3: Projecting the impacts of climate change

To estimate future energy consumption impacts for each fuel category c and impact re-
gion r for each year from 2015 to 2099, we apply a set of probabilistic climate change
projections to the spatially and temporally heterogenous energy-temperature responses.
The distribution of future daily average temperatures under a given emissions scenario
(RCP8.5 or RCP4.5) is obtained from the 33 projections in the SMME (Appendix 5.A.2.3).

Let Trt represent a vector containing impact region-by-year aggregations of nonlinear
grid-cell-level transformations of daily temperature in a future year t, under a warmer
climate. In contrast, let Tr2015 represent the counterfactual temperature vector for the
same impact region under a climate that is the same as that of 2015. These vectors
are constructed in exactly the same way as is done for the temperature vectors used
in estimating Equation 5.1 (Appendix 5.A.2.4). The impact of climate change on fuel
category c is expressed as the estimated change in consumption relative to a no-climate
change counterfactual in which the future climate is the same as in 2015:

ImpactOfClimateChangecrt = f̂c(Trt | LogGDPPCrt, CDDrt, HDDrt)︸ ︷︷ ︸
Temperature-induced energy consumption under climate change

(with income growth and climate-driven adaptation)

− f̂c(Tr2015 | LogGDPPCrt, CDDr2015, HDDr2015)︸ ︷︷ ︸
Temperature-induced energy consumption without climate change

(with income growth)

. (5.2)

The object ImpactOfClimateChangecrt represents the change in annual per-capita elec-
tricity or other fuels consumption due to a shift in the temperature distribution under
climate change, accounting for the evolution of energy-temperature responses as locations
warm and incomes rise. It isolates the additional impact of climate change net of other
factors (e.g. income) that will change in the future. The two projections are identical in
every way, except for the climate. Thus, we evaluate the second term using future levels
of income but use CDD and HDD values drawn from the 2015 climate distribution. All
fixed effects and other controls cancel out and are therefore omitted.

We construct estimates of Equation 5.2 for all impact regions up to 2099 under emis-
sions scenarios RCP8.5 and RCP4.5, using each of the 33 climate projections in the
SMME. Figure 5.2A maps mean impact estimates across these 33 climate projections at
year 2099 under RCP8.5, while 5.2B and 5.2C display impacts aggregated to the country
and global levels respectively. Confidence intervals around the means are constructed
to reflect both climatological and econometric sources of uncertainty. The distribution
of impacts across 33 climate projections captures uncertainties in the climate system
through to 2099, and we additionally capture uncertainty arising from econometric es-
timation of Equation 5.1 using the delta method.55 Appendix 5.C.5 details the method
used to combine both these independent sources of uncertainty.

To highlight the critical importance of income growth and climate-driven adaptation in
shaping future energy-temperature responses, we also consider a “no-adaptation” impact
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projection that ignores these factors (green lines in Figure 5.2C). To do this, we project

ImpactOfClimateChangeNoAdaptationcrt =

f̂c(Trt|LogGDPPCr2015, CDDr2015, HDDr2015)︸ ︷︷ ︸
Temperature-induced energy consumption under climate change

(no adaptation)

− f̂c(Tr2015|LogGDPPCr2015, CDDr2015, HDDr2015)︸ ︷︷ ︸
Temperature-induced energy consumption without climate change

(no adaptation)

(5.3)

which captures the change in consumption responses due to future temperature, holding
each impact region’s income and climate fixed at 2015 values for all years in the projection.

5.4.4 Step 4: Estimating global energy damage functions

Our fourth step is to pool empirical estimates of climate change impacts constructed
using Equation 5.2 to fit global energy damage functions, which express global energy
consumption costs of climate change as a function of the change in global mean surface
temperature relative to the 2001-2010 average level (∆GMST).1 These damage functions
summarize the economic costs of all impacts measured in the detailed empirical analysis,
demonstrating how they vary with the change global mean surface temperature.

Damage functions through 2099 are directly built from estimates of global costs (Dtlps,
denominated in either EJ or dollars) in each year (t) using 33 climate models (l), two
emissions scenarios (p), and a resampling of estimates (s) that captures uncertainty in
the estimation of Equation 5.1. We interpret each of the resulting 33,000 simulation out-
puts Dtlps as a potential realization of damages that result from the spatial distribution
of warming in model l, given the overall ∆GMST that is exhibited by that model under
the emissions scenario p. Multiple simulations lead to an empirically-derived distribution
of potential outcomes that are conditional on the ∆GMST value for the year, climate
model, and emissions scenario used to generate that projection. To construct damage
functions, we use these outcomes to estimate a conditional distribution of damages23,37

using ordinary least squares, to obtain expected values, and quantile regressions, to cap-
ture uncertainty in damages conditional on ∆GMST.

In our projections of the future, the underlying population distribution and level of per
capita income are evolving over time, thereby shaping the sensitivity of energy consump-
tion to warming and through it, global damages. These changes over time require the
construction of year-specific damage functions. Thus, we separately estimate a quadratic
damage function in each year:

D(∆GMST, t)tlps = ψt0 + ψt1∆GMSTtlp + ψt2∆GMST 2
tlp + εtlps, (5.4)

using all simulations within a 5-year window of t, thereby allowing the shape of the func-
tion D(∆GMST, t)tlps to evolve flexibly and smoothly over the century. Figure 5.3C dis-
plays examples of damage functions (expected values) at end-of-century, with each point
in the scatterplot representing an individual realization of Dtlps. The leftmost and middle
panels demonstrate examples of separate damage functions for electricity and other fuels
respectively, where the realizations are denominated in EJ. The rightmost panel of Figure
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5.3C displays a damage function for total energy consumption, denominated in dollars.
To monetize the projected impacts of climate change on energy consumption, we apply
country-specific real prices for electricity and other fuels to the projected quantity im-
pacts, thus reflecting differential costs across geographies and fuels. Price trajectories up
to 2099 are constructed in either of two ways: i) by extrapolating present-day prices under
various price growth scenario assumptions or ii) by utilizing price projections developed
in existing IAMs (Appendix 5.D).

In addition to estimating expected damages, we estimate 19 quantile regressions (for
every fifth percentile from the 5th to 95th percentiles) to capture the full distribution
of damages conditional on ∆GMST (Appendix 5.F.4). Quantile regressions also use a
quadratic functional form (Equation 5.4), but with different coefficients and residuals.
The resulting conditional distribution reflects econometric uncertainty in the impact esti-
mates from which damages are constructed, as well as differences in the spatial patterns
of warming exhibited across different climate models within the SMME.

As described in the next step, we use the estimated dollar-denominated damage func-
tions to compute the net cost of global energy consumption associated with an additional
ton of CO2. Because CO2 is long-lived in the atmosphere, the US National Academy of
Sciences recommends computing SCC values that capture damages through to the year
2300.3 Because CMIP5 models are not run beyond 2099, the SMME sample ends in
2099. Therefore, it is necessary to develop a separate approach to extend these damage
functions beyond 2099. Details of this approach can be found in Appendix 5.E.

5.4.5 Step 5: Calculating the partial social cost of carbon

In the final step, we combine a probabilistic, simple climate-carbon cycle model with the
set of damage functions described above to compute the partial SCC. The partial SCC at
time t0 is defined as the marginal social cost from elevated energy consumption imposed
by the emission of a marginal ton of CO2 at t0 holding all other factors fixed (including
the forecast trajectory of baseline greenhouse gas emissions). For a discount rate δ, this
is expressed as:

Partial SCCt0 =
2300∑
t0

e−δt
dD̂(∆GMST, t)

d∆GMSTt

̂d∆GMSTt
dCO2t0

, (5.5)

where ̂d∆GMSTt
dCO2t0

is the estimated increase in ∆GMST that occurs at each moment in

time along the baseline climate trajectory (e.g. RCP8.5) as a result of a marginal unit
of emissions at time t0, which we approximate with an infinitesimally small pulse of

CO2 emissions occurring at time t0. The values dD̂(∆GMST,t)
d∆GMSTt

are the marginal damages
at each moment in time that occur as a result of this small change in future global
temperatures; they are computed using the damage functions described in Equation 5.4.
Following ref. [2] we hold δ fixed throughout a projection, but use the range of values
δ ∈ {0.025, 0.03, 0.05} recommended by ref. [3] to explore the influence of the discount
rate.

To calculate the change in ∆GMSTt due to a marginal pulse of CO2 in 2020, we adapt
a version of the Finite Amplitude Impulse Response (FAIR) simple climate model that has
been developed especially for this type of calculation (Appendix 5.F).22 Specifically, we
use FAIR to calculate ∆GMSTt trajectories for emissions scenarios RCP4.5 and RCP8.5,
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both with and without an exogenous impulse of 1Gt C (equivalent to 3.66Gt CO2) in the
year 2020, an approximation of an infinitesimal emission for which the model numerics
are stable. In FAIR, this emissions impulse perturbs the trajectory of atmospheric CO2

concentrations and ∆GMSTt for 2020-2300, with dynamics that are influenced by the
baseline RCP scenario. In each scenario, the trajectory of ∆GMSTt in the “RCP +

pulse” simulation is differenced from the baseline RCP simulation to compute ̂d∆GMSTt
dCO2t0

,

and the resulting damages are converted into USD per 1t CO2 and discounted to the
present.

To capture uncertainty in the climate physic represented in FAIR, we generate a
distribution of future temperature trajectories by resampling the equilibrium climate
sensitivity, the transient climate response, the short thermal adjustment time, and the
time scale of rapid carbon uptake by the ocean mixed layer from a joint distribution
that we constrain using findings from the literature (Appendix 5.F.2). The solid lines in
Figures 5.4 indicate trajectories arising from the median values in FAIR’s configuration
parameters and the shaded areas indicate interquartile ranges calculated through this
resampling. The final range of final uncertainty in projected damages combines this
uncertainty in climate sensitivity with uncertainty in damages, conditional on the climate
sensitivity, by also resampling from quantiles of the damage function.

Panels I, II, and III of Table 5.4E present partial SCC estimates under RCP8.5 and
RCP4.5, assuming various discount rates and future energy price scenarios. Interquartile
ranges (in brackets) account for econometric and climatological uncertainty (Appendix
5.F.4). Additional partial SCC estimates demonstrating sensitivity to alternative pricing
scenarios, approaches to estimating post-2100 damages, and socioeconomic scenarios can
be found in Appendix 5.G. Appendix 5.I.3 presents partial SCC estimates under a sce-
nario of persistent technological progress where the cost of energy services continues to
decline indefinitely based on historically measured rates without a corresponding trend
in efficiency.

Chapter Review and Looking Ahead

In first chapter, we presented the first architecture that integrates best-available data,
econometrics, and climate science to estimate climate damages worldwide at the local
level, as well as aggregated global marginal damages. We applied this architecture to
construct the first global empirical estimates of the impact of climate change on total
non-transport end-use energy consumption, one of the most uncertain impacts in current
integrated assessment models.8 At end-of-century, we project annual global electricity
consumption to rise roughly 4 EJ (1100 TWh, 6% of current global consumption) for
each 1◦C increase in global mean temperature, reflecting increased cooling demand, while
direct consumption of other fuels declines 10.1 EJ (6% of current global consumption)
per 1◦C, reflecting reduced heating. Together, these estimates indicate that emission of 1
ton of CO2 today produces global net savings in future aggregate energy consumption of
about $1 in net present value (3% discount rate). By end-of-century, emerging economies
in the tropics (e.g. India) are projected to increase electricity consumption dramatically,
but these rising costs are offset by heating reductions in the wealthy economies of North
America and Europe.

The next, and final, chapter closes with some concluding remarks.
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Appendix

Several of the raw datasets, numerical methods, and intermediate results described in
this appendix are also described in the appendix of ref. [23]. We provide this information
here for completeness.

5.A Data

5.A.1 Energy consumption data

Data assembly As described in Methods, we obtain data on final consumption of elec-
tricity and other fuels from the International Energy Agency’s (IEA) World Energy Bal-
ances dataset. Electricity consumption is taken from the ELECTR variable code, and
consumption of other fuels is obtained by aggregating over the following variable codes:
COAL (coal and coal products); PEAT (peat and peat products); OILSHALE (oil shale
and oil sands); TOTPRODS (oil products); NATGAS (natural gas); SOLWIND (so-
lar/wind/other); GEOTHERM (geothermal); COMRENEW (biofuels and waste); HEAT
(heat), and HEATNS (heat production from non-specified combustible fuels). For both
electricity and other fuels, we aggregate over the following sectoral codes: TOTIND,
which encompasses consumption in the industrial sector, and TOTOTHER, which encom-
passes consumption in the commercial/public services, residential, agricultural, forestry,
fishing, and non-specified sectors. The non-specified sector includes consumption in the
other sectors within TOTOTHER if disaggregated figures are not provided for those
sectors.

Harmonization of energy consumption data across diverse reporting regimes
The IEA extensively documents a range of data quality issues related to its energy con-
sumption data. Data quality issues can arise for a variety of reasons, including lack of
data, revisions to data, imputed data, and reporting inconsistencies. The documentation
identifies such issues for individual countries over specific years, often explicitly noting
“breaks in time series”.2 Our data preparation approach is based on upon reading and
categorizing all documentation pertaining to each year of each country in the data.

When carrying out our analyses, we address documented data quality issues in one of
two ways– imposing fixed effects that account for mean differences in energy consumption
across time spans of observations documented to be incomparable, or dropping of these
incomparable observations. Although there are 146 countries in the data, we use the
IEA documentation to identify 275 distinct reporting “regimes” for electricity consump-
tion (i.e. time spans within a country where reporting practices are documented to be
comparable) and 294 regimes for other fuels consumption. All our regressions contain
fixed effects at the country-regime level (i.e. an indicator variable for each country-
by-regime), which account for mean differences in energy consumption across reporting
regimes. While country-regime fixed effects are a powerful way to deal with known data
quality issues, they are not always a sufficient remedy if observations fail to meet even
basic standards of comparability. In some cases it is necessary to drop observations al-
together. We drop an observation whenever its definition of a fuel or sector category
is documented to be at odds with the standard definitions. For instance, we drop ob-

2For instance, in the documentation for Denmark, it is noted that “major revisions were made by the Danish adminis-
tration for the 1990 to 2001 data, which may cause breaks in time series...”.

209



servations from Sweden prior to 1993, as certain road transport fuel consumption was
included under the commercial sector during those years, but not during other years for
Sweden or any years for other countries. A total of 412 observations are dropped for
electricity consumption and 1,117 observations are dropped for other fuels consumption.
In our released code base, we provide cleaning scripts depicting precisely the fixed effects
imposed and the observations dropped.

Unit root behavior in energy consumption data Despite data preparation mea-
sures to guard against quality issues, there continue to exist what appear to be persistent
shocks in energy consumption, even within a country-regime. For example, Figure 5.A.1
displays the time series for other fuels consumption in Italy, with each color indicating
a distinct regime. Persistent shocks to consumption do not always appear to be tied
to a change in regime. Motivated by such patterns, we formally test for a unit root in
electricity and other fuels consumption for each of the country-regime time series, using
both the augmented Dickey-Fuller and Phillips-Perron tests under various lag lengths
(including a time trend in each case). The null hypothesis is that there exists a unit root.
Figure 5.A.2 plots the histogram of p-values from the country-regime time series tests.
The left panel displays tests on electricity consumption time series while the right panel
displays tests on other fuels consumption time series. Each histogram within a panel
represents a variant of the unit root test (augmented Dickey-Fuller or Phillips-Perron,
each with different lag length). In all variants of the test for both electricity and other
fuels consumption, the mass of very high p-values (i.e. close to p = 1 and far above the
conventional rejection threshold of p = 0.05) suggests that it is very difficult to reject a
unit root in a large number of time series.3
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Figure 5.A.1: Per-capita consumption of other fuels in Italy (1971-2012). Each color represents a time span
of years where reporting practices are documented by the IEA to be comparable (i.e. a “regime”). Persistent shocks to
consumption do not always correspond to known changes in the regime (e.g. in 1989).

With strong suggestive evidence of unit root behavior in our energy consumption
data, we estimate all regressions (detailed in Appendix 5.C) in first differences, as first

3It should be noted that unit root tests tend to be underpowered. Hence we consider the full distribution of p-values,
rather than just how many p-values fall below a conventional rejection threshold such as p = 0.05.
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Figure 5.A.2: Unit root tests by country-regime time series. The left panel depicts the histogram of p-values from
unit root tests on every country-regime time series for electricity consumption; the right panel does the same for other fuels
consumption. The tests are repeated using different testing procedures (Augmented Dickey-Fuller, Phillips-Perron) and lag
length (0,1,2) combinations, in each case including a trend. The existence of a unit root is always the null hypothesis, which
fails to be rejected for a substantial number of time series (often with very high p-values), regardless of testing procedure
and lag length. Vertical red lines mark p-values of 0.05.

differences remove confounding sources of spurious correlation that can enter due to unit
root behavior.55

5.A.2 Climate data

This appendix describes the climate data that we use in this analysis as well as some
of the methods employed to make these data consistent with the scale and resolution
of the energy consumption data. Broadly speaking, we use two classes of climate data,
the first being historical data to estimate energy-temperature responses, and the other
being future climate data which are used to project the damages of climate change into
the future under various emissions scenarios. We begin by describing the historical data,
followed by the future projection data, and finally we detail the method we use to spatially
and temporally aggregate these outputs to match the lower resolution energy consumption
data.

5.A.2.1 Historical climate data

Data on historical climate exposure is used to estimate the energy-temperature response
as well as the heterogeneity in the response by average climatology. For this estimation,
we use the Global Meteorological Forcing Dataset, v1 (GMFD).33 These data provide
surface temperature and precipitation information using a combination of both observa-
tions and reanalysis. The reanalysis process takes observational weather data and uses
a weather forecasting model to interpolate both spatially and temporally in order to es-
tablish a gridded dataset of meteorological variables. The particular reanalysis used is
the NCEP/NCAR reanalysis, which is downscaled and bias-corrected using a number of
station-based observational datasets to remove biases in monthly temperature and pre-
cipitation.33 Data are available on a 0.25◦×0.25◦ resolution grid from 1948-2010. The
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temporal frequency is up to 3-hourly, but the daily data are used for this analysis. We
obtain daily average temperatures and monthly average precipitation for all grid cells
globally. A primary reason for using GMFD in our regression analysis is that GMFD is
used to bias-correct the climate model projections (described below).

5.A.2.2 Climate projection data

Data on the future evolution of the climate is obtained from a multi-model ensemble of
Global Climate Model (GCM) output. However, two important limitations arise when
integrating GCM outputs into the current analysis. First, the relatively coarse resolution
(∼ 1◦ of longitude and latitude) of GCMs limits their ability to capture small-scale climate
patterns, which renders them unsuitable for climate impact assessment at high spatial
resolution. Second, the GCM climate variables exhibit large local bias when compared
with observational data.

To address both of these limitations, we use a high-resolution (0.25◦ X 0.25◦) set of
global, bias-corrected climate projections produced by NASA Earth Exchange (NEX): the
Global Daily Downscaled Projections (GDDP).474 The NEX-GDDP dataset comprises 21
climate projections, which are downscaled from the output of GCM runs in the Coupled
Model Intercomparison Project Phase 5 (CMIP5) archive.15 The statistical downscaling
algorithm used to generate the NEX-GDDP dataset is the Bias-Correction Spatial Dis-
aggregation (BCSD) method,47,56 which was developed to address the aforementioned
two limitations. This algorithm first compares the GCM outputs with observational data
on daily maximum temperature, daily minimum temperature, and daily precipitation
during the period 1950-2005. NEX-GDDP uses a climate dataset from GMFD for this
purpose.33 A daily, quantile-specific relation between GCM historical period outputs and
historical observations is derived from this comparison. This relation is then used to
adjust the GCM outputs in historical and in future time periods so that the systemic
bias of the GCM is removed. To disaggregate the bias-corrected GCM outputs to higher
resolution, this algorithm interpolates the daily changes relative to climatology in GCM
outputs into the spatial resolution of GMFD, and merges the fine-resolution changes with
the climatology of the GMFD data.5

For each GCM, three different datasets are generated. The first uses historical emis-
sions to simulate the response of the climate to historical forcing from 1850 to 2005. The
second and third use projected emissions from Representative Concentration Pathways
4.5 and 8.5 (RCP4.5 and RCP8.5) to simulate emissions under those two emissions sce-
narios up to 2100. RCP 4.5 represents a “stabilization” scenario in which total radiative
forcing is stabilized around 2100;48,50 RCP8.5 simulates climate change under intensive
growth in fossil fuel emissions from 2006 to the end of the 21st century. We use daily
average temperature and daily precipitation in the RCP4.5 and RCP8.5 scenarios from
this dataset, where the daily average temperature is approximated as the mean of daily
maximum and daily minimum temperatures.

4Climate projections used were from the NEX-GDDP dataset, prepared by the Climate Analytics Group and NASA
Ames Research Center using the NASA Earth Exchange, and distributed by the NASA Center for Climate Simulation
(NCCS).

5Details are available in Appendix A of the NEX-GDDP documentation: https://gdo-dcp.ucllnl.org/downscaled_

cmip_projections/techmemo/downscaled_climate.pdf
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5.A.2.3 SMME and model surrogates

The CMIP5 ensemble of GCMs described above is an “ensemble of opportunity”, not a
systematic sample of possible futures. Thus, it does not produce a probability distribu-
tion of future climate change. Moreover, relative to “simple climate models” designed
for probabilistic sampling of the global mean surface temperature (GMST) response to
radiative forcing, the CMIP5 ensemble systematically fails to sample tail outcomes.36,51

To provide an ensemble of climate projections with a probability distribution of GMST
responses consistent with that estimated by a probabilistic simple climate model, we use
the surrogate model mixed ensemble (SMME) method36 to assign probabilistic weights
to climate projections produced by GCMs and to improve representation of the tails of
the distribution missing from the ensemble of GCMs. Generally speaking, the SMME
uses (1) a weighting scheme based on a probabilistic projection of global mean surface
temperature from a simple climate model (in this case, MAGGIC6)57 and (2) a form
of linear pattern scaling58 that preserves high-frequency variability to construct model
surrogates to fill the tails of probability distribution that are not captured by the GCM
ensembles. This method provides us with an additional 12 surrogate models.

The SMME method first divides the unit interval [0,1] into a set of bins. For this anal-
ysis, the bins are centered at the 1st, 6th, 11th, 16th, 33rd, 50th, 67th, 82nd, 89th, 94th, and
99th percentiles. Bins are narrower in the tails to ensure samples are created for portions
of the GMST probability distribution function that are not captured by CMIP5 mod-
els. The bounds and center of each bin are assigned corresponding quantiles of GMST
anomalies for 2080-2099 from simple climate model (SCM) output; in the application
here and that of ref.,36 this output came from the MAGICC6 model,57 constrained to
match historical temperature observations and the conclusions of the IPCC Fifth Assess-
ment Report regarding equilibrium climate sensitivity. The GMST of CMIP5 models are
categorized into bins according to their 2080-2099 GMST anomalies.

If the number of CMIP5 models in a bin is less than 2, surrogate models are generated
to raise the total number of models to 2 in that bin. The surrogate models are produced
by using the projected annual GMST of the SCM that is consistent with the bin’s central
quantile to scale the spatial pattern of a selected CMIP5 model, then adding the intercept
and residual from the same model. There are two cases of selecting CMIP5 models for
pattern and residual. When there is only one CMIP5 model in a bin, an additional model
is selected that has a GMST projection close to GMST in the bin and a precipitation
projection over the region of interest complementary to the model already in the bin (i.e.,
if the model in the bin is relatively dry, then a relatively wet pattern is selected, and vice
versa). When there is no CMIP5 model, two models are picked with GMST projections
close to that of the bin, with one model being relatively wet and one being relatively dry.
In the final probabilistic distribution, the total weight of the bin is equally divided among
the CMIP5 models and surrogate models in the bin. For instance, if four models are in
the bin centered at the 30th percentile, bounded by the 20th – 40th percentiles, each will
be assigned a probability of 20% ÷ 4 = 5%. The resulting distribution of GMST for all
members of the SMME is shown in Figure 5.A.3, and the weights assigned to each GCM
and surrogate under each emissions scenario are shown in Table 5.A.1.
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Figure 5.A.3: Future climate projections used in generating empirically-based climate change impact
projections. This figure shows the 21 climate models (outlined maps) and 12 model surrogates (dimmed maps) that are
weighted in climate change projections so that the weighted distribution of the 2080 to 2099 global mean surface temperature
anomaly (∆GMST) exhibited by the 33 total models matches the probability distribution of estimated ∆GMST responses
(blue-gray line) under RCP8.5. For this construction, the anomaly is relative to values in 1986-2005.

5.A.2.4 Aggregation of gridded climate data to administrative boundaries

We link gridded daily historical climate data to country-year energy consumption data
by aggregating grid cell information across space and time. Similarly, to generate future
climate change impact projections at each of our 24,378 custom impact regions (Appendix
5.B), we aggregate grid cell climate projections to impact region scale. In both cases,
nonlinear transformations of temperature and precipitation are computed at the grid-
cell-by-day level before averaging values across space using population weights and finally
summing over days within a year.

To see how this calculation is operationalized, consider the second-order polynomial
specification for temperature used in our main set of results for estimation of Equation
5.1 in Methods (equivalent to 5.C.4 in Appendix 5.C). In this case, we begin with data
on average temperatures for each day day d at each grid cell z, generating observations
Tzd. These grid-level values must then be aggregated to the level of county j in year
t. To do this, we first raise grid-level temperature to the power k, computing (Tzd)

k for
k ∈ {1, 2}. We then take a spatial average of these values over country j, weighting the
average by grid-level population (and accounting for fractional grid cells that fall partially
within administrative units). Population weights are time-invariant and calculated from
the 2010 Gridded Population of the World dataset.6 We then sum these daily polynomial
terms T pzd over days in the year t. The vector of annual, administrative-level-by-year

6Data are available here: https://sedac.ciesin.columbia.edu/data/collection/gpw-v4.
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GCM or surrogate model name Weight in RCP4.5 Weight in RCP8.5

ACCESS1-0 3.12% 3.00%
bcc-csm1-1 2.38% 2.29%
BNU-ESM 3.12% 3.00%
CanESM2 3.12% 3.00%
CCSM4 2.38% 2.29%
CESM1-BGC 2.38% 2.29%
CNRM-CM5 2.38% 2.29%
CSIRO-Mk3-6-0 3.12% 3.00%
GFDL-CM3 4.17% 4.00%
GFDL-ESM2G 4.17% 4.00%
GFDL-ESM2M 4.17% 4.00%
inmcm4 4.17% 4.00%
IPSL-CM5A-LR 3.12% 3.00%
IPSL-CM5A-MR 3.12% 3.00%
MIROC5 2.38% 2.29%
MIROC-ESM 4.17% 4.00%
MIROC-ESM-CHEM 4.17% 4.00%
MPI-ESM-LR 2.38% 2.29%
MPI-ESM-MR 2.38% 2.29%
MRI-CGCM3 9.37% 9.00%
NorESM1-M 9.37% 9.00%
surrogate CanESM2 89 1.04% 1.00%
surrogate CanESM2 94 4.17% 4.00%
surrogate CanESM2 99 1.04% 1.00%
surrogate GFDL-CM3 89 1.04% 1.00%
surrogate GFDL-CM3 94 4.17% 4.00%
surrogate GFDL-CM3 99 1.04% 1.00%
surrogate GFDL-ESM2G 01 1.04% 1.00%
surrogate GFDL-ESM2G 06 - 4.00%
surrogate GFDL-ESM2G 11 1.04% 1.00%
surrogate MRI-CGCM3 01 1.04% 1.00%
surrogate MRI-CGCM3 06 4.17% 4.00%
surrogate MRI-CGCM3 11 1.04% 1.00%

Table 5.A.1: Model weights in the surrogate model mixed ensemble (SMME). This table lists all 33 models
in the SMME, and their corresponding model weights, which are used to generate probabilistic climate change impact
projections. Details on the SMME method can be found in ref.36 Details on how we use the SMME to capture climate
model uncertainty when generating climate change impact projections can be found in Appendix 5.C.5.

temperature variables we use for estimation is thus:

Tjt =

[∑
d∈t

∑
z∈j

wzj(Tzd)
1,
∑
d∈t

∑
z∈j

wzj(Tzd)
2

]

where wzj is the share of j’s population that falls into grid cell z, and where superscripts
indicate polynomial powers. This procedure recovers grid-by-day-level nonlinearities in
the energy-temperature (and energy-precipitation) response, because energy consump-
tion is additive across time and space.20 In future projections, all daily gridded climate
projection data from each of the 33 members of the SMME are analogously aggregated
across space and time.

5.A.3 Socioeconomic data and downscaling methodologies

This section provides details of the socioeconomic data used throughout our analysis,
which includes historical national incomes, future projections of incomes, and future
projections of population counts. Additionally, because we require these variables at
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high spatial resolution for future projections, we detail the downscaling procedures we
use to disaggregate available socioeconomic projections, which are generally provided at
relatively low resolution.

5.A.3.1 Historical income data

Our main specification (Equation 5.1 in Methods and Equation 5.C.4 in Appendix 5.C)
estimates heterogeneity in energy-temperature responses as a function of income and
long-run average climate in each location. We obtain country-level annual income data
from within the International Energy Agency’s World Energy Balances dataset; these
income data originally are sourced by the IEA from the World Bank. For each country-
year, the historical income variable is calculated as the 15-year moving average of the
natural log of per-capita GDP.

5.A.3.2 Income projections and downscaling methodology

Future projections of national incomes are derived from the Organization for Economic
Co-operation and Development (OECD) Env-Growth model59 and the International In-
stitute for Applied Systems Analysis (IIASA) GDP model,60 as part of the “socioeconomic
conditions” (population, demographics, education, income, and urbanization projections)
of the Shared Socioeconomic Pathways (SSPs). The SSPs propose a set of plausible sce-
narios of socioeconomic development over the 21st century in the absence of climate
impacts and policy for use by the Integrated Assessment Modeling (IAM) and Impacts,
Adaptation, and Vulnerability (IAV) scientific communities.

While there are many models within the SSP database, only the IIASA GDP model
and OECD Env-Growth model provide GDP per capita projections for a wide range
of countries. The IIASA GDP model describes incomes that are lower than the OECD
Env-Growth model, so we produce results for both of these models to capture uncertainty
within each socioeconomic scenario (we compute results for three socioeconomic scenarios:
SSP2, SSP3, and SSP4). To construct annual estimates, we smoothly interpolate between
the time series data in the SSP database, which are provided in 5-year increments. For
each 5-year period, we calculate the average annual growth rate, and apply this growth
rate to produce each year’s estimate of GDP per capita.7

Although the SSP scenarios provide national-level income projections, our high-
resolution analysis requires estimates of location-specific GDP within country borders.
To generate values of income for each of our 24,378 impact regions (Appendix 5.B) over
time, we allocate national GDP per capita values from the SSPs across impact regions
within a country through a downscaling procedure that relies on nightlights imagery from
the NOAA Defense Meteorological Satellite Program (DMSP). This approach proceeds
in two steps. First, we use available subnational income data from ref.61 in combination
with higher-resolution income data from the U.S., China, Brazil, and India, to empirically
estimate the relationship between GDP per capita and nightlight intensity.8 Second, we
use this estimated relationship to allocate national-level GDP data across impact regions
within each country, based on relative intensity of night lights in the present. While this

7OECD estimates of income are provided for 184 countries and IIASA’s GDP projections cover 171 countries. For the
remaining countries, we apply the average GDP per capita from the available countries for the baseline period, and allow
this income to grow at the globally averaged growth rate.

8Due to cross-country inconsistencies in subnational income data, the income data for the US are primarily used to
estimate the relationship between GDP per capita and nightlights intensity; other countries’ data provide validation only.
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approach models heterogeneity in income levels across impact regions, each region grows
in the future at the same rate as the national country projection from the SSPs. We
detail these two steps below.

Estimation of the GDP-nightlights relationship While there exists a growing
literature linking economic output to nightlights intensity, we take an unconventional
regression approach to recovering this relationship because our goal is to apportion na-
tional income within a country, as opposed to predicting the level of income at any given
location. In particular, we are interested in the ratio GDPpcrc∑

r∈cGCPpcrc
for impact region r in

country c, which will allow us to predict income at the impact region level, given projec-
tions of national GDP per capita from the SSPs,

∑
r∈cGDPpcrc = GDPpcSSPc . Thus,

we estimate a regression relating relative GDP per capita to relative nightlights inten-
sity, where each administrative region’s values are calculated as relative to the country
mean. The dependent variable for administrative region i in country c and year t is thus

GDPpcict∑
i∈cGDPpcict

.9 To construct a measure of location-specific relative nightlight intensity, we

calculate a z-score of nightlights (ZNL) for each administrative region i within a country
c using:

ZNLict =
NLict −NLct
σ(NLct)

where NLct is the country average nightlights intensity, σ(NLct) is the standard deviation
of nightlights intensity across all administrative regions within country c, and the stable
nightlights data product from 1992-2012 is used to construct time-varying measures of
average nightlights intensity across an administrative region, NLict.

The regression we estimate is as follows:

GDPpcict∑
i∈cGDPpcict

= α + βZNLict + εict (5.A.1)

where β represents the impact of a one standard deviation increase in a region’s nightlights
intensity, relative to its country average, on that region’s relative GDP per capita.

Allocation of national GDP to impact regions using relative nightlight
intensity We use the estimated coefficients from Equation 5.A.1 to compute income at
the impact region level. To do so, we construct values ZNLrct = NLrct−NLct

σ(NLct)
for each

impact region r using the average of stable nightlights from DMSP across the years
2008-2012. We then estimate GDPpcrct as follows:

ĜDPpcrct =
[
α̂ + β̂ZNLrct

]
×GDPpcSSPct

where GDPpcSSPct comes from one of the SSP projected income scenarios. The result of
this approach is that the subnational downscaled incomes will sum to the national income
from the SSPs, as these ratios sum to one, by construction.

5.A.3.3 Population projections and downscaling methodology

Future projections of national populations are derived from the International Institute for
Applied Systems Analysis (IIASA)60 population projections as part of the Shared Socioe-

9The income data available from ref.61 are at the first administrative level (i.e. ADM1).
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conomic Pathways (SSPs).10 The IIASA SSP population projections provide estimates
of population by age cohort, gender, and level of education for 193 countries from 2010
to 2100 in five-year increments. Each projection corresponds to one of the five SSPs, as
defined in ref.18

To assemble population projections for each of our 24,378 impact regions (Appendix
5.B), we downscale the country-level projections from the SSPs using 2011 high-resolution
LandScan estimates of populations.54 Populations for impact regions in countries or areas
not given in the SSP database are held constant at the values estimated by LandScan in
2011. Thus, for any given impact region r in year t, population for scenario v (poprtv) is
estimated as:

p̂oprtv =

{
popSSPctv

(
popLandScan

r,2011∑
r∈c pop

LandScan
r,2011

)
, if r ∈ C

popLandScanr,2011 , if r /∈ C
(5.A.2)

where popSSPctv is the SSP population given for country c and year t for scenario v,
popLandScanr,2011 is the LandScan estimate for impact region r, and C is the set of 193 countries
available in the SSP Database. Note that while this approach distributes country-level
projections of population heterogeneously to impact regions within a country, it fixes the
relative population distribution within each country at the observed distribution today.

10The population data are accessed from the SSP database.52
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5.B Spatial units for projection: “impact regions”

We create a set of custom boundaries that define the spatial units for which location-
specific projected damages of climate change are computed. To do so, we utilize politi-
cally defined regions, as opposed to a regular grid, as socioeconomic data are generally
collected at this scale and because administrative regions are relevant to policy-makers.
These regions, hereafter referred to as “impact regions”, are constructed such that they
are identical to existing administrative regions or are a union of a small number of ad-
ministrative regions. We use version 2 of the Global Administrative Region dataset
(GADM),62 which contains 218,328 spatial units, to delineate boundaries. However, for
computational feasibility and greater comparability across regions, we agglomerate these
regions to create a set of 24,378 custom impact regions. To conduct this agglomera-
tion, we establish a set of criteria that ensures these impact regions have approximately
comparable populations and are internally consistent with respect to mean temperature,
diurnal temperature range, and mean precipitation. A map of these regions is shown in
Figure 5.B.1, and we detail this agglomeration algorithm below.

Figure 5.B.1: Map of the 24,378 “impact regions” for which location-specific projections are calculated.
We use a clustering algorithm to form these regions from the full set of GADM administrative regions, such that they
are roughly similar in total population, and so that they are approximately internally homogenous with respect to mean
temperature, diurnal temperature range, and mean precipitation.

Algorithm for construction of impact region boundaries We develop an algo-
rithm which agglomerates administrative units from GADM into a smaller set of impact
regions. Our goal is to create a set of approximately 20,000 impact regions that are spa-
tially compact, of approximately equal population, and exhibit internally homogeneous
climates. This procedure is conducted in three steps.

Step 1: Constructing a target region count for each country First, for each
country, we generate a target number of regions; this is the number of regions that a
country should roughly be divided into, based on its spatial extent, population, and
climatic variability, and conforming to the goal of constructing approximately 20,000
global regions. We create this target for country c as the arithmetic mean of a population-
based target and a climate-based target:
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targetc =
1

2
[population target+ climate target]

=
1

2

[
20000

popc∑
c popc

+ 20000
AcVc∑
cAcVc

]
where popc is population of country c in 2011 from Landscan (see Appendix 5.A.3.3) and
Ac is the total area of country c. The variable Vc is a measure of a country’s internal
climate variability, relative to the global average, and is defined as follows:

Vc =
V arz[T ]

Ec[V arz[T ]]
+

V arz[D]

Ec[V arz[D]]
+

V arz[R]

Ec[V arz[R]]
+

V arz[Q]

Ec[V arz[Q]]

where T is mean daily temperature, D is the diurnal temperature range, R is precipitation
in the wettest month of the year, Q is precipitation in the driest month of the year, and
where variances are taken over grid cells z within country c and expectations are taken
over all countries c.

Step 2: Categorization of countries based on their target region count
Second, we categorize countries based on whether there exists an administrative level
in the GADM dataset (e.g. ADM1, which are equivalent to U.S. states; ADM2, which
are equivalent to U.S. counties) for which the number of administrative units is approx-
imately equivalent to the target number of regions. This categorization process leads
to each country being divided into one of three cases, as shown in Figure 5.B.2. First,
if there exists a GADM administrative level l, in country c, for which Nl, the number
of administrative regions at level l, lies within the range 1

2
targetc ≤ Nl ≤ 2targetc, we

simply use the administrative level l as our set of impact regions for country c. Countries
which fall into this category are shown in shades of blue in Figure 5.B.2. This categoriza-
tion includes the case where targetc ≤ 1, in which case the entire country (i.e. ADM0 in
GADM) is one impact region (shown in the lightest blue). Second, if the target number of
regions for country c exceeds the maximum available region disaggregation in GADM, we
simply use the highest resolution administrative level available from GADM. Countries
which fall into this category are shown in dark blue in Figure 5.B.2. Finally, for all other
countries, administrative units from GADM must be agglomerated to construct impact
regions at a lower level of spatial resolution; these countries are shown in red in Figure
5.B.2. The agglomeration algorithm is described below.

Step 3: Agglomeration algorithm for impact region construction The third
step in the process of constructing impact regions is to develop an agglomeration algo-
rithm that will cluster administrative units from GADM into lower spatial resolution
regions. Note that this third step only has to be conducted for the countries shown in
red in Figure 5.B.2, as all other countries have a target number of impact regions that is
well approximated by existing GADM administrative regions at some level l. For these
remaining counties, the algorithm proceeds as follows.

First, we calculate a set of attributes at the highest administrative level available from
GADM within each country. As the agglomerations are performed, the attributes of each
new agglomerated region are generated from its component regions. These attributes are
as follows:

� The set of GADM regions within the agglomeration
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By$decision$type$

Figure 5.B.2: Categorization of countries based on the method used to construct impact regions out of
GADM administrative regions. A country’s target number of impact regions is targetc, as computed in the text.
Countries in shades of blue have target values that can be approximated by one of the available GADM administrative
levels l, such as ADM1 or ADM2, as there exists a level l such that the total number of administrative regions, Nl, falls
within the range 1

2
targetc ≤ Nl ≤ 2targetc. Darker shades denote higher administrative levels, which have more regions.

The ADM0 (country) level is also used if targetc ≤ 1, and the highest available administrative level is used if targetc
is greater than the maximum Nl for country c. Finally, countries in red require agglomeration from the native GADM
regions, as there is no administrative level l which satisfies the range criterion above, given the target region count targetc.
This agglomeration algorithm is described in the text. We make an exception for the United States, shown in red, and
represent it at ADM2 (county) level.

� The set of neighboring agglomerated regions

� Population (pop),11 and area (A)

� Socioeconomic and climatic traits ({T}): population density, average temperature,
diurnal temp range, wet season precipitation, and dry season precipitation

� Centroids of all GADM regions contained within the agglomeration ({(Lat, Lon)})

The agglomeration process is a greedy algorithm, which performs the following steps:

1. A set of proposed agglomerations is generated. For a given region r within a con-
taining administrative region Sl of administrative level l, these consist of:

� The combination of r with each of its neighbors within Sl.

� The next higher administrative region, Sl+1 (e.g., all counties within the same
state).

� If neither of the above is available (e.g., an island state, with Sl equalling
the country), the combination of r and the closest neighbor also at the first
administrative level.

2. Each proposed agglomeration from step 1, across all regions, is scored. For a region
r containing subregions indexed by j, the scores consist of a weighted sum of the
following:

11Population data are from Landscan,54 as in Appendix 5.A.3.3.
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Attribute Expression Weight
Area (

∑
j
Aj/A0)2, where A0 is the average US county

area
0.01

Population (
∑

j
popj/pop0)2, where pop0 is the average US

county population
1

Dispersion V ar[Lat] + V ar[Lon cos E[Lat]] 10
Other traits

∑
T
V ar[Tr]/T0, where T0 is 1 for population den-

sity, 100 for elevation, 8.0 for mean tempera-
ture, 2.1 for diurnal temperature range, 25.0 for
wet season precipitation and 2.6 for dry season
precipitation

100

Circumference M n
6
√
M

, where M is the number of contained
regions and n is the number of neighboring re-
gions

1

3. The agglomeration with the smallest score from step 2 is identified.

4. The regions within the new agglomeration are merged, and new properties are
applied to the new region.

5. This process repeats until the target number of regions targetc for country c is
reached.
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5.C Estimating energy-temperature responses and pro-

jecting impacts of climate change

This appendix provides details on the estimation of energy-temperature responses and
projection of climate change impacts. Section 5.C.1 demonstrates estimation of global
average energy-temperature responses, while Section 5.C.2 introduces heterogeneity by in-
come. Section 5.C.3 explains how we estimate and project energy-temperature responses
as a function of both income and long-run climate. Finally, Section 5.C.5 details the
procedure for characterizing econometric and climatological uncertainty in our estimates
of the energy consumption impacts of climate change.

5.C.1 Global average energy-temperature response

Our energy-temperature responses flexibly model annual electricity and other fuels con-
sumption each as a function of daily average temperatures within a year. Let Ejtc denote
consumption in GJ per capita in country j, year t, and fuel category c (electricity, other
fuels). The temperature and precipitation vectors Tjt and Pjt contain country-by-year
aggregations of nonlinear grid-cell-level transformations of daily temperature and precip-
itation, respectively. These vectors thus summarize the full distribution of daily average
weather in country j, year t (Appendix, 5.A.2.4). The basic econometric specification for
a global average energy-temperature response is:

Ejtc = fc(Tjt) + gc(Pjt) + αjic + δwtc + εjtc. (5.C.1)

Our primary object of interest is the effect of temperature on energy consumption,
represented by the response function fc(·), which differs for electricity and other fuels.
In our estimation of Equation 5.C.1, the vector Tjt contains polynomials of daily av-
erage temperatures (up to fourth order), each summed across the year, and the vector
Pjt contains polynomials of daily cumulative precipitation (up to second order), also
each summed annually. We estimate fc(·) and gc(·) as linear functions of the nonlinear
elements of Tjt and Pjt, respectively. This construction allows us to estimate a linear
regression model while preserving the nonlinear relationship between energy consumption
and temperature that takes place at the grid-cell-by-day level.20

The econometric specification includes a full set of country-by-reporting regime fixed
effects (αjic), where reporting regimes (i) are time spans within a country where obser-
vations for a given category are documented by the IEA to be comparable (Appendix
5.A.1). In addition, we include world region-by-year fixed effects (δwtc) for each category,
where w indexes world regions based on UN classifications (Oceania, N. America, N. Eu-
rope, S. Europe, W. Europe, E. Europe, E. Asia, S.E. Asia, Central America/Caribbean,
South America, sub-Saharan Africa, N. Africa/W. Asia, S. Asia). Finally εjtc denotes
the stochastic error term; standard errors are clustered by country-category-reporting
regime.

Due to evidence of unit root behavior in the dependent variable (Appendix 5.A.1),
we estimate Equation 5.C.1 and all other regressions in first-differences. Additionally, to
address differential data quality across reporting regimes, we employ an inverse variance
weighting procedure in all regressions. In particular, we utilize Feasible Generalized Least
Squares (FGLS) weights to downweight low credibility country-reporting regimes based
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on their residual variance.12 To implement this weighting, we first estimate the regression
in first differences. Using the residuals from this regression, we calculate a country-
category-reporting regime level weight equal to the inverse of the average value of the
squared residuals, where the average is taken across all year observations that fall within
a given country-category-reporting regime. We then apply these weights to the regression
in a second stage. Observations from all years within a given country-category-reporting
regime are given the same weight in the second stage; country-category-reporting regimes
with higher average residual variance thus receive lower weight.

Formally, for Equation 5.C.1, each observation in country j, reporting regime i, cate-
gory c receives a weight wjic = 1

V ar(∆εjtc∈jic)
, and the weighted, first-differenced regression

specification is:

wjic

[
∆Ejtc

]
= wjic

[
∆fc(Tjt) + ∆gc(Pjt) + ∆δwtc + ∆εjtc

]
, (5.C.2)

where ∆ here denotes the first-difference operator. To operationalize Equation 5.C.2, we

estimate wjic with ŵjic = 1

V̂ ar(∆̂εjtc∈jic)
, where ∆̂εjtc denotes the residual for the country j,

year t, category c observation from the unweighted, first-differenced regression, and V̂ ar
refers to the sample variance. Note that the term αjic from Equation 5.C.1 drops out of
Equation 5.C.2 due to first-differencing.

As discussed in Methods, the estimated electricity- or other fuels-temperature response
is expressed as the difference between predicted consumption on a day where the average
temperature is T and predicted consumption on a “mild” day with an average temper-
ature of 20◦C. The blue curve in Figure 5.C.1 displays the global, population-weighted
electricity-temperature response estimated from Equation 5.C.2, while the orange curve
displays the other-fuels temperature response.13 Over the time period represented by the
data (1971-2010), electricity consumption exhibits little sensitivity to temperature on av-
erage, globally speaking (blue curve, Figure 5.C.1), while other fuels consumption is seen
to increase at cold temperatures (orange curve, Figure 5.C.1). The lack of an electricity-
temperature response, particularly on hot days, reflects the fact that during the sample
period, most of the global population is too poor to access electricity-intensive protective
technologies such as air-conditioning. In contrast, consumption of other fuels is seen to
increase on cold days, reflecting the use of these fuels for heating across a broader range
of the global population.

5.C.2 Energy-temperature response heterogeneity by income

The global average energy responses to temperature shown in the previous section are
likely to mask substantial heterogeneity by income, as consumption of electricity and
other fuels is strongly correlated with wealth. To demonstrate how energy-temperature
responses vary by income, we estimate responses for each decile of GDP per-capita as
follows:

Ejtc = fcq(Tjt) + gc(Pjt) + φcq + αjic + δwtc + εjtc, (5.C.3)

12We assume constant residual variance within each country-category-reporting regime.
13These are obtained by estimating Equation 5.C.2 with population weights in addition to inverse-variance weights.

Population weighting assigns each country’s observations a weight proportional to its average population over the years of
the sample. Given that Equation 5.C.2 does not model heterogeneity in the energy-temperature response by income and
long-run climate, population weights give us the response for the average global person.
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Figure 5.C.1: Population-weighted global average electricity-temperature response (blue) and other fuels-
temperature response (orange). Each point on the curve denotes the additional per-capita daily consumption at a
daily average temperature denoted on the horizontal axis, relative to a daily average temperature of 20◦C. Shaded areas
indicate 95% confidence intervals.

where q indexes the in-sample decile of the 15-year moving average GDP per-capita that
country j in year t falls into, and φcq is a fuel category-specific decile fixed effect. As
with Equation 5.C.1, we take into account nonlinearities in the temperature response,
fcq, but do so via a second-order polynomial due to the large number of additional
parameters. Thus, the vector Tjt contains linear and quadratic terms of daily average
temperatures, each summed across the year (Appendix, 5.A.2.4). The electricity- and
other fuels-temperature responses in main text Figure 5.1A and 5.1B are obtained from
estimating Equation 5.C.3 in first-differences using inverse variance weighting (as shown
in Equation 5.C.2).

5.C.3 Energy-temperature response heterogeneity by income
and long-run climate

All climate impact projections computed throughout our analysis incorporate heterogene-
ity in the energy-temperature response not only by income, but also by long-run average
climate. To represent heterogeneity in the energy-temperature response along the dimen-
sions of both income and long-run climate, we estimate Equation 5.1 (Methods) including
flexible interactions between temperature and the following covariates:

1. Income measured as the 15-year moving average of a country’s natural log of per-
capita GDP (LogGDPPC).

2. Long-run climate is measured by a country’s average annual values of the follow-
ing two variables over the time period of the sample:14

� Heating degree days (HDD) are defined as the cumulative deviations of daily
average temperatures from a benchmark of 20◦ C, over all days where the

14Because long-run climate is slow moving, it is difficult to rely on temporal variation within the timespan of the sample.
We therefore utilize only cross-sectional variation to characterize heterogeneity in the energy-temperature response due to
long-run climate.
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average temperature fell below 20◦ C. Formally, heating degree days in year t
are defined as

∑
d∈t |Td − 20| ∗ ITd<20, where Td is the average temperature on

day d and ITd<20 is an indicator variable equal to one if Td < 20.
� Cooling degree days (CDD) are defined similarly over days where the daily

average temperature exceeds 20◦ C, i.e. cooling degree days in year t are∑
d∈t |Td − 20| ∗ ITd>20.

These variables were carefully chosen based on the intersection of prior evidence from
the literature, economic theory, and inclusion in standard projections of the global econ-
omy developed for integration with physical climate models.18 Prior literature has empha-
sized the adaptive significance of average climate28 and income per-capita.25 For example,
higher per-capita GDP entails greater capability to invest in protective measures such as
air-conditioning, which can amplify the energy-temperature response, as demonstrated in
main text Figure 5.1A. Furthermore, the energy-temperature response may also depend
on long-run exposure to extreme temperatures as places with greater previous exposure
may differ in their adaptive behaviors.23

We flexibly model the heterogeneity in the temperature response due to each of the
covariates. The vector Tjt contains linear and quadratic terms of daily average tem-
peratures, each summed across the year (Appendix, 5.A.2.4). To capture the role of
income-driven adaptation, we interact a linear spline of LogGDPPC with each element
of Tjt. A knot point of the income spline is set separately for electricity and other fuels
consumption, based on the point in the in-sample income distribution at which consump-
tion starts to become responsive to temperature. Figure 5.1A (main text) suggests that
this point is the beginning of the seventh decile for electricity (GDPPC = $11, 258, 2019
USD PPP) and the beginning of the third decile for other fuels (GDPPC = $2, 849,
2019 USD PPP). In addition to interactions of income with temperature exposure, we
also flexibly control for the direct effect of income on energy consumption through a
piecewise linear function of LogGDPPC that also allows for step-wise jumps at these
points.

To capture the role of climate-driven adaptation, the long-run average climate mea-
sures CDD and HDD are interacted with the daily temperature vector Tjt, but only over
specific daily temperature ranges holding adaptive significance. Specifically, we allow the
cooling degree day measure CDD to modulate the energy-temperature response on warm
days, where the average temperature is at least 20◦ C. Conversely, the heating degree day
measure HDD modulates the energy-temperature response on cool days, where the av-
erage temperature is below 20◦ C. Figure 5.C.2 provides graphical intuition for this split
interaction on either side of 20◦ C. In order to model this type of interaction effect when
energy consumption data are annual rather than daily, it is necessary to exploit informa-
tion on the number of days in a year where the average temperature is ≥ 20◦ C and <
20◦ C. For this purpose, we construct the variables ITjd≥20 and ITjd<20, which denote the
share of country j’s population experiencing an average temperature on day d that is ≥
20◦ C and < 20◦ C, respectively.15 These variables are also included in the CDD and
HDD interaction terms.

The form of Equation 5.1 (Methods) that we estimate thus specifies energy consump-
tion in country j, year t, and category c as a function of temperature, and income and
climate covariates, as follows:

15As with our other temperature exposure measures, we generate these variables at the country level by averaging across
grid cells within a country using population weights (Appendix 5.A.2.4).
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Figure 5.C.2: Modeling adaptation to long-run climate. The schematics below illustrate how we model adaptation
to long-run climate separately for two sides of the energy-temperature response (below and above 20◦ C), through long-run
average heating degree day (HDD) and cooling degree day (CDD) measures. The left panel illustrates hypothetical responses
under two different long-run average HDD values (HDD1 and HDD2), holding fixed the long-run average CDD value at
CDD1. Changing the long-run average HDD value from HDD1 to HDD2 only alters the response to temperatures less
than 20◦ C. Similarly, the right panel illustrates hypothetical responses under two different long-run average CDD values
(CDD1 and CDD2), holding fixed the long-run average HDD value at HDD1. Changing the long-run average CDD value
from CDD1 to CDD2 only alters the response to temperatures ≥ 20◦ C.

Ejtc = fc(Tjt | lGDPpcjt, CDDj, HDDj) + gc(Pjt) + αjic + δwtc + εjtc

= βc · Tjt︸ ︷︷ ︸
Effect of temperature

+ [η1c · Tjt](Īc − lGDPpcjt)IlGDPpcjt<Īc + [η2c · Tjt](lGDPpcjt − Īc)IlGDPpcjt≥Īc︸ ︷︷ ︸
Effect of income growth on energy-temperature response

+
2∑

k=1

γkcCDDj

∑
d∈t

(T kjd − 20k)ITjd≥20︸ ︷︷ ︸
Effect of climate adaptation on energy-temperature response

for days ≥ 20◦ C

+
2∑

k=1

λkcHDDj

∑
d∈t

(20k − T kjd)ITjd<20︸ ︷︷ ︸
Effect of climate adaptation on energy-temperature response

for days < 20◦ C

+
[
κ1clGDPpcjt + φ1

]
IlGDPpcjt<Īc +

[
κ2clGDPpcjt + φ2

]
IlGDPpcjt≥Īc︸ ︷︷ ︸

Direct effect of income on energy consumption

+ θc · Pjt︸ ︷︷ ︸
Precipitation controls

+αjic + δwtc︸ ︷︷ ︸
Fixed effects

+ εjtc︸︷︷︸
Error Term

, (5.C.4)

where Īc denotes the income knot point for category c, and IlGDPpcjt<Īc and IlGDPpcjt≥Īc are

indicator variables for whether LogGDPPC in country j, year t, is < or ≥ the category
c income knot point. We estimate this model in first-differences using inverse variance
weighting (Appendix 5.A.1 and 5.C.1). The matrices in main text Figure 5.1C summarize
the results, with each cell in a matrix displaying a predicted energy-temperature response
evaluated at a particular point in the income × long-run climate space within the esti-
mation sample. The cells are ordered vertically by LogGDPPC terciles (increasingly
rich from bottom to top) and horizontally by CDD terciles (increasingly warm climate
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from left to right). The predicted energy- temperature response function in each cell is
evaluated at the mean values of LogGDPPC, CDD, and HDD within their respective
terciles.

Extrapolating energy-temperature responses spatially and temporally

We use the estimated parameters from Equation 5.C.4 to extrapolate energy-temperature
responses across locations over time based on projected future incomes and climate (this
procedure is detailed in Methods). Figure 5.C.3 demonstrates the overlap in the joint
income-climate distributions at 2010 and 2090. Although the future distribution is shifted
towards higher incomes, greater cooling degree days, and fewer heating degree days, the
substantial overlap in the two distributions allows for credible extrapolation of energy-
temperature responses into the future.
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Figure 5.C.3: Sample overlap between present and future. The density plots below depict joint distributions of
income and long-run climate as measured by heating degree days and cooling degree days. Distributions are for 24,378
impact regions, in 2010 (grey-black) and 2090 under the RCP8.5 emissions scenario and SSP3 socioeconomic scenario
(red-orange).

5.C.4 Projecting energy consumption impacts of climate change

To estimate future energy consumption impacts for each fuel category c and impact
region r for each year from 2015 to 2099, we apply a set of probabilistic climate change
projections to the spatially and temporally heterogenous energy-temperature responses
described above (and detailed in Methods). The distribution of future daily average
temperatures under a given emissions scenario (RCP8.5 or RCP4.5) is obtained from the
33 projections in the SMME (Appendix 5.A.2.3).

Let Trt represent a vector containing impact region-by-year aggregations of nonlinear
grid-cell-level transformations of daily temperature in a future year t, under a warmer
climate. In contrast, let Tr2015 represent the counterfactual temperature vector for the
same impact region under a climate that is the same as that of 2015. These vectors
are constructed in exactly the same way as is done for the temperature vectors used in
estimating Equation 5.C.4 (Appendix 5.A.2.4).

The impact of climate change on consumption in fuel category c is expressed as the
estimated change in consumption relative to a no-climate change counterfactual in which
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the future climate is the same as in 2015. The precise form of Equation 5.2 (Methods)
with which we project impacts is thus:

ImpactOfClimateChangecrt = f̂c(Trt | lGDPpcpc)rt, CDDrt, HDDrt)︸ ︷︷ ︸
Temperature-induced energy consumption under climate change

(with income growth and climate-driven adaptation)

− f̂c(Tr2015 | lGDPpcrt, CDDr2015, HDDr2015)︸ ︷︷ ︸
Temperature-induced energy consumption without climate change

(with income growth)

=
[
β̂c · Trt

+ [η̂1c · Trt](Īc − lGDPpcrt)IlGDPpcrt<Īc + [η̂2c · Trt](lGDPpcrt − Īc)IlGDPpcrt≥Īc

+
2∑

k=1

γ̂kcCDDrt

∑
d∈t

(T krd − 20k)ITrd≥20 +
2∑

k=1

λ̂kcHDDrt

∑
d∈t

(20k − T krd)ITrd<20

]
︸ ︷︷ ︸

Temperature-induced energy consumption under climate change
(with income growth and climate-driven adaptation)

−
[
β̂c · Tr2015

+ [η̂1c · Tr2015](Īc − lGDPpcrt)IlGDPpcrt<Īc (5.C.5)

+ [η̂2c · Tr2015](lGDPpcrt − Īc)IlGDPpcrt≥Īc

+
2∑

k=1

γ̂kcCDDr2015

∑
d∈2015

(T krd − 20k)ITrd≥20 +
2∑

k=1

λ̂kcHDDr2015

∑
d∈2015

(20k − T krd)ITrd<20

]
︸ ︷︷ ︸

Temperature-induced energy consumption without climate change
(with income growth)

(5.C.6)

where the ̂ denotes estimated objects from Equation 5.C.4, and lGDPpcrt, CDDrt, and
HDDrt denote 15-year moving averages of the covariates for impact region r in future
year t. The object ImpactOfClimateChangecrt represents the change in annual per-
capita electricity or other fuels consumption due to a shift in the temperature distribution
under climate change, accounting for the evolution of energy-temperature responses as
locations warm and incomes rise. It isolates the additional impact of climate change net
of other factors (e.g. income) that will change in the future. The no-climate change
counterfactual is constructed to be identical in every way, except for the climate, and is
therefore evaluated at the future level of income, but with CDD and HDD values drawn
from the 2015 climate distribution.

We construct estimates of Equation 5.C.5 for all impact regions up to 2099 under emis-
sions scenarios RCP8.5 and RCP4.5, using each of the 33 climate projections in the SMME
(Figure 5.2 in the main text). In addition, to highlight the critical importance of income
growth and climate-driven adaptation in shaping future energy-temperature responses, we
also display a “no-adaptation” impact projection in which energy-temperature responses
f̂c(·) are determined solely by an impact region’s income, CDD, and HDD values in the
year 2015 (Methods Equation 5.3).
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5.C.5 Accounting for uncertainty in projected energy consump-
tion impacts of climate change

An important feature of our analysis is to develop estimates of the energy consumption
impacts of climate change that reflect the uncertainty inherent in these future projections.
This uncertainty arises from two distinct sources– climatological and econometric. The
confidence intervals displayed in Figure 5.2C in the main text, as well as the kernel density
plots in Figure 5.3A and confidence intervals in Figure 5.3B, represent the combined
uncertainty from both these sources.

To account for uncertainty in the climate system, we construct estimates of the energy
consumption impacts of future climate change (Equation 5.2 in Methods) for each of
33 distinct climate projections in the surrogate model mixed ensemble.16 Distributions
of climate change impacts are provided by weighting across the 33 projections using
the weights listed in Table 5.A.1. Furthermore, independent of physical uncertainty,
an important second source of uncertainty arises from the econometric estimation of
Equation 5.C.4. To account for this econometric uncertainty, we apply the delta method55

to characterize the Gaussian distribution of impacts (Methods Equation 5.2) under each
of the 33 climate projections. Finally, to characterize the full distribution of impacts
across both climate and econometric uncertainty, we construct the mixture distribution
of these 33 Gaussian distributions17 using Newton’s method.63

The confidence intervals for the global impact time series shown in Figure 5.2C and
Figure 5.3B in the main text are derived from quantiles of such mixture distributions.
Importantly, the same method to characterize uncertainty can also be applied to impacts
for individual impact regions, as illustrated by the kernel density plots for selected impact
regions in Figure 5.3A.

16Note that while the surrogate model mixed ensemble fully represents the tails of the climate sensitivity distribution
(Methods; Appendix 5.A.2.3), there remain important sources of climate uncertainty that are not captured in our projec-
tions. These include some climate feedbacks that may amplify the increase of global mean surface temperature, as well as
some factors affecting local climate that are poorly simulated by GCMs.

17Probability weights for each of the 33 climate projections are used in the construction of the mixture distribution
(Appendix 5.A.2.3).36
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5.D Valuing impacts

To monetize the projected impacts of climate change on energy consumption, we apply
geographically-specific real prices for electricity and other fuels to the projected quantity
impacts constructed from Equation 5.C.5, thus reflecting differential costs across geogra-
phies and fuels. We consider a range of future price scenarios, constructed either from
direct extrapolation of present-day price statistics or from price projections generated by
integrated assessment models (IAMs).

5.D.1 Extrapolating present-day prices

For scenarios based on direct extrapolation (Panels I and II in Table 5.4E in the main
text), impacts on electricity consumption are valued using an average cost of electricity
generation, which the IEA’s World Energy Outlook 2017 provides globally as of 2016 at
the country or world region level.18 Impacts on other fuels consumption are valued using
residential and non-residential end-user prices excluding taxes, which the IEA’s Energy
Prices and Taxes dataset provides for coal, oil, and natural gas fuels in 55 countries as
of 2012.19 Countries that lack price data for a given fuel are assigned the global average
price for that fuel. To obtain a price for the pooled, multi-fuel “other fuels” category, we
weight the prices of the individual fuels according to their shares in a country’s overall
“other fuels” consumption as of 2012 (the most recent year for which consumption data
are available).20 Thus, each country receives unique prices at which its impacts on other
fuels consumption are valued.21 To extrapolate prices into the future, we consider three
annual price growth trajectories: a moderate growth trajectory of 1.4% annual price
growth (equal to the historical growth of US real energy prices22), a stagnant trajectory
of 0% annual price growth, and a high growth trajectory of 3% annual price growth.23

5.D.2 Price projections from IAMs

As a complement to price scenarios extrapolated from present-day prices, we also consider
price scenarios based on projections of multiple IAMs. IAMs simulate the entire energy
system and determine energy prices by equilibrating supply and demand. We obtain price
projections of IAMs from IIASA’s Scenario Explorer database.24 This database contains
output from 416 IAM × scenario combinations, of which 155 include price projections for
electricity and other fuels as part of their output. To monetize impacts under RCP8.5,
we limit ourselves to scenarios that do not posit any policies to mitigate greenhouse gas

18Costs are specified for the following geographies: Japan, European Union, Korea, Brazil, Australia, Mexico, Southeast
Asia, Middle East, India, Africa, United States, China, Canada, Russia. When a cost is not available specific to a particular
geography we extend these costs based on UN world region classifications: Oceania receives the Australia cost, N., S., and
W. Europe receive the EU cost, E. Europe receives the Russia cost, Central America/Caribbean receive the Mexico cost,
S. America receives the Brazil cost, N. Africa receives the Middle East cost, and S. Asia receives the India cost.

19We take a weighted average of residential and non-residential prices, with a weight of 16% on residential and 84% on
non-residential. These weights are determined based on the average share of consumption in these two sectors in the set of
55 countries where a sectoral breakdown is available.

20Although our consumption data do cover fuels besides coal, oil, and natural gas (including solar, geothermal, and
biofuels), no price data are available for fuels other than coal, oil, and natural gas. We therefore extend the weighted
average price to the remaining fuels.

21Even countries that are assigned the global average price for the individual fuels will differ in the shares of each fuel in
their other fuels consumption mix.

22Price data from 1970-2015 taken from the State Energy Data System of the U.S. Energy Information Administration.
23These trajectories apply globally to prices for both electricity and other fuels.
24https://data.ene.iiasa.ac.at/iamc-1.5c-explorer/#/workspaces.
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emissions (e.g. carbon price). There are 5 IAM × scenario combinations that satisfy this
requirement. To monetize impacts under RCP4.5, we identify a counterpart scenario for
each of these combinations that is broadly consistent with RCP4.5. Table 5.D.1 lists the
IAM × scenario combinations whose price projections we utilize for monetizing impacts
under RCP8.5 and RCP4.5.

IAM Scenario for RCP8.5 Scenario for RCP4.5

WITCH-GLOBIOM 4.2 ADVANCE NoPolicy ADVANCE 2030 WB2C

REMIND 1.7 ADVANCE NoPolicy ADVANCE 2030 WB2C

REMIND 1.7 CEMICS-Ref CEMICS-2.0-CDR8

MERGE-ETL 6.0 BAU DAC2 66

REMIND-MAgPIE 1.7-3.0 SMP REF Def SMP 2C Def

Table 5.D.1: IAMs and scenarios used for monetizing impacts under RCP8.5 and RCP4.5. This table lists
IAMs and associated scenarios whose price projections we use to monetize the projected impacts of climate change on
energy consumption. IAMs and scenarios were selected from IIASA’s Scenario Explorer database,46 based on availability
of future price projections and suitability for RCP8.5 and RCP4.5 emissions trajectories.

Every IAM × scenario reports electricity, oil, coal, natural gas, and biofuels prices for
6 world regions up to 2100.25 To obtain a price for the “other fuels” category, we weight
the prices of the individual fuels according to their shares in a region’s overall “other
fuels” consumption in each year, where the consumption levels for years up to 2100 are
reported by the IAM × scenario.

The right panel of Figure 5.D.1 presents the time series of total global monetized
impacts under RCP8.5 assuming various price trajectories, while the left panel does the
same for RCP4.5. Regardless of the emissions scenario or assumed price trajectory, end-
of-century damages (i.e. net savings) represent a minute fraction of the US $353 trillion
end-of-century global GDP projected under SSP3.

25The 6 regions are OECD 1990 and EU, Eastern Europe and former Soviet Union, Middle East and Africa, Latin
America, Asia, and Rest of the World. Prices are available at 5-year intervals and are linearly interpolated for the
intervening years.
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Figure 5.D.1: Valuing the impacts of climate change on energy consumption. Figure 5.D.1 displays the time
series of total global energy consumption damages under the SSP3 socioeconomic scenario for high (RCP8.5) and moderate
(RCP4.5) emissions scenarios, assuming various price trajectories. Damages in a given year are expressed as a percent
of global GDP in that year. Aggregate global damages are obtained by monetizing and summing over the spatially
disaggregated impacts across both electricity and other fuels.
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5.E Damage function estimation

As described in Methods, we pool empirical estimates of climate change impacts con-
structed using Equation 5.C.5 to fit global energy damage functions. These damage
functions express global energy consumption costs of climate change as a function of
the change in global mean surface temperature relative to the 2001-2010 average level
(∆GMST).1 Summarizing the economic costs of all impacts measured in the detailed em-
pirical analysis, these functions can be differentiated everywhere, allowing for marginal
costs of a CO2 impulse to be computed for any global climate trajectory. Due to dif-
ferences in the availability of climate and socioeconomic projections pre- and post-2100,
there are some important differences in our approach for calculation of damage functions
before and after 2100.

Computing damage functions through 2100 As detailed in Methods, we esti-
mate time-varying damage functions for all years t prior to 2100 directly from the high-
resolution climate change impact projections described in Appendix 5.C.4 and converted
to dollar values as described in Appendix 5.D. To construct a damage function for year t,
we pool all simulated damage estimates (globally summed across 24,378 impact regions
and converted to dollar value) within a 5-year window of t and estimate the quadratic
damage function shown in Equation 5.4 (Methods). Because the underlying population
distribution and level of per capita income are evolving over time, the shape of our esti-
mated damage functions change throughout the 21st century (see Figure 5.E.1 below).

Computing damage functions after 2100 Data limitations in climate and so-
cioeconomic projections beyond end-of-century necessitate an alternative approach to
estimating post-2100 damage functions. Only 6 of the 21 GCMs that we use to build
our surrogate model mixed ensemble are run by their respective modeling teams to sim-
ulate the climate after the year 2100 for both RCP scenarios, and post-2100 data are
not available in the NEX-GDDP downscaled and bias-corrected projections that we use
for generating high-resolution impact projections (Appendix, 5.A.2.2). Furthermore, the
SSPs needed to project future incomes and demographics also end in 2100. Although
one approach is to simply end economic cost calculations in 2100,37 neglecting post-2100
damages is a substantial omission as a large fraction of costs, in net present value, are
thought to occur after 2100 at 3% discount rates.64

To estimate post 2100-damages, we follow the method in ref.23 to extrapolate changes
in the damage function beyond 2100 using the observed evolution of damages in the
second half of the 21st century. To implement this extrapolation, we pool values Dtlps

from 2085-2099 and estimate a quadratic model similar to Equation 5.4 (Methods), but
interacting each term linearly with year t.26 This allows us to estimate a damage surface
as a parametric function of time. We then predict extrapolated damage functions for all
years after 2100, smoothly transitioning from our flexible climate model-based damage
functions prior to 2100.27

Figure 5.E.1 illustrates damage functions every 10 years prior to 2100, as well as
extrapolated damage functions for the years 2150, 2200, 2250, and 2300. Extrapolated
damages continue to become more steeply negative post-2100, as they did pre-2100.

26The specific interaction model we estimate is: D(∆GMST, t)tlps = ν0 + ν1∆GMSTtlp × t+ ν2∆GMST 2
tlp × t+ εtlps.

27Furthemore, we also separately estimate a time-interacted regression for each of 19 quantiles (i.e. every 5th percentile
from the 5th to 95th), which we use to predict these quantiles of the damage functions for years after 2100. See Methods
for details.
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Figure 5.E.1: Empirically-derived damage functions by year. This figure shows damage functions relating
empirically-derived total global energy consumption damages to anomalies in global mean surface temperature (∆GMST).
Energy consumption impacts of climate change used to estimate these damage functions are valued under a moderate price
growth trajectory of 1.4% annual price growth. The bottom panel displays the distribution of ∆GMST at end of century
under two emissions scenarios across the 33 climate projections in the SMME. In the top panel, the black line reproduces
the end-of-century damage function from rightmost panel of Figure 5.3C in the main text. Additional damage functions are
shown in blue for every 10 years pre-2100, each of which is estimated analogously to the end-of-century damage function,
and in grey for every 50 years post-2100, each of which is extrapolated. Our projection results generate energy consumption
damages only up to 2100, due to limited availability of climate and socioeconomic projections for years beyond that date.
To capture impacts after 2100, we extrapolate observed changes in damages over the 21st century to generate time-varying
damage functions through 2300.
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5.F Calculation of an energy consumption partial so-

cial cost of carbon using a simple climate model

In principle, one could compute an energy partial social cost of carbon (SCC) estimate
by perturbing each global climate model (GCM) in the surrogate model mixed ensem-
ble (SMME) with a pulse of CO2 and projecting energy consumption for each location
in both the original and perturbed simulations. However, in practice, such a procedure
would prevent the calculation of an SCC for any climate trajectory that did not exactly
coincide with one of the 33 models, and would also be prohibitively costly from a com-
putational standpoint. Instead, we rely on a probabilistic, simple climate-carbon cycle
model (hereafter, “simple climate model”), in combination with our empirically-derived
damage functions, to construct energy partial SCC estimates. We detail this implemen-
tation here.

5.F.1 Set up of the climate module using a simple climate model

A core component of any analysis of the SCC is the climate module used to estimate
both the baseline climate and the response of the climate system to a marginal change in
greenhouse gas emissions. The Finite Amplitude Impulse Response (FAIR) model22 sat-
isfies key criteria for such a module, including those outlined by the National Academies
of Sciences, Engineering, and Medicine.3 In particular, the National Academies rec-
ommends that the climate module be transparent, simple, and “consistent with the
current, peer-reviewed scientific understanding of the relationships over time between
CO2 emissions, atmospheric CO2 concentrations, and CO2-induced global mean surface
temperature change, including their uncertainty” [3, p. 88]. For this last criterion, the
authors recommend that the module be “assessed on the basis of its response to long-
term forcing trajectories (specifically, trajectories designed to assess equilibrium climate
sensitivity, transient climate response and transient climate response to emissions, as well
as historical and high- and low-emissions scenarios) and its response to a pulse of CO2

emissions.” The authors specifically point to the FAIR model as an example of a model
that is structurally capable of meeting all these criteria.

The FAIR model is defined by five equations that represent the evolution of global
mean variables over time t. Global mean surface temperature GMST is the sum of two
temperature variables, T0 and T1, representing the slow and fast climate system response
to forcing F :

dTi
dt

=
qiF − Ti

di
, i ∈ {0, 1}, (5.F.1)

where the qi values collectively define the equilibrium climate sensitivity (ECS), and
where the di values (the thermal adjustment times) along with qi define the transient
climate response (TCR). The ECS is the sensitivity of the climate (as measured by GMST
increases) to a doubling of atmospheric CO2, relative to some initial state. The TCR is
the average temperature response to a doubling of CO2 in which the CO2 increases by
1% each year. The ECS is larger than the TCR, as it captures the time taken for the
climate system to fully adjust to increased CO2.

The CO2 concentration above the pre-industrial baseline, R, is the sum of four frac-

236



tions, Rj, representing different uptake timescales:

dRj

dt
= ajE −

Rj

αjτj
, j ∈ {0, 1, 2, 3} (5.F.2)

where E is the CO2 emissions rate, aj values represent the fraction of emissions that enter
each atmospheric fraction, τj values represent the base uptake time scale for each fraction,
and where αj is a state-dependent coefficient that reflects feedbacks from temperature
onto uptake timescales. The remaining three equations describe forcing F as a function
of R and of exogenous non-CO2 forcing, and α as a function of global mean surface
temperature and atmospheric CO2 concentrations.22

We obtain the latest release of the FAIR model, which was version 1.3.2 at the time
of computation, from its online repository.28 As described below in Section 5.F.2, we
develop a methodology to generate energy partial SCC estimates that capture uncertainty
in climate sensitivity by varying four core parameters in FAIR: the equilibrium climate
sensitivity (ECS), the transient climate response (TCR), the short thermal adjustment
time (d2), and the time scale of rapid carbon uptake by the ocean mixed layer (τ3). By
varying these four parameters across thousands of Monte Carlo simulations, we are able to
capture uncertainty in the short and long term response of temperature and the carbon
cycle to changes in emissions. The median values across our uncertainty distributions
(described in detail below) for each core model parameter are as follows: ECS is 2.72◦C
per CO2 doubling, TCR is 1.58◦C per CO2 doubling, d2 is 3.66 years, and τ3 is 4.03 years.
Throughout our implementation, all other parameters in FAIR are held fixed at their
default values.

The two scenarios considered in this analysis, RCP4.5 and RCP8.5, represent two
widely divergent emissions and climatic pathways, especially in years beyond 2050. Fol-
lowing the method used in previous estimates of the SCC,3 we include projections starting
in the current period (here defined as 2020) through the year 2300. Due to the long resi-
dence times of CO2 in the atmosphere and the changes in global mean surface temperature
associated with CO2 emissions, SCC estimates can vary significantly depending on the
definition of this window, especially when low discount rates are applied. To illustrate
the large differences across RCP scenarios, Figure 5.F.1 shows fossil CO2 emissions, CO2

concentrations, total radiative forcing (the difference between incoming solar radiation
and outgoing terrestrial radiation), and temperature as anomalies from FAIR’s reference
state, which is year 1765, for the median climate parameters listed above and under each
emissions scenario.

In order to estimate the marginal effect of CO2 emissions, we add two additional
scenarios to the “control scenarios” of RCP4.5 and RCP8.5. Each additional scenario
adds a 1 GtC (3.66 Gt CO2) pulse of fossil CO2 emissions in 2020 to each of the control
scenarios described above. The FAIR model is then run again for these pulse scenarios,
resulting in a new time series of concentrations, forcing, and temperature anomalies.
The difference between the control and pulse scenarios, including climate uncertainty
(discussed below), is shown in the main text Figure 5.4A-D; as described below and in
Methods, this difference is used to construct energy partial SCC estimates.

28https://github.com/OMS-NetZero/FAIR/tree/v1.3.2.
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Figure 5.F.1: Behavior of key variables in the FAIR simple climate model under median climate parameters:
Each panel shows the temporal trajectory of key variables in FAIR that are used in our calculation of the social cost of
carbon. The trajectories shown arise under FAIR run with median climate parameter values calculated from our uncertainty
distributions for the equilibrium climate sensitivity, transient climate response, short thermal adjustment time, and time
scale of rapid carbon uptake by the ocean mixed layer. The values are shown as anomalies from the year 1765, FAIR’s
reference state.

5.F.2 Methodology for capturing uncertainty in climate sensi-
tivity within the simple climate model FAIR

The analysis described above relies solely on the simple climate model FAIR with key
climate parameters set to median values that are computed from their uncertainty dis-
tributions. However, a complete study of the energy partial SCC should represent the
uncertainty in key model parameters, including the joint probability distribution of the
ECS and TCR. We now discuss the development of such uncertainty distributions and
the representation of climate uncertainties in FAIR.

To represent climate uncertainties, we vary TCR, ECS, d2, and τ3 such that our
climate uncertainties conform to those of the literature. These four parameters represent
the behavior of the short and long timescales of response of temperature and the carbon
cycle. For TCR and ECS, we draw upon constraints from the IPCC Fifth Assessment
Report (AR5);65 for d2 and τ3 we follow ref.,22 based on refs.66 and.67

In general, we produce initial distributions of these parameters based on constraints
from the literature. However, a key difference between our approach and those in the
existing literature is that we explicitly model the tails of the climate sensitivity uncer-
tainty distributions. The AR5 synthesis generally regards the 5–95% ranges of variables
in the CMIP5 models as representing the “likely” range (central at least 66% probable
range) due to structural uncertainty. Previous studies based on CMIP5 results66,68 and
those using the CMIP5 5–95% range of TCR and ECS as 5-95% input ranges to their
models22 thus show results that characterize only the central 66% of possibilities. Here we
explicitly model the tails of the input and output distributions by generating TCR and
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ECS distributions with likely ranges as specified by the AR5 report. To preserve the ex-
pected correlation between TCR and ECS, rather than sampling ECS directly, we follow
ref.69 and instead sample the realized warming fraction (RWF, the ratio of TCR/ECS),
which is nearly independent of TCR. We subsequently filter the parameter sets to ensure
consistency with expectations regarding the initial pulse adjustment timescale (the time
it takes the climate system to reach a warming peak following a pulse emission of CO2).

Below we outline the sources used to construct the distributions of each parameter.

� TCR: Ref.65 concludes that “TCR is likely in the range 1◦C to 2.5◦C... is positive
and extremely unlikely greater than 3◦C” (p. 1112). In IPCC terminology,70 likely
refers to a probability of at least 66%, very likely to a probability of at least 90%,
and extremely likely to a probability of at least 95%. Thus we construct a log-normal
distribution for TCR with a 17th to 83rd percentile range of 1.0-2.5 ◦C.

� RWF: An RWF likely range of 0.45 to 0.75 is approximately consistent with the
ECS likely range of 1.5 – 4.5◦C.65 We construct a normal distribution for RWF
following this central 66% likelihood range, and sample this distribution, along
with TCR, to construct the ECS distribution as TCR/RWF .

� ECS: Ref.65 concludes that “ECS is positive, extremely unlikely less than 1◦C
(high confidence), and very unlikely greater than 6◦C (medium confidence)” (p.
1111) and likely between 1.5 and 4.5◦C. To construct our sampling distribution,
we randomly draw samples from the TCR and RWF distributions, and obtain ECS
samples by calculating TCR/RWF . The constructed ECS samples follow a log-
normal distribution with a 17th-83rd percentile range of 1.60-4.65 ◦C.

� d2:d2:d2: The AR5 does not assess the range of d2. We construct our distribution of d2

as a log-normal distribution with a 5-95th percentile range of 1.6-8.4 years.22

� τ3:τ3:τ3: Ref.66 summarized τ3 in three comprehensive Earth System Models (HADGEM2-
ES, MPI-ESM, NCARCSM1.4), seven Earth System Models of Intermediate Com-
plexity (EMICs), and four box-type models (ACC2, Bern-SAR, MAGICC, TOTEM).
Using the mean (4.03) and standard deviation (1.79) of these values, we construct
a normal distribution for τ3.

After defining these distributions, we generate a 100,000-member ensemble of param-
eter sets via Monte Carlo sampling. As τ3 should be larger than 0, we sample from a
truncated normal distribution, and discard parameter sets in which τ3 < 0 or > 2× 4.03
to keep the mean of τ3 in parameter sets consistent with the multi-model mean in ref.66

About 2.4% of parameter sets are filtered by this constraint. Similarly, RWF must be
less than 1. We therefore truncate its distribution at 1, which is the 99.4th percentile,
and truncate at the 0.06th percentile to keep symmetry (which also removes unrealistic
RWF values near and less than 0 that cause unrealistic, large and/or negative ECS val-
ues). About 1.2% of parameter sets are filtered by this constraint. After applying the τ3

and RWF filters, which have a small overlap, we are left with 96,408 parameter samples.
Using these remaining parameter samples, we evaluate model performance according to
several criteria.

Our criteria for evaluating model performance are described in detail below, and
summarized in Table 5.F.1 and Figure 5.F.2.

239



Initial pulse-adjustment timescale (IPT) The National Academies highlights the
IPT as a measure that is important for SCC computations, yet does not provide a clear,
consistent definition.3 It “measures the initial adjustment timescale of the temperature
response to a pulse emission of CO2” and is “the time over which temperatures converge
to their peak value in response to the pulse.” [3, p. 88]. This could either be the time
to an initial peak, or the ultimate maximum temperature change over the duration of a
simulation, which also depends on simulation length. Here we catalogue multiple versions
of a potential IPT metric, comparing with previous literature where appropriate.

To assess the IPT, we set CO2 concentrations to 2010 levels (389 ppm) and hold
them constant throughout the simulation. To provide an emissions baseline to which a
pulse will be added, we numerically solve the CO2 emissions pathway in FAIR to meet
the CO2 concentration pathway for each parameter sample. We then construct a pulse
experiment, in which 100 GtC of CO2 is injected instantaneously in the year 2015. The
difference in temperature between the pulse and control run measures the temperature
response to a CO2 pulse. To quantify the time to initial peak, we define the IPT as
the time at which the time derivative of the temperature response first becomes negative
(noting that, in many simulations, feedbacks between temperature and the carbon cycle
mean that the temperature rises again after the initial peak and decline, and reaches the
maximum temperature later. Therefore, the time to initial peak is not necessarily the
same as the time to maximum temperature). The resulting IPT has a median of 9.0 years,
with a central 90% probability range of 0–24.0 years. We drop parameter sets that lead
to simulations in which the first negative time derivative of temperature occurs after 100
years post-pulse, indicative of temperatures that only increase throughout the experiment
(in contrast to the simulations with an initial post-pulse decrease in temperature that
begins increasing again after a time). This results in a filtering out of 112 additional
parameter samples on top of the τ3 and RWF filters, yielding a total number of post-
filtering simulations of 96,306 for examination in the remaining discussion.

We also evaluate other potential metrics: the time to maximum temperature consid-
ering the full 500 year simulation, the time to maximum temperature considering just
the 100 years post-pulse, and the time to maximum temperature considering 100 years
post-pulse but excluding simulations reaching max at year 100. We find central 90%
probable ranges of 4.0–485 (median 19.0), 4.0–100 (median 12.0), and 3.0–23.0 (median
9.0), respectively. The results of ref.66 and other subsequent analysis68 indicate that
a peak in warming in response to a pulse emission occurs within about a decade after
emission. In particular, ref.68 estimate a central 90% range for time to peak warming of
6.6–30.7 years, with a median of 10.1 years, and 2% of simulations reaching maximum
at the end of their 100-year simulations. Ref.,68 however, do not sample from continuous
distributions of ECS and TCR, but rather use narrower discrete distributions of parame-
ters based on individual CMIP5 GCMs; thus, we expect their range to be narrower than
that in our analysis. Considering the first 100-years of simulation, our median time to
peak warming is comparable to ref.,68 but spans a wider range of outcomes, as expected,
with 24% of simulations reaching their peak at 100 years post-pulse (44% reach peak
warming at simulation’s end in year 2500).

Transient climate response to emissions (TCRE) The TCRE measures the
ratio of transient warming to cumulative carbon emissions at the time of CO2 doubling
in a simulation with a 1% /year increase (year 70). TCRE is between 0.8 and 2.5◦C per
1000 GtC with at least 66% probability.65 To assess TCRE, we set up an experiment
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that increases CO2 concentrations at 1%/year until CO2 concentrations double in year
70. Again, for each parameter sample, we numerically solve the CO2 emissions pathway
in FAIR to meet the CO2 concentration pathway. The resulting TCRE exhibits a likely
range of 0.88–2.34◦C per 1000 GtC, which is consistent with the central 66% probable
range assessed by AR5.

Longevity of pulse warming Coupled climate-carbon cycle experiments indicate
that a majority (about 70% in the multimodel mean) of peak warming persists 500 years
after emissions.66 In our IPT experiments, the central 66% probable range is 72.9 – 137.6
percent of initial peak warming persists after 500 years.

Representative Concentration Pathway (RCP) experiments We assess the
warming in the RCP experiments relative to those in the CMIP5 multi-model ensemble,
noting that we compare the central 66% probability ranges from our ensemble to those
of the CMIP5 5th–95th percentile range (Table 5.F.1).

The final reduced sample set constitutes 96,306 samples as noted above, and the di-
agnostic metrics are essentially unchanged from the pre-filtering distributions (see Table
5.F.1). Based on this post-filtering evaluation, we conclude that the resulting distribu-
tion is adequately consistent with our target constraints and the recommendations of
the National Academies of Sciences, Engineering, and Medicine.3 We apply the retained
parameter sets to FAIR to produce climate projections that represent climactic uncer-
tainties and are further used in calculating the SCC uncertainty, as described in the next
section. The interquartile range of the final SCC values across the entire distribution of
parameter sets are shown in Table 5.4E in the main text.
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Figure 5.F.2: Distributions of key FAIR parameters for climate sensitivity uncertainty both before (red
curve) and after (blue shading) applying constraints: Each panel indicates the distribution of a key parameter in
the FAIR simple climate model, both before (in red) and after (in blue) the imposition of constraints described in the text.
Distributions shown from left to right are: transient climate response (TCR); realized warming fraction (RWF) used to
define ECS (=TCR / RWF); equilibrium climate sensitivity (ECS) shown only after applying constraints due to unrealistic
values in the initial distribution occurring as RWF→ 0; short thermal adjustment time (d2); time scale of rapid carbon
uptake by the ocean mixed layer (τ3).
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Parameter Distribution from literature Pre-IPT distribution Post-IPT distribution Distribution Source

TCR (C) [1.00, 2.50] [1.00, 2.49] [1.00, 2.50] Lognormal AR5
RWF [0.45, 0.75] [0.45, 0.75] N/A Normal NAS (2017)
ECS (C) [1.5, 4.5] [1.60, 4.65] [1.61, 4.61] Lognormal AR5
d2 (years) (1.6, 8.4) (1.6, 8.4) (1.6, 8.3) Lognormal 22

τ3 (years) 66 4.04 (1.07, 6.96) 4.04 (1.25, 6.79) Normal 66

Key metrics
TCRE (C/TtC) [0.8, 2.5] N/A [0.88, 2.34] Normal AR5
Time to Tmax (years) (6.6, 30.7) (4.0, 100.0)∗ (4.0, 100.0)∗ N/A 68

RCP 4.5 GMST

2046− 2065 1.4 [0.9, 2.0] N/A 1.38 [0.73, 1.98] (0.51, 2.88) Normal AR5
2081− 2100 1.8 [1.1, 2.6] N/A 1.81 [0.93, 2.60] (0.65, 3.88) Normal AR5
2181− 2200 2.3 [1.4, 3.1] N/A 2.37 [1.13, 3.46] (0.78, 5.41) Normal AR5
2281− 2300 2.5 [1.5, 3.5] N/A 2.73 [1.24, 4.01] (0.85, 6.45) Normal AR5

RCP 8.5 GMST

2046− 2065 2.0 [1.4, 2.6] N/A 2.05 [1.09, 2.90] (0.77, 4.20) Normal AR5
2081− 2100 3.7 [2.6, 4.8] N/A 3.71 [1.96, 5.31] (1.39, 7.73) Normal AR5
2181− 2200 6.5 [3.3, 9.8] N/A 7.34 [3.82, 10.60] (2.69, 15.35) Normal AR5
2281− 2300 7.8 [3.0, 12.6] N/A 8.86 [4.48, 12.84] (3.11, 18.84) Normal AR5

Table 5.F.1: Comparisons of the distributions of key FAIR parameter values: This table compares the distributions of key FAIR parameter values that pass the initial
pulse-adjustment timescale (IPT) constraint against the relevant distributions from the literature (included in the IPT constraint is filtering of τ3 and RWF as specified in the text).
Distributions shown are: transient climate response (TCR); realized warming fraction (RWF); equilibrium climate sensitivity (ECS); short thermal adjustment time (d2); time scale of
rapid carbon uptake by the ocean mixed layer (τ3); transient climate response to emissions (TCRE); and the change in global mean surface temperature (GMST) from the reference
period 1986-2005 at various points in the projections. Note that RWF is only used to create our ECS distribution, and so the post-IPT distribution of RWF is not reported. Distributions
reported are determined by the reference values from the literature, so that different parameters have different descriptions of their associated distributions: 5 to 95% ranges are given in
( ), 17 to 83% ranges (likely ranges for AR5) are given in [ ], and means are given without ( ) or [ ].

∗ We only consider the first 100 years post-pulse.68
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Finally, we assess the reasonableness of the “handoff” between the SMME models,
with which the damage function is estimated (Equation 5.4 in Methods), and FAIR,
with which future damages due to a pulse of CO2 are calculated using the difference in
temperature between the pulse and control runs. A comparison of climate sensitivity
uncertainty across these two climate projections is important, as the climate sensitivity
uncertainty captured in the empirically-based projections of energy damages derives from
the SMME, while the uncertainty we proliferate through to the SCC relies on the simple
climate model FAIR. Figure 5.F.3 shows the distribution of GMST changes relative to
2001-2010 (∆GMST) over time, according to the SMME (top row) and the simple climate
model FAIR (bottom row). SMME data are available until the year 2100; thus, the two
rows show a direct comparison between FAIR and the SMME models for these years,
showing a strong amount of overlap in both RCP4.5 and RPC8.5 distributions of warming
and indicating the handoff is reasonable (as would be expected based on the construction
of the SMME).

5.F.3 Converting temperature scenarios to an energy consump-
tion partial SCC

We convert the temperature scenarios developed in the climate module into estimates
of energy-related damages using the global damage functions described in Methods and
in Appendix 5.E. These damage functions characterize valued energy consumption im-
pacts as a function of ∆GMST (changes in GMST relative to 2001-2010). The coeffi-
cients on these quadratic damage functions are constructed for each year from 2015 to
2300, as described in Methods and Appendix 5.E. We then generate annual estimates
of temperature-related energy damages by applying the ∆GMST values from both the
control FAIR scenarios (RCP4.5 and RCP8.5), as well as pulse scenarios, to the empir-
ically derived damage functions. After computing energy damages associated with each
scenario, we subtract each control scenario from the corresponding pulse scenario and
divide by the pulse amount to estimate the marginal effect of the pulse. This time series
is then discounted using 2.5%, 3% and 5% discount rates, and summed through time to
create a net present value, following Equation 5.5 in Methods. This final value is the net
present value of the full energy consumption impacts caused by a marginal emission of
CO2. A more robust estimate would make use of Ramsey-like discounting, accounting
for the relationship between consumption growth and the discount rate, but we leave this
for future study.

5.F.4 Uncertainty in the energy partial SCC

In the main text, we report uncertainty in the energy partial SCC in three ways: ac-
counting for climate sensitivity uncertainty only, damage function uncertainty only, and
full uncertainty (both climate and damage function). Here we briefly describe how these
values are generated.

Energy partial SCC estimates accounting for both climate sensitivity and
damage function uncertainty As described in Methods, damage functions are com-
puted using estimates of the global monetized damages in each year generated from 33
climate models, two emissions scenarios, and a resampling of damage estimates that
captures uncertainty in the estimation of Equation 5.1 (Methods). These multiple sim-
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ulations (we draw 100 realizations of global damages for each climate model, emissions
scenario, SSP trajectory, and year) give us an empirically-derived distribution of poten-
tial economic outcomes that are conditional on the ∆GMST value for the year, emissions
scenario, and climate model used to generate that projection. To account for uncer-
tainty in a single year’s damage function, we pool these realizations for the associated
5-year window (see Methods and Appendix 5.E). We then run quantile regressions to fit
quantile-specific damage functions for 19 quantiles (i.e. every 5th percentile from the 5th

to 95th). As in the mean damage function estimation, extrapolation past the year 2100
is accomplished using a time interaction model (Appendix 5.E). In this extrapolation, we
allow each quantile to evolve over time heterogeneously, based on the observed changes
over time that we estimate at the end of the 21st century.

We run each quantile-specific damage function through each of the 96,306 sets of
FAIR parameters and up-weight runs in order to reflect probability mass in the damage
function uncertainty space. This process reflects a joint sampling from the full space
of damage function uncertainty and climate sensitivity uncertainty. The relevant SCC
5th-95th percentile ranges are resolved from the resulting distribution of energy partial
SCCs.

Energy partial SCC estimates accounting for climate sensitivity uncer-
tainty only: To isolate uncertainty in the energy partial SCC that derives from climate
sensitivity uncertainty, we run the mean damage function through each of the 96,306 sets
of FAIR parameters. The corresponding SCC 5th-95th percentile range is resolved from
the resulting distribution of energy partial SCCs.

Energy partial SCC estimates accounting for damage function uncertainty
only: To isolate uncertainty in the energy partial SCC that derives from uncertainty in
the damage function, we run the set of quantile-year damage functions through FAIR
with each climate parameter fixed at its median value (as is done in the central energy
partial SCC estimates) and up-weight runs in order to reflect probability mass in the
damage function uncertainty space. The corresponding SCC 5th-95th percentile range is
resolved from the resulting distribution of energy partial SCCs.

Table 5.F.2 reproduces SCC estimates from Table 5.4E (main text), with interquar-
tile ranges separately showing the influence of climate sensitivity and damage function
uncertainty.
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Discount rate: δ = 2.5% δ = 3% δ = 5%

I: 1.4% price growth

RCP 8.5 -1.51 -1.16 -0.60
Climate sensitivity uncertainty [-2.57,-0.96] [-1.92,-0.74] [-0.97,-0.38]
Damage function uncertainty [-2.09,-0.97] [-1.48,-0.80] [-0.70,-0.51]
Full uncertainty [-2.58,-0.66] [-1.92,-0.55] [-0.97,-0.35]

RCP 4.5 -1.37 -1.08 -0.58
Climate sensitivity uncertainty [-2.24,-0.89] [-1.74,-0.71] [-0.91,-0.38]
Damage function uncertainty [-1.96,-1.06] [-1.44,-0.84] [-0.65,-0.50]
Full uncertainty [-2.45,-0.73] [-1.83,-0.61] [-0.90,-0.35]

II: 0% price growth

RCP 8.5 -0.72 -0.61 -0.39
Climate sensitivity uncertainty [-1.19,-0.46] [-0.99,-0.39] [-0.62,-0.25]
Damage function uncertainty [-0.87,-0.52] [-0.72,-0.48] [-0.43,-0.34]
Full uncertainty [-1.12,-0.36] [-0.95,-0.34] [-0.62,-0.23]

RCP 4.5 -0.66 -0.57 -0.37
Climate sensitivity uncertainty [-1.05,-0.43] [-0.90,-0.38] [-0.58,-0.24]
Damage function uncertainty [-0.85,-0.55] [-0.69,-0.49] [-0.40,-0.33]
Full uncertainty [-1.08,-0.39] [-0.91,-0.35] [-0.58,-0.23]

III: MERGE-ETL 6.0 prices

RCP 8.5 -1.12 -0.82 -0.39
Climate sensitivity uncertainty [-1.82,-0.73] [-1.32,-0.54] [-0.63,-0.25]
Damage function uncertainty [-1.43,-0.84] [-0.99,-0.61] [-0.45,-0.33]
Full uncertainty [-1.66,-0.61] [-1.26,-0.47] [-0.63,-0.24]

RCP 4.5 -1.15 -0.83 -0.38
Climate sensitivity uncertainty [-1.83,-0.77] [-1.31,-0.56] [-0.60,-0.25]
Damage function uncertainty [-1.47,-1.04] [-1.03,-0.72] [-0.44,-0.33]
Full uncertainty [-1.90,-0.76] [-1.36,-0.54] [-0.61,-0.24]

Table 5.F.2: Social cost of energy consumption due to climate change. This table displays estimates of a social
cost of carbon for excess energy consumption costs under high (RCP8.5) and moderate (RCP4.5) emissions scenarios,
assuming various discount rates and future energy price scenarios (1.4% annual price growth, 0% price growth, and prices
projected by the MERGE-ETL 6.0 IAM). All estimates are computed using the socioeconomic scenario SSP3. Brackets
indicate interquartile ranges that reflect climate sensitivity uncertainty, damage function uncertainty, or both (i.e. full
uncertainty).
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5.G Sensitivity of the energy consumption partial so-

cial cost of carbon

The partial SCC estimates shown in the main text and in Table 5.F.2 depend upon a set
of future price scenarios, damage function extrapolation beyond 2100, and are reported
for a particular socioeconomic scenario (SSP3). In this section, we provide a range of
additional partial SCC estimates under alternative future price scenarios, alternative
extrapolation approaches for the damage function, and multiple different socioeconomic
scenarios. In all cases, we show estimates under multiple discount rates and baseline
emissions trajectories.

5.G.1 Alternative future price scenarios

Table 5.G.1 presents partial SCC estimates under a range of future price scenarios. Three
of these scenarios are based on direct extrapolation of present-day price statistics at either
moderate (1.4%), stagnant (0%), or high (3%) annual growth rates (Appendix 5.D.1). In
addition, we show partial SCC estimates based on price projections from five different
integrated assessment models (Appendix 5.D.2). Estimates are qualitatively similar across
all price scenarios.

5.G.2 Alternative approach to estimating post-2100 damages

We explore the importance of post-2100 extrapolation of the damage function (Appendix
5.E) by using an alternative approach to estimating post-2100 damages, in which we
calculate partial SCC estimates using a damage function held fixed at its end-of-century
shape for all years 2100-2300. With this alternative approach, our central estimate of
the energy consumption partial SCC (1.4% price growth, 3% discount rate) changes from
$-1.16 to $-1.08 for RCP8.5 ($-1.08 to $-1.07 for RCP4.5), indicating that extrapolation
of the damage function has negligible impact on our partial SCC estimates, due in part
to the important role of discounting (Table 5.G.2).

5.G.3 Alternative socioeconomic scenarios

In the main text, we display climate change impact projections and estimates of the
partial social cost of carbon under the socioeconomic scenario SSP3. Each SSP scenario
models a different possible pathway of economic development, population growth, and
demographics. Here, we show estimates of the energy consumption partial social cost of
carbon under two alternative scenarios (SSP2 and SSP4, alongside SSP3). Results from
these alternative scenarios are similar in magnitude to those from SSP3.
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Discount rate: δ = 2.5% δ = 3% δ = 5%

1.4% price growth

RCP 8.5 -1.51 -1.16 -0.60
[-2.58,-0.66] [-1.92,-0.55] [-0.97,-0.35]

RCP 4.5 -1.37 -1.08 -0.58
[-2.45,-0.73] [-1.83,-0.61] [-0.90,-0.35]

0% price growth

RCP 8.5 -0.72 -0.61 -0.39
[-1.12,-0.36] [-0.95,-0.34] [-0.62,-0.23]

RCP 4.5 -0.66 -0.57 -0.37
[-1.08,-0.39] [-0.91,-0.35] [-0.58,-0.23]

3% price growth

RCP 8.5 -4.43 -2.98 -1.11
[-8.28,-1.52] [-5.36,-1.15] [-1.81,-0.59]

RCP 4.5 -4.00 -2.77 -1.06
[-7.74,-1.85] [-5.03,-1.37] [-1.70,-0.62]

MERGE-ETL 6.0 prices

RCP 8.5 -1.12 -0.82 -0.39
[-1.66,-0.61] [-1.26,-0.47] [-0.63,-0.24]

RCP 4.5 -1.15 -0.83 -0.38
[-1.90,-0.76] [-1.36,-0.54] [-0.61,-0.24]

REMIND 1.7 (ADVANCE) prices

RCP 8.5 -4.14 -3.15 -1.57
[-6.57,-2.28] [-4.97,-1.82] [-2.49,-0.96]

RCP 4.5 -4.10 -3.13 -1.55
[-6.56,-2.49] [-4.92,-1.93] [-2.38,-0.96]

REMIND 1.7 (CEMICS) prices

RCP 8.5 -4.01 -3.04 -1.51
[-6.74,-2.26] [-5.00,-1.17] [-2.41,-0.92]

RCP 4.5 -4.01 -3.05 -1.50
[-6.35,-2.26] [-4.75,-1.78] [-2.29,-0.92]

REMIND-MAgPIE 1.7-3.0 prices

RCP 8.5 -3.96 -3.02 -1.52
[-6.40,-2.24] [-4.80,-1.78] [-2.38,-0.94]

RCP 4.5 -3.95 -3.03 -1.51
[-6.30,-2.41] [-4.72,-1.88] [-2.29,-0.95]

WITCH-GLOBIOM 4.2 prices

RCP 8.5 -4.01 -2.98 -1.41
[-6.48,-2.01] [-4.83,-1.60] [-2.27,-0.84]

RCP 4.5 -3.83 -2.88 -1.37
[-6.40,-2.20] [-4.72,-1.67] [-2.17,-0.82]

[Brackets] indicate full uncertainty IQR. (See Appendix 5.F.4.)

Table 5.G.1: Social cost of energy consumption due to climate change under alternative future price
scenarios. This table displays estimates of a partial Social Cost of Carbon for excess energy consumption costs, under
the socioeconomic scenario SSP3. Costs are valued under various projected price trajectories.
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Discount rate: δ = 2.5% δ = 3% δ = 5%

1.4% price growth

RCP 8.5 -1.33 -1.08 -0.60

RCP 4.5 -1.34 -1.07 -0.57

0% price growth

RCP 8.5 -0.71 -0.60 -0.39

RCP 4.5 -0.70 -0.59 -0.37

3% price growth

RCP 8.5 -3.24 -2.42 -1.06

RCP 4.5 -3.30 -2.44 -1.04

MERGE-ETL 6.0 prices

RCP 8.5 -0.87 -0.70 -0.38

RCP 4.5 -0.92 -0.73 -0.37

REMIND 1.7 (ADVANCE) prices

RCP 8.5 -3.65 -2.91 -1.56

RCP 4.5 -3.79 -2.98 -1.53

REMIND 1.7 (CEMICS) prices

RCP 8.5 -3.55 -2.83 -1.50

RCP 4.5 -3.70 -2.90 -1.48

REMIND-MAgPIE 1.7-3.0 prices

RCP 8.5 -3.51 -2.80 -1.50

RCP 4.5 -3.66 -2.89 -1.50

WITCH-GLOBIOM 4.2 prices

RCP 8.5 -3.50 -2.74 -1.39

RCP 4.5 -3.55 -2.74 -1.36

Table 5.G.2: Social cost of energy consumption due to climate change under alternative approach to
estimating post-2100 damages. This table displays estimates of a partial Social Cost of Carbon for excess energy
consumption costs under the socioeconomic scenario SSP3. In contrast to the estimates in Tables 5.4E (main text) and
5.G.1, these estimates are calculated using a damage function held fixed at its end-of-century shape for all years 2100-2300.
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Discount rate: δ = 2.5% δ = 3% δ = 5%

SSP2

RCP 8.5 -1.08 -0.93 -0.58

RCP 4.5 -1.29 -1.06 -0.60

SSP3

RCP 8.5 -1.51 -1.16 -0.60

RCP 4.5 -1.37 -1.08 -0.58

SSP4

RCP 8.5 -1.36 -1.05 -0.55

RCP 4.5 -1.25 -0.98 -0.51

Table 5.G.3: Social cost of energy consumption due to climate change under alternative socioeconomic
scenarios. This table displays estimates of a partial Social Cost of Carbon for excess energy consumption costs under
various socioeconomic scenarios, for the 1.4% price annual growth trajectory.
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5.H Incidence of future climate change impacts by

present-day income deciles

Although we project that future climate change will lead to modest net savings in energy
expenditures globally (Figure 5.3B in the main text; Figure 5.D.1), these savings are not
borne equally across locations. The map in main text Figure 5.3A reveals heterogeneity
in costs and savings at end-of-century by geography; Figure 5.H.1 demonstrates that this
heterogeneity is systematically correlated with present-day income.

Over most of the present-day income distribution, we find that locations with higher
incomes today are projected to experience larger overall net savings at end-of-century.
This partly reflects the fact that today’s richest locations tend to be in temperate climates,
where energy savings from fewer cold days will more than offset increases in costs from
more hot days. The smallest savings at end-of-century are projected to occur in the third
and fourth deciles of the present-day income distribution, which is consistent with many
of these locations being situated in the tropics and also attaining sufficiently high income
levels at end-of-century to increase electricity consumption due to more hot days (Figure
5.2A in the main text).

The positive correlation between present-day income and net savings at end-of-century
does not hold in the lower ranges of today’s income distribution. Net savings in today’s
poorest deciles (i.e. first and second) are actually higher than in the third and fourth
deciles, as many of the poorest locations are projected to remain too poor at end-of-
century to increase electricity consumption on hot days.
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Figure 5.H.1: End-of-century energy consumption damages from climate change by present-day income
deciles. The bar chart below depicts annual energy consumption damages from climate change at 2099 under a high
emissions scenario (RCP8.5) and the SSP3 socioeconomic scenario, separately for each decile of 2012 per capita income.
Income deciles are calculated across 24,378 global impact regions and are population weighted using 2012 population values;
representative locations in selected deciles are indicated. Damages are calculated under a 1.4% annual price growth scenario
and are expressed in 2019 USD per capita based each decile’s projected 2099 population. Bars represent mean damage
estimates across an ensemble of 33 climate models.
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5.I Robustness and sensitivity checks

In this section, we explore how alternative assumptions about income growth and climate-
driven adaptation affect our projected impacts. In addition, we conduct a robustness
checks to address issues of data quality. Finally, we describe an alternative estimation
approach, impact projection, and partial SCC calculation that reflect a particular sce-
nario of persistent technological progress, where the cost of energy services continues to
decline indefinitely based on historically measured rates, without corresponding gains in
efficiency.

5.I.1 Alternative assumptions on the role of income growth and
climate-driven adaptation

In our main results, we use the estimated coefficients from Equation 5.C.4 in combination
with high-resolution data on future incomes (LogGDPPC) and climates (HDD, CDD)
to extrapolate energy-temperature responses over time, thus capturing future changes in
the responses due to income growth and climate-driven adaptation (Appendix 5.C.3). In
conducting this extrapolation, it is necessary to make an assumption regarding the rates
at which energy-temperature responses evolve with changing incomes and climates. As
discussed previously, our projections rely on 15-year moving averages of LogGDPPC,
HDD, and CDD (Appendix, 5.C.3).

Here, we conduct a sensitivity analysis where the speed at which energy-temperature
responses change with income and climate covariates is deterministically reduced by half.
This exercise is used to understand how the impacts of future climate change differ
if energy-temperature responses evolve more slowly with income and climate than is
estimated in the historical data.29

In the main projection, income grows for each impact region r according toGDPPCrt =
ρjtGDPPCr,t−1, where j indicates the country that region r falls into, and ρjt is a country-
and year-specific growth rate given exogenously by the SSP scenarios. The moving aver-
age values of heating degree days for region r used in the main projection are specified by
HDDrt = HDDr,t−1 + ∆HDDrt, and moving averages of cooling degree days are speci-
fied similarly. In this “slow adaptation” alternative approach, we replace income growth

with GDPPCrt =
(
ρjt−1

2
+ 1
)
GDPPCr,t−1 after the year 2015, and we reduce linear

change in heating degree days by replacing it with HDDrt = HDDr,t−1 + ∆HDDrt

2
. The

linear change in cooling degree days is similarly replaced. Note that both the main and
slow-adaptation analyses generate identical incomes, heating degree days, and cooling
degree days (and hence, energy-temperature responses) in 2015.

Figure 5.I.1 displays the time series of global per-capita electricity and other-fuels
consumption impacts under a slow-adaptation scenario. Impacts under slow-adaptation
are seen to be considerable lower in magnitude than our main estimates.

29Note that in our econometric estimation of Equation 5.C.4, income is modeled as a 15-year moving average, while
climate is treated as a time-invariant average over the entire sample (Appendix, 5.C.3), due to limited in-sample variation
in the average climate. Thus, the decision of how quickly the energy-temperature response evolves with climate in the
future is less informed by historical data than is the case for income.
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Figure 5.I.1: Projected impacts of climate change under a slow-adaptation scenario. The dashed lines present
the time series of average global energy consumption impacts of climate change (in GJ per capita) under a slow-adaptation
scenario, where the speed at which energy-temperature responses change with income and climate covariates is reduced by
half. To contrast, the solid lines present projected impacts based on the estimates of the main model (Equation 5.C.4).
All impacts are calculated under the SSP3 socioeconomic scenario using climate projections from a single climate model
(CCSM4).

5.I.2 Data quality

The IEA data on energy consumption are of differential quality across countries as well
as years within a country, and issues of quality and comparability are extensively noted
in the documentation. All our specifications account for data quality and comparability
concerns through inverse variance weighting, imposition of country-regime fixed effects,
and dropping observations that fail to meet basic standards of comparability (Appendix,
5.A.1 and 5.C.1). To further ensure that data quality issues do not pose a threat to our
core findings, here we conduct a robustness check in which we re-estimate Equation 5.C.4
after dropping additional observations in which the energy consumption data is obtained
by imputation.30 If the energy consumption data in such cases are themselves estimated
as a function of income and climate variables, it is possible that our results simply reflect
this imputation procedure rather than a real causal relationship. Figure 5.I.2 displays
the matrices of energy-temperature responses when estimating Equation 5.C.4 including
and not including observations with imputed energy consumption data (dark and light
response curves respectively).31 The predicted responses are similar, thus our results do
not seem to be an artifact of imputed energy consumption data.

5.I.3 Modeling technological progress

A potential limitation of the energy-temperature response specified in Equation 5.C.4 is
that it does not explicitly model the role of technological progress in altering how en-

30The documentation notes instances where the energy consumption data are derived solely from estimates by either the
IEA or country government. For electricity consumption 145 additional country-years are dropped, while for other fuels
consumption 465 additional country-years are dropped.

31The dark curves are identical to those from the matrices in Figure 5.1C (main text).

253



-5 5 15 25 35 -5 5 15 25 35 -5 5 15 25 35

Temperate Hot

High
income

Middle
indome

Low
income

G
J 

pe
r c

ap
ita

.005

.01
.015

0

-.005

G
J 

pe
r c

ap
ita

.005

.01
.015

0

-.005

G
J 

pe
r c

ap
ita

.005

.01
.015

0

-.005

Cold

Main specification
Excluding imputed data

Main specification
Excluding imputed data

G
J 

pe
r c

ap
ita

.04

.08

0

G
J 

pe
r c

ap
ita

.04

.08

0

G
J 

pe
r c

ap
ita

.04

.08

0

-5 5 15 25 35 -5 5 15 25 35 -5 5 15 25 35

Temperate HotCold
Temperature (°C)

Electricity Other fuels

Temperature (°C) Temperature (°C) Temperature (°C) Temperature (°C) Temperature (°C)

Figure 5.I.2: Energy-temperature response as a function of income and climate: Robustness to imputed
data. This figure displays the results from an econometric specification that models heterogeneity in the energy-temperature
response due to both income and long-run climate (Equation 5.C.4). The dark response curves are identical to those from
Figure 5.1C (main text), while the light response curves are estimated using a subset of the data in which observations
with imputed energy consumption data are dropped. Each cell within a matrix represents predicted energy-temperature
responses at a point in the income × long-run climate covariate space within the full sample. Cells are ordered vertically
by income terciles (increasing income from bottom to top) and horizontally by terciles of annual cooling degree-days
(increasingly warm climate from left to right) (Appendix 5.C.3).

ergy consumption responds to temperature. By allowing energy-temperature responses
to evolve into the future with incomes and climates, we do proxy for diffusion and ad-
vancement of existing technologies in accordance with these two factors. However, one
may imagine scenarios in which new technologies reduce the cost of cooling/heating,
leading to increasingly temperature-responsive energy consumption in the future, even
after conditioning on income and climate.32 Alternatively, new technologies may increase
the energy efficiency of cooling/heating, leading to less temperature-responsive energy
consumption in the future after conditioning on income and climate.

To accomodate such possibilities, we augment Equation 5.C.4 with a linear time trend

32A historical example of this is the declining cost and consequent proliferation of air-conditioning units in the decades
after they first entered the marketplace.25,71
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in the effect of temperature on energy consumption that flexibly varies by income:

Ejtc = βc · Tjt︸ ︷︷ ︸
Effect of Temperature

+ [τc · Tjt]t︸ ︷︷ ︸
Linear Time Trend

in Energy-Temperature Response (A)

+ [η1c · Tjt](Īc − lGDPpcjt)IlGDPpcjt<Īc + [η2c · Tjt](lGDPpcjt − Īc)IlGDPpcjt≥Īc︸ ︷︷ ︸
Effect of Income-driven Adaptation on Energy-Temperature Response

+ [ψ1c · Tjt]t(Īc − lGDPpcjt)IlGDPpcjt<Īc + [ψ2c · Tjt]t(lGDPpcjt − Īc)IlGDPpcjt≥Īc︸ ︷︷ ︸
Linear Time Trend in Energy-Temperature Response: Varying by Income (B)

+
2∑

k=1

γkcCDDj

∑
d∈t

(T kjd − 20k)ITjd≥20︸ ︷︷ ︸
Climate Adaptation on Energy-Temperature Response

for days ≥ 20◦ C

+
2∑

k=1

λkcHDDj

∑
d∈t

(20k − T kjd)ITjd<20︸ ︷︷ ︸
Climate Adaptation on Energy-Temperature Response

for days < 20◦ C

+
[
κ1clGDPpcjt + φ1

]
IlGDPpcjt<Īc +

[
κ2clGDPpcjt + φ2

]
IlGDPpcjt≥Īc︸ ︷︷ ︸

Direct Effect of Income on Energy Consumption

+ θc · Pjt︸ ︷︷ ︸
Precipitation Controls

+αjic + δwtc︸ ︷︷ ︸
Fixed Effects

+ εjtc︸︷︷︸
Error Term

. (5.I.1)

All terms in Equation 5.I.1 are identical to those of Equation 5.C.4, with the excep-
tion of terms A and B, which specify a time trend in the effect of temperature on energy
consumption that varies by income. These additional terms capture historical technolog-
ical progress that altered the cost and/or efficiency of energy services (e.g. introduction
and proliferation of air-conditioning) within the sample time span. Furthermore, the ad-
ditional terms allow for linear extrapolation of such progress when predicting responses
into the future.

Formally, for LogGDPPC = I, the per year change in the energy-temperature re-

sponse at T ◦ C (relative to 20◦ C) is
(
τc+ψ1c(Īc− I)II<Īc +ψ2c(I− Īc)II≥Īc

)
·
(
T −20

)
,

where the vector T ≡ (T, T 2) and the vector 20 ≡ (20, 202). The Figure 5.I.3A plots
this per-year change evaluated at mean incomes of the three income terciles and demon-
strates that electricity-temperature responses and other fuels-temperature responses at
higher income levels are becoming more steeply sloped over time. For instance, the addi-
tional electricity consumption on a 35◦C day relative to a 20◦C day is increasing annually
by .00067 GJ per capita at the richest income tercile, -.00018 GJ per capita at the middle
income tercile, and 6.1e-06 GJ per capita at the poorest income tercile.

Extrapolating these rates of change linearly into the future dramatically amplifies
the predicted energy-temperature responses across the income-climate space. To illus-
trate this, Figure 5.I.3B depicts matrices of energy-temperature responses in-sample using
Equation 5.C.4 (dark response curves), as compared to the year 2099 using Equation 5.I.1
(light response curves).33

Figure 5.I.3C illustrates the consequences of incorporating time trends in energy-
temperature responses (in addition to changing income and climate covariates) into pro-
jections of climate change impacts. Incorporating the time trends results in dramatically
larger impacts by end-of-century, with global average electricity consumption predicted

33The dark curves are identical to those from the matrices in Figure 5.1C (main text).
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Figure 5.I.3: Modeling technology trends. This figure displays results from an econometric specification that models
heterogeneity in the energy-temperature response due to both income and long-run climate, while also modeling a linear
time trend in the effect of temperature on energy consumption that flexibly varies by income and fuel category (Equation
5.I.1). (A) The change in the electricity- and other fuels-temperature responses per year for each income tercile. (B)
The predicted temperature response functions at various points in the income × long-run climate covariate space within
our data sample. Light curves illustrate predicted responses at 2099 that reflect a linear extrapolation of the annual rates
of change shown in (A). As a benchmark, the dark response curves are estimated from Equation 5.C.4 and are identical
to those from Figure 5.1C (main text). Cells are ordered vertically by income terciles (increasing income from bottom to
top) and horizontally by terciles of annual cooling degree-days (increasingly warm climate from left to right) (Appendix
5.C.3). (C) The time series of average global impacts in GJ per capita under a high emissions scenario (RCP8.5) and
SSP3 socioeconomic scenario, when allowing for energy-temperature responses in the future to reflect linear time trends in
addition to changing incomes and climates (dashed lines). To contrast, the solid lines indicate the analogous time series
based on the main model, without linear time trends (Equation 5.C.4). All impact projections represent mean estimates
across an ensemble of 33 climate models.
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to rise by 4.82 GJ per capita (in contrast to 0.97 GJ per capita shown in Figure 5.2 in
the main text) and other fuels consumption by 6.96 GJ per capita (in contrast to -2.8 GJ
per capita shown in Figure 5.2) due to climate change.

Constructing damage functions and calculating a partial SCC with these projected
impacts results in a substantially larger partial SCC for a given discount rate (Table
5.I.1, Panel II). Additionally, we calculate an SCC based on a scenario in which historical
trends not only continue unabated, but are accelerated as future climate change spurs
increases in the relative rate of technological progress and cost declines in cooling/heating
(without efficiency gains).40 To implement such a scenario, we deterministically double
the historically estimated time trends in energy-temperature responses and extrapolate
these linearly into the future. This results in an even higher partial SCC (Table 5.I.1,
Panel III).

Discount rate: δ = 2.5% δ = 3% δ = 5%

Main model

RCP 8.5 -1.51 -1.16 -0.60

RCP 4.5 -1.37 -1.08 -0.58

I: Extrapolating trends

RCP 8.5 9.33 5.67 1.24

RCP 4.5 9.96 5.88 1.20

II: Extrapolating 2x trends

RCP 8.5 18.95 11.49 2.52

RCP 4.5 20.06 11.83 2.43

Table 5.I.1: Social cost of energy consumption due to climate change (technological trends scenarios). This
table displays estimates of a partial Social Cost of Carbon for excess energy consumption costs (under the socioeconomic
scenario SSP3) based on scenarios of indefinitely falling costs of energy services without efficiency gains. These are con-
trasted with partial SCC estimates from the main model. (I) As a benchmark, the estimates resulting from the main
model (Equation 5.C.4) under SSP3 (reproducing Table 5.4E, Panel I). (II) The estimates resulting from direct linear
extrapolation of the energy-temperature response time trends estimated in Equation 5.I.1. (III) The estimates resulting
from linear extrapolation at double the rate of the estimated time trends. In all panels, costs are valued under the 1.4%
price growth trajectory.

It should be noted that linearly extrapolating historical trends in energy temperature
responses (beyond those associated with income and climate) indefinitely into the future
not only represents an extreme assumption about ongoing declines in the cost of energy
services relative to other goods, but also assumes that these cost declines will not be
accompanied by efficiency gains (which would lower fuel use). Climate-change driven
acceleration (i.e. doubling) of these trends represents an even more extreme assumption.
It is unclear that such arbitrary assumptions are likely to hold. Future research should
focus on better understanding the specific ways in which a changing climate and climate
policy (or lack thereof) might feed back into technological innovation.
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5.J Comparisons to other studies

In this section, we consider prior econometric and process model-based estimates of cli-
mate change impacts on energy consumption, and compare them to their nearest coun-
terparts from among our estimates. Although not perfectly comparable in their scope or
their intent, we generally find that estimates from prior studies are qualitatively consistent
with those from this analysis (Table 5.J.1).

Ref.27 estimate the effect of temperature on electricity consumption using daily data
from European countries, and use these estimates to project the impacts of climate change
under one of the 33 climate projections (i.e. GFDL-ESM2M) in our SMME. Their analysis
encompasses electricity consumption in all sectors, including transportation (which we
exclude).34 Moreover, they do not account for the effect of income differences or climate-
driven adaptation on the electricity-temperature response. Nonetheless, their end-of-
century impact projections under RCP8.5 for major European countries are comparable
in magnitude and direction to ours (Table 5.J.1A).

Using a combination of econometrically estimated energy-temperature responses along
with price, supply-side, and macroeconomic feedbacks determined through the NEMS
energy model, ref.37 project the impact of climate change on total energy expenditures
in the United States. Calculating a mean impact across the full set of climate projections
in the SMME, they project a 12.1% increase in annual energy expenditures at end-of-
century (relative to 2012) due to climate change under RCP8.5, while we project a 9.0%
decrease (Table 5.J.1B). However, the two studies have important differences in scope
and approach. Most fundamentally, the analysis in ref.37 is limited to the residential and
commercial sectors (excluding industrial and agricultural consumption, both of which we
include) and also does not account for the effect of income differences or climate-driven
adaptation on energy-temperature responses. Furthermore, the estimates in ref.37 are
specific to the endogenously determined price trajectories of NEMS.

Lastly, ref.32 use a process model-based approach to project the impact of climate
change on global cooling and heating expenditures under the SSP2 socioeconomic sce-
nario. Using one of the 33 climate projections (i.e. CESM1-BGC) in our SMME, they
project that at end-of-century, climate change under RCP8.5 will lead to a net increase
in global expenditures representing 0.3% of 2100 global GDP (Table 5.J.1C). For the
same socioeconomic scenario, climate projection, and RCP, we project a similarly mod-
est change in global expenditures (a net decline representing 0.03% of 2100 global GDP),
despite using a purely econometric approach. Although the magnitudes are similar, it
should be noted that the two studies do not purport to estimate the same object. While
the authors explicitly model changes to cooling and heating demands, our estimates
encompass changes from all end uses, not necessarily limited to cooling and heating. An-
other important distinction is that the estimates in ref.32 are specific to the endogenously
determined price trajectories of the GCAM energy model.

34As of 2013, transportation accounted for less than 3% of electricity consumption in the EU. See https://www.eea.

europa.eu/ds_resolveuid/8d7f4a83fc3a4936be07b8d40c24352c.
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Geography Study Estimate Our Estimate

A. Wenz et al., 2017
Change in annual per-capita electricity consumption at
end-of-century under RCP8.5, as percent of 2012 con-
sumption.

France 0.9% 0.4%

Germany -0.8% -1.4%

Greece 7.3% 5.4%

Italy 1.3% 2.7%

Spain 5.2% 4.0%

United Kingdom -1.7% -1.4%

Notes: Both estimates are based on climate projections
from the GFDL-ESM2M climate model. Wenz et al.’s es-
timates include electricity consumption in the transporta-
tion sector, which we exclude.

B. Hsiang et al., 2017
Change in annual per-capita energy expenditure at 2090
under RCP8.5, as percent of 2012 expenditure.

United States 12.1% -9.0%

Notes: Both estimates represent mean impacts across
all climate projections in the SMME (Appendix 5.A.2.3).
Hsiang et al.’s estimates are for the period 2080-2099 and
do not include energy consumption in the industrial sec-
tor, which we include. Our estimates determine future
expenditures under the 1.4% price growth scenario, while
those of Hsiang et al. use prices determined endogenously
through the NEMS (AEO 2013) energy model.

C. Clarke et al., 2018
Change in total annual energy expenditures at end-of-
century under RCP8.5 and SSP2 socioeconomic scenario,
as percent 2100 global GDP.

Global 0.3% -0.03%

Notes: Both estimates are based on climate projections
from the CESM1-BGC climate model. Clarke et al.’s es-
timates explicitly model changes to cooling and heating
demands, while our estimates are encompass changes from
all end uses, not limited to cooling and heating. Our esti-
mates determine future expenditures under the 1.4% price
growth scenario, while those of Clarke et al. use prices de-
termined endogenously through the GCAM energy model.

Table 5.J.1: Comparison of our climate change impact projections with those of other studies. This table
compares our projected impacts of climate change on energy consumption (right column) with those of previous studies
that focus on specific geographical regions and fuels (middle column). Our projected impacts are derived from the main
model (Equation 5.C.4). Caveats to comparability are noted below each study comparison.
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5.K Feedback effects of climate change-induced en-

ergy consumption on emissions

Changing energy consumption patterns due to climate change have the potential to alter
the trajectory of CO2 emissions via changes to emissions-intensive energy production.
However, given the small size of our estimated impacts, these feedbacks are plausibly
negligible. To examine whether this is the case, in Table 5.K.1, we calculate the additional
emissions resulting from our projected impacts to electricity and other fuels consumption
at 2099 under the RCP8.5 emissions scenario and SSP3 socioeconomic scenario. Assuming
all climate change impacts to electricity consumption are powered by a combined cycle
natural gas plant with 46 % efficiency (i.e. the average 2015 efficiency of US natural gas-
fired combined-cycle technology),72 our projected increases in electricity consumption
would lead to 1.3 additional Gt CO2e of annual emissions in 2099. Assuming all climate
change impacts to other fuels consumption are due to changes in natural gas consumption,
our projected decreases in other fuels consumption would reduce annual emissions by 1.8
Gt CO2e in 2099.35 Together, these feedbacks are negligible when compared to total 2099
global emissions of 100 Gt CO2 under RCP 8.5.73

Electricity Other Fuels

Per capita impact (GJ) 1.0 -2.8

Total impact (billion GJ) 12.1 -34.9

Emissions factor (t CO2e per GJ) 0.11 0.05

Additional emissions (Gt CO2e) 1.3 -1.8

Notes: Global average per capita impacts at 2099 to electricity and other
fuels consumption (Row 1) are taken from projections displayed in Figure
5.2C (main text), and are converted to global total impacts (Row 2) by
multiplying by the projected world population in 2099 under SSP3. Mul-
tiplying total electricity impacts by the emissions factor for natural gas74

scaled by 46% efficiency, and multiplying total other fuels impacts by the
emissions factor for natural gas (Row 3) yields additional emissions from
projected climate-change induced electricity and other fuels consumption
(Row 4).

Table 5.K.1: Feedback effects of climate change-induced energy consumption on emissions. This table provides
a calculation of additional emissions in 2099 resulting from projected impacts of climate change on energy consumption
under the RCP8.5 emissions scenario and SSP3 socioeconomic scenario. The calculation assumes that all climate change
impacts to electricity consumption are powered by a combined cycle natural gas plant with 46 % efficiency (i.e. the
average 2015 efficiency of US natural gas-fired combined-cycle technology), and all climate change impacts to other fuels
consumption are due to changes in natural gas consumption.

35These assumptions likely lead to an upper bound in the magnitude of emissions feedbacks.
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Chapter 6:
Conclusion
Understanding the economic impacts of climate change and appropriately pricing the green-
house gas externality is critically important to the welfare of future generations (Interagency
Working Group on Socal Cost of Carbon, 2010; National Academies of Sciences, Engineering,
and Medicine, 2017). Relying on the Ricardian approach, the seminal work of Mendelsohn,
Nordhaus, and Shaw (1994) found that climate impacts on U.S. agricultural profits, net of
adaptation, would likely only be modestly negative and possibly beneficial. Using fixed ef-
fects estimators more robust to omitted variables bias (Deschênes and Greenstone, 2007), the
subsequent literature has found negative climate impacts across a range of outcomes, though
estimates are generally unable to account for adaptation (Auffhammer and Schlenker, 2014;
Carleton and Hsiang, 2016).

The studies presented here combine elements of both the Ricardian and within-estimator
approaches: we use cross-sectional variation in long-run climate to uncover heterogeneity in
the response to short-run (within-estimator) weather shocks. In so doing, we find that adap-
tation does indeed mitigate the effects of weather relative to the effect of an unanticipated
shock.

However, for the first time we also uncover the implied costs of these adaptive actions.
In contrast to Mendelsohn, Nordhaus, and Shaw 1994, we find that accounting for both
adaptation and its costs, negative effects of climate change persist and are widespread. Severe
(∼40%) yield losses persist for major grain growing regions of the world; the costly migration
of cropped areas is substantial, but only offsets ∼10% of producer losses; human mortality
effects persist and are valued at 3.2% of end-of-century global GDP. Only in the case of
global energy consumption do we find gains from climate change – in this case increases in
the consumption of electricity on hot days as locations become hotter on average is offset by
the decreased consumption of heating fuels as cold places both warm and experience fewer
cold days.

Several conclusions follow. First, accounting for both adaptation and its costs is clearly
important for grounding an accurate estimate of the social cost of carbon (SCC). Second,
performing these analyses at a global scale and with high spatial resolution reveals important
sources of heterogeneity – both in impacts as well as in the magnitude of adaptation – that
regionally focused or geographically coarse studies might miss. Third, results such as these
may be useful inputs to the Integrated Assessment Modeling community, who may be able
to incorporate estimates like these into their damage functions, improving their empirical
grounding.
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