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SUMMARY

Premature withdrawal is a notable problem in biomedical research with longitudinal design.

It would complicate statistical analysis with biased or invalid inferences if missing values

due to dropout are simply ignored. As one solution to potentially nonignorable droput, the

selection model assumes a mechanism of outcome-dependent dropout and jointly models the

process of repeated measures and the mechanism of dropout. Previous applications of selec-

tion models mainly resort to likelihood-based inferences using optimization methods such as

simplex or EM-algorithm. This paper implements the modeling strategy using mixed-effects

repeated-measures models with Bayesian inferences. Specifically, the selection model with

random-effects and the one with autoregressive covariance structure are introduced. Markov

Chain Monte Carlo (MCMC) algorithms based on augmented Gibbs samplers are developed

in fitting the models. For demonstration, both simulated and practical data sets are analyzed.

Key words: Augmented Gibbs Sampler, Selection Model, Nonignorable Dropout, Mixed

Models, Repeated Measures

1 INTRODUCTION

In biomedical research with longitudinal design, each subject is measured repeatedly through-

out a period of time. In many longitudinal studies, dropouts (i.e., missing values due to ear-

lier withdrawal) are common. In certain research areas, such as drug addiction [1] and cancer

[2], the proportion of subjects who drop out prematurely is extremely high, e.g., as large as

70% in a randomized buprenorphine versus methadone study [3]. Reasons for dropout are
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usually study-related, e.g., negative side-effects of the testing medicines, ineffectiveness of

the intervention, and inappropriate conduction of the therapy [4]. Without careful handling

of dropouts, either biased parameter estimates or invalid inferences would end up.

By ignoring dropouts, most available software packages treat incomplete repeated mea-

sures as sequences of unequal length, and make inferences based on the observed-data like-

lihood functions [5]. For example, mixed models [6] and marginal models using generalized

estimating equations [7] have been implemented into SAS, R/Splus, and SPSS. Nonetheless,

the assumption of ignorability is rarely the case within practical settings [8]. Depending

on the nature of dropout mechanism, various models for nonignorable models have been

proposed in the past decade (e.g., [9]-[14]).

One strategy is to model the joint distribution of the indicators of dropout and the com-

plete values and then integrate out the missing values. In contrast to the observed-data like-

lihood function, likelihood based on this joint distribution is called full-likelihood functions

[15]. According to [12], [16], and [17], at least three ways can be used to model the joint dis-

tribution. The first way conceives the assumption of outcome-dependent dropout, where dis-

tribution of dropout indicators is conditioned on the values of repeated measures. The second

way assumes a pattern-dependent mechanism, where the distribution of repeated measures

is a mixture of distributions for subjects within distinct sub-groups determined by the pat-

terns of dropout. And the third way adopts the mechanism of parameter-dependent dropout,

where repeated measure values and dropout indicators are conditionally independent given

a group of parameters share by the two parties. Correspondingly, we have three modeling

techniques: selection models [9], pattern-mixture models [18], and shared-parameter models

[19].
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Among the three modeling strategies, selection model is relatively more intuitive. In many

practical settings, the assumption of outcome-dependent dropout mechanism is appealing,

and the case of censoring over cutoff values is a typical example. Selection models originated

from the Tobit model of Heckman [20] and then fully developed by Diggle and Kenward [9]

for continuous repeated measures [8]. Subsequently, it was extended to the non-monotone

setting to deal with intermittent missing values [21]. Selection models for other type of

measures were also developed, e.g., binary repeated measures [22] and ordinal categorical

measures [23].

To evaluate the full likelihood function and obtain likelihood-based inferences, numerical

integration methods and optimization algorithms are necessary. Without expressive forms of

score function and hessian matrix, Diggle and Kenward [9] resorted to the simplex algorithm

[24], a method employing no derivatives. But the algorithm converges unacceptably slowly

and does not provide precision estimators. For categorical repeated measures, Molenberghs,

Kenward, and Lesaffre [23] implemented the EM algorithm for selection models, but it still

suffers similar symptoms of the simplex algorithm. According to [25], the Newton-Raphson

algorithms can be applied with numerical derivation and integration [26], but they are very

sensitive to poor initial choice of parameters and often converges to local maxima or val-

ues on or outside the boundary of the parameter space. Instead of using likelihood-based

inference, this paper advocates the application of MCMC-based Bayesian inference. Taking

advantages of the MCMC method in specifying prior distributions, imputing missing values,

and conducting Monte Carlo integration, many computational difficulties could be allevi-

ated. For demonstration, both simulated and practical data sets with continuous repeated

measures and nonignorbale dropouts are analyzed using the selection models with MCMC
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fitting algorithms.

2 MODEL AND METHOD

2.1 Modeling Repeated Measures

For a longitudinal data set with balanced design, J repeated measures are potentially ob-

served on each of the N subjects at times ti1, . . . , tiJ (i = 1, . . . , N ; j = 1, . . . , J). For the

following discussion, capital symbols are used to represent variables: e.g., Y1, . . . , YJ indicate

response variables and X1, . . . , XK indicate covariates or explanatory variables. Symbols in

lower case are used to represent observed or missing values: yij denote the value of Yj and

xijk denoting the value of Xk recorded at time tij (i = 1, . . . , N ; j = 1, . . . , J ; k = 1, . . . , K).

Further, we let bold symbols represent vectors or matrices. For example, yi = (yi1, . . . , yiJ)T

is vector of values for the repeated measures and xi = [xijk]J×K is a matrix of values of time-

varying or time-independent covariates on the ith subject. Within this paper, we assume that

repeated measures are distributed as multivariate normal, and a repeated-measures model

with structured covariance matrix can be written as

yi = xiβ + εi

where εi ∼ N(0,Σi(α)) independently, α represents the parameters of the covariance matrix,

and β represents the vector of fixed-effects regression coefficients. Determined by the way

of parameterization of the covariance matrix, various forms of mixed models can be derived
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[27]. For example, an AR(1) model assumes that

cov(yij, yik) = σ2ρ|j−k|

where α = (σ2, ρ)T . A standard random-effects model is usually expressed as

yi = xiβ + ziγi + εi

where εi ∼ σ2I, and zi represents covariates associated with random effects γi ∼ N(0,D). In

this model, α = (γ, σ2,D)T and the model can be re-parameterized as the above structured-

covariance model with covariance Σi = ziDzT
i + σ2I.

When some values of repeated measures are missing, we partition yi into two parts yi =

(yobs
i ,ymis

i ), with yobs
i indicating the observed values, and ymis

i indicating values that would

be observed if they were not missing. When missing values are introduced by dropout, the

pattern of missingness can be indicated by a scalar ri (ri = 2, . . . , J + 1), which represents

the actual time of withdrawal for subject i and “ri = J +1” indicates the case of completion

of the study. Since a subject who drops out at baseline does not contribute to the likelihood

function, the case of “ri = 1” is excluded from our consideration.

2.2 Full-Likelihood Functions for Incomplete Longitudinal Data

Ideally, the joint distribution of the complete repeated measures (i.e., yobs
i and ymis

i ) and

dropout patterns (i.e., ri) should be modeled jointly. Correspondingly, we have the full
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likelihood function,

L(θ, φ|yi,xi, ri) ∝
N∏

i=1

f(yi, ri|xi, θ, φ)

where θ = (α, β) represents parameters of the model for repeated measures, and φ represents

the parameters of the dropout mechanism. In practice, after f(yi, ri|xi, θ, φ) is modeled, the

missing values may be integrated out and the actual full-likelihood function for inference

manifests as

L(θ, φ|yobs
i ,xi, ri) ∝

N∏
i=1

∫
f(yi, ri|xi, θ, φ)dymis

i .

According to the possible pathways between yi and ri, there exist three ways in factoring

their joint distribution: outcome-dependent factorization, pattern-dependent factorization,

and parameter-dependent factorization. Thus, three modeling approaches exist for incom-

plete longitudinal data analysis.

(i) Selection models factor the joint distribution into a marginal distribution for yi and a

conditional distribution of ri given yi, i.e.,

f(yi, ri|xi, θ, φ) = f(yi|xi, θ)f(ri|yi,xi, φ)

where the conditional distribution can be interpreted as “self-selection of the ith subject into

a specific dropout group.”

(ii) Pattern-mixture models assume that distribution of repeated measures varies with

the dropout pattern and the joint distribution is factored as

f(yi, ri|xi, θ, φ) = f(yi|ri,xi, θ)f(ri|xi, φ).
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In other words, for a data set with P dropout patterns, the marginal distribution of yi is a

mixture, f(yi|xi, θ) =
∑P

p=1 f(yi|ri = rp,xi, θ
(p))πp, where θ(p) represents the parameters of

f(yi) in the pth pattern and πi = Pr(ri = rp|xi, φ).

(iii) Shared-parameter models assume that yi and ri are conditional independent of each

other, given a group of parameters, ξi,

f(yi, ri|xi, θ, φ) =

∫
f(yi|ξi,xi, θ)f(ri|ξi,xi, φ)f(ξi)dξi.

From the point view of causation, shared parameters ξi play the role of a confounder for

the relationship between ξi and ri, thus can be either observable variables (e.g., gender) or

unobserved variables (e.g., random-effects or latent scores).

In the rest of this paper, we focus on the strategy of selection models. For applications

of other two strategies, please refer to [16], [17] and [8].

2.3 Selection Models for Nonignorable Dropouts

Before describing the selection model, let us first introduce a symbol, di, to denote the

“possible” dropout time for the ith subject who actually drops out at time ri, i.e., di =

1, . . . , ri. Suppressing the dependence on covariates, a selection model assumes: (i) if ri <

J + 1, Pr(di = j) depends on yij and its history Hij = (yi1, . . . , yi,j−1)
T (j = 1, . . . , ri);

(ii) if ri = J + 1, Pr(di = ri) = 1; and (iii) the conditional distribution of yij given Hij is

fij(y|Hij, θ). For this selection model with outcome-dependent dropout, the full likelihood
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function for the ith subject is

Li(θ, φ|yobs
i , ri) ∝

ri−1∏
j=1

f(yij|Hij, θ)

ri−1∏
j=2

[1− Pr(di = j|yij,Hij, φ)]Pr(di = ri|Hi,ri
)

where the dropout probability at ri is

Pr(di = ri|Hi,ri
) =


∫
Pr(di = ri|Hi,ri

, φ)fi,ri
(y|Hi,ri

, θ)dy if ri < J + 1

1 if ri = J + 1 .

Using the chain rue of conditional probability, we have
∏ri−1

j=1 f(yij|Hij, θ) = f(yobs
i |θ).

A natural choice for calculating Pr(di = j|yij,Hij, φ) is the logistic regression,

logitP (di = j|yij,Hij, φ) = φ0 + φ1yij +

j∑
k=2

yi,j+1−kφk.

from which “φ1 6= 0” implies a nonignorable dropout mechanism. Here, we restrict that

Pr(di = 1) = 0.

The full log-likelihood function of the whole data set for (θ, φ) can be partitioned into

l(θ, φ) = l1(θ) + l2(φ) + l3(θ, φ)

where l1(θ) =
∑N

i=1 log f(yobs
i ) corresponds to the observed-data likelihood function for θ,

l2(φ) =
∑N

i=1

∑ri−1
j=2 [1−Pr(di = j|yij,Hij, φ)] and l3(θ, φ) =

∑
i≤N ;ri≤J log(Pr(di = ri|Hi,ri

))

together correspond to the likelihood function for the dropout process. For nonignorable

dropouts, l3(θ, φ) contains information on θ, thus cannot be ignored. If dropouts are ig-
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norable, then l3(θ, φ) depends only on φ, thus can be absorbed into l2(φ). In this case,

estimation of θ can be solely derived from l1(θ).

For a normal longitudinal data set, yi ∼ N(xiβ,Σi(α)), which has the feature of conge-

niality. In other words, the conditional distribution, fij(y|Hij, θ), is a scalar normal, and

the marginal distribution,
∏ri−1

j=1 f(yij|Hij, θ) = f(yobs
i ), is also a multivariate normal. De-

pending on the choice of mixed models for repeated measures, different selection models can

be implemented. In this paper, we specifically consider the selection models with AR(I)

covariance and the one with random effects.

3 BAYESIAN INFERENCE

For selection models, Bayesian inference based on MCMC provides an appealing alternative

to the likelihood-based inferences. By sampling parameters and drawing missing values, the

method of Monte Carlo using Gibbs sampler or Metrapolis-Hasting algorithms offers a nat-

ural option for intergration and optimization, without relying on fully-determined density

functions or analytical derivatives. In the application of the Bayesian inference to the selec-

tion model, each element of the parameter vector ψ = (θ, φ)T is viewed as a variable instead

of a constant, certain prior distributions f(ψ) are specified, and the posterior distribution of

the parameters is obtained using Bayes’ theorem, i.e.,

P (ψ|Y,R) ∝

[
f(yobs

i |θ)
ri−1∏
j=2

[1− Pr(di = j|yij,Hij, φ)]Pr(di = ri|Hi,ri
)

]
× f(ψ).
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Using the method of MCMC, the posterior distribution is obtained through sampling. Infer-

ences are then made as the summary of the statistical features of this posterior distribution,

e.g., median, mean, and standard deviation.

3.1 An Augmented Gibbs Sampler

When evaluating the likelihood function of the selection model, the crucial part of compu-

tation is to calculate the actual dropout probabilities, Pr(di = ri|Hi,ri
, φ), which requires

integrating out the missing value yi,ri
over (−∞,+∞). Only for simple cases, is it feasible

to maximize the likelihood function analytically. Using an augmented Gibbs sampler, we

can alleviate the computation difficulty by first impute the missing values and then draw

parameters one by one conditionally on the observed and imputed data. More specifically,

the augmented Gibbs sampler is an iterative procedure with each iteration consisting of two

steps.

(I) Imputation-Step, where the missing values are updated by drawing from the conditional

predictive distribution. That is, for i = 1 to N , draw ymis
i,ri

from

ymis
i,ri

∼ fi,ri
(y|yobs

i ,xi, ri, ψ).

For multivariate-normally distributed measures, this predictive condition is a scalar normal

distribution.

(II) Estimation-Step, where the parameters are drawn from the posterior distribution ψ ∼

P (ψ|Y∗,X,R) in the following order according to the decomposition of the joint distribution
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into full-conditional distributions,

θ ∼ f(θ|ψ\θ,y∗1, . . . ,y∗N ,X,R)

φ ∼ f(φ|ψ\φ,y∗1, . . . ,y∗N ,X,R)

where y∗i = (yi1, . . . , yi,ri−1, y
mis
i,ri

)T , Y∗ = (y∗1, . . . ,y
∗
N)T , and “\” means “excluding” (e.g.,

ψ\α = (β, φ)T ).

In the above algorithm, missing values are treated as another group of parameters in

an approximate sense, but missing values are in fact unobserved values controlled by the

parameters. They are simulated from the predictive function, instead of full-conditional

distributions. In order to differentiate from standard Gibbs sampler, we call the above

algorithm “augmented” Gibbs sampler. Similar ideas were adopted by Schafer [15] in his

data augmentation algorithms for creating imputations of missing values seen in multivariate

data sets.

Starting from an initial point and repeating the two steps with large enough iterations,

the procedure would converge to its stationary distribution, i.e., the joint distribution of

parameters and the missing values. Thus, after a long enough burning period, the simulated

missing values and parameters can be used for parameter estimation. Note that, this algo-

rithm can be used for conducting multiple imputation [28], where multiple imputed data sets

are first created and then analyzed using standard longitudinal models for complete data.

For the purpose of imputing all missing values (i.e., ymis
i = (yi,ri

, . . . , yiJ)T ), we only need

to replace ymis
i,ri

with ymis
i in the imputation step. The estimation-step remains unchanged,

because the dropout probability at ri only depends on the current and previous values (i.e.,
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yi,ri
and Hi,ri

).

3.2 Sampling Full-Conditional Distributions

The estimation step of the above algorithm is itself a hybrid Gibbs sampler, which involves

other MCMC sampling schemes for simulating parameters using full-conditional distribu-

tions. If a conditional distribution has a known form, the corresponding parameter vector

can be sampled directly. For example, missing values (ymis
i,ri

or ymis
i ) can be simulated di-

rectly using a scalar or multivariate normal distribution. Otherwise, the Metropolis sampling

method and its variants can be applied [29]. Nonetheless, depending on the form of the den-

sity function, we recommend the following two approaches, which are usually more efficient.

If the conditional distribution has a log-concave from, the most efficient method called

adaptive rejection sampling [30] is applied in the following two steps: (i) set the upper

hull and lower hall functions, which are piecewise linear functions respectively consisting of

tangent lines and cords of the logarithmic density function at selected points; (ii) sample a

point from the cumulative density function determined by the up hall, and then update the

upper and lower halls depending on whether the sampled value is accepted or rejected.

When the conditional density function does not have a log-concave form, the intuitive

griddy Gibbs sampler [31] can be applied. This sampler is based on the empirical distribution

method and consists if three steps: (i) determine the range of the conditional density function

up to a constant; (ii) divide the range with or without respect to the probability change to

form a grid; and (iii) sample from the grid points by a simple or sophisticated version of

inverse sampling.
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3.3 Prior Specification

When there is no actual prior information or historical data, non-informative priors can be

adopted, which usually end up with results that are consistent to those based on the max-

imum likelihood estimate. More specifically, normal distribution with infinite variance are

used for all the regression coefficients, random-effects, and the logrithm of residual variance.

Flat uniform distributions are used for space restricted parameters, such as the correlation

parameter in the AR(1) structure, −1 < ρ < 1.

3.4 The Selection Model with AR(1) Covariance

For the AR(1) covariance matrix, we have

Σ−1
J =

1

σ2(1− ρ2)



1 −ρ 0 0 . . . 0

−ρ 1 + ρ2 −ρ 0 . . . 0

...
...

...
...

. . .
...

0 . . . 0 −ρ 1 + ρ2 −ρ

0 . . . 0 0 −ρ 1



and det(ΣJ) = (σ2)J(1 − ρ2)J−1. The augmented Gibbs sampler consists of the following

steps.
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I. Imputation-Step: draw missing values from

yi,ri
∼ fi,ri

(y|yobs
i ,xobs

i , ψ) ∝ 1√
2πνi

exp{−(y −
∑K

k=1 xi,ri,kβk − µi)
2

2νi

}

× exp(φ0 + φ1y +
∑ri

k=2 yi,ri+1−kφk)

1 + exp(φ0 + φ1y +
∑ri

k=2 yi,ri+1−kφk)

where µi = CT
(ri−1)Σ

−1
ri−1(y

obs
i − xobs

i β) and νi = σ2(1 − CT
(ri−1)Σ

−1
ri−1C(ri−1)), with xobs

i =

(xi1, . . . ,xi,ri−1)
T and C(j) = (ρj−1, . . . , ρ)T . This can be derived from regressing yi,ri

to yobs
i .

II. Estimation-Step: draw parameters one by one in the following order

(1) For i = 1, . . . , K, draw fixed parameters:

βk ∼ f(βk|ψ\βk
,Y∗,X∗) ∝

N∏
i=1

exp{−
(y∗i − x∗iβ)Σ−1

ri
(y∗i − x∗iβ)T

2
}

(2) Draw variance parameter:

ρ ∼ f(ρ|ψ\ρ,Y∗,X∗) ∝
N∏

i=1

1√
2π det(Σri

)
exp{−

(y∗i − x∗iβ)T Σ−1
ri

(y∗i − x∗iβ)

2
}

(3) Draw variance of residuals:

σ2 ∼ f(σ2|ψ\σ2 ,Y∗,X∗) ∝
N∏

i=1

1√
2π det(Σi)

exp{−(y∗i − x∗iβ)T Σ−1
i (y∗i − x∗iβ)

2
}
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(4) For k = 1, . . . , J , draw parameters of the dropout mechanism:

φk ∼ f(φk|ψ\φk
,Y∗) ∝

N∏
i=1

ri−1∏
j=2

1

1 + exp(φ0 + φ1yij +
∑j

k=2 yi,j+1−kφk)

× exp(φ0 + φ1yi,ri
+

∑ri

k=2 yi,ri+1−kφk)

1 + exp(φ0 + φ1yi,ri
+

∑ri

k=2 yi,ri+1−kφk)

In the above density functions, x∗i = (xi1, . . . ,xi,ri
)T and X∗ = (x∗1, . . . ,x

∗
N)T . When draw

each parameter, all other parameters are viewed as known constants. As shown in Appendix

1, all above conditional distributions except the one for ρ have log-concave forms, directly

or after some transformation, thus can be simulated using the method of adaptive rejection

sampling. A convenience sampling method for ρ is the Metroplis-Hasting algorithm.

3.5 The Selection Model with Random-Effects

In the selection model with random-effects, the random-effects model for repeated measures

can be rewritten as yij =
∑K

k=1 xijkβk +
∑q

k=1 zijkγik + εij, where εij ∼ N(0, σ2). Here, we

restrict that random-effects are independent of each other with γik ∼ N(0, σ2
γk

) (k = 1, . . . , q).

In the augmented Gibbs sampler, the missing values (y1,r1 , . . . , yN,rN
) and parameters (ψ =

(β, γ, σ2, σ2
γ, φ)) are simulated in the following steps.

I. Imputation-Step: Draw missing values:

yi,ri
∼ fi,ri

(y|yobs
i ,xi,ri

, zi,ri
, ψ) ∝ exp{−(y −

∑K
k=1 xi,ri,kβk −

∑q
k=1 zi,ri,kγik)

2

2σ2
}

× exp(φ0 + φ1y +
∑ri

k=2 yi,ri+1−kφk)

1 + exp(φ0 + φ1y +
∑ri

k=2 yi,ri+1−kφk)

II. Estimation-Step: draw parameters one by one:
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(1) For fixed-effect parameters:

βk ∝ f(βk|ψ\βk
,Y∗,X∗,Z∗) ∝

N∏
i=1

ri∏
j=1

exp{−(yij −
∑K

k=1 xijkβk −
∑q

k=1 zijkγik)
2

2σ2
}.

(2) For i = 1, . . . , N ; k = 1, . . . , q, simulate random effects:

f(γik|ψ\γik
,Y∗,X∗,Z∗) ∝

ri∏
j=1

exp{−(yij −
∑K

k=1 xijkβk −
∑q

k=1 zijkγik)
2

2σ2
} exp{− γik

2

2σ2
γk

}

(3) For k = 1, . . . , q, draw variance of random-effects:

f(σ2
γk
|ψ\σ2

γk
) ∝

N∏
i=1

1√
2πσ2

γk

exp{− γik
2

2σ2
γk

}

(4) For the residual variance:

f(σ2|ψ\σ2 ,Y∗,X∗,Z∗) ∝
N∏

i=1

ri∏
j=1

1√
2πσ2

exp{−(yij −
∑K

k=1 xijkβk −
∑q

k=1 zijkγik)
2

2σ2
}

(5) For the parameters of dropout model:

f(φk|ψ\φk
,Y∗) ∝

N∏
i=2

ri−1∏
j=1

1

1 + exp(φ0 + φ1yij +
∑j+1

k=2 yi,j+1−kφk)

× exp(φ0 + φ1yiri
+

∑ri+1
k=2 yi,ri+1−kφk)

1 + exp(φ0 + φ1yiri
+

∑ri+1
k=2 yi,ri+1−kφk)

In above densities, z∗i = (zi1, . . . , zi,ri
)T and Z∗ = (z∗1, . . . , z

∗
N)T . As shown in Appendix

2, all above conditional distributions have log-concave forms, directly or after some trans-

formation, thus can be simulated using the method of adaptive rejection sampling.
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4 APPLICATION

4.1 A Simulation Study

To compare with the performance of the maximum likelihood estimation of Diggle and

Kenward [9], similar design was adopted for our simulation study. Each generated data

set consists of two groups of equal number units: the “control” and “treatment” groups.

Repeated measures are simulated using the mixed model with AR(1) covariance and linear

trend: E(yij) = β0 + β1tj + β2tjgi (i = 1, . . . , N ; j = 1, . . . , J), where group indicator gi=1

(or 0) if the ith unit belongs to the treatment (or control) group. Parameters were set as:

β0 = 10, β1 = 0, β2 = −1, and σ2 = 1. The interest lies in the parameter β2, which indicates

the difference in slope between the two groups.

For each data set, sample size was chosen as either N = 50 or N = 100, correlation

parameter ρ took values 0.5, 0.75, and 0.9, while number of repeated measures for completers

was fixed at J = 10. For each combination of ρ and N , 100 sets of data were generated

by using multivariate-normal pseudo-random number generator. Then, for each set, three

mechanisms of dropout were applied according to the logistic model:

logitP (di = j|yij, . . . , yi1, φ) = φ0 + φ1yij + φ2yi,j−1.

Three cases were considered here: (i) DCAR (dropout completely at random), i.e., φ1 =

φ2 = 0; (ii) DAR (dropout at random), i.e., φ1 = 0; and (iii) ND (nonignorable dropout),

i.e., φ2 = 0. The parameters of the three dropout mechanisms were specified to achieve

about 33%, 50%, and 66% of missing values in the data matrix.
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The relative biases, expressed as (β̂2 − β2)/β2 ∗ 100%, in estimating the slope difference

are shown in Table 1. The coverage rate of the estimated slope difference are shown in Table

2. Seen from Table 1, the relative bias in the estimate of slope difference is almost negligible

for most data sets even for those with only 50 units. The estimate of the parameter of

interest is very insensitive to the missing rates or correlation parameter ρ. The performance

of augmented Gibbs sampler is quite satisfactory from the perspective of unbiasedness. From

table 2, it is seen that the coverage rates are mostly around or above 95 percent for most

data sets. The coverage rates are fairly insensitive across the the dropout mechanism and

level of ρ. Using this criterion of coverage, the augmented Gibbs sampler, is proved to be

very powerful for the AR(1) selection model. Compared with the results based on maximum

likelihood estimation with simplex algorithm, our Bayesian inference with Gibbs sampler

provides better solutions.

<INSERT TABLE 1 HERE>

<INSERT TABLE 2 HERE>

4.2 A Carbon Monoxide Data Set

A longitudinal data set containing carbon monoxide levels was analyzed by Shoptaw et al.

[32]. The data set came from a smoking cessation clinical trial conducted on 175 methodone-

maintained tobacco smokers to investigate the treatment efficacy of two behavioral therapies:

contingency management (CM) and relapse prevention (RP). The smokers were randomized

into four groups: Control (N1 = 43), RP-only (N2 = 42), CM-only (N3 = 43), and RP+CM

(N4 = 47). During the 12-week treatment, for each participant, up to 36 measures of carbon
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monoxide levels were assessed from expired breath samples three time per week. Ignoring

the missing values, Figure 1 depicts the mean values of observed carbon monoxide levels for

the four treatment groups, after a log(1+y) transformation. Also depicted on the figure are

the point wise standard deviations and ANOVA with p-values smaller than 0.001. Assuming

that missing values are ignorable, a mixed model with AR(1) covariance and piecewise linear

trend supported a favorable treatment efficacy of contingency management.

<INSERT FIGURE 1 HERE>

We reanalyzed the data by fitting an AR(1) selection model to the carbon monoxide

levels after week one. After a step-wise selection procedure, the following mean structure

was chosen to investigate the treatment effects of the two behavioral therapies,

E(yij) = β0 + β1CMi + β2RPi + β3RPi ∗ CMi + β4BaseCOi + β5Patchesi

where CMi and RPi respectively indicate whether the ith smoker received contingency man-

agement or relapse prevention, BaseCOi indicates baseline carbon monoxide level, and

Patchesi represents the number of nicotine patches the smoker received during the study. For

modeling the dropout mechanism, the logistic regression model was fitted with ri depending

on yi,ri
and yi,ri−1.

Since there are moderate amount of intermittent missing values in the data set, the

strategy of multiple partial imputation of Yang and Shoptaw [4] was adopted. This is a

extended method of multiple imputation [28], where intermittent missing values are imputed

first, then the partially-imputed data sets are analyzed using the selection model, and finally
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the multiple estimated parameters are combined to make an overall inferential statement.

Using PROC MI of SAS with the monotone option, four versions of intermittent missing

values were imputed. By applying the AR(1) selection model to each of the four partially-

imputed data set, the estimates of interesting parameters are shown in Table 3, from which

we notice small between-imputation variances for all the parameters. In other words, the

fraction of missing information due to intermittent missingness was low. After consolidating

the four sets of estimates using a set of rules of Rubin (1987), it is seen that only the

treatment effect of contingency management is significant (β̂1 = −0.28; T2490 = −5.88 with

p < 0.0001). Relapse prevention turns to be ineffective and there is no interaction effect

between the two behavioral therapies. The estimated regression coefficient φ̂1 is significantly

larger than zero (φ̂1 = 1.28; T2024 = 3.86 with p = 0.0002), suggesting that the higher the

underlying missing value is, the larger probability of dropping out. Therefore, the dropouts

are outcome-dependent nonignorable.

<INSERT TABLE 3 HERE>

By diving all the smokers into two sub groups: completers (those who completed the

study) and withdrawers (those who dropped out prematurely), we aimed to study the influ-

ence of dropout to the treatment efficacy. Using the same method to created three versions

of intermittent missing values, then the AR(1) selection model was fitted to each of the three

partially-imputed data sets. We fitted the model to the data collected on all the subjects

and to the subset data collected on the withdrawers. For data from completers, only the

counterpart of the AR(1) model for repeated measures was fitted since there are no dropouts

in this sub population. The estimated parameters of interest are listed in Table 4. It is
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seen that the results are very different across sub populations but do not vary much across

versions of partial imputations. Contingency management turns out to be significantly ef-

fective for the completers. It may be still effective for withdrawers, but the significance level

is less convincing. The dropout mechanism supported by all the subjects seems to be ex-

tremely outcome-dependent nonignorable (i.e., φ1 6= 0, φ2 = 0), but the dropout mechanism

estimated from the withdrawers seems to be intermediate between the case of “dropout at

random” and the case of pure nonignorability. Although both φ̂1 and φ̂2 are not significant,

their positivity suggests that the higher the current and the previous carbon monoxide lev-

els, the larger probability that subject would drop out of the study. Because the number of

subjects who dropped out is only about half of the number of completers and there are less

observed data points in the withdrawers’ data, the corresponding information is significantly

lower for this smaller group of subjects.

<INSERT TABLE 4 HERE>

5 DISCUSSION

After a brief review on modeling strategies for incomplete longitudinal data analysis based

on full-likelihood functions, this paper focused on the specific case of selection modeling to

deal with potentially nonignorable dropouts. An augmented Gibbs sampler was proposed

for making Bayesian inferences to two forms of selection model, one with AR(1) covariance

structure and one with random-effects model in modeling repeated measures. Both simula-

tion studies and practical applications confirmed the validity of the Bayesian inference using

the augmented Gibbs sampler and and its superiority over the likelihood-based inference
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using the method of maximum likelihood estimation.

The selection models with autoregressive and random-effects provide a simpler and con-

venient solution for nonignorable dropouts. These two mixed-effects models are popularly

available in commercial software packages and practical experience have proved their valid-

ity and efficiency in modeling repeated measures in clinical trials, which usually come with

small to moderate sample sizes. By implementing the AR(1) and the random-effects model

with independent random effects, we aimed to provide two typical examples, so that other

options of covariance-structured models for various types of repeated measures can be devel-

oped similarly within the framework of generalized linear mixed models [6]. When modeling

the dropouts, the logistic regression model was used in the paper, but there are many other

possibilities. For example, the length of the treatment before dropout can be modeled using

survival analysis techniques. A two-level latent model can be applied, too, where the scalar

continuous latent variable is regressed to the values of repeated measures, and then it is

dichotomized to indicate whether the subject drops out.

When conducting Bayesian computation using the Gibbs sampler, either informative or

noninformative prior distributions can be applied. For a practical data, if there are no infor-

mative priors, a general suggestion is to adopt the idea of empirical Bayes, where the space

of parameters are restricted to the neighborhood of the values elicited from the estimation

based on observed-data likelihood. For example, to determine the proper scope of regression

coefficients of the repeated-measures model, we may run “PROC Mixed” in SAS to obtain

maximum likelihood estimates assuming that dropouts are ignorable. From the fitted model,

the possible scopes of values of fixed parameters can be elicited. Similar, we can model the

missingness indicators to determine the neighborhood of the parameters of the logistic re-
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gression model by assuming that dropouts are “dropout completely random” and “dropout

at random” [4], [14]. This method can help us select initial points that are not far from the

center of the true posterior distributions. When modeling the converges of the augmented

Gibbs sampler, either the summary for simulated parameters or the summary for missing

values can be used. Because the dimension of the parameter vector is usually much smaller

than that of the missing values, it is usually more efficient to monitor the parameters.

Finally, we emphasize the problem of high sensitivity of the incomplete data modeling

strategies. Because the true model and mechanism for measurement and missingness are

usually unverifiable from practical contexts, it is recommended that multiple models should

be fitted to the same set of data so that the influence of assumption on missingness or

dropout could be investigated. When conducting sensitivity analysis, we recommend the

joint application of selection, pattern-mixture, and shared-parameter models. For this pur-

pose, the selection models proposed here along with the Bayesian inferences provide a useful

device. Bayesain inferences for Pattern-mixture models and a shared-parameter model called

random-effects Markov transition model are presented in Yang et al. [13] and Li, et al. [33].

A software package named MPI [25] is available at request. It has implemented selection,

pattern-mixture, and shared-parameter models with MCMC-based Bayesian inferences.
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Appendix: Proof of Log-Concave Form of the Condition Distributions

1. The Selection Model with AR(1) Covariance

(1) For the missing values, the predictive function is log-concave because

∂2logfi,ri
(y|yobs

i ,xobs
i , ψ)/∂y2

i,ri
= − 1

νi

− φ2
1 exp(φ0 + φ1y +

∑ri

k=2 yi,ri+1−kφk)

(1 + exp(φ0 + φ1y +
∑ri

k=2 yi,ri+1−kφk))2
< 0

(2) For the fixed-parameters, the conditional density function is log-concave because

∂2logf(βk|ψ\βk
,Y∗,X∗)/∂βk =

N∑
i=1

−(xi1k, . . . , xi,ri,k)Σ
−1
ri

(xi1k, . . . , xi,ri,k)
T < 0

(3) For the residual variance, the conditional density function after a logarithm transform,

s = log(σ2), is log-concave

∂2logf(s|ψ\s,Y∗,X∗)/∂s2 = −
N∑

i=1

(y∗i − x∗iβ)T Σ(ρ)−1
ri

(y∗i − x∗iβ)

2es
< 0

(4) For the parameters of the dropout mechanism, the conditional density function is log-

concave because

∂2logf(φk|ψ\φk
,Y∗)/∂φ2

k =
N∑

i=1

ri−1∑
j=2

−
y2

i,j+1−k exp(φ0 + φ1yij +
∑j

k=2 yi,j+1−kφk)

(1 + exp(φ0 + φ1yij +
∑j

k=2 yi,j+1−kφk))2

−
y2

i,ri+1−k exp(φ0 + φ1yi,ri
+

∑ri

k=2 yi,ri+1−kφk)

(1 + exp(φ0 + φ1yi,ri
+

∑ri

k=2 yi,ri+1−kφk))2
< 0
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2. The Selection Model with Random-Effects

(1) For the missing values, the predictive function is log-concave because

∂2logfi,ri
(y|xi,ri

, zi,ri
, ψ)/∂y2

iri
= − 1

σ2
− φ2

1 exp(φ0 + φ1y +
∑ri

k=2 yi,ri+1−kφk)

(1 + exp(φ0 + φ1y +
∑ri

k=2 yi,ri+1−kφk))2
< 0

(2) For the fixed-parameters, the conditional density function is log-concave because

∂2logf(βk|ψ\βk
,Y∗,X∗,Z∗)/∂β2

k =
N∑

i=1

ri∑
j=1

−(xijk)
2

σ2
< 0

(3) For the random effects, the conditional density function is log-concave because

∂2logf(γik|ψ\γik
,Y∗,X∗,Z∗)/∂γ2

ik =

ri∑
j=1

−(zijk)
2

σ2
− 1

σ2
γk

< 0

(4) For the variance of random effects, the conditional density function after a logarithm

transform, s = log(σ2
γk

), is log-concave,

∂2logf(s|ψ2
\s,Y

∗)/∂s2 = −
N∑

i=1

γik
2

2es
< 0

(5) For the residual variance, the conditional density function after a logarithm transform,

s = log(σ2), is log-concave

30



∂2logf(s|ψ\s,Y∗,X∗,Z∗)/∂s2 = −
N∑

i=1

ri∑
j=1

(yij −
∑K

k=1 xijkβk −
∑q

k=1 zijkγik)
2

2es
< 0

(6) For the parameters of the dropout mechanism, the conditional density function is log-

concave because

∂2logf(φk|ψ\φk
,Y∗)/∂φ2

k =
N∑

i=1

ri−1∑
j=2

−
y2

i,t+1−k exp(φ0 + φ1yij +
∑j

k=2 yi,j+1−kφk)

(1 + exp(φ0 + φ1yij +
∑j

k=2 yi,j+1−kφk))2

−
y2

i,ri+1−k exp(φ0 + φ1yi,ri
+

∑ri

k=2 yi,ri+1−kφk)

(1 + exp(φ0 + φ1yi,ri
+

∑ri

k=2 yi,ri+1−kφk))2
< 0
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Dropout Mechanism DCAR DAR ND
Average Missing Rate 33% 50% 66% 33% 50% 66% 33% 50% 66%

Sample size N=50
ρ = 0.50 -0.05 -0.30 -0.49 0.06 0.22 0.22 0.01 -0.07 -0.35
ρ = 0.75 -0.33 -0.18 0.18 0.12 -0.06 0.28 -0.03 -0.06 -0.49
ρ = 0.90 0.11 -0.03 0.11 -0.24 0.07 0.22 0.09 -0.5 -0.64

Sample size N=100
ρ = 0.50 -0.25 -0.03 0.03 0.08 0.11 -0.05 -0.57 0.12 0.01
ρ = 0.75 0.00 -0.12 0.03 -0.31 0.13 -0.22 0.04 0.05 -0.44
ρ = 0.90 0.08 0.22 0.05 -0.10 -0.18 -0.60 -0.39 -0.17 -0.10

Table 1: Averaged percentage bias (%) in the estimate of slope difference from the 100
simulated data sets.
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Dropout Mechanism DCAR DAR ND
Average Missing Rate 33% 50% 66% 33% 50% 66% 33% 50% 66%

Sample Size N=50
ρ = 0.50 96 95 96 98 93 95 96 96 95
ρ = 0.75 95 95 95 95 96 94 96 96 92
ρ = 0.90 95 96 94 94 98 95 96 95 94

Sample Size N=100
ρ = 0.50 95 93 94 97 95 95 94 93 95
ρ = 0.75 95 91 92 90 98 93 95 94 94
ρ = 0.90 97 95 96 93 94 98 97 96 95

Table 2: Coverage rate (%) in the estimate of slope difference from the 100 simulated data
sets.
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Partial Imputation # 1 2 3 4 Overall
β̂1(S.D.) -0.29 (0.05) -0.27 (0.05) -0.28 (0.05) -0.28 (0.05) -0.28 (0.05)
β̂2(S.D.) 0.01 (0.05) 0.02 (0.05) 0.02 (0.05) 0.02 (0.05) 0.02 (0.05)
β̂3(S.D.) -0.08 (0.06) -0.10 (0.07) -0.08 (0.07) -0.08 (0.06) -0.08 (0.07)
φ2(S.D.) -0.02 (0.24) -0.08 (0.20) -0.00 (0.23) -0.02 (0.23) -0.03 (0.23)
φ1(S.D.) 1.27 (0.37) 1.37 (0.28) 1.24 (0.34) 1.25 (0.31) 1.28 (0.33)

Table 3: Estimate of treatment effect and parameters for dropout probability on four imputed
carbon monoxide data sets.
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Partial Imputation # subjects β̂1(S.D.) φ̂2(S.D.) φ̂1(S.D.)
1 All units -0.29(0.05) -0.02(0.24) 1.27(0.37)

Completers -0.35(0.06) – –
Dropouts -0.11(0.09) 0.31(0.51) 0.27(0.30)

2 All units -0.27(0.05) -0.08(0.20) 1.37(0.28)
Completers -0.34(0.05) – –
Dropouts -0.07(0.10) 0.48(0.46) 0.14(0.27)

3 All units -0.28(0.05) -0.00(0.23) 1.24(0.34)
Completers -0.34(0.06) – –
Dropouts -0.10(0.09) 0.41(0.35) 0.22(0.25)

Table 4: Estimate of treatment effect and parameters of dropout mechanism on three im-
puted carbon monoxide data sets, repeated for three types of subjects: all units, completers-
only, and withdrawers-only.
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FIGURE CAPTIONS

Figure 1. The average and standard deviation (SD) curves for the log-scaled carbon monox-

ide levels. On this plot, the four mean curves of the log-scaled carbon monoxide levels and the

corresponding point-wise standard errors are drawn for each of the four treatment conditions:

Control, RP-only, CM-only, and RP+CM (RP=Relapse Prevention, CM=Contingency Man-

agement). Vertical bars indicate the estimated standard errors of average carbon monoxide

levels. The stars “*”) over the x-axis mark the time points (i.e., visit numbers) where

the carbon monoxide levels are significantly different indicated by a point-wise ANOVA (p-

value¡0.001). Y-axis indicates values of carbon monoxide levels after log(1+y) transform.

X-axis represents number of clinic visit for study participants (1, . . . , 36).
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Figure 1.
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