
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Flexible Models for Secure Systems /

Permalink
https://escholarship.org/uc/item/0sj4f48q

Author
Meiklejohn, Sarah

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0sj4f48q
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Flexible Models for Secure Systems

A dissertation submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy

in

Computer Science

by

Sarah Meiklejohn

Committee in charge:

Professor Mihir Bellare, Co-Chair
Professor Stefan Savage, Co-Chair
Professor Sam Buss
Professor Massimo Franceschetti
Professor Daniele Micciancio

2014

Copyright

Sarah Meiklejohn, 2014

All rights reserved.

The Dissertation of Sarah Meiklejohn is approved and is acceptable in

quality and form for publication on microfilm and electronically:

Co-Chair

Co-Chair

University of California, San Diego

2014

iii

EPIGRAPH

Computers are useless. They can only give you answers.

Pablo Picasso

iv

TABLE OF CONTENTS

Signature Page . iii

Epigraph . iv

Table of Contents . v

List of Figures . vii

List of Tables . ix

Acknowledgements . x

Vita . xii

Abstract of the Dissertation . xiii

Chapter 1 Introduction . 1
1.1 Scope and Purpose . 3
1.2 Organization . 5

Chapter 2 Background and Notation . 7
2.1 Digital Signatures . 8
2.2 Non-Interactive Zero-Knowledge Proofs . 8

Chapter 3 Key-Versatile Signatures . 12
3.1 Key-versatile signatures . 20
3.2 RKA-secure signatures from RKA-secure OWFs 30
3.3 Joining signature to encryption with no public-key overhead 37
3.4 KDM-secure storage . 48

Chapter 4 Anonymity in Bitcoin . 70
4.1 Bitcoin Background . 73

4.1.1 Bitcoin protocol description . 74
4.1.2 Participants in the Bitcoin network . 76
4.1.3 Bitcoin network statistics . 77

4.2 Data Collection . 80
4.2.1 From our own transactions . 80
4.2.2 From other sources . 82

4.3 Account Clustering Heuristics . 84
4.3.1 Defining account control . 85
4.3.2 Graph structure and definitions . 86
4.3.3 Our heuristics . 87

v

4.3.4 The impact of change addresses . 90
4.3.5 Refining Heuristic 2 . 92

4.4 Service Centrality . 95
4.4.1 The effect of popular services . 95
4.4.2 Traffic analysis of illicit activity . 97

Chapter 5 Conclusions . 107

Bibliography . 109

vi

LIST OF FIGURES

Figure 2.1. Games defining security of signature scheme DS. Left: Game
defining unforgeability. Right: Game defining strong unforgeability. 9

Figure 2.2. Games defining security of NIZK system Π. Left: Game defining
zero knowledge. Right: Game defining simulation extractability. . 10

Figure 3.1. Games defining security of F-keyed signature scheme DS. Left:
Game defining simulatability. Right: Game defining key extractabil-
ity. 22

Figure 3.2. Games for the proof of Theorem 3.1.1. Game G1 includes the
boxed code while G0 does not. 25

Figure 3.3. Games defining Φ-RKA security of a function family F (left) and
an F-keyed signature scheme DS (right). 30

Figure 3.4. Games used in proof of Theorem 3.2.1. Game G1 includes the
boxed code and G0 does not. 32

Figure 3.5. Games defining security of joint encryption and signature scheme
JES. Left: Game IND defining privacy against chosen-ciphertext
attack in the presence of a signing oracle. Right: Game SUF
defining strong unforgeability in the presence of a decryption oracle. 39

Figure 3.6. Game defining IND-CCA security of PKE scheme PKE. 42

Figure 3.7. Game used in the proof of part (1) of Theorem 3.3.1. 43

Figure 3.8. Games used in the proof of part (2) of Theorem 3.3.1. Game G1
includes the boxed code and G0 does not. 45

Figure 3.9. Game defining Φ-KDM security of a public-key encryption scheme
PKE. 49

Figure 3.10. Games defining KDM-security of storage scheme ST: Privacy (left)
and unforgeability (right). 52

Figure 3.11. Games used in the proof of part (1) of Theorem 3.4.1. Game G0
includes the boxed code and game G1 does not. 67

Figure 3.12. Game defining alternate form of SUF for the proof of part (2) of
Theorem 3.4.1. 68

vii

Figure 3.13. Games used in the proof of part (2) of Theorem 3.4.1. Game G0
includes the boxed code and game G1 does not. 69

Figure 4.1. How a Bitcoin transaction works. 76

Figure 4.2. (In color online.) The distribution, over time and averaged weekly,
of transaction values. The plot and legend both run, bottom to top,
from the smallest-valued transactions to the highest. 78

Figure 4.3. (In color online.) The trend, over time and averaged weekly, of
how long public keys hold on to the bitcoins received. The plot on
the left shows the percentage over all public keys, and the plot on
the right shows the percentage over all value transacted. (. . .) 79

Figure 4.4. (In color online.) The physical items we purchased with bitcoins,
including silver quarters from Coinabul, coffee from Bitcoin Coffee,
and a used Boston CD from Bitmit. (. . .) . 84

Figure 4.5. (In color online.) Figures illustrating the effect of self-churn on
measurements, and the different ways Heuristics 1 and 2 deal with
self-churn. 91

Figure 4.6. (In color online.) A visualization of the user network. 94

Figure 4.7. (In color online.) The effect Satoshi Dice has had on the Bitcoin
network, in terms of both activity and its influence on trends. 96

Figure 4.8. (In color online.) The balance of the vendors category (in black,
although barely visible because it is dominated by Silk Road), Silk
Road (in blue), and the 1DkyBEKt address (in red). 100

Figure 4.9. (In color online.) The balance of each major category, represented
as a percentage of total active bitcoins; i.e., the bitcoins that are not
held in sink addresses. 101

viii

LIST OF TABLES

Table 3.1. Φ-RKA secure OWFs: We succinctly define the families and the Φ-
key-simulator showing their Φ malleability and hence their Φ-RKA
security. 36

Table 4.1. The various services we interacted with, grouped by (approximate)
type. 83

Table 4.2. Tracking bitcoins from 1DkyBEKt. 102

Table 4.3. Tracking thefts. 104

ix

ACKNOWLEDGEMENTS

To begin with the most obvious, I would like to thank my parents and my brother

for continually pushing me to do better and for their unwavering support in all my

endeavors.

Academically, I feel indebted to all of my advisors (both official and unofficial):

Anna Lysyanskaya, Hovav Shacham, Stefan Savage, Mihir Bellare, and Geoff Voelker.

Please know that none of this would have been possible without you, and that I am deeply

grateful for the unique support that each of you provided.

I would also like to thank the many other members of the UCSD faculty and

administrative staff who helped me out throughout the years, my peers who have made

it down this long road with me, and the many supportive members of the crypto and

security communities who have endured long conversations at conferences and beyond.

I would also like to thank Melissa Chase and the other members of the MSR

Redmond crypto group, who have provided me with a welcome home for the summer

and proved to be great friends and collaborators.

I would also like to thank all my other co-authors, of whom I have been lucky

to have many: Theresa Calderon, Steve Checkoway, Vacha Dave, Hitesh Dharmdasani,

Chris Erway, David Freeman, Chris Grier, Thea Hinkle, Danny Huang, Grant Jordan,

Ryan Kastner, Markulf Kohlweiss, Alptekin Küpçü, Kirill Levchenko, Allison Lewko,

Damon McCoy, Keaton Mowery, Jason Oberg, Marjori Pomarole, Tim Sherwood, Alex

Snoeren, Susan Thomson, Brent Waters, Nick Weaver, and Greg Zaverucha. Thanks for

putting up with me!

None of this happened in a bubble, so I would like to thank the employees and

other regulars of the cafes, bars, restaurants, yoga studios, and printmaking shops I have

frequented, who provided a necessary and invigorating change of pace.

x

Finally, thank you of course to my family, friends, and companions throughout

the years: you have all somehow made this worthwhile.

Chapter 2, in part, is a reprint of the material as it appears in Advances in

Cryptology - EUROCRYPT ’14. Mihir Bellare, Sarah Meiklejohn, Susan Thomson,

Springer Lecture Notes in Computer Science, volume 8441, May 2014. The dissertation

author was a primary investigator and author of this paper.

Chapter 3, in part, is a reprint of the material as it appears in Advances in

Cryptology - EUROCRYPT ’14. Mihir Bellare, Sarah Meiklejohn, Susan Thomson,

Springer Lecture Notes in Computer Science, volume 8441, May 2014. The dissertation

author was a primary investigator and author of this paper.

Chapter 4, in part, is a reprint of the material as it appears in Proceedings of

the 13th ACM SIGCOMM Conference on Internet Measurement. Sarah Meiklejohn,

Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon McCoy, Geoffrey M. Voelker,

and Stefan Savage, ACM, November 2013. The dissertation author was the primary

investigator and author of this paper.

xi

VITA

2008 Sc.B. in Mathematics, Brown University

2009 Sc.M. in Computer Science, Brown University

2014 Ph.D. in Computer Science, University of California, San Diego

xii

ABSTRACT OF THE DISSERTATION

Flexible Models for Secure Systems

by

Sarah Meiklejohn

Doctor of Philosophy in Computer Science

University of California, San Diego, 2014

Professor Mihir Bellare, Co-Chair
Professor Stefan Savage, Co-Chair

Modern computing and interactions have become increasingly complex over the

last decade, resulting in an online ecosystem with many more options for users, but less

transparent information about their security and, in particular, their privacy.

The resulting gap between security and functionality has given rise to various

problems and concerns. While these problems — e.g., the spread of malware, data

breaches on (supposedly) secure servers, mining of private user data on social networks —

might seem quite diverse, many of them revolve around the broader issue of what

happens to systems when they get deployed. Systems that may have seemed fully secure

xiii

in development often fail to fulfill these security goals in the real world, as adversaries

may have capabilities that were not taken into account when the system was designed,

and even honest users may interact with the system in unexpected ways.

In this dissertation, I describe two areas in which this gap between the abstract

protocol and the deployed system leads to security concerns that ultimately impact

every user of the system. The first area considers what happens when adversaries have

unexpected capabilities; in particular, we examine how to model sophisticated attacks

on the security of a system, such as side channels and fault injection, and then how to

design flexible cryptosystems that can tolerate such attacks.

The second area considers the more benign scenario in which users, purely by

virtue of their own decisions, may unknowingly cede some of their own privacy. In

particular, we examine user anonymity in the Bitcoin network, which is a purely virtual

currency that acts as an electronic version of cash. By combining publicly available

information with minimal data gathered by hand, we find that an average Bitcoin user is

experiencing a fairly low level of anonymity, making Bitcoin ultimately unattractive for

criminal activity such as money laundering.

xiv

Chapter 1

Introduction

In the early days of the Internet, its functionality was relatively straightforward:

essentially, users — like the canonical Alice and Bob — could either visit static webpages

or send each other messages. In many cases, Alice wanted to ensure that the messages she

received really were from Bob, which established a need to provide some sort of integrity;

i.e., for Bob to be able to authenticate himself to Alice. Especially once users began

making purchases online, and thus entering sensitive information like credit card numbers

into forms, the need to protect the contents of these potentially sensitive messages was

established as well.

These dual motivations of authenticity and confidentiality — in what follows,

referred to jointly as secure communication — have now inspired decades-long lines of

research in the areas of digital signatures [115, 100, 67, 82, 105, 126, 39, 46] and encryp-

tion [118, 81, 33, 67, 53, 108, 111, 55], as well as the development of SSL/TLS [61],

the standardization of signature schemes such as ECDSA [127], symmetric encryption

schemes such as AES [2], and public-key encryption schemes such as RSA [118], and

the eventual deployment and widespread adoption of libraries such as OpenSSL. These

existing solutions have proved highly effective at providing secure communication, and

now help form the backbone of security on the Internet. In the ensuing decades, how-

ever, online functionality has exploded far beyond the single simple scenario of secure

1

2

communication. For example, users now broadcast information on a variety of social

networks such as Facebook and Twitter; upload content (e.g., movies, pictures, executa-

bles) to and download content from peer-to-peer networks such as BitTorrent; and use

payment systems such as Square and Paypal to send money to both businesses and other

individuals. To complicate matters further, even secure communication is not as simple

as it once was: communication is now carried out over a variety of networks (e.g., WiFi)

using a variety of constrained devices (e.g., smartphones), and cryptographic keys are

stored on a variety of hardware (e.g., a general-purpose chip).

All of these diverse forms of online interaction now account for the vast majority

of traffic on the Internet — a 2013 report by Sandvine [123] shows that 31% of all

downstream traffic in North America is due to Netflix alone, compared to 10% for HTTP

(regular web browsing) and 2% for SSL (secure communication) — and result in a rich

ecosystem in which the security concerns of Alice and Bob go far beyond the simple

scenario of malicious eavesdroppers learning the messages they send each other.

Unfortunately, the development of secure solutions has not caught up with this

expanded functionality, which has led to a significant gap between the many ways in

which users engage online and the tools that they can use to maintain security and privacy.

(For the most part, this gap extends even beyond secure tools to a basic understanding of

how different activities compromise user security.) Concretely, there have been many

examples of how even secure-seeming tools fail to provide protection against motivated

adversaries. Just to name a few prominent examples, studies have shown that encrypted

VoIP (i.e., the technology behind systems such as Skype) can be broken [133, 134];

browser security warnings are often not as effective as intended [65, 125, 60, 3]; the

Tor network (designed to anonymize Web traffic) has limitations to the anonymity it

provides [110, 31, 92, 107, 28]; and even the technologies underlying basic secure

communication are not as safe as one might hope [131, 48, 93, 112, 4].

3

Given this current atmosphere, one might naturally wonder what has caused this

rift between security and functionality, and moreover what can be done to fix it. In some

cases, the reason for the lack of security is fairly obvious: a service might have ignored

or poorly implemented an important security feature, or might have enabled an attacker

to hack into their server — thereby contributing to the increasingly common issue of data

breaches — by failing to implement sufficient security measures.

The larger issue, however, is more subtle than simply blaming an implementation

or system design. In designing a complex system, it is difficult to anticipate the myriad

ways that users — both honest and malicious — will interact with the system, or how the

decision of some users will affect the security of others. Furthermore, the capabilities of

adversaries are continually evolving, so it is difficult to predict how a system deployed

today will perform with respect to an attack carried out a decade or more in the future.

1.1 Scope and Purpose

In this dissertation, we examine two methods for identifying ways in which

secure systems — even ones with good abstract designs — fail to provide the intended

security in practice. The first method focuses on identifying and actively preventing

certain adversarial behavior, while the second method takes a more passive approach in

identifying common patterns among honest users and the ways that these patterns affect

their security (and the security of their fellow users).

To try to actively prevent certain attacks or adversarial behavior, we adopt an

approach commonly used in theoretical cryptography. Briefly, the cryptographic approach

to security takes a system or desired functionality (e.g., digital signatures) and models

it formally as a collection of algorithms. Then, within this formal model, one can

mathematically prove that an adversary — also modeled as an algorithm — attempting

to execute a given attack against the system (e.g., producing forged signatures) can

4

successfully do so only if it takes a certain number of steps (e.g., if the adversary must

take 280 steps, the system achieves 80-bit security). If the system and corresponding

attack are correctly modeled, then these solutions can provide long-lasting security.

The caveat, however, is that often these formal models make simplifying as-

sumptions or work at a fairly high level of abstraction, and in doing so fail to capture

real-world adversarial capabilities. For example, the standard model for digital signatures

assumes that the signing key is used only to create signatures (so in particular is not

being used for any other application), and that the signing key is stored on a device

that is completely tamper-resilient and produces no side channels. In practical settings

where these assumptions are violated — e.g., when the same RSA key is reused for both

decrypting ciphertexts and signing messages, in the EMV protocol [68, 69, 70, 71], when

keys are stored on devices that don’t sufficiently prevent tampering [6, 91, 37, 129]

or produce side channels [95, 96, 41, 83, 117] — this standard model thus provides no

security whatsoever; i.e., a signature scheme with a proof of security might nevertheless

be completely insecure in practice.

To complement the cryptographic approach, is it therefore important to study not

only the formal models for secure systems, but also the ways in which such systems are

actually used in practice. Studying adversarial capabilities such as fault injection and

tampering can inform system designers on how to strengthen or otherwise improve exist-

ing cryptographic models, but studying the behavior of honest users helps to investigate

an arguably more subtle point: what security do users provide (or fail to provide) for

themselves, even in the absence of powerful adversaries?

The most effective method for studying the behavior of honest users is to simply

measure it directly. In cases where this is not possible — often because information

about user behavior is not public — one can nevertheless glean some information by

conducting user studies. Again, just to cite a few examples, researchers have used

5

access to social network data to examine general network dynamics [135] and privacy

implications [98, 14]; conducted user studies (most notably using Amazon’s Mechanical

Turk) to better understand the security of technologies such as non-password-based

authentication [136, 124, 40]; and — focusing again on basic secure communication —

have performed comprehensive Internet-wide scans to examine the vulnerabilities of TLS

certificates [89, 101, 64].

1.2 Organization

The rest of the dissertation proceeds as follows. In Chapter 2, we first present

some preliminary definitions and concepts as they pertain to the rest of the dissertation.

In particular, we introduce the notions of digital signatures and non-interactive zero-

knowledge proofs.

In Chapter 3, we adopt the cryptographic approach to security and examine

certain underlying assumptions in the formal models for digital signatures. In particular,

we revisit the standard model for digital signatures, and examine the two problematic

settings described above; i.e., the settings wherein the same key is used to encrypt and

sign [87, 113], and the key is stored on potentially non-tamper-resilient devices. We

additionally consider a third setting, in which the signing key might be used to create

signatures on functions of the signing key itself. (This last setting turns out to be useful

when the signature is used to add integrity to encryption schemes secure with respect to

key-dependent messages [30].) We first present a general solution called key-versatile

signatures that provides a way to achieve provable security in each of these settings — and

in particular a way that preserves existing security and does not add extra key material —

and then discuss the concrete implications for each of them. The work presented in this

chapter originally appeared in [21].

6

In Chapter 4, we then adopt the measurement approach, and look in particular

at the way that users engage with the Bitcoin protocol [109]. Bitcoin is a purely digital,

decentralized currency that was first deployed on January 3 2009, and has since enjoyed

enormous success — as of this writing one bitcoin was worth over 500 USD — along

with significant notoriety: bitcoins are routinely stolen from users (both in the form of

direct theft, but also Ponzi schemes [128] and other scams), and are used to pay a variety

of criminals ranging from ransomware operators [130] to drug dealers [84]. We find

that certain standard patterns — that we call idioms of use, as they are not inherent to

the Bitcoin protocol — significantly erode the anonymity of Bitcoin users, to the point

where it is feasible to track flows of bitcoins throughout the network. We conclude that

users are not achieving the level of anonymity they might hope for, and thus adversaries

are unlikely to find Bitcoin particularly attractive for criminal purposes such as money

laundering. The work presented in this chapter originally appeared in [104].

Finally, in Chapter 5, we conclude the dissertation and consider how these two

distinct approaches to security can be extended and used in a complementary manner.

Chapter 2

Background and Notation

In this chapter, we define some terminology and cryptographic primitives —

namely digital signatures and non-interactive zero-knowledge proofs — that will be used

throughout the rest of the dissertation. We first introduce some basic notation.

The empty string is denoted by ε . If x is a (binary) string then |x| is its length. If

S is a finite set then |S| denotes its size and s←$ S denotes picking an element uniformly

from S and assigning it to s. We denote by λ ∈ N the security parameter and by 1λ its

unary representation.

Algorithms are randomized unless otherwise indicated. For both randomized and

deterministic algorithms, “PT” stands for “polynomial-time.” By y← A(x1, . . . ;R), we

denote the operation of running algorithm A on inputs x1, . . . and coins R and letting y

denote the output. By y←$ A(x1, . . .), we denote the operation of letting y← A(x1, . . . ;R)

for random R. We denote by [A(x1, . . .)] the set of points that have positive probability of

being output by A on inputs x1, Adversaries are algorithms.

Game playing framework. We use games in definitions of security and in proofs. A

game G (e.g., Figure 3.1) has a main procedure whose output (what it returns) is the

output of the game. We let Pr[G] denote the probability that this output is the boolean

true. The boolean flag bad, if used in a game, is assumed initialized to false.

7

8

2.1 Digital Signatures

Chapter 3 and Chapter 4 deal closely with the notion of a digital signature scheme.

In Chapter 3, we consider general settings in which the security of the signature scheme

is affected by the context in which it is used, and in Chapter 4 we consider signatures as

an integral component of the Bitcoin protocol design.

Informally, a digital signature scheme is — as discussed in the introduction —

used to provide integrity or authentication; in this way it can be thought of as the digital

analogue to a regular signature. Formally, a digital signature scheme DS specifies the

following PT algorithms: via pp←$ DS.Pg(1λ) one generates public parameters pp com-

mon to all users; via (sk,pk)←$ DS.Kg(1λ ,pp) a user can generate a secret signing key sk

and corresponding public verification key pk; via σ←$ DS.Sig(1λ ,pp,sk,M) the signer

can generate a signature σ on a message M ∈ {0,1}∗; via d← DS.Ver(1λ ,pp,pk,M,σ)

a verifier can deterministically produce a decision d ∈ {true, false} regarding whether

σ is a valid signature of M under pk. We say that DS is correct if DS.Ver(1λ ,pp,pk,M,

DS.Sig(1λ ,pp,sk,M)) = true for all λ ∈ N, pp ∈ [DS.Pg(1λ)], (sk,pk) ∈ [DS.Kg(1λ ,

pp)], and all M. We say that DS is unforgeable if Advuf
A (λ) is negligible for every PT

adversary A, where Advuf
A (λ) = Pr[UFA

DS(λ)] and game UF is specified on the left-hand

side of Figure 2.1. We say that DS is strongly unforgeable if Advsuf
A (λ) is negligible for

every PT adversary A, where Advsuf
A (λ) = Pr[SUFA

DS(λ)] and game SUF is specified on

the right-hand side of Figure 2.1. These definitions are based on [82].

2.2 Non-Interactive Zero-Knowledge Proofs

In Chapter 3, we build a digital signature scheme from a non-interactive zero-

knowledge (NIZK) proof. Informally, a zero-knowledge proof consists of an interaction

between two parties, a prover and a verifier, in which the prover is trying to convince

9

main UFA
DS(λ)

Q← /0 ; pp←$ DS.Pg(1λ)

(sk,pk)←$ DS.Kg(1λ ,pp)
(M,σ)←$ ASign(1λ ,pp,pk)
Ret (DS.Ver(1λ ,pp,pk,M,σ) and M 6∈ Q)

Sign(M)

σ←$ DS.Sig(1λ ,pp,sk,M)

Q← Q∪{M}
Ret σ

main SUFA
DS(λ)

Q← /0 ; pp←$ DS.Pg(1λ)

(sk,pk)←$ DS.Kg(1λ ,pp)
(M,σ)←$ ASign(1λ ,pp,pk)
Ret (DS.Ver(1λ ,pp,pk,M,σ) and (M,σ) 6∈ Q)

Sign(M)

σ←$ DS.Sig(1λ ,pp,sk,M)

Q← Q∪{(M,σ)}
Ret σ

Figure 2.1. Games defining security of signature scheme DS. Left: Game defining
unforgeability. Right: Game defining strong unforgeability.

the verifier that a certain statement is true. If at the end of this interaction, the verifier

learns no information beyond the validity of the statement, then the proof is said to be

zero knowledge. If the interaction furthermore consists of only a single message sent

from the prover to the verifier, then the proof is said to be non-interactive.

Formally, suppose R: {0,1}∗×{0,1}∗→ {true, false}. For x ∈ {0,1}∗ we let

R(x) = {w : R(x,w) = true} be the witness set of x. We say that R is an NP-relation if

it is computable in time polynomial in the length of its first input and there is a function

` such that R(x)⊆ {0,1}`(|x|) for all x ∈ {0,1}∗. We let L(R) = { x : R(x) 6= /0} be the

language associated to R. The fact that R is an NP-relation means that L(R) ∈ NP.

A non-interactive (NI) system Π for R specifies the following PT algorithms: via

crs←$ Π.Pg(1λ) one generates a common reference string crs; via π←$ Π.P(1λ ,crs,x,w)

the prover given x and w∈R(x) generates a proof π that x∈ L(R); via d←Π.V(1λ ,crs,x,

π) a verifier can produce a decision d ∈ {true, false} regarding whether π is a valid proof

that x∈ L(R). We require completeness, namely Π.V(1λ ,crs,x,Π.P(1λ ,crs,x,w)) = true

for all λ ∈ N, all crs ∈ [Π.Pg(λ)], all x ∈ {0,1}∗ and all w ∈ R(x). We say that Π is

zero-knowledge (ZK) if it specifies additional PT algorithms Π.SimPg and Π.SimP

10

main ZKA
Π,R(λ)

b←${0,1} ; crs1←$ Π.Pg(1λ)

(crs0,std,xtd)←$ Π.SimPg(1λ)

b′←$ AProve(1λ ,crsb)

Ret (b = b′)

Prove(x,w)

If not R(x,w) then Ret false

If b = 1 then π←$ Π.P(1λ ,crs1,x,w)
Else π←$ Π.SimP(1λ ,crs0,std,x)
Ret π

main SEA
Π,R(λ)

Q← /0 ; (crs,std,xtd)←$ Π.SimPg(1λ)

(x,π)←$ AProve(1λ ,crs)
If x 6∈ L(R) then Ret false

If not Π.V(1λ ,crs,x,π) then Ret false

If (x,π) ∈ Q then Ret false

w←$ Π.Ext(1λ ,crs,xtd,x,π)
Ret not R(x,w)

Prove(x,w)

If not R(x,w) then Ret ⊥
π←$ Π.SimP(1λ ,crs,std,x)
Q← Q∪{(x,π)}
Ret π

Figure 2.2. Games defining security of NIZK system Π. Left: Game defining zero
knowledge. Right: Game defining simulation extractability.

such that Advzk
Π,R,A(·) is negligible for every PT adversary A, where Advzk

Π,R,A(λ) =

2Pr[ZKA
Π,R(λ)]−1 and game ZK is specified on the left-hand side of Figure 2.2. This

definition is based on [32, 56]. We say that Π is simulation-extractable (SE) if it specifies

an additional PT algorithm Π.Ext such that Advse
Π,R,A(·) is negligible for every PT adver-

sary A, where Advse
Π,R,A(λ) = Pr[SEA

Π,R(λ)] and game SE is specified on the right-hand

side of Figure 2.2. This definition is based on [56, 85, 86, 62].

The first construction of SE NIZKs (using a stronger notion of simulation ex-

tractability) was given in [85], but for a fairly restricted language related to sets of pairing

product equations in bilinear groups. In [62] (and further formalized in [88]), the authors

provide a generic construction of SE NIZKs from a (regular) NIZK, an IND-CCA en-

cryption scheme, and a one-time signature, which establishes that SE NIZKs exist for all

NP.

11

Acknowledgments

Chapter 2, in part, is a reprint of the material as it appears in Advances in

Cryptology - EUROCRYPT ’14. Mihir Bellare, Sarah Meiklejohn, Susan Thomson,

Springer Lecture Notes in Computer Science, volume 8441, May 2014. The dissertation

author was a primary investigator and author of this paper.

Chapter 3

Key-Versatile Signatures

One of the recommended principles of sound cryptographic design is key separa-

tion, meaning that keys used for one purpose (e.g., encryption) should not be used for

another purpose (e.g., signing). The reason is that, even if the individual uses are secure,

the joint usage could be insecure [59]. On the other hand, there are important applications

where key reuse is not only desirable but crucial to maintain security, and that when done

“right” it works. We offer key-versatile signatures as a general tool to enable signing

with existing keys already in use for another purpose, without adding key material but

maintaining security of both the new and the old usage of the keys. Our applications in-

clude: (1) adding signing capability to existing encryption capability with zero overhead

in the size of the public key; (2) obtaining signatures secure against related-keys attacks

(RKA-secure signatures) from RKA-secure one-way functions; and (3) adding integrity

to encryption while preserving key-dependent message (KDM) security.

A closer look. Key-versatility refers to the ability to take an arbitrary one-way function

F and return a signature scheme where the secret signing key is a random domain point x

for F and the public verification key is its image y = F(x). By requiring strong simulata-

bility and key-extractability security conditions [51] from these “F-keyed” signatures,

12

13

and then defining F based on keys already existing for another purpose, we will be able

to add signing capability while maintaining existing keys and security.

The most compelling motivation comes from security against related-key attack

(RKA) and security for key-dependent messages (KDM), technically challenging areas

where solutions create, and depend on, very specific key structures. We would like to

expand the set of primitives for which we can provide these forms of security. Rather

than start from scratch, we would like to leverage the existing, hard-won advances in

these areas by modular design, transforming a primitive X into a primitive Y while

preserving RKA or KDM security. Since security is relative to a set of functions (either

key or message deriving) on the space of keys, the transform must preserve the existing

keys. Key-versatile signatures will thus allow us to create new RKA and KDM secure

primitives in a modular way.

We warn that our results are theoretical feasibility ones. They demonstrate that

certain practical goals can in principle be reached, but the solutions are not efficient.

Below we begin with a more direct application of key-versatile signatures — to joining

signatures to an existing encryption capability without expanding the size of the public

key — and then go on to our RKA and KDM results.

Joining signatures to encryption with zero public-key overhead. Suppose Alice

has keys (ske,pke) for a public-key encryption scheme and wants to also have signing

capability. Certainly, she could pick new and separate keys (sks,pks) for her favorite

signature scheme and use those. This approach means, however, that Alice’s public key,

now pk = (pke,pks), has doubled in size. Practitioners ask if one can do better. We want

a joint encryption and signature (JES) scheme [87, 113], where there is a single key-

pair (sk,pk) used for both encryption and signing. We aim to minimize the public-key

14

overhead, (loosely) defined as the size of pk minus the size of the public key pke of the

underlying encryption scheme.

Haber and Pinkas [87] initiated an investigation of JES. They note that the key re-

use requires defining and achieving new notions of security particular to JES: signatures

should remain unforgeable even in the presence of a decryption oracle, and encryption

should retain IND-CCA privacy even in the presence of a signing oracle. In the random

oracle model [24], specific IND-CCA-secure public-key encryption schemes have been

presented where signing can be added with no public-key overhead [87, 52, 97]. In

the standard model, encryption schemes have been presented that allow signing with a

public-key overhead lower than that of the “Cartesian product” solution of just adding a

separate signing key [87, 113], with the best results, from [113], using IBE or combining

encryption and signature schemes of [42, 35].

All these results, however, pertain to specific encryption schemes. We step back

to ask a general theoretical question. Namely, suppose we are given an arbitrary IND-

CCA-secure public-key encryption scheme. We wish to add signing capability to form a

JES scheme. How low can the public-key overhead go? The (perhaps surprising) answer

we provide is that we can achieve a public-key overhead of zero. The public key for

our JES scheme remains exactly that of the given encryption scheme, meaning we add

signing capability without changing the public key.1 We emphasize again that this is for

any starting encryption scheme.

To do this, we let F be the function that maps the secret key of the given encryption

scheme to the public key.2 The assumed security of the encryption scheme means this

1 Zero public-key overhead has a particular advantage besides space savings, namely that, in adding
signing, no new certificates are needed. This makes key management significantly easier for the potentially
large number of entities already using Alice’s public key. This advantage is absent if the public key is at all
modified.

2 Not all encryption schemes will directly derive the public key as a deterministic function of the secret
key, although many, including Cramer-Shoup [54], do. However, we can modify any encryption scheme to

15

function is one-way. Now, we simply use an F-keyed signature scheme, with the keys

remaining those of the encryption scheme. No new keys are introduced. We need

however to ensure that the joint use of the keys does not result in bad interactions that

make either the encryption or the signature insecure. This amounts to showing that the

JES security conditions, namely that encryption remains secure even given a signing

oracle and signing remains secure even given a decryption oracle, are met. This will

follow from the simulatability and key-extractability requirements we impose on our

F-keyed signatures. See Section 3.3.

New RKA-secure signatures. In a related-key attack (RKA) [94, 26, 20, 16] an adver-

sary can modify a stored secret key and observe outcomes of the cryptographic primitive

under the modified key. Such attacks may be mounted by tampering [37, 27, 78], so

RKA security improves resistance to side-channel attacks. Achieving proven security

against RKAs, however, is broadly recognized as very challenging. This has lead several

authors [79, 16] to suggest that we “bootstrap,” building higher-level Φ-RKA-secure3

primitives from lower-level Φ-RKA-secure primitives. In this vein, [16] show how to

build Φ-RKA signatures from Φ-RKA PRFs. Building Φ-RKA PRFs remains difficult,

however, and we really have only one construction [15]. This has lead to direct (non-

bootstrapping) constructions of Φ-RKA signatures for classes Φ of polynomials over

certain specific pairing groups [23].

We return to bootstrapping and provide a much stronger result, building Φ-

RKA signatures from Φ-RKA one-way functions rather than from Φ-RKA PRFs.4 The

have this property, without changing the public key, by using the coins of the key-generation algorithm as
the secret key.

3 As per the framework of [20, 16], security is parameterized by the class of functions Φ that the
adversary is allowed to apply to the key. Security is never possible for the class of all functions [20], so we
seek results for specific Φ.

4 For a one-way function, the input is the “key.” In attempting to recover x from F(x), the adversary
may also obtain F(x′) where x′ is created by applying to x some modification function from Φ. The
definition is from [79].

16

difference is significant because building Φ-RKA one-way functions under standard

assumptions is easy. Adapting the key-malleability technique of [15], we show that many

natural one-way functions are Φ-RKA secure assuming nothing more than their standard

one-wayness. In particular this is true for discrete exponentiation over an arbitrary group

and for the one-way functions underlying the LWE and LPN problems. In this way we

obtain Φ-RKA signatures for many new and natural classes Φ.

The central challenge in our bootstrapping is to preserve the keyspace, meaning

that the space of secret keys of the constructed signature scheme must be the domain of

the given Φ-RKA one-way function F . (Without this, it is not even meaningful to talk of

preserving Φ-RKA security, let alone to show that it happens.) This is exactly what an

F-keyed signature scheme allows us to do. The proof that Φ-RKA security is preserved

exploits strong features built into our definitions of simulatability and key-extractability

for F-keyed signatures, in particular that these conditions hold even under secret keys

selected by the adversary. See Section 3.2.

KDM-secure storage. Over the last few years we have seen a large number of sophis-

ticated schemes to address the (challenging) problem of encryption of key-dependent

data (e.g., [30, 38, 11, 10, 45, 47, 29, 13, 102, 9, 43, 44, 19, 76, 90]). The most touted

application is secure outsourced storage, where Alice’s decryption key, or some function

thereof, is in a file she is encrypting and uploading to the cloud. But in this setting

integrity is just as important as privacy. To this end, we would like to add signatures, thus

enabling the server, based on Alice’s public key, to validate her uploads, and enabling

Alice herself to validate her downloads, all while preserving KDM security.

What emerges is a new goal that we call KDM-secure (encrypted and authenti-

cated) storage. In Section 3.4 we formalize the corresponding primitive, providing both

syntax and notions of security for key-dependent messages. Briefly, Alice uses a secret

17

key sk to turn her message M into an encrypted and authenticated “data” object that

she stores on the server. The server is able to check integrity based on Alice’s public

key. When Alice retrieves data, she can check integrity and decrypt based on her secret

key. Security requires both privacy and integrity even when M depends on sk. (As we

explain in more depth below, this goal is different from signcryption [137], authenticated

public-key encryption [5] and authenticated symmetric encryption [22, 119], even in the

absence of KDM considerations.)

A natural approach to achieve our goal is for Alice to encrypt under a symmetric,

KDM-secure scheme and sign the ciphertexts under a conventional signature scheme. But

it is not clear how to prove the resulting storage scheme is KDM-secure. The difficulty is

that sk would include the signing key in addition to the encryption (and decryption) key

K, so that messages depend on both these keys while the KDM security of the encryption

only covers messages depending on K. We could attempt to start from scratch and design

a secure storage scheme meeting our notions. But key-versatile signatures offer a simpler

and more modular solution. Briefly, we take a KDM-secure public-key encryption scheme

and let F be the one-way function that maps a secret key to a public key. Alice holds

(only) a secret key sk and the server holds pk = F(sk). To upload M, Alice re-computes

pk from sk, encrypts M under it using the KDM scheme, and signs the ciphertext with an

F-keyed signature scheme using the same key sk. The server verifies signatures under pk.

In Section 3.4 we present in full the construction outlined above, and prove that it

meets our notion of KDM security. The crux, as for our RKA-secure constructions, is that

adding signing capability without changing the keys puts us in a position to exploit the

assumed KDM security of the underlying encryption scheme. The strong simulatability

and key-extractability properties of our signatures do the rest. We note that as an added

bonus, we assume only CPA KDM security of the base encryption scheme, yet our

storage scheme achieves CCA KDM security.

18

Getting F-keyed signatures. In Section 3.1 we define F-keyed signature schemes and

show how to construct them for arbitrary one-way F . This enables us to realize the above

applications.

Our simulatability condition, adapting [51, 1, 50], asks for a trapdoor allowing

the creation of simulated signatures given only the message and public key, even when

the secret key underlying this public key is adversarially chosen. Our key-extractability

condition, adapting [51], asks that, using the same trapdoor, one can extract from a

valid signature the corresponding secret key, even when the public key is adversarially

chosen. Theorem 3.1.1, showing these conditions imply not just standard but strong

unforgeability, functions not just as a sanity check but as a way to introduce, in a simple

form, a proof template that we will extend for our applications.

Our construction of an F-keyed signature scheme is a minor adaptation of a NIZK-

based signature scheme of Dodis, Haralambiev, López-Alt and Wichs (DHLW) [62].

While DHLW [62] prove leakage-resilience of their scheme, we prove simulatability

and key-extractability. The underlying SE NIZKs are a variant of simulation-sound

extractable NIZKs [56, 85, 86] introduced by [62] under the name tSE NIZKs and shown

by [62, 88] to be achievable for all of NP under standard assumptions.

Discussion and related work. F-keyed signatures can be viewed as a special case

of signatures of knowledge as introduced by Chase and Lysyanskaya [51]. The main

novelty of our work is in the notion of key-versatility, namely that F-keyed signatures

can add signing capability without changing keys, and the ensuing applications to Joint

Enc/Sig, RKA and KDM. In particular our work shows that signatures of knowledge

have applications beyond those envisaged in [51].

The first NIZK-based signature scheme was that of [18]. It achieved only un-

forgeability. Simulatability and extractability were achieved in [51] using dense cryp-

19

tosystems [58, 57] and simulation-sound NIZKs [122, 56]. The DHLW construction we

use can be viewed as a simplification and strengthening made possible by the significant

advances in NIZK technology since then.

F-keyed signatures, and, more generally, signatures of knowledge [51] can be

seen as a signing analogue of Witness Encryption [77, 80], and we might have named

them Witness Signatures. GGSW [77] show how witness encryption allows encryption

with a flexible choice of keys, just as we show that F-keyed signatures allow signing

with a flexible choice of keys. We note that by starting from the IND-CPA PRG-based

PKE scheme of [77], making it IND-CCA via SSE NIZKs in a way that does not change

the public key [88, 50], and then applying our transformation discussed above, we can

obtain a specific JES scheme where the public key is the result of a PRG on the secret

key, so that the keys are not only the same for encryption and signing but particularly

short in practice via blockcipher-based instantiations of the PRG.

Signcryption [137], authenticated public-key encryption [5], JES [87, 113] and

our secure storage goal all have in common that both encryption and signature are

involved. However, in signcryption and authenticated public-key encryption, there are

two parties and thus two sets of keys, Alice encrypting under Bob’s public key and

signing under her own secret key. In JES and secure storage, there is one set of keys,

namely Alice’s. Thus for signcryption and authenticated public-key encryption, the

question of using the same keys for the two purposes, which is at the core of our goals

and methods, does not arise. Self-signcryption [73] is however similar to secure storage,

minus the key-dependent message aspect. Authenticated symmetric encryption [22, 119]

also involves both encryption and authentication, but under a shared key, while JES and

secure storage involve public keys. KDM-secure authenticated symmetric encryption

was studied in [19, 12].

20

KDM-secure signatures were studied in [106], who show limitations on the

security achievable. Our secure storage scheme bypasses these limitations by signing

ciphertexts rather than plaintexts and by avoiding KDM-secure signatures altogether: we

use F-keyed signatures and are making no standalone claims or assumptions regarding

their KDM security. Combining KDM encryption and KDM signatures would not give

us KDM-secure storage because the keys for the two primitives would be different and

we want joint KDM security.

Secure storage is an amalgam of symmetric and asymmetric cryptography, encryp-

tion being of the former kind and authentication of the latter. With secure storage, we are

directly modeling a goal of practical interest rather than trying to create a general-purpose

tool like many of the other works just mentioned. The difference between JES and secure

storage is that in the former, arbitrary messages may be signed, while in the latter only

ciphertexts may be signed. The difference is crucial for KDM security, which for JES

would inherit the limitations of KDM-secure signatures just mentioned, but is not so

limited for secure storage.

3.1 Key-versatile signatures

For F a family of functions, we define F-keyed signature schemes, which augment

the basic digital signature schemes presented in Chapter 2. The requirement for F-keyed

signatures is that the secret key sk is an input for an instance fp of the family and the public

key pk = F.Ev(1λ , fp,sk) is the corresponding image under this instance, the instance fp

itself specified in public parameters. We intend to use these schemes to add authenticity

in a setting where keys (sk,pk) may already be in use for another purpose (such as

encryption). We need to ensure that signing will neither lessen the security of the existing

usage of the keys nor have its own security be lessened by it. To ensure this strong form

of composability, we define simulatability and key-extractability requirements for our

21

F-keyed schemes. The fact that the keys will already be in use for another purpose also

means that we do not have the luxury of picking the family F, but must work with an

arbitrary family emerging from another setting. The only assumption we will make on F

is thus that it is one-way. (This is necessary, else security is clearly impossible.) With

the definitions in place, we go on to indicate how to build F-keyed signature schemes for

arbitrary, one-way F.

We clarify that being F-keyed under an F assumed to be one-way does not mean

that security (simulatability and key-extractability) of the signature scheme is based

solely on the assumption that F is one-way. The additional assumption is a SE-secure

NIZK. (But this itself can be built under standard assumptions.) It is possible to build a

signature scheme that is unforgeable assuming only that a given F is one-way [120], but

this scheme will not be F-keyed relative to the same F underlying its security, and it will

not be simulatable or key-extractable.

Function families. A function family F specifies the following. Via fp←$ F.Pg(1λ)

one can in PT generate a description fp of a function F.Ev(1λ , fp, ·): F.Dom(1λ , fp)→

F.Rng(1λ , fp). We assume that membership of x in the non-empty domain F.Dom(1λ , fp)

can be tested in time polynomial in 1λ , fp,x and one can in time polynomial in 1λ , fp sam-

ple a point x←$ F.Dom(1λ , fp) from the domain F.Dom(1λ , fp). The deterministic eval-

uation algorithm F.Ev is PT. The range is defined by F.Rng(1λ , fp) = {F.Ev(1λ , fp,x) :

x ∈ F.Dom(1λ , fp) }. Testing membership in the range is not required to be PT. (But

is in many examples.) We say that F is one-way or F is a OWF if Advow
F,I(·) is neg-

ligible for all PT I, where Advow
F,I(λ) = Pr[F.Ev(1λ , fp,x′) = y] under the experiment

fp←$ F.Pg(1λ) ; x←$ F.Dom(1λ , fp) ; y← F.Ev(1λ , fp,x) ; x′←$ I(1λ , fp,y).

22

main SIMA
DS,F(λ)

b←${0,1}
(fp,ap1)←$ DS.Pg(1λ) ; pp1← (fp,ap1)

(ap0,std,xtd)←$ DS.SimPg(1λ)

pp0← (fp,ap0)

b′←$ ASign(1λ ,ppb) ; Ret (b = b′)

Sign(sk,M)

If sk 6∈ F.Dom(1λ , fp) then Ret ⊥
pk← F.Ev(1λ , fp,sk)
If b = 1 then σ←$ DS.Sig(1λ ,pp1,sk,M)

Else σ←$ DS.SimSig(1λ ,pp0,std,pk,M)

Ret σ

main EXTA
DS,F(λ)

fp←$ F.Pg(1λ) ; Q← /0
(ap,std,xtd)←$ DS.SimPg(1λ)

pp← (fp,ap) ; (pk,M,σ)←$ ASign(1λ ,pp)
If pk 6∈ F.Rng(1λ , fp) then Ret false

If not DS.Ver(1λ ,pp,pk,M,σ) then
Ret false

If (pk,M,σ) ∈ Q then Ret false

sk←$ DS.Ext(1λ ,pp,xtd,pk,M,σ)

Ret (F.Ev(1λ , fp,sk) 6= pk)

Sign(sk,M)

If sk 6∈ F.Dom(1λ , fp) then Ret ⊥
pk← F.Ev(1λ , fp,sk)
σ←$ DS.SimSig(1λ ,pp,std,pk,M)

Q← Q∪{(pk,M,σ)} ; Ret σ

Figure 3.1. Games defining security of F-keyed signature scheme DS. Left: Game
defining simulatability. Right: Game defining key extractability.

F-keyed signature schemes. Let F be a function family. We say that a signature

scheme DS is F-keyed if the following are true:

• Parameter compatibility: Parameters pp for DS are a pair pp = (fp,ap) consisting

of parameters fp for F and auxiliary parameters ap, these independently generated.

Formally, there is a PT auxiliary parameter generation algorithm APg such that

DS.Pg(1λ) picks fp←$ F.Pg(1λ) ; ap←$ APg(1λ) and returns (fp,ap).

• Key compatibility: The signing key sk is a random point in the domain of F.Ev

and the verifying key pk is its image under F.Ev. Formally, DS.Kg(1λ ,(fp,ap))

picks sk←$ F.Dom(1λ , fp), lets pk← F.Ev(1λ , fp,sk) and returns (sk,pk). (DS.Kg

ignores the auxiliary parameters ap, meaning the keys do not depend on it.)

23

Security of F-keyed signature schemes. We require two (strong) security properties

of an F-keyed signature scheme DS:

• Simulatable: Under simulated auxiliary parameters and an associated simulation

trapdoor std, a simulator, given pk = F.Ev(1λ , fp,sk) and M, can produce a sig-

nature σ indistinguishable from the real one produced under sk, when not just

M, but even the secret key sk, is adaptively chosen by the adversary. Formally,

DS is simulatable if it specifies additional PT algorithms DS.SimPg (the auxiliary

parameter simulator) and DS.SimSig (the signature simulator) such that Advsim
DS,A(·)

is negligible for every PT adversary A, where Advsim
DS,A(λ) = 2Pr[SIMA

DS(λ)]−1

and game SIM is specified on the left-hand side of Figure 3.1.

• Key-extractable: Under the same simulated auxiliary parameters and an associated

extraction trapdoor xtd, an extractor can extract from any valid forgery relative

to pk an underlying secret key sk, even when pk is chosen by the adversary and

the adversary can adaptively obtain simulated signatures under secret keys of its

choice. Formally, DS is key-extractable if it specifies another PT algorithm DS.Ext

(the extractor) such that Advext
DS,A(·) is negligible for every PT adversary A, where

Advext
DS,A(λ) = Pr[EXTA

DS(λ)] and game EXT is specified on the right-hand side

of Figure 3.1.

The EXT game includes a possibly non-PT test of membership in the range of

the family, but we will ensure that adversaries (who must remain PT) do not perform

this test. Our definition of simulatability follows [51, 1, 50]. Those definitions were for

general signatures, not F-keyed ones, and one difference is that our simulator can set only

the auxiliary parameters, not the full parameters, meaning it does not set fp.

24

Sim+Ext implies unforgeability. The simulatability and key-extractability notions we

have defined may seem quite unrelated to the standard unforgeability requirement for

signature schemes, as presented in Section 2.1. As a warm-up towards applying these

new conditions, we show that in fact they imply not just standard unforgeability but

strong unforgeability (as defined in Section 2.1, under the minimal assumption that F is

one-way.

Theorem 3.1.1. Let DS be an F-keyed signature scheme that is simulatable and key-

extractable. If F is one-way then DS is strongly unforgeable.

Before we present the formal proof of the theorem, we sketch the intuition. Given

an adversary A against unforgeability, we build an inverter I for F. On input 1λ , fp,pk,

adversary I generates simulated auxiliary parameters ap together with simulation and

extraction trapdoors. It now runs A with parameters (fp,ap), answering signing queries

via the signature simulator. (Note the latter only needs the simulation trapdoor and

the public key, not the secret key.) When A produces its forgery M,σ , the inverter I

runs the extractor to obtain sk, a pre-image of pk under F.Ev(1λ , fp, ·). The simulation

and key-extractability conditions are invoked to show that I succeeds with almost the

same probability as A. This involves the construction of adversaries A1,A2 for the two

conditions. A question here is that these adversaries can only make signing queries under

secret keys that they know, so how do they proceed not knowing sk? The answer is that

they will themselves run key-generation to get (sk,pk) and then run A on the latter. Now,

when A makes a signing query M, adversaries A1,A2 can answer by invoking their own

signing oracles on sk,M.

A reader may note that the above theorem would hold under weaker simulatability

and extractability conditions where the adversaries do not choose secret and public keys.

This is true, but the stronger conditions are crucial to other upcoming applications in this

paper.

25

main GA
0 (λ) / GA

1 (λ)

Q← /0 ; d← false

fp←$ F.Pg(1λ) ; (ap,std,xtd)←$ DS.SimPg(1λ) ; pp← (fp,ap)
(sk,pk)←$ DS.Kg(1λ ,pp)
(M,σ)←$ ASign(1λ ,pp,pk) ; sk′←$ DS.Ext(1λ ,pp,xtd,pk,M,σ)

If (DS.Ver(1λ ,pp,pk,M,σ) and (M,σ) 6∈ Q) then
d← true

If (F.Ev(1λ , fp,sk′) 6= pk) then bad← true ; d← false

Ret d

Sign(M)

σ←$ DS.SimSig(1λ ,pp,std,pk,M)

Q← Q∪{(M,σ)}
Ret σ

Figure 3.2. Games for the proof of Theorem 3.1.1. Game G1 includes the boxed code
while G0 does not.

Proof. Let A be a PT adversary playing game SUF. We build PT adversaries I,A1,A2

such that

Advsuf
DS,A(λ)≤ Advow

F,I(λ)+Advsim
DS,A1

(λ)+Advext
DS,A2

(λ)

for all λ ∈ N, from which the theorem follows. The proof uses the games in Figure 3.2.

These games switch to using simulated parameters and signatures. We will build I,A1,A2

so that for all λ ∈ N we have

Pr[SUFA
DS(λ)]−Pr[GA

0 (λ)]≤ Advsim
DS,A1

(λ) (3.1)

Pr[GA
0 (λ) sets bad]≤ Advext

DS,A2
(λ) (3.2)

Pr[GA
1 (λ)]≤ Advow

F,I(λ) . (3.3)

26

Games G0 and G1 are identical until bad, so by the Fundamental Lemma of Game-

Playing [25] and the above, for all λ ∈ N we have:

Advsuf
DS,A(λ) = Pr[SUFA

DS(λ)]

= (Pr[SUFA
DS(λ)]−Pr[GA

0 (λ)])+(Pr[GA
0 (λ)]−Pr[GA

1 (λ)])+Pr[GA
1 (λ)]

≤ (Pr[SUFA
DS(λ)]−Pr[GA

0 (λ)])+Pr[GA
0 (λ) sets bad]+Pr[GA

1 (λ)]

≤ Advsim
DS,A1

(λ)+Advext
DS,A2

(λ)+Advow
F,I(λ)

as desired. We proceed to the constructions of A1,A2, I. Adversary A1 behaves as follows:

ASign
1 (1λ ,pp)

(sk,pk)←$ DS.Kg(1λ ,pp) ; Q← /0

(M,σ)←$ ASignSim(1λ ,pp,pk)

If (DS.Ver(1λ ,pp,pk,M,σ) and (M,σ) 6∈ Q) then b′← 1

Else b′← 0

Return b′

SignSim(M)

σ←$Sign(sk,M)

Q← Q∪{(M,σ)}

Ret σ

When the challenge bit b in game SIM is 0, adversary A1 simulates for A game G0, while

if b = 1, adversary A1 simulates game SUF. We thus have

Pr[SUFA
DS(λ)]−Pr[GA

0 (λ)] = Pr[b′ = 1 |b = 1]−Pr[b′ = 1 |b = 0]≤ Advsim
DS,A1

(λ) ,

which establishes Equation 3.1. Adversary A2 behaves as follows:

ASign
2 (1λ ,pp)

(sk,pk)←$ DS.Kg(1λ ,pp) ; (M,σ)←$ ASignSim(1λ ,pp,pk)

Ret (pk,M,σ)

SignSim(M)

σ←$Sign(sk,M)

Ret σ

We skip the simple analysis establishing Equation 3.2. Adversary I behaves as follows:

27

I(1λ , fp,pk)

(ap,std,xtd)←$ DS.SimPg(1λ)

(M,σ)←$ ASignSim(1λ ,(fp,ap),pk)

sk′←$ DS.Ext(1λ ,pp,xtd,pk,M,σ)

Ret sk′

SignSim(M)

σ←$ DS.SimSig(1λ ,pp,std,pk,M)

Ret σ

We skip the simple analysis establishing Equation 3.3.

Construction. A key-versatile signing schema is a transform KvS that given an arbi-

trary family of functions F returns an F-keyed signature scheme DS = KvS[F]. We want

the constructed signature scheme to be simulatable and key-extractable. We now show

that this is possible with the aid of appropriate NIZK systems which are themselves

known to be possible under standard assumptions.

Theorem 3.1.2. Assume there exist SE-NIZK systems for all of NP. Then there is a key-

versatile signing schema KvS such that if F is any family of functions then the signature

scheme DS = KvS[F] is simulatable and key-extractable.

Before presenting our construction, we provide some intuition. The scheme is

simple. We define the relation R((1λ , fp,pk,M),sk) to return true iff F.Ev(1λ , fp,sk)= pk.

A signature of M under sk is then a SE-secure NIZK proof for this relation in which

the witness is sk and the instance (input) is (1λ , fp,pk,M). The interesting aspect of this

construction is that it at first sounds blatantly insecure, since the relation R ignores the

message M. Does this not mean that a signature is independent of the message, in which

case an adversary could violate unforgeability by requesting a signature σ of a message

M under pk and then outputting (M′,σ) as a forgery for some M′ 6= M? What prevents

this is the strength of the SE notion of NIZKs. The message M is present in the instance

(1λ , fp,pk,M), even if it is ignored by the relation; the proof in turn depends on the

instance, making the signature depend on M. Intuitively the SE-secure NIZK guarantees

28

a form of non-malleability, so signatures (proofs) for one message (instance) cannot be

transferred to another. The formal proof shows simulatability of the F-keyed signature

scheme based on the zero-knowledge property of the NIZK and key-extractability of

the F-keyed signature scheme based on extractability of the NIZK, both in a natural and

simple way.

A similar construction of signatures was given in [62] starting from a leakage-

resilient hard relation rather than (as in our case) a relation arising from a one-way

function. Our construction could be considered a special case of theirs, with the added

difference that they use labeled NIZKs with the message as the label while we avoid

labels and put the message in the input. The claims established about the construction

are however different, with [62] establishing leakage resilience and unforgeability of the

signature and our work showing simulatability and key-extractability. The technique

of [62] was also used by [50] to construct malleable signatures. Going back further, the

first NIZK-based signature scheme was that of [18]. This used PRFs and commitment,

but only regular (as opposed to SE) NIZKs, these being all that was available at the time.

One might see the simpler and more elegant modern NIZK-based signatures as being

made possible by the arrival of the stronger NIZK systems of works like [56, 85, 86, 62].

Construction. Let F be the function family given in the theorem statement. We asso-

ciate to it the NP-relation R defined by R((1λ , fp,pk,M),sk) = (F.Ev(1λ , fp,sk) = pk)

for all λ ∈ N and all fp,pk,M,sk ∈ {0,1}∗. Let Π be a NI system for R that is zero

knowledge and simulation extractable (as defined in Section 2.2). The signature scheme

DS = KvS[F] is specified as follows:

• DS.Pg(1λ): crs←$ Π.Pg(1λ) ; fp←$ F.Pg(1λ). Return (fp,crs).

• DS.Kg(1λ ,(fp,crs)): sk←$ F.Dom(1λ , fp) ; pk← F.Ev(1λ , fp,sk). Return (sk,pk).

29

• DS.Sig(1λ ,(fp,crs),sk,M): pk← F.Ev(1λ , fp,sk). Return Π.P(1λ ,crs,(1λ , fp,pk,

M),sk).

• DS.Ver(1λ ,(fp,crs),pk,M,σ): Return Π.V(1λ ,crs,(1λ , fp,pk,M),σ).

• DS.SimPg(1λ): Ret Π.SimPg(1λ).

• DS.SimSig(1λ ,(fp,crs),std,pk,M): Ret Π.SimP(1λ ,crs,std,(1λ , fp,pk,M)).

• DS.Ext(1λ ,(fp,crs),xtd,pk,M,σ): Ret Π.Ext(1λ ,crs,xtd,(1λ , fp,pk,M),σ).

Security of the construction. Simulatability of the signature scheme follows directly

from the zero knowledge property of the NIZK. Let A be a PT adversary playing game

SIM. We construct a PT adversary B such that Advsim
DS,A(λ)≤ Advzk

Π,B(λ) for all λ ∈ N.

B behaves as follows:

BProve(1λ ,crs)

fp←$ F.Pg(1λ) ; pp← (fp,crs)

b′←$ ASignSim(1λ ,pp)

Return b′

SignSim(sk,M)

If sk 6∈ F.Dom(1λ , fp) then Ret ⊥

pk← F.Ev(1λ , fp,sk)

π←$Prove((1λ , fp,pk,M),sk)

Ret π

The key extractability of the signature scheme likewise follows from the SE security of

the NIZK. Let A be a PT adversary playing game EXT. We construct a PT adversary B

such that Advext
DS,A(λ)≤ Advse

Π,B(λ) for all λ ∈ N. B behaves as follows:

BProve(1λ ,crs)

fp←$ F.Pg(1λ) ; pp← (fp,crs)

(pk,M,σ)←$ ASignSim(1λ ,pp)

Return ((1λ , fp,pk,M),σ)

SignSim(sk,M)

If sk 6∈ F.Dom(1λ , fp) then Ret ⊥

pk← F.Ev(1λ , fp,sk)

π←$Prove((1λ , fp,pk,M),sk)

Ret π

30

main RKAOWFA
F,Φ(λ)

fp←$ F.Pg(1λ)

x←$ F.Dom(1λ , fp)
y← F.Ev(1λ , fp,x)
x′←$ AEval(1λ , fp,y)
Ret (F.Ev(1λ , fp,x′) = y)

Eval(φ)

x′←Φ(1λ , fp,φ ,x)
y′← F.Ev(1λ , fp,x′)
Ret y′

main RKASIGA
DS,Φ(λ)

Q← /0 ; (fp,ap)←$ DS.Pg(1λ) ; pp← (fp,ap)
(sk,pk)←$ DS.Kg(1λ ,pp)
(M,σ)←$ ASign(1λ ,pp,pk)
Ret (DS.Ver(1λ ,pp,pk,M,σ) and (pk,M,σ) 6∈Q)

Sign(φ ,M)

sk′←Φ(1λ , fp,φ ,sk) ; pk′← F.Ev(1λ , fp,sk′)
σ←$ DS.Sig(1λ ,pp,sk′,M)

Q← Q∪{(pk′,M,σ)}
Ret σ ′

Figure 3.3. Games defining Φ-RKA security of a function family F (left) and an F-keyed
signature scheme DS (right).

If (pk,M,σ) /∈ Q in game EXT then ((1λ , fp,pk,M),σ) /∈ Q in game SE, the sets being

those defined in the games. Furthermore, by the definition of DS.Ext and R, if sk←

DS.Ext(1λ ,crs,xtd,pk,M,σ) is such that F.Ev(1λ , fp,sk) 6= pk, then R((1λ , fp,pk,M),

sk) = false.

3.2 RKA-secure signatures from RKA-secure OWFs

RKA security is notoriously hard to provably achieve. Recognizing this, several

authors [79, 16] have suggested a bootstrapping approach in which we build higher-

level RKA-secure primitives from lower-level RKA-secure primitives. In this vein, a

construction of RKA-secure signatures from RKA-secure PRFs was given in [16]. We

improve on this via a construction of RKA-secure signatures from RKA-secure one-

way functions. The result is simple: If F is a Φ-RKA-secure OWF then any F-keyed

simulatable and key-extractable signature scheme is also Φ-RKA secure. The benefit is

that (as we will show) many popular OWFs are already RKA secure and we immediately

get new RKA-secure signatures.

31

RKA security. Let F be a function family. A class of RKD (related-key deriving)

functions Φ for F is a PT-computable function that specifies for each λ ∈ N, each fp ∈

[F.Pg(1λ)] and each φ ∈ {0,1}∗ a map Φ(1λ , fp,φ , ·) : F.Dom(1λ , fp)→ F.Dom(1λ , fp)

called the RKD function described by φ . We say that F is Φ-RKA secure if Advrka
F,A,Φ(·)

is negligible for every PT adversary A, where Advrka
F,A,Φ(λ) = Pr[RKAOWFA

F,Φ(λ)] and

game RKAOWF is on the left-hand side of Figure 3.3. In this game, A, like in the

basic one-wayness notion, is given y = F.Ev(1λ , fp,x) and attempts to find x′ such that

F.Ev(1λ , fp,x′) = y. Now, however, it has help. It can request that the hidden challenge

input x be modified to x′ = Φ(1λ , fp,φ ,x) for any description φ of its choice, and obtain

y′ = F.Ev(1λ , fp,x′). This should not help it in its inversion task. The definition is from

Goldenberg and Liskov [79], adapted to our notation, and represents a particularly simple

and basic form of RKA security.

Let DS be an F-keyed signature scheme and let Φ be as above. We say that

DS is Φ-RKA secure if Advrka
DS,A,Φ(·) is negligible for every PT adversary A, where

Advrka
DS,A,Φ(λ) = Pr[RKASIGA

DS,Φ(λ)] and game RKASIG is on the right-hand side of

Figure 3.3. In this game, A, like in the basic (strong) unforgeability notion, is given

public key pk and is attempting to forge a signature under it. Now, however, it has help

beyond its usual signing oracle. It can request that the hidden secret key sk be modified

to sk′ = Φ(1λ , fp,φ ,sk) for any description φ of its choice, and obtain a signature under

sk′ of any message of its choice. This should not help it in its forgery task. Our definition

adapts the one of Bellare, Cash and Miller [16] for Φ-RKA security of arbitrary signature

schemes to the special case of F-keyed signature schemes.5

5One change (strengthening the definition) is that we use a strong unforgeability formulation rather
than an unforgeability one. On the other hand while [16] disallow A a victory from forgery M,σ when M
was previously signed under sk′ = sk, we disallow it when M was previously signed under pk′ = pk even
if sk′ 6= sk. In our setting this is more natural since the secret key determines the public key. In any case
Theorem 3.2.1 extends to the definition of [16] assuming F is additionally injective or collision-resistant,
which is true in most examples.

32

main GA
0 (λ) / GA

1 (λ)

Q← /0 ; d← false

fp←$ F.Pg(1λ) ; (ap,std,xtd)←$ DS.SimPg(1λ) ; pp← (fp,ap)
(sk,pk)←$ DS.Kg(1λ ,pp)
(M,σ)←$ ASign(1λ ,pp,pk) ; sk′←$ DS.Ext(1λ ,pp,xtd,pk,M,σ)

If (DS.Ver(1λ ,pp,pk,M,σ) and (pk,M,σ) 6∈ Q) then
d← true

If (F.Ev(1λ , fp,sk′) 6= pk) then bad← true ; d← false

Ret d

Sign(φ ,M)

sk′←Φ(1λ , fp,φ ,sk) ; pk′← F.Ev(1λ , fp,sk′)
σ←$ DS.SimSig(1λ ,pp,std,pk′,M)

Q← Q∪{(pk′,M,σ)}
Ret σ

Figure 3.4. Games used in proof of Theorem 3.2.1. Game G1 includes the boxed code
and G0 does not.

Construction. Suppose we are given a Φ-RKA secure OWF F and want to build a

Φ-RKA secure signature scheme. For the question to even make sense, RKD functions

specified by Φ must apply to the secret signing key. Thus, the secret key needs to be

an input for the OWF and the public key needs to be the image of the secret key under

the OWF. The main technical difficulty is, given F, finding a signature scheme with

this property. But this is exactly what a key-versatile signing schema gives us. The

following says that if the signature scheme produced by this schema is simulatable and

key-extractable then it inherits the Φ-RKA security of the OWF.

Theorem 3.2.1. Let DS be an F-keyed signature scheme that is simulatable and key-

extractable. Let Φ be a class of RKD functions. If F is Φ-RKA secure then DS is also

Φ-RKA secure.

33

Proof. Let A be a PT adversary playing game RKASIG. We build PT adversaries A1,A2, I

such that

Advrka
DS,A,Φ(λ)≤ Advrka

F,I,Φ(λ)+Advsim
DS,A1

(λ)+Advext
DS,A2

(λ)

for all λ ∈ N, from which the theorem follows.

The proof uses the games in Figure 3.4. These games switch to using simulated

parameters and signatures. We will build A1,A2, I so that for all λ ∈ N we have

Pr[RKASIGA
DS,Φ(λ)]−Pr[GA

0 (λ)]≤ Advsim
DS,A1

(λ) (3.4)

Pr[GA
0 (λ) sets bad]≤ Advext

DS,A2
(λ) (3.5)

Pr[GA
1 (λ)]≤ Advrka

F,I,Φ(λ) . (3.6)

Games G0 and G1 are identical until bad, so by the Fundamental Lemma of Game-

Playing [25] and the above, for all λ ∈ N we have:

Advrka
DS,A,Φ(λ) = Pr[RKASIGA

DS,Φ(λ)]

= (Pr[RKASIGA
DS,Φ(λ)]−Pr[GA

0 (λ)])+(Pr[GA
0 (λ)]−

Pr[GA
1 (λ)])+Pr[GA

1 (λ)]

≤ (Pr[RKASIGA
DS,Φ(λ)]−Pr[GA

0 (λ)])+

Pr[GA
0 (λ) sets bad]+Pr[GA

1 (λ)]

≤ Advsim
DS,A1

(λ)+Advext
DS,A2

(λ)+Advrka
F,I,Φ(λ)

as desired. We proceed to the constructions of A1,A2, I. Adversary A1 behaves as follows:

34

ASign
1 (1λ ,pp)

(sk,pk)←$ DS.Kg(1λ ,pp) ; Q← /0

(M,σ)←$ ASignSim(1λ ,pp,pk)

If (DS.Ver(1λ ,pp,pk,M,σ)∧ (pk,M,σ) 6∈ Q) then b′← 1

Else b′← 0

Return b′

SignSim(φ ,M)

sk′←Φ(1λ , fp,φ ,sk)

pk′← F.Ev(1λ , fp,sk′)

σ←$Sign(sk′,M)

Q← Q∪{(pk′,M,σ)}

Ret σ

When the challenge bit b in game SIM is 0, adversary A1 simulates for A game G0, and

if b = 1, adversary A1 simulates game RKASIG. We thus have

Pr[RKASIGA
DS,Φ(λ)]−Pr[GA

0 (λ)] = Pr[b′ = 1 |b = 1]−Pr[b′ = 1 |b = 0]

≤ Advsim
DS,A1

(λ) ,

establishing Equation 3.4. Adversary A2 behaves as follows:

ASign
2 (1λ ,pp)

(sk,pk)←$ DS.Kg(1λ ,pp)

(M,σ)←$ ASignSim(1λ ,pp,pk)

Ret (pk,M,σ)

SignSim(φ ,M)

sk′←Φ(1λ , fp,φ ,sk) ; pk′← F.Ev(1λ , fp,sk′)

σ←$Sign(sk′,M) ; Q← Q∪{(pk′,M,σ)}

Ret σ

If bad is set to true in game G0 then we have: (1) DS.Ver(1λ ,pp,pk,M,σ), (2) (pk,M,

σ) 6∈ Q, and (3) F.Ev(1λ , fp,sk′) 6= pk. These are exactly the necessary conditions for A2

to win game EXT, establishing Equation 3.5. I behaves as follows:

IEval(1λ , fp,pk)

(ap,std,xtd)←$ DS.SimPg(1λ)

(M,σ)←$ ASignSim(1λ ,(fp,ap),pk)

sk′←$ DS.Ext(1λ ,pp,xtd,pk,M,σ)

Ret sk′

SignSim(φ ,M)

pk′←$Eval(φ)

σ←$ DS.SimSig(1λ ,pp,std,pk′,M)

Ret σ

35

We omit the analysis establishing Equation 3.6.

Finding Φ-RKA OWFs. Theorem 3.2.1 motivates finding Φ-RKA-secure function

families F. The merit of our approach is that there are many such families. To en-

able systematically identifying them, we adapt the definition of key-malleable PRFs

of [15] to OWFs. We say that a function family F is Φ-key-malleable if there is a

PT algorithm M, called a Φ-key-simulator, such that M(1λ , fp,φ ,F.Ev(1λ , fp,x)) =

F.Ev(1λ , fp,Φ(1λ , fp,φ ,x)) for all λ ∈ N, all fp ∈ [F.Pg(1λ)], all φ ∈ {0,1}∗ and all

x ∈ F.Dom(1λ , fp).

Proposition 3.2.2. Let F be a function family and Φ a class of RKD functions. If F is

Φ-key-malleable and one-way then F is Φ-RKA secure.

Proof. Let A be a PT adversary attacking the Φ-RKA security of F and let M be a

Φ-key-simulator. We construct a PT adversary B against the (regular) one-wayness of F

such that Advrka
F,A(λ)≤ Advow

F,B(λ) for all λ ∈ N. On input (1λ , fp,y), adversary B runs

A(1λ , fp,y). When A makes a Eval query φ , adversary B computes y′←M(1λ , fp,φ ,y)

and returns y′ to A. Φ-key malleability says that y′ = F.Ev(1λ , fp,Φ(1λ , fp,φ ,x)) as A

expects. When A eventually halts and outputs a value x′, adversary B does the same.

Previous uses of key-malleability [15, 23] for RKA security required additional

conditions on the primitives, such as key-fingerprints in the first case and some form of

collision-resistance in the second. For OWFs, it is considerably easier, key-malleability

alone sufficing. We now exemplify how to leverage Proposition 3.2.2 to find Φ-RKA

OWFs and thence, via Theorem 3.2.1, Φ-RKA signature schemes. Table 3.1 examines

three popular one-way functions: discrete exponentiation in a cyclic group, RSA, and

the LWE one-way function. It succinctly describes F, Φ, and the Φ-key-simulator M

showing Φ-key-malleability. Briefly:

36

Ta
bl

e
3.

1.
Φ

-R
K

A
se

cu
re

O
W

Fs
:

W
e

su
cc

in
ct

ly
de

fin
e

th
e

fa
m

ili
es

an
d

th
e

Φ
-k

ey
-s

im
ul

at
or

sh
ow

in
g

th
ei

rΦ
m

al
le

ab
ili

ty
an

d
he

nc
e

th
ei

rΦ
-R

K
A

se
cu

ri
ty

.

F
fp

x
F
.E

v(
1λ

,f
p,

x)
φ

Φ
(1

λ
,f

p,
φ
,x
)

M
(1

λ
,f

p,
φ
,y
)

E
X

P
(〈
G
〉,

g,
m
)

∈
Z m

gx
(a
,b
)
∈
Z m
×
Z m

(a
x+

b)
m

od
m

ya gb

R
SA

(N
,e
)

∈
Z∗ N

xe
m

od
N

a
∈
N

xa
m

od
N

ya
m

od
N

LW
E

(A
,n
,m

,q
)

(s
,e
)
∈
Zm q
×
Zn q

(A
s+

e)
m

od
q

(s
′ ,

e′
)
∈
Zm q
×
Zn q

(s
+

s′
,e
+

e′
)

m
od

q
(y
+

A
s′
+

e′
)

m
od

q

37

• EXP: The first row of Table 3.1 shows that exponentiation in any group with hard

discrete logarithm problem is Φ-RKA secure for the class Φ of affine functions

over the exponent space. Here G is a cyclic group of order m generated by g ∈G.

• RSA: The second row of Table 3.1 shows that the RSA function is Φ-RKA se-

cure for the class Φ of functions raising the input to integer powers a, under the

assumption that RSA is one-way. Here N is an RSA modulus and e ∈ Z∗
ϕ(N) is an

encryption exponent. Notice that in this rendition of RSA the latter has no trapdoor.

• LWE: The third row of Table 3.1 shows that the LWE function is Φ-RKA secure

for the class Φ of functions shown. Here A is an n by m matrix over Zq and

Φ-RKA-security relies on the standard LWE one-wayness assumption.

The summary is that standard, natural one-way functions are Φ-RKA secure,

leading to Φ-RKA security over standard and natural keyspaces.

3.3 Joining signature to encryption with no public-key
overhead

Let PKE be an arbitrary IND-CCA-secure public-key encryption scheme. As an

example, it could be the Cramer-Shoup scheme [54], the Kurosawa-Desmedt scheme [99],

or the DDN scheme [63], but it could be any other IND-CCA-secure scheme as well.

Alice has already established a key-pair (ske,pke) for this scheme, allowing anyone to

send her ciphertexts computed under pke that she can decrypt under ske. She wants now

to add signature capability. This is easily done. She can create a key-pair (sks,pks) for

her favorite signature scheme and sign an arbitrary message M under sks, verification

being possible given pks. The difficulty is that her public key is now pk = (pke,pks). It

is not just larger but will require a new certificate. The question we ask is whether we

can add signing capability in a way that is more parsimonious with regard to public key

38

size. Technically, we seek a joint encryption and signature (JES) scheme where Alice

has a single key-pair (sk,pk), with sk used to decrypt and sign, and pk used to encrypt

and verify, each usage secure in the face of the other, and we want pk smaller than that

of the trivial solution pk = (pke,pks). Perhaps surprisingly, we show how to construct

a JES scheme with pk-overhead zero, meaning pk is unchanged, remaining pke. We

not only manage to use ske to sign and pke to verify, but do so in such a way that the

security of the encryption is not affected by the presence of the signature, and vice versa.

Previous standard model JES schemes had been able to reduce the pk-overhead only

for specific starting encryption schemes [87, 113]. Our result says the overhead can be

zero regardless of the starting encryption scheme. The result is obtained by defining F

as the function mapping ske to pke and using a simulatable and key-extractable F-keyed

signature scheme with the keys remaining (ske,pke).

JES schemes. A joint encryption and signature (JES) scheme JES specifies the fol-

lowing PT algorithms: via jp←$ JES.Pg(1λ) one generates public parameters jp com-

mon to all users; via (sk,pk)←$ JES.Kg(1λ , jp) a user can generate a secret (signing

and decryption) key sk and corresponding public (verification and encryption) key

pk; via σ←$ JES.Sig(1λ , jp,sk,M) the user can generate a signature σ on a message

M ∈ {0,1}∗; via d← JES.Ver(1λ , jp,pk,M,σ) a verifier can deterministically produce

a decision d ∈ {true, false} regarding whether σ is a valid signature of M under pk; via

C←$ JES.Enc(1λ , jp,pk,M) anyone can generate a ciphertext C encrypting message M

under pk; via M← JES.Dec(1λ , jp,sk,C) the user can deterministically decrypt cipher-

text C to get a value M ∈ {0,1}∗∪{⊥}.

Correctness requires both that JES.Ver(1λ , jp,pk,M,JES.Sig(1λ , jp,sk,M)) =

true and that JES.Dec(1λ , jp,sk,JES.Enc(1λ , jp,pk,M)) = M for all λ ∈ N, all jp ∈

[JES.Pg(1λ)], all (sk,pk) ∈ [JES.Kg(1λ , jp)], and all M ∈ {0,1}∗. We say that JES is

39

main INDA
JES(λ)

b←${0,1} ; C∗←⊥ ; jp←$ JES.Pg(1λ)

(pk,sk)←$ JES.Kg(1λ , jp)
b′←$ ADec,Sign,LR(1λ , jp,pk)
Ret (b = b′)

proc Dec(C)

If (C =C∗) then Ret ⊥
else Ret M← JES.Dec(1λ , jp,sk,C)

proc Sign(M)

Ret σ←$ JES.Sig(1λ , jp,sk,M)

proc LR(M0,M1)

If (|M0| 6= |M1|) then Ret ⊥
else Ret C∗←$ JES.Enc(1λ , jp,pk,Mb)

main SUFA
JES(λ)

Q← /0
jp←$ JES.Pg(1λ)

(pk,sk)←$ JES.Kg(1λ , jp)
(M,σ)←$ ASign,Dec(1λ , jp,pk)
Ret (JES.Ver(1λ , jp,pk,M,σ) and (M,σ) 6∈ Q)

proc Sign(M)

σ←$ JES.Sig(1λ , jp,sk,M)

Q← Q∪{(M,σ)}
Ret σ

proc Dec(C)

Ret M← JES.Dec(1λ , jp,sk,C)

Figure 3.5. Games defining security of joint encryption and signature scheme JES. Left:
Game IND defining privacy against chosen-ciphertext attack in the presence of a signing
oracle. Right: Game SUF defining strong unforgeability in the presence of a decryption
oracle.

SUF-secure if Advsuf
JES,A(·) is negligible for all PT adversaries A, where Advsuf

JES,A(λ) =

Pr[SUFA
JES(λ)] and game SUF is on the right-hand side of Figure 3.5. This represents

(strong) unforgeability of the signature in the presence of a decryption oracle. We

say that JES is IND-secure if Advind
JES,A(·) is negligible for all PT adversaries A, where

Advind
JES,A(λ) = 2Pr[INDA

JES(λ)]−1 and game IND is on the left-hand side of Figure 3.5.

Here the adversary is allowed only one query to LR. This represents privacy under

chosen-ciphertext attack in the presence of a signing oracle. These definitions are

from [87, 113].

The base PKE scheme. We are given a public-key encryption scheme PKE, specifying

the following PT algorithms: via fp←$ PKE.Pg(1λ) one generates public parameters;

via (sk, pk)←$ PKE.Kg(1λ , fp) a user generates a decryption key sk and encryption key

40

pk; via C←$ PKE.Enc(1λ , fp,pk,M) anyone can generate a ciphertext C encrypting a

message M under pk; and via M← PKE.Dec(1λ , fp,sk,C) a user can deterministically

decrypt a ciphertext C to get a value M ∈ {0,1}∗ ∪ {⊥}. Correctness requires that

PKE.Dec(1λ , fp,sk,PKE.Enc(1λ , fp,pk,M)) = M for all λ ∈ N, all fp ∈ [PKE.Pg(1λ)],

all (sk,pk) ∈ [PKE.Kg(1λ , fp)], and all M ∈ {0,1}∗. We assume that PKE meets the

usual notion of IND-CCA security.

Let us say that PKE is canonical if the operation (sk,pk)←$ PKE.Kg(1λ , fp) picks

sk at random from a finite, non-empty set we denote PKE.SK(1λ , fp), and then applies

to (1λ , fp,sk) a PT deterministic public-key derivation function we denote PKE.PK to

get pk. Canonicity may seem like an extra assumption, but isn’t. First, many (most)

schemes are already canonical. This is true for the Cramer-Shoup scheme [54], the

Kurosawa-Desmedt scheme [99] and for schemes obtained via the BCHK transform [36]

applied to the identity-based encryption schemes of Boneh-Boyen [34] or Waters [132].

Second, if by chance a scheme is not canonical, we can modify it be so. Crucially

(for our purposes), the modification does not change the public key. (But it might

change the secret key.) Briefly, the modification, which is standard, is to use the random

coins of the key generation algorithm as the secret key. In some more detail, given

PKE, the new key-generation algorithm, on inputs 1λ , fp, picks random coins ω , lets

(sk,pk)←PKE.Kg(1λ , fp;ω), and returns (ω,pk), so that the new secret key is ω and the

public key is still pk. Encryption is unchanged. The modified decryption algorithm, given

1λ , fp,ω,C, lets (sk,pk)←$ PKE.Kg(1λ , fp;ω) and outputs M← PKE.Dec(1λ , fp,sk,C).

It is easy to see that the modified scheme is canonical and also inherits both the correctness

and the IND-CCA security of the original scheme.

Construction. Given canonical PKE as above, we construct a JES scheme JES. The

first step is to construct from PKE a function family F as follows: let F.Pg = PKE.Pg,

41

so the parameters of F are the same those of PKE; let F.Dom = PKE.SK, so the do-

main of F is the space of secret keys of PKE; and let F.Ev = PKE.PK, so the function

defined by fp maps a secret key to a corresponding public key. Now let DS be an F-

keyed signature scheme that is simulatable and key-extractable. (We can obtain DS

via Theorem 3.1.2.) Now we define our JES scheme JES. Let JES.Pg = DS.Pg, so

parameters for JES have the form jp = (fp,ap), where fp are parameters for F, which

by definition of F are also parameters for PKE. Let JES.Kg = DS.Kg. (Keys are those

of PKE which are also those of DS.) Let JES.Sig = DS.Sig and JES.Ver = DS.Ver, so

the signing and verifying algorithms of the joint scheme JES are inherited from the

signature scheme DS. Let JES.Enc(1λ ,(fp,ap),pk,M) return PKE.Enc(1λ , fp,pk,M)

and let JES.Dec(1λ ,(fp,ap),sk,C) return PKE.Dec(1λ , fp,sk,C), so the encryption and

decryption algorithms of the joint scheme JES are inherited from the PKE scheme PKE.

Note that the public key of the joint scheme JES is exactly that of PKE, so there is zero

public-key overhead. (If PKE had been born canonical, there is also zero secret-key

overhead. Had it undergone the transformation described above to make it canonical, the

secret-key overhead would be non-zero but the public-key overhead would still be zero

because the transformation did not change the public key.) The following says that JES

is both IND and SUF secure.

Theorem 3.3.1. Let PKE be a canonical public-key encryption scheme. Let F be defined

from it as above. Let DS be an F-keyed signature scheme, and let JES be the correspond-

ing joint encryption and signature scheme constructed above. Assume PKE is IND-CCA

secure. Assume DS is simulatable and key-extractable. Then (1) JES is IND secure, and

(2) JES is SUF secure.

Before presenting the formal proof, we sketch the main ideas. For (1), given

an adversary A against the IND security of JES, we build an adversary D against the

IND-CCA security of PKE. D will simply run A on simulated auxiliary parameters,

42

main IND-CCAA
PKE(λ)

b←${0,1} ; C∗←⊥
fp←$ PKE.Pg(1λ) ; (pk,sk)←$ PKE.Kg(1λ , fp)
b′←$ ADec,LR(1λ , fp,pk)
Ret (b = b′)

proc Dec(C)

If (C =C∗) then Ret ⊥
Ret M← PKE.Dec(1λ , fp,sk,C)

proc LR(M0,M1)

If (|M0| 6= |M1|) then Ret ⊥
C∗←$ PKE.Enc(1λ , fp,pk,Mb)

Ret C∗

Figure 3.6. Game defining IND-CCA security of PKE scheme PKE.

using the simulator to answer A’s Sign queries and using its own Dec oracle to answer

A’s Dec queries. A simulation adversary is built alongside, but key extraction is not

needed. For (2), given an adversary A against the SUF security of JES, we again build an

adversary D against the IND-CCA security of PKE. It will run A with simulated auxiliary

parameters, replying to A’s oracle queries as before. From a forgery it extracts the secret

key, using this to defeat IND-CCA security. Adversaries A1 and A2 against simulatability

and key-extractability of DS are built alongside to show that D succeeds.

We say PKE scheme PKE is IND-CCA secure if Advind-cca
PKE,A (·) is negligible

for all PT adversaries A, where Advind-cca
PKE,A (λ) = 2Pr[IND-CCAA

PKE(λ)]− 1 and game

IND-CCA is in Figure 3.6. The adversary is allowed only one query to LR. This

definition is from [17, 53]. We proceed to prove Theorem 3.3.1.

Proof. Part (1): IND security

Let A be a PT adversary playing game IND. We build PT adversaries A1,D such

that

Advind
JES,A(λ)≤ Advind-cca

PKE,D(λ)+2Advsim
DS,A1

(λ)

43

main GA
0 (λ)

b←${0,1} ; C∗←⊥
fp←$ F.Pg(1λ) ; (ap,std,xtd)←$ DS.SimPg(1λ) ; jp← (fp,ap)
(sk,pk)←$ DS.Kg(1λ , jp)
b′←$ ADec,Sign,LR(1λ , jp,pk)
Ret (b = b′)

proc Dec(C)

If (C =C∗) then Ret ⊥
Ret M← JES.Dec(1λ , jp,sk,C)

proc Sign(M)

Ret DS.SimSig(1λ , jp,std,pk,M)

proc LR(M0,M1)

If (|M0| 6= |M1|) then Ret ⊥
C∗←$ JES.Enc(1λ , jp,pk,Mb)

Ret C∗

Figure 3.7. Game used in the proof of part (1) of Theorem 3.3.1.

for all λ ∈ N, from which part (1) of the theorem follows.

The proof uses the game in Figure 3.7. This game switches to using simulated

parameters and signatures. We will build A1,D so that for all λ ∈ N we have

Pr[INDA
JES(λ)]−Pr[GA

0 (λ)]≤ Advsim
DS,A1

(λ) (3.7)

2Pr[GA
0 (λ)]−1≤ Advind-cca

PKE,D(λ) . (3.8)

Using this we have

Advind
JES,A(λ) = 2Pr[INDA

JES(λ)]−1

= 2
(

Pr[INDA
JES(λ)]−Pr[GA

0 (λ)]+Pr[GA
0 (λ)]

)
−1

= 2
(

Pr[INDA
JES(λ)]−Pr[GA

0 (λ)]
)
+2Pr[GA

0 (λ)]−1

≤ 2Advsim
DS,A1

(λ)+Advind-cca
PKE,D(λ)

44

as desired. We proceed to the constructions of A1,D. Adversary A1 behaves as follows:

ASign
1 (1λ ,pp)

(sk,pk)←$ DS.Kg(1λ ,pp)

C∗←⊥ ; d←${0,1}

d′←$ ADecSim,SignSim,LRSim(1λ ,pp,pk)

If (d′ = d) then b′← 1

Else b′← 0

Ret b′

SignSim(M)

σ←$Sign(sk,M)

Ret σ

DecSim(C)

If C =C∗ then M←⊥

Else M← JES.Dec(1λ ,pp,sk,C)

Ret M

LRSim(M0,M1)

If (|M0| 6= |M1|) then Ret ⊥

C∗← JES.Enc(1λ ,pp,pk,Md)

Ret C∗

When the challenge bit b in game SIM is 0, adversary A1 simulates for A game G0, and

if b = 1, adversary A1 simulates game IND. We thus have

Pr[INDA
JES(λ)]−Pr[GA

0 (λ)] = Pr[b′ = 1 |b = 1]−Pr[b′ = 1 |b = 0]≤ Advsim
DS,A1

(λ) ,

establishing Equation 3.7. Adversary D behaves as follows:

45

main GA
0 (λ) / GA

1 (λ)

Q← /0 ; d← false

fp←$ F.Pg(1λ) ; (ap,std,xtd)←$ DS.SimPg(1λ) ; jp← (fp,ap)
(sk,pk)←$ DS.Kg(1λ , jp)
(M,σ)←$ ASign,Dec(1λ , jp,pk) ; sk′←$ DS.Ext(1λ , jp,xtd,pk,M,σ)

If (DS.Ver(1λ , jp,pk,M,σ) and (M,σ) 6∈ Q) then
d← true

If (F.Ev(1λ , fp,sk′) 6= pk) then bad← true ; d← false

Ret d

proc Sign(M)

σ←$ DS.SimSig(1λ , jp,std,pk,M)

Q← Q∪{(M,σ)}
Ret σ

proc Dec(C)

Ret M← Dec(1λ , jp,sk,C)

Figure 3.8. Games used in the proof of part (2) of Theorem 3.3.1. Game G1 includes the
boxed code and G0 does not.

DDec,LR(1λ , fp,pk)

(ap,std,xtd)←$ DS.SimPg(1λ) ; jp← (fp,ap)

b′←$ ADec,SignSim,LR(1λ , jp,pk)

Ret b′

SignSim(M)

σ←$ DS.SimSig(1λ , jp,std,pk,M)

Ret σ

We omit the analysis establishing Equation 3.8.

Part (2): SUF security

Let A be a PT adversary playing game SUF. We build PT adversaries A1,A2,D

such that

Advsuf
JES,A(λ)≤ Advind-cca

PKE,D(λ)+Advsim
DS,A1

(λ)+Advext
DS,A2

(λ)

for all λ ∈ N, from which part (2) of the theorem follows.

46

The proof uses the games in Figure 3.8. These games switch to using simulated

parameters and signatures. We will build A1,A2,D so that for all λ ∈ N we have

Pr[SUFA
JES(λ)]−Pr[GA

0 (λ)]≤ Advsim
DS,A1

(λ) (3.9)

Pr[GA
0 (λ) sets bad]≤ Advext

DS,A2
(λ) (3.10)

Pr[GA
1 (λ)]≤ Advind-cca

PKE,D(λ) . (3.11)

Games G0 and G1 are identical until bad, so by the Fundamental Lemma of Game-

Playing [25] and the above, for all λ ∈ N we have:

Advsuf
JES,A(λ) = Pr[SUFA

JES(λ)]

= (Pr[SUFA
JES(λ)]−Pr[GA

0 (λ)])+(Pr[GA
0 (λ)]−Pr[GA

1 (λ)])+Pr[GA
1 (λ)]

≤ (Pr[SUFA
JES(λ)]−Pr[GA

0 (λ)])+Pr[GA
0 (λ) sets bad]+Pr[GA

1 (λ)]

≤ Advsim
DS,A1

(λ)+Advext
DS,A2

(λ)+Advind-cca
PKE,D(λ)

as desired. We proceed to the constructions of A1,A2,D. Adversary A1 behaves as

follows:

47

ASign
1 (1λ ,pp)

(sk,pk)←$ DS.Kg(1λ ,pp) ; Q← /0

(M,σ)←$ ADecSim,SignSim(1λ ,pp,pk)

If (DS.Ver(1λ ,pp,pk,M,σ)∧ (M,σ) 6∈ Q) then b′← 1

Else b′← 0

Return b′

DecSim(C)

M← JES.Dec(1λ ,pp,sk,C)

Ret M

SignSim(M)

Q← Q∪{(M,σ)}

σ←$Sign(sk,M)

Ret σ

When the challenge bit b in game SIM is 0, adversary A1 simulates for A game G0, and

if b = 1, adversary A1 simulates game SUF. We thus have

Pr[SUFA
JES(λ)]−Pr[GA

0 (λ)] = Pr[b′ = 1 |b = 1]−Pr[b′ = 1 |b = 0]≤ Advsim
DS,A1

(λ) ,

establishing Equation 3.9. Adversary A2 behaves as follows:

ASign
2 (1λ ,pp)

(sk,pk)←$ DS.Kg(1λ ,pp)

(M,σ)←$ ADecSim,SignSim(1λ ,pp,pk)

Ret (pk,M,σ)

DecSim(C)

M← JES.Dec(1λ ,pp,sk,C)

Ret M

SignSim(M)

σ←$Sign(sk,M)

Ret σ

48

We omit the analysis establishing Equation 3.10. Adversary D behaves as follows:

DDec,LR(1λ , fp,pk)

(ap,std,xtd)←$ DS.SimPg(1λ) ; jp← (fp,ap)

(M,σ)←$ ADec,SignSim(1λ , jp,pk)

sk′←$ DS.Ext(1λ ,pp,xtd,pk,M,σ)

If (F.Ev(1λ , fp,sk′) 6= pk) then Ret 0

M0← 0λ ; M1← 1λ

C∗←$LR(M0,M1)

M← PKE.Dec(1λ , fp,sk′,C∗)

If (M = M1) then b′← 1 else b′← 0

Ret b′

SignSim(M)

σ←$ DS.SimSig(1λ , jp,std,pk,M)

Ret σ

When A wins G1 we have that F.Ev(1λ , fp,sk′) = pk, so sk′ is a valid secret key for pk. By

correctness of PKE, we then have PKE.Dec(1λ ,pp,sk′,PKE.Enc(1λ ,pp,pk,Mb)) = Mb,

where b is the challenge bit in game IND-CCA, so

Advind-cca
PKE,D(λ) = Pr[b′ = 1|b = 1]−Pr[b′ = 1|b = 0]≥ Pr[GA

1 (λ)] .

This is because the first term in the difference above is at least Pr[GA
1 (λ)] and the second

term is zero. This establishes Equation 3.11.

3.4 KDM-secure storage

Services like Dropbox, Google Drive and Amazon S3 offer outsourced storage.

Users see obvious benefits but equally obvious security concerns. We would like to

secure this storage, even when messages (files needing to be stored) depend on the keys

securing them. If privacy is the only concern, existing KDM-secure encryption schemes

49

main KDMA
PKE,Φ(λ)

b←${0,1} ; ppe←$ PKE.Pg(1λ)

b′←$ AMkKey,Enc(1λ , ppe) ; Ret (b = b′)

MkKey(1n)

For i = 1, . . . ,n do (sk[i],pk[i])←$ PKE.Kg(1λ , ppe)
Ret pk
Enc(φ , i)
If not (1≤ i≤ n) then Ret ⊥
M←Φ(1λ ,φ ,sk)
If (b = 1) then C←$ PKE.Enc(1λ , ppe,pk[i],M)

Else C←$ PKE.Enc(1λ , ppe,pk[i],0|M|)
Ret C

Figure 3.9. Game defining Φ-KDM security of a public-key encryption scheme PKE.

(e.g., [30, 38, 11, 10, 45, 47, 29, 13, 102, 9, 43, 44, 19, 76, 90]) will do the job. However,

integrity is just as much of a concern, and adding it without losing KDM security is

challenging. This is because conventional ways of adding integrity introduce new keys

and create new ways for messages to depend on keys. Key-versatile signing, by leaving

the keys unchanged, will provide a solution.

We begin below by formalizing our goal of encrypted and authenticated out-

sourced storage secure for key-dependent messages. In our syntax, the user encrypts

and authenticates under her secret key, and then verifies and decrypts under the same

secret key, with the public key utilized by the server for verification. Our requirement

for KDM security has two components: IND for privacy and SUF for integrity. With the

definitions in hand, we take a base KDM-secure encryption scheme and show how, via a

key-versatile signature, to obtain storage schemes meeting our goal. Our resulting storage

schemes will achieve KDM security with respect to the same class of message-deriving

functions Φ as the underlying encryption scheme. Also, we will assume only CPA KDM

security of the base scheme, yet achieve CCA KDM privacy for the constructed storage

50

scheme. Interestingly, our solution uses a public-key base encryption scheme, even

though the privacy component of the goal is symmetric and nobody but the user will en-

crypt. This allows us to start with KDM privacy under keys permitting signatures through

key-versatile signing. This represents a novel application for public-key KDM-secure

encryption.

KDM security. A class of KDM functions Φ is a PT-computable function specifying

for each λ ∈ N and each φ ∈ {0,1}∗ a map Φ(1λ ,φ , ·) called the message-deriving

function described by φ . This map takes input a vector sk (of keys) and returns a string

(the message) of length φ .m, where φ .m ∈ N, the output length of φ , is computable

in polynomial time given 1λ ,φ . We assume Φ always includes all constant functions.

Formally, 〈M〉 describes the function defined by Φ(1λ ,〈M〉,sk) = M for all M ∈ {0,1}∗.

We say that public-key encryption scheme PKE is Φ-KDM secure if Advkdm
PKE,A,Φ(·) is

negligible for every PT adversary A, where Advkdm
PKE,A,Φ(λ) = 2Pr[KDMA

PKE,Φ(λ)]−1

and game KDM is in Figure 3.9. We require that A make exactly one query to MkKey

and that this be its first oracle query. The argument n≥ 1 determines the number of keys

and must be given in unary. The definition follows [30] except in parameterizing security

by the class Φ of allowed message-deriving functions. The parameterization is important

because many existing KDM-secure encryption schemes are for particular classes Φ, for

example for encryption cycles, affine functions or cliques [38, 10, 43, 44, 90]. We aim to

transfer whatever KDM security we have in the encryption to the secure storage, meaning

we want to preserve Φ regardless of what it is. Of course a particularly interesting case is

that of “full” security, but this is captured as the special case where Φ is all functions.

In the setting of direct practical interest, Alice arguably has just one key, corre-

sponding to the vector sk above having just one component. However, as noted above,

much of the literature on KDM security concerns itself with the encryption of cycles

51

and cliques, which represent message-deriving functions on multiple keys, and so our

definitions allow the latter.

Secure storage schemes. A storage scheme ST specifies the following PT algorithms:

via pp←$ ST.Pg(1λ) one generates public parameters pp common to all users; via

(sk,pk)←$ ST.Kg(1λ ,pp) a user can generate a secret key sk and corresponding pub-

lic key pk; via D←$ ST.Store(1λ ,pp,sk,M) a user can produce some data D based

on M ∈ {0,1}∗ to store on the server; via M ← ST.Retrieve(1λ ,pp,sk,D) a user can

deterministically retrieve M ∈ {0,1}∗ ∪ {⊥} from their stored data D; and via d ←

ST.Verify(1λ ,pp,pk,D) the server can deterministically produce a decision d ∈ {true,

false} regarding the validity of D. Correctness requires that ST.Retrieve(1λ ,pp,sk,

ST.Store(1λ ,pp,sk,M)) = M and ST.Verify(1λ ,pp,pk,ST.Store(1λ ,pp,sk,M)) = true

for all λ ∈ N, all pp ∈ [ST.Pg(1λ)], all (sk,pk) ∈ [ST.Kg(1λ ,pp)], and all messages

M ∈ {0,1}∗. Let Φ be a class of KDM functions as above. We say that ST is Φ-IND-

secure if Advind
ST,A,Φ(·) is negligible for all PT adversaries A, where Advind

ST,A,Φ(λ) =

2Pr[INDA
ST,Φ(λ)]− 1 and game IND is on the left-hand side of Figure 3.10. The

presence of the Retrieve oracle makes this a CCA KDM notion. We say that

ST is Φ-SUF-secure if Advsuf
ST,A,Φ(·) is negligible for all PT adversaries A, where

Advsuf
ST,A,Φ(λ) = Pr[SUFA

ST,Φ(λ)] and game SUF is on the right-hand side of Figure 3.10.

In both cases, we require that A make exactly one query to MkKey and that this be its

first oracle query, and again the argument n≥ 1, indicating the number of keys, must be

given in unary.

Construction. The base scheme we take as given is a Φ-KDM secure, canonical public-

key encryption scheme PKE. As in Section 3.3, we begin by constructing from PKE

a function family F. We do not repeat this construction here, but refer the reader to

52

main INDA
ST,Φ(λ)

b←${0,1} ; Q← /0 ; pp←$ ST.Pg(1λ)

b′←$ AMkKey,Store,Retrieve(1λ ,pp)
Ret (b = b′)

MkKey(1n)

For i = 1, . . . ,n do
(sk[i],pk[i])←$ ST.Kg(1λ ,pp)
Ret pk

Store(φ , i)

If not (1≤ i≤ n) then Ret ⊥
If (b = 1) then M←Φ(1λ ,φ ,sk)
Else M← 0φ .m

D←$ ST.Store(1λ ,pp,sk[i],M)

Q← Q∪{(D, i)}
Ret D

Retrieve(D, i)

If not (1≤ i≤ n) then Ret ⊥
If ((D, i) ∈ Q) then Ret ⊥
M← ST.Retrieve(1λ ,pp,sk[i],D)

Ret M

main SUFA
ST,Φ(λ)

Q← /0 ; pp←$ ST.Pg(1λ)

(D, i)←$ AMkKey,Store,Retrieve(1λ ,pp)
If (D, i) ∈ Q then Ret false

If not (1≤ i≤ n) then Ret false

Ret ST.Verify(1λ ,pp,pk[i],D)

MkKey(1n)

For i = 1, . . . ,n do
(sk[i],pk[i])←$ ST.Kg(1λ ,pp)
Ret pk

Store(φ , i)

If not (1≤ i≤ n) then Ret ⊥
M←Φ(1λ ,φ ,sk)
D←$ ST.Store(1λ ,pp,sk[i],M)

Q← Q∪{(D, i)}
Ret D

Retrieve(D, i)

If not (1≤ i≤ n) then Ret ⊥
If ((D, i) ∈ Q) then Ret ⊥
M← ST.Retrieve(1λ ,pp,sk[i],D)

Ret M

Figure 3.10. Games defining KDM-security of storage scheme ST: Privacy (left) and
unforgeability (right).

Section 3.3. We then let DS be an F-keyed signature scheme that is simulatable and

key-extractable. We construct our storage scheme ST as follows:

• ST.Pg(λ): Return (fp,ap)←$ DS.Pg(1λ). Thus, parameters for ST have the form

pp = (fp,ap), where fp are parameters for both F and PKE.

• ST.Kg(1λ ,(fp,ap)): Return (sk,pk)←$ DS.Kg(1λ ,(fp,ap)). Thus, keys are those

of PKE and DS.

53

• ST.Store(1λ ,(fp,ap),sk,M): pk← F.Ev(1λ , fp,sk) ; C←$ PKE.Enc(1λ , fp,pk,M)

; σ←$ DS.Sig(1λ ,pp,sk,C). Return (C,σ).

• ST.Retrieve(1λ ,(fp,ap),sk,(C,σ)): pk← F.Ev(1λ , fp,sk). If DS.Ver(1λ ,pp,pk,

C,σ) = false then return ⊥. Else return PKE.Dec(1λ , fp,sk,C).

• ST.Verify(1λ ,(fp,ap),pk,(C,σ)): Return DS.Ver(1λ ,(fp,ap),pk,C,σ).

The following says that our construction provides both privacy and integrity for key-

dependent messages, assuming privacy for key-dependent messages of the base encryp-

tion scheme and simulatability and key-extractability of the F-keyed signature scheme:

Theorem 3.4.1. Let PKE be a canonical public-key encryption scheme, and let F be

defined from it as above. Let DS be an F-keyed signature scheme, and let ST be the

corresponding storage scheme constructed above. Let Φ be a class of message-deriving

functions. Assume PKE is Φ-KDM secure. Assume DS is simulatable and key-extractable.

Then (1) ST is Φ-IND secure and (2) ST is Φ-SUF secure.

Before we present the full proof of this theorem, we provide sketches to highlight

some of the unusual difficulties. Taking first the proof of privacy, we would like, given

an adversary A breaking the Φ-IND security of ST, to build an adversary D breaking the

assumed Φ-KDM security of PKE. The first problem is how D can create the signatures

needed to answer Store queries of A, since these rely on secret keys hidden from D.

We solve this by switching to simulation parameters, so that D can simulate signatures

without a secret key. In answering Retrieve queries, however, we run into another

problem: the assumed KDM security of PKE is only under CPA. To solve this, we use

the extractor to extract the secret key from signatures and decrypt under it. The full proof

involves building simulation and extractability adversaries in addition to D.

Turning next to the proof of unforgeability, we might at first expect that it relies on

nothing more than the unforgeability of the signature scheme, so that given an adversary

54

A breaking the Φ-SUF security of ST we could build an adversary breaking the SUF

security of DS. However, we run into the basic issue that, since the same keys are used

for signing, encryption, and decryption, an adversary against the unforgeability of the

signature scheme cannot even construct the messages (ciphertexts) on which A would

forge. Instead, we will build from A an adversary D breaking the Φ-KDM security of

PKE. This adversary will extract a secret key from a forgery of A and use this to break

privacy. To get D to work we must first, as above, switch to simulated signatures, and

then use extractability to switch to a simpler Retrieve oracle.

Proof. Part (1): IND security

Let A be a PT adversary playing game IND. Let q(·) be a polynomial such that

the number of Retrieve queries of A in game INDA
ST,Φ(λ) is q(λ) for all λ ∈ N. We

provide PT adversaries A1,A2,D and a negligible function ν(·) such that

Advind
ST,A,Φ(λ)≤ 2Advsim

DS,A1
(λ)+Advkdm

PKE,D,Φ(λ)+2ν(λ)+2q(λ) ·Advext
DS,A2

(λ)

for all λ ∈ N, from which part (1) of the theorem follows.

The proof uses the games in Figure 3.11. We build A1,A2,D and ν(·) such that

for all λ ∈ N we have

Pr[INDA
ST,Φ(λ)]−Pr[GA

0 (λ)]≤ Advsim
DS,A1

(λ) (3.12)

2Pr[GA
1 (λ)]−1≤ Advkdm

PKE,D,Φ(λ) (3.13)

Pr[GA
2 (λ) sets bad]≤ ν(λ)+q(λ) ·Advext

DS,A2
(λ) . (3.14)

Games G0,G1 are identical until bad. We also observe that Pr[GA
0 (λ) sets bad] ≤

Pr[GA
2 (λ) sets bad]. (In both games, decryption in Retrieve is always done correctly.)

Combining this with the above and the Fundamental Lemma of Game-Playing [25], for

55

all λ ∈ N we have:

Advind
ST,A,Φ(λ) = 2Pr[INDA

ST,Φ(λ)]−1

= 2
(

Pr[INDA
ST,Φ(λ)−Pr[GA

0 (λ)]
)
+2

(
Pr[GA

0 (λ)]−Pr[GA
1 (λ)]

)
+

2Pr[GA
1 (λ)]−1

≤ 2
(

Pr[INDA
ST,Φ(λ)−Pr[GA

0 (λ)]
)
+2Pr[GA

0 (λ) sets bad]+

2Pr[GA
1 (λ)]−1

≤ 2Advsim
DS,A1

(λ)+Advkdm
PKE,D,Φ(λ)+2Pr[GA

0 (λ) sets bad]

≤ 2Advsim
DS,A1

(λ)+Advkdm
PKE,D,Φ(λ)+2Pr[GA

2 (λ) sets bad]

≤ 2Advsim
DS,A1

(λ)+Advkdm
PKE,D,Φ(λ)+2ν(λ)+2q(λ) ·Advext

DS,A2
(λ)

as desired. We proceed to the constructions of A1,A2,D and ν .

Adversary A1 behaves as follows:

56

ASign
1 (1λ ,pp)

Q← /0 ; d←${0,1}

d′←$ AMkKeySim,StoreSim,RetrieveSim(1λ ,pp)

If (d′ = d) then b′← 1 else b′← 0

Ret b′

MkKeySim(1n)

For i = 1, . . . ,n do

(sk[i],pk[i])←$ DS.Kg(1λ ,pp)

Ret pk

RetrieveSim((C,σ), i)

If not (1≤ i≤ n) then Ret ⊥

If (not DS.Ver(1λ ,pp,pk[i],C,σ)) then Ret ⊥

If ((C,σ), i) ∈ Q then Ret ⊥

M← PKE.Dec(1λ , fp,sk[i],C)

Ret M

StoreSim(φ , i)

If not (1≤ i≤ n) then Ret ⊥

If d = 1 then M←Φ(1λ ,φ ,sk)

Else M← 0φ .m

C←$ PKE.Enc(1λ , fp,pk[i],M)

σ←$Sign(sk[i],C)

Q← Q∪{((C,σ), i)}

Ret (C,σ)

When the challenge bit b in game SIM is 1, adversary A1 simulates IND. We claim

that if b = 0 then A1 simulates G0. This is because in G0, procedure Retrieve always

performs the correct decryption, regardless of whether or not bad is set, and so does A1.

(A1 does not need to invoke the extractor, and indeed could not, since it does not have an

extraction trapdoor.) We thus have

Pr[INDA
ST,Φ(λ)]−Pr[GA

0 (λ)] = Pr[b′ = 1 |b = 1]−Pr[b′ = 1 |b = 0]≤ Advsim
DS,A1

(λ),

establishing Equation 3.12.

Adversary D behaves as follows:

57

DMkKey,Enc(1λ , fp)

Q← /0

(ap,std,xtd)←$ DS.SimPg(1λ)

pp← (fp,ap)

b′←$ AMkKey,StoreSim,RetrieveSim(1λ ,pp)

Ret b′

StoreSim(φ , i)

If not (1≤ i≤ n) then Ret ⊥

C←$Enc(φ , i)

σ←$ DS.SimSig(1λ ,pp,std,pk[i],C)

Q← Q∪{((C,σ), i)}

Ret (C,σ)

RetrieveSim((C,σ), i)

If not (1≤ i≤ n) then Ret ⊥

If (not DS.Ver(1λ ,pp,pk[i],C,σ)) then Ret ⊥

If ((C,σ), i) ∈ Q then Ret ⊥

sk′←$ DS.Ext(1λ ,pp,xtd,pk[i],C,σ)

M← PKE.Dec(1λ , fp,sk′,C)

Ret M

We omit the analysis to establish Equation 3.13.

Now we would like to show that G0 (equivalently, G1) sets bad with negligible

probability. Intuitively, this should follow from extractability, since bad is set when extrac-

tion fails. A difficulty is that extraction is not required to succeed when (pk[i],C,σ) ∈Q′.

So first we show that the latter event is unlikely, and then, assuming it does not happen,

that failure of extraction is unlikely. This is formalized via G2, which breaks the setting of

58

bad from G0 into two parts corresponding to the two events of interest. To establish Equa-

tion 3.17, let E1 be the event that bad is set by the line 5 “If” statement, and E2 the event

that bad is set by the line 7 “If” statement. We first show the existence of a negligible ν(·)

such that Pr[E1]≤ ν(λ). Then we build A2 such that Pr[E2∧E1]≤ q(λ) ·Advext
DS,A2

(λ).

This establishes Equation 3.14, as we have

Pr[GA
2 (λ) sets bad] = Pr[E1∨E2]

= Pr[E1]+Pr[E2∧E1]

≤ ν(λ)+q(λ) ·Advext
DS,A2

(λ).

For the first claim, let E be the event that there is a collision in the public keys

chosen in MkKey, meaning there are distinct i, j ∈ {1, . . . ,n} such that pk[i] = pk[j].

We claim that if this event does not happen, then neither will E1. This is because setting

bad requires that (pk[i],C,σ)∈Q′ yet ((C,σ), i) 6∈Q, but this cannot happen if the public

keys are all distinct. So Pr[E1]≤ Pr[E]. However, if E does happen with probability that

is not negligible, then it is easy to break KDM security of PKE. An adversary just has

to itself sample key-pairs, hoping to get one where the public key matches one of her

challenge public keys. In that case, having the corresponding secret key, it is easy to

defeat security. We omit the details because this argument is standard.

Adversary A2 behaves as follows:

59

ASign
2 (1λ ,pp)

Q← /0 ; d←${0,1} ; j← 0

d′←$ AMkKeySim,StoreSim,RetrieveSim(1λ ,pp)

`←${1, . . . , j}

Ret (pk`,C`,σ`)

MkKeySim(1n)

For i = 1, . . . ,n do

(sk[i],pk[i])←$ DS.Kg(1λ ,pp)

Ret pk

RetrieveSim((C,σ), i)

If not (1≤ i≤ n) then Ret ⊥

If (not DS.Ver(1λ ,pp,pk[i],C,σ)) then Ret ⊥

If ((C,σ), i) ∈ Q then Ret ⊥

M← PKE.Dec(1λ , fp,sk[i],C)

j← j+1 ; pk j← pk[i] ; C j←C ; σ j← σ

Ret M

StoreSim(φ , i)

If not (1≤ i≤ n) then Ret ⊥

If d = 1 then M←Φ(1λ ,φ ,sk)

Else M← 0φ .m

C←$ PKE.Enc(1λ , fp,pk[i],M)

σ←$Sign(sk[i],C)

Q← Q∪{((C,σ), i)}

Ret (C,σ)

Adversary A2 always performs correct decryptions in responding to Retrieve queries,

following G2. If bad is set at line 7 but not at line 5, then there is some tuple on which

the extractor would succeed. Since a tuple is guessed at random we have Pr[E2∧E1]≤

q(λ) ·Advext
DS,A2

(λ) as desired. The importance of bad not being set at line 5 is that

otherwise extraction is not required to succeed according to game EXT.

Part (2): SUF security

Let A′ be a PT adversary playing game SUF. Our first step is to consider a

simplified form of the SUF game shown in Figure 3.12. Here the adversary does not

output a forgery but instead wins via Retrieve queries. We can easily transform A′ into

60

a PT adversary A such that Advsuf
ST,A′,Φ(λ)≤ Pr[HA(λ)] for all λ ∈N. Adversary A simply

runs A′, answering all queries via its own oracles (the two adversaries have the same

oracles). When A′ halts with output ((C,σ), i), A makes query Retrieve((C,σ), i) and

halts with output ⊥. The flag win is set to true with at least the probability that A′ wins

its game. Now we proceed to upper bound Pr[HA(λ)].

Let q(·) be a polynomial such that the number of Retrieve queries of A in

game HA(λ) is q(λ) for all λ ∈N. We provide PT adversaries A1, A2,D and a negligible

function ν(·) such that

Pr[HA(λ)]≤ Advsim
DS,A1

(λ)+Advkdm
PKE,D,Φ(λ)+ν(λ)+q(λ) ·Advext

DS,A2
(λ)

for all λ ∈ N, from which part (2) of the theorem follows.

The proof uses the games in Figure 3.13. We build A1,A2,D and ν such that for

all λ ∈ N we have

Pr[HA(λ)]−Pr[GA
0 (λ)]≤ Advsim

DS,A1
(λ) (3.15)

Pr[GA
1 (λ)∧bad]≤ Advkdm

PKE,D,Φ(λ) (3.16)

Pr[GA
2 (λ) sets bad]≤ ν(λ)+q(λ) ·Advext

DS,A2
(λ) . (3.17)

The notation in Equation 3.16 means that we are considering the event that the game

returns true and also bad is not set. Now games G0,G1 are identical until bad so a

variant of the Fundamental Lemma of Game-Playing [25] says that Pr[GA
0 (λ)∧bad] =

Pr[GA
1 (λ)∧ bad]. We also observe that Pr[GA

0 (λ) sets bad] ≤ Pr[GA
2 (λ) sets bad]. (In

both games, decryption in Retrieve is always done correctly.) Combining this with

61

the above, for all λ ∈ N we have:

Advsuf
ST,A′,Φ(λ)≤ Pr[HA(λ)]

= Pr[HA(λ)]−Pr[GA
0 (λ)]+Pr[GA

0 (λ)]

≤ Pr[HA(λ)]−Pr[GA
0 (λ)]+Pr[GA

0 (λ)∧bad]+Pr[GA
0 (λ) sets bad]

≤ Pr[HA(λ)]−Pr[GA
0 (λ)]+Pr[GA

1 (λ)∧bad]+Pr[GA
0 (λ) sets bad]

≤ Pr[HA(λ)]−Pr[GA
0 (λ)]+Pr[GA

1 (λ)∧bad]+Pr[GA
2 (λ) sets bad]

≤ Advsim
DS,A1

(λ)+Advkdm
PKE,D(λ)+ν(λ)+q(λ) ·Advext

DS,A2
(λ)

as desired. We proceed to the constructions of A1,A2,D and ν .

Adversary A1 behaves as follows:

62

ASign
1 (1λ ,pp)

Q← /0

⊥←$ AMkKeySim,StoreSim,RetrieveSim(1λ ,pp)

If win then b′← 1 else b′← 0

Ret b′

MkKeySim(1n)

For i = 1, . . . ,n do

(sk[i],pk[i])←$ DS.Kg(1λ ,pp)

Ret pk

RetrieveSim((C,σ), i)

If not (1≤ i≤ n) then Ret ⊥

If ((C,σ), i) ∈ Q then Ret ⊥

If DS.Ver(1λ ,pp,pk[i],C,σ) then win← true ;

Else Ret ⊥

M← PKE.Dec(1λ , fp,sk[i],C)

Ret M

StoreSim(φ , i)

If not (1≤ i≤ n) then Ret ⊥

M←Φ(1λ ,φ ,sk)

C←$ PKE.Enc(1λ , fp,pk[i],M)

σ←$Sign(sk[i],C)

Q← Q∪{((C,σ), i)}

Ret (C,σ)

When the challenge bit b in game SIM is 1, adversary A1 simulates H, and when b = 0 it

simulates G0. Note that in the latter, decryptions done by Retrieve are always correct,

so A1 does not need to invoke the extractor. (Indeed, it could not, since it does not have

an extraction trapdoor.) This establishes Equation 3.15.

Adversary D behaves as follows:

63

DMkKey,Enc(1λ , fp)

Q← /0 ; sk∗←⊥ ; j←⊥

(ap,std,xtd)←$ DS.SimPg(1λ)

pp← (fp,ap)

⊥←$ AMkKey,StoreSim,RetrieveSim(1λ ,pp)

If (sk∗, j) = (⊥,⊥) then Ret 0

M1← 1λ ; C∗←$Enc(〈M1〉, j)

M← PKE.Dec(1λ , fp,sk∗,C∗)

If (M = M1) then b′← 1 else b′← 0

Ret b′

StoreSim(φ , i)

If not (1≤ i≤ n) then Ret ⊥

C←$Enc(φ , i)

σ←$ DS.SimSig(1λ ,pp,std,pk[i],C)

Q← Q∪{((C,σ), i)}

Ret (C,σ)

RetrieveSim((C,σ), i)

If not (1≤ i≤ n) then Ret ⊥

If ((C,σ), i) ∈ Q then Ret ⊥

If (not DS.Ver(1λ ,pp,pk[i],C,σ)) then Ret ⊥

sk′←$ DS.Ext(1λ ,pp,xtd,pk[i],C,σ)

If (F.Ev(1λ , fp,sk′) = pk[i]) then (sk∗, j)← (sk′, i)

M← PKE.Dec(1λ , fp,sk′,C)

Ret M

64

Recall that 〈M1〉 denotes the constant function that always returns M1. If win is set in G1

then we are assured that there is at least one Retrieve query which leads to extraction

being performed. If additionally bad is not set then this extraction succeeds, which means

decryption under sk∗ will be correct. That in turn means that M is the correct decryption

of C∗ and hence D succeeds if win∧bad. This establishes Equation 3.16.

Now we would like to show that G0 (equivalently, G1) sets bad with negligible

probability. Intuitively, this should follow from extractability, since bad is set when extrac-

tion fails. A difficulty is that extraction is not required to succeed when (pk[i],C,σ) ∈Q′.

So first we show that the latter event is unlikely, and then, assuming it does not happen,

that failure of extraction is unlikely. This is formalized via G2, which breaks the setting

of bad from G0 into two parts corresponding to the two events of interest. To establish

Equation 3.17, let E1 be the event that bad is set by the line 5 “If” statement, and E2 the

event that bad is set by the line 7 “If” statement. We show the existence of a negligible

ν(·) such that Pr[E1]≤ ν(λ) as in the proof of part (1) above, first arguing that Pr[E1] is

at most the probability of a collision in public keys, and then arguing that this is negligible

by the assumed security of PKE. To establish Equation 3.17, we now build A2 so that

Pr[E2∧E1]≤ q(λ) ·Advext
DS,A2

(λ):

65

ASign
2 (1λ ,pp)

Q← /0 ; j← 0

⊥←$ AMkKeySim,StoreSim,RetrieveSim(1λ ,pp)

`←${1, . . . , j}

Ret (pk`,C`,σ`)

MkKeySim(1n)

For i = 1, . . . ,n do

(sk[i],pk[i])←$ DS.Kg(1λ ,pp)

Ret pk

RetrieveSim((C,σ), i)

If not (1≤ i≤ n) then Ret ⊥

If ((C,σ), i) ∈ Q then Ret ⊥

If (not DS.Ver(1λ ,pp,pk[i],C,σ)) then Ret ⊥

M← PKE.Dec(1λ , fp,sk[i],C)

j← j+1 ; pk j← pk[i] ; C j←C ; σ j← σ

Ret M

StoreSim(φ , i)

If not (1≤ i≤ n) then Ret ⊥

M←Φ(1λ ,φ ,sk)

C←$ PKE.Enc(1λ , fp,pk[i],M)

σ←$Sign(sk[i],C)

Q← Q∪{((C,σ), i)}

Ret (C,σ)

Adversary A2 always performs correct decryptions in responding to Retrieve queries,

following G2. If bad is set at line 7 but not at line 5, then there is some tuple on which

the extractor would succeed. Since a tuple is guessed at random we have Pr[E2∧E1]≤

q(λ) ·Advext
DS,A2

(λ) as desired. The importance of bad not being set at line 5 is that

otherwise extraction is not required to succeed according to game EXT.

Instantiation. We require our base scheme PKE to be canonical. In Section 3.3 we

showed how to modify an encryption scheme to be canonical while preserving IND-CCA,

but the transformation does not in general preserve KDM security. Instead, we would use

66

KDM-secure schemes that are already canonical. One possibility is the scheme of [102].

The schemes of [38, 13, 10] are not canonical.

Acknowledgments

Chapter 3, in part, is a reprint of the material as it appears in Advances in

Cryptology - EUROCRYPT ’14. Mihir Bellare, Sarah Meiklejohn, Susan Thomson,

Springer Lecture Notes in Computer Science, volume 8441, 2014. The dissertation

author was a primary investigator and author of this paper.

67

main GA
0 (λ) / GA

1 (λ) / GA
2 (λ)

Q← /0 ; Q′← /0 ; b←${0,1}
fp←$ F.Pg(1λ) ; (ap,std,xtd)←$ DS.SimPg(1λ) ; pp← (fp,ap)
b′←$ AMkKey,Store,Retrieve(1λ ,pp)
Ret (b = b′)

MkKey(1n) // GA
0 (λ) / GA

1 (λ) / GA
2 (λ)

For i = 1, . . . ,n do (sk[i],pk[i])←$ DS.Kg(1λ ,pp)
Ret pk

proc Store(φ , i) // GA
0 (λ) / GA

1 (λ) / GA
2 (λ)

If not (1≤ i≤ n) then return ⊥
If (b = 1) then M←Φ(1λ ,φ ,sk) else M← 0φ .m

C←$ PKE.Enc(1λ , fp,pk[i],M) ; σ←$ DS.SimSig(1λ ,pp,std,pk[i],C)

Q← Q∪{((C,σ), i)} ; Q′← Q′∪{(pk[i],C,σ)}
Ret (C,σ)

proc Retrieve((C,σ), i) // GA
0 (λ) / GA

1 (λ)

If not (1≤ i≤ n) then return ⊥
If (not DS.Ver(1λ ,pp,pk[i],C,σ)) then Ret ⊥
If (((C,σ), i) ∈ Q) then Ret ⊥
sk′←$ DS.Ext(1λ ,pp,xtd,pk[i],C,σ) ; pk′← F.Ev(1λ , fp,sk′)
M← PKE.Dec(1λ , fp,sk′,C)

If (pk′ 6= pk[i]) then bad← true ; M← PKE.Dec(1λ , fp,sk[i],C)

Ret M

proc Retrieve((C,σ), i) // GA
2 (λ)

If not (1≤ i≤ n) then return ⊥
If (not DS.Ver(1λ ,pp,pk[i],C,σ)) then Ret ⊥
If (((C,σ), i) ∈ Q) then Ret ⊥
M← PKE.Dec(1λ , fp,sk[i],C)

If (pk[i],C,σ) ∈ Q′ then bad← true ; Ret M
sk′←$ DS.Ext(1λ ,pp,xtd,pk[i],C,σ) ; pk′← F.Ev(1λ , fp,sk′)
If (pk′ 6= pk[i]) then bad← true

Ret M

Figure 3.11. Games used in the proof of part (1) of Theorem 3.4.1. Game G0 includes
the boxed code and game G1 does not.

68

main HA(λ)

Q← /0 ; win← false ; (fp,ap)←$ DS.Pg(1λ) ; pp← (fp,ap)
⊥←$ AMkKey,Store,Retrieve(1λ ,pp)
Ret win

MkKey(1n)

For i = 1, . . . ,n do (sk[i],pk[i])←$ DS.Kg(1λ ,pp)
Ret pk

Store(φ , i)
If not (1≤ i≤ n) then Ret ⊥
M←Φ(1λ ,φ ,sk) ; C←$ PKE.Enc(1λ , fp,pk[i],M)

σ←$ DS.Sig(1λ ,pp,sk[i],C) ; Q← Q∪{((C,σ), i)}
Ret (C,σ)

Retrieve((C,σ), i)
If not (1≤ i≤ n) then Ret ⊥
If ((C,σ), i) ∈ Q) then Ret ⊥
If DS.Ver(1λ ,pp,pk[i],C,σ) then win← true else Ret ⊥
M← PKE.Dec(1λ , fp,sk[i],C)

Ret M

Figure 3.12. Game defining alternate form of SUF for the proof of part (2) of Theo-
rem 3.4.1.

69

main GA
0 (λ) / GA

1 (λ) / GA
2 (λ)

Q← /0 ; Q′← /0 ; win← false

fp←$ F.Pg(1λ) ; (ap,std,xtd)←$ DS.SimPg(1λ) ; pp← (fp,ap)
⊥←$ AMkKey,Store,Retrieve(1λ ,pp)
Ret win

MkKey(1n) // GA
0 (λ) / GA

1 (λ) / GA
2 (λ)

For i = 1, . . . ,n do (sk[i],pk[i])←$ DS.Kg(1λ ,pp)
Ret pk

proc Store(φ) // GA
0 (λ) / GA

1 (λ) / GA
2 (λ)

If not (1≤ i≤ n) then return ⊥
M←Φ(1λ ,φ ,sk) ; C←$ PKE.Enc(1λ , fp,pk[i],M)

σ←$ DS.SimSig(1λ ,pp,std,pk[i],C) ; Q ← Q ∪ {((C,σ), i)} ; Q′ ←
Q′∪{(pk[i],C,σ)}
Ret (C,σ)

proc Retrieve((C,σ), i) // GA
0 (λ) / GA

1 (λ)

If not (1≤ i≤ n) then return ⊥
If (((C,σ), i) ∈ Q) then Ret ⊥
If DS.Ver(1λ ,pp,pk[i],C,σ) then win← true else Ret ⊥
sk′←$ DS.Ext(1λ ,pp,xtd,pk[i],C,σ) ; pk′← F.Ev(1λ , fp,sk′)
M← PKE.Dec(1λ , fp,sk′,C)

If (pk′ 6= pk[i]) then bad← true ; M← PKE.Dec(1λ , fp,sk[i],C)

Ret M

proc Retrieve((C,σ), i) // GA
2 (λ)

If not (1≤ i≤ n) then return ⊥
If (((C,σ), i) ∈ Q) then Ret ⊥
If DS.Ver(1λ ,pp,pk[i],C,σ) then win← true else Ret ⊥
M← PKE.Dec(1λ , fp,sk[i],C)

If (pk[i],C,σ) ∈ Q′ then bad← true ; Ret M
sk′←$ DS.Ext(1λ ,pp,xtd,pk[i],C,σ) ; pk′← F.Ev(1λ , fp,sk′)
If (pk′ 6= pk[i]) then bad← true

Ret M

Figure 3.13. Games used in the proof of part (2) of Theorem 3.4.1. Game G0 includes
the boxed code and game G1 does not.

Chapter 4

Anonymity in Bitcoin

Demand for low friction e-commerce of various kinds has driven a proliferation

in online payment systems over the last decade. Thus, in addition to established payment

card networks (e.g., Visa and Mastercard) a broad range of so-called “alternative pay-

ments” has emerged including eWallets (e.g., Paypal, Google Checkout, and WebMoney),

direct debit systems (typically via ACH, such as eBillMe), money transfer systems (e.g.,

Moneygram) and so on. However, virtually all of these systems have the property that

they are denominated in existing fiat currencies (e.g., dollars), explicitly identify the

payer in transactions, and are centrally or quasi-centrally administered.1

By far the most intriguing exception to this rule is Bitcoin. First deployed in 2009,

Bitcoin is an independent online monetary system that combines some of the features

of cash and existing online payment methods. Like cash, Bitcoin transactions do not

explicitly identify the payer or the payee: a transaction is a cryptographically-signed

transfer of funds from one public key to another. Moreover, like cash, Bitcoin transactions

are irreversible (in particular, there is no chargeback risk as with credit cards). How-

ever, unlike cash, Bitcoin requires third party mediation: a global peer-to-peer network

of participants validates and certifies all transactions; such decentralized accounting

1In particular, there is a central controlling authority who has the technical and legal capacity to tie a
transaction back to a pair of individuals.

70

71

requires each network participant to maintain the entire transaction history of the sys-

tem, currently amounting to over 3GB of compressed data. Bitcoin identities are thus

pseudo-anonymous: while not explicitly tied to real-world individuals or organizations,

all transactions are completely transparent.2

This unusual combination of features has given rise to considerable confusion

about the nature and consequences of the anonymity that Bitcoin provides. In particular,

there is concern that the combination of scalable, irrevocable, anonymous payments

would prove highly attractive for criminals engaged in fraud or money laundering. In

a widely leaked 2012 Intelligence Assessment, FBI analysts make just this case and

conclude that a key “advantage” of Bitcoin for criminals is that “law enforcement faces

difficulties detecting suspicious activity, identifying users and obtaining transaction

records” [74]. Similarly, in a late 2012 report on Virtual Currency Schemes, the European

Central Bank opines that the lack of regulation and due diligence might enable “criminals,

terrorists, fraudsters and money laundering” and that “the extent to which any money

flows can be traced back to a particular user is unknown” [72]. Indeed, there is at least

some anecdotal evidence that this statement is true, with the widely publicized “Silk

Road” service using Bitcoin to trade in a range of illegal goods (e.g., restricted drugs

and firearms). Finally, adding to this urgency is Bitcoin’s considerable growth, both

quantitatively — a merchant servicer, Bitpay, announced that it had signed up over 1,000

merchants in 2012 to accept the currency, and in November 2013 the exchange rate

soared to 1,200 USD per bitcoin before settling to a more modest 600 USD per bitcoin —

and qualitatively via integration with existing payment mechanisms (e.g., Bitinstant

offering to tie users’ Bitcoin wallets to Mastercard accounts [66] and Bitcoin Central’s

recent partnership with the French bank Crédit Mutuel Arkéa to gateway Bitcoin into

2Note that this statement is not strictly true since private exchanges of Bitcoin between customers of a
single third party exchange, such as Mt. Gox, need not (and do not) engage the global Bitcoin protocol and
are therefore not transparent.

72

the banking system [114]) and the increasing attention of world financial institutions

(e.g., Canada’s recent decision to tax Bitcoin transactions [49] and FinCEN’s recent

regulations on virtual currencies [75]). In spite of this background of intense interest,

Bitcoin’s pseudo-anonymity has limited how much is known about how the currency is

used and how Bitcoin’s use has evolved over time.

In this context, our work seeks to better understand the traceability of Bitcoin

flows and, through this understanding, explore the evolution in how Bitcoin has been

used over time. Importantly, our goal is not to generally de-anonymize all Bitcoin users —

as the abstract protocol design itself dictates that this should be impossible — but rather

to identify certain idioms of use present in concrete Bitcoin network implementations

that erode the anonymity of the users who engage in them. Our approach is based on

the availability of the Bitcoin block chain: a replicated graph data structure that encodes

all Bitcoin activity, past and present, in terms of the public digital signing keys party to

each transaction. However, since each of these keys carries no explicit information about

ownership, our analysis depends on imposing additional structure on the transaction

graph.

Our methodology has two phases. First, in Section 4.2, we describe a re-

identification attack wherein we open accounts and make purchases from a broad range

of known Bitcoin merchants and service providers (e.g., Mt. Gox and Silk Road). Since

one endpoint of the transaction is known (i.e., we know which public key we used), we

are able to positively label the public key on the other end as belonging to the service;

we augment this attack by crawling Bitcoin forums for “self-labeled” public keys (e.g.,

where an individual or organization explicitly advertises a key as their own). Next, in

Section 4.3, we build on past efforts [8, 116, 121, 138] to cluster public keys based on

evidence of shared spending authority. This clustering allows us to amplify the results of

our re-identification attack: if we labeled one public key as belonging to Mt. Gox, we

73

can now transitively taint the entire cluster containing this public key as belonging to Mt.

Gox as well. The result is a condensed graph, in which nodes represent entire users and

services rather than individual public keys.

From this data we characterize Bitcoin use longitudinally, focusing in particular

on the evolution of services and their role in the Bitcoin network. Finally, in Section 4.4,

we combine what we have learned to examine the suitability of Bitcoin for hiding large-

scale illicit transactions. Using the dissolution of a large Silk Road wallet and notable

Bitcoin thefts as case studies, we demonstrate that an agency with subpoena power would

be well placed to identify who is paying money to whom. Indeed, we argue that the

increasing dominance of a small number of Bitcoin institutions (most notably services

that perform currency exchange), coupled with the public nature of transactions and our

ability to label monetary flows to major institutions, ultimately makes Bitcoin unattractive

today for high-volume illicit use such as money laundering.

4.1 Bitcoin Background

Our heuristics that we use to cluster addresses depend on the structure of the

Bitcoin protocol, so we first describe it here, and briefly mention the anonymity that it

is intended to provide. Additionally, much of our analysis discusses the “major players”

and different categories of bitcoin-based services, so we also present a more high-level

overview of Bitcoin participation, as well as some general statistics about the Bitcoin

network.

74

4.1.1 Bitcoin protocol description

Bitcoin is a decentralized electronic currency, introduced by (the pseudonymous)

Satoshi Nakamoto in 2008 [109] and deployed on January 3 2009. Briefly, a bitcoin3 can

be thought of as a chain of transactions from one owner to the next, where owners are

identified by a public key (in practice, a public key for the ECDSA signature scheme)

that serves as a pseudonym; i.e., users can use any number of public keys and their

activity using one set of public keys is not inherently tied to their activity using another

set, or to their real-world identity (so that, e.g., a user can use a different public key to

deposit bitcoins into his Silk Road account than to withdraw bitcoins from his Mt. Gox

account, and expect that these activities cannot be linked to either his real identity or to

each other). In each transaction, the previous owner signs — using the secret signing

key corresponding to his public key — a hash of the transaction in which he received

the bitcoins (in practice, a SHA-256 hash) and the public key of the next owner. This

signature (i.e., transaction) can then be added to the set of transactions that constitutes

the bitcoin; because each of these transactions references the previous transaction (i.e., in

sending bitcoins, the current owner must specify where they came from), the transactions

form a chain. To verify the validity of a bitcoin, a user can check the validity of each of

the signatures in this chain.

To prevent double spending, it is necessary for each user in the system to be aware

of all such transactions. Double spending can then be identified when a user attempts

to transfer a bitcoin after he has already done so. To determine which transaction came

first, transactions are grouped into blocks, which serve to timestamp the transactions they

contain and vouch for their validity. Blocks are themselves formed into a chain, with

each block referencing the previous one (and thus further reinforcing the validity of all
3Following established convention, we use the capitalized term Bitcoin when referring to the payment

system and peer-to-peer network and the lowercase term bitcoin (abbreviated BTC), when referring to the
unit of currency.

75

previous transactions). This process yields a block chain, which is then publicly available

to every user within the system.

This process describes how to transfer bitcoins and broadcast transactions to

all users of the system. Because Bitcoin is decentralized and there is thus no central

authority minting bitcoins, we must also consider how bitcoins are generated in the first

place. In fact, this happens in the process of forming a block: each accepted block (i.e.,

each block incorporated into the block chain) is required to be such that, when all the

data inside the block is hashed, the hash begins with a certain number of zeroes. To

allow users to find this particular collection of data, blocks contain, in addition to a list of

transactions, a nonce. (We simplify the description slightly to ease presentation.) Once

someone finds a nonce that allows the block to have the correctly formatted hash, the

block is then broadcast in the same peer-to-peer manner as transactions. The system is

designed to generate only 21 million bitcoins in total. Finding a block currently comes

with an attached reward of 25 BTC; this rate was 50 BTC until November 28 2012 (block

height 210,000), and is expected to halve again in 2016, and eventually drop to 0 in 2140.

In summary, the dissemination of information within the Bitcoin network is as

follows (and as depicted in Figure 4.1): first, users generate at least one signing keypair,

and publicize the public key, or address — in the rest of the paper we use these terms

interchangeably — to receive bitcoins (and again, users can choose to use a single public

key or arbitrarily many). If a user has bitcoins that she wishes to transfer, she broadcasts

a transaction, proving that she has the bitcoins and indicating the address of the recipient

to her peers, who in turn broadcast it to their peers. Eventually, this transaction reaches a

miner, who collects the transactions he hears about into a block, and works on finding the

right data/nonce balance to hit the target hash. He also includes in the block a special

coin generation transaction that specifies his address for receiving the block reward.

Finally, when the miner does find such a block, he broadcasts it to his peers, who again

76

Figure 4.1. How a Bitcoin transaction works. In this example, a user wants to send 0.7
bitcoins as payment to a merchant. In (1), the merchant generates or picks an existing
public key mpk, and in (2) it sends this public key to the user. In (3), by creating a digital
signature, the user forms the transaction tx to transfer the 0.7 bitcoins from his public
key upk to the merchant’s address mpk. In (4), the user broadcasts this transaction to his
peers, which (if the transaction is valid) allows it to flood the network. In this way, a
miner learns about his transaction. In (5), the miner works to incorporate this and other
transactions into a block by checking if their hash is within some target range. In (6), the
miner broadcasts this block to her peers, which (if the block is valid) allows it to flood
the network. In this way, the merchant learns that the transaction has been accepted into
the global block chain, and has thus received the user’s payment.

broadcast it to their peers. As his reward, the block reward and all the fees for the

included transactions are credited to his specified address. When another block has been

formed, referencing his block as the previous block, his block can now be considered

part of the block chain.

4.1.2 Participants in the Bitcoin network

In practice, the way in which Bitcoin can be used is much simpler than the above

description might indicate. First, generating a block is so computationally difficult that

very few individual users attempt it on their own. Instead, users may join a mining pool

77

such as Deepbit, in which they contribute “shares” to narrow down the search space, and

earn a small amount of bitcoins in exchange for each share.

Users may also avoid coin generation entirely, and simply purchase bitcoins

through one of the many exchanges, such as Mt. Gox. They may then keep the bitcoins

in a wallet stored on their computer or, to make matters even easier, use one of the many

wallet services (i.e., banks) that exist online (although the two most popular of these,

MyBitcoin and Instawallet, have both shut down due to thefts).

Finally, to actually spend their bitcoins, users could gamble with one of the

popular dice games such as Satoshi Dice. They could also buy items from various online

vendors, such as Bitmit (“the eBay of Bitcoin”), the notorious Tor-based service Silk

Road, or with vendors, such as Wordpress, that might ordinarily accept only US dollars

but accept bitcoins through BitPay, a payment gateway that takes bitcoins from the buyer

but offers the option of payment in USD to the seller (thus eliminating all Bitcoin-based

risk for the vendor). Finally, users wishing to go beyond basic currency speculation can

invest their bitcoins with firms such as Bitcoinica (shut down after a series of thefts) or

Bitcoin Savings & Trust (later revealed as a major Ponzi scheme). In Section 4.2, we

more fully describe the role and impact of these and other services within the Bitcoin

network.

4.1.3 Bitcoin network statistics

We used the bitcoind client to download the block chain, and parsed it into a

PostgreSQL database using a modified version of the bitcointools library developed

by Gavin Andresen [7]. We last parsed the block chain on April 13 2013, when there

were 231,207 blocks, containing 16,086,073 transactions and 12,056,684 distinct public

keys.

78

Date

A
ve

ra
ge

 p
er

ce
nt

ag
e

of
 tr

an
sa

ct
io

ns
 p

er
 b

lo
ck

0

20

40

60

80

100

2009−01−09 2010−02−21 2011−04−06 2012−05−19

>= 500
>= 55 and < 500
> 50 and < 55
= 50
>= 1 and < 50
> 0.1 and < 1
<= 0.1

Figure 4.2. (In color online.) The distribution, over time and averaged weekly, of
transaction values. The plot and legend both run, bottom to top, from the smallest-valued
transactions to the highest.

To begin, we looked at the size of transactions; i.e., the number of bitcoins sent in

a transaction. Figure 4.2 depicts the changing percentage of various transaction sizes over

time. Not surprisingly, until approximately April 2010 — the first 15 months that Bitcoin

was deployed — almost all transactions involved exactly 50 bitcoins (the initial reward

for mining a block), and indeed these transactions became a minority of all transactions

only in January 2011. This activity reflects the adoption phase of Bitcoin, in which most

blocks contained the coin generation transaction and nothing more. (In later phases, the

mining reward is likely a little more than 50 because it includes miner fees, which is

why we created a separate bin for values between 50 and 55.) We also see a second

turning point in early 2012, in which the percentage of transactions carrying less than a

single bitcoin in total value doubled abruptly (from 20% to 40%), while the percentage

of transactions carrying less than 0.1 BTC tripled.

79

Date

Av
er

ag
e

pe
rc

en
ta

ge
 o

f i
nc

om
in

g
va

lu
e

0

20

40

60

80

100

Date

Av
er

ag
e

pe
rc

en
ta

ge
 o

f i
nc

om
in

g
tra

ns
ac

tio
ns

0

20

40

60

80

100

immediately
within 1 hour

ays
weeks

years
unspent

Figure 4.3. (In color online.) The trend, over time and averaged weekly, of how long
public keys hold on to the bitcoins received. The plot on the left shows the percentage over
all public keys, and the plot on the right shows the percentage over all value transacted.
The values run bottom to top, from longest to spend (unspent as of now) to shortest to
spend (spent within the same block).

We also observed how quickly bitcoins were spent; i.e., once they were received,

how long did it take the recipient to spend them? Figure 4.3 shows breakdowns both in

terms of public keys (how many recipient public keys spent their contents in a certain

time window) and in terms of value (how many of the bitcoins that were received were

spent in a certain time window).

Looking at this figure, we again see two clear turning points. The first, in early

2011, represents a point at which users began meaningfully spending bitcoins, rather

than just “hoarding” them; in fact, from this point on a negligible fraction of bitcoins

are hoarded. Nevertheless, these early hoarders in fact took most of the bitcoins out of

circulation; as observed by Ron and Shamir [121], a significant majority of all bitcoins

are in these “sink” addresses that have to date never spent their contents (at the time they

parsed the block chain it was 75%, whereas we observed it to be 64%), meaning only

4 million bitcoins are currently in circulation. Nevertheless, these remaining coins are

circulating quite actively, as seen in the second turning point in Figure 4.3: in April 2012,

the percentage of bitcoins being spent immediately (i.e., in the same block in which they

were received) doubled, and more generally half of all bitcoins are now spent within an

hour of being received and 80% of bitcoins are spent within a day.

80

As it turns out, and as we see in Section 4.4.1, both these recent trends of smaller

transactions and faster spending can be largely attributed to a single service: the gambling

site Satoshi Dice. Thus, even a longitudinal study of the Bitcoin network already makes

clear the effect that services have on current Bitcoin usage.

4.2 Data Collection

To identify public keys belonging to the types of services mentioned in Sec-

tion 4.1.2, we sought to “tag” as many addresses as possible; i.e., label an address as

being definitively controlled by some known real-world user (e.g., Mt. Gox or Instawal-

let). As we will see in Section 4.3.3, by clustering addresses based on evidence of shared

control, we can bootstrap off the minimal ground truth data this provides to tag entire

clusters of addresses as also belonging to that user.

Our predominant method for tagging users was simply transacting with them

(e.g., depositing into and withdrawing bitcoins from Mt. Gox) and then observing the

addresses they used; additionally, we collected known (or assumed) addresses that we

found in various forums and other Web sites, although we regarded this latter kind of

tagging as less reliable than our own observed data.

4.2.1 From our own transactions

We engaged in 344 transactions with a wide variety of services, listed in Table 4.1,

including mining pools, wallet services, bank exchanges, non-bank exchanges, vendors,

gambling sites, and miscellaneous services.

Mining pools. We attempted to mine with each of the major mining pools (a pie

chart depicting the relative productivity of mining pools can be found at blockorigin.pfoe.

be/chart.php). To do this, we used an AMD Radeon HD 7970, capable of approximately

530 million SHA-256 computations per second; this effort allowed us to trigger a payout

81

of at least 0.1 BTC (often the minimum payout for pools) with 11 different pools,

anywhere from 1 to 25 times. For each payout transaction, we then labeled the input

public keys as belonging to the pool. One of these pools, Eligius, split the coin among

the miners immediately upon being mined, and we were thus unable to tag any of their

public keys using this method.

Wallets. We kept money with most of the major wallet services (10 in total), and

made multiple deposit and withdrawal transactions for each. Three of these services —

My Wallet, Easycoin, and Strongcoin — kept the funds of their users separate, which

meant we were unable to link many addresses together for them.

Bank exchanges. Most of the real-time trading exchanges (i.e., in which the

exchange rate is not fixed) also function as banks. As such, we tagged these services

just as we did the wallets: by depositing into and withdrawing from our accounts (but

rarely participating in any actual currency exchange). We kept accounts with 18 such

exchanges in total.

Non-bank exchanges. In contrast, most of the fixed-rate exchanges did not

function as banks, and are instead intended for one-time conversions. We therefore were

able to participate in fewer transactions with these exchanges, although we again tried to

transact with most of the major ones at least once (8 in total).

Vendors. We purchased goods, both physical and digital, from a wide variety of

vendors. Some of the vendors, such as Bitmit and CoinDL, function more as marketplaces

(the “eBay” and “iTunes” of the Bitcoin economy, respectively), while others were

individual merchants. Although we purchased from Etsy, they do not provide a Bitcoin

payment interface and we instead negotiated individually with the merchant. Many of

the vendors we interacted with did not use an independent method for accepting bitcoins,

but relied instead on the BitPay payment gateway (and one used WalletBit as a payment

82

gateway). We also kept a wallet with Silk Road, which allowed us to tag their public

keys without making any purchases. Figure 4.4 depicts all of our physical purchases.

Gambling. We kept accounts with five poker sites, and transacted with eight sites

offering mini-games and/or lotteries. Many of the dice games (Satoshi Dice, BTC Dice,

etc.) advertised their public keys, so we did fewer transactions with these services.

Miscellaneous. Four of the additional services we interacted with were mix or

laundry services: when provided with an output address, they promised to send to that

address coins that had no association with the ones sent to them; the more sophisticated

ones offered to spread the coins out over various transactions and over time. One of these,

BitMix, simply stole our money, while Bitcoin Laundry twice sent us our own coins back,

indicating we were possibly their only customer at that time. We also interacted with Bit

Visitor, a site that paid users to visit certain sites; Bitcoin Advertisers, which provided

online advertising; CoinAd, which gave out free bitcoins; Coinapult, which forwarded

bitcoins to an email address, where they could then be redeemed; and finally, Wikileaks,

with whom we donated to both their public donation address and two one-time addresses

generated for us via their IRC channel.

4.2.2 From other sources

In addition to our own transactions, many users publicly claim their own ad-

dresses; e.g., charities providing donation addresses, or LulzSec claiming their address

on Twitter. While we did not attempt to collect all such instances, many of these tags

are conveniently collected at blockchain.info/tags, including both addresses provided

in users’ signatures for Bitcoin forums, as well as self-submitted tags. We collected

all of these tags — over 5,000 in total — keeping in mind that the ones that were not

self-submitted (and even the ones that were) could be regarded as less reliable than the

ones we collected ourselves.

83

Table 4.1. The various services we interacted with, grouped by (approximate) type.

Mining

50 BTC BTC Guild Itzod
ABC Pool Deepbit Ozcoin
Bitclockers EclipseMC Slush
Bitminter Eligius

Wallets
Bitcoin Faucet Easywallet Strongcoin
My Wallet Flexcoin WalletBit
Coinbase Instawallet
Easycoin Paytunia

Exchanges

Bitcoin 24 BTC-e Aurum Xchange
Bitcoin Central CampBX BitInstant
Bitcoin.de CA VirtEx Bitcoin Nordic
Bitcurex ICBit BTC Quick
Bitfloor Mercado Bitcoin FastCash4Bitcoins
Bitmarket Mt Gox Lilion Transfer
Bitme The Rock Nanaimo Gold
Bitstamp Vircurex OKPay
BTC China Virwox

Vendors

ABU Games BTC Buy HealthRX
Bitbrew BTC Gadgets JJ Games
Bitdomain Casascius NZBs R Us
Bitmit Coinabul Silk Road
Bitpay CoinDL WalletBit
Bit Usenet Etsy Yoku

Gambling

Bit Elfin BitZino Gold Game Land
Bitcoin 24/7 BTC Griffin Satoshi Dice
Bitcoin Darts BTC Lucky Seals with Clubs
Bitcoin Kamikaze BTC on Tilt
Bitcoin Minefield Clone Dice

Miscellaneous

Bit Visitor Bitfog CoinAd
Bitcoin Advertisers Bitlaundry Coinapult
Bitcoin Laundry BitMix Wikileaks

Finally, we searched through the Bitcoin forums (in particular, bitcointalk.org)

looking for addresses associated with major thefts, or now-defunct services such as

Tradehill and GLBSE. Again, these sources are less reliable, so we consequently labeled

84

Figure 4.4. (In color online.) The physical items we purchased with bitcoins, including
silver quarters from Coinabul, coffee from Bitcoin Coffee, and a used Boston CD from
Bitmit. The items in green were purchased from CoinDL; in blue from Bitmit; and in red
using the payment gateway BitPay.

users only for addresses for which we could gain some confidence through manual due

diligence.

4.3 Account Clustering Heuristics

In this section, we present two heuristics for linking addresses controlled by the

same user, with the goal of collapsing the many public keys seen in the block chain into

larger entities. The first heuristic, in which we treat different public keys used as inputs to

85

a transaction as being controlled by the same user, has already been used and explored in

previous work, and exploits an inherent property of the Bitcoin protocol. The second is

new and based on so-called change addresses; in contrast to the first, it exploits a current

idiom of use in the Bitcoin network rather than an inherent property. As such, it is less

robust in the face of changing patterns within the network, but — as we especially see in

Section 4.4.2 — it provides insight into the current Bitcoin network that the first heuristic

does not.

4.3.1 Defining account control

Before we present our heuristics, we clarify what the results of our clustering

algorithms imply; in particular, we must define what we mean by address control. Put

simply, we say that the controller of an address is the entity (or in exceptional cases

multiple entities) that is expected to participate in transactions involving that address.

While this requirement implies a priori that the controller of an address knows the

corresponding private key (recall that transactions are signatures, and thus knowledge of

the signing key is necessary to form a valid transaction), knowledge of the private key is

not a sufficient requirement for control. Consider, for example, buying physical bitcoins

from a vendor such as Casascius. To form the physical bitcoin to send to you, Casascius

must know the private key. Then, once you receive the bitcoin, you also learn the private

key. Finally, if you redeem this private key with a service such as Mt. Gox, that service

also learns the private key. In such a case, control defined solely by knowledge of the

secret key is therefore not well defined.

In the above case, however, the controller of the address is in fact quite clear: as

you redeemed the private key with Mt. Gox and thus stored any bitcoins inside with them,

the expected entity responsible for forming transactions on behalf of that address is Mt.

86

Gox (otherwise, if you plan to form your own transactions, why store your money with

them?).

Finally, we emphasize that our definition of address control is quite different

from account ownership; for example, we consider a wallet service such as Instawallet

to be the controller of each of the addresses it generates, even though the funds in these

addresses are owned by a wide variety of distinct users.

4.3.2 Graph structure and definitions

To define our heuristics formally, we consider two important directed graph

structures for the Bitcoin network: a transaction graph and a public key graph. In the

former, vertices represent transactions, and a directed edge from a transaction t1 to a

transaction t2 indicates that an output of t1 was used as an input in t2. Using this graph,

we define in degrees and out degrees for transactions, which correspond exactly to the

in and out degrees in the graph (i.e., the number of edges incident to and from the node,

respectively).

Definition 4.3.1. The in degree for a transaction t, denoted by d+
tx(t), is the number of

inputs for the transaction. The out degree for a transaction t, denoted by d−tx(t), is the

number of outputs for the transaction.

We can also construct a graph using public keys, in which vertices are public keys

and directed edges again represent the flow of money from one public key to another;

here, however, the in degree of a public key reflects the number of inputs to the transaction

in which it received bitcoins, so a public key that received bitcoins only once could have

an in degree of (for example) five. For our purposes, we would instead like the in degree

of the output public keys to be independent of how many public keys are provided as

input to the transaction. We therefore define, rather than in/out degree, the in/out count

for a public key.

87

Definition 4.3.2. The in count for a public key pk, denoted d+
addr(pk), is the number of

times pk has been an output in a transaction. The out count for a public key pk, denoted

d−addr(pk), is the number of times pk has been an input in a transaction.

One of the defining features of the Bitcoin protocol is the way that bitcoins must

be spent. When the bitcoins redeemed as the output of a transaction are spent, they must

be spent all at once: the only way to divide them is through the use of a change address,

in which the excess from the input address is sent back to the sender. A public key can

therefore spend money only as many times as it has received money (again, because each

time it spends money it must spend all of it at once).

4.3.3 Our heuristics

Heuristic 1 The first heuristic we use, in which we link input addresses together, has

already been used many times in previous work [8, 116, 121, 138]; for completeness, we

nevertheless present it here. Briefly, if two (or more) public keys are used as inputs to the

same transaction, then we say that they are controlled by the same user.

Heuristic 1. If two (or more) addresses are inputs to the same transaction, they are

controlled by the same user; i.e., for any transaction t, all pk ∈ inputs(t) are controlled

by the same user.

The effects of this heuristic are transitive and extend well beyond the inputs to a

single transaction; e.g., if we observed one transaction with addresses A and B as inputs,

and another with addresses B and C as inputs, then we conclude that A, B, and C all

belonged to the same user. It is also quite safe: the sender in the transaction must know

the private signing key belonging to each public key used as an input, so it is unlikely that

the collection of public keys are controlled by multiple entities (as these entities would

need to reveal their private keys to each other).

88

Using this heuristic, we partitioned the network into 5,579,176 clusters of users.

By naming these clusters — using the data collection described in Section 4.2 — we

observed that some of them corresponded to the same user; e.g., there were 20 clusters

that we tagged as being controlled by Mt. Gox. (This is not surprising, as many big

services appear to spread their funds across a number of distinct accounts to minimize

the risk in case any one gets compromised.) This cross-cluster naming was nevertheless

not too common, and we thus ended up with 5,577,481 distinct clusters (recall we started

with 12,056,684 public keys). Factoring in “sink” addresses that have to date never sent

any bitcoins (and thus did not get clustered using this heuristic) yields at most 6,595,564

distinct users, although we consider this number a quite large upper bound.

Heuristic 2 Although Heuristic 1 already yields a useful clustering of users, restricting

ourselves to only this heuristic does not tell the whole story. To further collapse users,

our second heuristic focuses on the role of change addresses within the Bitcoin system.

A similar heuristic was explored by Androulaki et al. [8] (who called them “shadow”

addresses), although there are a number of important differences. In particular, their

definition of shadow addresses relied upon assumptions that may have held at the time of

their work, but no longer hold at present. For example, they assumed that users rarely

issue transactions to two different users, which is a frequent occurrence today (e.g.,

payouts from mining pools, or bets on gambling sites).

As discussed above, change addresses are the mechanism used to give money

back to the input user in a transaction, as bitcoins can be divided only by being spent. In

one idiom of use, the change address is created internally by the Bitcoin client and never

re-used; as such, a user is unlikely to give out this change address to other users (e.g., for

accepting payments), and in fact might not even know the address unless he inspects the

block chain. If we can identify change addresses, we can therefore potentially cluster not

89

only the input addresses for a transaction (according to Heuristic 1) but also the change

address and the input user.

Because our heuristic takes advantage of this idiom of use, rather than an inherent

property of the Bitcoin protocol (as Heuristic 1 does), it does lack robustness in the

face of changing (or adversarial) patterns in the network. Furthermore, it has one very

negative potential consequence: falsely linking even a small number of change addresses

might collapse the entire graph into large “super-clusters” that are not actually controlled

by a single user (in fact, we see this exact problem occur in Section 4.3.5). We therefore

focused on designing the safest heuristic possible, even at the expense of losing some

utility by having a high false negative rate, and acknowledge that such a heuristic might

have to be redesigned or ultimately discarded if habitual uses of the Bitcoin protocol

change significantly.

Working off the assumption that a change address has only one input (again, as

it is potentially unknown to its owner and is not re-used by the client), we first looked

at the outputs of every transaction. If only one of the outputs met this pattern, then we

identified that output as the change address. If, however, multiple outputs had only one

input and thus the change address was ambiguous, we did not label any change address

for that transaction. We also avoided certain transactions; e.g., in a coin generation, none

of the outputs are change addresses.

In addition, in custom usages of the Bitcoin protocol it is possible to specify the

change address for a given transaction. Thus far, one common usage of this setting that

we have observed has been to provide a change address that is in fact the same as the

input address.4 We thus avoid such “self-change” transactions as well.

4This usage is quite common: 23% of all transactions in the past six months are self-change transactions.
For example, it is the standard option for the popular wallet service My Wallet, hosted by blockchain.info,
as well as the way the Deepbit mining pool does its payouts.

90

Definition 4.3.3. A public key pk is a one-time change address for a transaction t if the

following conditions are met:

1. d+
addr(pk) = 1; i.e., this is the first appearance of pk.

2. The transaction t is not a coin generation.

3. There is no pk′ ∈ outputs(t) such that pk′ ∈ inputs(t); i.e., there is no self-change

address.

4. There is no pk′ ∈ outputs(t) such that pk′ 6= pk but d+
addr(pk′) = 1; i.e., for all the

outputs in the transaction, condition 1 is met for only pk.

Heuristic 2. The one-time change address is controlled by the same user as the input

addresses; i.e., for any transaction t, the controller of inputs(t) also controls the one-time

change address pk ∈ outputs(t) (if such an address exists).

4.3.4 The impact of change addresses

To see the impact of change addresses on user clustering, consider the following

illustrative example: suppose we want to measure the incoming value of the major

services with whom we interacted; i.e., we want to know how many bitcoins they

received over time. If we consider the incoming value of services across seven different

categories — exchanges that function as banks, mining pools, wallet services, gambling

sites, vendors, fixed-rated exchanges that do not function as banks, and investment

schemes — then, using Heuristic 1, we obtain the results shown in Figure 4.5a.

Looking at Figure 4.5a cumulatively, we might first notice that, for the past year

and a half, the major users we tagged account for anywhere from 20% to 40% of the

total incoming value. Comparing across categories, we see that exchanges account for

a considerable fraction of the total value of these users. More surprisingly, given the

91

Date
0

10

20

30

40

Av
er

ag
e

pe
rc

en
ta

ge
 o

f v
al

ue

2010−12−29 2011−11−01 2012−09−04

exchanges
mining
wallets
gambling
vendors
fixed
investment

(a)

Date
0

20

40

60

80

%
 o

f r
ec

ei
ve

d
tr

an
sa

ct
io

ns

2011−08−07 2012−03−19 2012−10−30

(b)
Date

0

5

10

15

20

25

30

35

A
ve

ra
ge

 s
el

f−
ch

ur
n

2011−08−07 2012−03−19 2012−10−30

(c)

Figure 4.5. (In color online.) Figures illustrating the effect of self-churn on measure-
ments, and the different ways Heuristics 1 and 2 deal with self-churn. (a) The incoming
value over time, as a percentage of total weekly incoming value, for each of the major
categories. The teal and yellow categories are exchanges and mining pools respectively.
(b) Of transactions sent to Deepbit, the percentage that were sent by Deepbit itself (i.e.,
the percentage that was self-churn). The transactions from Deepbit account for over 80%
of its incoming transactions. (c) The percentage of all transactions received by Mt Gox
that were sent by Mt Gox. The teal shows self-churn identified by Heuristic 1; the yellow
shows additional churn identified by Heuristic 2.

payout-based nature of mining pools, Figure 4.5a also seems to indicate that mining pools

are receiving a large portion of incoming value. This percentage is artificially inflated,

however, by certain artifacts of how mining pools, and Deepbit in particular, pay their

miners. In fact, as we see in Figure 4.5b, over 80% of the value Deepbit receives is as

change from itself.

While the particular mechanism that Deepbit uses allows us to eliminate this

“self-churn” even using Heuristic 1 (as they always use a self-change address), more

generally we cannot eliminate the self-churn of all users with just Heuristic 1. We are

able to identify self-churn only if we know that the change address is controlled by the

same user as the input address(es).

Eliminating this self-churn is therefore where Heuristic 2 becomes crucial. To

see the effect it has, we compare the self-churn of Mt. Gox as determined using the two

heuristics. Figure 4.5c shows that finding additional change addresses for Mt. Gox using

Heuristic 2 essentially doubles the estimate of churn activity of Mt. Gox compared to

92

using Heuristic 1 (and we observed a similar doubling when considering the churn in

bitcoin value rather than activity).

4.3.5 Refining Heuristic 2

Although effective, Heuristic 2 is more challenging and significantly less safe

than Heuristic 1. In our first attempt, when we used it as defined above, we identified over

4 million change addresses. Due to our concern over its safety, we sought to approximate

the false positive rate. To do this even in the absence of significant ground truth data, we

used the fact that we could observe the behavior of addresses over time: if an address

and transaction met the conditions of Definition 4.3.3 at one point in time (where time

was measured by block height), and then at a later time the address was used again, we

considered this a false positive. Stepping through time in this manner allowed us to

identify 555,348 false positives, or 13% of all labeled change accounts.

We then considered ways of making the heuristic more conservative. First,

however, a manual inspection of some of these false positives revealed an interesting

pattern: many of them were associated with transactions to and from Satoshi Dice and

other dice games. By looking further into the payout structure of these games, it became

clear that these were not truly false positives, as when coins are sent to Satoshi Dice,

the payout is sent back to the same address. If a user therefore spent the contents of a

one-time change address with Satoshi Dice, the address would receive another input back

from Satoshi Dice, which would appear to invalidate the “one-timeness” of the address.

We therefore chose to ignore this case, believing that addresses that received later inputs

solely from Satoshi Dice could still be one-time change addresses. By doing so the false

positive rate reduces to only 1%. We next considered waiting to label an address as a

change address; i.e., waiting to see if it received another input. Waiting a day drove the

93

false positive rate down to 0.28%; waiting a week drove it down to 0.17%, or only 7,382

false positives total.

Despite all these precautions, when we clustered users using this modified heuris-

tic, we still ended up with a giant super-cluster containing the public keys of Mt. Gox,

Instawallet, BitPay, and Silk Road, among others; in total, this super-cluster contained

1.6 million public keys. After a manual inspection of some of the links that led to this

super-cluster, we discovered two problematic patterns. First, especially within a short

window of time, the same change address was sometimes used twice. If this change

address were then used the second time with a new address, the new address would

appear to be the change address and be falsely labeled as such. Second, certain addresses

would occasionally be used as “self-change” addresses (recall the second requirement in

Definition 4.3.3), and then later used as separate change addresses; again, if the time they

were used separately was with a new address, the new address would be falsely labeled as

the change address. This behavior is likely due to the advanced features in some wallets,

such as My Wallet and the desktop client Armory, that allow users to explicitly specify

the change address for a transaction.

We thus further refined our heuristic by ignoring transactions involved with either

of these types of behavior. For transactions in which an output had already received

only one input, or for transactions in which an output had been previously used in a

self-change transaction, we chose to not tag anything as the change address. Doing so,

and manually removing a handful of other false positives (with no discernible pattern),

we identified 3,540,831 change addresses.

Using this refined Heuristic 2 produces 3,384,179 clusters, which we were able

to again collapse slightly (using our tags) to 3,383,904 distinct clusters. Of these clusters,

we were able to name 2,197 of them (accounting for over 1.8 million addresses); although

this might seem like a small fraction, recall that by participating in 344 transactions we

94

Figure 4.6. (In color online.) A visualization of the user network. The area of the cluster
represents the external incoming value; i.e., the bitcoins received from other clusters
but not itself, and for an edge to appear between two nodes there must have been at
least 200 transactions between them. The nodes are colored by category: blue nodes are
mining pools; orange are fixed-rate exchanges; green are wallets; red are vendors; purple
are (bank) exchanges; brown are gambling; pink are investment schemes; and grey are
uncategorized.

hand-tagged only 1,070 addresses, and thus Heuristic 2 allowed us to name 1,600 times

more addresses than our own manual observation provided. Furthermore, as we see in the

visualization of the user graph depicted in Figure 4.6, and will argue in Section 4.4, the

users we were able to name capture an important and active slice of the Bitcoin network.

Having finally convinced ourselves of both the safety of Heuristic 2, by refining

it substantially, and its effectiveness, as illustrated in Figure 4.5c, we use Heuristic 2

exclusively for the results in the next section.

95

4.4 Service Centrality

In this section, we focus on two notable parts of the user graph seen in Figure 4.6:

the component consisting of Satoshi Dice and the individuals who interact with it, and

the heavily connected component consisting of most of the services we tagged. For both

of these components, we argue that the demonstrated centrality of these services makes

it difficult for even highly motivated individuals — e.g., thieves or others attracted to

the anonymity properties of Bitcoin — to stay completely anonymous, provided they are

interested in cashing out by converting to fiat money (or even other virtual currencies).

4.4.1 The effect of popular services

One of the largest stresses on the Bitcoin system to date has been the introduction

of so-called dice games, and in particular Satoshi Dice, a betting game introduced in

late April 2012. Briefly, users may place bets with various addresses, each of which is

associated with a probability of winning (ranging from a 0.0015% chance of winning to

a 97% chance). After determining if the user has won (using an algorithm involving the

bet transaction and a random number), Satoshi Dice then sends some multiplier of the

user’s bet back to him if he won (e.g., 1.004 times his bet if he sent to the address with

97% winning odds), and 1 satoshi (0.00000001 BTC) if he lost.

Within weeks of being introduced, Satoshi Dice became wildly popular. Fig-

ure 4.7a shows its activity as compared to the activity of the Deepbit mining pool, which

was arguably the most active user prior to the introduction of dice games. Satoshi Dice

engages in tens of thousands of transactions per day, or about 60% of the overall activity

in the Bitcoin network. It has also spawned a number of clones, such as BTC Dice, BT-

CLucky, Clone Dice, and DiceOnCrack (which, although less popular, are nevertheless

quite well connected, as seen in Figure 4.6).

96

0

10

20

30

Date

Av
er

ag
e

da
ily

 tr
an

sa
ct

io
ns

(in
 th

ou
sa

nd
s)

2011−12−31 2012−06−19 2012−12−08

satoshi
deepbit

(a)
Date

0

10

20

30

40

%
 o

f s
m

al
l t

ra
ns

ac
tio

ns

2012−03−07 2012−07−31 2012−12−25

(b)
Date

0

20

40

60

80

100

%
 o

f i
nc

om
in

g
tr

an
sa

ct
io

ns

2012−03−07 2012−07−31 2012−12−25

more than 1 day
1−24 hours
within 1 hour
immediately

(c)

Figure 4.7. (In color online.) The effect Satoshi Dice has had on the Bitcoin network, in
terms of both activity and its influence on trends. (a) The overall daily activity, in terms
of number of both incoming and outgoing transactions, for Satoshi Dice, as compared to
the overall activity for the mining pool Deepbit. (b) The percentage of transactions with
less than 0.1 BTC in total value in which Satoshi Dice participated as the sender, shown
as an average weekly percentage. (c) A breakdown of how quickly Satoshi Dice spends
the money it receives: teal is immediately, yellow is within an hour, purple is within a
day, and red is more than a day.

A number of factors help explain the popularity of Satoshi Dice. First, it allows

users to place very small bets: the minimum bet for each category is 0.01 BTC, and over

21% of all bets (896,864 out of 4,127,979) are exactly this minimum value. Figure 4.7b

shows that Satoshi Dice — just in terms of its outgoing transactions — accounts for

anywhere between 30% and 40% of such micro-valued transactions (we found very

similar results looking instead at the incoming transactions for Satoshi Dice). Referring

back to Figure 4.2 and the rise of micro-valued transactions, we conclude that a large

fraction of this rise can be attributed just to Satoshi Dice. In addition to allowing small

bets, Satoshi Dice also acts extremely quickly. Once a bet is placed, the outcome is

decided immediately and the payout is returned within seconds, as shown in Figure 4.7c.

As with micro-valued transactions, referring back to Figure 4.3 indicates that Satoshi

Dice also accounts for much of the rise of immediate spending (as a weekly average,

nearly 50% of immediate transactions are due to Satoshi Dice).

Because of its immense popularity, and the extent to which it has inflated the size

of the block chain (an extra 30,000 transactions translates into an extra 14MB added

to the overall block chain daily), the opinion of Satoshi Dice in the Bitcoin community

97

is somewhat mixed: some decry it as a DoS attack,5 while others appreciate that it has

stress-tested the Bitcoin network.

It might be tempting to additionally think that, given the large amounts of bitcoins

flowing through it, Satoshi Dice could act as a mix service:6 if “dirty” bitcoins were

gambled using 97% winning odds, and the resulting bitcoins were paid out to a different

address, these bitcoins might at first glance appear to have no association with the

gambled money (especially if they came from a different address than the gambled

money was sent to, as is sometimes the case). Because the addresses that Satoshi Dice

uses are public, however, it is trivial to observe when users are gambling; furthermore, in

sending a bet to Satoshi Dice, a user must explicitly identify where the payout should be

sent. Thus, without using services such as Satoshi Dice as a co-conspirator (which they

seem to have no incentive to do, as they made over $500,000 in their first eight months

alone [103]), the bitcoins paid out are indelibly linked to the ones that were placed as a

bet.

4.4.2 Traffic analysis of illicit activity

We next turn our attention to another dominant category of service: exchanges.

Although not nearly as active as Satoshi Dice, exchanges have essentially become

chokepoints in the Bitcoin economy: to buy into or cash out of Bitcoin at scale, we

argue that using an exchange is unavoidable. While sites like localbitcoins.com and

bitcoinary.com do allow you to avoid exchanges (for the former, by matching up buyers

directly with sellers in their geographic area), the current and historical volume on these

sites does not seem to be high enough to support cashing out at scale.

For criminals, this centrality presents a unique problem: if a thief steals thousands

of bitcoins, this theft is unavoidably visible within the Bitcoin network, and thus the

5http://en.bitcoin.it/wiki/SatoshiDice
6See, for example, early concerns at bitcointalk.org/index.php?topic=79079.0 and related discussions.

98

initial address of the thief is known and (as most exchanges try to maintain some air of

reputability) he cannot simply transfer the bitcoins directly from the theft to a known

exchange.7 While he might attempt to use a mix service to hide the source of the money,

we again argue that these services do not currently have the volume to launder thousands

of bitcoins. As such, thieves have developed various strategies for hiding the source of

the bitcoins that we explore in this section. In particular, we focus on the effectiveness of

Heuristic 2 in de-anonymizing these flows, and thus in tracking illicitly-obtained bitcoins

to exchanges (and thus, e.g., providing an agency with subpoena power the opportunity

to learn whose account was deposited into, and in turn potentially the identity of the

thief). For this approach to work, we do not need to (and cannot) account for each and

every stolen bitcoin, but rather need to demonstrate only some flow of bitcoins directly

from the theft to an exchange or other known institution.

To demonstrate the effectiveness of Heuristic 2 in this endeavor, we focus on

an idiom of use that we call a “peeling chain.” The usage of this pattern extends well

beyond criminal activity, and is seen (for example) in the withdrawals for many banks

and exchanges, as well as in the payouts for some of the larger mining pools. In a peeling

chain, a single address begins with a relatively large amount of bitcoins (e.g., for mining

pools it starts with the 25 BTC reward). A smaller amount is then “peeled” off this larger

amount, creating a transaction in which a small amount is transferred to one address

(e.g., 0.1 BTC for a miner payout), and the remainder is transferred to a one-time change

address. This process is repeated — potentially for hundreds or thousands of hops — until

the larger amount is pared down, at which point (in one usage) the amount remaining in

the address might be aggregated with other such addresses to again yield a large amount

7Indeed, the Bitcoin community has recently demonstrated both the inherent traceability of thefts and
the unwillingness to accept stolen money (see bitcointalk.org/index.php?topic=14085.msg1910231). After
923 BTC was stolen from the mining pool Ozcoin and transferred to a Strongcoin wallet, Strongcoin
intercepted the bitcoins when the thief attempted to withdraw them and returned them to Ozcoin.

99

in a single address, and the peeling process begins again. By using Heuristic 2, we are

able to track flows of money by following these change links systematically: at each

hop, we look at the two output addresses in the transaction. If one of these outputs is a

change address, we can follow the chain to the next hop by following the change address

(i.e., the next hop is the transaction in which this change address spends its bitcoins), and

can identify the meaningful recipient in the transaction as the other output address (the

“peel”).

Silk Road and Bitcoin Savings & Trust One of the most well-known and heavily

scrutinized addresses in Bitcoin’s history is 1DkyBEKt,8 which is believed to be associated

with Silk Road and was active between January and September 2012. Starting in January,

the address began to receive large aggregate sums of bitcoins; in the first of these, the

funds of 128 addresses were combined to deposit 10,000 BTC into the 1DkyBEKt address,

and many transactions of this type followed (including one transaction in which the funds

of 589 addresses were combined to deposit 8,000 BTC). All together, the address received

613,326 BTC in a period of eight months, receiving its last aggregate deposit on August

16 2012.

Then, starting in August 2012, bitcoins were aggregated and withdrawn from

1DkyBEKt: first, amounts of 20,000, 19,000, and 60,000 BTC were aggregated and

sent to separate addresses; later, 100,000 BTC each was sent to two distinct addresses,

150,000 BTC to a third, and 158,336 BTC to a fourth, effectively emptying the 1DkyBEKt

address of all of its funds. The balance of this address over time, as well as the balance

of Silk Road and of vendors as a whole (as we consider Silk Road a vendor), is shown in

Figure 4.8.

8Full address: 1DkyBEKt5S2GDtv7aQw6rQepAvnsRyHoYM.

100

0

100

200

300

400

500

Date

Ba
la

nc
e

(in
 th

ou
sa

nd
s)

2010−12−29 2011−08−05 2012−03−12 2012−10−18

1DkyBEKt
vendors
silk road

Figure 4.8. (In color online.) The balance of the vendors category (in black, although
barely visible because it is dominated by Silk Road), Silk Road (in blue), and the
1DkyBEKt address (in red).

Due to its large balance (at its height, it contained 5% of all generated bitcoins),

as well as the curious nature of its rapidly accumulated wealth and later dissolution,

this address has naturally been the subject of heavy scrutiny by the Bitcoin community.

While it is largely agreed that the address is associated with Silk Road (and indeed our

clustering heuristic did tag this address as being controlled by Silk Road), some have

theorized that it was the “hot” (i.e., active) wallet for Silk Road, and that its dissipation

represents a changing storage structure for the service. Others, meanwhile, have argued

that it was the address belonging to the user pirate@40, who was responsible for carrying

out the largest Ponzi scheme in Bitcoin history (the investment scheme Bitcoin Savings

& Trust, which is now the subject of a lawsuit brought by the SEC [128]).

To see where the funds from this address went, and if they ended up with any

known services, we first plotted the balance of each of the major categories of services, as

101

Date

Pe
rc

en
ta

ge
 o

f t
ot

al
 b

al
an

ce

0

2

4

6

8

10

12

14

2010−12−29 2011−08−05 2012−03−12 2012−10−18

exchanges
mining
wallets
gambling
vendors
fixed
investment

Figure 4.9. (In color online.) The balance of each major category, represented as a
percentage of total active bitcoins; i.e., the bitcoins that are not held in sink addresses.

seen in Figure 4.9. Looking at this figure, it is clear that when the address was dissipated,

the resulting funds were not sent en masse to any major services, as the balances of the

other categories do not change significantly. To nevertheless attempt to find out where

the funds did go, we turn to the traffic analysis described above.

In particular, we focus on the last activity of the 1DkyBEKt address, when it

deposited 158,336 BTC into a single address. This address then peeled off 50,000 BTC

each to two separate addresses, leaving 58,336 BTC for a third address; each of these

addresses then began a peeling chain, which we followed using the methodology de-

scribed above (i.e., at each hop we continued along the chain by following the change

address, and considered the other output address to be a meaningful recipient of the

money). After following 100 hops along each chain, we observed peels to the services

listed in Table 4.2.

102

Table 4.2. Tracking bitcoins from 1DkyBEKt. Along the first 100 hops of the first, second,
and third peeling chains resulting from the withdrawal of 158,336 BTC, we consider the
number of peels seen to each service, as well as the total number of bitcoins (rounded
to the nearest integer value) sent in these peels. The services are separated into the
categories of exchanges, wallets, gambling, and vendors.

First Second Third

Service Peels BTC Peels BTC Peels BTC

Bitcoin-24 1 2 3 124
Bitcoin Central 2 2
Bitcoin.de 1 4
Bitmarket 1 1
Bitstamp 5 97 1 1
BTC-e 1 250
CA VirtEx 1 3 1 10 3 22
Mercado Bitcoin 1 9
Mt. Gox 11 492 14 70 5 35
OKPay 2 151 1 125

Instawallet 7 39 5 135 2 43
WalletBit 1 1

Bitzino 2 1
Seals with Clubs 1 8

Coinabul 1 29
Medsforbitcoin 3 10
Silk Road 4 28 5 102

Looking at this table, we see that, although a longitudinal look at the balances

of major services did not reveal where the money went, following these chains revealed

that bitcoins were in fact sent to a variety of services. The overall balance was not

highly affected, however, as the amounts sent were relatively small and spread out over a

handful of transactions. Furthermore, while our analysis does not itself reveal the owner

of 1DkyBEKt, the flow of bitcoins from this address to known services demonstrates the

prevalence of these services (54 out of 300 peels went to exchanges alone) and provides

the potential for further de-anonymization: the evidence that the deposited bitcoins were

the direct result of either a Ponzi scheme or the sale of drugs might motivate Mt. Gox or

103

any exchange (e.g., in response to a subpoena) to reveal the account owner corresponding

to the deposit address in the peel, and thus provide information to link the address to a

real-world user.

Tracking thefts To ensure that our analysis could be applied more generally, we turned

finally to a broader class of criminal activity in the Bitcoin network: thefts. Thefts are in

fact quite common within Bitcoin: almost every major service has been hacked and had

bitcoins (or, in the case of exchanges, other currencies) stolen, and some have shut down

as a result.

To begin, we used a list of major Bitcoin thefts;9 some of the thefts did not have

public transactions (i.e., ones we could identify and study in the block chain), so we

limited our attention to the ones that did. For each theft, we first found the specific set

of transactions that represented the theft; i.e., the set of transactions in which the sender

was the service being stolen from, and the recipient was the thief. Starting with these

transactions, we did a preliminary manual inspection of the transactions that followed to

determine their approximate type: we considered aggregations, in which bitcoins were

moved from several addresses into a single one; folding, in which some of the addresses

involved in the aggregation were not clearly associated with the theft, and thus were

potentially there to “clean” the stolen money; splits, in which a large amount of bitcoins

was split among two or more addresses; and finally peeling chains, in which relatively

small amounts were peeled off from a succession of one-time change addresses holding

a large amount of bitcoins. Our results are summarized in Table 4.3.

Briefly, the movement of the stolen money ranged from quite sophisticated

layering and mixing to simple and easy to follow. Examining thefts therefore provides

another demonstration of the potential for anonymity provided by Bitcoin, and the ways

9https://bitcointalk.org/index.php?topic=83794.0

104

Table 4.3. Tracking thefts. For each theft, we list (approximately) how many bitcoins
were stolen, when the theft occurred, how the money moved after it was stolen, and
whether we saw any bitcoins sent to known exchanges. For the movement, we use A to
mean aggregation, P to mean a peeling chain, S to mean a split, and F to mean folding,
and list the various movements in the order they occurred.

Theft BTC Date Movement Exchanges?

MyBitcoin 4019 Jun 2011 A/P/S Yes
Linode 46,648 Mar 2012 A/P/F Yes
Betcoin 3171 Mar 2012 F/A/P Yes
Bitcoinica 18,547 May 2012 P/A Yes
Bitcoinica 40,000 Jul 2012 P/A/S Yes
Bitfloor 24,078 Sep 2012 P/A/P Yes
Trojan 3257 Oct 2012 F/A No

in which current usage falls short of this potential: for the thieves who used the more

complex strategies, we saw little opportunity to track the flow of bitcoins (or at least do

so with any confidence that ownership was staying the same), but for the thieves that

did not there seemed to be ample opportunity to track the stolen money directly to an

exchange.

One of the easiest thefts to track was from Betcoin, an early gambling site that

was shut down after its server was hacked on April 11 2012 and 3,171 BTC were stolen

in four installments of 2,902, 165, 17, and 87 BTC each. The stolen bitcoins then sat in

the thief’s address until March 15 2013 (when the bitcoin exchange rate began soaring),

when they were aggregated with other small addresses into one large address that then

began a peeling chain. After 10 hops, we saw a peel go to Bitcoin-24, and in another 10

hops we saw a peel go to Mt. Gox; in total, we saw 374.49 BTC go to known exchanges,

all directly off the main peeling chain, which originated directly from the addresses

known to belong to the thief. For some of the other thefts, de-anonymizing the flow of

bitcoins was similarly straightforward: for the May 2012 Bitcoinica theft, for example,

we observed one peeling chain, occurring directly after an aggregation of addresses

belonging to the thieves, in which large amounts (i.e., hundreds of bitcoins) were peeled

105

off directly to known exchanges; in total, we saw 4,588 BTC peeled off to three different

exchanges (BTC-e, CampBX, and Bitstamp). Again, although we do not account for

every stolen bitcoin, watching even a portion of them flow to exchanges provides the

opportunity we need to potentially compromise the anonymity of the thieves.

In contrast, some of the other thieves used more sophisticated strategies to attempt

to hide the flow of money; e.g., for the Bitfloor theft, we observed that large peels off

several initial peeling chains were then aggregated, and the peeling process was repeated.

Nevertheless, by manually following this peel-and-aggregate process to the point that

the later peeling chains began, we systematically followed these later chains and again

observed peels to multiple known exchanges: the third peel off one such chain was

191.09 BTC to Mt. Gox, and in total we saw 661.12 BTC sent to three popular exchanges

(Mt. Gox, BTC-e, and Bitstamp).

Even the thief we had the most difficulty tracking, who stole bitcoins by installing

a trojan on the computers of individual users, seemed to realize the difficulty of cashing

out at scale. Although we were unable to confidently track the flow of the stolen money

that moved, most of the stolen money did not in fact move at all: of the 3,257 BTC stolen

to date, 2,857 BTC was still sitting in the thief’s address, and has been since November

2012.

With these thefts, our ability to track the stolen money provides evidence that

even the most motivated Bitcoin users (i.e., criminals) are engaging in idioms of use that

allow us to erode their anonymity. While one might argue that thieves could easily thwart

our analysis, as Heuristic 2 is admittedly not robust in the face of adversarial behavior,

our observation is that — at least at present — none of the criminals we studied seem

to have taken such precautions. We further argue that the fairly direct flow of bitcoins

from the point of theft to the deposit with an exchange provides some evidence that

using exchanges to cash out at scale is inevitable, and thus that — again, at present —

106

Bitcoin does not provide a particularly easy or effective way to transact large volumes of

illicitly-obtained money.

Acknowledgments

We would like to thank Brian Kantor and Cindy Moore for managing our systems

and storage needs, and for helping to set up and maintain our mining rig. We are

also grateful to Andreas Pitsillidis for his advice in creating figures and overall useful

discussions.

Chapter 4, in part, is a reprint of the material as it appears in Proceedings of

the 13th ACM SIGCOMM Conference on Internet Measurement. Sarah Meiklejohn,

Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon McCoy, Geoffrey M. Voelker,

and Stefan Savage, ACM, November 2013. The dissertation author was the primary

investigator and author of this paper.

Chapter 5

Conclusions

In this dissertation, we described two distinct — but complementary — methods

for approaching secure systems. The first, a cryptographic approach, considered how to

use knowledge of practical adversarial attacks on systems to update formal cryptographic

models, and then how to provide strong, provably secure solutions within those updated

models. The second, a measurement approach, considered how users engage with Bitcoin,

a successfully deployed currency system with the goal of providing both flexibility and

anonymity for its users. Both of these approaches have their strengths and weaknesses:

the cryptographic approach can guarantee in a provable way the security of a system,

even before it is deployed, but only if the system is modeled correctly. In contrast, the

measurement approach can get at the heart of how a secure system is really being used,

but can only be adopted after the system is already deployed.

In looking at the formal models for digital signatures, we identified three real-

world settings in which the existing standard model failed to provide any meaningful

notion of security. Two of these settings (RKA and joint encryption and signatures) had

been previously examined and appropriately modeled, but we provide the first model

for the third (KDM storage). Moreover, we provided a general tool — key-versatile

signatures — that enables simple, modular constructions in each of these distinct settings,

while relying only on mild cryptographic assumptions and providing strong notions of

107

108

security. Going forward, our hope is that this general tool will continue to enable the

flexible and simple construction of secure cryptographic primitives.

In looking at the Bitcoin network, we presented a longitudinal characterization,

focusing particular on the growing gap between the potential for anonymity that Bitcoin

provides and the anonymity that average users are actually achieving. Interestingly, this

gap is due neither to the intentional actions of an adversary or to a fundamental flaw in

the Bitcoin protocol, but rather to certain standard patterns — or idioms of use — that

honest users have themselves adopted. While our methods for de-anonymization are not

fully robust in the face of changing patterns of usage, at present we believe that to thwart

them completely would require a significant effort (both computational and financial) on

the part of the user. Our conclusion is therefore that for all but the most motivated users,

Bitcoin is not as anonymous as previously believed, and that even for these motivated

users, engaging in criminal activity at scale in the Bitcoin network is still sufficiently

challenging as to be relatively unattractive.

Bibliography

[1] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako
Ohkubo. Structure-preserving signatures and commitments to group elements.
In Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010, volume 6223 of
Lecture Notes in Computer Science, pages 209–236. Springer, August 2010.

[2] Advanced encryption standard (aes). National Institute of Standards and Technol-
ogy (NIST), FIPS PUB 197, U.S. Department of Commerce, November 2001.

[3] Devdatta Akhawe and Adrienne Porter Felt. Alice in warningland: A large-scale
field study of browser security warning effectiveness. In Proceedings of the 22nd
USENIX Conference on Security, 2013.

[4] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky thirteen: Breaking the TLS
and DTLS record protocols. In Proceedings of the IEEE Symposium on Security
and Privacy, 2013.

[5] Jee Hea An, Yevgeniy Dodis, and Tal Rabin. On the security of joint signature
and encryption. In Lars R. Knudsen, editor, Advances in Cryptology – EURO-
CRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages 83–107.
Springer, April / May 2002.

[6] Ross Anderson and Markus Kuhn. Tamper resistance – a cautionary note. In
Proceedings of the 2nd USENIX Workshop on Electronic Commerce, pages 1–11,
1996.

[7] Gavin Andresen. bitcointools. github.com/gavinandresen/bitcointools.

[8] Elli Androulaki, Ghassan Karame, Marc Roeschlin, Tobias Scherer, and Srd-
jan Capkun. Evaluating User Privacy in Bitcoin. In Proceedings of Financial
Cryptography 2013, 2013.

[9] Benny Applebaum. Key-dependent message security: Generic amplification
and completeness. In Kenneth G. Paterson, editor, Advances in Cryptology –
EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer Science, pages
527–546. Springer, May 2011.

109

110

[10] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic
primitives and circular-secure encryption based on hard learning problems. In
Shai Halevi, editor, Advances in Cryptology – CRYPTO 2009, volume 5677 of
Lecture Notes in Computer Science, pages 595–618. Springer, August 2009.

[11] Michael Backes, Markus Dürmuth, and Dominique Unruh. OAEP is secure under
key-dependent messages. In Josef Pieprzyk, editor, Advances in Cryptology –
ASIACRYPT 2008, volume 5350 of Lecture Notes in Computer Science, pages
506–523. Springer, December 2008.

[12] Michael Backes, Birgit Pfitzmann, and Andre Scedrov. Key-dependent message
security under active attacks - brsim/uc-soundness of dolev-yao-style encryption
with key cycles. Journal of Computer Security, 16(5):497–530, 2008.

[13] Boaz Barak, Iftach Haitner, Dennis Hofheinz, and Yuval Ishai. Bounded key-
dependent message security. In Henri Gilbert, editor, Advances in Cryptology –
EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science, pages
423–444. Springer, May 2010.

[14] Justin Becker and Hao Chen. Measuring privacy risk in online social networks. In
Proceedings of W2SP 2009: Web 2.0 Security and Privacy, 2009.

[15] Mihir Bellare and David Cash. Pseudorandom functions and permutations provably
secure against related-key attacks. In Tal Rabin, editor, Advances in Cryptology
– CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science, pages
666–684. Springer, August 2010.

[16] Mihir Bellare, David Cash, and Rachel Miller. Cryptography secure against
related-key attacks and tampering. In Dong Hoon Lee and Xiaoyun Wang, editors,
Advances in Cryptology – ASIACRYPT 2011, volume 7073 of Lecture Notes in
Computer Science, pages 486–503. Springer, December 2011.

[17] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations
among notions of security for public-key encryption schemes. In Hugo Krawczyk,
editor, Advances in Cryptology – CRYPTO’98, volume 1462 of Lecture Notes in
Computer Science, pages 26–45. Springer, August 1998.

[18] Mihir Bellare and Shafi Goldwasser. New paradigms for digital signatures and
message authentication based on non-interative zero knowledge proofs. In Gilles
Brassard, editor, Advances in Cryptology – CRYPTO’89, volume 435 of Lecture
Notes in Computer Science, pages 194–211. Springer, August 1990.

[19] Mihir Bellare and Sriram Keelveedhi. Authenticated and misuse-resistant encryp-
tion of key-dependent data. In Phillip Rogaway, editor, Advances in Cryptology
– CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science, pages
610–629. Springer, August 2011.

111

[20] Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key attacks:
RKA-PRPs, RKA-PRFs, and applications. In Eli Biham, editor, Advances in
Cryptology – EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer
Science, pages 491–506. Springer, May 2003.

[21] Mihir Bellare, Sarah Meiklejohn, and Susan Thomson. Key-Versatile Signatures
and Applications: RKA, KDM, and Joint Enc/Sig. In Advances in Cryptology -
EUROCRYPT ’14, volume 8441 of Lecture Notes in Computer Science. Springer,
2014.

[22] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm. Journal of
Cryptology, 21(4):469–491, October 2008.

[23] Mihir Bellare, Kenneth G. Paterson, and Susan Thomson. RKA security beyond
the linear barrier: IBE, encryption and signatures. In ASIACRYPT, pages 331–348,
2012.

[24] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In V. Ashby, editor, ACM CCS 93: 1st Conference
on Computer and Communications Security, pages 62–73. ACM Press, November
1993.

[25] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a frame-
work for code-based game-playing proofs. In Serge Vaudenay, editor, Advances
in Cryptology – EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer
Science, pages 409–426. Springer, May / June 2006.

[26] Eli Biham. New types of cryptoanalytic attacks using related keys (extended
abstract). In Tor Helleseth, editor, Advances in Cryptology – EUROCRYPT’93,
volume 765 of Lecture Notes in Computer Science, pages 398–409. Springer, May
1993.

[27] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosystems.
In Burton S. Kaliski Jr., editor, Advances in Cryptology – CRYPTO’97, volume
1294 of Lecture Notes in Computer Science, pages 513–525. Springer, August
1997.

[28] Alex Biryukov, Ivan Pustogarov, and Ralf-Philipp Weinmann. Trawling for tor
hidden services: Detection, measurement, deanonymization. In Proceedings of
the IEEE Symposium on Security and Privacy, 2013.

[29] Nir Bitansky and Ran Canetti. On strong simulation and composable point
obfuscation. In Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010,
volume 6223 of Lecture Notes in Computer Science, pages 520–537. Springer,
August 2010.

112

[30] John Black, Phillip Rogaway, and Thomas Shrimpton. Encryption-scheme security
in the presence of key-dependent messages. In Kaisa Nyberg and Howard M.
Heys, editors, SAC 2002: 9th Annual International Workshop on Selected Areas in
Cryptography, volume 2595 of Lecture Notes in Computer Science, pages 62–75.
Springer, August 2003.

[31] Stevens Le Blond, Pere Manils, Abdelberi Chaabane, Mohamed Ali Kaafar, Claude
Castelluccia, Arnaud Legout, and Walid Dabbous. One bad apple spoils the bunch:
Exploiting P2P applications to trace and profile tor users. In Proceedings of the
4th USENIX Workshop on Large-Scale Exploits and Emergent Threats, 2011.

[32] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninter-
active zero-knowledge. SIAM Journal on Computing, 20(6):1084–1118, 1991.

[33] Manuel Blum and Shafi Goldwasser. An efficient probabilistic public-key en-
cryption scheme which hides all partial information. In G. R. Blakley and David
Chaum, editors, Advances in Cryptology – CRYPTO’84, volume 196 of Lecture
Notes in Computer Science, pages 289–302. Springer, August 1985.

[34] Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based en-
cryption without random oracles. In Christian Cachin and Jan Camenisch, editors,
Advances in Cryptology – EUROCRYPT 2004, volume 3027 of Lecture Notes in
Computer Science, pages 223–238. Springer, May 2004.

[35] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In
Christian Cachin and Jan Camenisch, editors, Advances in Cryptology – EURO-
CRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 56–73.
Springer, May 2004.

[36] Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext
security from identity-based encryption. SIAM Journal on Computing, 36(5):1301–
1328, 2007.

[37] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of
checking cryptographic protocols for faults (extended abstract). In Walter Fumy,
editor, Advances in Cryptology – EUROCRYPT’97, volume 1233 of Lecture Notes
in Computer Science, pages 37–51. Springer, May 1997.

[38] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. Circular-secure
encryption from decision diffie-hellman. In David Wagner, editor, Advances in
Cryptology – CRYPTO 2008, volume 5157 of Lecture Notes in Computer Science,
pages 108–125. Springer, August 2008.

[39] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil
pairing. In Colin Boyd, editor, Advances in Cryptology – ASIACRYPT 2001,

113

volume 2248 of Lecture Notes in Computer Science, pages 514–532. Springer,
December 2001.

[40] Joseph Bonneau, Cormac Herley, Paul C. van Oorschot, and Frank Stajano. The
quest to replace passwords: A framework for comparative evaluation of web
authentication schemes. In Proceedings of the IEEE Symposium on Security and
Privacy, 2012.

[41] Joseph Bonneau and Ilya Mironov. Cache-collision timing attacks against AES.
In Louis Goubin and Mitsuru Matsui, editors, Cryptographic Hardware and
Embedded Systems – CHES 2006, volume 4249 of Lecture Notes in Computer
Science, pages 201–215. Springer, October 2006.

[42] Xavier Boyen, Qixiang Mei, and Brent Waters. Direct chosen ciphertext security
from identity-based techniques. In Vijayalakshmi Atluri, Catherine Meadows, and
Ari Juels, editors, ACM CCS 05: 12th Conference on Computer and Communica-
tions Security, pages 320–329. ACM Press, November 2005.

[43] Zvika Brakerski, Shafi Goldwasser, and Yael Tauman Kalai. Black-box circular-
secure encryption beyond affine functions. In Yuval Ishai, editor, TCC 2011: 8th
Theory of Cryptography Conference, volume 6597 of Lecture Notes in Computer
Science, pages 201–218. Springer, March 2011.

[44] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption
from ring-LWE and security for key dependent messages. In Phillip Rogaway,
editor, Advances in Cryptology – CRYPTO 2011, volume 6841 of Lecture Notes in
Computer Science, pages 505–524. Springer, August 2011.

[45] Jan Camenisch, Nishanth Chandran, and Victor Shoup. A public key encryption
scheme secure against key dependent chosen plaintext and adaptive chosen cipher-
text attacks. In Antoine Joux, editor, Advances in Cryptology – EUROCRYPT 2009,
volume 5479 of Lecture Notes in Computer Science, pages 351–368. Springer,
April 2009.

[46] Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient proto-
cols. In Stelvio Cimato, Clemente Galdi, and Giuseppe Persiano, editors, SCN 02:
3rd International Conference on Security in Communication Networks, volume
2576 of Lecture Notes in Computer Science, pages 268–289. Springer, September
2002.

[47] Ran Canetti, Yael Tauman Kalai, Mayank Varia, and Daniel Wichs. On symmetric
encryption and point obfuscation. In Daniele Micciancio, editor, TCC 2010: 7th
Theory of Cryptography Conference, volume 5978 of Lecture Notes in Computer
Science, pages 52–71. Springer, February 2010.

114

[48] Brice Canvel, Alain P. Hiltgen, Serge Vaudenay, and Martin Vuagnoux. Password
interception in a SSL/TLS channel. In Dan Boneh, editor, Advances in Cryptology
– CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages
583–599. Springer, August 2003.

[49] CBC News. Revenue Canada says BitCoins aren’t tax exempt, April 2013. www.
cbc.ca/news/canada/story/2013/04/26/business-bitcoin-tax.html.

[50] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn.
Malleable signatures: Complex unary transformations and delegatable anonymous
credentials. Cryptology ePrint Archive, Report 2013/179, 2013.

[51] Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In Cynthia
Dwork, editor, Advances in Cryptology – CRYPTO 2006, volume 4117 of Lecture
Notes in Computer Science, pages 78–96. Springer, August 2006.

[52] Jean-Sébastien Coron, Marc Joye, David Naccache, and Pascal Paillier. Universal
padding schemes for RSA. In Moti Yung, editor, Advances in Cryptology –
CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages 226–
241. Springer, August 2002.

[53] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably
secure against adaptive chosen ciphertext attack. In Hugo Krawczyk, editor,
Advances in Cryptology – CRYPTO’98, volume 1462 of Lecture Notes in Computer
Science, pages 13–25. Springer, August 1998.

[54] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key
encryption schemes secure against adaptive chosen ciphertext attack. SIAM
Journal on Computing, 33(1):167–226, 2003.

[55] Ivan Damgård and Mats Jurik. A generalisation, a simplification and some
applications of Paillier’s probabilistic public-key system. In Kwangjo Kim, editor,
PKC 2001: 4th International Workshop on Theory and Practice in Public Key
Cryptography, volume 1992 of Lecture Notes in Computer Science, pages 119–136.
Springer, February 2001.

[56] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano,
and Amit Sahai. Robust non-interactive zero knowledge. In Joe Kilian, editor,
Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in
Computer Science, pages 566–598. Springer, August 2001.

[57] Alfredo De Santis, Giovanni Di Crescenzo, and Giuseppe Persiano. Necessary and
sufficient assumptions for non-interactive zero-knowledge proofs of knowledge
for all np relations. In Automata, Languages and Programming, pages 451–462.
Springer, 2000.

115

[58] Alfredo De Santis and Giuseppe Persiano. Zero-knowledge proofs of knowledge
without interaction. In Foundations of Computer Science, 1992. Proceedings.,
33rd Annual Symposium on, pages 427–436. IEEE, 1992.

[59] Jean Paul Degabriele, Anja Lehmann, Kenneth G. Paterson, Nigel P. Smart, and
Mario Strefler. On the joint security of encryption and signature in EMV. In Orr
Dunkelman, editor, Topics in Cryptology – CT-RSA 2012, volume 7178 of Lecture
Notes in Computer Science, pages 116–135. Springer, February / March 2012.

[60] Rachna Dhamija, J.D. Tygar, and Marti Hearst. Why phishing works. In Pro-
ceedings of the ACM CHI Conference on Human Factors in Computing Systems,
2006.

[61] Tim Dierks and Eric Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.1. Internet RFC 4346, 2006.

[62] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel Wichs.
Efficient public-key cryptography in the presence of key leakage. In Masayuki
Abe, editor, Advances in Cryptology – ASIACRYPT 2010, volume 6477 of Lecture
Notes in Computer Science, pages 613–631. Springer, December 2010.

[63] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM
Journal on Computing, 30(2):391–437, 2000.

[64] Zakir Durumeric, James Kasten, Michael Bailey, and J. Alex Halderman. Analysis
of the HTTPS certificate ecosystem. In Proceedings of the ACM SIGCOMM
Conference on Internet Measurement, 2013.

[65] Serge Egelman, Lorrie Faith Cranor, and Jason Hong. You’ve Been Warned:
An Empirical Study of the Effectiveness of Web Browser Phishing Warnings.
In Proceedings of the ACM CHI Conference on Human Factors in Computing
Systems, 2008.

[66] Brian Patrick Eha. Get ready for a Bitcoin debit card. CNNMoney, April 2012.
money.cnn.com/2012/08/22/technology/startups/bitcoin-debit-card/index.html.

[67] Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. In G. R. Blakley and David Chaum, editors, Advances in
Cryptology – CRYPTO’84, volume 196 of Lecture Notes in Computer Science,
pages 10–18. Springer, August 1985.

[68] EMV Co. Emv book 1 – application independent icc to terminal interface require-
ments – version 4.2, June 2008.

[69] EMV Co. Emv book 2 – security and key management – version 4.2, June 2008.

[70] EMV Co. Emv book 3 – application specification – version 4.2, June 2008.

116

[71] EMV Co. Emv book 4 – cardholder, attendant, and acquirer interface requirements
– version 4.2, June 2008.

[72] European Central Bank. Virtual Currency Schemes. ECB Report, October 2012.
www.ecb.europa.eu/pub/pdf/other/virtualcurrencyschemes201210en.pdf.

[73] Jia Fan, Yuliang Zheng, and Xiaohu Tang. A single key pair is adequate for the
zheng signcryption. In Udaya Parampalli and Philip Hawkes, editors, ACISP 11:
16th Australasian Conference on Information Security and Privacy, volume 6812
of Lecture Notes in Computer Science, pages 371–388. Springer, July 2011.

[74] Federal Bureau of Investigation. (U) Bitcoin Virtual Currency Unique Features
Present Distinct Challenges for Deterring Illicit Activity. Intelligence Assessment,
Cyber Intelligence and Criminal Intelligence Section, April 2012. cryptome.org/
2012/05/fbi-bitcoin.pdf.

[75] FinCEN. Application of FinCEN’s Regulations to Persons Administering, Ex-
changing, or Using Virtual Currencies, March 2013. www.fincen.gov/statutes regs/
guidance/pdf/FIN-2013-G001.pdf.

[76] David Galindo, Javier Herranz, and Jorge L. Villar. Identity-based encryption
with master key-dependent message security and leakage-resilience. In Sara
Foresti, Moti Yung, and Fabio Martinelli, editors, ESORICS 2012: 17th European
Symposium on Research in Computer Security, volume 7459 of Lecture Notes in
Computer Science, pages 627–642. Springer, September 2012.

[77] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and
its applications. In Proceedings of the 45th annual ACM symposium on Symposium
on theory of computing, pages 467–476. ACM, 2013.

[78] Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and Tal Rabin.
Algorithmic tamper-proof (ATP) security: Theoretical foundations for security
against hardware tampering. In Moni Naor, editor, TCC 2004: 1st Theory of
Cryptography Conference, volume 2951 of Lecture Notes in Computer Science,
pages 258–277. Springer, February 2004.

[79] David Goldenberg and Moses Liskov. On related-secret pseudorandomness. In
Daniele Micciancio, editor, TCC 2010: 7th Theory of Cryptography Conference,
volume 5978 of Lecture Notes in Computer Science, pages 255–272. Springer,
February 2010.

[80] Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. How to run turing machines on encrypted data. In Ran
Canetti and Juan A. Garay, editors, Advances in Cryptology — CRYPTO 2013,
volume 8043 of Lecture Notes in Computer Science, pages 536–553. Springer,
August 2013.

117

[81] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer
and System Sciences, 28(2):270–299, 1984.

[82] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM Journal on Computing,
17(2):281–308, April 1988.

[83] Philipp Grabher, Johann Großschädl, and Dan Page. Cryptographic side-channels
from low-power cache memory. In Steven D. Galbraith, editor, 11th IMA Interna-
tional Conference on Cryptography and Coding, volume 4887 of Lecture Notes in
Computer Science, pages 170–184. Springer, December 2007.

[84] Andy Greenberg. Here’s What It’s Like To Buy Drugs On Three Anonymous
Online Black Markets, August 2013. www.forbes.com/sites/andygreenberg/2013/
08/14/heres-what-its-like-to-buy-drugs-on-three-anonymous-online-black-
markets/.

[85] Jens Groth. Simulation-sound NIZK proofs for a practical language and constant
size group signatures. In Xuejia Lai and Kefei Chen, editors, Advances in Cryp-
tology – ASIACRYPT 2006, volume 4284 of Lecture Notes in Computer Science,
pages 444–459. Springer, December 2006.

[86] Jens Groth and Rafail Ostrovsky. Cryptography in the multi-string model. In
Alfred Menezes, editor, Advances in Cryptology – CRYPTO 2007, volume 4622
of Lecture Notes in Computer Science, pages 323–341. Springer, August 2007.

[87] Stuart Haber and Benny Pinkas. Securely combining public-key cryptosystems. In
ACM CCS 01: 8th Conference on Computer and Communications Security, pages
215–224. ACM Press, November 2001.

[88] Kristiyan Haralambiev. Efficient Cryptographic Primitives for Non-Interactive
Zero-Knowledge Proofs and Applications. PhD thesis, New York University, May
2011.

[89] Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. Mining
your ps and qs: Detection of widespread weak keys in network devices. In
Proceedings of the 21st USENIX Conference on Security, 2012.

[90] Dennis Hofheinz. Circular chosen-ciphertext security with compact ciphertexts.
In EUROCRYPT, volume 7881 of Lecture Notes in Computer Science, pages
520–536. Springer, 2013. To appear.

[91] Mei-Chen Hsueh, Timothy K. Tsai, and Ravishankar K. Iyer. Fault injection
techniques and tools. Computer, 30(4):75–82, April 1997.

118

[92] Rob Jansen, Florian Tschorsch, Aaron Johnson, and Björn Scheuermann. The
sniper attack: Anonymously deanonymizing and disabling the tor network. In
Proceedings of the 21st Annual Symposium on Network and Distributed System
Security, 2014.

[93] Vlastimil Klı́ma, Ondrej Pokorný, and Tomás Rosa. Attacking RSA-based sessions
in SSL/TLS. In Colin D. Walter, Çetin Kaya Koç, and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems – CHES 2003, volume 2779 of
Lecture Notes in Computer Science, pages 426–440. Springer, September 2003.

[94] Lars R. Knudsen. Cryptanalysis of LOKI91. In Jennifer Seberry and Yuliang
Zheng, editors, Advances in Cryptology – AUSCRYPT’92, volume 718 of Lecture
Notes in Computer Science, pages 196–208. Springer, December 1992.

[95] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In Neal Koblitz, editor, Advances in Cryptology – CRYPTO’96,
volume 1109 of Lecture Notes in Computer Science, pages 104–113. Springer,
August 1996.

[96] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Michael J. Wiener, editor, Advances in Cryptology – CRYPTO’99, volume 1666
of Lecture Notes in Computer Science, pages 388–397. Springer, August 1999.

[97] Yuichi Komano and Kazuo Ohta. Efficient universal padding techniques for
multiplicative trapdoor one-way permutation. In Dan Boneh, editor, Advances in
Cryptology – CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science,
pages 366–382. Springer, August 2003.

[98] Michal Kosinski, David Stillwell, and Thore Graepel. Private traits and attributes
are predictable from digital records of human behavior. Proceedings of the
National Academy of Sciences, 110(15):5802–5805, 2013.

[99] Kaoru Kurosawa and Yvo Desmedt. A new paradigm of hybrid encryption scheme.
In Matthew Franklin, editor, Advances in Cryptology – CRYPTO 2004, volume
3152 of Lecture Notes in Computer Science, pages 426–442. Springer, August
2004.

[100] Leslie Lamport. Constructing digital signatures from a one-way function. Techni-
cal Report SRI-CSL-98, SRI International Computer Science Laboratory, October
1979.

[101] Arjen K. Lenstra, James P. Hughes, Maxime Augier, Joppe W. Bos, Thorsten
Kleinjung, and Christophe Wachter. Public keys. In Reihaneh Safavi-Naini and
Ran Canetti, editors, Advances in Cryptology – CRYPTO 2012, volume 7417 of
Lecture Notes in Computer Science, pages 626–642. Springer, August 2012.

119

[102] Tal Malkin, Isamu Teranishi, and Moti Yung. Efficient circuit-size independent
public key encryption with KDM security. In Kenneth G. Paterson, editor, Ad-
vances in Cryptology – EUROCRYPT 2011, volume 6632 of Lecture Notes in
Computer Science, pages 507–526. Springer, May 2011.

[103] Jon Matonis. Bitcoin Casinos Release 2012 Earnings. Forbes, January 2013. www.
forbes.com/sites/jonmatonis/2013/01/22/bitcoin-casinos-release-2012-earnings/.

[104] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon
McCoy, Geoffrey M. Voelker, and Stefan Savage. A Fistful of Bitcoins: Character-
izing Payments Among Men with No Names. In Proceedings of the 13th ACM
SIGCOMM Conference on Internet Measurement. ACM, 2013.

[105] Ralph C. Merkle. A certified digital signature. In Gilles Brassard, editor, Advances
in Cryptology – CRYPTO’89, volume 435 of Lecture Notes in Computer Science,
pages 218–238. Springer, August 1990.

[106] M. González Muñiz and R. Steinwandt. Security of signature schemes in the
presence of key-dependent messages. Tatra Mt. Math. Publ., 47:15–29, 2010.

[107] Steven J. Murdoch and George Danezis. Low-cost traffic analysis of tor. In
Proceedings of the IEEE Symposium on Security and Privacy, 2005.

[108] David Naccache and Jacques Stern. A new public key cryptosystem based on
higher residues. In ACM CCS 98: 5th Conference on Computer and Communica-
tions Security, pages 59–66. ACM Press, November 1998.

[109] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, 2008. bitcoin.
org/bitcoin.pdf.

[110] Lasse Øverlier and Paul Syverson. Locating hidden servers. In Proceedings of the
IEEE Symposium on Security and Privacy, 2006.

[111] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Jacques Stern, editor, Advances in Cryptology – EUROCRYPT’99,
volume 1592 of Lecture Notes in Computer Science, pages 223–238. Springer,
May 1999.

[112] Kenneth G. Paterson, Thomas Ristenpart, and Thomas Shrimpton. Tag size does
matter: Attacks and proofs for the TLS record protocol. In Dong Hoon Lee and
Xiaoyun Wang, editors, Advances in Cryptology – ASIACRYPT 2011, volume
7073 of Lecture Notes in Computer Science, pages 372–389. Springer, December
2011.

[113] Kenneth G. Paterson, Jacob C. N. Schuldt, Martijn Stam, and Susan Thomson.
On the joint security of encryption and signature, revisited. In Dong Hoon Lee

120

and Xiaoyun Wang, editors, Advances in Cryptology – ASIACRYPT 2011, volume
7073 of Lecture Notes in Computer Science, pages 161–178. Springer, December
2011.

[114] Morgen Peck. Bitcoin-Central is Now The World’s First Bitcoin Bank...Kind Of.
IEEE Spectrum: Tech Talk, December 2012. spectrum.ieee.org/tech-talk/telecom/
internet/bitcoincentral-is-now-the-worlds-first-bitcoin-bankkind-of.

[115] Michael O. Rabin. Digital signatures and public key functions as intractable as
factorization. Technical Report MIT/LCS/TR-212, Massachusetts Institute of
Technology, January 1979.

[116] Fergal Reid and Martin Harrigan. An Analysis of Anonymity in the Bitcoin
System. In Security and Privacy in Social Networks, pages 197–223. Springer
New York, 2013.

[117] Mathieu Renauld, François-Xavier Standaert, Nicolas Veyrat-Charvillon, Dina
Kamel, and Denis Flandre. A formal study of power variability issues and side-
channel attacks for nanoscale devices. In Kenneth G. Paterson, editor, Advances
in Cryptology – EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer
Science, pages 109–128. Springer, May 2011.

[118] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signature and public-key cryptosystems. Communications of the Association
for Computing Machinery, 21(2):120–126, 1978.

[119] Phillip Rogaway. Authenticated-encryption with associated-data. In Vijayalakshmi
Atluri, editor, ACM CCS 02: 9th Conference on Computer and Communications
Security, pages 98–107. ACM Press, November 2002.

[120] John Rompel. One-way functions are necessary and sufficient for secure signatures.
In 22nd Annual ACM Symposium on Theory of Computing, pages 387–394. ACM
Press, May 1990.

[121] Dorit Ron and Adi Shamir. Quantitative Analysis of the Full Bitcoin Transaction
Graph. In Proceedings of Financial Cryptography 2013, 2013.

[122] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In 40th Annual Symposium on Foundations of Computer
Science, pages 543–553. IEEE Computer Society Press, October 1999.

[123] Sandvine. Global internet phenomena repart 2h2013, 2013.

[124] Stuart Schechter, A.J. Bernheim Brush, and Serge Egelman. It’s no secret: Mea-
suring the security and reliability of authentication via ’secret’ questions. In
Proceedings of the IEEE Symposium on Security and Privacy, 2009.

121

[125] Stuart E Schecter, Rachna Dhamija, Andy Ozment, and Ian Fischer. The emperor’s
new security indicators. In Proceedings of the IEEE Symposium on Security and
Privacy, 2007.

[126] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In
Gilles Brassard, editor, Advances in Cryptology – CRYPTO’89, volume 435 of
Lecture Notes in Computer Science, pages 239–252. Springer, August 1990.

[127] Certicom research, standards for efficient cryptography group (SECG) — sec 1:
Elliptic curve cryptography. http://www.secg.org/secg docs.htm, September 20,
2000. Version 1.0.

[128] Securities and Exchange Commission. SEC Charges Texas Man With Running
Bitcoin-Denominated Ponzi Scheme, July 2013. www.sec.gov/News/PressRelease/
Detail/PressRelease/1370539730583.

[129] Sergei P. Skorobogatov and Ross J. Anderson. Optical fault induction attacks. In
Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems – CHES 2002, volume 2523 of Lecture Notes
in Computer Science, pages 2–12. Springer, August 2002.

[130] Emily Spaven. CryptoLocker malware demands bitcoin ransom, October 2013.
www.coindesk.com/cryptolocker-malware-demands-bitcoin-ransom.

[131] Serge Vaudenay. Security flaws induced by CBC padding - applications to SSL,
IPSEC, WTLS ... In Lars R. Knudsen, editor, Advances in Cryptology – EURO-
CRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages 534–546.
Springer, April / May 2002.

[132] Brent R. Waters. Efficient identity-based encryption without random oracles. In
Ronald Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, volume
3494 of Lecture Notes in Computer Science, pages 114–127. Springer, May 2005.

[133] Andrew White, Austin Matthews, Kevin Snow, and Fabian Monrose. Phonatic Re-
construction of Encrypted VoIP Conversations: Hookt on fon-iks. In Proceedings
of the IEEE Symposium on Security and Privacy, 2011.

[134] Charles V. Wright, Lucas Ballard, Scott E. Coull, Fabian Monrose, and Gerald M.
Masson. Spot Me if You Can: Uncovering Spoken Phrases in Encrypted VoIP
Conversations. In Proceedings of the IEEE Symposium on Security and Privacy,
pages 35–49, 2008.

[135] Xiaohan Zhao, Alessandra Sala, Christo Wilson, Xiao Wang, Sabrina Gaito, Haitao
Zheng, and Ben Y. Zhao. Multi-scale dynamics in a massive online social network.
In Proceedings of the ACM SIGCOMM Conference on Internet Measurement,
2012.

122

[136] Ziming Zhao, Gail-Joon Ahn, Jeong-Jin Seo, and Hongxin Hu. On the security of
picture gesture authentication. In Proceedings of the 22nd USENIX Conference on
Security, 2013.

[137] Yuliang Zheng. Digital signcryption or how to achieve cost(signature & encryption)
¡¡ cost(signature) + cost(encryption). In Burton S. Kaliski Jr., editor, Advances in
Cryptology – CRYPTO’97, volume 1294 of Lecture Notes in Computer Science,
pages 165–179. Springer, August 1997.

[138] znort987. blockparser. github.com/znort987/blockparser.

