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ABSTRACT OF THE DISSERTATION 
 

Comparative functional genomics of mammalian developmental processes 

By 

Shan Jiang 

Doctor of Philosophy in Developmental and Cell Biology 

University of California, Irvine, 2018 

Associate Professor Ali Mortazavi, Chair 

         
        Individual development is a complex process with a myriad of developmental controls at 

multiple levels ranging from individual cells to organs and entire individuals. The development 

and specification of each cell ultimately encoded in the genome. But whereas the genome is the 

same for all cells of the same individual, cell differentiation, specialization and response to the 

environment is regulated at the epigenetic level by gene regulatory networks (GRNs). Functional 

genomics studies have revealed that protein- DNA interactions, DNA methylation and changes 

in chromatin accessibility are essential to maintain cell identity and that interruption of these 

GRNs causes defects in cell development that can lead to disease and abnormal behaviors in 

individuals.  Given the importance of epigenetic regulation in cells, tissues, and individuals, it 

would be interesting to know how these GRNs are conserved and evolve during mammalian 

evolution and how they can go wrong in disease. In the thesis, I present functional genomics 

studies and expand the understanding of epigenetic control in development from four aspects: (1) 

changes in DNA methylation in the same individual can be used as signature of different life 

experiences; (2) mutations in a repressor can cause abnormal gene expression in a small group of 

cells that further induce the onset of muscle wasting disease FSHD; (3) comparative dynamics of 
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chromatin accessibility during definitive  endoderm differentiation can identify conserved 

regulatory modules as well as species-specific enhancements; (4) The canonical form of  the 

transcription factor NRSF is stabilized in genome through motifs conversion during mammalian 

evolution.  These results show the versatility of epigenetic control during development and 

disease as well as highlight evolutionary forces shaping GRNs.  
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THEME OF THESIS 

         
      One of the most important questions in developmental biology is how development is 

precisely controlled temporally and spatially. Many studies have shown that transcription factors 

(TFs) selectively interacting with cis-regulatory elements in open chromatin regions is one of the 

most critical regulatory inputs in specifying cell types and in maintaining cell functions by 

tightly controlling gene expression. DNA methylation and histone modifications are also 

required in this process and they actively cooperate with sequence-specific TFs to regulate 

development precisely. The environment such as early life experiences, environmental 

chemicals, diet and aging, also influences developmental processes by triggering epigenetic 

changes at both cellular and whole-individual level. Disruptions in epigenetic regulation may 

cause serious diseases such as cancer, mental disorders, diabetes and immune diseases. The 

central theme of my thesis is to understand the plasticity of epigenetic regulation and also assess 

their conservation during mammalian evolution. I examined these regulatory changes from single 

cell to individual using a combination of both experimental and integrative computational 

methods.  

 

      Functional genomic assays have been widely used to observe regulatory changes in diverse 

developmental processes. In Chapter 1, I review the current methods being used to integrate 

ChIP-seq data of TF binding and histone modification with other data such as open chromatin 

accessibility and gene expression data. ChIP-seq has been used as a standard method to detect 

the binding of interest TFs and histone modifications in vitro and in vivo. It is hypothesized that 

the stage-specific binding profiles have the potential to predict the level of gene expression 

during cellular development. However, the binding of one transcription factor alone is rarely 

enough to directly infer functional effects on the expression levels of neighboring genes, which 

are typically under the combinatorial control of multiple transcription factors and other 

epigenetic regulation. Therefore, ChIP-seq data is often integrated with other functional genomic 

techniques to decipher the basic regulatory control of gene expression. In this chapter, I 

introduce the strategy and methods of integrative analysis of ChIP-seq with other functional 

genomic assays to understand the regulatory control of gene expression by incorporating the 

combinatorial control of gene expression levels (RNA-seq), open chromatin regions (ATAC- 
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/DNase-seq/FAIRE-seq), long-range chromatin interactions (ChIA-PET/Hi-C) and single-

nucleotide polymorphism (SNP) variants. As the number of ChIP-seq datasets as well as datasets 

from other genome-wide assays grows, the power of integrative computational analyses continue 

to increase. Therefore, I discuss the application of probabilistic models and machine-learning 

methods to the analysis of TF and histone modification ChIP-seq data simultaneously in order to 

identify chromatin patterns across multiple genomes and cell types. Finally, I also discuss the 

challenges of analyzing ChIP-seq data using low amounts of input materials, and their further 

application in the emerging field of integrative analysis of single-cell sequencing functional 

genomics data. 

 

      In Chapter 2, I show that a DNA signature that can used to distinguish individual rats with 

different early life experiences. I found that the DNA methylation level of multiple genomic 

regions changes substantially in early rat postnatal development and that normal or fragmented 

maternal care during that window changes methylation patterns at the vicinity of multiple 

transcription factors. This study tries to understand how environment, i.e early life experiences, 

influence development in individuals via epigenetic changes. Although it is known that early life 

experiences drive gene expression changes and they further influence the maturation of brain and 

other organs in mammalian individuals, our knowledge about specific epigenetic regulations 

involved into these processes are limited. Among epigenetic regulations, DNA methylation is 

known to correlate with gene expression changes that can be used to predict aging and risk level 

of certain cancer types. However, it is not known if DNA methylation changes might provide a 

useful ‘epigenetic signature’ of early-life experiences in an individual child. Therefore, this study 

addresses two critical questions to understand the nature of DNA methylation changes in early 

life experiences: (1) does a short period of early postnatal life change methylation patterns in 

individuals? (2) can methylation changes be used to distinguish individuals with early-life 

adversity? In order to allow the future extension of our methods to human infants, we examine 

methylation by using peripheral cell population from buccal swabs (mixed epithelial and white 

blood cells) rather than brain cells directly. By comparing two samples from two time points, i.e. 

neonatal (Day 2) and infant (Day 10), of the same individual rat in groups exposed to distinct 

early-life experiences, we find changes in methylation patterns globally and these profiles can be 

used to distinguish as separate groups infant from neonatal rats. Consistent with previous studies, 
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these methylation changes cannot distinguish rats with different early life experiences as distinct 

groups. We develop a novel approach and demonstrate for the first time that intra-individual 

changes in methylation patterns can robustly distinguish individuals with adverse experiences 

and that they serve as a predictive signature in individuals. Given the predictive power of 

methylation signature in early life experiences and the accessibility of peripheral cell 

populations, we will apply in the future this technique to the study of human babies.  

       

      In Chapter 3, I show that epigenetic changes cause severe disease in human by only 

inducing the abnormal expression of one gene in a small population of cells. 

Fascioscapulohumeral muscular dystrophy (FSHD) is primarily caused by the expression of the 

normally repressed transcription factor DUX4 in skeletal muscle by turning on a set of target 

genes. FSHD has been classified into two subtypes based on the mechanism of DUX4 expression 

in skeletal muscle. FSHD1 is caused by a contraction of the D4Z4 macrosatellite repeat array 

containing the DUX4 gene. But FSHD2 is characterized by a normal D4Z4 repeat array size, and 

recurring mutations in genes such as the chromatin modifier SMCHD1 (Structural maintenance 

of chromosomes flexible hinge domain-containing protein 1), which is important for 

maintenance of DNA methylation and epigenetic silencing of the D4Z4 repeat array. Mutations 

in SMCHD1 decrease repression of the D4Z4 repeat array and further result in the up-regulation 

of DUX4 target genes. Previous studies have shown that DUX4 is lowly expressed and rarely 

detected in patient samples and previous transcriptomic studies have been based on the 

overexpression of DUX4. However, overexpression methods cause higher DUX4 expression 

than in patients, which may not be appropriate to derive solid physiological and cellular 

conclusion on the disease progression. Furthermore, previous population-based studies have 

found that DUX4 target genes are not consistently expressed across all FSHD patient cells and 

given that DUX4 is presumably only expressed in a small subset of cells, it is important to 

investigate the cellular heterogeneity in FSHD patient samples and to understand how DUX4 

regulates target genes directly, as well as how they are involved in the disease dysregulation. 

This study tries to understand the contribution of DUX4 expression and its target genes to the 

pathogenesis of FSHD2 by addressing two critical questions: (1) What are the targets of DUX4 

in FSHD2? (2) Are DUX4 and its targets all expressed in the same nuclei? By using single 

nucleus RNA-seq methods in myoblast differentiation that our lab has developed, I present the 
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first direct detection of DUX4 expression in myotubes from FSHD2 patient-derived myoblasts 

(2.2% of FSHD2 myotube nuclei). Although DUX4 is only detected in a small number of nuclei, 

over 50% of FSHD2 myotube nuclei express multiple DUX4 targets. I show that DUX4 positive 

nuclei share similar profiles to a larger set of nuclei without DUX4 but with significantly higher 

expression of DUX4 targets compared with other DUX4 negative nuclei. This distinct population 

of DUX4-target positive nuclei clearly separated from other cells types using a variety of 

computational approaches, indicating these cells have entered a distinct biological program 

potentially driven by other transcription factors downstream of DUX4.  

       

      In Chapter 4, I study the role of epigenetic regulation during cell differentiation by changing 

chromatin accessibility and its effect on gene expression. One of the most important questions in 

developmental biology is how cell-fate commitment and differentiation are precisely controlled 

by the genome using gene regulatory network (GRNs). By observing the expression and 

chromatin-level interactions between TFs and other key genes, the regulation of cell type 

specification can be summarized into one GRNs with hierarchical regulatory structures. 

Embryonic stem cells (ESCs) is one of the most attractive model to study gene regulation in 

cellular development and specification as they are pluripotent and can produce all three germ 

layers. Previous studies have used ESCs differentiation into neurons, heart, liver and kidney in 

human and mouse and demonstrated that open chromatin regions coupled with TF binding and 

histone remodeling regulate stage-specific gene expression. However, it is unknown how 

conserved these GRNs are during mammalian evolution. Therefore, to address these questions, 

this study for the first time demonstrate the conservation and divergence of GRNs in three 

mammalian species (human, mouse and rat) by differentiating their ESCs into definitive 

endoderm in vitro. Although GRNs have been built during endoderm specification in vertebrates, 

such as Xenopus and zebrafish, our knowledge about endoderm GRNs in mammalian species is 

more limited. In this study, I describe the monolayer differentiation of embryonic stem cells into 

definitive endoderm in human and mouse, and for the first time in rat in vitro. Using RNA-seq 

and ATAC-seq during endoderm differentiation, I quantify the dynamics of gene expression and 

chromatin accessibility during differentiation for three species.  I show that gene expression has 

higher conservation level (48%) than chromatin accessibility (25%) across three species. I then 

use chromatin accessibility footprinting to construct gene regulatory networks (GRNs) of key 
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TFs involved in endoderm formation and compared their conservation level across species. 

Known regulatory interactions are recovered in these GRNs and many novel interaction are also 

detected. I finally show more extensive rewiring of endoderm GRNs compared to ESC GRNs.  

 

      In Chapter 5, I focus on the evolution of the binding repertoire of TFs in mammalian 

species. TFs selectively bind to non-coding elements regulate specific gene expression. Changes 

in these TFs binding sites are known to be involved in the regulation of gain, loss or modification 

of traits. TFs binding repertoires have expanded during vertebrate evolution, which provide more 

evolutionary raw material for cis-regulatory elements in rewiring GRNs. 50 years of biochemical 

experiments have shown that specific DNA sequences, known as motifs, are located within TFs 

binding sites and they are believed to be the direct target of TFs binding. In this study, I answer 

one important question in gene regulation: how do these TFs binding motifs evolve in the 

mammalian genome? Previous studies have shown rapid turn-over of TFs motifs during 

mammalian evolution. However, these studies only focus on activator and leave repressors 

behind. In addition, many TFs are known to have more than one type of motif and the selection 

between these alternative forms during genome evolution is poorly understood. In order to 

address these questions, I observe the binding profile of the well-known repressor NRSF/REST 

(repressor element 1 silencing transcription factor), which is a neuronal repressive transcription 

factor primarily repressing neuronal gene expression in non-neuronal cells and neuronal stem 

cells, using ChIP-seq in human, mouse, dog and horse. NRSF can regulate gene expression by 

binding to three form of motifs, including the most common 21bp canonical NRSE/RE1 motif; a 

smaller class of non-canonical NRSEs, which consist of two half-motifs separated by 10, 16-19 

base pairs; left- and right- half motifs. I show the frequent turnover of NRSF binding sites across 

four species, which are mediated by genomic feature changes, including repetitive elements, and 

insertion or deletion in motif sequences. I also show that canonical motifs are not only the major 

form mediating NRSF binding in four species but also show dominant role in conserved NRSF 

binding across four species. I further propose a model to explain this prevalence of canonical 

form of NRSF motifs in which the biased conversion from non-canonical or half-motif 

contribute to the accumulation of canonical motifs during mammalian evolution. 
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      In Chapter 6, I focus on extensive discussion and future direction for each of the chapters 

above. I suggest possible experimental designs to validate some of the hypotheses suggested by 

our analyses that could be carried out in future studies. As each chapter heavily relies on the 

usage of different functional genomics assays, I focus on discussing the limitation of specific 

techniques and improving the methods both experimentally and computationally to optimize the 

results. I also discuss the application of machine learning methods in some of the chapters to 

overcome the challenges of large-scale computation on genomics data.   
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Chapter 1 

Introduction - Integrating ChIP-seq with other functional genomics data 

 

1.1 Abstract 

         Transcription is regulated by transcription factor (TF) binding at promoters and distal 

regulatory elements and histone modifications that control the accessibility of these elements. 

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) has become the standard 

assay for identifying genome-wide protein-DNA interactions in vitro and in vivo. As large-scale 

ChIP-seq datasets have been collected for different TFs and histone modifications, their potential 

to predict gene expression can be used to test hypotheses about the mechanisms of gene 

regulation. In addition, complementary functional genomics assays provide a global view of 

chromatin accessibility and long-range cis-regulatory interactions that are being combined with 

TF binding and histone remodeling to study the regulation of gene expression. Thus, ChIP-seq 

analysis is now widely integrated with other functional genomics assays to better understand 

gene regulatory mechanisms. In this review, we discuss advances and challenges in integrating 

ChIP-seq data to identify context-specific chromatin states associated with gene activity. We 

describe the overall computational design of integrating ChIP-seq data with other functional 

genomics assays. We also discuss the challenges of extending these methods to low-input ChIP-

seq assays and related single-cell assays. 

 

1.2 Introduction 

           DNA-protein interactions and epigenetic modifications are crucial for transcriptional 

regulation. Genome-wide profiling of transcription factor (TF) binding sites, regions with 

covalently modified histones, and other DNA-binding proteins reveal cell/tissue-, species-, and 

disease-specific cis-regulatory repertoires, which are vital for understanding gene regulation. 

Chromatin immunoprecipitation (ChIP) methodologies [1-3] use an antibody that recognizes a 

transcription factor or histone modification to pull down attached DNA for identifying binding 

locations. With the rapid development of sequencing technology, chromatin 

immunoprecipitation followed by sequencing (ChIP-seq) [2-5] has become the most common 

and effective assay to identify bound loci genome-wide in vitro and in vivo. The basic 

computational pipeline and software for analyzing ChIP-seq data has been established and 



 9 

optimized alongside advances in sequencing library preparation and ChIP-seq techniques [6-8], 

including read quality control, alignment, peak calling, and evaluation of reproducibility. ChIP 

peaks can be visualized using genome browsers as a simple quality check of signal over known 

true positives. Confirmed peaks can be further analyzed with differential density analysis for 

different treatments, gene-associated annotation, motif discovery, and other downstream 

analyses. Limitations and advances in these steps are reviewed in detail elsewhere [9]. 

 

However, the binding of one transcription factor alone is rarely enough to directly infer 

functional effects on the gene expression levels of neighboring genes, which are typically under 

the combinatorial control of multiple transcription factors. Therefore, ChIP-seq data is often 

actively integrated with other functional genomic techniques to decipher the basic regulatory 

control of gene expression by incorporating open chromatin regions, long-range chromatin 

interactions and SNP (single-nucleotide polymorphism) variants. With the increasing availability 

of multiple ChIP-seq datasets [10, 11], as well as datasets from other genome-wide assays, the 

power of integrative computational analysis is of ever-increasing interest. In this review, we 

discuss the application of probabilistic models and machine-learning methods to the analysis of 

TF and histone modification ChIP data simultaneously in order to identify chromatin patterns 

across multiple genomes and cell types. We also focus on the computational integration of ChIP-

seq with other functional genomic assays such as RNA-seq for gene expression levels, ATAC-

/DNase-seq/FAIRE-seq for chromatin accessibility, and ChIA-PET/Hi-C for chromatin 

interactions that affect regulation of gene expression. Finally, we discuss the development of 

ChIP-seq assays that use low amounts of input materials, and their further application in the 

emerging field of integrative analysis of single-cell sequencing functional genomics data. 

  

1.3 Identifying distinct chromatin states using histone modifications and TF occupancy 

        Histone modifications are often found in recurring combinations at promoters, enhancers, 

and repressed regions. These combinations are referred to as “chromatin states” and can be used 

to annotate regulatory regions in genomes [12, 13]. For example, H3K4me1 alone marks primed 

enhancers, while H3K4me1 combined with H3K27ac mark active enhancers. Promoters are 

characterized by a detectable level of H3K4me3 coupled with a high ratio of H3K4me3 to 

H3K4me1. Furthermore, H3K36me3 histone modifications and RNA Pol II ChIP signal are 
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associated with transcribed regions, while the presence of H3K27me3 or H3K9me3 is associated 

with repressive chromatin states (Figure 1.1) [14, 15]. The goal of software packages analyzing 

chromatin states is to first discover these relationships in the data, 

and to then check for changes in states assigned to a particular region in different cell types.  

Large-scale datasets produced by ENCODE [10] and Roadmap Epigenomics [11] have been 

used to train and to test with statistical or machine-learning methods that assign chromatin states 

to genomic segments (typically 100 bp or longer). These state assignments can then be 

interpreted through comparisons with known annotations and gene expression.  

 

Hidden Markov Models (HMMs) were originally developed for speech recognition, but 

have since been used extensively in other fields to identify hidden states from observed signal 

data [16]. In genomics studies, it has been successfully applied to gene annotation [17] and 

protein domain characterization [18]. HMMseg [19] was the earliest software package to 

partition and annotate a genome by training HMMs on functional genomics data. However, this 

tool can only identify two states (“active” or “inactive”), which limits its application in 

annotating chromatin states in greater detail, e.g. active/poised promoters and enhancers. 

ChromHMM [13] and Segway [20] were developed with the goal of capturing more 

comprehensive combinatorial patterns of multiple histone modifications, RNA Polymerase II 

binding, and insulator CTCF binding genome-wide (Figure 1.2). ChromHMM segments the 

genome into minimum 200bp intervals (default) and converts raw reads counts into binary code 

using a product of independent Bernoulli random variables for each interval, which are then used 

to train a hidden Markov model. Similarly, Segway was developed based on dynamic Bayesian 

networks (DBNs). It transforms raw read counts to coverage signal and can segment the genome 

down to 1-bp resolution, although 100bp segments are more practical. Additional tools have 

been developed to extend and speed up the identification of chromatin states. For example, 

TreeHMM [21] also uses binary vectors, but is position-dependent when inferring chromatin 

patterns during cell differentiation and across different cell types. hiHMM [22] uses a 

hierarchically linked infinite HMM model to not only identify chromatin states across multiple 

ChIP-seq data sets, but also address species variance for cross-species inference. diHMM [23] 

inherits from ChromHMM but uses a hierarchical hidden Markov model to identify 

combinatorial patterns at variable length scale that range from nucleosome-level to higher-order 
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domain-level states. Another joint analysis platform, IDEAS [24, 25], can infer chromatin states 

using both position-dependency and cell-type specific cases at multiple range scales, and can run 

faster than both ChromHMM and Segway using single core mode. Additional tools have been 

developed for comparing chromatin patterns between different experimental treatments [26] and 

expanding the comprehensiveness of epigenomic maps [27]. The combinatorial patterns 

generated by these methods have been correlated with gene expression profiles to find context 

specific signatures across cell types using linear regression model [24, 25]. However, the 

difficulty of interpreting large numbers of states has led to a practical preference for models with 

lower numbers of states. Typically, the focus is on the discovered states rather than their 

transition probabilities, unlike more traditional applications of HMM to gene annotation. The 

assumption is that a limited number of chromatin states and a small number of histone markers 

combinations covering significant fractions of the genome will capture most of the biologically 

relevant features. 

 

 While useful for predicting chromatin states, HMM-based methods have been relatively 

less successful when applied to a large number of transcription factors with very restricted, 

presumably combinatorial binding patterns, which cover small fractions of the genome. Self-

organizing maps (SOMs) are an alternative, unsupervised machine-learning method for 

integratively analyzing such high-dimensional, comparatively sparse data. SOMs consist of 

individual units (which can be thought of as either neurons or mini-clusters) arranged on a 

scaffold that is trained with data to capture the high-density parts of high-dimensional datasets 

while preserving similarity relationships, i.e. data that is close in the input will also be close on 

the SOM. Chromatin SOMs identify TF-TF localization and co-binding pairs of TFs across cell 

types and tissues [28]. SOMs have been trained on the same data as chromHMM and Segway in 

ENCODE, namely histone modification markers, RNA Polymerase II, and CTCF. These are then 

overlaid post-training with additional data such as EP300 ChIP-seq signals to confirm cell-type 

specific and commonly shared enhancer activity of groups of DNA segments [29]. For example, 

a trained SOM would distinguish open chromatin regions from promoters and enhancers based 

on their difference in H3K4me3 and H3K4me1 signal density (Figure 1.3). The individual units 

in SOM maps can be grouped into map regions called metaclusters [29, 30], which can then be 

analyzed for their ChIP-seq signal enrichments and used to automatically identify sets of 
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potentially co-regulated regions [29]. Once a unit or metacluster of interest has been identified, 

proximal genes can be associated with bound DNA elements by using tools like GREAT [31] 

and Homer [32], and their gene expression profiles can be correlated [24] and visualized together 

with DNA element activity. Co-associated genes can then be analyzed for gene ontology 

enrichment using GREAT and Homer but other tools such as DAVID [33] and Metascape [34], 

can also be applied to identify potential functional enrichments. While SOM does not impose a 

state transition model like HMMs, it recovers similar high-level states at the level of 

metaclusters, but allows for further granular mining of “microstates” corresponding to very 

specific chromatin profiles in individual such as distinct combination of transcription factors that 

are present in small sections of the genome [29]. SOM can therefore be used to deeply data-mine 

for complicated relationships in highly-dimensional ChIP-seq datasets. 

 

1.4 Incorporating chromatin accessibility with ChIP-seq 

           Eukaryotic chromatin is tightly packaged into nucleosomes and the positioning of 

nucleosomes regulated by TFs and histone modifications show dynamic patterns during cell 

differentiation and development [35]. Specific proteins, often called pioneer factors, can control 

nucleosome repositioning via recruitment of chromatin remodelers, thus exposing cis-regulatory 

elements to lineage- or cell type-specific TFs that activate or repress gene expression [15, 36]. 

Additionally, nucleosomes with H3.3/H2A.Z histone variants show hypermobility, which make 

them less stable and the DNA more easily accessible for TFs binding [37, 38]. Histone-depleted 

regions are referred to as open chromatin (Figure 1.1), and several sequencing assays have been 

developed to capture chromatin accessibility directly at high resolution such as DNase-seq [39-

41], FAIRE-seq [42, 43] and ATAC-seq [44]. MNase-seq [35, 45, 46] is a related assay for 

identifying DNA regions occupied by nucleosomes instead of detecting open chromatin regions 

directly. DNase- and ATAC-seq depend on enzymatic digestion and Tn5 transposase insertion, 

respectively, to detect open chromatin regions in vivo. Both of them have a higher signal-to-noise 

ratio than the other methods, and ATAC-seq has become increasingly popular because of its ease 

of use. All of these methods need deep sequencing (about 50-100 million reads per sample) to 

get accurate, high-resolution profiles. The basic computational pipeline for open chromatin 

assays includes reads alignment, visualization for QC, peak calling, and footprint analysis for 

DNase- and ATAC-seq or nucleosome profiling for MNase- and ATAC-seq (each step has been 



 13 

reviewed in detail elsewhere) [35, 47]. Specific software packages have been developed to detect 

signal-enriched regions for each assay. For example, Hotspot [48] detects DNase I hypersensitive 

(DHS) regions for DNase-seq; GeneTrack [49] and DANPOS [50] do nucleosome calling for 

MNase-seq; NucleoATAC [51] calls nucleosome positions and occupancy for ATAC-seq. In 

addition, tools developed for ChIP-seq and DNase-seq peak calling also work effectively for 

ATAC-seq, such as MACS [52], Hotspot [48] and Homer [32]. DNAse-seq open chromatin data 

have been used alongside histone modification ChIP-seq data to define chromatin states using 

HMMs and SOMs in the ENCODE project [10, 29]. 

 

Deeper sequencing of open chromatin data to 200-500 million reads per sample can also 

be used to detect TF binding occupancy “footprints” at nucleotide resolution [35]. The ability of 

DNase- and ATAC-seq to perform footprint calling is the consequence of TF occupancy 

protecting DNA from nuclease cleavage and Tn5 transposition, which results in small stretches 

of fewer cuts within otherwise open regions. The sequences within these footprints can be 

compared to known motifs for identification [53-55]. The power of footprinting is that a single 

experiment can identify the binding sites for hundreds of transcription factors, a task that would 

be still gargantuan with hundreds of TF-specific ChIP-seq experiments. However, many TF 

motifs are very similar to each other and can be difficult to distinguish based on sequence alone. 

For these cases, ChIP-seq of selected TFs can be used to validate the footprints when they are 

critical to the inferred gene regulatory networks [56]. Additionally, histone modification ChIP-

seq data can be mapped to open chromatin peaks to confirm the chromatin state of regulatory 

elements [44, 57-59]. The profiling of chromatin accessibility and TFs/histone occupancy have 

revealed that cis-regulatory elements show both transitory and stable activity during 

development and differentiation process for different lineages [60, 61]. Integrative analysis of 

chromatin accessibility and TFs occupancy from ChIP-seq has revealed that the two processes 

are not necessarily synchronous. Some TFs commonly referred to as pioneer factors can induce 

and remodel chromatin accessibility [62-65]. On the other hand, chromatin can be opened and 

activated before TFs binding [48] or closed well-after the TF has ceased to be bound. Since open 

chromatin assays such as ATAC-seq are relatively easier to do and require less starting material 

than ChIP-seq, we expect that an increasing number of studies will start with open chromatin 
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data followed with selected ChIP-seq for TFs and/or histone modifications. These data will be 

analyzed integratively with additional packages developed to facilitate their joint analysis.  

 

1.5 Integrative analysis of gene expression with ChIP-seq 

           Most users of ChIP-seq data are interested in understanding the impact of transcription 

factor binding or histone modifications on the expression of nearby genes, and therefore ChIP-

seq and RNA-seq are analyzed jointly to estimate this effect [6, 7, 14, 66, 67]. In the ideal case, a 

high ChIP-seq signal of a transcriptional activator would be found near highly expressed genes, 

while a high ChIP-seq signal of a repressor would be found near silenced genes. In another case, 

differentially expressed genes are first identified and classified into up- or down- regulated genes 

between different experimental treatments. Then, differential TF and epigenetic occupancy are 

correlated with differential gene expression levels. TF binding peaks and histone modification-

enriched regions are associated with genes based on which gene is nearest, or using a particular 

distance radius. However, TF and epigenetic occupancy alone are seldom effective in predicting 

nearby target gene expression level accurately, because (a) they cannot account for post-

transcriptional turnover of the transcript, (b) it is difficult to accuratly associate ChIP-seq peaks 

with their target genes, and (c) we may not have the ChIP-seq data for all of the TFs controlling 

the expression of the target genes. One study has reported that the binding signal of twelve 

embryonic stem cell (ESC) TFs can explain 65% of the variance in mES gene expression and the 

correlation coefficient between predicted and observed gene expression is 0.8 [68]. However, the 

predictive power of the same set of TFs in differentiated mES decreased dramatically (r=0.2) 

[68], and they can only explain 30% of gene expression variance in GM12878 [69]. In addition, 

while histone modifications alone can explain high gene expression variance in human CD4 T+ 

cells (r=0.7), combinatorial histone modification combinations show different predictive power 

[70]. Inferring the effect of TFs on expression is complicated by the fact that TFs may activate a 

subset of target genes but repress others. Furthermore, TFs and histone marks have different 

power in predicting gene expression levels [71-73]. Thus, this approach is only practical for 

predicting gene expression in well-studied systems, where there are plenty of TFs and histone 

modifications datasets available that can be selected based on biological significance. 
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         Efforts have been made to integrate chromatin accessibility data and ChIP-seq together to 

predict gene expression, and this combination is more accurate than using ChIP-seq alone [69]. 

However, the asynchrony between binding and chromatin accessibility also accounts for the less 

than perfect correlation between changes in these metrics and changes in gene expression. This is 

because transcription is the sum total of the multitude of effects of chromatin remodelers, TFs 

co-occupancy, different combination of histone marks and even DNA methylation, which are 

laborious to capture and profile simultaneously. Using regression models of RNA-seq, ChIP-seq 

and chromatin accessibility data, gene expression can be predicted from TFs/histone binding [69] 

and ChIP-seq-identified TF binding motifs in open chromatin regions [74]. Mixed linear models 

of gene expression correlated with chromatin accessibility corrected with ChIP-seq TF binding 

can predict TFs triggering or binding prior to chromatin remodeling [75]. Furthermore, TF-TFs 

co-occupancy can be predicted using support vector machines trained on open chromatin, histone 

markers, and TFs ChIP-seq data [76]. The predictive power of integrated chromatin feature data 

can also be extended to the inference of gene regulatory networks. In one recent study [77], 

chromatin feature data was not only used to predict gene expression, but also to predict the 

activation status of regulatory elements and further infer a context-specific gene regulatory 

network. The expression of TFs, target genes, and chromatin remodelers as well as the 

accessibility of cis-regulatory elements and TFs motifs in regulatory elements are integrated 

together and fed into a statistical Paired Expression and Chromatin Accessibility (PECA) model. 

This model predicts active cis-regulatory elements, TF expression, and expression of related 

target genes within the same context-specific gene regulatory network, which are confirmed by 

knocking down key TFs in the network [78]. Although combining TFs/histone modifications 

ChIP-seq and chromatin accessibility data is an effective strategy for predicting gene expression 

and inferring gene regulatory networks, more software packages and platforms are still needed to 

be developed for integrating data from different functional assays. We expect that the next 

generation of packages will improve the predictive power of ChIP-seq for gene expression 

prediction using ever-more sophisticated and robust statistical methods.  

 

1.6 Incorporating long-range chromatin interactions with ChIP-seq 

        Most gene regulatory analyses only consider the effects of histone modifications and TFs on 

the nearest gene, thus not taking into account long-range interactions of cis-regulatory elements 



 16 

with more distal genes. Promoters and enhancers are physically coupled with target genes by 

chromatin loops mediated by transcription factors, cohesin, mediator, and some non-coding 

RNAs to control gene expression [79-83]. A single promoter or enhancer can interact with 

multiple enhancers or promoters within the same chromatin loops [10, 84]. Recruitment of 

cofactors such as EP300 by TFs ultimately mediate these complex promoter-enhancer 

interactions.  Chromosome conformation capture (3C)-based sequencing assays such as Hi-C 

[85, 86] and ChIA-PET [87] can be used to detect these long range interactions. In particular, 

ChIA-PET (Chromatin interaction analysis by paired-end tag sequencing) combines ChIP and 

3C-based methods to detect chromatin interactions between sites bound by specific proteins such 

as RNA Polymerase II or CTCF on a genome-wide scale [79, 88], but requires hundreds of 

millions of cells as starting materials. Compared with ChIA-PET, Hi-C can capture all sites 

interactions in the genome but at the expense of deep sequencing, as it needs at least a billion 

reads to achieve 1 kb resolution in mammalian genomes [85, 86, 89]. ChIA-PET can capture 

promoter-enhancer, promoter-promoter, and enhancer-enhancer interactions that involve RNA 

Polymerase II directly, while Hi-C identifies TADs (topologically associated domains) in 

chromatin structure. Newer methods such as HiChIP [90] and PLAC-seq [91], combine the 

advantages of ChIA-PET and Hi-C to capture long-range interactions more efficiently and 

accurately. 3C-based methods and the basic computational analysis pipelines for each of the 

techniques have been reviewed previously [92, 93].  

            

        Although the mechanisms of long-range interactions are not completely understood, it is 

known that TFs and histone modifications are actively involved in the interactions and may help 

alter the chromatin structures [94]. By coupling ChIP-seq with long-range interaction data, 

studies find that TFs such as CTCF and YY1, are highly enriched in interacting loci or the 

boundaries of TADs in long-range interactions [86, 88, 89, 95- 101]. Multiple studies have 

reported that CTCF can also co-bind with other TFs to form lineage - or cell type - specific long-

range interactions and activate context-specific gene expression [101- 104]. It has also been 

shown that disruptions to TF binding at TADs boundaries or cis-regulatory elements, whether 

caused by mutations, methylation of TF binding sites, or deletion of a transcription factor, can 

cause remodeling of chromatin interactions and abnormal expression of target genes, which may 

lead to disease [105, 106]. To integrate ChIP-seq data with ChIP-based long-range interaction 
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data (i.e. ChIA-PET), peak callers are used to find TF co-binding and histone modifications in 

anchor sites of PETs [79, 107, 108]. For example, RNA Pol II ChIA-PET detects promoter-

promoter and enhancer-promoter interactions directly. Enhancers or promoters can be further 

confirmed by comparing ChIP signal between H3K4me3 and H3K4me1 modifications [79]. In 

addition, distal enhancers have been thought to interact with promoters via cohesin-associated 

CTCF-CTCF loops that also insulate enhancers from genes that they are not supposed to target. 

The insulators are identified by overlapping anchor sites of cohesin ChIA-PET with cohesin and 

CTCF ChIP signal, while active enhancers are marked with H3K27ac ChIP signal [108]. 

Specific TFs co-binding patterns involved in the cis-interactions can be detected with ChIP-seq 

peak calling in the anchor regions [107]. Furthermore, differential promoter-promoter, enhancer-

promoter, and enhancer-enhancer interactions can be identified using ChIP-seq of histone 

modifications and comparing ChIP signal between conditions [79, 108]. For example, CTCF 

ChIP-seq signal at the anchor sites of cohesin PETs was used to confirm CTCF-CTCF loops in 

hESC. Although CTCF-CTCF loops are highly conserved between naïve and primed ES cells, 

the loop structures are different in terms of enhancer-promoter and enhancer-enhancer 

interactions, as can be seen by comparing H3K27ac ChIP-seq signal between the two states 

[108]. A popular strategy is to segment the genome into TADs using HiC when available, or 

predicting TADs using CTCF and/or Cohesin component ChIP-seq in order to constrain 

interactions between TFs and cis-regulatory elements within these ~100-1000kb regions [109]. 

By matching ChIP-seq peaks of CTCF and cohesin complex proteins to non- ChIP-based long-

range interaction data, like Hi-C, TADs boundaries can be defined and TADs can be segmented 

into sub transcription units more accurately [108]. Although TADs have relatively conserved 

segmentation structure during cell development and differentiation [105, 110], the intra-TADs 

interactions and epigenetic states of TADs are less stable in terms of outside stimulus and 

differentiation conditions [110, 111]. By comparing normalized ChIP signal of histone 

modifications within TADs before and after treatment, it is possible to define activated or 

repressed TAD states that are then correlated with differentially expressed genes within the same 

TADs. As ChIP-seq has been performed routinely in many labs and large consortiums such as 

the ENCODE [10] and modENCODE [112] projects, many ChIP-seq datasets are available for 

public use. Frequent chromatin interaction loci (“hubs”) and TAD boundaries can be predicted 

accurately from published histone ChIP-seq data integrated with customized Hi-C [113]. 
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Interestingly, a recent study shows that cohesin loss causes loop domains to disappear based on 

Hi-C data, but CTCF and histone modification ChIP-seq data shows that their patterns are 

unaffected. The disappearance of loop domains only affects the expression levels of a small 

percentage of genes, which suggests that cohesin-mediated loops only have modest effects on 

transcription for most genes and those super-enhancers of genes seem to keep their activity intact 

without cohesin looping [114].  Thus, given the complex relationship between long-range 

interactions and gene expression, more studies applying Hi-C/ChIA-PET coupled with ChIP-seq 

are needed to understand the exact role of chromatin loops in gene expression and to further 

categorize genes based on their response to the disruption of loop formation.   

 

1.7 Predicting regulatory sequence variants by integrative analysis with ChIP-seq 

           Sequence variants or single nucleotide polymorphisms (SNPs) are known to be associated 

with genetic traits and diseases [115, 116]. Most SNPs identified by genome-wide association 

studies (GWAS) as associated with traits or diseases are found outside of protein-coding regions, 

with the majority of these non-coding SNPs located in open chromatin regions [117, 118]. As 

open chromatin regions map to enhancers and promoters, non-coding SNPs in the accessible 

regions may interrupt or strengthen protein-DNA interactions by introducing sequence variants 

into binding motifs, and thus causing gene expression and traits to vary between individuals. 

Indeed, multiple studies have reported that many disease-causing nucleotide changes are in TFs 

binding sites and affect TFs-DNA binding events [10, 119- 131]. The interruption in TFs binding 

can not only influence proximal gene expression, but also that of distal genes [122, 125, 129, 

132]. However, only a minority of differential TF-DNA binding causes can be explained by 

sequence variation in binding motifs [133]. Besides, allelic occupancy profiling of more than 20 

TFs using ChIP-seq data revealed that only a small proportion of these events have sequencing 

variants in binding motifs for specific TFs [134]. Although local variants in motifs are not 

necessarily affecting specific TFs binding, sequence context is still an important source of 

differential TFs-DNA binding. For example, proximal sequence changes may influence 

cooperative TFs-TFs binding [133, 135- 138], and distal variants can affect TF-DNA and TF-TF 

interactions by changing chromatin state and conformation [133, 139- 141].  
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           Many efforts have been made to integrate ChIP-seq and other experimental data to predict 

regulatory sequence variants. One of the most straightforward methods is to match SNPs to 

known TFs binding motifs from database such as JASPAR [142] and TRANSFAC [143], or to 

look for putative TFs bindings sites using hidden Markov models (HMM). The binding affinity 

score can be calculated based on a position weight matrix (PWM) representation of the motif. 

When comparing the motif affinity score between two alleles, a greater motif score difference 

indicates that the variant is more likely to be regulatory [144- 146]. However, these methods rely 

on known TFs binding sites and do not leverage the predictive power of chromatin signatures to 

filter out a large set of false positive predictions. Recent studies have successfully integrated 

ChIP-seq and DNase-seq data into predictive analyses without relying on TFs binding motifs 

databases [147, 148]. In these studies, peak calls from ChIP-seq and DNase-seq are scanned for 

k-mers of a given length and the putative regulatory sequences are used to train a support vector 

machine (SVM) to predict the regulatory power of any k-mer sequence. The weighted sequences 

can then be used to predict the impacts of single nucleotide changes on regulatory activity in the 

variant sequences [147]. Another version of this method is to weigh the predictive power of k-

mer sequences and compute DNase-seq covariates from ChIP-seq data using regression methods. 

The trained k-mers and DNase-seq signals are then used to predict ChIP-seq binding signals at 

two alleles. By comparing the predicted ChIP-seq signal between the reference and variant 

alleles, the variant can be predicted to be regulatory or not [148]. Other studies have applied deep 

learning methods such as convolutional neural nets in order to more comprehensively integrate 

sequence variants, chromatin states, chromatin accessibility and even RNA-binding protein data 

to predict which regulatory variants will be functional [149, 150]. Some regulatory variants are 

disease-associated and we can predict the effect of those variants on the binding affinity of 

transcription factors by evaluating the change in score for the motif [149]. We expect additional 

work on the development algorithms that can predict potential causal disease variants from the 

integration of functional genomics data, which will require experimental validation. The 

validation data in turn will be of great value for training the next set of methods to analyze 

variants from ChIP-seq data.  

 

1.8 ChIP-seq integrative analysis in the era of low cell count and single-cell genomics 
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           ChIP-seq has been the standard method for identifying genome-wide protein-DNA 

interactions when a specific antibody is available [151]. However, the traditional ChIP-seq 

technique requires a large amount of starting material (preferably more than ten million of cells) 

to get high resolution profiles, which limits its applicability for small organisms, rare cell types, 

and single cells. Efforts have been made to optimize the ChIP-seq protocol for a low amount of 

starting materials, which successfully detect TFs binding signals with as few as 5,000 cells [152] 

and H3K4me3 binding signals with only 500 cells [153]. Although these methods generate 

binding profiles at a good resolution with a small number of cells, the experimental procedures 

are still time consuming and costly. Due to the need for high PCR amplification in the low-input 

ChIP protocols, the number of identical aligned reads need to be carefully corrected for during 

data analysis. The low-input ChIP-seq peaks can also be compared with open chromatin regions 

from ATAC-seq to show high correlation between enhancer histone modifications and open 

chromatin regions.  By doing motif discovery analysis, people also identify lineage specific TFs 

binding to lineage specific open chromatin regions. TFs expression levels have been observed to 

correlate with differential open chromatin regions accessibility across cell types [153]. Another 

advancement in low-input ChIP-seq technique is to couple ChIP and Tn5 transposase 

tagmentation to add sequencing adapters to the beads-bound chromatin in a single step [154]. 

This protocol is both fast as well as cost-effective and it successfully identifies TFs binding with 

100,000 cells and histone markers with 10,000 cells. The ChIP signal needs to be normalized to 

genomic tagmentated DNA to remove tagmentation bias. However, the protocol also benefits 

from Tn5 insertions in open chromatin regions to detect transcription factor footprints and 

nucleosome positioning [154].  

 

           Single-cell epigenetics is a rapidly emerging area because of the development of new 

techniques [155, 156]. While we know that TF binding, histone modifications, chromatin 

accessibility, DNA methylation, and long-range interactions work together to generate context- 

specific patterns, these results are primarily based on experiments with bulk samples. Individual 

cells may have different epigenetic patterns that influence their random behaviors [157]. 

Therefore many single-cell epigenetics assays [156] have been developed to study this, including 

scATAC-seq [158, 159], scHi-C [160], scBS-seq [161- 163]. In addition, several techniques have 

been developed to couple multiple functional assays together to get transcriptomic and epigenetic 
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data from the same cell simultaneously [164- 166]. Compared with these methods, single-cell 

ChIP-seq seems more limited, due to the technical difficulties of working from so little material. 

Only one protocol has successfully performed ChIP-seq at single cell level [167], identifying 

hundreds of histone modification peaks per cell. The authors successfully distinguished three cell 

types by doing unsupervised hierarchical clustering and identifying subpopulations with different 

chromatin signatures. However, the low input and antibody sensitivity cause single cell ChIP-seq 

to suffer from high technical variance and low sensitivity across individual cells. Similarly, 

recent advances in single-cell ATAC-seq [158, 159] successfully identified individual open 

chromatin regions in single cells, with the downside of low signal-to-noise compared with bulk 

ATAC-seq. However, scACTAC-seq reads are aggregated to be validated when comparing with 

bulk ATAC-seq data, which shows less technical variance and higher sensitivity compared with 

single cell ChIP-seq. The high background IP noise probably limits scChIP-seq to histone 

modifications, and extensive computational analysis needs to be carried out to remove the noise 

in peak calling. The strategy used for now is to segment ChIP-ed DNA for peak calling for 

individual cells and then cluster cells based on fractions of reads in known ChIP peaks from bulk 

samples. Thus, the analysis is still performed at low-input level rather than the true single-cell 

level [9]. Future studies need to develop methods to remove IP noise and improve solid peak 

calling in individual cells, since bulk analysis methods cannot be applied directly in single-cell 

assays. We can further expect that methods will appear combining single-cell ChIP-seq and 

single-cell RNA-seq from the same cells, which will open up new possibilities when working 

from mixed cell types and difficult-to-obtain samples.  

 

1.9 Future direction and conclusion  

          ChIP-seq has become the standard method for profiling protein-DNA binding over the last 

decade, and it has been actively integrated with newer functional genomics assays such as RNA-

seq, DNase/ATAC-seq and Hi-C/ChIA-PET in order to generate models of gene regulation. In 

the best studies, the integrative analysis is validated with a series of validation experiments to 

show that the binding of particular TFs is critical for target genes expression. As ATAC-seq and 

RNA-seq protocols continue to become easier, we expect that ChIP-seq will be routinely 

integrated with these functional genomics assays. While most current studies compare different 

“static” cell types, transcription changes temporally in response to stimuli that involve changes in 
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transcription factor binding, and will become more often the subject of study using ChIP-seq 

during development and/or stimulation. ChIP-seq following perturbations will also become more 

routine, and will need to be integrated when building predictive models to identify potentially 

active cis-regulatory elements and key TFs, which would guide experimental validation and will 

feed back into further model building.  

 

 Another challenge in ChIP-seq integrative analysis will be how to incorporate long-range 

interaction and gene expression data into the chromatin state analyses that are being done with 

HMMs and SOMs. Currently, all of these analysis include multiple ChIP-seq datasets and can 

incorporate chromatin accessibility, but are not designed to incorporate connectivity between 

distant regions or gene expression data as part of their training as opposed to post-training 

analysis and annotation. A challenge is that while at least ChIA-PET and HiC are working in a 

similar “feature space” of chromatin as ChIP-seq, regular RNA-seq is measuring the steady state 

of transcripts, which is affected by several post-transcriptional processes such as mRNA turnover 

mediated by microRNAs. Since chromatin will always be more predictive of transcriptional 

initiation, it may be more fruitful to compare the predicted models of expression to GRO-seq and 

other measurements of transcriptional activity than regular RNA-seq.  

 

          In recent years, ChIP-seq techniques for low input materials have been developed to 

expand its applications to rare tissues or cell types, and even single-cell studies. Other functional 

genomics assays have also been developed at single-cell level to answer new biological 

questions. However, the integrative analysis of single-cell ChIP-seq with these functional 

genomics assays in single cells is a difficult challenge.  One reason is that the experimental 

protocols to capture protein binding, transcriptomes, and DNA methylation data from the same 

cell are still not available. However, it may still be worthwhile to integrate data from scChIP-seq 

and other functional genomics assays in different individual cells from the same pool based on 

the assumption that protein binding profiles would match to the gene expression profiles from 

the assay because these cells are from the same pool. Once protocols are available to do scRNA-

seq and scChIP-seq from the same single cell, algorithms will need to be developed to integrate 

these single-cell data types together in order to understand the connection between binding and 

gene expression heterogeneity in subsets of a cell population. As single-cell data is sparser than 
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bulk data, new statistical methods and tools are required for integration. In a hopefully not-so-

distant future where robust single-cell ChIP-seq and RNA-seq are practical, they could become 

the method of choice for studying samples where the amount of material or the heterogeneity of 

the population make the bulk version of these experiments less attractive. 

 

1.10 Figures 

 

 
Figure 1.1. Chromatin states are defined by different combinations of histone modifications, 

transcription factors and RNA Pol II binding. In this example, a typical repressive state (gray) is 

characterized by high H3K27me3 signal or H3K9me3 signal, an enhancer state (yellow) would 

show a high occupancy ratio of H3K4me1 to H3K4me3 as well as high H3K27ac, and the 

promoter state (red) would show a high occupancy ratio of H3K4me3 to H3K4me1 as well as 

RNA Pol II binding at the promoter, whereas poised promoter state (magenta) would show the 

occupancy of H3K4me3 and H3K27me3 bivalent modifications. Actively transcribed region 

(green) is characterized by a high occupancy of H3K36me3 with some RNA Pol II binding along 

the gene body.  
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Figure 1.2. Graphical structure of annotating chromatin states using a Hidden Markov Model 

(HMM) method such as ChromHMM. The genome is split into non-overlapping segments and 

ChIP-seq signal for histone modifications are binarized (0 or 1) and collected for each segment, 

which are further built into input matrix for HMM training. The hidden state of the current 

segment is dependent on the state of the previous one and the transition probabilities (in red) of 

changing from one state to another are learnt from training on the input matrix. ChromHMM 

outputs trained hidden states for each segmentation, which are then interpreted as chromatin 

states based on the chromatin profile and gene annotations, such as active promoter/enhancer, 

transcriptional elongation, or repressive states.  
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Figure 1.3. Graphical structure of annotating chromatin states using Self-Organizing Maps 

(SOMs). (A) The genome is split into non-overlapping segments and ChIP-seq signal for histone 

modifications are collected for each segment to build an input matrix for SOM training, where 

each segment represents a vector of signal. (B) The map is initialized with units (green dots) and 

the input signal vectors (black plus signs) are spread around the map in high dimensional space.  

(C) For each step of training, a signal vector is selected and the closest unit is found. Then the 

unit is pulled as well as other units around it towards to the selected signal vector, which causes 

units cluster together to represent signal vectors sharing same features. (D) The trained SOM 

map can be divided into metacluster regions (metacluster 1-8) based on combinations of signal 

enrichments to recover regions that are high in H3K4me3 and open chromatin (promoters), high 

in H3K4me1 and open chromatin (potential enhancers), high in H3K36m3 (transcribed regions) 

or high in H3K27me3 and H3K9me3 (repressed). (E) Metaclusters are further manually assigned 

chromatin state labels based on annotations and the combinations of signal enrichments just as in 

the HMM case. 
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Chapter 2 

Rapid intra-individual methylation signatures of diverse early life experiences 

 

2.1 Abstract 

Genetic and environmental factors interact during sensitive periods early in life to influence 

mental health and disease (1-4). These influences involve modulating the function of neurons and 

neuronal networks via epigenetic processes such as DNA methylation (2-7). However, it is not 

known if DNA methylation changes outside the brain provide an ‘epigenetic signature’ of early-

life experiences in an individual child that may serve as a marker for vulnerability or resilience to 

mental illness. Here, to obviate the massive variance among individuals, we employed a novel 

intra-individual approach by testing DNA methylation from buccal cells of individual rats before 

and immediately after exposure to one week of typical or adverse life experience. We show that 

whereas inter-individual changes in DNA methylation reflect the effect of age, DNA methylation 

changes within paired DNA samples from the same individual reflect the impact of diverse 

neonatal experiences on the individual. The methylome signature of early-life experience is 

enriched in genes encoding transcription factors and key molecular cellular pathways. Specifically, 

genes involved in cell morphogenesis and differentiation were more methylated in pups exposed 

to the adverse environment whereas pathways of response to injury and stress were less methylated. 

Thus, intra-individual methylome signatures indicate large-scale transcription-driven alterations 

of cellular fate, growth and function. Our observations in rats--that distinct early-life experiences 

generate specific individual methylome signatures in accessible peripheral cells--should be readily 

testable in humans. 

 

2.2 Introduction 

 Experience, particularly during sensitive periods early in life, leaves indelible marks on an 

individual’s ability to cope with life’s challenges, influencing resilience or vulnerability to 

emotional disorders (2–4, 7, 8). There is evidence that the mechanisms by which early-life 

experiences influence the function of neurons and neuronal networks involve modifying the 

repertoire and levels of gene expression via epigenetic processes (2–7, 9–12). Among epigenetic 

processes, changes in DNA methylation of individual genes and at the genomic scale have been 

reported, and these generally correlate with gene expression (3, 5, 13–15). However, it is not 
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known if DNA methylation changes might provide a useful ‘epigenetic signature’ of early-life 

experiences in an individual child. Such a readily-accessible measure might serve as a biomarker 

for vulnerability or resilience to mental illness. Obviously, it is not possible to repeatedly sample 

DNA from brain cells in humans in order to assess DNA methylation changes for predicting and 

preventing disease. Therefore, current approaches employ peripheral cells including white blood 

cells (WBC) or buccal swabs (mixed epithelial/WBC), which are available repeatedly and 

noninvasively. Here we tested the feasibility of using peripheral DNA samples to assess the impact 

of diverse neonatal experiences on an individual by directly comparing two samples collected at 

different time points from the same individual rat in groups exposed to distinct early-life 

experiences with defined onset and duration. We have previously established that these diverse 

experiences provoke specific phenotypic outcomes later in life (7, 16, 17). Specifically, we 

imposed ’simulated poverty’ by raising pups for a week (from postnatal day P2  to P10) in cages 

with limited bedding and nesting materials (LBN). This manipulation disrupts the care provided 

by the rat dam to her pups and results in profound yet transient stress in the pups, devoid of major 

weight-loss or physical changes. This transient experience provokes significant and life-long 

deficits in memory and generates increases in emotional measures of anhedonia and depression 

(16–18).  

 

Here we tested if adversity during a defined sensitive developmental period in rats leads to 

a detectable epigenomic signature in DNA from buccal-swab cells. We obtained intra-individual 

epigenomic signatures of early-life adversity using reduced representation bisulfite sequencing 

(RRBS) (19) to identify changes in DNA methylation profiles. Comparisons were made both 

between two samples from an individual rat (P2 vs P10) and between samples from rats subjected 

to the two neonatal experiences. We found that assessing the methylation profile of samples 

enabled detection of age and development effects (18, 20), distinguishing P2 samples from those 

obtained on P10, but did not separate the two groups of pups based on their experience. In contrast, 

the changes in DNA methylation in two samples obtained from the same rat enabled clear 

differentiation of the control vs the adverse experience, likely by obviating large inter-individual 

variance. Thus, our findings establish the feasibility of identifying markers of adverse experiences 

that portend risk or resilience to mental illness, with major potential translational impact. 
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2.3 Results 

2.3.1 Methylation changes reflect postnatal ages rather than maternal experiences 

         We obtained a mix of epithelial & white blood cell DNA from rat pups, on P2 and on P10 

from the same pup using buccal swabs (Methods). We obtained buccal swabs rather than peripheral 

white blood cells for three reasons. First, the swab, lasting seconds, is much less stressful than a 

painful needle prick to obtain peripheral blood, and this stress might influence methylation in itself. 

Second, this approach provides a more direct comparison with human studies where ethical 

reasons preclude needle pain whereas buccal swabs are routinely implemented (21, 22). Finally, 

several studies found that DNA methylation profiles in buccal swab cells are more similar to 

patterns from several brain regions than methylation profiles in white blood cells (22–25). 

Following the initial sample collected on P2, rats were exposed to either simulated poverty or to a 

typical environment for one week, followed by a second sample on P10. We examined for intra-

individual epigenomic signatures of early-life adversity and compared both P10 samples from 

groups with two divergent neonatal experiences as well as the changes in methylation levels 

between matched samples from the same individual rat (P2 vs P10; Figure  2.1A).  

 

DNA methylation status was assessed using RRBS, with libraries sequenced to an average 

of 20 million mapped reads, and we reliably detected an average of 482 thousand CpGs in both 

time points of the same individual (Figure 2.2; Methods). We performed differential methylation 

analysis between P2 and P10 for each individual and identified 3417 significantly differential 

methylation regions (DMRs) after coalescing CpGs within 100 basepairs that were shared in at 

least two individuals from each experience group (Figure 2.1B). These were further analyzed. 

Specifically, we analyzed the DNA methylation levels of these DMR in P2 and in P10 for both the 

control and adversity-experiencing (LBN) groups across individuals using k-means clustering and 

observed substantial changes in DNA methylation level during the one-week interval in both 

control and LBN (Figure 2.3A). The DNA methylation levels within a given individual clearly 

distinguished rats at different ages (Figure 2.3A). We further performed principal component 

analysis (PCA) on the percentage of DNA methylation of these DMR and found that individual 

samples were clearly separated by age using the first three principal components (up to 62.1% 

variances explained), indicating the large change in DNA methylation associated with age (Figure 

2.3B). Note that this result held when cohort effects were considered (Figure 2.4B,F & 2.5A-C). 
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These data demonstrate that development and age modify the buccal swab methylome (20, 24, 26, 

27) in conjunction with experience. We then examined the DMRs with the top weights in PC2, 

which explained 20.7% of the variance, and was the dominant component distinguishing 

individuals of different ages (Figure 2.3B).  We found that DMRs with reduced methylation level 

in P10 were associated with genes involved in cellular response to hormones, negative regulation 

of growth and regulation of kinase activity whereas DMRs with increased methylation level in P10 

were enriched with genes in pattern specification processes such as nervous system and 

mesodermal development (Figure 2.6). Notably, the PCA analyses of the P2 and P10 methylome 

profiles did not separate the control group from the adversity-experiencing group (Figure 2.3C). 

Thus, whereas the level of DNA methylation in buccal swabs may denote an epigenetic signature 

of age, it provides little information about antecedent life experiences. 

 

2.3.2 Intra-individual changes in methylation can distinguish early-life experience 

        To probe the impact of the early-life adversity experienced by an individual on DNA 

methylation patterns of the same individual, we explored intra-individual fold changes in 

methylation (referred to as “delta methylation”) rather than the absolute value of methylation levels 

for each pup by taking advantage of the two samples collected immediately before and after a week 

of imposed adversity. We clustered and aligned these delta methylation profiles (differential  

methylation between P2 and P10 defined as log2(P10/P2)) in both early-life experiences (Figure 

2.7A). We then examined the intra-individual methylation changes in detail and found that the 

patterns of changes in methylation within an individual were distinct depending on group 

assignment (Figure 2.7A). We performed a PCA analysis on the individual delta methylation 

samples and the resulting principal components revealed that delta methylation within an 

individual clearly distinguished the control and LBN groups (Figure 2.7B). Specifically, the first 

three principal components accounted for 65.0% of the variance and the third principal component 

(PC3) (4.9% of the variances) distinguished most LBNs from controls. Importantly, the adverse 

and control experiences differentially reduced or increased levels of methylation in an experience-

specific manner. These results indicate that intra-individual changes in methylation-level profiles 

before and after a defined experience provide a novel epigenetic signature that identifies the nature 

of the experience.  
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2.3.3 Differential methylation regions are at the vicinity of multiple transcription factors  

        The paragraph above demonstrates that levels of DNA methylation in mixed epithelial / white 

blood cell samples from buccal swab can separate pups by age, whereas the nature of methylation 

changes in the same individual (delta methylation) distinguishes different early-life experiences. 

We examined the relative contribution of individual DMRs to the overall difference in PC3, and, 

guided by the slope of the weight distribution selected a cutoff threshold at +/- 2x10-2 (Figure 2.8A) 

to identify the 346 largest positive weights that account 254 DMRs, which are associated with 246 

genes (Figure 2.8A & 2.9). The methylation regions with maximal positive weights are thus major 

contributors to the differential methylation profiles of early-life adversity (LBN) compared to 

typical development, and genes that have generally increased DNA methylation after the LBN 

experience typically denote reduced expression. Gene Ontology (GO) analysis of these “positive 

weight” genes identified enrichment in terms associated with cell and organ development and cell-

morphogenesis (Figure 2.8B). Inspection of “positive weight” genes contributing to the adversity-

provoked methylome signature uncovered a strong enrichment of genes involved in growth and 

response to growth factors (26/246 annotated genes; 10.6%), pathways of injury, inflammation, 

and death (25 of 246 annotated genes; 10.2%), as well as transcription factors (15/246; 6.1%).  

 

A strongly regulated program of gene expression was also suggested when the same 

approach was applied to the top 311 negative weights (241 DMRs) associated with 225 genes that 

contributed most to the methylome signature associated with a typical developmental epoch. First, 

GO analysis indicated enrichment in genes involved in cell morphogenesis and differentiation. 

Notably,  inspection of the individual “negative weight” genes uncovered likely mechanisms for a 

regulated gene expression program: 17.8% of the genes in this group (40/225: 17.8%) were 

transcription factors. Indeed, transcription factors accounted for 30% (7/23) of the top-contributing 

genes (genes associated with DMRs having weights more significant than -5x10-2 in Figure 2.8A) 

to the typical methylation phenotype. Furthermore, 53 of the 225 negative weight genes (23.6%) 

were involved in cell morphogenesis, cytoskeleton stability and growth, and cell-cell 

communication.   

 

Taken together, these findings suggest that early-life experiences set in motion genome-

wide changes in methylation patterns of crucial gene-sets, including transcription factors. Early-
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life adversity associates with altered methylation of gene-sets involved in growth and 

differentiation as well as response to injury and death. These changes are likely driven by 

molecular signals, including hormones and nutrients that modulate the complex enzymatic 

processes that govern DNA methylation status (28–30).   

 

2.4 Conclusion 

In summary, we find here that comparing cohort-wide DNA samples obtained at different 

developmental ages reveals the signature of age and development on the peripheral methylome, as 

widely reported. However, these inter-individual analyses do not distinguish the divergent impacts 

of diverse experiences that take place during the intervening developmental epoch. By contrast, 

here we demonstrate that paired samples from the same individual before and after an adverse or 

typical developmental experience enable clear distinction of each of these experiences: we identify 

epigenetic ‘scars’ and ‘kisses’ that, at least in the rodent model, precede and predict later-life 

emotional functions. 
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2.5 Figures 

 

 

 
Figure 2.1. (A) Experimental design and analysis pipeline. (B) Histogram of  the number of 

significant differentially methylated regions (DMRs) based on the number of individuals sharing 

the same experience. RRBS- reduced representation bisulfite sequencing; LBN- limited nesting 

and bedding cages, a paradigm of adversity. P2,P10 = postnatal days 2,10. 
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Figure 2.2. RRBS quality control (QC) matrix for cohort1 (A) and cohort2 (B), including the 

number of uniquely mapped reads, mapping efficiency and significant DMRs calling for each 

individual. 
 
 

 

 

 

 

 

 

 

 

 

 

P2
Mapped 

reads 
(million)

Efficiency P10
Mapped 

reads 
(million)

Efficiency

P2C3 13 43.30% P10C3 23 46.00%
P2C4 9 36.1% P10C4 19 55.1%
P2C6 12 51.30% P10C6 17 44.40%
P2C7 22 59.50% P10C7 26 52.00%
P2C9 18 41.10% P10C9 26 53.70%
P2C12 20 49.20% P10C12 24 52.20%
P2LBN2 15 39.90% P10LBN2 11 45.90%
P2LBN3 18 43.20% P10LBN3 30 58.90%
P2LBN4 23 48.80% P10LBN4 28 51.00%
P2LBN9 12 46.40% P10LBN9 24 50.40%
P2LBN12 15 45.40% P10LBN12 26 56.40%

Individual Detected CpGs in both P2 and 
P10 Significant DMRs

C3 418860 870
C4 358726 4664
C6 404260 4384
C7 521418 1959
C9 514738 2679
C12 496953 2318
LBN2 415216 5540
LBN3 482076 6345
LBN4 539139 629
LBN9 418466 1851
LBN12 443196 1963

Cohort1 Cohort2
A. B.

P2
Mapped 

reads 
(million)

Efficiency P10
Mapped 

reads 
(million)

Efficiency

P2C1 21 46.0% P10C1 22 42.5%
P2C5 20 47.4% P10C5 20 45.6%
P2C8 17 60.4% P10C8 22 49.2%
P2C11 19 55.7% P10C11 27 58.1%
P2LBN2 28 57.8% P10LBN2 30 61.9%
P2LBN4 21 49.2% P10LBN4 20 42.0%
P2LBN9 21 45.8% P10LBN9 22 54.2%
P2LBN11 23 47.2% P10LBN11 20 50.8%

Individual Detected CpGs in both P2 and 
P10 Significant DMRs

C1 510525 3073
C5 505100 1879
C8 508787 1278
C11 525733 7040
LBN2 584480 1064
LBN4 498882 2566
LBN9 521111 1190
LBN11 504507 2745
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Figure 2.3. (A) Heatmap of CpG methylation percentage on 3,417 DMRs across individuals. The 

profile is presented into 10 clusters that are clustered using K-means clustering. Blue, low 

methylation percentage; orange, high methylation percentage. (B) Principal component analysis 

(PCA) of individuals on 3,417 DMRs. Individuals are labeled by age, P2, blue; P10, red. (C) 

Principal component analysis (PCA) of individuals on 3,417 DMRs. Individuals are labeled by 

experience, Control, cyan; LBN, green. 
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Figure 2.4. (A) Histogram of DNA methylation level on 3,417 DMRs across 19 individuals from 
two cohorts before batch correction by cohorts. For each DMR, each individual has one 
methylation level for P2 and one for P10. 11 individuals are in cohort1 and 8 individuals are in 
cohort2.  
(B) Histogram of DNA methylation level on 3,417 DMRs for two cohorts separately (before 
correction by cohorts).  
(C) Histogram of DNA methylation level on 3,417 DMRs on cohort1 for P2 and P10 separately 
(before correction by cohorts).  
(D) Histogram of DNA methylation level on 3,417 DMRs on cohort2 for P2 and P10 separately 
(before correction by cohorts).  
(E) Histogram of DNA methylation level on 3,417 DMRs across 19 individuals from two 
cohorts after correction by cohorts. For each DMR, each individual has one methylation level for 
P2 and one for P10. 11 individuals are in cohort1 and 8 individuals are in cohort2.  
(F) Histogram of DNA methylation level on 3,417 DMRs for two cohorts separately (after 
correction by cohorts).  
(G) Histogram of DNA methylation level on 3,417 DMRs on cohort1 for P2 and P10 separately 
(after correction by cohorts).  
(H) Histogram of DNA methylation level on 3,417 DMRs on cohort2 for P2 and P10 separately 
(after correction by cohorts).  
u represents mean value; s.d represent standard deviation. 
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Figure 2.5. PCA analysis on 3,417 DMRs before batch correction by cohort and labeled by (A) 

age, (B) experience and (C) cohort. (D) PCA on 3,417 DMRs after batch correction by cohort.  
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Figure 2.6. (A) DNA methylation level of top-positive DMRs (from PC2 in Figure 2.3B) and 

density distributions are plotted by age separately.   

(B) DNA methylation level of bottom-negative DMRs (from PC2 in Figure 2.3B) and density 

distributions are plotted by age separately.   

(C) Gene ontology terms enriched in genes associated with top-positive DMRs. 

(D) Gene ontology terms enriched in genes associated with bottom-negative DMRs. 
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Figure 2.7. (A) Heatmap of delta methylation between P10 and P2  (log2(P10/P2)) of 3,417 DMRs. 

DMRs are in the same order as in Figure 2.3A. (B) Principal component analysis (PCA) of the 

DMRs of individuals labeled by experience, Control, cyan; LBN, green.  
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Figure 2.8. Analysis of PC3 weights (A) Most significant positive (orange) and negative (blue) 

weights are enriched in transcription factors. (B) GO terms of genes associated with 346 most 

positively weighted DMRs (orange) in panel A. (C) GO terms of genes associated with 311 most 

negatively weighted DMRs (blue) in panel A. 
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Figure 2.9. Heatmap of delta methylation changing profiles between P10 and P2  on 657 DMRs 

(top weights were collected from PC3 in Figure 2.7B, which can separate control and LBN). (A) 

346 “top-positive” weights predict LBN, showing increased methylation in P10 LBN while (B) 

311 “bottom-negative” weights predict control, showing increased methylation in P10 Control. 
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2.6 Methods 

2.6.1 Animals 

Subjects were born to primiparous time-pregnant Sprague-Dawley rat dams (around P75) that were 

maintained in the quiet animal facility room on a 12 h light/dark cycle with ad libitum access to 

lab chow and water. Parturition was checked daily, and the day of birth was considered postnatal 

day 0 (P0). Litter size was adjusted 12 per dam on P1, if needed. On P2, pups from several litters 

were gathered, and 12 pups (6 males and 6 females) were assigned at random to each dam, to 

obviate the potential confounding effects of genetic variables and of litter size. Each pup was 

identified by a rapid (<2 minute) foot pad tattooing using animal tattoo ink (Ketchum). 

 

2.6.2 Early-life adversity paradigm  

The experimental paradigm involved rearing pups and dams in “impoverished” cages for a week 

(P2-P9) as described elsewhere (31-33). Briefly, routine rat cages were fitted with a plastic-coated 

aluminum mesh platform sitting ~2.5 cm above the cage floor (allowing collection of droppings). 

Bedding was reduced to only cover cage floor sparsely, and one-half of a single paper towel was 

provided for nesting material, creating a limited bedding and nesting (LBN) cage. Control dams 

and their litters resided in standard bedded cages, containing 0.33 cubic feet of cob bedding, which 

was also used for nest building. Control and experimental cages were undisturbed during P2–P9, 

housed in a quiet room with constant temperature and a strong laminar airflow, preventing 

ammonia accumulation.  

 

2.6.3 Collection of buccal swab from each pup  

The first buccal swab was collected from both cheeks of each pup prior to randomization on P2, 

using Hydraflock swab (Puritan diagnostics, LLC). After an hour’s rest with their mother, a  second 

buccal swab was collected, enabling sufficient DNA from each pup. Pups were then randomized 

to controls or LBN cages. During P3-P9,  behaviors of dams in both control and adversity/LBN 

cages was observed daily, to ascertain the generation of fragmented unpredictable caring patterns 

by the adverse environment (34,35). On P10, buccal swabs were collected as described for P2, 

then all litters were transferred to normal bedded cages.  

 

2.6.4 Isolation and quantification of DNA for making RRBS libraries from Rat Buccal swab 
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The Buccal swab was placed into the DNA shieldsTM (Zymo research) immediately after swabbing. 

DNA was prepared from the DNA shields solution using the Quick gDNA MiniPrep kit following  

the manufacturer’s protocol. The quantity of double stranded DNA was analyzed using Qubit, and 

RRBS Libraries were prepared from 40 ng of genomic DNA digested with Msp I and then 

extracted with ZR-DNA Clean & Concentrator™-5 kit (Zymo Research). Fragments were ligated 

to pre-annealed adapters containing 5’-methyl-cytosine instead of cytosine according to Illumina’s 

specified guidelines (www.illumina.com). Adaptor-ligated fragments were then bisulfite-treated 

using the EZ DNA Methylation-Lightning™ Kit (Zymo Research). Preparative-scale PCR was 

performed and the resulting products were purified with DNA Clean & Concentrator for 

sequencing. Amplified RRBS libraries were quantified and qualified by Qubit, Bioanalyzer 

(Agilent), and Kapa library quant (Kapa systems), and then sequenced on the Illumina NextSeq 

500 platform. 

 

2.6.5 RRBS data processing and detection of differentially methylated regions (DMRs) 

Adaptor and low quality reads were trimmed and filtered using Trim Galore! 0.4.3 (36) with 

parameter ‘--fastqc --stringency 5 --rrbs --length 30 --non_directional’. Reads were aligned to the 

rat genome (RGSC 6.0/rn6) by using Bismark 0.16.3 (37) with ‘--non_directional’ mode. CpG 

sites were called by “bismark_methylation_extractor” function from Bismark.  

 

Single CpG sites with more than ten reads coverage were kept for DMR calling. Differential 

methylation sites (DMSs) were first called using MethyKit (R 3.3.2) (38) with a false discovery 

rate (FDR) lower than 0.05; DMRs falling within 100 base pairs were then merged. 

 

2.6.6 Calculation of DNA methylation level/percentage and Delta methylation 

The methylation percentage/level was calculated as the ratio of the methylated read counts over 

the sum of both methylated and unmethylated read counts for a single CpG site or across CpGs for 

a region. 

 

The delta methylation was calculated using the log2 transformation of the ratio of methylation 

level in the P10 sample and the methylation level in the P2 sample. Increased methylation in P10 

is shown as a positive value while decreased methylation in P10 is shown as a negative value. 
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2.6.7 Principal component analysis (PCA) and K-Means clustering 

PCA analysis was performed by using IncrementalPCA function from scikit-learn (39) using 

python 2 for both Figure 2 and 3. The value of k was set to 10 for the k-means clustering based on 

a preliminary hierarchical clustering analysis. A DNA methylation heatmap was generated with 

heatmap.2 function in R 3.5.0 and a delta methylation heatmap was generated using Java TreeView 

(40).  

 

2.6.8 Gene association analysis 

Genes associated with DMRs were identified using Homer 4.7 (41). For subsequent analyses, 

genes were kept if (1) CpGs were located within 20kb of TSS in intergenic, promoter-TSS and 

TTS positions; (2) CpGs were located within gene exons or introns. Gene ontology analysis was 

performed using Metascape (42) using the hypergeometric test with corrected P-value lower than 

0.05.  
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CHAPTER 3 

 

 

Characterizing the heterogeneity of DUX4 and DUX4 targets expression during 

FSHD2 myoblast differentiation 
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Chapter 3 

Characterizing the heterogeneity of DUX4 and DUX4 targets expression during FSHD2 

myoblast differentiation 

 

3.1 Abstract 

       Fascioscapulohumeral muscular dystrophy (FSHD) is primarily caused by the expression of 

the normally repressed transcription factor DUX4 in skeletal muscle turning on a set of target 

genes. DUX4 expression in skeletal muscle is either caused by a contraction of the D4Z4 

macrosatellite repeat array containing the DUX4 gene (FSHD1) or by mutation in other genes 

such as SMCHD1 involved in the repression of the D4Z4 repeat array (FSHD2). However, 

DUX4 is lowly expressed in patient samples and previous studies have focused on 

overexpression of DUX4. To better understand the expression profile of DUX4 and its targets in 

FSHD2, we first performed pooled RNA-seq on a 6-day differentiation time-course in FSHD2 

patient-derived myoblasts and found upregulation DUX4 target genes starting from day 3. Using  

single-cell/nucleus RNA-seq on FSHD2 myoblasts and day 3 myotubes, we successfully 

detected a set of DUX4 positive nuclei in FSHD2 myotubes. We found that substantially more 

FSHD myotube nuclei expressed with DUX4 targets than the nuclei that expressed DUX4. We 

also found that both FSHD2 myotube nuclei expressed more DUX4 target genes compared to 

FSHD myoblasts and control myotubes. A pseudo time-course of single cells and nuclei shows a 

distinct bifurcation between DUX4 target-positive and DUX target-negative FSHD2 myotubes 

compared to control myotubes. DUX4 target-positive myotubes formed a distinct population that 

were separated from other cells types that imply that these cells have entered a distinct biological 

program potentially driven by other transcription factors downstream of DUX4. 

  

3.2 Introduction 

        Fascioscapulohumeral muscular dystrophy (FSHD) is one of the most common forms of 

inherited muscular dystrophy [1], which is characterized by progressive wasting of facial, 

shoulder and upper arm musculature [1]. The most common form of FSHD, FSHD1 (>95% of 

cases), is linked to the mono-allelic contraction of the D4Z4 macrosatellite repeat array on 

chromosome 4q, shrinking from 11-100 units to 1-10 units, with each 3.3 kb containing the open 

reading frame for the double-homeobox transcription factor DUX4 [2-4]. By contrast, there is no 
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contraction of the chromosome 4q repeat in FSHD2 (<5% of FSHD cases). Instead many FSHD2 

cases are characterized by recurring mutations in the chromatin modifier SMCHD1 (Structural 

maintenance of chromosomes flexible hinge domain-containing protein 1) on chromosome 18 

[5]. SMCHD1 is important for maintenance of DNA methylation and epigenetic silencing of 

multiple genomic loci —including the D4Z4 repeat array. Studies found that SMCHD1 mutation 

shown in a significant number of FSHD2 cases [5] as well as in severe cases of FSHD1 [6,7]. 

 

        FSHD is associated with the expression of the full-length DUX4 transcript (DUX4fl), which 

is stabilized by a specific single-nucleotide polymorphism in chromosomal region distal to the 

last D4Z4 repeat that creates a canonical polyadenylation signal [8-10]. DUX4fl encodes a 

transcriptional activator that binds to a double-homeobox sequence motif in genome [3,4] and 

overexpression of DUX4fl causes differentiation defects in human myoblasts and mouse C2C12 

cells [11,12]. However, DUX4fl is expressed at extremely low level in FSHD and DUX4 protein 

is only detected in 0.1% of patient muscle cells in vitro [8,10]. The regulation of DUX4 

expression is controlled by multiple epigenetic processes. In the case of SMCHD1, which binds 

to D4Z4 repeats, its depletion results in DUX4fl up-regulation through alterations of CpG 

methylation status [5-7]. Differences in CpG methylation at D4Z4 correlate with clinical 

variability in FHSD1 and FSHD2 [5], with SMCHD1 acting as a disease modifier in some 

FHSD1 patients [6]. Studies have shown that SMCHD1 binds to the H3K9me3 D4Z4 

heterochromatic regions that are lost specifically in FSHD1 and FSHD2 that induce DUX4fl 

gene expression [2,10,13,14]. Within the D4Z4 heterochromatic regions, both SMCHD1 and 

cohesin proteins bind to D4Z4 repeats in an H3K9me3-dependent manner [2,13].  

 

        Although DUX4 is the most promising disease-causing gene in FSHD, studies have found 

that DUX4fl expression cannot be detected in some FSHD cases [8,15]. Furthermore, DUX4fl 

expression can sometimes observed even in unaffected individuals [8,15]. Studies have reported 

that the expression of DUX4fl induces the expression of DUX4 target genes in patient cells and 

even without detectable DUX4 expression, some of these DUX4 target genes can also be 

observed [4, 15-19]. Thus, the contribution of DUX4 expression and its target genes to the 

pathogenesis demands further careful investigation. One of the largest challenges for this 

investigation is the poorly-developed disease model for human FHSD studies. The D4Z4 repeat 
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array is not present in mouse [20]. While overexpression of human DUX4 does lead to muscular 

dystrophy, whether the cytotoxicity is caused by the same mechanism in human patient and 

experimental rodent muscles remains obscure. Therefore, patient muscle cells remain to be the 

essential resources for observing and assessing FSHD related pathogenesis and dysregulation. 

However, the variability of patient cells, including growth conditions, genetic variations, 

spontaneous differentiation may cause artifacts in observing gene expression and epigenetic 

profiles in FSHD and it is even more difficult to derive a reproducible conclusion on FSHD-

specific patterns with extremely low DUX4 expression in only a small cluster of cells [21-26]. 

Researchers have tried to overcome this by overexpressing DUX4 in human muscle cells in order 

to identify DUX4 targets and defects in muscle cell differentiation [11,12]. However, 

overexpression may not be appropriate to derive solid physiological and cellular conclusion on 

the disease progression because of the much higher DUX4 expression compared to the 

endogenous level.  Furthermore, previous population-based studies have found that DUX4 target 

genes are not consistently expressed across all FSHD patient cells though they are generally up-

regulated by averaging population results [15-18, 27]. Also, given that DUX4 is only expressed 

in a small subset of cells, it is important to investigate the cellular heterogeneity in FSHD patient 

samples and to understand how DUX4 regulates target genes directly, as well as how they are 

involved in the disease dysregulation.    

 

        Here we focused on the SMCHD1-mutated FSHD2 subtype in order to characterize the 

heterogeneity of DUX4 and DUX4 target gene expression at the single-cell level  by 

differentiating FSHD2 patient-derived myoblast to myotubes and comparing those to control 

myoblasts/myotubes in vitro. Using regular pooled RNA-seq, we profiled gene expression 

patterns during the differentiation time course and identified candidate disease-related key genes 

by comparing expression profiles between FSHD2 and control. We found that about 30% of 

differentially expressed genes (log2Fold Change>3)  are known DUX4 target genes while the 

others may be potential candidates for the progression of the disease. We then used single-

cell/single-nucleus RNA-seq [28] in myoblasts and 3-day post-differentiation myotubes to 

characterize the expression patterns of DUX4 and its target genes. We sucessfully detected the 

first DUX4+ single nucleus expression in FSHD and found these small subsets of DUX4+ nuclei 

did not express all DUX4 target genes simutanously whereas a much larger subset of nuclei 
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expressed the DUX4 targets. The single-cell and single-nuclei data agreed well with the regular 

(bulk) RNA-seq data. Using pseudotime analysis on the single-cell/single-nucleus data, we also 

found two interesting bifurcation time points that could separate FSHD2 myotube nuclei from 

control myotube nuclei and distinguish the DUX4 target negative FSHD2 nuclei from  DUX4 

positive or DUX4 negative but target gene positive  FSHD2 nuclei which show the highest 

enrichment of differentialy expressed genes as observed in the population-based analysis. 

 

3.3 Results 

3.3.1 Up-regulation of the expression DUX4 target genes during FSHD2 myotube 

differentiation time-course 

In order to comprehensively understandand the expression of DUX4 and its targets 

during myogenesis, we first differentiated FSHD2 patient-derived myoblast differentiation in 

vitro to measure the dynamics of gene expression in a 6 day time course using pooled RNA 

sequencing (RNA-seq) (Figure 3.1 & Table 3.1). The primary FSHD2 myoblasts with an 

SMCHD1 mutation (g.269799_2698003 deletion) and control myoblasts were derived from 

quadriceps muscle biopsies. We filter out lowly expressed genes across all samples and 

performed principal component analysis (PCA) with 9278 genes. We observed that FSHD2 and 

control were clearly separated by the first three principal components (73.9% varicance 

explained) but with the day of differentiaion aligned to each other (Figure 3.2). This result 

indicates that FSHD2 patient-derived myoblast can be distinguished at every stage of 

differentiation from control cells by profiling transcriptomes at population level.   

 

In order to understand the differences between FSHD2 and control, we identified 168 

differentially expressed genes (log2FoldChange>3) by comparing between FSHD2 and control 

per day (Methods). While we could not detect DUX4 during our time-course, many known 

DUX4 targets are up-regulated starting at day 2 in FSHD2, including MBD3L2, ZSCAN4, 

KHDC1L and LEUTX [27] and more known targets are stablely activated starting at day 3 

(Figure 3.3A). We therefore focused on genes showing significant changes after day 3 and 

further classified 168 differentially expressed gene into 6 clusters using K-means clustering 

(Figure 3.3). We found that genes up-regulated in FSHD2 can be separated into early- (clusters 1 

and 6) and late-induced expression patterns (cluster 2) (Figure 3.3A). Importantly, known DUX4 
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associated up-regulated genes represent over 50% of the genes induced in later stage, indicating 

that other genes within the same clusters could be novel candidates for DUX4 in FSHD2. We 

also detected genes downregulated in FSHD2 compared to control (cluster 3)  (Figure 3.3B). We 

further extracted 109 genes (out of 168, 64.9%) that show differential expression across the 

entire time-course and found that 73 genes were highly expressed in FSHD2 (Figure 3.4) while 

36 genes were downregulated in FSHD2 (Figure 3.5). Genes induced at the later stage (cluster 2) 

were highly enriched in negative regulation of cell differentiation (P=1x10-11.40) and methylation-

dependent chromatin silencing (P=1x10-5.38) while genes in early stage (cluster 1) were enriched 

in leukocyte activation involved in immune response (P=1x10-1.74) (Figure 3.4). For genes 

downregulated in FSHD compared to the control, we found that they were associated with 

epithelial cell apoptotic process (P=1x10-3.40) and negative regulation of immune system process 

(P=1x10-1.75) (cluster 3) (Figure 3.5). In summary, our FSHD2 differentiation time-course 

shows robust expression of DUX4 target genes starting at day 3 of differentiation and suggests 

substantial changes in methylation-dependent chromatin silencing.  

 

3.3.2  Detection of DUX4 positive and DUX4-target positive nuclei in FSHD2 myotube 

using single-nucleus RNA-seq 

        Although DUX4 was known to express at an extremely low level and DUX4-associated 

genes are detectably up-regulated in FSHD2 during myotube differentiation, we wondered 

whether this observation was true at the single-cell level in all cells or whether DUX4 and 

DUX4-target expression was only present in a subset of cells. We therefore performed single-cell 

RNA-seq on myoblast cells for both control primary myoblasts and FSHD2 primary myoblasts 

as well as single-nucleus RNA-seq using the C1 platform [28] for myotubes at day 3 of 

differentiation (Figure 3.1 & 3.6), based on the first day of robust detection of DUX4 target 

expression in section 3.3.1. As quality control that our single-cell data does matches our pooled 

time course, we first pooled reads from all single cells/nuclei for each cell type and performed 

incremental PCA with bulk time-course RNA-seq samples (Figure 3.7). As expected, pooled 

single-cell myoblast clustered with day 0 samples in both control and FSHD2. However, for 

pooled single-nucleus myotube, FSHD2 replicate 1 (FSHD2 R1) was aligned with day 3 FSHD2 

pooled data in time-course data but the FSHD2 replicate 2 (FSHD2 R2) was located between 

control and FSHD2 days 3 in the time-course. Furthermore, we found that 3 out of 79 (3.8%) 
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nuclei in FSHD2 R1 showed high expression of DUX4 (the DUX4 expression level are 10.52 

TPM , 33.37 TPM and 68.07 TPM ) while we detected no DUX4 positive nuclei in FSHD2 R2, 

revealing the high level of heterogeneity in the FSHD2 cell population with DUX4 only 

expressed in a small fraction of cells, but expressed at a significant level in those nuclei when it 

is actively transcribed. We then analyzed the global profiles of the single-cell transcriptomes 

using both PCA (Figure 3.8A) and t-SNE (Figure 3.9A) analyses and found that all 3 DUX4 

positive nuclei as well as most other FSHD2 replicate R1 nuclei clearly separated from FSHD2 

R2 and control myotube nuclei. FSHD2 target genes specifically up-regulated during FSHD2 

differentiation (Figure 3.3A) showed significantly higher enrichment in FSHD2 R1 myotube 

nuclei compared with control myotube nuclei (P<2.2x10-16) with the highest enrichment in the 

group of nuclei clustering with the 3 DUX4+ nuclei and thus this group of nuclei are “DUX4 

targets high” (Figure 3.8B). Besides, FSHD2 R2 myotube nuclei also showed significantly 

higher enrichment of FSHD2 target genes than control myotube nuclei (P<2.2x10-16) but they 

have lower number of expressed targets than the one in “DUX4 targets high” group and therefore 

this group of nuclei are “DUX4 targets low” (Figure 3.8B). However, genes down-regulated 

during FSHD2 development (Figure 3.3B) were expressed across all types of cells/nuclei (Figure 

3.8C). Furthermore, we found that DUX4 and DUX4 associated targets were not often expressed 

in the same nuclei (Figure 3.9B & C). By observing the co-expression between DUX4 and 6 

known DUX4 targets, including KHDC1L, LEUTX, MBD3L2, MBD3L3, TRIM43 and 

ZSCAN4 (Figure 3.10A), we found that none of the myoblast cells and control myotube nuclei 

expressed these target genes. But for FSHD2 myotube nuclei, we found that more than half of 

the “DUX4 targets low” nuclei has no expression of these genes and the rest can mostly co-

express with 3 genes. However, all “DUX4 targets high” nuclei express at least one DUX4 

targets and they can co-express with at most 6 genes (Figure 3.10B). Therefore, we successfully 

detected a small number of DUX4 positive nuclei and a significantly larger set of  DUX4 

negative but target positive nuclei in FSHD2 myotubes but not in FSHD myoblasts or control 

myoblasts/myotubes.  

 

3.3.3 DUX4 target-positive myotube nuclei form a distinct branch on a pseudo-time course 

of single-cell differentiation  
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        We performed a pseudo time-course analysis using Monocle in order to understand whether 

the cells expressing DUX4 targets followed a distinct developmental trajectory (Methods). We 

reordered 317 single cells/nuclei (Figure 3.6) and as expected, the cells/nuclei formed a 

differentiation trajectory from myoblast to myotube and we found more heterogeneity in 

myotube nuclei compared with myoblast cells (Figure 3.11A). Interestingly, the FSHD R1 with 3 

DUX4 positive nuclei formed a homogenous cluter (branch III) at one end of the pseudo time-

course and showed up-regulation of the DUX4 target genes that we had identified in our bulk 

RNA-seq differentiation time-course (Figure 3.11B). However, nuclei from the DUX4 negative 

FSHD2 R2 replicate were mixed with many control nuclei (branch IV) and some of them were 

even located on the same branch as myoblast cells (branch I) in terms of pseudo temporal 

position (Figure 3.11A), indicating more heterogenity in this population might be caused by a 

less advanced differentiation status. We further observed that genes induced at late-stages 

(cluster 2, Figure 3.4) during FSHD2 differentiation time-course in single cells/nuclei (Figure 

3.12A) and found that these genes show higher enrichment in FSHD2 myotube nuclei (44/52 

(84.6%) for “DUX4 targets high” nuclei and 34/52 (65.4%) for “DUX4 tagets low” nuclei) 

compared with others (2/ 52 (3.8%) in control myoblast cells; 4/52 (7.7%) in FSHD2 myoblast 

cells; 3/52 (5.8%) in control myotube nuclei) (Figure 3.12B). Note that four genes expressed in 

control and FSHD2 myoblast (ZNF596, CCNA1, CHI3L1 and MUSTN1) were actually 

activated in day 1 and 2 in our time-course (clutster 2, Figure 3.4).  In addition, we did not detect 

7 potential DUX4 target genes based on our pooled data (HNRNPCL3, PRAMEF17, 

PRAMEF19, PRAMEF2, PRAMEF20, PRAMEF26, RBP7) in any of our myotube single nuclei. 

However, genes induced in the early stage (cluster 1, Figure 3.4) were expressed evenly across 

different cell types (16/21 (76.2%) in control myoblast; 18/21 (85.7%) in FSHD myoblast; 13/21 

(61.9%) in control myotube; 14/21 (66.7%) in FSHD2 “DUX4 tagets high” nuclei; 20/21 

(95.2%) in “DUX4 tagets low” nuclei) (Figure 3.13). These results further confirmed the 

importance of late-stage induced genes in distinugishing between control and disease phenotype. 

Prominent cluster 2 genes detected in the single myotube nuclei FSHD2 data include the known 

DUX4 targets such as TRIM43, ZSCAN4, MBD3L2, MBD3L3, MBD3L5, KHDC1L, LEUTX, 

and the DUX4 paralog DUXA, which indicates that these nuclei are most likely responding to 

the presense of DUX4 protein in their myotube even if DUX4 itself is not being transcribed in 

the same nucleus.  
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        Although both FSHD2 “DUX4 targets high” and “DUX targets low” myotube nuclei have 

high enrichment of those late-induced genes compared with control myotubes, “DUX4 targets 

high” myotube nuclei show higher proportion than the one in “DUX targets low” myotube 

nuclei. To better understand the difference between these two population and discover novel 

targets of DUX4, we performed differential expression analysis between two populations in 

branch III and V, and found out that 3406 genes were up-regulated in branch III (“DUX4 targets 

high” population, FSHD2 myotube R1) while 2710 were up-regulated in branch V (“DUX4 

targets low” population, FSHD2 myotube R2) (Figure 3.14A).  We further detected that 84 TFs 

were up-regulated while 80 TFs were down-regulated in “DUX4 targets high” myotube nuclei 

(Figure 3.14B & 3.15A). In addition to already reported TFs activated in FSHD, such as LEUTX 

(20.3%, 16/79), ZSCAN4 (50.6%, 40/79), PITX (10.1%, 8/79), DUX4 (3.8%, 3/79), we 

observed several additional TFs associated with embryonic organ development and endocrine 

system development (Table 3.2) also up-regulated in many or all of the 79 “DUX4 targets high” 

FSHD2 nuclei, such as  HES6 (100%,79/79 nuclei), TEAD4 (83.5%, 66/79), MBD3 (82.3%, 

65/79), , FOXO1 (70.9%, 56/79), FOXH1 (34.2%, 27/79), and GATA3 (13.9%, 11/79) (Figure 

3.14B & C). Besides, we also detected expression of DUX4 paralog gene DUXA (15.2%, 12/79), 

which turned up to be the top up-regulated TF in these nuclei (Figure 3.14B & C). However, we 

also detected MYOD1 (94.9%, 75/79) being more highly expressed in DUX4 target-positive 

nuclei. Cell cycle genes PCNA and CDK1 were down-regulated but myogenic differentiation 

makers CKM, TTN, MYH3, MYBPH, ACTA1 were up-regulated as expected in mature 

myotubes (Figure 3.16A). In addition, myogenic markers MYF5 and MYF6 were the top up-

regulated TFs in Branch V “DUX4 targets low” population (Figure 3.15). Although DUX4 and 

target genes dysfunction have been known to cause developmental defects in FSHD2, the results 

above suggests that the maturation of myotube may also affect DUX4 and targets expression. 

Interestingly, we found that Desmin was also significantly more highly expressed in Branch III 

(“DUX4 targets high” myotube nuclei) than Branch V (“DUX4 targets low” myotube nuclei) 

(Figure 3.16A). By checking gene expression patterns across all myotube nuclei, we found that 

nuclei with DUX4 and targets expressed shown higher Desmin expression compared with others 

no matter the level of myogenic differentiation marker, such as CKM (Figure 3.16B) and cell 

cycle gene PCNA was relatively down-regulated in these nuclei (Figure 3.16C). In conclusion, 

“DUX4 targets high” and “DUX4 targets low” FSHD2 myotube were clearly seperated on our 
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pseudo timecourse. Although both of them expressed DUX4 target genes, a distinct set of TFs 

are up-regulated in “DUX4 targets high” myotube nuclei and their differential expression may 

play an important role in FSHD progression.   

 

3.4 Discussion 

         In this study, we found that DUX4 targets are robustly detected in our FSHD2 

differentiation time-course starting at day 3 even though we barely detect DUX4 transcript itself. 

We further show that we do detect DUX4 transcripts in a small number of FSHD2 myotube 

nuclei. We show that these nuclei cluster with a much larger set of FSHD2 nuclei expressing 

multiple DUX4 targets compared with either other FSHD2 nuclei expressing few or no targets or 

control myotubes. The cluster of DUX4 target-positive nuclei is also enriched with a specific set 

of the regulatory TFs that may play an important role in FSHD pathogenesis. Our data also 

suggests that the precise maturation status of the myotube may influence the actual expression of 

DUX4 and its targets. 

 

         While we detected DUX4 target genes in both populations of FSHD2 myotube nuclei, 

many of these targets were only detected in a subset of cells and showed heterogeneous 

expression patterns at the single-nucleus level . We failed to detect significant DUX4 expression 

in the FSHD2 pooled time-course and one single nucleus run, but DUX4 target genes were 

nevertheless highly expressed in these samples. Although we detected three DUX4+ nuclei in 

FSHD myotube, these nuclei did not express many of the known DUX4 target genes at highest 

level compared with others that did not have detectable DUX4 expression. Other nuclei from the 

same group actually contributed to the level of DUX4 targets expression in FSHD2 myotube. 

Our results agree with a previous study that proposed a model that the DUX4 transcript in a 

small number of myotube nuclei induces downstream targets through cascade diffusion of the 

translated DUX4 proteins into all the nuclei in the same myotube, where they activate target gene 

expression [29]. The target gene products could also diffuse through the cytoplasm of the 

myotubes and be imported into other nuclei further altering their epigenetic and expression 

profiles. We detected PITX1 as significantly activated in our “DUX4 targets high” nuclei 

compared with “DUX4 targets low” FSHD2 nuclei. Our single cell/nucleus shown the first high-

resolution profile to observe the expression of DUX4 and target genes expression at the same 
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time and have found a set of transcription factors that were specifically more highly expressed in 

“DUX4 targets high myotube; these may be genes that would be normally silenced that are 

affected by the derepression caused by the expression of bona fide DUX4 targets such as the 

MDBL genes. It may be that the overexpression of these TFs may aggravate the perturbation of 

normal myotube differentiation thus leading to increased cell death or are a side-show to the 

main causes of DUX4 cytotoxicity. In either case, the rarity of DUX4 nuclei expression can 

account for why normal myotube forms, as the system is extremely sensitive to DUX4 

expression in a critical time window. 

 

        As reported before [8,10], we only detected a small set of DUX4 transcript-positive nuclei 

but the proportion (3.8 %, 3/79) in this particular FSHD2 patient myotubes is higher than the 

reported 0.5% (1/200 in myotube nuclei) [29]. Furthermore, we found that the expression of 

DUX4 was not as low as stated in previous population studies [8,15] as we detected DUX4 

expressed at 10.52 TPM , 33.37 TPM and 68.07 TPM.  We further noticed that our DUX4 target-

positive myotube nuclei had significant higher expression in markers of later myogenic 

differentiation. Considering that DUX4 target genes started expression at day 3 (later stage) of 

differentiation in our time-course, we conclude that the maturation status may have a substantial 

impact on the expression of DUX4 and target genes. Studies have already found that DUX4 

expression caused defects in muscle development and even caused the death of cells [11,12]. 

One possible explanation is that there is a window of myotube maturation that allows for 

activation of DUX4 expression and that if the a myotube has not reached or passed that window 

DUX4 can no longer be expressed. DUX4 is a key regulator during human early embryonic 

development and dysregulation of DUX4 in muscles is thought to activate germline-specific 

genes in the process [4,19] that may not be tolerated by muscle cells in early differentiation 

status [30]. However, for mature myotubes that have matured beyond this critical window and 

whose  cellular signaling and physiology features have been solidly established, this toxicity 

effects may be alleviated. Further experiments are required to validate this proposed mechanism. 

Interestingly, we detected some of the highest level of desmin in “DUX4 targets high” myotube 

nuclei. Desmin is known as one of the important myoblast marker. There is a reported FSHD2 

clinical case with desmin accumulation and myopathic pattern observed in muscle biopsy 

samples [7]. Compared with other cases, this patient has apparent late onset at the age of 60 
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years and mild symptoms compared with early onset patients. Future studies are needed to 

measure and estimate the relationship between DUX4 expression and desmin accumulation, and 

their further influence in the severity of FSHD symptoms. 
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3.5 Figures 

 

 

 

 

 

 

 
Figure 3.1. Differentiation time-course of control and FSHD2 patient-derived myoblast to 

myotube. Morphology changes are shown per day during differentiation. 
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Figure 3.2. Principal component analysis (PCA) on control and FSHD2 myoblast differentiation 

time-course. Gene expression level is measured each day by using RNA-seq and duplicates are 

collected per day for both control and FSHD2. Cell types are labeled by distinct shape and time-

points are labeled with distinct colored points.  
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Figure 3.3. K-means clustering on 168 differentially expressed genes for each day in FSHD2 

over control and they are clustered into 6 clusters. (A) Gene expression heatmap of clusters of 

genes that are up-regulated in FSHD2. Genes in cluster 1 and 6 are up-regulated at early stage of 

differentiation while genes in cluster 2 are up-regulated at late stage of differentiation. (B) Gene 

expression heatmap of clusters of genes that are down-regulated in FSHD2. Genes in cluster 3 

are down-regulated through the differentiation time-course. 
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Figure 3.4. MasSigPro identifies 73 genes that are significantly up-regulated in FSHD2 during 

differentiation time-course compared with control. These 73 genes are further classified into 2 

clusters. Genes in cluster 1 are up-regulated at early stage while genes in cluster 2 are up-

regulated at late stage. The median expression profiles and gene expression heatmaps are shown 

for each cluster. The red line labels control and green line labels FSHD2. Heatmap are shown 

across time-course for both control and FSHD2. 
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Figure 3.5. MasSigPro identifies 36 genes that are significantly down-regulated in FSHD2 

during differentiation time-course compared with control. These 36 genes are classified into one 

cluster. Genes in cluster 3 are down-regulated at early stage of differentiation. The median 

expression profiles and gene expression heatmaps are shown for the cluster. The red line labels 

control and green line labels FSHD2. Heatmap are shown across time-course for both control 

and FSHD2. 
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Figure 3.6. Single cells and nuclei are collected on day 3 during FSHD2 and control myoblast 

differentiation for RNA-seq. 317 cells/nuclei are left for downstream analysis after filtering by 

alignment quality, number of expressed genes and cell type specific markers.   
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Figure 3.7. Incremental principal component analysis (IPCA) on control and FSHD2 myoblast 

differentiation time-course with pooled single cells/nuclei samples. In bulk time-course 

experiments, gene expression level is measured each day by using RNA-seq and duplicates are 

collected per day for both control and FSHD2. Single cells/nuclei RNA-seq data are pooled for 

each cell type and gene expression levels are calculated to aligned them with bulk time-course 

data. Cell types are labeled by distinct shape and time-points are labeled with distinct colored 

points.  
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Figure 3.8. (A) PCA of single-cell (for myoblast) and single-nucleus (for myotube) RNA-seq 

data for both control and FSHD2. Cell types are labeled by distinct colored points and 3 DUX4 

positive FSHD2 myotube nuclei are also pointed out by red arrow. (B) Same PCA as shown in 

panel A. Single cells/nuclei are colored by the number of genes up-regulated in FSHD2 at late 

stage of differentiation. (C) Same PCA as shown in panel A. Single cells/nuclei are colored by 

the number of genes down-regulated in FSHD2 during differentiation. 
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Figure 3.9. (A) t-Distributed Stochastic Neighbor Embedding (t-SNE) plot of 317 single 

cells/nuclei RNA-seq data. Cell types are labeled by distinct colored points. (B) Cells/nuclei are 

labeled by DUX4 expression level. (C) Cells/nuclei are labeled by the gene expression level of 

known DUX4 target genes. (D) Cells/nuclei are labeled by the gene expression level of 

myogenic differentiation markers. Cells/nuclei with expression of specific genes are colored by 

red. 
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Figure 3.10. (A) Gene expression heatmap of DUX4 and 6 known target genes in single 

cells/nuclei. Cells and nuclei are ordered by the trajectory in PC1 in Figure 3.8A and cell types 

are labeled by distinct color in the annotation bar. High expression is shown in red and low 

expression is shown in blue. (B) Histogram of the number of cells/nuclei for each co-expressed 

targets group in different cell types.  
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Figure 3.11. (A) Pseudo-temporal ordering of single cells/nuclei using independent component 

analysis by Monocle. Five branches (I-V) are identified to separate cells into subgroups. Cell 

types are labeled by distinct colored points. (B) Same pseudo ordering as shown panel A but 

cells and nuclei are labeled by the number up-regulated genes in FSHD2 (same genes sets in 

Figure 3.8B). 
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Figure 3.12. (A) Gene expression heatmap of 52 genes (Cluster 2 in Figure 3.4) following 

pseudo time-course of differentiation. Cells/nuclei are ordered by pseudo time-course and cell 

types are labeled in the annotation bar. (B) Histogram of the percentage of these 52 genes 

expressed in each cell type. 

 
 
 
 
 
 
 
 
 
 
 
 

Branch
Replicate

Cell type

Pseudotime
Percentage of expressed DUX4 target genes 

in myoblast cells and myotube nuclei 

0
10
20
30
40
50
60
70
80
90

100

controlmb fshdmb controlmt fshdmt1 fshdmt2

C1

C5

C2

C3

C4

−20

−10

0

10

−10 0 10 20
tSNE_1

tS
N
E
_2

ControlMb

ControlMt

FSHD2Mb

FSHD2Mt

FSHD2Mtdux4

Cell type
I
II
III
IV
V

Branches Replicate
R1
R2

Cell type
Replicate
Branch

Cell type
Replicate
Branch

log2(normalized TPM +1)

A. B.

Control
myoblast 

cells

FSHD2
myoblast 

cells

Control
myotube 

nuclei

FSHD2
“DUX4 target

high” myotube 
nuclei

FSHD2
“DUX4 target

low” myotube 
nuclei

A. B.



 83 

 
 
 
 
 
 

 
 
Figure 3.13. (A) Gene expression heatmap of 21 genes (Cluster 1 in Figure 3.4) following 

pseudo time-course of differentiation. Cells/nuclei are ordered by pseudo time-course and cell 

types are labeled in the annotation bar. (B) Histogram of the percentage of these 21 genes 

expressed in each cell type. 

 

 
 
 
 
 
 
 
 
 
 

Branch
Replicate
Cell type

Pseudotime

C1

C5

C2

C3

C4

−20

−10

0

10

−10 0 10 20
tSNE_1

tS
N
E
_2

ControlMb

ControlMt

FSHD2Mb

FSHD2Mt

FSHD2Mtdux4

Cell type
I
II
III
IV
V

Branches Replicate
R1
R2

Cell type
Replicate
Branch

Cell type
Replicate
Branch

log2(normalized TPM +1)

A. B.

0

10

20

30

40

50

60

70

80

90

100

controlmb fshdmb controlmt fshdmt1 fshdmt2Control
myoblast 

cells

FSHD2
myoblast 

cells

Control
myotube 

nuclei

FSHD2
“DUX4 target

high” myotube 
nuclei

FSHD2
“DUX4 target

low” myotube 
nuclei

Percentage of expressed DUX4 target genes 
in myoblast cells and myotube nuclei 

A. B.



 84 

 
 
 

 
 
Figure 3.14. (A) Differential expression analysis between branch III (purple) and V (brown) in 

Figure 3.11A. Differentially expressed genes are colored for each branch (FDR<0.05, log2 (fold 

change)>2). (B) Gene expression heatmap of 84 up-regulated TFs in branch III. TFs are sorted 

by log2 (fold change) of expression between branch III and V. (C) Comparison of the number of 

nuclei expressing each TFs in both branch III and V.  
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Figure 3.15. (A) Gene expression heatmap of 80 down-regulated TFs in branch III. TFs are 

sorted by log2 (fold change) of expression between branch III and V. (B) Comparison of the 

number of nuclei expressing each TFs in both branch III and V.  
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Figure 3.16. (A) Gene expression heatmap of myogenic markers in single cells/nuclei (ordered 

by pseudo time-course generated by Monocle). (B) Scatterplot of gene expression between CKM 

and desmin in myotube nuclei. Cell types are labeled by distinct shape. Single nuclei are colored 

by the number of up-regulated genes in FSHD2 during differentiation. (C) Scatterplot of gene 

expression between PCNA and desmin in myotube nuclei. Cell types are labeled by distinct 

shapes. Single nuclei are colored by the number of up-regulated genes in FSHD2 during 

differentiation.  
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Table 3.1 Quality control of RNA-seq samples collected during myoblast differentiation for 

control and FSHD2. Samples are assessed by the number of uniquely aligned reads and uniquely 

aligned efficiency. 

 

 
 
 
 
 
 
 
 
 

Cell type Sample Input reads Uniquely aligned reads Uniquely aligned efficiency
FSHD2 D0R1 17326007 13506487 77.95%
FSHD2 D0R2 14456677 12254937 84.77%
FSHD2 D1R1 18503424 14466847 78.18%
FSHD2 D1R2 26344335 21869618 83.01%
FSHD2 D2R1 16427260 13006282 79.17%
FSHD2 D2R2 14100175 12083497 85.70%
FSHD2 D3R1 17349735 13757269 79.29%
FSHD2 D3R2 15296642 13077456 85.49%
FSHD2 D4R1 15248765 11784921 77.28%
FSHD2 D4R2 10802918 9234066 85.48%
FSHD2 D5R1 15360796 12174223 79.26%
FSHD2 D5R2 12657431 10992004 86.84%
Control D0R1 11377692 8924129 78.44%
Control D0R2 12896530 10687479 82.87%
Control D1R1 10989815 8789990 79.98%
Control D1R2 12992691 10919270 84.04%
Control D2R1 15769963 12486011 79.18%
Control D2R2 9038334 7800130 86.30%
Control D3R1 14421611 11605843 80.48%
Control D3R2 12550498 10718775 85.41%
Control D4R1 15299123 12280000 80.27%
Control D4R2 9406365 8060332 85.69%
Control D5R1 13410795 10827968 80.74%
Control D5R2 11826248 9945985 84.10%
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Table 3.2. Gene ontology terms associated with 84 up-regulated TFs in branch III in Figure 

3.14B.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

GO ID GO Terms Log (P-value) Genes

GO:0048568 embryonic organ development -13.633593
NKX3-

2,DLX2,GATA3,HOXA1,HOXA4,HOXB4,HSF1,SRF,TBX1,TBX2,TEAD4,FOXH1,IRX5,VAX2,MBD3,ZFAT,E
2F8,KLF2,HES2,HES6,HES4,PBX2,PITX1,ATOH8,MYCL

GO:0007389 pattern specification process -9.9056794 NKX3-2,DLX2,HOXA4,HOXB4,PBX2,RFX3,SRF,TBX1,TBX2,FOXH1,VAX2,HES2,HES6,HES4

GO:0007423 sensory organ development -6.9894694 NKX3-2,DLX2,GATA3,HOXA1,MYCL,SIX6,SRF,TBX1,TBX2,IRX5,VAX2,SIX5

GO:0046016 positive regulation of 
transcription by glucose -6.890547 SRF,USF1,USF2,ATF3,FOXO1,HSF1,MYOD1,SREBF1,MBD3

GO:0045165 cell fate commitment -5.7121348 DLX2,GATA3,MYOD1,PITX1,TBX1,TBX2,MYT1L,ISL2,FOXO1,NKX3-2

GO:0007368 determination of left/right 
symmetry -5.6428846

NKX3-
2,RFX3,SRF,TBX1,TBX2,FOXH1,HOXA1,MYOD1,ATF3,PITX1,TEAD4,MEF2B,GATA3,HSF1,FOXO1,KLF2,

E2F8,MBD3

GO:0035270 endocrine system development -5.4771727 FOXO1,GATA3,PITX1,RFX3,SRF,TBX1,HSF1,KLF2,MBD3,ZFAT,E2F8,HOXB4,IRX5,IRF7,L3MBTL1,MYO
D1

GO:0048732 gland development -4.9784822 DBP,ESR1,GATA3,PITX1,SRF,TBX1,TBX2,USF2,E2F8,HOXB4,FOXH1,GZF1,TEAD4,ZSCAN4,DLX2

GO:0009299 mRNA transcription -4.1520605 HSF1,SREBF1,SRF,ESR1,GATA3,RFX3,TRERF1,MAFA,TBX2,MBD3,KLF2,IRX5,FOXO1

GO:0021772 olfactory bulb development -3.825355 DLX2,SRF,ATF5,PITX1,TAL2,VAX2,TBX1,MBD3,GATA3,MYCL,HES2,HES6,HES4,ISL2,NKX3-2

GO:0036003

positive regulation of 
transcription from RNA 

polymerase II promoter in 
response to stress

-3.7849687 ATF3,HSF1,KLF2,FOXO1,SREBF1,TBX1,USF1,ESR1,GATA3,SRF

GO:0048589 developmental growth -3.7316995 ESR1,GATA3,HSF1,MYOD1,SRF,TAL2,TBX2,KLF2,ATF5,ATOH8,SIX5,ZBTB7C

GO:0071392 cellular response to estradiol 
stimulus -3.7079458 ESR1,HSF1,MYOD1,MBD3,IRF7,SREBF1,TBX1,FOXH1,FOXO1,USF1,KLF2
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Table 3.3. Gene ontology terms associated with 80 down-regulated TFs in branch III in Figure 

3.15A. 

 
 
 
 
 
 
 

 

 

GO ID GO Terms Log (P-value) Genes

GO:0001655 urogenital system development -12.859604
FOXF1,FOXC2,GATA2,GLI1,GLI2,ID2,ID4,SMAD7,NKX3-

1,SALL1,SOX4,SOX9,ZBTB16,TBX18,HEYL,DLX1,EGR2,MSX2,MYF5,MYF6,NR4A3,ATF2,PRDM1,HOX
A13,KLF10,STAT5A,GATA6,MSC,FOSB

GO:1902105 regulation of leukocyte 
differentiation -12.693537 PRDM1,CBFB,EGR3,GATA2,GLI2,HLX,ID2,SMAD7,KLF10,ZBTB16,SOX13,PIAS3,ZBTB1,ZMIZ1,HMGB

2,NR4A3,SOX4,TCF7,FOXF1,FOXC2,DLX1,ID4,MSX2,SOX9,HMG20A,TWIST2,MYF5

GO:0007507 heart development -12.47361 PRDM1,ATF2,FOXF1,FOXC2,GATA2,GATA6,GLI1,GLI2,ID2,SMAD7,MSX2,NKX3-
1,SALL1,SOX4,SOX9,ZBTB14,HEYL,ZMIZ1,DLX3,EGR3,NR4A1,PROX2,NHLH2

GO:0048565 digestive tract development -10.650868 PRDM1,FOXF1,GATA2,GATA6,GLI1,GLI2,HLX,ID2,SALL1,TCF7,FOXC2,MSX2,MYF5,SOX4,SOX9,ZBTB1
6,NR4A3,ID4,NKX3-1,STAT5A,ZBTB1,DLX1,MYF6,SOX13,ZMIZ1,ADNP,CBFB,DLX3,PROX2

GO:0001503 ossification -9.4301818 CBFB,EGR2,FOXC2,GLI1,GLI2,ID2,ID4,MSX2,MYF5,SOX9,KLF10,ZBTB16,TWIST2,ATF2,GATA2,NR4A1
,NR4A3,PIAS1,DLX1,SOX4,HMGB2,PINX1,NKX3-1,ADNP,HMG20A,SALL1

GO:0048608 reproductive structure 
development -8.7979622 PRDM1,DLX3,GATA2,GATA6,GLI1,GLI2,HMGB2,ID4,NKX3-

1,SALL1,SOX9,TCF7,LHX4,RFX2,ZBTB16,ATF2,MECOM,HMG20A,ZBTB1

GO:0060537 muscle tissue development -8.0742405 EGR2,FOXC2,GATA6,GLI1,HLX,ID2,SMAD7,MYF5,MYF6,SOX9,MSC,HEYL,EGR3,FOXF1,PIAS1,NKX3-
1,NR4A3

GO:0050673 epithelial cell proliferation -6.7101467 ATF2,EGR3,GATA2,GLI1,HMGB2,NR4A1,ID2,NKX3-
1,SOX9,STAT5A,NR4A3,FOXF1,FOXC2,EGR2,KLF10

GO:0035270 endocrine system development -6.6519949 GATA2,GATA6,GLI1,GLI2,SALL1,SOX4,SOX9,PRDM1,ZBTB14,HEYL,KLF10,CBFB,TBX18,TCF7

GO:0048511 rhythmic process -6.462465 EGR2,EGR3,ID2,ID4,NFYA,NHLH2,KLF10,ADNP,ARNTL2

GO:0001655 urogenital system development -12.859604
FOXF1,FOXC2,GATA2,GLI1,GLI2,ID2,ID4,SMAD7,NKX3-

1,SALL1,SOX4,SOX9,ZBTB16,TBX18,HEYL,DLX1,EGR2,MSX2,MYF5,MYF6,NR4A3,ATF2,PRDM1,HOX
A13,KLF10,STAT5A,GATA6,MSC,FOSB

GO:1902105 regulation of leukocyte 
differentiation -12.693537 PRDM1,CBFB,EGR3,GATA2,GLI2,HLX,ID2,SMAD7,KLF10,ZBTB16,SOX13,PIAS3,ZBTB1,ZMIZ1,HMGB

2,NR4A3,SOX4,TCF7,FOXF1,FOXC2,DLX1,ID4,MSX2,SOX9,HMG20A,TWIST2,MYF5

GO:0007507 heart development -12.47361 PRDM1,ATF2,FOXF1,FOXC2,GATA2,GATA6,GLI1,GLI2,ID2,SMAD7,MSX2,NKX3-
1,SALL1,SOX4,SOX9,ZBTB14,HEYL,ZMIZ1,DLX3,EGR3,NR4A1,PROX2,NHLH2
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3.6 Methods 

3.6.1 Human myoblast culture and differentiation 

Human control and FSHD2 patient-derived myoblast cells were grown on dishes coated with 

collagen in high glucose DMEM (Gibco) supplemented with 20% FBS (Omega Scientific, Inc.), 

1% Pen-Strep (Gibco), and 2% Ultrasor G (Crescent Chemical Co.) [28]. Upon reaching 80% 

confluence, differentiation was induced by using high glucose DMEM medium supplemented 

with 2% FBS and ITS supplement (insulin 0.1%, 0.000067% sodium selenite, 0.055% 

transferrin; Invitrogen). Fresh differentiation medium was changed every 24hrs.  

 

3.6.2 Bulk RNA-seq library construction 

Total RNA was extracted by using RNeasy kit (QIAGEN). Between 19 and 38 ng of RNA were 

converted to cDNA using the SmartSeq 2 protocol [31]. Libraries were constructed by using the 

Nextera DNA Sample Preparation Kit (Illumina). Libraries were quality-controlled prior to 

sequencing based on Agilent 2100 Bioanalyzer profiles and normalized using the KAPA Library 

Quantification Kit (Illumina). The libraries were sequenced using paired-end 75bp mode on 

Illumina NextSeq500 platform with around 15 million reads per sample.  

 

3.6.3 Single nucleus isolation and cell capture, RNA-seq library construction 

Myoblast single cells were isolated from 6 cm dishes by washing with PBS then lifting the cells 

with trypsin. The myoblasts were spun down, resuspended in PBS and kept on ice. 

Myotube single nuclei were isolated from mononucleated cells (MNCs) by washing a 6 cm dish 

once with trypsin then adding trypsin for about 5 min until myotubes lifted off the plate and 

MNCs were still attached. The cells were spun at 2000 rpm for 2 min and resuspended in 500 ul 

lysis buffer (0.02% IGEPAL CA-630, 10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2). 

The cells were left at room temperature for 3 minutes then filtered through a 40 um cell filter to 

clear debris. The flow through was spun at 4000 rpm for 1 minute and resuspended in 100 ul of 

PBS and kept on ice. The single cells and nuclei were captured using the Fluidigm C1 on the 

large IFCs (17-25 um) and medium IFCs (10-17 um), respectively, at a density between 340 and 

640 nuclei/ul in a volume of 10 ul. Each cell or nucleus was visually confirmed using the 

LIVE/DEAD kit (Thermo Fisher Scientific). Cell and nucleus loading, lysis, reverse transcription 

and preamplification were performed on the Fluidigm C1. Harvested cDNA was normalized to 
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approximately 0.1 ng/ul for tagmentation and library prep which was performed with the Nextera 

XT Library Prep Kit from Illumina according to Fluidigm’s protocol. Libraries were base-pair 

selected based on Agilent 2100 Bioanalyzer profiles and normalized determined by KAPA 

Library Quantification Kit (Illumina). The libraries were sequenced using paired-end 75bp mode 

on Illumina NextSeq500 platform with around 1-3 million reads per sample.  

 

3.6.4 Read alignment and expression analysis 

Raw reads were mapped to hg38 using STAR (version 2.5.1b) [32] using defaults except with a 

maximum of 10 mismatches per pair, a ratio of mismatches to read length of 0.07, and a 

maximum of 10 multiple alignments. Quantitation was performed using RSEM (version 1.2.31) 

[33] with the defaults, and results were output in transcripts per million (TPM). 

 

3.6.5 Differential expression analysis 

Differential expression analysis per day during differentiation was done by using edgeR [34] 

with FDR < 0.05. Clustering of differentially expressed genes across the time-course was done 

by using maSigPro [35].  

 

3.6.6 Quality control of single cell/nucleus 

Myoblast cells were kept for downstream analysis if Desmin expression >=1TPM, MYOG 

<1TPM, number of expressed genes was more than 500 and expression level of GAPDH is 

higher than 100TPM. We only kept cells with uniquely mapped efficiency higher than 50%. 

Myotube nuclei were kept for downstream analysis if MYOG expression >=1TPM, number of 

expressed genes was more than 500 and expression level of GAPDH is higher than 100TPM. We 

also only kept cells with uniquely mapped efficiency higher than 50%. 

 

3.6.7 Dimensionality reduction analysis 

Incremental PCA analysis was performed by IncrementalPCA function from scikit-learn [36], 

python 2. t-SNE analysis was performed by using Seurat [37]. 

 

3.6.8 Pseudo-time analysis 
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Monocle (version 2.4.0) [38] was used to determine the pseudo-time trajectory with “DDRTree” 

methods to reduce the space to maximum three components. 

 

3.6.9 Gene ontology analysis 

Gene ontology analysis was done by using Metascape [39] with FDR<0.05. 
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Chapter 4 

Comparative chromatin dynamics of definitive endoderm differentiation 
 

4.1 Abstract 

         The pluripotency of embryonic stem cells (ESCs) to differentiate into different germ layers 

makes it an attractive model to study cell-fate commitment and differentiation. However, the 

underlying gene regulation networks and their level of conservation in mammals are not fully 

understood. We focus on differentiating ESCs to definitive endoderm (DE) in human, mouse and 

rat in vitro when exposed to Activin A. We applied RNA-seq and ATAC-seq to observe the 

changes transcriptome and open chromatin region during the time-course DE differentiation in 

human, mouse, and rat. We observed both conserved and species-specific dynamic gene 

expression and chromatin accessibility changes during DE differentiation, which we used to 

define conserved regulatory modules enriched with highly expressed target genes and motifs of 

stage-specific transcription factors (TFs). We selected 14 key TFs in DE differentiation and 

further used chromatin accessibility footprints and gene expression to build gene regulatory 

network (GRN) of TF binding in the stem cell and definitive endoderm stages. Our study is the 

first global view of potential regulatory interactions between key endoderm genes across 3 

mammalian species. We observed that the conservation of the ES GRNs were more highly 

conserved than those in DE.  

 

4.2 Introduction 

        One of the key questions in developmental biology is how the differentiation and 

specification of different cell types are precisely controlled by the genome by gene regulatory 

networks (GRNs) of transcription factors and signaling pathways. Germ layer specification, one 

of the earliest developmental events preceding the formation of most cell types and tissues, is 

one attractive model for studying some of the first active GRNs. Endoderm formation was first 

defined as the innermost tissue or germ layer in all metazoan embryos.  It gives rise to highly 

specialized epithelial cell types that encompass the respiratory and digestive tracts [1].  After 

gastrulation, these endodermal cells would differentiate further to form into the embryonic gut 

tube and organs such as the intestine, pancreas, liver, lungs and thyroid gland. Many studies have 

characterized the signaling and molecular pathways that specify the endoderm formation in 
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different species, including Xenopus [2,3], zebrafish [4], mouse [1,5], human [1,5], and even 

some invertebrate species like C.elegans [6], Ciona intestinalis [7] , sea urchin [8]. Comparative  

studies of vertebrates show that Nodal signaling plays an evolutionarily conserved player in the 

early initiation of endoderm differentiation in all species and plays a central role for inducing the 

endoderm GRN [5,9,10,11]. Nodal ligands are members of the TGFß family of secreted growth 

factors [1]. Nodal signaling is required for initiating both endoderm and mesoderm development 

with high concentrations of Nodal specifying endoderm formation while low concentrations 

specifying mesoderm formation [9,12,13]. One active area of research is to establish and to 

characterize the boundaries between endoderm and mesoderm, which involves a specific sets of 

core genes reinforcing endodermal fate while repressing mesodermal fate at the same time [1,5]. 

For example, in Xenopus, the T-box transcription factor Vegt is a master regulator of endoderm 

formation by activating Nodal genes and directly activates downstream TFs such as sox17a, 

sox7, cer1 and gsc during mesendoderm formation [14-16]. As Vegt is not conserved in 

mammalian species, another T-box gene EOMES is likely to play a similar role in early 

endoderm formation and to regulate a similar set of targets as Vegt does in Xenopus during 

human endoderm differentiation such as MIXL1, CER1, SOX17, FOXA2 [5,17-19]. 

Foxh1/Smad2/3 are another group of regulators of endoderm initiation and their targets are 

conserved in Xenopus [20,21], mouse [22,23], zebrafish [24] and human [25], including CER1, 

PITX2, GSC and MIXL1. The TFs Gata4, Gata6, Eomes and Foxa2 are also regulated by Foxh1-

independent mechanism in Xenopus [3,26]. Previous studies have shown that Mix1 can further 

regulate endoderm lineage development by directly activating gsc and cer1 but repressing t genes 

expression in Xenopus [27,28,29], but whether this mechanism is conserved in mammalian 

species is unclear. Although a handful of TFs such as Mix, Sox17, and Foxa are known highly 

play highly conserved roles in multiple species, there are other TFs with species-specific 

regulations. For example, Gata4 and Gata6 regulate endoderm formation in Xenopus and 

zebrafish but their specific functions are poorly understood in human and mouse [5]. 

 

        Previous functional genomics studies have shown that stage-specific TFs binding to cis-

regulatory elements control the precise expression of genes temporally and spatially. And these 

regulatory interactions can be further organized into regulatory modules with hierarchical 

structure, gene regulatory network (GRN) [30,31], showing high conservation level across 
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species [32]. In the past decade, several groups have established protocols to efficiently 

differentiate human embryonic stem cells into pancreatic and hepatic cell in vitro and 

characterize changes in gene expression during the differentiation process [12,33,34]. However, 

these studies primarily focused on the later stage of differentiation and the generation of 

functional cells, thus leaving the initiation of endoderm formation understudied. Other 

mammalian species such as mouse have proved surprisingly difficult in generating robust 

endoderm layer in vitro [35,36,37]. 

 

        To better understand the mammalian gene regulatory network controlling endoderm 

formation, we first optimize and differentiate embryonic stem cells into definitive endoderm on 

monolayer in human, mouse and rat. We provide the first global view of transcriptome 

complexity and cis-regulatory dynamics during 5 day (human) or 7 day differentiation (mouse 

and rat) using RNA-seq and ATAC-seq. We then compared the conservation level on both gene 

expression and chromatin accessibility, which we use to build the GRNs involving 14 key genes 

implicated in definitive endoderm development and compare the resulting GRNs across species. 

We recover some interaction already validated in Xenopus or other species and discover multiple 

potentially novel regulatory linkages between endodermal key genes.  

 

4.3 Results 

4.3.1 Generation of endodermal markers-positive DE cells in three species 

        Methods for differentiating human and mouse embryonic stem cell (ESC) to definitive 

endoderm (DE) in vitro robustly have been developed during the past decade 

[12,33,35,36,37,38]. The protocols for both species rely on the activation of Nodal signaling to 

induce the expression of TFs and target genes in DE formation. Protocols add exogenous Activin 

A ( analog of  Nodal) to mimic high concentration of Nodal signaling in order to produce 

successful differentiated definitive endodermal cells with expression of key marker genes like 

FOXA2, SOX17 and CXCR4.  However, it turns out that human ESC and mouse ESC cells 

cannot be differentiated using the same medium. Human ESCs can be differentiated into DE on 

monolayer with high efficiency using ActivinA and Wnt3A/Fgf4 in 4 or 5 days. But the same 

cocktail terminates mouse ESCs differentiation too early and protocols from different labs for 

mESC monolayer differentiation add different cellular factors to push the cells to DE, which 
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only achieve it with low efficiency and poor reproducibility. There was no published protocol for 

rat. To observe DE establishment, we first adjusted and optimized protocols for all three species. 

In order to produce relatively pure DE populations, we required all the cells to be differentiated 

on monolayer without support from mouse embryonic fibroblast (MEF) cells. We performed a 5-

day human differentiation with the STEMdiff Definitive Endoderm kit (Figure 4.1A; Methods) 

while for mouse and rat, we optimized one established protocol [38] that has been reported the 

best level of purity and efficiency in DE population so far. Rodent ESCs were successfully 

differentiated into DE cells within 7 days with around 70%-80% confluence cover layer on dish 

(Figure 4.1C; Methods). We performed immunostaining at the start and end of differentiation 

and detected the production of pluripotent marker POU5F1 (OCT4) and endodermal marker 

SOX17 and FOXA2 respectively (Figure 4.1B & D).  To examine differentiation status globally, 

we performed RNA sequencing (RNA-seq) on each day during differentiation for three species 

(Figure 4.2 & Table 4.1) and found other key endodermal markers were activated, including 

CXCR4, MIXL1, EOMES, GSC, GATA4 and GATA6 (Figure 4.3). We observed that these 

genes were induced from day 2 in human with the high expression of mesendodermal marker 

Brachyury (T gene). FOXA2, CXCR4 and SOX17 were activated at day 4 in mouse while at day 

3 in rat. T expression reached its highest level at day 4  with continuous high expression until 

day 7. Interestingly, we found that FOXA1 were only expressed in mouse and rat but completely 

missing during human DE differentiation.  As previously reported [39,40,41,42], stemness 

markers POU5F1 and NANOG were still expressed at the end of differentiation in human but 

missing in rodents (Figure 4.3). In summary our protocols can successfully differentiate ESCs in 

DE in three species. While stage-specific markers were conserved across species, gene were 

turned on or off at different times in the three species. 

 

4.3.2 Dynamic of gene expression and chromatin accessibility during endodermal 

differentiation in three species 

        In order to globally detect conserved gene expression module in three species, we 

performed differentially expression analysis during time-course using maSigpro [43] and 

detected 7,472  (60% out of 12,392) 1:1:1 orthologous differentially expressed genes during DE 

differentiation across three species. Genes were classified into 15 clusters, which included 

conserved stem cells-, mesendodermal cells  and definitive endodermal cells- specific clusters 
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(Figure 4.4). Gene expression cluster 1 (911 genes) is enriched with pluripotent markers like 

POU5F1, NANOG and SOX2 in three species and they were significantly associated with 

chromosome segregation (P=1x10-45.934) and DNA replication (P=1x10-29.974). Cluster 4,7,9,12 

were highly enriched with endodermal markers that showed gradually activation towards the end 

of DE differentiation. Genes in cluster 4 are associated with growth factor stimulus (P=1x10-

12.544), heart development (P=1x10-11.775) and mesenchyme development (P=1x10-7.869) while 

genes in cluster 9 were significantly involved in gastrulation (P=1x10-13.062) and digestive system 

development (P=1x10-6.064).  We also found clusters that show reverse expression patterns in 

three species. Genes in cluster 5 show increased expression in human but decreased in mouse 

and rat were enriched in catabolic process (P=1x10-8.453) while genes in cluster 15 were down-

regulated during hESC differentiation but up-regulated in rodents were highly involved in RNA 

splicing (P=1x10-18.097) and posttranscriptional regulation of gene expression (P=1x10-8.767). 

These results indicate that there are groups of genes with conserved expression patterns across 

species. However, species-specific patterns may reflect the difference in growth condition and 

following generation of transcripts during DE differentiation. 

 

        Chromatin accessibility plays a critical role in transcriptional regulation by mediating the 

binding of stage-specific TFs to cis-regulatory elements controlling target genes. To further 

understand transcriptional control during DE differentiation, we performed ATAC-seq along 

with RNA-seq during DE differentiation each day in each species (Figure 4.2, 4.5 & Table 4.2). 

We collected about 270,000-310,000 consolidated open chromatin regions for three species 

respectively (310,465 in human, 273,685 in mouse and 278,937 in rat) and 28,700 of them 

(~10%) were conserved across three species. We then identified open chromatin regions that 

showed differentially chromatin accessibility during DE differentiation in three species 

(Methods) and found 23,232 (80% out of 28,700) regions that formed 20 clusters with distinct 

accessibility patterns (Figure 4.6).  We further selected clusters based on their associated genes 

that were shared in multiple species. Corresponding to the gene expression patterns (Figure 4.4), 

we found that stem cell specific clusters (cluster 1,12,13) enriched with pluripotent markers 

while cluster 10,14,17 were enriched with endodermal markers. These result in a loss of 3,439 

(~12%) regions during while a gain of 3,861 (~13%) regions during DE differentiation that were 

shared during DE differentiation. Interestingly, we found one cluster (cluster 7) that  includes 
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CTCF and YY1, both of which have been known to involve in gene regulation by mediating the 

formation of chromatin loops and with increased accessibility in all three species. Genes within 

this cluster were significantly enriched in chromatin modification (P=1x10-11.812), indicating their 

role in regulating chromatin state.  Similar as gene expression patterns, we found clusters that 

show different accessibility patterns in different species. For example, cluster 18 regions show 

increased signal in rodents but decreased in human during DE differentiation. Genes associated 

with these regions were enriched in mesenchymal cell differentiation (P=1x10-16.129) and Wnt 

signaling pathway (P=1x10-8.991). For clusters that were only shown increased signal (cluster 15) 

or decreased signal (cluster 5) in mouse, nearly all genes were involved in nervous system 

development (P=1x10-9.034), skeletal development (P=1x10-5.713) and epithelial cell differentiation 

(P=1x10-10.008). To further assess the quality and function of these open chromatin regions, we 

performed de novo motif analysis. Based on this, we selected “representative” TFs (Methods) for 

each cluster. We observed that stem cell specific clusters were not only enriched with the motifs 

of POU5F1 but also CTCF. Besides, as expected, endodermal specific clusters are enriched with 

the motifs of forkhead transcription factors (Figure 4.7). These results indicate that chromatin 

accessibility is complementary with gene expression to identify conserved regulatory modules 

during DE differentiation in three species. Also, the patterns of accessibility can be represented 

by stage-specific TFs. But compared with gene expression, chromatin accessibility is more 

sensitive in detecting species-specific regions to show potential heterogeneity in a differentiated 

population.  

 

        We have observed conserved stage-specific modules at both gene expression and chromatin 

accessibility level that shared in three species. To summarize these observations globally, we 

performed principal component analysis (PCA) on both RNA-seq (Figure 4.8A) and ATAC-seq 

samples (Figure 4.8B; Methods). For both of them, PC1 distinguished differentiation time-course 

with 24.2% explained variance in RNA-seq and 40.6% explained variance in ATAC-seq while 

PC2 was used to separate differentiation trajectory by different species with around 14% 

variance explained in both of the PCAs. We also found that trajectories were merged at the end 

of differentiation for rodents and days were aligned in those two species but were quite separated 

from the one for human. Although human and rodents had different lengths of differentiation, we 

could align their differentiation on PCA for early-, mid- and late-stages. 
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4.3.3 Building gene regulatory networks by using coupling gene expression and chromatin 

accessibility 

       Based on the results above, we have found that both gene expression and chromatin 

accessibility can distinguish stages during DE differentiation in three species. They also show the 

power in detecting conserved regulation genes and regions. Specifically, we observed shared 

gene markers that were up-regulated with the gain of open chromatin regions during 

differentiation. We also found that pluripotent genes were down-regulated with the loss of 

chromatin accessibility. To further understand the regulation under this dynamics, we deep-

sequenced our ATAC-seq samples and merged duplicates for each time point to reach to 110-270 

million reads per day for footprinting calling (Methods) and detected around 100,000-200,000 

footprints per day (Table 4.3). We then constructed gene regulatory networks (GRNs) using gene 

expression, open chromatin regions and footprinting results (Figure 4.9; Methods). In brief, the 

connection between regulator and target genes were only built if the regulator was expressed and 

if its binding motif could be detected in footprints associated with target genes.  We focused on 

14 key genes that are known to be involved in DE differentiation time-course for different stages, 

including pluripotent markers POU5F1, NANOG and SOX2; mesendodermal markers 

Brachyury (T gene); and endoderm markers GSC, EOMES, FOXA1/2, GATA4/6, SOX17, 

CXCR4, MIXL1 and CER1. First, we built the GRNs for ESC and DE stages for each species 

and we found increased number of connections upon differentiation (Figure 4.10-4.12). 

Interestingly, genes that were not expressed at ES or DE often still exhibited footprints by other 

key genes. For examples, GSC, FOXA2, GATA4 and MIXL1 were all bound by the three ESC 

TFs although their expression were hardly detectable in human ESCs (Figure 4.10A). In the 

rodents’ endoderm GRNs, although the three ES TFs  genes were all silenced, they were actively 

regulated by endodermal markers (Figure 4.11B & 4.12B). Further experiments are needed to 

decide the function of these connections. As expected based on gene expression level (Figure 

4.3), we detected human specific-connections from POU5F1 and NANOG to other endoderm 

genes, including POU5F1 to T, EOMES, FOXA2, GATA4, GATA6, SOX17, MIXL1 and CER1 

as well as NANOG to GSC, EOMES, GATA4, CXCR4, MIXL1 and CER1 (Figure 4.10B). 

Furthermore, we also found that there was no regulatory connection to FOXA1 in both ES and 

DE stages in human but found several footprints in rodents, which may explain the silence of 
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FOXA1 only in human (Figure 4.3). Some other connections from T and FOXA1 were rodent-

specific because of their high expression at the endoderm stage. Next, we compared the 

conservation level of GRNs across all three species. We detected 40 connections in ES GRNs 

and only 11 connections (27.5%) were conserved in three species. These conserved connections 

include regulation between the ES TFs, i.e. NANOG to NANOG, POU5F1 to NANOG, SOX2 to 

SOX2, POU5F1 and NANOG. Others were involved in connections to FOXA2, CXCR4 and 

GATA4. By doing comparison between any two species, we found that around 36% (13/36) of 

connections were conserved between human and mouse; 54% (20/37) were conserved between 

rodents, mouse and rat; 53% (21/39) were conserved between human and rat (Figure 4.13).  

However, for the conservation level of DE GRNs, only 7 out of 117, ~6% of connections were 

conserved across three species. We found that 24.7% (23/93) of the connections were shared 

between human and mouse (Figure 4.14); 26.6% (21/79) were shared in rodents (Figure 4.15); 

16.7% (18/108) were shared in human and rat (Figure 4.16). Given the higher conservation level 

between mouse and rat, we found that the shared connections were primarily involved in the 

regulation of T. But for human and mouse or human and rat comparison, the shared connections 

were mainly from EOMES, FOXA2, GATA4/6, GSC and SOX17. Above all, we construct the 

gene regulatory networks for ES and DE stages, and provide the first global view of regulatory 

connections between keys genes during DE differentiation in mammalian species.  

 

4.4 Discussion 

        We have shown the comprehensive gene expression and chromatin accessibility profiles of 

DE differentiation time-course in human, mouse and rat and observed conserved regulatory 

modules of endodermal key genes in both of them. We also identified many species-specific 

changes and some of them even showed regulation in the reverse direction in human and rodents. 

We found putative TFs binding using open chromatin footprinting, which we used to build 

species-specific GRNs focusing on 14 core genes in endoderm development. 

 

        As the first attempt to compare endodermal differentiation in three species at the same time 

and especially the first time to differentiate mouse and rat DE with the same methods, we 

observed gene expression dynamics across species. First, conserved regulators FOXA2 and 

SOX17 were all up-regulated during DE differentiation, with relatively higher expression in 
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rodents than in human. As reported before [12,37,38], CXCR4 is another key marker of 

mammalian endoderm differentiation and as expected, it was upregulated in all three species 

with highest expression in human. We also found that MIXL1 and EOMES starts expression 

early during DE differentiation, which has also been demonstrated in other organisms [18,28,29]. 

We also found GATA4/6 and GSC are actively expressed in our time-course. However, we 

found some genes showed unexpected expression differences between species. The first is 

POU5F1 (Oct4), which is one of the key TFs defining the pluripotent cell fate in stem cells. It 

stayed highly expressed in later DE differentiation in human but not in rodents. Previous studies 

have found similar results of high POU5F1 at the end of human DE expression and they 

suggested this is possibly the effects of culture conditions [39]. We also detected human-specific 

expression of NANOG in late DE stage and studies already shown that both of them induce DE 

markers during endoderm differentiation in human [44,45]. However, endoderm single-cell study 

shown the co-expression of POU5F1 and endoderm markers in human DE [41] and based on our 

previous experimental results, human DE differentiation with no POU5F1 showing increasing 

level of heterogeneity than the one having POU5F1 detected. Further experiments are required to 

understand the exact function of POU5F1 in DE differentiation and it may be one of the most 

important human-specific DE regulatory changes. In addition, we also detected expression of 

FOXA1 in mouse and rat but not in human during DE development. As a core member TF of the 

FOX family, expression of FOXA1 and 2 have been detected in both mouse and Xenopus 

endoderm. Although a study showed that FOXA1 is the direct target of EOMES in hDE and 

knock-down EOMES would decreased the FOXA1 expression [44], our results indicates that it is 

not an essential TF during human DE development and the equivalent function may be taken 

over by FOXA2 and 3. Furthermore, we found T expressed highly in both rodents but silenced in 

human, and the expression level is especially high in rat DE. T is known as a marker of 

mesendoderm stage, we expect it is silenced in all three species. However, given the active 

interaction between T and other genes in our data, the function of T in rodents needs further 

investigation.  

 

        We analyzed the footprint-predicted rewiring GRNs at both ES and DE stages in three 

species. Without additional validation from ChIP-seq and knock-down perturbation, it is 

challenging to identify the real interactions between genes. Thus, we checked our interactions 
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compared to previously published results and found that our GRNs recover many validated 

regulatory interactions. For examples, at ES stage, we detected conserved interactions between 

POU5F1, NANOG and SOX2 and their well-known auto-regulatory loops [46,47,48] in all three 

species. As previously reported, POU5F1 and SOX2 were co-binding partners that they not only 

bound around NANOG [48] but also endoderm marker [44]. POU5F1-SOX2 complexes 

repressed the expression EOMES in human ES stage [44]. However, we failed to detect this 

regulation in human but in both mouse and rat. Furthermore, we also found conserved regulation 

from ES TFs to FOXA2, GATA4, and CXCR4 across species, which have not been reported as 

direct targets of pluripotency genes. SOX17 also shared conserved regulation by NANOG and 

SOX2 in human and rat but not in mouse. To make sure these are real, further deep sequencing 

may be necessary on our ATAC-seq samples to increase our power of footprints detection.  

 

        In the endoderm stage, we recovered the validated regulatory linkages between Mix, Gsc 

and T in mouse and rat. Mix activates Gsc and represses the expression of T in Xenopus 

[27,28,29,49]. Although no direct regulation was reported for mammalian species, knock-down 

experiments in mouse shown that Mixl1 knock-down causes Gsc down-regulation but T up-

regulation [50]. We found that Mixl1 actually bound around Gsc and that Gsc further regulates T 

in mouse and rat but not in human. In addition, we also detected the known connection from 

EOMES to GSC, CER1, MIXL1 in some of the three species but they are not always detected in 

all three. And we found a novel regulatory link from EOMES to GATA6 in rodents. SOX17 is 

another key TF during endoderm development and we found that the regulation from SOX17 to 

FOXA2 in rodents have been reported in human, mouse and Xenopus studies [51,52,53,54]. 

SOX17 footprints were also found in CER1 and GSC in human. Furthermore, both GATA4 and 

GATA6 showed many footprints in DE regulation in human and mouse. We found GATA6 

regulation of SOX17 in our network, which has been reported in human, mouse, and Xenopus 

[55,56,57]. More interestingly, corresponding to the gene expression level, we found that there is 

no regulation from or to FOXA1 in human at both ES and DE stages whereas we detected 

multiple regulatory linkages to FOXA1 in rat, which expressed highest across all species.  

Similarly, we detected a significantly higher number of regulations to T in rodents than those in 

human. These results indicate that the number of regulatory linkages in GRNs may reflect gene 
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expression levels (at least when it involves activators), and TFs co-binding may be a common 

way in regulating and maintain gene expression.  

 

        Given the low conservation level (~6%) of regulatory linkages across three species, deeper 

sequencing of our ATAC-seq is necessary to confirm that we did not miss any footprints. Further 

validation experiments will be necessary for new regulatory linkages and confirming the “active” 

or “repressive” effects on target genes. For example, knocking-down EOMES may be the first 

step for validating the GRNs because it not only regulates GSC and MIXL1, which known as 

early onset markers of DE differentiation, but also regulate the expression of FOXA2, CXCR4, 

CER1 at a later stage in both human and mouse. Also, the POU5F1 knock-down may also be 

interesting to examine their roles in both repressing DE markers at ES stage and repressing (or 

activating) DE genes at endoderm stage. 
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4.5 Figures 

 

  

 

 
 

Figure 4.1. (A) Five day time-course of human definitive endoderm differentiation by using 

STEMdiff Definitive endoderm kit. (B) Immunostaining of stage-specific markers at the start 

and end points of human differentiation. Oct4 (Pou5f1) is a marker of stem cell stage while 

FOXA2 and SOX17 are markers of endoderm stage. (C) Seven day time-course of mouse and rat 

definitive endoderm differentiation by using adapted protocol [38]. (D) Immunostaining of stage-

specific markers at the start and end points of mouse differentiation. Oct4 (Pou5f1) is a marker 

of stem cell stage while FOXA2 and SOX17 are markers of endoderm stage.  
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Figure 4.2. Phylogenetic tree of human, mouse and rat  (adapted from TIMETREE; Mya, 

Millions of Years Ago). Experimental design of transcriptome and chromatin accessibility 

profiling from ESCs to definitive endoderm differentiation. Quality control for cell state is 

performed at the start and end points of differentiation. RNA-seq and ATAC-seq are performed 

during differentiation time-course. 
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Figure 4.3. Expression heatmap of selected marker genes during DE differentiation time-course 

in three species (blue, low expression; red, high expression). These genes are stage-specific 

markers, including (1) POU5F1 (OCT4), NANOG and SOX2 for stem cell stage; (2) Brachyury 

(T) for mesendodermal stage; (3) CXCR4, MIXL1, GSC, SOX17, EOMES, GATA4 and 

FOXA2 for endodermal stage.  
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Figure 4.4. 7,472 differentially expressed gene during DE differentiation are identified across 

three species and genes are further clustered into 15 clusters by maSigPro (alpha=0.8, 

FDR<0.05; green, low expression; orange, high expression). Expression of these 7,472 

differentially expressed genes are normalized between -1 and 1 by using z-score normalization 

and they are presented in the heatmap by cluster. Gene markers and gene ontology terms are 

labeled for stem cells-, mesendodermal cells  and definitive endodermal cells-specific clusters.  
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Figure 4.5. Distribution of ATAC-seq sample efficiency. Efficiency is calculated by the fraction 

of reads in peaks. Mean = 42.42%.  
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Figure 4.6. 23,232 differential open chromatin regions during DE differentiation are identified 

across three species and clustered into 20 clusters by maSigPro (alpha=0.7,FDR<0.05;black,low 

accessibility; orange, high accessibility). 14 clusters are selected to plot. Coverages over 

chromatin accessibility regions are normalized by sequence depth and length of regions to 

RPKM and they are further normalized between -1 and 1 by using z-score normalization for 

visualization. Stage-specific makers are labeled for stem cells-, mesendodermal cells  and 

definitive endodermal cells-specific clusters based on the chromatin regions they associated with.  
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Figure 4.7. De novo motif calling in differentially open chromatin regions in three species. 

Motifs listed for each cluster in Figure 4.6 have the most significant p-value, high enrichment 

(%) and high motif similarity score.  de novo motif calling is done by Homer. 
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Figure 4.8. Principal component analysis (PCA) during DE differentiation for (A) gene 

expression and (B) chromatin accessibility in three species. Analyses are done on 1:1:1 

orthologous genes and chromatin accessibility regions. Time points were connected serially to 

illustrate cell-specific trajectories. Species are labeled by distinct shape and cell types are labeled 

with distinct colored points.  
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Figure 4.9. Strategy for building gene regulatory networks (GRNs). For each time point during 

differentiation, expression of key TFs are measured by RNA-seq and open chromatin regions 

around key TFs are detected by ATAC-seq. Then footprint and motif calling are performed in 

open chromatin regions within 20KB of target TFs gene body to decide which TFs potentially 

binding to regulate target TFs. If both target TFs and potentially binding TFs have detected gene 

expression level (>2TPM), the connections between them are constructed. GRNs are built with 

many layers of these connections. 
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Figure 4.10. Gene regulatory network (GRN) of 14 key genes at ES and definitive endoderm 

stages, including pluripotent markers POU5F1, NANOG and SOX2; mesendodermal markers 

Brachyury (T gene); and endodermal markers GSC, EOMES, FOXA1/2, GATA4/6, SOX17, 

CXCR4, MIXL1 and CER1. (A) GRN at human ES stage. (B) GRN at human definitive 

endoderm stage. Each gene is assigned a unique color to track changes in regulatory interactions 

between ES and endoderm stages. 
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Figure 4.11. Gene regulatory network (GRN) of 14 key genes at ES and definitive endoderm 

stages, including pluripotent markers POU5F1, NANOG and SOX2; mesendodermal markers 

Brachyury (T gene); and endodermal markers GSC, EOMES, FOXA1/2, GATA4/6, SOX17, 

CXCR4, MIXL1 and CER1. (A) GRN at mouse ES stage. (B) GRN at mouse definitive 

endoderm stage. Each gene is assigned a unique color to track changes in regulatory interactions 

between ES and endoderm stages. 
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Figure 4.12. Gene regulatory network (GRN) of 14 key genes at ES and definitive endoderm 

stages, including pluripotent markers POU5F1, NANOG and SOX2; mesendodermal markers 

Brachyury (T gene); and endodermal markers GSC, EOMES, FOXA1/2, GATA4/6, SOX17, 

CXCR4, MIXL1 and CER1. (A) GRN at rat ES stage. (B) GRN at rat definitive endoderm stage. 

Each gene is assigned a unique color to track changes in regulatory interactions between ES and 

endoderm stages. 
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Figure 4.13. Gene regulatory network comparison between (A) human and mouse ES cells; (B) 

mouse and rat ES cells; (C) human and rat ES cells. Each gene is assigned a unique color to track 

changes in regulatory linkages between two genes. Solid line shows conserved regulatory 

linkages while dash line labels species-specific regulation between two species. 
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Figure 4.14. Comparison of gene regulatory networks between (A) human and (B) mouse at 

definitive endoderm stage. Each gene is assigned a unique color to track changes in regulatory 

linkages between two genes. Solid line shows conserved regulatory linkages while dash line 

labels species-specific regulation between two species. 
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Figure 4.15. Comparison of gene regulatory networks between (A) mouse and (B) rat at 

definitive endoderm stage. Each gene is assigned a unique color to track changes in regulatory 

linkages between two genes. Solid line shows conserved regulatory linkages while dash line 

labels species-specific regulation between two species. 
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Figure 4.16. Comparison of gene regulatory networks between (A) human and (B) rat at 

definitive endoderm stage. Each gene is assigned a unique color to track changes in regulatory 

linkages between two genes. Solid line shows conserved regulatory linkages while dash line 

labels species-specific regulation between two species. 
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Table 4.1. RNA-seq samples are prepared into duplicates for each time point and the quality is 

assessed for each replicate by (1) the number of uniquely mapped reads; (2) uniquely mapped 

efficiency; (3) the number of detected genes. 

 

 

 

 

 

 

 

 

 

Species Timepoint Uniquely mapped 
reads of Rep1

Uniquely map 
efficiency of Rep1

Detected genes 
(>=1TPM) of Rep1

Uniquely mapped 
reads of Rep2

Uniquely map 
efficiency of Rep2

Detected genes 
(>=1TPM) of Rep2

Human

ES 11999017 76.28% 15155 9447848 76.43% 15209
D1 7784268 82.97% 14742 5930764 82.73% 14947
D2 8580086 80.91% 14195 9052857 80.62% 14121
D3 10170322 80.72% 14783 9739162 80.82% 14961
D4 8434648 81.71% 15377 9705908 80.98% 15393
D5 8447074 82.02% 14725 8428818 82.77% 14940

Mouse

ES 10731526 73.76% 12444 14423022 72.77% 12473
D1 10485397 72.65% 12470 10361873 72.83% 12526
D2 9673945 71.98% 12672 10514836 71.77% 12702
D3 5808820 69.76% 13621 5549428 67.98% 13442
D4 10292464 76.08% 15862 10761733 76.42% 14626
D5 10861103 74.40% 14527 8888845 75.03% 14684
D6 10557251 75.05% 12952 10617300 76.33% 13145
D7 10221795 76.17% 13105 10067411 75.87% 13043

Rat

ES 6177882 67.03% 11335 6152213 66.40% 11300
D1 7152358 71.09% 13132 7665304 69.51% 11820
D2 7738495 70.40% 12177 9015980 73.24% 12033
D3 8742418 69.74% 11989 7173255 70.59% 12083
D4 4206670 72.47% 11879 7087907 71.69% 11876
D5 6440998 72.35% 11245 7785740 70.90% 11306
D6 6198496 70.62% 11714 6693788 70.14% 11754
D7 7045235 72.88% 11634 7996475 73.55% 11700
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Table 4.2. ATAC-seq samples are prepared into duplicates for each time point and the quality is 

assessed for each replicate by (1) the number of uniquely mapped reads; (2) uniquely mapped 

rate; (3) fraction of reads mapped to mitochondria DNA; (4) the number of peaks 

 

 

 

 

 

Species Timepoint Uniquely mapped 
reads of Rep1

Uniquely map 
efficiency of Rep1

Mito% of 
Rep1

Number of 
peaks of Rep1

Uniquely mapped 
reads of Rep2

Uniquely map 
efficiency of Rep2

Mito% of 
Rep2

Number of 
peaks of Rep2

Human

ES 68011715 86.62% 3.65% 178399 72053670 85.97% 2.84% 126101
D1 69243655 87.47% 7.90% 212793 82062531 87.62% 7.04% 221181
D2 74820462 83.66% 3.13% 143624 86114404 83.65% 3.56% 133439
D3 75745733 86.46% 8.02% 205728 94410199 86.43% 6.79% 217926
D4 78460016 87.32% 6.10% 222771 92768265 87.28% 6.12% 228128
D5 129912607 86.69% 5.26% 201400 98490122 88.54% 4.42% 228269

Mouse

ES 91645724 83.81% 3.70% 246440 107024951 83.73% 3.87% 254878
D1 48785701 78.71% 6.04% 57664 67273043 77.73% 6.72% 65074
D2 62064316 78.66% 7.60% 97821 71059299 78.88% 6.91% 94302
D3 123415639 76.88% 9.67% 74010 100163677 77.53% 9.08% 61915
D4 132608547 77.92% 4.33% 30684 137639833 77.20% 4.54% 30112
D5 153163206 75.53% 4.07% 45901 92965158 75.15% 3.90% 38350
D6 62717618 77.35% 5.68% 93014 57924080 77.07% 4.92% 60625
D7 79898201 80.81% 3.49% 107649 97395057 80.47% 4.47% 129307

Rat

ES 62662252 80.95% 3.48% 211762 80655775 80.10% 3.64% 208060
D1 94271542 75.51% 4.95% 128814 71196512 73.67% 7.87% 152582
D2 78434520 77.06% 4.52% 165805 75991122 77.21% 4.99% 176434
D3 94576355 78.09% 3.23% 105672 87644144 77.11% 4.16% 105934
D4 118103133 79.57% 2.44% 131125 93749683 79.24% 4.73% 155244
D5 107073870 81.44% 2.50% 145183 57966923 82.78% 2.69% 152535
D6 83891664 82.82% 2.05% 155954 80282780 81.55% 2.01% 149409
D7 79973852 80.99% 1.45% 119583 79266904 82.36% 1.91% 148405
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Table 4.3. Footprint calling during DE differentiation for three species. For footprint calling, 

uniquely mapped reads of duplicates are merged as input reads for each time point. Footprint 

calling are done by using Wellington algorithm with 1% FDR. 

 

 

 

 

 

 

 

 

 

Species Timepoint Input reads Number of consolidated peaks Number of footprints

Human

ES 140065385 119983 145343
D1 151306186 191458 214514
D2 160934866 116394 142523
D3 170155932 190168 219494
D4 171228281 200788 222488
D5 228402729 187690 206684

Mouse

ES 198670675 220718 238327
D1 116058744 44409 61732
D2 133123615 76646 98498
D3 223579316 52479 67493
D4 270248380 17542 24474
D5 246128364 23426 30891
D6 120641698 54031 69431
D7 177293258 95232 107990

Rat

ES 143318027 185514 220855
D1 165468054 116020 151183
D2 154425642 144598 179316
D3 182220499 84234 111384
D4 211852816 112884 137522
D5 165040793 125068 150058
D6 164174444 130594 156530
D7 159240756 107044 127362
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4.6 Methods 

4.6.1 Embryonic stem cell maintenance 

Human embryonic stem cell (H1, XY) was bought from WiCell and were maintained on matrigel 

in STEMCELL TechnologiesTM TeSR-E8 medium. Cell were routinely passaged every two days 

with EDTA. Mouse embryonic stem cell (JM8.N2, XY) was bought from KOMP Repository, 

UC-Davis. They were maintained on 0.1% Gelatin and were first cultured in JM8.N4 ES cell 

medium, supplemented with 1X KO DMEM, 15% FBS, 2mM Glutamine, 1mM NEAA, 

1000U/ml LIF and 0.1 mM 2ß-ME, for 1-2 days until the cells reaching to over 70% confluency. 

Then mES cells were passaged with Accutase into KOSR+2i medium, supplemented with KO 

DMEM, 15% KO Serum replacement (KOSR), 4mM Glutamax, 1mM NEAA, 1mM Sodium 

pyruvate, 0.1mM 2ß-ME, 100U-ug/ml Pen/Strep, 200U/ml LIF, 5ug/ml Insulin, 1uM MEK 

inhibitor PD0325901 and 3uM GSK3 inhibitor CHIR99021. Cells were passaged every 3-5 days 

depending on the size of colony. Rat embryonic stem cells (DAc8, XY) was bought from Rat 

Resource and Research Center (RRRC), University of Missouri. Cells were first maintained on 

mouse embryonic fibroblast (MEF) feeders.  MEF medium was made with GMEM, 10% FBS, 

1% GlutaMAX and 1% Pen/Strep. Rat ES medium was supplemented with 100ml DMEM/F12, 

1ml N2, 1.5ml HEPES (1M), 100ml Neurobasal medium, 2ml B27, 1ml GlutaMax-I, 100ul 

Inuslin, 66.7 CHIR99021 (3mM), 40ul PD0325901 (1mM), 2ml 100x2ß-ME, 200ul Y-27632 

(5mM), 200ul hLIF (10ug/ml). MEF cells were plated on 0.1% Gelatin at least one day before 

plating rat ES cells. Rat ES cells were passaged every 4-6 days with Accutase. depending on the 

size of colonies.  

 

4.6.2 Definitive endoderm differentiation on monolayer in vitro 

Human ES cells were differentiated with E8-optimized Definitive Endoderm Kit from 

STEMCELL Technology. Differentiation was carefully conducted following the protocol. 

Mouse and rat ES cells were differentiated following the protocol optimizing for the stem cell 

lines. For mouse, cells were first passaged from KOSR+2i medium to NDiff N2B27 base 

medium supplemented with PD0325901 (1uM), CHIR99021 (3uM) and mLIF (100U/ml) (in 

50ml, 49.939 ml of NDiff, 1ul mLIF, 10ul PD03, 50ul CHIR) on gelatin coated plate. After 2-3 

days, cells were differentiated into NDiff medium supplemented with Activin A, Fgf4, Heparin, 

PI3 kinase inhibitor PI103, CHIR99021 (in 50ml, 49.88ml of NDiff medium, 10ul of 100ug/ml 
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ActivinA, 5ul of 100ug/ml Fgf4, 50ul of 1mg/ml of Heparin, 5ul of 1mM PI103, 50ul of 3uM 

CHIR). After 2 days of differentiation, medium was changed to DMEM/F12 with N2, B27-VA, 

L-glutamine, 2ß-ME, BSA, ActivinA, Fgf4, Heparin, Egf, PI103 and CHIR99021 (in 50ml, 

48.8295ml of DMEM/F12,250ul of N2, 500ul of B27-VA, 250ul L-glutamin, 50ul 1000x 2ß-

ME, 0.025g BSA, 10ul 100ug/ml ActivinA, 5ul 100ug/ml Fgf4, 50ul 1mg/ml Heparin, 0.5ul 

100ug/ml Egf, 5ul 1mM PI103 and 50ul of 3uM CHIR). Cells were continuously differentiated 

for 5 days. For rat, cells were first transferred from MEFs to gelatin coated plate and they were 

seeded in rat ES medium for 4-6 hours. Then the medium was changed to the NDiff medium to 

differentiate following the same protocol using in mouse.  

 

4.6.3 RNA-seq library construction 

Total RNA was extracted on every day of differentiation by using RNeasy kit (QIAGEN). RNA 

were converted to cDNA using the SmartSeq 2 protocol [58]. Libraries were constructed by 

using the Nextera DNA Sample Preparation Kit (Illumina). Libraries were quality-controlled 

prior to sequencing based on Agilent 2100 Bioanalyzer profiles and normalized using the KAPA 

Library Quantification Kit (Illumina). The libraries were sequenced using paired-end 43 mode on 

Illumina NextSeq500 platform with around 10-15 million reads per sample.  

 

4.6.4 ATAC-seq library construction 

ATAC-seq samples were collected from the same pool cell population used for RNA-seq on 

every day of differentiation by using omni-ATAC protocol [59]. Around 50,000 cells were used 

per replicate and libraries were base-selected between 150-500bp for final construction. Libraries 

were normalized using the KAPA Library Quantification Kit (Illumina). The libraries were 

sequenced using paired-end 43 bp mode on Illumina NextSeq500 platform with around 60-100 

million reads per sample.  

 

4.6.5 Gene expression analysis  

Raw reads were mapped to hg38 (human), mm10 (mouse) and rn6 (rat) using STAR (version 

2.5.1b) [60] using defaults except with a maximum of 10 mismatches per pair, a ratio of 

mismatches to read length of 0.07, and a maximum of 10 multiple alignments. Quantitation was 

performed using RSEM (version 1.2.31) [61] with the defaults, and results were output in 
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transcripts per million (TPM). Batch effects were corrected by using limma removebatcheffect 

[62]. Clustering of differentially expressed genes across the time-course was done by using 

maSigPro [63] with alpha of 0.05 for multiple hypothesis testing and a false discovery rate of 

0.05%. Gene ontology analysis was done by using Metascape [64]. 

 

4.6.6 ATAC-seq data processing and analysis 

Raw reads were mapped to hg38 (human), mm10 (mouse) and rn6 (rat) using bowtie [65]. Reads 

mapped to ChrM were discarded and PCR duplicates were removed by using Picard [66]. 

HOMER/4.7 [67] was used to call open chromatin regions. It was first used for calling 200bp 

narrow peaks and then 500bp broad peaks. Then narrow and broad peaks were merged into a 

single peak list and they were further filtered by overlapping with ENCOE “blacklist” regions. 

Peaks that shown in both replicates were considered as reproducible open chromatin regions. 

Reads coverage was calculated using bedtools [68] for each region and they were further 

normalized by the size of library and the size of peaks. Normalized coverages were further batch 

corrected for the technical batch effects by using limma removebatcheffect [62]. The differential 

open chromatin regions through differentiation time-course were identified by using maSigPro 

[63] with alpha=0.05 and FDR<0.05. 

 

4.6.7 de novo motif enrichment analysis 

De novo motif calling was performed using HOMER/4.7 [67]. Open chromatin regions for each 

maSigPro cluster were converted to fasta using masked genome for each species. The size of 

motif was set as “-len 6,8,10,12,15,120” with at most 3 mismatches. 

 

4.6.8 Footprints calling and GRN construction 

ATAC-seq reads from duplicates were merged for each time-point to achieve around 120-200 

million reads for footprints calling. Footprints were called by using Wellington algorithm from 

pyDNase [69] with parametes “-A -fp 6,31,1 -sh 7,36,4 -fdrlimit -2”, 1% FDR. Then motifs were 

scanned within footprints regions by using FIMO [70] to identify transcription factor binding 

motifs from HOCOMOCO database [71]. Next, both gene expression and motif scanning results 

were used to build gene regulatory networks. The connection between two genes was constructed 

if (1) the binding motif of one gene (regulator) was detected within 20kb of TSS of the other 



 130 

gene (target). (2) The expression level of regulator is higher than 2TPM in specific time-point. 

GRNs were constructed at stem cell and definitive endoderm stages. Networks were visualized 

by using Biotapestry [72]. 

 

4.6.9 Interspecies analysis 

Interspecies pairwise comparisons were performed by aligned identified open chromatin regions 

between species in a reciprocal manner using UCSC liftOver [73] on genomic assemblies in 

three species. Each of the species was used anchor species and the open chromatin regions were 

mapped to the other 2 species with 50% minimum map ratio. Regions failing to be mapped in 

any of the other genomes were considered as unaligned regions. To identify conserved regions 

between two species, regions having orthologous regions overlapped in the second species with 

at least 1bp were collected. Final pairwise conserved regions were confirmed by doing this 

comparison reciprocally between species.  
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Chapter 5 

Dynamics of NRSF/REST motif evolution favor the canonical NRSE/RE1 form 

 

5.1 Abstract 

        The evolution of the binding repertoire of transcription factors is one of the key questions of 

comparative genomics. The transcription factor NRSF/REST represses many vertebrate neuronal 

genes in non-neuronal cells by binding to 3 distinct motif classes, which are the canonical 21bp 

NRSEs (C), longer non-canonical motifs (NC) and solo half-motifs (HF). We used ChIP-seq in 

four mammalian species to determine the evolution of the NRSF binding repertoire. We show 

that while some NRSEs are deeply conserved, genes with several NRSEs show evidence of 

compensatory binding turnover, suggesting that the association of the transcription factor to its 

target gene is more important than the specific binding instances. We also found that many 

newborn binding sites in human are associated with primate specific indels and transposable 

elements. Our analysis of motifs with conserved ChIP-binding in all 4 species demonstrates that 

both the non-canonical and solo half-motifs convert preferentially to canonical motifs. These 

findings support a model of dynamic conversion between different motif types that account for 

the preferential accumulation of the canonical NRSE during evolution. 

 

5.2 Introduction 

        Non-coding elements selectively bound by specific transcription factors (TF) 

mechanistically regulate gene expression. Changes in these transcription factor binding sites, 

also known as cis-regulatory DNA elements, are believed to regulate the gain, loss or 

modification of traits across species [1-5].Transcription factor binding repertoires have expanded 

during vertebrate evolution [6], which provide more evolutionary raw material for cis-regulatory 

elements in rewiring gene regulatory networks. TF binding sites can be identified genome-wide 

using ChIP-seq [7] to assess the conservation and divergence of TF binding sites across close as 

well as distant species [8-13]. Tissue specific transcription factors showed surprising divergence 

in the rate and binding across closely related mammalian species [10-13]. Although individual 

TF binding sites are less constrained in both closely and distantly related mammals, TF 

regulatory networks are more highly conserved [14], which indicates strong evolutionary 

selection on TF regulatory networks rewired from unconstrained TF binding sites. Previous 
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comparative cis-regulatory studies have mainly focused on activators and the insulator CTCF. 

However, at least one-third of the transcription factors in mammals are thought to be repressors 

[6,15,16] and their evolutionary role could be significantly different, especially if they are 

involved in the silencing of specific repeat families [17].  

 

         The transcription factor Neuron Restrictive Silencer Factor NRSF [18], also known as 

REST (repressor element 1 silencing transcription factor) [19], primarily represses neuronal gene 

expression in non-neuronal cells and neuronal stem cells [20]. NRSF recruits several cofactor 

complexes to silence target genes by binding to a canonical 21bp NRSE/RE1 motif [21-27]. 

ChIP-seq and other genome-wide studies found that NRSF binds not only to its originally 

identified 21bp canonical (C) NRSE/RE1 motifs, but also to a smaller class of non-canonical 

(NC) NRSEs, which consist of two half-motifs (HF) separated by 10, 16-19 base pairs [7, 28]. 

Previous studies have found that canonical motifs are present in most but not all of the NRSF 

binding sites in non-neuronal cell types from different species [7, 29, 30]. However, there is no 

significant difference between canonical and non-canonical NRSEs in terms of binding with 

NRSF and repression of neuronal gene in non-neuronal cells [28] even though NRSF binding 

with either canonical or non-canonical motifs represses genes to a lower expression levels 

compared with half-motifs only or no motif [29]. Given that multiple non-canonical forms of the 

NRSE motifs would seem to provide more flexibility for evolving a functional binding site that 

is just as good as the canonical motif in terms of binding and repression, it is surprising that the 

canonical form is much more prevalent than the non-canonical forms. 

 

        A comparative study of the distribution of the canonical NRSE in vertebrate and 

invertebrate species found that the number of NRSE is relatively constant in mammalian 

genomes when compared with other vertebrates and that the canonical motif is absent in 

invertebrates [31]. Comparative analyses of canonical NRSEs in human [32] and Xenopus 

tropicalis [33] genomes with other vertebrate genomes demonstrated the existence of lineage-

specific NRSEs enriched in neuronal genes. Another comparative analysis of NRSF binding 

between human and mouse showed significant expansion of NRSF binding in human embryonic 

stem cells, compared with mouse, in genes involved in human-specific neuronal regulatory 

functions [30]. However, these studies did not address the evolutionary relationship between the 
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three classes of canonical, non-canonical NRSEs and half-motifs. In order to determine the 

relationship between these classes, we performed a cross-species NRSF binding analysis across 

four mammalian species (human, mouse, dog and horse) to systematically examine the extent of 

NRSF binding birth, death, and motif conversion between classes. Based on our results, we 

propose a motif conversion model to explain how NRSF canonical motifs evolve from non-

canonical motifs and solo half-motifs.  

 

5.3 Results 

5.3.1 The majority of NRSF binding instances are mediated by canonical motif  

        In order to use consistent terminology, we use the term motif when referring to canonical, 

non-canonical NRSEs and half-motifs. The NRSF bound DNA sequence detected by ChIP-seq is 

a site where we will search for the motif if present. A site could potentially be bound only in 

some cell types or be abolished due to a mutation. We also use the terms peak and instance to 

describe the observed binding between the NRSF protein and the site in our data. We performed 

ChIP-seq in biological replicates for NRSF in mouse (RAW.264) macrophage and dog (ML-2) 

myeloid cells as well as horse fibroblast (E.Derm) in conjunction with human NRSF ChIP-seq 

data from the ENCODE project [34] in the HL-60 myeloid cell line to identify and to compare 

NRSF binding instances across all 4 species. NRSF is known to repress the same genes in 

different non-neuronal cell types and we therefore do not expect substantial biological 

differences when comparing myeloid cells in human and dog and macrophage in mouse to horse 

fibroblasts. We identified 5260 reproducible NRSF peaks in human, 2357 in mouse, 2273 in dog 

and 2185 in horse (Figure 5.1A, 5.2 & 5.3). We also performed NRSF peak calling on published 

human embryonic stem cell (ESCs) [34] and mouse ESCs [35] as controls. We identified 10322 

peaks in hESC and 3970 peaks in mESC. Our hESC peak calling result is close to the number 

(n=10141) reported by ENCODE project [34, 36] and found 2000 more peaks not identified in 

previous study of the same cells [30].  Canonical and non-canonical NRSE motifs are composed 

of two 10 bp half-motifs, separated respectively by 11 bp for the canonical and 10 or 16-19 bp 

for the non-canonical form (details in Methods). We found that 45% to 63% (n=2410 in human; 

n=1310 in mouse; n=1424 in dog; n=1146 in horse) of NRSF binding sites had canonical motifs 

while only about 10% to 14% (n=710 in human; n=331 in mouse; n=282 in dog; n=213 in horse) 

of sites had non-canonical motifs in each of the four species (Figure 5.1A). Consistent with 
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previous studies [29,30], we also found that a large fraction of binding sites have solo half-motifs 

only (Figure 5.1A) and that solo half-motifs are more frequent in human (n=1373, 26.10%, 95% 

CI [0.250, 0.273]) compared to other mammals (n=370, 15.70%, 95% CI [0.143, 0.172] in 

mouse; n=312, 13.73%, 95% CI [0.124, 0.151] in dog; n=224, 10.25%, 95% CI [0.090, 0.115] in 

horse) (Figure 5.1A). Mapping motifs back to NRSF binding sites revealed that NRSF ChIP-seq 

signal density changed significantly with the type of motifs in the binding sites. As expected, 

sites with high ChIP-seq binding density were enriched with canonical motifs while low binding 

density sites were enriched with solo half-motifs or no-motif (Figure 5.2 & 5.4). Non-canonical 

motifs were distributed throughout the signal range, confirming that some non-canonical NRSEs 

bind as well as or better than canonical NRSEs [7]. Gene ontology (GO) analysis on genes with 

canonical motifs found species-specific enrichments (Figure 5.5 & 5.6). For example, human-

specific peaks with canonical motifs were enriched with genes involved in trans-synaptic 

signaling (n=161, p=3.89x10-46) and central nervous system development (n=149, p=4.47x10-19) 

while mouse-specific peaks were not only enriched with genes involved in chemical synaptic 

transmission (n=98, p=2.24x10-32) and regulation of nervous system development (n=109, 

p=6.46x10-23) but also in metal ion transport (n=95, p=4.37x10-21). We also found that peaks 

with non-canonical motifs in human were enriched in genes in chemical synaptic transmission 

(n=51, p=1.58x10-12) and regulation of nervous system development (n=44, p=3.80x10-6), but 

non-canonical mouse peaks were enriched for neuron projection development (n=28, p=3.31x10-

6) and regulation of membrane potential (n=14, p=1.66x10-4). While solo half-motifs and no 

motif peaks show apparently weaker enrichment of genes with neuronal GO terms in mouse, the 

genes with such peaks in human still maintained substantial neuronal GO enrichment.  

 

        Taken together, our methods comprehensively identified and categorized NRSF binding 

sites based on motif class. More than 72% of NRSF binding sites were occupied by one or more 

instances of the 3 classes, with at least 60% of NRSF binding sites containing either canonical 

motifs or non-canonical motifs that are associated with higher NRSF ChIP-seq binding density in 

each of the four species. Furthermore, our results suggest that different motif classes might 

contribute to NRSF-associated pathways in a species-specific manner. 

 

5.3.2 Canonical motifs are mostly enriched in deeply conserved binding peaks 
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        While a gene such as PAX5 is associated with NRSF binding and has one perfectly 

conserved non-canonical binding motif inside the first exon in all 4 species, each species has an 

additional set of species-specific binding sites gains and losses in other parts of the gene (Figure 

5.1B). We investigated conserved and divergent NRSF binding peaks across our four species. 

We categorized NRSF binding peaks as deeply conserved if bound in all species, partially 

conserved if bound in at least two and species-specific peaks based on the extent of peak 

conservation across species (Figure 5.7A).  On average, 27% (n=3258 out of 12075) of NRSF 

binding peaks were shared between any two or three species and thus partially conserved and 

about 12% (n=1460 out of 12075) of total binding peaks were deeply conserved in all four 

species. Specifically, only 7% (n=365 out of 5260) of binding peaks in human were deeply 

conserved, with this fraction rising to about 16% (n=365 out of 2357 in mouse; n=365 out of 

2273 in dog; n=365 out of 2185 in horse) in our three other mammals. Conversely, 

approximately 61% (n=7357 out of 12075) of total binding peaks were species-specific and had 

no orthologous regions overlapping with identified peaks in any other species. Species-specific 

peaks represent about 72% (n=3770 out of 5260) of NRSF binding in human while they 

occupied about 48%-60% (n=1441 out of 2357 in mouse; n=1088 out of 2273 in dog; n=1058 

out of 2185 in horse) in other species. By investigating peak conservation in human and mouse 

embryonic stem cells instead, we found that about 70%-80% of NRSF peaks were species-

specific in human and mouse while about 46% were species-specific in dog and horse (Figure 

5.8).  

 

        Of the 599 human genes that have only one NRSF binding site, 271 genes (45.2%) show 

evidence of binding in 3 or 4 species; there are also 15 genes that show evidence of binding in 

mouse, dog, and horse but not human for a total of 286 genes with evidence of 1 binding site in 

at least 3 species for a total of 380 sites; there are more sites than genes, as some sites do not 

align. We observed that 215 of these 286 genes (75.17%) have their solo sites conserved in at 

least three species in multiple species alignments, while only 21 genes (7.34%) have no 

detectable site conservation (i.e. the sites do not align in multiple sequence alignments) (Table 

5.1). Similarly, there are 606 genes having more than one associated binding sites in 3 or 4 

species with 2282 sites and we found that 500 (82.51%) of those genes have at least one 

conserved binding site in 3 or more species while 29 (4.79%) genes have no conserved site. A 
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comparison of the number of binding sites turnover (i.e. sites alignable in only 1 or 2 species in 

genes with signal in at least 3 species) shows that 43.42% (165/380) of sites turnover for genes 

with only one binding site per gene while 73.93% (1687/2282) of sites turnover for genes with 

more than one binding sites (p= 4.086x10-11, Chi-square test) in 3 or more species. This suggests 

that the presence of more than one binding site per gene increases the likelihood of any one site 

turning over while ensuring regulation by NRSF and is irrespective of the quality of the ChIP-

seq data in any one species.  

 

        Motif type occupancy changes with the conservation level of peaks (Figure 5.7B & 5.9). 

The proportion of canonical motifs was higher while the proportion of solo half-motifs and no-

motif was lower in conserved peaks when compared to non-conserved peaks. Motifs in deeply 

and three-species partially conserved peaks had at least one half-motif, but no-motif was found 

only highly enriched in species-specific peaks. Interestingly, compared with canonical NRSEs 

and solo half-motifs, the occupancy of non-canonical motifs did not change much according to 

the conservation level of peaks. Focusing on the deeply conserved peaks, we found that 93% 

(n=340) of peaks shared had the same type of motifs in four species and that the canonical motifs 

represent the highest proportion (77%, n=283) and solo half-motifs the least (3%, n=11) (Figure 

5.7D).  

 

        A comparison of 4493 motifs found in human NRSF ChIP-seq peaks with their orthologous 

regions in other primate species, as well as mouse, dog and horse showed that a substantial 

subset of these motifs were primate-specific (Figure 5.7C). As expected, the overlapping fraction 

with human motifs in alignable regions decreased apparently with the earlier divergence from 

human. Whereas 93% of alignable human motifs were shared with chimp, 76% of alignable 

motifs were shared with rhesus macaque. However, we only found about 43-50% of alignable 

human motifs were shared with mouse, dog, horse and bushbaby, which is a non-anthropoid 

primate. Interestingly, anthropoid-specific motifs, i.e. motifs that are in anthropoid species but 

are missing from bushbaby and other mammals, were significantly enriched in genes with GO 

annotations for synaptic signaling (n=95, p=8.51x10-17), regulation of nervous system 

development (n=93, p=5.75x10-10), and neurotransmitter transport (n=32, p=7.94x10-7) as well as 

neuronal specific transcription factors such as NEUROD4, POU3F1 and VSX1. Some of the TFs 
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with anthropoid-specific motifs like OLIG2, is negative regulator of transcription. In contrast, 

motifs specific for bushbaby, mouse, dog and horse were only enriched in negative regulation of 

multicellular organismal process (n=5, p=6.03x10-4), developmental maturation (n=3, 

p=6.61x10-4) and protein targeting (n=3, p=1.35x10-2). Altogether, our observation reveals that 

canonical motifs are more likely to be enriched in conserved peaks whereas there is more motif 

diversity in the non-conserved peaks and that a large fraction of NRSEs are anthropoid primate-

specific and have arisen more recently during primate evolution. 

 

5.3.3 Rapid NRSF binding sites turnover is mediated by transposable elements and base 

sequence changes 

        Species-specific changes in the genomic sequence account for transcription factor binding 

instance divergence in both closely and distantly related species [10, 11, 13]. We identified peaks 

in alignable orthologous regions that were only present in one species and missing in the other 

three (“newborn”) or bound in three species but missing in the fourth species (“dead”). We 

parsimoniously surmised that a peak found only in one species was more likely to be novel than 

“old” but lost in two or three species independently. We required that canonical or non-canonical 

motifs lie in peaks and had higher motif occurrence score than peak-free regions for both birth 

and death (details in Methods). We detected more newborn instances (543) than death instances 

(101) in four species (Figure 5.10). Gene ontology analysis revealed that genes associated with 

newborn binding instances are predicted to have neuronal functions. For example, synaptic 

signaling (n=29, p=1.66x10-10) and regulation of nervous system development (n=27, p=4.07x10-

7) were significantly enriched in human newborn instances while mouse newborn instances were 

enriched in genes involved in neuronal action potential (n=3, p=9.33x10-4) and forebrain 

development (n=7, p=1.32x10-3). We found no regulatory function significantly enriched in 

genes with death instances. We also analyzed the gene ontology enrichment of genes with NRSF 

binding sites conserved in all four species and found that neuronal GO terms such as synaptic 

signaling (n=59, p=3.72x10-31), regulation of membrane potential (n=34, p=2.40x10-18), 

regulation of nervous system development (n=39, p=1.86x10-11) had even higher enrichment and 

significance in conserved sites than in newborn sites. This suggests that conserved NRSF binding 

sites are likely to play a key role in neuronal development. 
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        Nearly half of the genomes of human, mouse, dog and horse are composed of transposable 

elements (TEs) [37]. Previous studies have reported that TEs play an important role in the 

appearance of recently evolved cis-regulatory elements and remodel gene regulatory networks 

[11,38-40). We therefore studied the association of TEs in both newborn and dead instances for 

each species and found a strong association between TEs and species-specific newborn 

instances. Consistent with previous studies [30,31,41], human newborn instances are 

significantly enriched in LINE2. Moreover, the high enrichment of LINE2 was also shared in 

mouse and dog newborn instances (Figure 5.11). We also found that species-specific newborn 

instances were associated with additional families of TEs. MIR from the SINE family was only 

enriched in human whereas ERVL from the LTR family and CR1 from LINE family were 

specially enriched in dog and horse birth respectively. As expected, there is no TE class 

significantly associated with dead instances (Figure 5.12). Interestingly, we also detected TEs in 

deeply conserved sites and found exclusively high enrichment of MIR in four species (Figure 

5.13). Our observation further confirmed that TEs might serve as ancestral sequence sources that 

can get converted into newborn NRSF binding instances. Further, species-specific birth can both 

arise from TEs that are shared between the four species but also arise from species-specific TEs 

classes.   

 

        To further understand how sequence changes drive species-specific birth of binding 

instances, we performed multispecies alignment analysis on 289 human newborn motifs (Figure 

5.10) to mouse, dog , horse and six primate species (Chimpanzee, Gibbon, Rhesus macaque, 

Baboon, Squirrel monkey, Bushbaby). We found that insertions and deletions contributed to 

newborn instances and motif conversion in orthologous regions. In the comparison with the other 

mammals multi-species alignment, human insertion means that bases were inserted in 

orthologous regions while deletion means bases deleted in orthologous regions (details in 

Methods). We found 21 human newborn motifs that appeared during primate evolution. These 

motifs shared intact sequences with at least one primate species but had bases missing in 

orthologous regions for other mammalian species (Figure 5.14A). About (51/63) 81% of 

newborn NRSF motifs were only in the motif sequences when compared in orthologous regions, 

i.e. the bases missing happened for mouse, dog and horse that resulted in (45/63) 71% of motifs 

missing or only solo half-motifs left. A further 16 human newborn motifs were created by 



 144 

primate-specific deletion, in which (41/48) 85% of motifs missing or only half-motif left in 

mouse, dog and horse (Figure 5.14B). Altogether, our observations reveal a rapid turnover 

process, in which human-specific NRSF binding instances were born during the last 70 million 

years of primate evolution driven by insertion and deletion.   

 

5.3.4 Non-canonical and half-motifs show higher conversion rate to canonical motifs 

        Our results have shown that canonical motifs constitute the majority of conserved NRSF 

binding instances and they were significantly (p<1.0x10-12) associated with high NRSF binding 

density in four species (Figure 5.1A, 5.2 & 5.4). Canonical motif occupancy is positively 

correlated with the conservation level of NRSF binding instances for each species, whereas half-

motifs are negatively correlated. Interestingly, non-canonical motifs show a relatively stable 

proportion in conserved and species-specific binding instances. Canonical motifs are enriched 

not only in conserved sites but also in nonconserved sites for NRSF binding across species 

(Figure 5.7B & D). In order to understand why we observe more conserved canonical motifs 

than conserved non-canonical motifs or solo half-motifs, we focused on deeply conserved 

instances to observe the conversion dynamics between different motif forms (details in 

Methods). By focusing on alignable regions that had identical motifs in 3 species but changed in 

the fourth we could ascertain what the ancestral sequence was and the resulting change in the 

fourth (Figure 5.15A). We found that both non-canonical motifs (p=7.96x10-49 ) and solo half-

motifs (p=2.82x10-17) had significantly higher conversion rate to canonical motifs compared with 

the reverse direction. We also found a significantly higher rate of motif conversion from solo 

half-motifs to non-canonical motifs compared with the reverse direction (p=3.24x10-7) (Figure 

5.15B-C & 5.16). In particular, we found no instances of canonical motifs converting into a non-

canonical motif and only 0.35% (1/284) of them changed to half-motifs whereas 9.80% (5/51) of 

non-canonical motifs and 12.50% (2/16) of half-motifs were converted to canonical motifs. Thus 

half-motifs either tend to become canonical motifs or non-canonical motifs while non-canonical 

motifs in turn also convert into canonical motifs. Note that this result is robust, as it still holds if 

we restrict ourselves to comparisons between only the 3 myeloid cell lines in human, mouse, and 

dog (Figure 5.17) or when substituting human and mouse embryonic stem cells instead (Figure 

5.18), which suggests that cell identity does not affect the results. 
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5.4 Discussion 

        We systematically compared the binding of NRSF/REST at canonical, non-canonical and 

solo half-motifs in four mammalian species to construct a comprehensive profile of conserved 

and evolving NRSE/RE1 motifs. Our data also shows that many of newborn sites are caused by 

transposable elements as well as individual base changes and small indels. The four-species 

analysis allows us to analyze the evolutionary relationship of three NRSE motif categories and to 

propose a motif conversion model of non-canonical and solo half-motifs converting 

preferentially to canonical forms over time, thus explaining the preponderance of the canonical 

NRSE. 

 

        The length of the canonical (21bp) and non-canonical NRSEs (20, 26-29bp) is probably too 

long to be generated easily from random local point mutations alone [41, 42]. The exaptation of 

transposable elements clearly accounts for some of the novel binding instances. We found that 

LINE/LINE2 enriched in human-, mouse-, and dog- specific instances. Other TEs families were 

also enriched in species-specific binding. Interestingly, we observed that SINE/MIR was the only 

TE family highly enriched in deeply conserved instances in all four species, particularly in dog 

and horse. As old TEs families, LINE2 and MIR propagated primarily before mammalian 

radiation [43,44] as opposed to the more recent expansion of LINE1, LTR and other SINE sub-

families [37]. Our results suggest NRSE motifs might have been exapted in different waves, first 

with MIRs in early mammalian evolution, then LINE2 and more recently other LTR, SINE as 

well as LINE sub-families actively transposed in a more species-specific manner. Over time, 

sequences that are weakly NRSE-like would turn into stronger ones via a handful of point 

mutations. 

 

        The use of binding instances conserved in all four species allowed us to measure 

parsimoniously the rate at which non-canonical and half-motifs tend to become canonical over 

evolutionary time. This evolutionary dynamic between NRSE classes results in the accumulation 

of canonical NRSEs that we detect even in species-specific binding instances. While it is still not 

clear why the canonical form is ultimately preferred over the conserved one, given that 

noncanonical motifs seem to repress just as well as the canonical ones, it may be that the 

flexibility of NRSF in binding full motifs with non-standard linker spacing provides a greater set 
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of alternative paths to evolve from a solo half-motif to a full-fledge non-canonical motif, which 

can then be refined into canonical motifs by small indels that are relatively frequent in 

mammalian genomes. Interestingly, NRSF is one of many transcription factors that can bind to 

more than one motif class where the longest motif can be divided into two short half-motifs. For 

example, the 33/34 bp CTCF binding motif is composed of 20bp motif as M1 and 9bp motif as 

M2 with 20/21 spacer. Studies have found that binding instances with 33/34 bp motif shown 

stronger ChIP enrichment and higher occupancy than instances containing only M1 in deeply 

conserved CTCF binding across five mammalian species [11]. Based on our model, the full 

33/34 bp CTCF motifs might accumulate by the rapid conversion from M1 motifs during 

evolution. This conversion process might be driven by repetitive element expansion to bring new 

33/34 bp motifs to genomes [11]. Similar two half-motifs long motifs have also been found for 

p53 [45, 46]. However, the lack of comparative binding profile makes it difficult to confirm 

evolutionary relationship of p53 motifs during evolution. Additional studies of multi-class 

transcription factors binding to determine whether other factors have multi-step binding motifs 

evolutionary paths similar to that of NRSF will shed light on how binding instances arise and are 

refined during evolution. 
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5.5 Figures 

 
 
Figure 5.1. Genome-wide identification of NRSF binding sites across four species. (A) Motif 

distribution in NRSF binding sites of each species. (B) Multiple binding sites turnover in PAX5, 

which has three binding sites in human, three in mouse, four in dog and two in horse. Column I 

shows site death in human compared with orthologous regions in the other three species; II 

shown a site born in dog; III shown a site born in mouse. Column IV shows that NRSF binding 

only appears in human and dog in orthologous regions, but their motifs are not alignable. 

Column V shows binding shared in four species. Column VI shows human-specific binding that 

no aligned regions in other species. Evolutionary tree of four mammalian species was adapted 

from TIMETREE (median) [47]. 
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Figure 5.2. NRSF ChIP-seq binding signal in 200bp window around peak summit (left). Red, 

high binding density; White, low binding density ; Type of motifs in peaks (right). C, canonical 

motif; NC, non-canonical motif; HF, solo half-motif; NO, no motif. 
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Figure 5.3.  Histogram of distance between canonical motif (A) and non-canonical motif (B) to 

peak summit. Normal curve is shown in red; mean is shown in red dotted line; mean+s.d. and 

mean-s.d. are shown in blue dotted line; mean+3s.d. and mean-3s.d. are shown in black dotted 

line; bin=5bp.  
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Figure 5.4. (A) Significance of canonical motifs enriched in high binding density sites while 

solo half-motifs and no-motif enriched in low density sites. Binding density is normalized to 

RPM (Mann-Whitney U test). (B) NRSF binding density divergents significantly with motif 

types. Binding density is normalized to RPM (Mann-Whitney U test).  
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Figure 5.5. Gene ontology analysis on genes associated with peaks having canonical motifs (C), 

non-canonical motifs (NC), solo half-motifs (HF) and no motif (NO) in human (hypergeometric 

test p-value<0.05).  
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Figure 5.6. Gene ontology analysis on genes associated with peaks having canonical motifs (C), 

non-canonical motifs (NC), solo half-motifs (HF) and no motif (NO) in mouse. (hypergeometric 

test p-value<0.05).  
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Figure 5.7. Divergence and conservation of NRSF binding across species. (A) Fraction of deeply 

conserved (4-species shared), partially conserved (3- and 2- species shared) and species-specific 

binding sites (1-species and unalignable) in each species. (B) Fraction of motifs in 4-species 

shared, 3-species shared, 2-species shared and species specific binding sites in human. (C, 

canonical motif, is composed of two 10bp half-motifs, separated by 11bp; NC, non-canonical 

motif, is composed of two 10bp half-motifs, separated by 10 or 16-19bp; HF, half-motif, is 10bp 

left or right half-motifs; NO, no motif). (C) The fraction of NRSF motifs overlapping with 

human motifs in each species. Evolutionary distances were adapted from TIMETREE (median) 

[47] (D) Fraction of peaks sharing the same type of motif in 365 deeply conserved binding sites. 

‘Conversion’ are motif instances that have changed classes in orthologous regions in at least one 

of the four species. 
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Figure 5.8. Fraction of deeply conserved (4-species shared), partially conserved (3- and 2- 

species shared) and species-specific binding sites (1-species and unalignable) in each species 

(cell lines for human and mouse are embryonic stem cells).  
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Figure 5.9. Fraction of motifs in 4-species shared, 3-species shared, 2-species shared and species 

specific binding sites in (A) mouse, (B) dog and (C) horse. C, canonical motif; NC, non-

canonical motif; HF, solo half-motifs; NO, no motif.  
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Figure 5.10. Birth and death of species-specific NRSF binding instances. (A) Heatmap of 

binding signal in 543 sites appeared (“born”) in only one species with orthologous alignment 

(left). Heatmap of motif score in the corresponding sites (right). (B) Heatmap of binding signal 

in 101 orthologous regions where a site disappeared (“died”) in only one genome (left). Heatmap 

of motif score in dead sites (right). Instances have strong NRSF binding are shown in red while 

weak binding shown in white. Species-specific newborn sites have strong NRSF motifs (shown 

in red) while dead sites have weak motif (shown in blue) in the affected species. 
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Figure 5.11. Transposable elements in species-specific NRSF birth sites. Significant NRSF birth 

instances associate with transposable elements families ( SINEs, LTRs, LINEs and DNA 

transposons ). Significance is evaluated using a binomial test corrected with Bonferroni 

correction. 
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Figure 5.12. Transposable elements in species-specific NRSF death sites. Significant NRSF 

death instances associate with transposable elements families ( SINEs, LTRs, LINEs and DNA 

transposons ). Significance is evaluated using a binomial test corrected with Bonferroni 

correction. 
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Figure 5.13. Transposable elements in deeply conserved NRSF binding sites. Significant 

conserved NRSF instances associate with transposable elements families ( SINEs, LTRs, LINEs 

and DNA transposons ). Significance is evaluated using a binomial test corrected with 

Bonferroni correction. 
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Figure 5.14. Insertion and deletion are associated with NRSF birth in human. (A) 21 human 

birth sites are associated with primate specific insertion (left). Insertion associated motifs in 

human, mouse, dog and horse (right). Blue, motifs lie in insertion; White, motifs are not in 

insertion. C, canonical motif; NC, non-canonical motif; HF, solo half-motif; NO, no motif. (B) 

16 human birth sites are associated with primate specific deletion (left). Deletion associated 

motifs in human, mouse, dog and horse (right). Blue, motifs lie in deletion; White, motifs are not 

in deletion. C, canonical motif; NC, non-canonical motif; HF, solo half-motif; NO, no motif. 
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Figure 5.15. Motif conversion between canonical, non-canonical and half-motifs in deeply 

conserved NRSF binding sites. (A) Two examples show motif conversion between canonical 

motif and non-canonical motif/solo half-motif from ancestral state to conversion state. (B) Motif 

transition matrix shows conversion between canonical motifs, non-canonical motifs and half-

motifs in 365 deeply conserved NRSF binding sites across four species. Conversion directions 

from ancestral state to the conversion state include: canonical motifs to non-canonical motifs 

(red); canonical motifs to half-motifs (green); non-canonical motifs to canonical motifs (dark 

red); non-canonical motifs to half-motifs (blue); half-motifs to canonical motifs (light green); 

half-motifs to non-canonical motifs (light blue). (C) Non-canonical motifs and half-motifs 

convert to canonical motifs at a significantly higher rate compared with reverse direction. 
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Figure 5.16.  Motif transition matrix shows conversion between canonical motifs, non-canonical 

motifs and solo half-motifs in deeply conserved NRSF binding sites across four species. 

Conversion directions from ancestral state to the conversion state include: canonical motifs to 

non-canonical motifs (red); canonical motifs to solo half-motifs (green); non-canonical motifs to 

canonical motifs (dark red); non-canonical motifs to solo half-motifs (blue); solo half-motifs to 

canonical motifs (light green); solo half-motifs to non-canonical motifs (light blue). 
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Figure 5.17.   Motif conversion in conserved NRSF binding sites between human, mouse and 

dog. (A) Motif transition matrix shows conversion between canonical motifs, non-canonical 

motifs and solo half-motifs in conserved NRSF binding sites across human, mouse and dog. 

Conversion directions from ancestral state to the conversion state include: canonical motifs to 

non-canonical motifs (red); canonical motifs to solo half-motifs (green); non-canonical motifs to 

canonical motifs (dark red); non-canonical motifs to solo half-motifs (blue); solo half-motifs to 

canonical motifs (light green); solo half-motifs to non-canonical motifs (light blue). (B) Non-

canonical motifs and solo half-motifs convert to canonical motifs at a significantly higher rate 

compared with reverse direction. 
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Figure 5.18.  Motif conversion in conserved NRSF binding sites in four species by applying 

embryonic stem cells in human and mouse. (A) Motif transition matrix shows conversion 

between canonical motifs, non-canonical motifs and solo half-motifs in conserved NRSF binding 

sites across four species. Conversion directions from ancestral state to the conversion state 

include: canonical motifs to non-canonical motifs (red); canonical motifs to solo half-motifs 

(green); non-canonical motifs to canonical motifs (dark red); non-canonical motifs to solo half-

motifs (blue); solo half-motifs to canonical motifs (light green); solo half-motifs to non-

canonical motifs (light blue). (B) Non-canonical motifs and solo half-motifs convert to canonical 

motifs at a significantly higher rate compared with reverse direction. 
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Table 5.1. 21 genes with multiple binding sites show site turnover in birth and death. These 

genes have at least two binding sites in at least one species. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gene birth/death Function
ALK hgbirth, mmdeath Neuronal orphan receptor tryosine kinase

CAMTA1 hgbirth, hgbirth, mmbirth, cfbirth Calmodulin binding transcription activator 1
CHST8 mmdeath, cfdeath Carbohydrate sulfotransferase 8
CNR1 hgbirth, cfbirth Cannabinoid Receptor 1

CNTN2 hgbirth, hgbirth Axonal contactin 2
CRTAC1 mmbirth, mmdeath Acidic secreted protein in cartilage

CTNNBL1 hgbirth, hgbirth, cfdeath Catenin Beta Like 1
DCLK3 hgbirth, cfbirth Doublecortin-Like Kinase 3
EXTL3 hgbirth, cfbirth Exostosin Like Glycosyltransferase 3

FSTL4 hgbirth, mmbirth Follistatin-like protein 4
Calcium ion binding protein

HIVEP3 hgbirth, hgbirth Human Immunodeficiency Virus Type I Enhancer Binding Protein 3
IQSEC1 hgbirth, hgbirth ADP-Ribosylation Factors Guanine Nucleotide-Exchange Protein 2

ISX hgbirth, hgbirth Pancreas-Intestine Homeodomain Transcription Factor
KCNIP1 hgbirth, cfdeath Kv channel interacting protein 1
LRFN2 mmbirth, mmbirth Synaptic Adhesion-Like Molecule 1
NEK11 mmbirth, hgdeath Never in mitosis A (NimA) related kinase 11
NTM mmbirth, eqdeath Neurotrimin
PAX5 mmbirth, cfbirth, hgdeath Paired box 5; B-cell lineage specific activator

SLC32A1 mmdeath, cfdeath Solute Carrier Family 32 (GABA Vesicular Transporter), Member 1
SRRM4 mmbirth, mmbirth Neural-Specific Serine/Arginine Repetitive Splicing Factor Of 100 KDa

TNR hgbirth, eqbirth Tenascin R
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5.6 Methods 

5.6.1 Tissue culture 

Mouse macrophage cells (RAW264.7, ATCC, Manassas, VA) were grown in DMEM medium 

(30-2002, ATCC, Manassas, VA) supplemented with 10% FBS (VWR, Radnor, PA) and 

penicillin/streptomycin (Life Technologies). Dog myelomonocytic leukemia cells (ML2, ATCC, 

Manassas, VA) were grown in RPMI-1640 medium (Life Technologies, Carlsbad, CA) 

supplemented with 1000 mM Hepes, 10mM MEM NEAA, 100mM Sodium pyruvate, 55mM β- 

mercaptoethanol, 10% FBS and penicillin/streptomycin. Horse skin fibroblast (E.Derm, ATCC, 

Manassas, VA) were grown in EMEM(30-2003, ATCC, Manassas, VA) supplemented with 10% 

FBS and penicillin/streptomycin. Trypan Blue (VWR) staining was performed before harvesting 

the cells for each assay to make sure that at least 90% of the cells were viable. 

 

5.6.2 ChIP-seq 

ChIP-seq experiments were performed on RAW264.7 (mouse, macrophage), ML2 (dog, 

myelomonocytic leukemia) and E.Derm (horse, skin fibroblast) following protocol adapted from 

Myer’s Lab [48].We cross-linked about 20 million cells with 1% formaldehyde for each 

replicate. Cross-linked chromatin was sonicated into 200-300bp fragments. DNA fragments were 

incubated with Dynabeads protein G (Thermo Fisher Scientific) bound by NRSF monoclonal 

antibody (Caltech Protein Expression Center, Pasadena, CA, USA, 12C11-1B11) overnight to 

perform immunoprecipitation. Then chromatin was reverse cross-linked to extract NRSF-bound 

DNA. After performing real-time qPCR to check NRSF binding enrichment, DNA fragments 

recovered from ChIPs were end-repaired, ligated to adapters, size selected (200 to 300bp) and 

PCR-amplified to make libraries for sequencing. Each species had two NRSF ChIP replicates 

and one negative control, which were sequenced on Illumina Nextseq500 platform.  

 

5.6.3 Published ChIP-seq experiments 

The following published ChIP-seq data were used: Human HL60 (promyelocytic ) and H1hesc 

(embryonic stem cell) NRSF ChIP-seq from HudsonAlpha ChIP-seq data 

sets,ENCODEproject.http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeH

aibTfbs/ [34]. Mouse embryonic stem cell NRSF ChIP-seq data was downloaded from 

GSE27148.  
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5.6.4 Reads alignment and peak calling 

ChIP and input sequencing reads were aligned using Bowtie v.0.12.8 [49] with parameters ‘-k 10 

-m 10 --best –strata’ to the following genome assemblies: human GRCh37/hg19, mouse 

GRCm38/mm10, dog CanFam3.1, horse EquCab2.0. After alignment, peaks were detected using 

MACS v.1.4.2 [50] with default parameters except ‘ –pvalue=1e-2 ’, retaining all statistically 

enriched peaks ( p<10-4.5). Peaks were considered reproducible when they were identified in both 

replicates. Consensus peaks were then merged and called subpeaks using PeakSplitter_Cpp v.1.0 

[51] with parameters ‘-c 10 -f -n 0 -l 0’. Subpeaks in 50bp were merged. Peaks having (1) higher 

signal in control than ChIP replicates in each species or (2) signal in control is higher than 1.4 

RPM in each species or (3) in Blacklist [34] in human and mouse were filtered out as artificially 

high signal peaks. 

 

5.6.5 Motif calling 

Known canonical RE1 motif PSFM (position specific frequency matrix) [52] was divided into 

PSFMs for two half-motifs, i.e. RE1-left, from position 1 to 10 and RE1-right, from position 12-

21. PSFMs for two half-motifs were used to scan within 200bp sequences centered on peak 

summit using MEME v.4.9.0_4 [53] with parameters ‘fimo --thresh 5e-3 --parse-genomic-coord’ 

respectively. Half-motifs have >50% motif occurrence score were accepted to detect canonical 

and non-canonical NRSF motifs. In order to find both types, we defined the distance between 

two half-motifs is between position 6 of RE1-left and position 16 of RE1-right (inclusive). This 

gives an 11bp distance in canonical RE1 motif and 10, 16-19bp distance in non-canonical RE1 

motifs. Any canonical or non-canonical RE1 motifs were accepted for each peak. Motifs only 

with left half-motif or right half-motif were accepted if they were >60% motif occurrence score 

and located within 50bp sequences centered on peak summit. For interspecies analysis, identified 

motifs were further performed with unambiguous motif analysis in peaks. We used the following 

procedure to confirm only one motif in each peak: (1) if canonical RE1 lies in peak, the one with 

highest occurrence score was accepted; (2) if non-canonical RE1 lies in peak but no canonical 

RE1, the highest score non-canonical RE1 was accepted; (3) if peak only has half-motifs, the 

highest score half-motifs within 50bp centered around peak summit was accepted. 
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5.6.6 Interspecies analysis 

Interspecies pairwise comparisons were performed by aligned identified binding instances 

between species in a reciprocal manner using UCSC liftOver [54] on genomic assemblies: 

human GRCh37, mouse GRCm38, dog CanFam3.1 and horse EquCab2.0. Each of the species 

was used as anchor species and the binding instances were mapped to the other three species 

with 50% minimum map ratio. Instances failing to be mapped in any of the other genomes were 

considered as unaligned instances and not used in comparisons. To identify conserved instances 

between two species, binding instances having orthologous regions overlapped a binding 

instance in the second species with at least 1bp were collected. Final pairwise conserved 

instances were confirmed by doing this comparison reciprocally, including human-mouse, 

human-dog, human-horse, mouse-dog, mouse-horse and dog-horse. Conserved binding instances 

shared in four species were collected as 4-species shared peaks. Conserved instances shared in 

any three species but not in 4-species shared peaks set were collected as 3-species shared peaks. 

Conserved instances shared between any two species but not in 4-species and 3-species shared 

peaks sets were considered as 2-species shared peaks. For each species, binding instances 

successfully aligning to any of the other three genomes but not overlapping with identified 

binding instances were collected as 1-species peaks. However, binding instances failed to align 

to all of the other three genomes were collected as unalignable peaks. 

 

5.6.7 Birth and death of species-specific NRSF binding instances 

Species-specific birth instances were identified in 1-species peaks set for each species. Peaks 

successfully aligning to all the other three genomes were collected as candidate list for further 

analysis: (1) candidate peaks were accepted when aligned regions in other genomes mapped to 

each other and overlap with minimum 1bp reciprocally. (2) candidate peaks were accepted when 

canonical or non-canonical RE1 were in target genome region and motif occurrence score was 

higher than the orthologous ones in the other three genomes. (3) peaks were further collected 

when mapping aligned regions in other genomes back to the target genome and overlap with 

candidate peaks. (4) peaks were filtered out when RPM of aligned regions in other species is 

higher than 1.   

Species-specific death instances were identified in 3-species shared peaks set for each species 

(e.g. human death instances were identified from mouse, dog and horse shared peaks set). Peaks 
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from the other three genomes successfully aligning to the target genome were collected as 

candidate list for further analysis: (1) candidate death instances were accepted when canonical or 

non-canonical RE1 were in the other three genomes and motif occurrence scores were higher 

than the orthologous one in target genome. (2) death instances were further collected when 

mapping region of the target genome back to the other three genomes and overlap with peaks. (4) 

instances were further filtered out when RPM of death instances in the target species is higher 

than 1. 

 

5.6.8 Transposable elements association analysis 

Repeat elements associated with birth and death instances were detected using RepeatMasker 

[37] annotation in each species: human GRCh37/hg19, mouse GRCm38/mm10, dog 

CanFam3.1/canFam3 and horse EquCab2.0/equCab2. Enrichment of repeat element families was 

evaluated using a binomial test adjusted by bonferroni correction with all experimental defined 

peaks for each species as random background. 

 

5.6.9 Indels association analysis  

Indels associated with human birth instances were detected using MAF files from hg19/GRCh37, 

multiz100way alignment (UCSC genome browser). Selected species include Human 

(GRCh37/hg19), Chimp (CSAC2.1.4/panTro4), Gibbon (GGSC Nleu3.0/nomLeu3), Rhesus 

macaque (BGI CR_1.0/rheMac3), Baboon (Baylor Pham_1.0/papHam1), Squirrel monkey 

(Broad/saiBol1), Bushbaby (Broad/otoGar3), Mouse (GRCm38/mm10), Dog (Broad 

CanFam3.1/canFam3) and Horse (Broad/equCab2). Insertions were identified if bases were 

missed/deleted in other species compared to human birth sites in orthologous regions. Deletions 

were identified bases were inserted in the other species compared to human birth sites in 

orthologous regions. Insertions and deletions were considered as associated with birth instances if 

they were in the motifs of birth sites.  

 

5.6.10 Associated genes and gene ontology analysis 

Gene annotations from Ensembl [55] were used to associate genes with peaks. Peaks were 

annotated by using annotatePeaks.pl with default parameters in HOMER [56]. Gene ontology 

analyses were performed with Metascape [57] with hypergeometric test p-value lower than 0.05.  
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5.6.11 Motif conversion analysis 

Motif conversion analysis was performed on deeply conserved (4-species shared) peaks. We 

define six types of motif conversion, including canonical motif to non-canonical motifs or half-

motifs, non-canonical motifs to canonical motifs or half-motifs and half-motifs to canonical or 

non-canonical motifs (e.g. canonical motif converting to non-canonical motif if canonical motifs 

in three of four species but non-canonical motif in the 4th species) and summed all of the 

noncanonical conversions. The significance of each motif conversion was evaluated by 

performing chi-squared tests corrected by Fisher’s exact test. 
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Chapter 6 

Future directions 

 

        In this thesis, I have explored the versatility of transcriptional and epigenetic control during 

development at both cellular and whole-individual level and how it is affected in disease as well 

as how it changes between species.  

         

        In Chapter 2, I show that DNA methylation changes can be used to distinguish individual 

rats with different early life experiences. This discovery benefits from the novel strategy we used 

to examine individual differences, in which we identify environmental effects by looking at 

intra-individual differences. Epigenetic changes within a short period of time in the same 

individual that is affected by maternal care leads to long term consequences for the behavior of 

adult rats. Several studies have shown that DNA methylation can be used as a predictor of tissue 

aging in human body. We find that rats with different early life experiences cannot be 

distinguished by only comparing methylation changes by comparing them as two homogeneous 

groups. Instead these methylation changes can distinguish younger individuals from older ones 

even within a week of postnatal development. However, the intra-individual differences of these 

methylation changes, i.e methylation level changes between two time points for the same 

individual, can be a powerful signature to distinguish individuals with adverse experiences. 

Based on this, we expect that this identified DNA signature is commonly shared in rat 

individuals and should be predictive if it is robust. To achieve this goal, we have to increase the 

number of individuals by generating additional cohorts of rats (For now we only have 2 cohorts 

with 11 and 8 individuals respectively) and check whether the same signature are shared across 

all cohorts. We could then apply machine learning methods, such as support vector machines and 

logistic regression, to train on the original cohorts as training sets to extract important features of 

different experiences and then test the prediction on rats from the new and validation cohorts. 

The number of differential methylation regions may be reduced after training and predicting with 

machine learning methods that can hopefully identify key DNA regions that could suggest how 

methylation changes would influence downstream target gene expression and further affect the 

maturation of brain and other organs in rats. We have observed high enrichment of transcription 

factors on these differential methylation regions, indicating that these signature regions regulate 
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target gene expression in response to different early life experiences. For the future collection of 

cohorts, we could collect RNA and DNA methylation at the same time in order to examine how 

DNA methylation regulates gene expression within the same pool of cells. While it is interesting 

that rodents show these pronounced epigenetic changes in response to early life experiences, it 

would be exciting if this DNA methylation signature of early life maternal also applied to human 

newborns. In this chapter, we extract DNA methylation from buccal swap samples and it has 

been shown that methylation patterns in buccal swab samples are actually closer to those in 

hippocampus than blood and other tissues. Buccal swabs is the least harmful method to extract 

DNA samples from human newborns, and thus our approaches was designed up front to be also 

applied in humans. However, it may be more difficult to extract DNA signature from human than 

rat newborns because the early life experiences in human are more complicated. While 

controlling the bedding condition is the only factor that influences the maternal care passing 

from rat mothers to newborns, many other factors may influence the caring conditions in the 

human case, such as food, living condition, and the level of mothers’ social involvement. Thus, a 

scoring system to evaluate each environmental factor is required for a human study and key 

features with highest variances can be also extracted by using computational methods. Given the 

complexity of the comparable human study, it will be necessary to collect more samples (n>100) 

to extract DNA and evaluate the predictive power of the differential methylation regions. It will 

be interesting to find whether a similar DNA methylation signature can be recovered in human 

samples and further distinguish human newborns with different early experiences. We expect to 

observe not only a conserved set of target genes regulated by these differential methylation 

regions in both human and rodent but a set of human-specific genes that are influenced by the 

adversity experiences drive the development of brain and other organs in human babies.  

 

        In Chapter 3, I present the first detection of DUX4 positive nuclei in FSHD2 myotube using 

single nucleus RNA-seq. These DUX4 positive nuclei share similar target gene expression to a 

larger set of nuclei with no DUX4 expression and further more than not all DUX4 and target 

genes are not always expressed together within the same nuclei. These results agree with a 

proposed model that DUX4 transcripts diffuse into cytoplasm and protein imported into adjacent 

nuclei to activate target gene expression. Then target genes that are TFs may also be imported 

into other nuclei and induce more “indirect” DUX4 target gene expression. Furthermore, 
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although only 2.1% of FSHD2 myotube nuclei express DUX4, we detect about 15% of FSHD2 

myotube nuclei express high level of DUXA (not in control), a paralog gene of DUX4 in human, 

and they are not co-expressed with DUX4 within the same nuclei. The function of DUXA in 

FSHD and its interaction with DUX4 are still unclear, but we hypothesize that DUXA may be 

one substitute disease-causing gene of DUX4 in those DUX4 negative FSHD myotube nuclei. 

However, the low percentage of DUX4 positive FSHD2 myotube nuclei may be also caused by 

the incomplete annotation of DUX4 gene in reference genome and therefore, reads may be mis-

aligned to other loci. Recent advances of the third-generation sequencing allow us to sequence 

genes with full-length transcripts and improve gene annotation without bias of assembling from 

short fragments. We can sequence FSHD2 myotube with third generation sequencing platforms, 

such as PacBio and Oxford Nanopore, to capture full-length transcripts not only for DUX4 but 

also for other interests genes like DUXA and DUX4 targets. By comparing with illumina 

annotated reference transcriptome, we can build a FSHD2-specific reference transcriptome with 

these updated transcripts and then use it to refresh the alignment of myotube nuclei to get more 

accurate expression levels of genes in FSHD pathogenesis. We also find that high DUX4 

expression may only be expressed at a precise stage during the maturation of FSHD myotubes. 

We hypothesize that there is a specific window of maturation of myotube and if FSHD myotube 

survive this critical window would have no DUX4 up-regulated later on; otherwise, 

developmental defects would happen to FSHD myotube. Experiments are needed to test this 

hypothesis by examining DUX4 and DUX4 target expression in a further differentiated 

myotubes and the regulation between DUX4 and myogenic TFs needs careful investigation. One 

of the most straightforward methods is to check myogenic TFs binding around DUX4 and vice 

versa. Interestingly, we also detect very high expression of the myoblast marker, desmin, in 

DUX4 positive nuclei no matter the expression level of myogenic markers such as CKM and 

myogenin. To understand the function of desmin in DUX4 activation, RNA FISH and 

knockdown experiments are required to check how DUX4, myogenic markers and desmin 

regulate each other. We also identify a specific set of TFs that show significantly higher 

expression in DUX4 positive target positive nuclei and they could be further tested to confirm 

whether they are novel DUX4 downstream genes. Although DUX4 expression is detected in 

individual myotube nuclei, we fail to detect it at a substantial level in pooled RNA-seq data. One 

of the possibility is that DUX4 expression is transient and we missed the right time-point to 
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capture it or that the transcript half-time is short. Thus, more experiments are necessary for 

understanding the dynamics of DUX4 expression effectively. For examples, we can apply single 

molecule fluorescence in situ hybridization (smFISH) to quantitate transcription and post-

transcription at the same time. In order to strengthen our conclusions, we should repeat our 

myoblast differentiation from other FSHD2 patients and examine whether they display similar 

DUX4 and targets expression patterns. Future studies should also focus on FSHD1, the major 

type of FSHD disease. It has been known that DUX4 is upregulated by different mechanisms in 

FSHD1 and 2, but DUX4 associated gene regulation is unclear in both. We hope that our 

understanding can be expanded by examining and comparing DUX4 related regulation in 

FSHD1 and FSHD2.  

         

        In Chapter 4, I study the role of epigenetic regulation during embryonic stem cell 

differentiation caused by changes in chromatin accessibility and its effect on gene regulation. I 

present the comprehensive view of gene expression and chromatin accessibility during endoderm 

differentiation in three mammalian species. Using open chromatin footprinting, we construct 

GRNs to understand gene regulatory networks controlling endoderm development. Although 

many TFs are involved in endoderm development and some of them are known to regulate each 

other, the direct targets of TFs and layer of gene regulation are still poorly understood in 

mammalian species. I have recovered many validated regulatory interactions based on the 

literature in other species in our GRNs but we still find more interactions that are novel and 

species-specific. These results may be caused by the limitations of sequencing depth in our 

current analysis or computation approaches, which may generate false-positive connections. 

Thus, experimental validation are necessary to refine the current version of GRNs. Experiments 

used for validating GRNs including ChIP-seq on specific TFs and perturbing GRNs by knock-

down the same TFs. Another limitation of our GRNs is that it is built based on selected TFs and 

genes, and thus we did not attempt to find novel TFs in endodermal development. To build 

GRNs automatically, we can adapt machine learning methods, such as decision trees, to build 

predictive model from our footprints results. In brief, we can build connections between TFs and 

target genes by scanning all footprints with motif database. Then a subset of these connections 

can be trained by decision tree to extract features of mostly enriched TFs and their target genes. 

To improve the accuracy, many rounds of training are needed and subset of connections is 
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randomly picked every time. By using the trained model, we can predict which TFs are more 

likely to activate endoderm differentiation and which ones tend to be repressive. One of the 

biggest advantages of our cross-species system is that we can train the model by using the 

conserved connections across species as those connections may be more representative to show 

common features of important gene regulation in endoderm lineage. One of the highlights in this 

study is to compare the conservation level of GRNs at the same stage across mammalian species. 

We show a higher conservation level in gene expression than chromatin accessibility during 

endoderm differentiation between species, indicating that a conserved set of genes are required 

for mammalian endoderm differentiation but they may be regulated by divergent sets of cis-

regulatory elements and corresponding TFs in different species. Previous studies have shown 

rapid turnover of cis-regulatory elements in orthologous regions between mammalian species. By 

only focusing on GRNs of stem cell and endoderm stages, we also show more extensive rewiring 

of GRNs in endoderm than the ones in stem cell stage. A technical explanation for this result 

may be the use of different media during endoderm differentiation in human and rodents. 

Although each medium can drive embryonic stem cells into endoderm commitment, the length of 

differentiation reflects that they activate different pathways during endoderm formation between 

human and rodents. In order to characterize this, we could try to apply human differentiation 

medium in rodents and vice versa. We know that the medium are not interchangeable between 

species as cells die in the other species’ medium before they reach the definitive endoderm stage. 

However, we can examine the changes in expression and chromatin accessibility profiles during 

the first 2 or 3 day of differentiation and compare them with the data we have collected. Another 

way to understand the effect of the medium is to introduce another primate species into our 

comparison system by differentiating in the same medium as the one used in human. In this way, 

we can first extract the conserved regulation within primate and rodent groups respectively and 

then further extract divergent regulation by only comparing the conserved modules between 

primates and rodents. Another advantage of the fourth species is that we can identify which 

regulatory linkages are more ancestral (shared in three species) or more recently evolved (only 

found in one species) and further identify the core, necessary regulatory linkages for DE 

differentiation in mammalian species.  
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        In Chapter 5, I propose a motif conversion model to explain the prevalence of canonical 

motifs for NRSF binding in mammalian genome. Although the repression of neuronal genes is 

conserved in mammalian species, NRSF binding is not always located at the same position for 

genes in different species. Our results reveal the rapid NRSF binding sites turnover in four 

species and that the canonical motif shows significantly high enrichment in conserved binding 

regions compared with other motif forms. By comparing NRSF ChIP-seq in four species, we can 

identify the ancestral motif form found in three of four species for each NRSF binding site and 

then observe the motif conversion from ancestral state to conversion state.  We calculated a 

significantly higher conversion rate from non-canonical and half-motifs to canonical motifs, 

which explain the accumulation of canonical form for NRSF binding in genome. Although 

NRSF is known to repress neuronal genes in non-neural cells, cell types used in this study are not 

consistent in four species (immune cells for human, mouse and dog but skin fibroblast for horse) 

and this inconsistency may result in the divergent binding shown in this study. Besides, this cell 

type inconsistency may also restrict the number of deeply conserved binding regions in four 

species and further introduce bias into the motif conversion model. In a future study, the 

comparison system should be updated to use the same cell types, such as the four species stem 

cell comparison system in Chapter 4, in order to evaluate the reproducibility of the motif 

conversion model. Similar as NRSF, other TFs like CTCF and TP53 also have different form of 

binding motifs and it would be worthwhile to examine our motif conversion model in these TFs 

to see whether this motif selection is a common phenomenon during mammalian evolution. This 

motif conversion strategy may be related to the effectiveness of TFs regulation on target genes. 

Thus, further experiments are necessary to examine the difference of those motif forms in 

mediating TFs regulation. NRSF is known to regulate target genes through a series epigenetic 

control, including methylation, co-factor binding and histone modification. Future studies should 

also focus on checking how motif selection is related to this regulation by integrating with other 

functional genomics assays, such as RNA-seq and BS-seq. 

 

 
 




