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ABSTRACT OF THE DISSERTATION

Large Scale Asynchronous Low-power VLSI Systems for Event-driven
Sensory and Neural Processing

by

Jongkil Park

Doctor of Philosophy in Electrical Engineering (Electronic Circuits and Systems)

University of California, San Diego, 2014

Professor Gert Cauwenberghs, Chair
Professor Peter M. Asbeck, Co-Chair

This dissertation investigates a low-power temporal event encoding imaging sen-

sory system front end and a neural computation analog VLSI backend embedded within

a custom scalable architecture enabling highly energy efficient processing of these event

streams. We explore the differences in event encoding and conventional computing em-

phasizing that computation and communication are data-driven and energy costs scale

with information transfer and processing. The application of this principle in the imag-

ing sensory system increases efficiency by ensuring that light intensity information

is gathered only when and where warranted by temporal change and spatial proxim-

ity. This temporal contrast detection imager having 128⇥128 pixel array die size of

xvii



5⇥5 mm2 and pixel size of 33⇥33 µm2 is fabricated in 0.18 µm CMOS. With sup-

porting asynchronous event-driven information compression we achieved 1.52 nJ per

pixel event detection and readout. Similarly for neural computation slow but densely

arrayed neural units are fabricated on a 4⇥4 mm2 die in 90 nm CMOS. We present a

65-k integrate-and-fire array transceiver (IFAT) on a single die implementing 65-k neu-

rons each with two compartments and four conductance based programmable analog

synapses at 18.2 Mevents/s per each quadrant at sustained peak synaptic event thro-

ughput and 22 pJ per synaptic input event in average. Operating at very low power

the IFAT is robust to noisy inputs and high throughput is enabled by an asynchronous

two-tier micro-pipelining scheme. This system is formed in a tree based hierarchical ad-

dress event routing (HiAER) architecture. HiAER is implemented in 5 Xilinx Spartan-6

FPGAs enabling 262k neurons and 262M synapses on a level of hierarchy, at 3.6⇥107

synaptic events per second per each 16k-neuron node in the hierarchy.

xviii



Chapter 1

Introduction

1.1 Neuromorphic Engineering

Spiking neural networks implemented using neuromorphic circuits are promis-

ing research tools for investigating the computational abilities of the brain [30,52]. Their

compact and low-power characteristics makes them ideal for emulating the brain’s per-

formance for robotic and mobile applications in real-world environments. Synthesis of

very large-scale silicon models of biological neural networks approaching the compu-

tational complexity and cognitive function of the human brain has long posed a grand

challenge in neuromorphic systems engineering and has been met with strengthened ef-

fort and enthusiasm in recent years. The challenge is not only one of massive scale in

biological neural networks, with billions of neurons and trillions of synapses, but also in

supporting flexible mechanisms to dynamically configure synaptic connectivity, driven

by neural activity, across all scales.

The various approaches to build a large-scale neuromorphic processor range

from custom built ARM cores integrated with specialized Network on Chip (NoC)

routers [25, 62, 74], custom digital implementations with quasi-asynchronous elements

helping to maintain synchrony [29, 53, 55] to standard OTA based neuron circuits with

wafer scale integration and connectivity [58, 70], analog quadratic integrate-and-fire

neuron sharing synapse, axon and dendrite with neighbor neurons implementing diffu-

sive neural network as layered in cortex [4, 45], and subthreshold CMOS VLSI analog

neurons with digitally controlled conductance based synapses [85].

1
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1.2 Silicon Retina Modeling

Despite tremendous advances in semiconductor technology and in our under-

standing of the mammalian retina, todays imaging technology for artificial vision is far

inferior to its biological counterpart. The mammalian retina is the gold standard in en-

gineering design as the most efficient image processor with superior coding and energy

efficiency. A low power silicon retina approaching some of the metrics of efficacy and

efficiency of the mammalian retina is of critical importance for neuromorphic object

recognition.

1.3 Integrate-and-Fire Array Transceiver

For modeling a neuron as computational basic unit in spiking neural networks,

many depths of neural and synaptic dynamics exist. Depending on levels of model-

ing detail, these range from a model of ion channel kinetics with hundred of differ-

ential equations and parameters for biological plausibility [28], to models of simpli-

fied conductance-based differential equations for computational efficiency [32,57]. The

leaky integrated-and-fire neuron model is a popular choice for implementing large scale

neuromorphic processor, because of its relative simplicity and its ability to emulate

many dynamical features of biological neurons [9, 32].

The Integrate-and-fire array transceiver (IFAT) is intended as a large-scale and

power efficent implementation of integrate-and-fire neurons. In previous work, the

IFAT neuron was realized using analog switched capacitor techniques and included 2k

neurons with large transistor feature size [27, 80]. The current IFAT includes single-

transistor conductance based synapse, with first-order linear dynamics. The conductance-

based feature enables more biological plausibility and the single-transistor implemen-

tation allows the integration of 65k neuron in a single chip [84]. In this dissertation,

we present a fully asynchronous pipelined structured event communication, enabling

low power and high synaptic throughput. This chip offers an ideal building block for

large-scale hierarchical neuromorphic systems [64].
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1.4 Event-driven Asynchronous System

Biological system has temporal sparsity of spike events such as average 10 Hz

firing rate per each neuron. Neuromorphic engineering takes this idea to build power

efficient computing hardware in analog VLSI. Temporal sparsity of spike events can be

implemented in a system driven by events, asynchronous system. The asynchronous

system is activated only when it needs to serve an event and idle when it doesn’t have

events request. It reduces system active time and dynamic power dissipation while

clock based digital system requires these. Fully asynchronous design has an advantage

of power consumption [50] achieving a sub-nonojoule energy efficient asynchronous

micro-controller [51]. Also, in large scale neural processor design, fully asynchronous

implementations [4,53,80] and globally asynchronous and locally synchronous [55,58]

approaches are presented.

1.5 Address Event Representation (AER)

In biological neural networks, action potentials (or “spikes”) traveling along ax-

ons carry neural information over long distances projecting to large numbers of other

neurons distributed over varying spatial scales [16, 76]. Naturally the question arises

whether similar principles of distributed communication with spike “events” can be em-

ployed for efficient and scalable computation across large networks of silicon systems.

The Address-Event Representation (AER) protocol was introduced as an efficient means

for point-to-point communication of neural spike events between arrays of neurons, in

which addresses of neurons are asynchronously communicated over a shared digital bus,

whenever they spike [7, 18, 42, 49, 77]. The AER communication protocol lends itself

directly to implementing synaptic connectivity in a dynamically reconfigurable man-

ner by routing address events through synaptic routing tables in memory, which map

presynaptic source addresses to postsynaptic destination addresses along with synaptic

parameters [27, 31, 47, 72, 78, 80, 83].

The virtual wiring of AER synaptic connections between neurons, residing in

programmable routing tables in memory, offers the flexibility to connect in principle

any pair of neurons. Such is not generally possible with hardwired synaptic array re-
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alizations, except for fully connected and hence relatively small networks of neurons.

Furthermore, AER synaptic connections can be freely created, updated, and pruned as

needed. In particular, Hebbian-like spike-timing dependent plasticity (STDP) and other

forms of adaptive updates in synaptic strength and connectivity based on spiking neural

activity can be conveniently implemented in the address-event domain, by monitoring

relative timing of presynaptic and postsynaptic spike events entering and exiting the

synaptic routing tables [81] or through more general forms of activity-dependent repro-

gramming of AER connectivity [1]. From a systems perspective, AER synaptic con-

nectivity further permits multi-chip integration of spike event-based sensory and neural

processing systems such as silicon retinae [8, 44, 48, 73], silicon cochleae [12, 41], and

systems comprising them for various applications such as object recognition [11], acci-

dent detection [24], word recognition [69], texture recognition [66], sequence recogni-

tion [60], among many others.

One intrinsic challenge of AER synaptic connectivity for large-scale neuromor-

phic systems is the limitation in bandwidth of the digital bus shared among all time-

multiplexed synapses. Advances in high-speed serial communication links using low-

voltage differential signaling (LVDS) [5, 20, 88] support bus bandwidths up to 100

Mevents/s at 16 bits per event. With peak neural firing rates up to 100 Hz, the num-

ber of synapses shared per AER bus is thus limited to millions, or thousands of neurons

for a typical 100-10,000 fan-out.

To mitigate this AER bandwidth limitation for very large-scale neuromorphic

systems, several solutions have been proposed to extend the standard single-bus AER

architecture using grid (or mesh) and tree inter-chip interconnect topologies. Neuro-

grid [4, 54, 56] employs linear grid and tree topologies in which global address events

are broadcasted across chips through multiple point-to-point AER buses, leading to im-

provements in overall point-to-point communication channel bandwidth although with

limited long-range connectivity. Two-dimensional grid topologies are also pursued in

systems with differing address event mapping schemes. SpiNNaker [39, 62] assigns

unique global addresses enabling direct neuron-to-neuron access across chips by imple-

menting larger local routing tables. Multicasting Mesh AER [87] stores router-to-router

connectivity rather than neuron-to-neuron connectivity in local routing tables, reducing
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table size by implementing address translation for local neural event routing. Wafer-

scale integration of 2-D AER grid multi-chip neuromorphic systems [21, 58] further

mitigates communication cost in chip-to-chip interconnectivity issue by connecting 450

chips on a single wafer through metal post-processing. Inter-wafer communication ex-

tends such systems to another larger level for longer range interconnects [71].



Chapter 2

Event-driven Temporal Contrast
Detection Imager

2.1 Introduction

Event-driven dynamic vision sensors with temporal change detection [6, 14, 43,

44, 68, 73] inspired by the biological retina enable effective high speed image capture

at reduced cost in power consumption and communication bandwidth. An important

attribute of retinal modeling that is often missing in event-driven dynamic vision sensor

designs is the range of spatiotemporal dynamics of signals feeding into the optic nerve,

which include both sustained and transient ganglion cell responses to complex visual

stimuli. Zaghoul et al [86] developed a silicon retina that accounted for several of the

spatiotemporal attributes of a range of ganglion cells, but at the expense of relatively

large power consumption, almost a factor thousand times larger than that of the mam-

malian retina. Other silicon retina designs have abstracted the biological model to highly

simplified spatial and/or temporal dynamics that lend to more efficient implementation

of a few attributes for practical use in a particular application. For modeling tempo-

ral dynamics, both asynchronous [6, 43, 44, 68, 73] and inter-frame change based [14]

architectures for temporal change detection have been presented. For instance, Licht-

steiner et al [44] presented an event-based image sensor for rapid change detection and

coding. This silicon retina modeled three key properties of biological vision: sparsely

6
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coded event-based output, representation of relative luminance change, and rectification

of positive and negative signals into separate output channels.

The lack of an on-chip ADC in purely event-based imager designs increases the

post-processing requirements on down stream signal processing. The presented work

enables fully asynchronous detection of temporal intensity change with simultaneous

random-access asynchronous ADC readout of intensity, facilitating efficient postpro-

cessing for spatiotemporal coding, e.g., [13]. Log-encoding of the intensity readout

with current-domain correlated double sampling provides 75 dB intra-scene dynamic

range.

2.2 Pixel and System Design

The dual-port architecture of the imager, providing independent simultaneous

asynchronous data streams for temporal contrast event registration and random-access

intensity readout, is illustrated in Fig. 2.1 (a). Row and column arbiters register ad-

dresses of output events coding threshold detection of temporal changes in pixel inten-

sity. Separate positive and negative thresholds for increasing and decreasing temporal

changes determine “on” and “off” output events, respectively. Linear feedback shift

register (LFSR) based arbitration of multiple simultaneous events aids in equalizing

coverage of event registration. Separate row and column decoders provide Independent

addressing of pixel selection for random-access asynchronous intensity readout. Inde-

pendent control over pixel location and readout time, separate from registered change

events, allows for spatiotemporal coding in visual processing, e.g., detection of motion,

or motion-based video compression. The selected pixel intensity readout is quantized to

10-bit digital output using an on-chip asynchronous ADC.

The simplified schematic of the pixel is given in Fig. 2.1 (b). Owing to loga-

rithmic relationship between photodiode current and voltage through MOS transistors

operating in subthreshold, voltage amplification is required in order to resolve a de-

tectable temporal change input to the comparator [6, 44, 68]. High-gain amplification

normally requires a wide range in capacitance values, reducing the available area in the

pixel for reasonable fill factor. An alternative approach in [73] employs transduction
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Figure 2.1: Asynchronous imager with temporal contrast threshold detection and si-
multaneous random-access digital readout. (a) System diagram, and (b) pixel circuitry.
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Figure 2.2: Timing diagram of (a) asynchronous temporal contrast event detection and
(b) random-access intensity readout.

and preamplification stages for higher overall gain while reducing capacitive ratio and

hence area. The current design implements two-stage amplification of the logarithmic

phototransduction, with offset compensation in the amplifiers through current-domain

correlated double sampling (CDS), and further voltage-domain CDS in the comparators

for on/off event detection.

The first amplifier stage encompassing the pMOS transistor load of the photocur-

rent contributes 1+C1/C2 gain. A source following internal to this amplifier buffers the

high-impedance photosensitive node prior to the C1||C2 capacitive load. The subsequent

inverting amplifier stage provides additional gain with factor C1/C2. The sensitivity of

the two-stage amplified voltage output VDIFF to relative change in pixel photo current

Iph is thus given by:

dVDIFF =
C1

C2
(1+

C1

C2
)
VT

k
dIph

Iph
(2.1)

where VT is the Boltzmann thermal voltage and k is the back-gate efficiency coefficient

of the pMOS transistor load. A modest capacitance ratio C1/C2 = 2 yields 6-fold ampli-
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fication in the logarithmic photoresponse, with a 2.1 mV voltage step for a 1% change

in light intensity at room temperature.

Correlated double sampling (CDS) in the second gain stage and subsequent

on/off event comparators reduces sensitivity to voltage offset due to transistor mismatch

at low change threshold values, while further allowing to dynamically reference the sig-

nal to the instantaneous intensity value upon the preset phase (PRE). On/off events are

registered through address-event representation (AER) logic and routed off-chip thro-

ugh fully asynchronous arbitration circuits. Self-timed event coding and registration is

illustrated in Fig. 2.2 (a).

In addition, a current-domain divisive-normalizing form of CDS provides com-

pensation for transistor mismatch and temperature variations in intensity readout. The

current-domain divisive normalization is obtained by CDS subtraction of the pMOS

logarithmic photoreceptor voltage response between signal and reference phases. To

provide the reference, a single global current reference IINJECT is steered into the pMOS

load of the selected pixel, bypassing the photocurrent, upon activation of INJECT. The

voltage difference is further CDS-sampled in the ADC. The timing control for current-

domain CDS, with reference current injection following sampling of the photosignal,

is illustrated in Fig. 2.2 (b). The signal GCONT in Fig. 2.2 (b) temporarily shunts the

1+C1/C2 gain of the first stage in Fig. 2.1 (b) to unity, preventing the dynamic range

of the photodiode current from saturating the readout and ADC. The resulting voltage

difference across CDS signal and reference phases is thus

VDIFF,CDS =�C1

C2

VT

k
log

Iph

IINJECT
(2.2)

independent of offsets in pixel amplification and readout source follower stages.

Global adaptation of the event detection thresholds to uniform temporal varia-

tions in light intensity, such as necessary under fluorescent and incandescent in-room

lighting, is performed through tracking of the common-mode of intensity signal VGLOB

node as a reference to dynamically adjusting the thresholds with unity gain. The VGLOB

global intensity signal is obtained by unity-gain capacitive coupling to the VDIFF nodes

across all pixels as shown in Fig. 2.1. The buffered VGLOB node is also used for external

monitoring of the common-mode intensity signal.
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Figure 2.3: Common-mode global voltage output VGLOB under uniform lighting with
sine, square and ramp generated intensity profiles at 90% modulation depth. Voltage
encodes the logarithm of intensity.
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Figure 2.4: Frequency response of common-mode global voltage output VGLOB under
variable frequency uniform lighting at 90% modulation depth.
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2.3 Experimental Results

Fig. 2.3 shows the VGLOB common-mode intensity output under varying uni-

form illumination stimuli controlled with an LED array in front of the bare imager, and

Fig. 2.4 shows the frequency response.

Fig. 2.5 (a) demonstrates the intra-scene dynamic range of the imager, mounted

with a 5.7 mm effective focal length, F/1.6 lens. The image shows a bright light bulb

of approximately 700 lux and an LED of approximately 40 lux visible within the same

scene. Current-domain CDS enables an intra-scene dynamic range up to 75dB in the

ADC output.

The change detection event-driven operation of the imager is illustrated in Fig. 2.6.

A printed pattern of vertical stripes was used as stimulus shown in Fig. 2.6 (a) and

moved in front of imager. In absence of movement, no events are registered except for

sparse noise events in Fig. 2.6 (b). During left or right motion of the stripe stimulus in

Fig. 2.6 (c) and (d), registered “on” and “off” events align at the leading and trailing

edges as expected.

Fig. 2.7 shows the IC micrograph and pixel layout. Die size is 5mm x 5mm

including pads and pixel size is 33um x 33um with 22.8% fill factor.

2.4 Conclusions

Table 2.1 summarizes the measured performance of the chip in relation to the

state of the art. The 128⇥128 pixel with on-chip asynchronous 10-bit ADC offers

random-access digital readout having 75 dB intra-scene dynamic range, operating at

12.6 mW power at 8.3 Mevents/s, or 1.52 nJ per pixel event detection and readout.

Chapter 2 is largely a reprint of material that was accepted to 2014 Biomedical

Circuis and Systems Conference : J. Park, S. Ha, C. Kim, S. Joshi, T. Yu, W. Ma and G.

Cauwenberghs, “A 12.6 mW 8.3 Mevents/s Contrast Detection 128⇥128 Imager with

75 dB Intra-Scene DR Asynchronous Random-Access Digital Readout”, IEEE Biomed-

ical Circuits and Systems Conference (BioCAS 2014), Oct 2014. The author is the

primary author and investigator of this paper.
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Figure 2.5: (a) Intra-scene dynamic range and (b) sample image of frame-scanned in-
tensity readout.
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(a) (b)

(c) (d)

Figure 2.6: Temporal contrast change threshold detection. (a) Striped print pattern
presented to the imager under indoors lighting (5 lux). (b) Received “on” and “off”
events (shown as white and black dots, respectively, over gray background) to static
presentation of the striped print pattern over a 30 ms time window. (c) Same, during
leftward motion of the print (�10�/s), and (d) during rightward motion (+10�/s).
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Figure 2.7: (a) Chip micrograph and (b) pixel layout.
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Chapter 3

A 65,536 Neuron Asynchronous
Micro-Pipelined Integrate-and-Fire
Array Transceiver

3.1 Introduction

Here, we presents a 65,536-neuron integrate-and-fire array transceiver (IFAT) as

a building block for large-scale hierarchical neuromorphic systems [64]. This chapter

extends a previous report [63] with additional measurements and characterizations of the

entire array of neurons. In Section 3.2, we describe circuit implementation. Conduc-

tance based synapse dynamics [83] motivating pulse width and amplitude modulation

(PWAM), two-compartment integrate and fire neuron model, fully asynchronous address

event routing and registration and a two-tier micro-pipelining scheme are described. In

Section 3.3, we present measurement results. We demonstrated peak throughput en-

abled by a two-tier micro-pipelining circuit and power efficiency presented as synaptic

event per energy. Also, we characterized representative neuron dynamics and variability

over neuron array core. Finally, Section 3.4 summarizes related and prior works and

concludes with a discussion on IFAT.

17
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Figure 3.1: (a) Chip micrograph. One quadrant is indicated containing eight 2k-neuron
IFAT core arrays. (b) 2k-neuron IFAT core and (c) two-compartment neuron cell layout.
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Figure 3.2: (a) Two compartmental leaky integrated-and-fire neuron model with
conductance-based synapse. (b) Implemented two-compartment conductance based
neuron circuit. A three-transistor dynamic latch holds VSEL to select one active synapse
element on the row while a pulse width modulated input at voltage VS activates the
synapse. Proximal and distal conductively leaky membrane compartments, each with
two synapse circuits, are conductively coupled. An axon hillock circuit [80] generates
and registers action potential output events resetting the proximal compartment mem-
brane voltage Vmem.

3.2 Implementation

The 4⇥4 mm2 IFAT chip was fabricated in a 90-nm CMOS process. With 436

staggered I/O pads, it was packaged in a 35⇥35 mm2 body with 1.27-mm pitch Fine

Ball Grid Array (FBGA). Each two-compartment neuron occupies 12.15⇥11.5 µm2.

The chip micrograph and layouts of the 2k neuron IFAT core and the neuron cell are

shown in Fig 3.1.

3.2.1 Two-compartment Integrated-and-fire Neuron Model

The neuron is modeling a two-compartment leaky integrated-and-fire neuron,

shown in Fig. 3.2 (a), as following equation.
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Cmem1
dVmem1

dt
= I f b + Â

j=2,3
Gsyn, j(Erev, j �Vmem1)

+Gleak1(Eleak1 �Vmem1)

+Gcomp(Vmem0 �Vmem1) (3.1)

where Cmem1 is proximal membrane capacitance, Vmem0 and Vmem1 are the distal and

proximal membrane voltages, respectively, I f b is the nonlinear positive feedback current

due to the spiking mechanism, Gsyn is synapse conductance, Erev is reversal potential

voltage, Gleak is leak conductance, Eleak is leak voltage, and Gcomp is compartment

conductance. The distal membrane voltage Vmem0 follows similar dynamics.

The neuron circuit is shown in Fig. 3.2 (b) implementing a two-compartment

conductance-based integrate-and-fire neuron. Each compartment is tied to two con-

ductance based synapse circuits with programmable reversal potentials Erev and time

constants Vt . The incoming event selects one of four synapse circuits through pairwise

complements ROWA, ROWB and COLA, COLB. VSEL holds the active low selection of

one active synapse across the row, driving its pMOS diode-connected input with source

voltage Vs to increment synaptic conductance in the log-domain, implementing a linear

dynamical synapse with variable time constant set by Vt [84]. After a pulse width Dt,

Vs returns to ground, and RSTLATCH is activated to release VSEL passive high, readying

the row for activation of the next synaptic input event. Separate proximal and distal

membrane compartments integrate currents from the synaptic, leak, and coupling con-

ductances in continuous time. An AER self-timed axon hillock circuit [80] fires an

action potential when the proximal membrane voltage reaches a threshold, registering a

neural event on the output AER bus and resetting the membrane potential.

3.2.2 Conductance-based Synapse

Fig. 3.3 shows single transistor implementation of conductance based synapse

presented in [83]. It is formulated from the drain current of nMOS transistor operating
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Figure 3.3: Implementation of a synapse with single-transistor log-domain conduc-
tance [83]. The synapse conductance update DGsyn is determined by the input pulse
width Dt and its amplitude Vs according to Eq. (3.6).

in sub-threshold regime as follows:

Id = I0e
kVg
VT (e

�Vs
VT � e

�Vd
VT ) (3.2)

where I0 is the transistor’s dark current, Vg is the gate voltage, Vd is the drain voltage,

Vs is the source voltage, k is the back gate parameter, and VT is the thermal voltage.

It can be transformed to ‘log-domain’ or ‘pseudo-voltage domain’, with definition of a

pseudo-voltage and pseudo-conductance [23].

I = Gsyn(Erev �Vmem) (3.3)

where pseudo parameters of conductance Gsyn =
I0
VT

e
kVg
VT , pseudo parameters of reverse

potential Erev = �VT e(�
Vd
VT

), and pseudo parameters of membrane potential Vmem =

�VT e(�
V s
VT

).

From the pseudo parameter of conductance, we can derive synaptic conductance

update with respect to time domain.
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Ipmos = Ipe
Vs
VT e�

kVg
VT (3.5)

DGsyn =
kInIp

V 2
T Csyn

e
Vs
VT Dt (3.6)

where In and Ip are the sub threshold pre-exponential current factor of nMOS and pMOS,

and Csyn is synapse capacitor.

The synaptic strength is pulse width Dt and amplitude modulation VS (PWAM)

encoded, and the resulting step in synaptic conductance DGsyn is approximately given

by:

DGsyn µ (1+
W
16

)2A (3.7)

where:

1. W encodes relative pulse width over baseline, representing the mantissa as given

in integer units (0..15) by the 4-bit LSBs of the 8-bit digital synaptic strength; and

2. A encodes pulse amplitude in the log-domain, representing the exponent in integer

units (0..15) as given by the 4-bit MSBs of the digital synaptic strength.

3.2.3 Overall Architecture

The IFAT uses the address event representation (AER) [7, 18, 42, 49, 77] of neu-

ron locations on 2-D arrays to route synaptic input events into each 2k-neuron IFAT core
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Figure 3.4: 2k-neuron Integrate-and-Fire Array Transceiver (IFAT) core with row and
column decoders for input synaptic events, and row and column arbiters for output neu-
ral spike events arbitration. An event-triggered linear feedback shift register (LFSR)
generates pseudo-random sequences in arbitrating multi-scale dyads of coincident out-
put events (not presented here).
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array, and register neural spike events out of each array, using separate input and out-

put AER asynchronous digital buses. Each synaptic input event carries information on

neuron address, synapse type, and synaptic strength. Previous pulse width modulation

for synaptic strength implemented in synchronous AER logic incurred long wait times

between subsequent events into each 2k-neuron core [83]. To mediate its limitation on

throughput of the input event stream while further extending dynamic range of synap-

tic strength, an additional pipeline stage with pulse width and amplitude modulation

(PWAM) is implemented for each row in the 2k-neuron core.

Fig. 3.4 shows the circuit implementation of the 2k-neuron integrate-and-fire

transceiver (IFAT) core. Each 2k-neuron IFAT core includes an asynchronous AER

communication circuit, PWAM circuits, decoders, and arbiters surrounding the array.

Fully asynchronous communication with four-phase dual-rail encoding is implemented

in input and output AER buses.

3.2.4 Four-phase Dual-rail Encoding Asynchronous Interface

In asynchronous designs, valid data transfer between sender and receiver needs

to be guaranteed in any cases. While synchronous designs use a master system clock for

data synchronization, asynchronous designs have a reliable data communication proto-

col mediated by “handshaking” with request and acknowledge signals. Among hand-

shaking protocols [50], four-phase dual-rail encoding protocol is implemented in current

chip. “Four-phase” means that it requires four phases of request and acknowledge se-

quences. “Dual-rail” means that each bit is encoded in two lines for delay-insensitive

operation. This protocol requires C-elements (or Muller circuits) [59], each of which

holds the output value until it receives the same value in both inputs. The circuit imple-

mentation, schematic symbol and truth table of C-elements are presented in Fig. 3.5 (a)

and (b).

Circuit implementation of N-bit asynchronous pipeline stage with four-phase

dual-rail encoding protocol is shown in Fig. 3.5 (c). Four-phase dual-rail protocol does

not have explicit request signal but dual-bit line embed it. Each bit of data is encoded in

two lines, TRUE and FALSE. TRUE bit represents actual bit value of the data and FALSE

bit is complementary of it. If TRUE and FALSE have different values, these represent
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Figure 3.5: (a) Circuit implementation and (b) schematic symbol and truth table of
C-element (or Muller circuit). (c) N-bit asynchronous pipeline stage. One bit represen-
tation in dual-rail encoding scheme with C-elements is shown in dashed box. Input data
are latched when current stage is available, ACK is low. Completion tree, C-tree noted in
figure, is tree of C-elements. It decides data packet is latched properly and acknowledge
to previous stage.
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valid bit value as in TRUE and a request signal to next stage. On the other hand, if both

are same values, it means that bit lines are transitioning and are not representing valid

data. Completion tree, C-tree (tree of C-elements) shown in Fig. 3.5 (d), validates all bit

lines are properly latched and acknowledge to previous stage.

3.2.5 Asynchronous Splitter and Merger

64k neurons are arranged in four identical quadrants of 16k neurons, each quad-

rant containing eight 2k-neuron IFAT cores. 16k-neuron quadrant shares one digital in-

put bus and one output bus. It requires asynchronous splitter to distribute and merger to

combine address events properly on shared bus. An asynchronous splitter, implemented

with chain of asynchronous pipeline stage shown in Fig. 3.5, broadcasts input synaptic

event to each 2k neuron core. An asynchronous merger multiplexes neural spike outputs

from each neuron core.

Input synaptic events are encoded as 24-bit address event, consisting of 3-bit

of destination array, 13-bit of address and synapse type in 2k neuron core, and 8-bit of

synapse strength. Asynchronous splitter decodes request signal from 3-bit MSB of input

address events indicating destination array.

Output neuron spikes are encoded as 11-bit address event, representing a neuron

address out of 2k neuron core, at 2k neuron core output stage. Asynchronous mergers are

placed in diadic fashion, where two paths are sharing an output bus. One MSB is added

on address event when it passes through each stage of merger. After event passes through

three stages from each array to output bus, all three bits of MSB indicate one of arrays

in a 16k-neuron quadrant. Therefore, an address event, which goes to micro controller,

is a 14 bit address event representing one neuron out of 16k neurons. Fig. 3.6 shows

an arbitration circuit and one stage of N-1 bit asynchronous merger implementation.

Arbitration circuit (Fig. 3.6 (a)) consists of two cross-coupled NAND gates and arbitrates

two simultaneous events from two paths. This selects request signal, which will be

acknowledged. This selection represents one MSB that will be added on address event

after event passes through this stage. One stage of N bit asynchronous merger is shown

in Fig. 3.6 (b) and consists of an arbitration circuit and N bit asynchronous pipeline

stage in Fig. 3.5 (b).
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Figure 3.6: (a) Arbitration circuit consisting of two cross-coupled NAND-gates. (b)
Asynchronous merger circuit consisting of arbitration circuit shown in (a) and N-bit
asynchronous pipeline stage (shown in Fig. 3.5 (c))
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Figure 3.7: (a) Input asynchronous AER distribution network coordinating row-wise
pulse width and amplitude modulation (PWAM) of synaptic strength, using 21-bit wide
AER address, of which AER<9:8> determine synapse type. (b) Single-row PWAM circuit
schematic. AER<7:0> contains the synaptic strength delivered with the REQDATA These
bits are latched onto the SWITCH<7:0> bus. The 4 LSBs select the comparator reference
voltage VREF defining the pulse width of the synaptic stimulus, while the remaining 4
MSBs define its amplitude Vs
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Figure 3.8: Timing diagram for AER input distribution (Fig. 3.7(a)) and pulse width and
amplitude modulation (PWAM (Fig. 3.7(b)) circuits with two consecutive input events
on the same row

3.2.6 Two-tier Micro Pipelining Scheme

The delivery of each address event packet is mediated by on-chip asynchronous

request (REQ) and acknowledge (ACK) signals. Fig. 3.7 (a) and (b) show the asyn-

chronous AER communication circuit and PWAM circuit enabling two-tier micro-pipeli-

ning of the input event stream to each neuron array. The first event is served directly

with a latency Tlatency determined by the event handshaking between asynchronous AER

circuit and the PWAM circuit described in Fig. 3.7 (a) and (b), respectively. If the first

event is latched, the BUSY signal is enabled and next event is held until the BUSY signal

is released by RSTACK , waiting Twait for completion of a synaptic pulse. The timing

for two consecutive spike input events targeting neurons in the same row is shown in

Fig. 3.8.
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Figure 3.9: Measured throughput. Input spike streams address neurons in the same row
and interleaved to multiple rows, from 8 to 64.

3.3 Measurement Results

3.3.1 Throughput

In the presented architecture, the throughput can be defined as follows:

T hroughput =
1

Tlatency +Twait
(3.8)

where Tlatency is the average event handshaking latency and Twait is the average waiting

time in the case an incoming event addresses a neuron of the same row with the previous

event as noted in Fig. 3.8. Twait is proportional to Dt/Ninterleave where Dt is the input

pulse width, and Ninterleave is the number of interleaving rows.

The measurement of the throughout is shown in Fig. 3.9. A spike input stream

with maximum width and addressing the 32 neurons of a common row results in a

70.6 kevents/s throughput. As shown in Fig. 3.9, interleaving input spikes to multiple

rows results in a higher throughput, as predicted by Eq. 3.8. When we interleave all
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Figure 3.10: Measured input activity-dependent power consumption.

spike inputs to multiple rows the waiting time at the row pulse width modulation circuit

is avoided, and we measure 18.2 Mevent/s per quadrant. The throughput for all four

quadrants is thus 73 Mevents/s.

3.3.2 System-level Energy Efficiency

Each neuron in the brain projects to an average of 10,000 neurons. For this rea-

son, the power consumption of biologically inspired neural network models is primarily

governed by synaptic spike input. Fig. 3.10 shows power consumption as a function

of synaptic input event rate. Power consumption increases linearly with the spike input

event rate. We measured power consumption until the event rate reached the maximum

throughput capability. At the maximum throughput of 73 Mevents/s, we measured a cur-

rent draw of 1.31 mA from the 1.2 V analog supply, resulting in a total power dissipation

of 1.572 mW, or an overall energy efficiency of 22 pJ/spike.
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Figure 3.11: Neural activation function measured with inputs consisting of Poisson
spike trains and regular spike trains. Insets: representative trace of the membrane poten-
tial for Poisson input (top left) and regular input (bottom right). Measured log-domain
membrane potentials are shown exponentiated, indicated by the asterisk symbol. Input
and output spikes are indicated by the top and middle rows of bars, respectively.

3.3.3 Neural Activation

We measured neural activation defined as the output event rate versus input event

rate, using Poisson spike trains and regular spike trains. Fig. 3.11 shows the neural acti-

vation of one representative neuron. The shape of this activation function is threshold-

linear and consistent with that of a leaky integrate and fire neuron model, where the

threshold is caused by the leak. In the case of Poisson spike trains, the fluctuations

in the input tend to smooth the activation function, as expected from studies of noisy

integrate and fire neuron models [26].

3.3.4 Frequency Response

We measured input spike rate dependent response varying input spike rate from

500 Hz to 10,000 Hz. The interspike intervals of the input spike trains were generated

using a Poisson process of constant mean rate. Fig. 3.12 shows the frequency response

of one representative neuron varying input frequency (Fig. 3.12 (a)), and the gain defined



33





Figure 3.12: (a) Frequency responses measured with Poisson spike input trains of rates
from 500 Hz to 10,000 Hz. (b) Measured gain defined as output spike rate over input
spike rate.
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as output spike rate over input spike rate (Fig. 3.12 (b)). Synapse time constant is shorter

than membrane time constant so that input spike event integrates membrane potential.

The neural output event rate saturates at high synaptic input strength because each input

spike produces an output spike.

3.3.5 Neuron Response Variability

 

 












Offset

Slope

Figure 3.13: (a) Output spike rates as a function of 8-bit synaptic digital weight, which
were measured from 32 neurons in one row with 10,000 Hz mean rate Poisson spike
train in one second measurement. (b) Aligned neuron responses to mean of offset where
output frequency gain is 0.1, while slope is defined as output spike rate increment in a
decade per unit of digital weight. (c) Histogram of offsets measured from 2,048 neurons
in an array. (d) Histogram of slope measured from 2,048 neurons in an array. Slope is
distributed in mean of 0.0185 and standard deviation of 0.0068.

Due to transistor mismatches in transistor subthreshold operation regime, we

expect to have variabilities of neuron response across a chip. Offset of neuron spike
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is a major variability in neuron response caused by threshold transistor mismatch in

an axon hillock circuit. While offset can be compensated by learning in address event

domain [81], variation of response slope linearity is consideration.

Fig. 3.13 shows measured offset and slope of multiple neurons in a row and

an array. Fig. 3.13 (a) shows output frequency responses measured from 32 neurons

varying digital weight from 0 to 255 with input spike event trains of 10,000 Hz where

interspike intervals were distributed in Poisson distribution. After shift lines to mean of

offset, it is aligned to a mean of response shown in Fig. 3.13 (b). We defined a slope

as a output spike rate increment decade per unit digital weight where neuron is in log-

domain linear response regime. Fig. 3.13 (c) and (d) show histogram of offset and slope

measured from an 2,048 neuron response in an array.

3.3.6 Linear Synapse Response Model

Current injection to the leaky integrate-and-fire neuron model is formulated as

follows:

Iin j =Cmem
dVmem

dt
= gext(Eext �Vmem)

+ ginh(Einh �Vmem)

+ gleak(EL �Vmem) (3.9)

where Cmem is membrane capacitance, Vmen is membrane voltage, gext and ginh are con-

ductances of excitatory and inhibitory synapse, Eext and Einh are reversal potentials of

excitatory and inhibitory synapse, gleak is leak conductance, EL is leak voltage, and

Vmem is membrane voltage. To obtain simple neural response model we approximate the

above terms as follows:

Iin j = gextEext +ginhEinh (3.10)
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Figure 3.14: Measured output frequency varying excitatory and inhibitory input fre-
quency from 0 to 2,000 at digital weight of 80.

As a first order approximation, we assumed that the conductance is equal to the total

input spike train times a nominal synapse weight:

gsyn µ Â
n

fin,nwn = fin,e f f wnom (3.11)

where gsyn is conductance of synapse, fin,n is frequency of nth input spike train, wn is

synapse weight of nth input spike train, fin,e f f is sum of all input spike train frequency

and wnom is the nominal synapse weight of input spike train Given the first order ap-

proximation, the output frequency of the spike train is a sum of excitatory and inhibitory

synaptic input spike trains with nominal weights

fout = [ fin,e f f wnom = fext,e f f wnom � finh,e f f wnom]
+ (3.12)

Fig. 3.14 shows measured frequency output varying excitatory and inhibitory synapse

input frequency from 0 Hz to 2,000 Hz at nominal digital weight 80. We used it as a

model of neuron response for orientation tuning curve and boundary detection.



37

Figure 3.15: Tuning curve measurement results. The mean output frequency is plotted
as a function of input bar stimulus orientation. Pixel size of bar stimuluses and orienta-
tion selective kernels are 15⇥15. When these are convoluted to compute tuning curve,
pixel intensity of stimulus and orientation selective kernel represent synapse weight and
synaptic input frequency respectively. Each data point is mean of 30 times measurement
of 1 second stimulation each. Solid lines show simulation models from output frequency
map shown in 3.14.
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3.3.7 Orientation Tuning Curve

Orientation tuning curve is an output neural response defined as function of stim-

ulus orientation convoluted to orientated filter. It is a typical measurement to character-

ize orientation selectivity in visual cortical neurons. Measured orientation tuning curves

are shown in Fig. 3.15. We used 15⇥15 pixel bar stimulus rotating 5� from 0� to 180�

and four orientations of Gabor kernels, 0�, 45�, 90�, and 135�. Stimulus pixel inten-

sity and Gabor filter intensity are translated to input synaptic spike rate and strength

respectively. Output spike rate is defined as follows:

fout = [
15

Â
i=1

15

Â
i=1

fini, jwi, j]
+ (3.13)

where i and j are index of pixel position, fout is an output spike rate, fin is a input

synaptic spike rate and w is input synapse weight.

Each data point, shown in Fig. 3.15, is mean of 30 measurements and error bar

represents one standard deviation. Each measurement runs one second input spike train.

Solid lines show simulation model from output frequency mapping shown in Fig. 3.14

with first order approximation of leaky integrate-and-fire neuron model.

3.3.8 Boundary Detection

We show image boundary detection with a input image size of 113⇥75 pixels

shown in Fig 3.16 (a) and 15⇥15 pixel kernels shown in Fig 3.16 (b) at first column.

Same with orientation tuning curve measurement, stimulus and kernel pixel intensity are

translated to input spike rate and input synapse strength respectively. Second column of

Fig 3.16 (b) shows simulation models from the output frequency response map shown

in Fig. 3.14. Measured results from IFAT are shown in Fig 3.16 at third column.

The neural engineering framework (NEF) is an increasingly popular tool for

building generic dynamical systems using spiking neural networks [19]. Recently, the

NEF demonstrated the performance of cognitively useful tasks using large-scale simula-

tions of neurons It is of particular interest for analog VLSI implementations of neurons

because it exploits the variability inherent to the circuits. The basic capability of the
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Figure 3.16: (a) 113⇥75 pixels input image (b) Image boundary detection results with
simulated model from first order approximation of leaky integrated-and-fire neuron
model and chip measurement outputs. 15⇥15 pixel patch convoluted with each degree
of boundary detection kernels shown at first column.
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Figure 3.17: Measured interactions between the two compartments of the neuron. The
distal compartment of the neuron is strongly excited, resulting in an excitatory input in
the proximal compartment and the firing of the neuron. At 50ms, the proximal compart-
ment is inhibited. This shunting inhibition blocks the effect of the upstream excitation.

NEF is to generate a spiking neural network obtained by linearly combining the firing

rate transfer curves optimally, according to the desired encoding function. This com-

bination usually requires configuring synaptic weights with high precision. Previous

neuromorphic implementation have made use of synaptic stochasticity to overcome the

requirement of high precision synaptic weights [15]. The current IFAT features a wide

dynamical range and precision of the synaptic weights, making it possible to realize

such networks without using synaptic stochasticity. Indeed, some of the steps used in

the configuration of the edge detection neurons presented in this section are functionally

equivalent to the ones used internally in the NEF.

3.3.9 Shunting Inhibition

The implemented two-compartmental neuron model is a distinguishing feature

of this circuit compared to most existing implementations of integrate and fire neurons.

The conductance between the compartments is configurable, allowing the distal and the

proximal compartments of the neuron to interact more or less strongly. Fig. 3.17 il-
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lustrates such an interaction in an example of shunting inhibition, where the excitatory

synaptic current from the distal compartment is shunted by inhibition at reversal poten-

tial near rest in the proximal compartment.

3.4 Conclusions

We present a fully asynchronous 64k integrate-and-fire neuron array transceiver

with 22-pJ/event energy efficiency and a two-tier pipeline circuit enabling 73-Mevents/s

throughput.

Table 3.1 summarizes measured characteristics of the IFAT chip in relation to

state of the art. Biophysical detail in compartmental conductance-based dynamics is

afforded without compromise in area density and energy efficiency. Sustaining high ef-

ficiency in system-level interfacing of the IFAT chip for large-scale neuromorphic com-

puting calls for future work in vertical integration of hierarchical address-event routing

(HiAER) and synaptic routing tables (SRT) [64] using hybrid CMOS-memory technolo-

gies.

Chapter 3 is largely a reprint of material that was accepted to 2014 Biomedical

Circuits and Systems Conference : J. Park, S. Ha, T. Yu, E. Neftci, and G. Cauwen-

berghs, “A 65k-Neuron 73-Mevents/s 22-pJ/event Asynchronous Micro-Pipelined Int-

egrate-and-Fire Array Transceiver”, IEEE Biomedical Circuits and Systems Conference

(BioCAS 2014), Oct 2014. The author is the primary author and investigator of this

paper.
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Chapter 4

Hierarchical Address-Event Routing
Architecture for Reconfigurable Large
Scale Neuromorphic Systems

4.1 Introduction

This chapter focuses on hierarchical address-event routing (HiAER) as a multi-

scale tree-based extension on AER synaptic routing for dynamically reconfigurable

long-range synaptic connectivity in neuromorphic computing systems. The HiAER

synaptic event routing infrastructure serves as a communication backbone to integrate-

and-fire array transceivers (IFAT) [27,80,84] and other event-driven spiking neural net-

work hardware systems, e.g., [31, 47, 72, 78], the details of which are beyond the scope

of the present chapter. Using results from queueing theory we previously showed that

HiAER offers scalable synaptic event throughput, independent of neural network size,

for given synaptic fan-out and nominal axonal delay, and without restriction on spa-

tial range of synaptic connectivity [36]. Another distinguishing feature of HiAER is

that synaptic connections code not only programmable synaptic strength (probability of

presynaptic release and postsynaptic conductance) but also programmable axonal delay,

implemented in the timing of events routed from source to destination. In Section 4.2,

we describe fundamentals of HiAER and its edge-vertex-dual like mapping of flat arbi-

43
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Figure 4.1: (a) Hierarchical neural network with ascending and descending neural pro-
jections. Physical neurons are represented by o and p, and inserted relay neurons (RN)
interfacing across hierarchical partitions are denoted by q,k, l,n,m. Italic indices j and
j�1 represent levels in the hierarchy, while boldface indices i and i�1 represent indi-
vidual blocks within one level in the hierarchy. (b) The edge-vertex-dual of the hierar-
chical routing network. (c) Example of entries within the Synaptic Routing Table (SRT)
shown in (b).

trary network topology onto hierarchically partitioned multi-scale local networks, with

relay neurons interfacing between consecutive scales in the hierarchy. In Section 4.3, we

describe implementation of the HiAER inter-bus routing node including memory inter-

faces to local routing tables and priority queue for timed event registration and delivery.

Section 4.4 validates scaling properties of HiAER nominal throughput and latency in a

field-programmable gate array (FPGA) based experimental platform on a custom printed

circuit board (PCB) realizing two levels of HiAER each with branching factor of four.

A nearly four-fold improvement in combined throughput and latency are demonstrated

for HiAER across four routing nodes, in comparison to single-node AER as previously

reported in [64]. Finally, Section 4.5 concludes with a discussion on HiAER advantages,

limitations, and extensions.

4.2 Hierarchical Address Event Routing

4.2.1 Global Synaptic Connectivity and Axonal Spike Transmission

The efficient and scalable emulation of biological networks with VLSI learning

systems requires abstraction of various biological details to ease the implementation and

analysis of such networks. In biological neural networks neural spikes, which are elec-
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Figure 4.2: (a) Example network with 16 neurons and weighted synaptic connections.
(b) Example partitioning into hierarchical neural network with ascending and descend-
ing projections through inserted relay neurons. (c) Corresponding edge-vertex-dual Hi-
AER implementation with synaptic routing tables (SRT) at each level in the hierarchy.
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Figure 4.3: (a) Simplified system architecture of a HiAER node at Level 1 (leaf in
the hierarchy), routing synaptic events through the Synaptic Routing Table (SRT) be-
tween physical neurons in the local Integrate-and-Fire Array Transceiver (IFAT) and
relay neurons on the L1 bus. The SRT maps incoming events from any neuron onto
outgoing events either to the final synaptic destination on the IFAT (along with synaptic
strength w), or up the hierarchy through the L1 bus (along with timing information for
axonal delay d). (b) Digital system architecture of a HiAER node at Level n > 1 (higher
in the hierarchy), largely identical to Level 1 except for substitution of the IFAT with a
Ln�1 bus, and of the L1 bus with a Ln bus. In the absence of physical neurons, events
are transmitted only between relay neurons higher and/or lower in the hierarchy (along
with timing information for axonal delay d).
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trical pulses, originate in the axon hillock of a neuron, and propagate through the axon

of the neuron via synapses of varying coupling strengths to one or several dendrites of

receiving neurons, and within the receiving neurons to their cell bodies (soma), where

a sufficiently high total amount of excitation by spikes gives rise to another spike. In

the case of VLSI implementation where artificial neural arrays emulate such spiking

neurons, we can uniquely identify each neuron in such an array by some address A,

e.g., its (x,y) coordinates within that array. Similarly, a combination of various synap-

tic properties can be grouped together and represented by the connection strength (such

as postsynaptic conductance, or presynaptic release probability) w, and axonal trans-

mission delay d for that synapse. Thus, the triplet (A,w,d) encodes each spike event

electronically as a digital event.

4.2.2 Hierarchical Neural Network Topology

Although AER is capable of interconnecting neurons in a reconfigurable man-

ner [27, 31, 47, 72, 78, 80, 84], the limited bandwidth of single-bus AER restricts the

network size to thousands of neurons. Grid-based [39, 56, 62, 87] and tree-based [4, 21,

36, 54, 58, 71] extensions to AER have aimed at extending the bandwidth and spatial

range of synaptic connectivity across multi-chip neural arrays in a scalable and effi-

cient manner. Here we focus on hierarchical address-event routing (HiAER) as a multi-

scale tree-based extension on single-bus AER to offer scalable synaptic event throughput

without restriction on spatial range of synaptic connectivity [36]. Neurons communicate

synaptic events, within and across neural arrays, over dedicated serial communication

links. Depending on the destination, a spike address event may pass through several

routing nodes, arranged in a tree like configuration, on its way from the presynaptic

neuron to the postsynaptic neuron. At each routing node, an incoming address event

may trigger multiple outgoing address events, enabling bundling of events to spatially

co-located neurons. We term these entries within the synaptic routing table (SRT) relay

neurons (RNs), thus connections from the neural array ascending between levels of hier-

archy can be considered to be projections between relay neurons or projections between

a neuron and relay neurons. Similarly, in descending a hierarchy these entries can be

considered projections between relay neurons or between a relay neuron and the neural
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array. The projections from incoming to multiple outgoing address events are stored in

the SRT. The total transmission delay d is partitioned across various routing nodes in a

hierarchical manner such that nodes higher up in the tree implement longer delays.

Fig. 4.1 defines key concepts and notations in this chapter. An example seg-

ment of a partitioned spiking neural network with directed synaptic connections be-

tween physical and relay neuron nodes in Fig. 4.1 (a) is transformed into an equivalent

representation in Fig. 4.1 (b), with the corresponding SRT entries shown in Fig. 4.1 (c).

The neural network segment in Fig. 4.1 (a) also indicates the hierarchy of connections

across levels in the partitioning, i.e., either between relay neurons on the same level (k

to q), from a lower to a higher level (o to k, and k to n), or going from a higher to a

lower level (m to l, and l to p). Within the context of our architecture in Fig. 4.1 (b), we

collate all connections that belong to a neuron into SRT entries, thus creating a single

entity to represent all its synapses. There is a SRT entry for each unique neuron or re-

lay neuron within the hierarchy, identifying what is communicated by each event. Thus

each link represents a unique neuron or relay neuron, while all synaptic connectivity

information resides within SRT nodes. Topologically this transform is akin to the edge-

to-vertex dual of a graph, where edges transform to vertices and vice versa. The SRT

entries of the dual transformed network are shown in Fig. 4.1 (c). Note that only con-

nections presynaptic to the neural array specify weight information, while those entries

presynaptic to relay neurons specify axonal delay information. SRT entries also specify

directional information shown by # for entries descending the hierarchy and " for those

ascending. The same neuron can have multiple addresses, however it is unique within

the its scope at any level of the hierarchy. This partitioning and grouping of messages

ensures more efficient use of memory and bandwidth.

The above examples and description are extended to any level of hierarchy.

Fig. 4.2 shows an extended example of conversion from a 16-neuron network (Fig.4.2(a))

through a partitioned network with three levels of hierarchy (Fig. 4.2 (b)) to its dual

representation of hierarchical routing with SRT entries (Fig. 4.2 (c)). Arrows between

routing nodes in Fig. 4.2 (c) represent the direction of AER communication, where solid

arrows show active links communicating neuron spike events through each level of the

HiAER hierarchy.
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4.2.3 Distributed Axonal Delay

Axonal delay in action potential propagation, such as along neuronal fiber bun-

dles in the white matter of cortex, plays an integral role in the functioning of the central

nervous system [16], and has been the basis for models of neural computation based on

coincidence in delay-based matched filtering of spike events [34]. A distinguishing fea-

ture of HiAER is that it explicitly accounts for relative timing in event transmission and

delivery, providing a programmable axonal delay d for each individual synaptic desti-

nation A. Such explicit delay in the AER path provides a compact event-based digital

alternative to previously proposed means to implement axonal delay in neuromorphic

hardware, e.g., [3, 75, 82].

Axonal delays depending on a variety of biological factors may range between

tens of µs to hundreds of ms [16, 76]. In order to cover such wide range of time scales,

an architecture with high temporal dynamic range is required. HiAER approaches this

problem by partitioning delays in hierarchical fashion, in tandem with the partitioning

of the network. Implemented axonal delays are distributed across HiAER routing nodes

for each of the the relay neurons in the hierarchy. The net axonal delay d is thus the sum

of incremental delays for all relay neurons in the path from presynaptic source to postsy-

naptic destination. Incremental delays are implemented by incrementing the deliver-by

time-stamp of outgoing events, and by priority-queuing incoming events, not releasing

them until the deliver-by time is reached, as elaborated in Section 4.3. One challenge

with the implementation of delayed event queuing is that total queue occupancy grows

linearly not only in event rate, but also in average delay, according to Little’s Law [46].

Hierarchical partitioning of delays in HiAER allows to optimize for minimum overall

queue occupancy by assigning largest incremental delays to relay neurons at highest lev-

els, and proceeding with remaining incremental delay assignments down the hierarchy

in greedy fashion, leaving smallest incremental delays at the lowest level (HiAER Level

1) where events fan out in greatest numbers to the local IFAT [36]. Such partitioning

of axonal delay is consistent with the qualitative observation that longer axonal fiber

bundles that interconnect more distant brain regions carry greater delays [76].



50

4.3 Hardware Implementation of HiAER

4.3.1 Routing Node System Architecture

The HiAER router, as shown in Fig. 4.3, arbitrates between input events, time-

stamps a selected event, then accesses its entry in the synaptic routing table and places

the entry on the bus en route to its destination. Leaf nodes in the tree, at Level 1, route

local spike events to and from the IFAT as shown in Fig. 4.3 (a). Two event input paths

feed into the Level 1 HiAER node: up from the local IFAT, and down from the L1 bus.

Events are encoded differently depending on their source: events originating from IFAT

contain the address of the neuron that spiked, whereas events from the L1 bus carry

a deliver-by time-stamp and are kept in the priority queue until that time is reached.

A more detailed explanation of the priority queue is provided in section 4.3.3. Time

stamping is performed upon arrival of the arbitrated input event, loading the instanta-

neous global timer value onto the time stamp register. A local register copy of the the

global timer, synchronized across all HiAER nodes, is globally reset and periodically

incremented (every 1 ms). The event enters the SRT in DDR3 DRAM (third-generation

double data rate dynamic random-access memory) through the CMD buffer and mem-

ory controller, returning a sequence of output events through the output buffer. The most

significant bit (MSB) of the output event determines whether it is routed upward to the

L1 bus, or downward to the IFAT. The content of the SRT and format of output events

are described in Section 4.3.2.

Event routing at higher levels in the hierarchy proceeds in similar fashion, as

illustrated in Fig. 4.3 (b) for the Level n HiAER node routing between Ln� 1 and Ln

buses. Differences with Level 1 routing arise due to need for a priority queue at both

input paths from the higher (Ln) and lower level (Ln�1) of the hierarchy, enabling fine

multi-level distributed control over the axonal delay parameter d. The format for entries

in and events through the SRT is also different, as elaborated next.

4.3.2 Synaptic Routing Table

Synaptic routing tables (SRTs) specify all synaptic connectivity, leading a synap-

tic event from its source to its final destination through all levels of the hierarchy. In
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Figure 4.4: (a) Synaptic routing table (SRT) storing pointers and fan-out information in
2-Gbit DDR3 DRAM. The hexadecimal start addresses of DRAM partitions are shown.
(b) SRT formats of internal and external neuron pointers, and internal and external types
of synaptic fan-out events. Top: A 64-bit pointer contains 22-bit pointers to start and
end addresses of the synapse events stored in the same DRAM. Center: Internal synapse
event connecting to a local neuron, encoding 14-bit neuron address, 2-bit synapse type
and 6-bit strength. Bottom: External synapse events connecting to lower (Ln� 1) and
higher (Ln) levels of HiAER nodes, with 2 bit node address, 22 bit address of the desti-
nation (relay neuron) and 6 bit delay.
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addition, SRTs code the necessary information to distribute the axonal delay d across

the path, and to deliver synaptic strength w (presynaptic release probability and postsy-

naptic conductance) on the final path segment at Level 1 to the destination in the local

IFAT.

SRTs are implemented using two 2-Gbit DDR3 DRAM (Micron MT41J128M16)

per Spartan-6 XC6SLX45T Xilinx FPGA, each interfacing through a dedicated bus and

independent memory controller. The memory controller further provides multi-port ac-

cess for sharing each physical DRAM with multiple data paths. In the current imple-

mentation we partitioned each HiAER node into four leaf nodes, with two nodes sharing

one DRAM through the same memory controller.

Fig. 4.4 shows the memory partitioning and various formats of events stored

in DRAM. For each input neuron a 64-bit pointer contains start and end addresses of

synaptic fan-out entries in the same DRAM. The memory controller scans the data be-

tween start and end addresses to retrieve the information specifying each of the outgoing

events in sequence, where each occupies two words (32 bits) in the fan-out table. Three

types of outgoing events are distinguished: events serving internal synapses local to the

IFAT (for Level 1 HiAER nodes only), and events leading to external synapses up or

down through the HiAER hierarchy. The event type is marked by the most significant

bit (MSB) of the 32-bit event in memory, which selects the path of the outgoing event

up or down the HiAER hierarchy by the multiplexer shown in Fig. 4.3.

Internal synaptic events (MSB = 0 downward events at HiAER Level 1 in Fig.4.3

(a)) reach their final synaptic destination in the IFAT local to the HiAER node. The inter-

nal event contains the IFAT postsynaptic neuron address and synapse type A, and post-

synaptic conductance w [85]. Other pertinent synaptic parameters, such as presynaptic

release probability for stochastic synapses [27], may also be included in w. However,

information on axonal delay d is excluded here, other than inherent delay in propagating

the event through HiAER.

External synaptic events (MSB = 1 upward events, or MSB = 0 downward

events at HiAER Level n > 1 in Fig. 4.3 (b)) connect to synaptic neurons in another

node, whether neighboring or at another level in the hierarchy. External events code ex-

plicit delay timing information contributing incrementally to overall axonal delay d of
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the chain of events from source to final synaptic destination. The outgoing event feeding

through the output buffer in Fig. 4.3 is given a deliver-by time-stamp constructed as the

sum of the 6-bit delay and the 10-bit time-stamp of the incoming event, prior to exiting

the HiAER node.

The number of synapses per neuron is not constrained in hardware, other than

the total number of synapses that can be stored in available memory, not occupied by

(node 1, node 2, and external) pointer blocks indicated in Figure 4.4 (a). A memory

capacity of 2-Gbit for every 2 HiAER nodes is chosen to accommodate a biologically

realistic average synaptic fan-out of 1,024 at 16,384 (216) neurons per node and 32 bits

per synapse.

4.3.3 Priority Queue

The priority queue (PQ) serves to hold incoming events, along with their deliver-

by time-stamps, and release each event only once its time-stamp is reached by the global

timer value. Hence the nominal incremental delay, in units of the global timer clock, is

the 6-bit delay value as added to the sourcing event 10-bit time-stamp at the preceding

HiAER node (see Section 4.3.2). This quantized value is a lower bound on the incre-

mental delay actually implemented by the PQ. The slack in the timing (tightness of this

lower bound) is given by propagation delays in the routing path, mainly from the PQ exit

stage through the event arbiter and CMD buffer shown in Fig. 4.3. Other propagation

delays in the path from source to destination (from the previous routing node’s SRT and

DRAM memory controller, output buffer, output FIFO, and the inter-node bus, to the

current node’s PQ entry stage) are inconsequential as long as their cumulative delay is

smaller than the programmed incremental delay, since any smaller net delay is absorbed

in the wait time in the PQ.

The PQ uses the global timer along with an adjustable unit-time step parameter

determining the granularity of the implemented delay. The implemented 1 ms time step

and 6-bit resolution in incremental delay support nominal single-node axonal delays up

to 63 ms, with greater axonal delays achievable, if so desired, by nested routing across

the hierarchy.

Fig. 4.5 shows the block diagram and state machine of the PQ and an example
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Figure 4.5: (a) System diagram implementing the priority queue (PQ). Incoming events
and their deliver-by time-stamps are held in memory until their deliver-by time is
reached by the current global time. (b) Examples illustrating temporal aliasing of the
10-bit event deliver-by time stamps over the horizon of the 10-bit current global time,
distinguishing active future events from late past events.
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illustrating the time comparison method used. The PQ consists of a time comparator, a

state machine, output register and an SRAM module. The time comparator compares

the current global time with deliver-by time-stamps that join incoming events. The state

machine controls the PQ event flow depending on the status of incoming events and the

time to the next scheduled event release in the queue. Incoming events, consisting of

a 22-bit DRAM address and a 10-bit deliver-by time-stamp, are inserted (pushed) onto

the queue in SRAM. Released events are removed (popped) from the queue, and reside

in the output register until acknowledged by the next stage.

Due to finite bit-width of the global timer, improper time-aliasing can occur with

events whose deliver-by times lie beyond half of the full digital timing window range.

By convention we consider such aliased events as arriving too late, requiring immediate

attention. Examples illustrating desired and improperly aliased operation are shown in

Fig. 4.5 (b). The top event has a deliver-by time-stamp of 460 at a current time of

820, hence is considered as a missed past event and is expedited to the CMD buffer.

In contrast, the bottom event time-stamped for 155, wrapping around to 1,179 (= 210+

155), falls within 29 = 512 cycles of the 820 current time, and enters the PQ wait table

in the memory stack.

The finite state machine implementing the PQ, with state transitions driven by

incoming events and time comparisons, is illustrated in Fig. 4.6. Incoming events (iden-

tified by EVENT IN) trigger a time comparison, the result of which either directs the

event to the output register (in case of a current or past event), or pushes it into the

queue on the first available write pointer (in case of an active future event). The state

machine also keeps track of the next event to be served using a NEXT TIME variable, as

the earliest of all stored time-stamps in the queue, and its read location. Whenever the

global current time reaches the NEXT TIME value, the event stored at the read pointer

is popped from the queue and directed to the output register. After the pop, the PQ en-

ters a search to update the read location and NEXT TIME, circulating once through the

queue from the current location for the earliest future time-stamp, while also popping

any other event with the same deliver-by time as the present global-time. Otherwise, the

state machine checks for vacant positions in the queue to fill any available among 16

write pointers.
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Figure 4.6: (a) Simplified state machine transition diagram of the PQ. (b) Illustration of
PQ timing and memory operation.
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4.3.4 Global Timer Synchronization

The global timer synchronizes event communication and tracking across the

multi-chip architecture. Although one common crystal oscillator feeds all five FPGAs,

their internal system clocks are desynchronized due to phase jitter in the their phase

locked loops (PLLs). To remedy timing errors between nodes across the HiAER hierar-

chy, a global timer in the top-level FPGA emits periodic global time increment events

synchronizing local timers in all lower level FPGAs. To prevent accumulation of error

due to missed or spurious time increment events, additional timer reset events are glob-

ally sent for every 10-bit wrap-around of the top level global timer. These techniques

combine to minimize the level of timing skew in the hierarchy.

4.4 Experimental Results

In this section, we present experimental results characterizing latency, thro-

ughput, and capacity of synaptic routing through HiAER realized in an FPGA-based

prototype embedding two levels of hierarchy with 4-fold branching shown in Fig. 4.7.

The HiAER tests are performed for different proof-of-concept configurations of network

mappings and input spike rates, and range from a single communication node [64] to the

full implemented hierarchy, demonstrating improvements in throughput and latency lin-

ear in the number of routing nodes.

4.4.1 HiAER-IFAT Realized Prototype

The hardware system in Fig. 4.7 integrates HiAER reconfigurable synaptic rout-

ing implemented using FPGAs and DRAM, with IFAT event-driven conductance-based

continuous-time neural dynamics implemented in custom low-power mixed-signal very-

large scale integrated circuits [84, 85].

Each quadruple set of HiAER Level 1 nodes (leaves in the hierarchy) shares

one Xilinx Spartan 6 FPGA (XC6SLX45T), each sharing two 2 Gb DDR3 DRAMs

(Micron MT41J128M16) for synaptic routing table (SRT) storage. Four such units are

provided on the board, along with an extra unit serving four HiAER Level 2 nodes,
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Figure 4.7: Hierarchical Address-Event Routing Integrate-and-Fire Array Transceiver
(HiAER-IFAT) for scalable and reconfigurable spike-based neuromorphic computing.
Board-level implementation of the HiAER-IFAT architecture with four Level 2 Hi-
AER nodes, each with four Level 1 nodes connected to 216 two-compartment analog
Integrate-and-Fire Array Transceiver (IFAT) analog neuron arrays. Each quadruple set
of nodes comprises one Spartan 6 FPGA, sharing two 2 Gb DDR3 DRAMs for synaptic
routing tables (SRT).
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Figure 4.8: Measured data of average priority queue occupancy Q as a function of
average event rate r and average axonal conduction delay d. Linear curves show the
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Figure 4.9: Measured latency between presynaptic and postsynaptic events through the
Synaptic Routing Table (SRT) at a Level 1 HiAER node (16k neurons), at sustained
throughput of 1.3⇥107 synaptic events per second (a) and 3.6⇥107 synaptic events per
second (b). The SRT was programmed with uniform 1,000 synaptic fan-out and zero
nominal axonal conduction delays (d = 0), and the system clock was 150MHz.
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as indicated in Fig. 4.7. The nodes across the FPGAs are interconnected through L1

bus parallel communication links as shown. Each FPGA is also equipped with a local

200 MHz clock generator, an external clock input, and USB and JTAG ports for diagnos-

tics and programming. An additional 200 MHz master clock generator can provide all

4+1 HiAER nodes with a global clock. The system interfaces to the outside, at HiAER

Level 3, through the L2 bus. Several boards can be combined to form a spike-based

neuromorphic computer with more than 218 (262,144) analog integrate-and-fire neurons

and high-speed peripherals using different variants of address-event routing protocols,

e.g., [5, 20, 44, 88]. The data presented below are obtained by connecting the L2 bus of

a single HiAER board over a USB 2.0 interface to a workstation.

Each IFAT chip contains four independent ports, each with 16k two-compartment

integrate-and-fire neurons [85], and each assigned a single HiAER Level 1 node. The

details of neural dynamics in IFAT are beyond of the scope of the present chapter,

which focuses on efficiency and scaling in the realization of the HiAER synaptic rout-

ing independent of neural integration and spike generation. Indeed HiAER is appli-

cable to a wide range of event-driven large-scale implementations of neural models,

e.g., [4, 21, 27, 31, 39, 47, 54, 56, 58, 62, 71, 72, 78, 80, 87].

4.4.2 Experimental Setup

To avoid timing distortion induced by latency of the USB interface between the

HiAER L2 bus and the workstation, we implemented spike event generators and his-

togram recorders in FPGA on the board. Spike event generators at the Level 2 Hi-

AER node produce neural event spike trains entering the L1 bus with interspike inter-

vals drawn from a Poisson distribution parameterized in mean spike rate. Histogram

recorders at each of the Level 1 HiAER nodes take the place of the local IFAT analog

array, collecting statistics on time arrivals of received synaptic events while emulating

the IFAT’s asynchronous AER handshaking of the incoming events. Timing statistics

are computed based on time-stamps of received events in relation to the current global

timer value. Received events are binned accordingly, with their counts accumulated over

a fixed number of trial events.
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Figure 4.10: Example network partitioning of one presynaptic neuron connecting to
1,000 postsynaptic neurons (a) implemented in single-node flat hierarchy and (b) imple-
mented across two levels of hierarchy partitioned into four HiAER nodes each with 250
postsynaptic neurons.

4.4.3 Priority Queue Analysis

Measured results from the priority queue (PQ) are shown in Fig. 4.8. The event

generator was configured to produce Poisson spike trains of variable rate r, modeling

varying loads of relay neuron events entering the HiAER node. The events were given

Poisson distributed axonal delays d with mean delays of 2 ms, 6 ms, and 12 ms. Little’s

law [46] predicts the average queue occupancy Q under such conditions to be Q = r d

where r is the average incoming event rate and d is the average delay in the queue.

Measured results of Q from recorded PQ occupancy data for varying input rate r and av-

erage axonal delay d are marked with symbols on the graph in Fig. 4.8, with intersecting

straight lines indicating the theoretical fit following Little’s law.

Table 4.1: FPGA Resource Usage for Priority Queue Implementation
Queue depth 1,024 2,048 4,096 8,192

Number of slice registers 670 1,195 2,243 4,343
Number of slice LUTs 654 1,234 2,382 4,810

Number of block RAM/FIFO 3 5 9 17

Table 4.1 shows FPGA resource usage for PQ implementation on the target de-

vice (Xilinx Spartan-6 XC6SLX45T) for varying queue depth, showing how the imple-

mented PQ on the HiAER board with queue depth 1,024 scales to larger queue sizes,
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trading performance for resource usage in approximately linear fashion, limited mainly

by total SRAM capacity on the FPGA device.

4.4.4 Event Latency Through Single-node HiAER

Next we analyzed event latency for varying data rate of synaptic events through

the Level 1 HiAER node. We again used Poisson event generators with variable spike

rate, and measured event latency from histogram recorded data of time-stamp differ-

ences over 1 million synaptic events. We implemented an average synaptic fan-out of

1,000 in the SRT, generating on average 1,000 synaptic outgoing events per incoming

neural spike event consistent with models of synaptic connectivity in the mammalian

central nervous system [16,76]. However, the axonal delay d was set to zero in order to

emulate worst conditions for event throughput and latency: every event entering any PQ

is late upon arrival and must exit immediately, accumulating latency in the process. In

contrast, events with axonal delay d greater than accumulated propagation delays enter

the PQ and resynchronize with the global timer exiting the PQ with near-zero latency.

Hence the measured latency for zero axonal delay d = 0 should be taken as an upper

bound on latency in the general case.

Fig. 4.9 shows measured latency of synaptic output events for two input event

rates, indicating latencies below 100 µs at 1.3⇥107 synaptic events per second (SynEPS)

throughput, and latencies below 450 µs at 3.6⇥107 SynEPS throughput.

4.4.5 Event Latency and Throughput Through Four Parallel Hi-

AER Nodes

To validate improvements in latency and throughput owing to parallelism in hi-

erarchical routing, we conducted experiments with flat and nested structured implemen-

tation of simple networks, with presynaptic neurons sharing a common set of 1,000

postsynaptic neurons as illustrated in the example of Fig. 4.10. A single-node imple-

mentation with flat hierarchy is shown in Fig. 4.10 (a). The same network is partitioned

through three relay neurons into four HiAER nodes each with 250 postsynaptic neurons,

shown in Fig. 4.10 (b). The effect of the network partitioning on event latency and thro-
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ughput is illustrated in Fig. 4.11. As shown, four-fold partitioning diminishes the local

fan-out requirement four-fold leading to approximately four-fold lower event latency,

ranging between 0 and 1
4NtSRT, where N = 1,000 is the synaptic fan-out, and tSRT is

the SRT latency per synapse. In addition, the resulting four-fold parallelism in local

event routing leads to approximately four-fold increased event throughput across the

network, relative to the single-node case. The maximum net synaptic event throughput

(or synaptic channel capacity) across all 4 nodes is thus 4/tSRT.

Fig. 4.12 shows measured latency between presynaptic and postsynaptic event

through four Level 1 HiAER nodes. For these experiments we used the Poisson spike

generator to route 50,000 neural events across the L1 bus at 1.23⇥105 events per sec-

ond. All PQs were cleared of pre-existing events at start of each experiment in order to

provide zero initial conditions in event latency. Four parallel HiAER nodes were used

for both flat (locally connected) and hierarchical mapping, to equalize net synaptic event

channel capacity across both cases. For the flat hierarchy in Fig. 4.10 (a), latency is mea-

sured from data collected by the histogram recorder on each of the four HiAER nodes

with local 1,000 fan-out. For the four-node two-level hierarchy of Fig. 4.10 (b), latency

was measured from data collected across four histogram recorders, one for each HiAER

node, each with local 250 fan-out. A shorter tail and narrower distribution is observed

in the case of four-fold hierarchical mapping, with worst-case latency of 125 µs, about

a four-fold improvement over the case of flat mapping.

Measured event latency as a function of synaptic event rate, for flat and hierarchi-

cal mapping, averaged over all 50M synaptic events from empty PQ initial conditions, is

shown in Fig. 4.13. At higher event rates, a four-fold reduction in latency for hierarchi-

cal mapping is consistently observed, even beyond the synaptic event channel capacity

of 1.44⇥108 SynEPS (synaptic events per second) across the four parallel nodes.

4.5 Conclusions

We presented HiAER, and its efficient implementation in digital hardware, as a

hierarchical scalable extension to synaptic address-event routing for large-scale spike-

based neuromorphic systems with reconfigurable long-range synaptic connectivity, in
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Figure 4.11: Effect of hierarchical network partitioning on event latency and thro-
ughput, for the example network in Fig. 4.10. (a) In the single-node flat hierarchy,
event latency through the SRT at low neural spike input event rate ranges between 0 and
NtSRT, where N = 1,000 is the synaptic fan-out and tSRT is the SRT recall latency. (b)
Neural spike input event rates greater than its capacity 1/NtSRT result in progressively
growing event latencies. (c) Partitioning of the network across four HiAER nodes, con-
nected through three relay neurons, results into a four-fold decrease in local synaptic
fan-out and, equivalently, event latency. The four-fold parallelism also supports a four-
fold greater overall event throughput across the network.
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Figure 4.12: Measured latency between presynaptic and postsynaptic events through
four Synaptic Routing Table (SRT) nodes at the Level 1 HiAER (65k neurons) in the
HiAER-IFAT hierarchy, at sustained throughput of 1.23⇥108 synaptic events per second
(SynEPS) with flat mapping (a) and four-fold hierarchical mapping (b) of the network
in Fig. 4.10.
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Figure 4.13: Average event latency measured as a function of synaptic event rate for
flat and four-fold hierarchical partitioning of the network in Fig. 4.10.
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which both strength and axonal delay for each implemented synapse are individually

programmable. As a proof-of-concept, a two-level four-fold branching hierarchy with

262k two-compartment integrate-and-fire neurons, each fanning out to any other neu-

rons with thousand synapses on average, was implemented on a custom PCB with 5

Xilinx Spartan-6 FPGAs, 10 DDR3 DRAMs, and 4 custom IFAT mixed-signal VLSI

microchips. At the single-board level we demonstrated approximately linear scaling in

throughput of global synaptic event routing at 36MsynEPS per 16k-neuron node in the

hierarchy. We also showed decreased event latency, from 83.6 µs for flat partitioning

to 28.3 µs for 4-fold hierarchical partitioning owing to the corresponding reduction of

local connectivity in the distributed network. Furthermore we showed average queue

occupancy in the PQs consistent with Little’s law, with 12 ms of average axonal delay

at 8⇥104 events/s relay neuron event rate per HiAER routing node for the implemented

1,024 queue depth in FPGA SRAM.

Larger-size networks, in principle of unlimited size, may be obtained by cascad-

ing boards to extend the HiAER hierarchy to higher levels at net synaptic throughput

scaling with the number of nodes across the hierarchy [36]. Hierarchical partitioning

of axonal delay may further support temporal spike-based models of neural computa-

tion based on pattern matching in delayed spike coincidence detection [34] at virtually

unlimited range of delays. Conversely, recently developed stochastic rate-based models

with Monte Carlo Markov chain (MCMC) neural sampling from Boltzmann distribu-

tions in large-scale spiking networks with biophysical integrate-and-fire neurons [67]

and their extensions to on-line learning spike-based Boltzmann machines [61] map di-

rectly onto the HiAER architecture as well.

The challenges in further scaling up hardware realizations of HiAER are multi-

fold, calling for advances in:

Area and energy efficiency Measuring 20 cm ⇥ 25 cm and consuming 10 W of power

at 720 MSynEPS net synaptic throughput across five FPGAs, the presented 262k neuron,

262M synapse implementation offers an area efficiency of 200 µm2 per synapse and an

energy efficiency of 14 nJ per synaptic event. Although a respectable feat of neuromor-

phic engineering, the realized efficiencies pale in comparison with the 10�3 µm2 area
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and 2 fJ energy per synapse for the human brain which counts roughly 1015 synapses,

each activated on average at 10 Hz, within 0.002 m3 volume and across 1 m2 cortical

surface area, and at 20 W of metabolic power consumption [10,16,22,76]. The HiAER

realized efficiencies are limited by DRAM memory cell density and read energy in serial

access of SRTs, and by the FPGA general-purpose reconfigurable logic. Significant area

and energy improvements can be expected from custom silicon integration of SRTs dis-

tributed across HiAER routing nodes, such as using wafer-scale integration [21, 58] or

vertically stacked 3-D integration of CMOS and memory technologies [37, 40]. Further

energy improvements may also result from direct asynchronous synthesis of all HiAER

event routing, including PQ, FIFOs, and possibly DRAM memory controller. The ad-

vantage of asynchronous implementation, in the absence of any clock, is that power

scales directly with event rate, except for static standby power [29, 53].

Efficient partitioning Efficient use of HiAER resources is critically dependent on

efficient partitioning of the implemented network into a hierarchy of clusters that min-

imizes event traffic across routing nodes. The general problem of efficient hierarchi-

cal graph partitioning is well studied, and solutions formulated in various application

domains, e.g., [38] may be ported to hierarchical synaptic partitioning, in tandem with

compilation and analysis tools for efficient mapping of the hierarchical neural and synap-

tic structure onto neuromorphic architecture [17, 36, 65]. In addition, anatomical and

functional connectivity information gathered from connectomics [2, 35] may guide nat-

urally efficient network partitioning inspired by the structural organization of the central

nervous system.

Efficient learning Although not pursued here, HiAER may be extended with local

mechanisms of spike-timing dependent plasticity (STDP) implemented directly in the

address domain [81] to learn the HiAER long-range synaptic connectivity on-line from

real-time data. STDP-based models of temporally asymmetric Hebbian unsupervised

learning extend to other forms of spike-based learning such as reinforcement learning

of distal reward using STDP-modulated dopamine signaling [33], and deep learning of

multi-layered cortical representations using STDP event-driven contrastive divergence

in spiking Boltzmann machines [61]. The advantage of HiAER for efficient hierarchical
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event-driven implementation of STDP-based on-line learning is that all information on

synaptic strength, regardless of global range in connectivity, resides only in local SRTs

at the final destination (Level 1 HiAER) leaf nodes in the hierarchy, in direct proxim-

ity to both presynaptic and postsynaptic event streams. Thus local implementation of

event-driven STDP at Level 1 HiAER SRTs may be sufficient to support more gen-

eral implementation of complex non-local learning rules that take advantage of global

nested network structure with the long-range and hierarchical connectivity provided by

HiAER.

Chapter 4 is largely a reprint of material that was submitted to 2014 Transaction

on Neural Networks and Learning Systems : J. Park, T. Yu, S. Joshi, C. Maier, and G.

Cauwenberghs, “Hierarchical Address Event Routing for Reconfigurable Large-Scale

Neuromorphic Systems”, IEEE Transaction on Neural Networks and Learning Systems.

The author is the primary author and investigator of this paper.



Chapter 5

Conclusions

This dissertation presented a low-power VLSI systems for event-driven sensory

and neural processing combining high efficiency in general spatiotemporal signal event

coding at the sensor front end, with programmable and adaptive signal specificity in

parsing the event stream at the system level, relaxing resolution requirements in the

front end circuits while reducing the data rate according to the information content of

the signal.

In chapter 2, we presented a temporal contrast detection event-driven asyn-

chronous 128⇥128 pixel image sensor with integrated 10-bit ADC intensity readout

in 0.18 µm 6M 1P CMOS. Current-mode log-compressed readout with correlated dou-

ble sampling (CDS) offset compensation provides random access to instantaneous pixel

intensity over 75dB intra-scene dynamic range. Temporal correlated double sampling

in “on” and “off” transient event detection reduces capacitor sizing requirements within

the pixel. Global threshold adaptation using common-mode capacitive coupling across

the pixel array compensates for global scene lighting variations. Power consumption

at 8.3Mevents/s is 12.6mW from a 1.8V supply, or 1.52nJ per pixel event detection

and readout. Die size is 5⇥5mm2 and pixel size is 33⇥33 µm2 with 22.8% fill factor

fabricated in 0.18 µm 6M 1P CMOS.

In chapter 3, we presented a 65 k-neuron integrate-and-fire array transceiver

(IFAT) for event-based neural computation. The internally analog, externally digital

chip is fabricated on a 4⇥4mm2 die in 90 nm CMOS and arranged in four quadrants

of 16 k parallel addressable neurons. Each neuron circuit serves input spike events by

71



72

dynamically instantiating conductance-based synapses onto four local synapse circuits

over two membrane compartments, and produces output spike events upon reaching a

threshold in integration over one of the membrane compartments. Fully asynchronous

input and output spike event data streams are mediated over the standard address event

representation (AER) protocol. To support full event throughput at large synaptic fan-in,

a two-tier micro-pipelining scheme parallelizes input events along neural array cores,

and along rows of each core. Measured results show sustained peak synaptic event

throughput of 18.2 Mevents/s per quadrant, at 19.2 pJ average energy per synaptic input

event and 25 µW standby power.

In chapter 4, we presented a Hierarchical Address Event Routing (HiAER) archi-

tecture for scalable communication of neural and synaptic spike events between neuro-

morphic processors, implemented with 5 Xilinx Spartan-6 FPGAs and 4 custom analog

neuromorphic ICs serving 262k neurons and 262M synapses. The architecture extends

the single-bus address event representation (AER) protocol to a hierarchy of multiple

nested buses, routing events across increasing scales of spatial distance. The HiAER

protocol provides individually programmable axonal delay in addition to strength for

each synapse, lending itself towards biologically plausible neural network architectures,

and scales across a range of hierarchies suitable for multi-chip and multi-board systems

in reconfigurable large scale neuromorphic systems. We show approximately linear

scaling of net global synaptic event throughput with number of routing nodes in the

network, at 3.6⇥107 synaptic events per second per 16k-neuron node in the hierarchy.

Concluding this dissertation, we outlook possible projects combining this the-

sis work in a integrated chip with hybrid fabrication technology will be shown in next

section.

5.1 Outlook

5.1.1 3-D Neuromorphic Processor (HiAER-IFAT)

3-D neuromorphic processor is a fully reconfigurable massively parallel net-

work of 65k biologically inspired, two-compartment spiking neurons and 65M dynamic

synapses with arbitrary, global connection topology. 3-D packaging of the chips offers
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unprecedented capabilities in large scale modeling of the nervous system, and in the

scale and density of neuromorphic systems for tactical and commercial applications in

pattern recognition and machine perception.

Fig. 5.1 is triple-stack 3D integrated neuromorphic processor. The top layer of

the CMOS stack implements a mixed-signal array of 130k neuron compartments, with

event-based addressing. Lateral connectivity between the neuron compartments imple-

ments multi compartment models of neural computation with up to 65k biologically

realistic neurons. A digital CMOS process is ideally suited for implementing the neuro-

morphic mixed-signal VLSI neural circuits at high density and high energy efficiency.

The bottom layer of the CMOS stack implements registration, interpretation, and

routing of neural and synaptic events to sustain high bandwidth of neural interconnec-

tivity while ensuring arbitrary connectivity and synaptic plasticity of the network. The

bottom layer communicates incoming and outgoing neural events to the top neural layer

through high-bandwidth vertical interconnects. The bottom logic layer also makes use

of high-bandwidth DRAM interconnects for storage and recall of neural connectivity

and synaptic parameters.

5.1.2 3-D Neuromorphic Silicon Retina

3D neuromorphic silicon retina will be the first to emulate the detailed spatiotem-

poral dynamics of ganglion cell visual coding in the mammalian retina, while offering

ultra-low power operation and high integration density as well as high fill factor. We

will combine state-of-the art approaches in CMOS imaging and neuromorphic com-

puting on a single 3-D integrated substrate through wafer stacking of three traditionally

disparate CMOS technologies that are each tailored for optimal performance: high light-

sensitivity in the photoreceptor array on the top layer in an optoelectronic CMOS pro-

cess, low-power and high-density asynchronous neural event coding and communication

in the middle layer in a deep-submicron CMOS process, and dedicated memory for re-

configurable spatiotemporal dynamics in the base layer in DRAM technology. Fig 5.2

is showing proposed 3D Imager.

Compared to conventional silicon retinas, the proposed design will have the fol-

lowing features and advantages:
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• IFAT : Analog integrate-and-fire array transceiver
- 65k analog continuous-time spiking neurons
- Two compartments and four dynamical synapse types each
- Asynchronous spike event I/O interface

• HiAER : Hierarchical address-event routing
- Locally dense, globally sparse synaptic interconnectivity

• DRAM : Synaptic routing table
- 65M digitally programmable synapses
- Reconfigurable, arbitrary topology

Figure 5.1: Triple-stack 3D integrated neuromorphic processor
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Figure 5.2: Implementation of 2D and 3D versions of the silicon retina chip

Precision-on-demand spatiotemporal resolution by asynchronous event-driven com-
munication We adopt event-driven information processing, which is frame-less and

asynchronous, so much more energy-efficient than frame-based processing.

Biologically realistic spatiotemporal filtering The proposed chip will implement at

least four types of ganglion cells, covering both on/off sustain and on/off transient re-

sponses. These implemented models will account for the spatiotemporal dynamics of

horizontal and amacrine cells in the retina

Low supply design Despite that virtually of all neuromorphic circuits operate in the

sub-threshold voltage region, there has not a single chip implemented in ultra-low power

supply such as 0.5V. The three layers of the proposed chip will be implemented with

0.5V power supply.

Chip-level light adaptability Modeling the iris in regulating the amount of light en-

tering the retina, it propose chip-level light adapting scheme to enhance dynamic range

and improve signal-to-noise ratio (SNR) simultaneously. Conventional approaches have
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enhanced the dynamic range by linear-to-logarithmic conversion with a resulting loss

of SNR in each pixel. By moving the burden of providing a wide dynamic range from

each pixel to external control, a more area and power efficient design is possible for the

pixel. Each pixel may further adapt its dynamic range, complementing the control from

the chip-level light intensity detection circuit, which may detect light intensity level by

measuring current consumption of the whole chip.

3-D structure with function-dedicated layers The retina chip will consist of three

layer of stacking chips. The most top layer will be fabricated for high-performance in

light detection, and will be back illuminated to connect to the middle layer by flip-chip

bonding. The middle layer will be fabricated to achieve high-density integration and

low power consumption. Digital control for address-event representation (AER) will be

further integrated in the middle layer. The middle layer will connect by bonding wires

to the bottom layer with DRAMs working memory



Appendix A

IFAT User Guide

A.1 IFAT Pin Definitions

Following tables list the pin definitions used in IFAT.

Table A.1: IFAT Power and Ground

Name Description Level (V)
DVDD Power for I/O ring 1.8

VDD Power for chip core 1.2

AVDD Power for analog section 1.2

EVDD Power for event arbitration module 1.2

GVDD Power for guardring 1.8

VSS Ground 0

77
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Table A.2: IFAT Analog Pin Definitions

Name Description
VBIAS UNITYBUFFER Voltage bias governing the gate voltage of unity gain

buffer current source

VBIAS SF Voltage bias governing the gate voltage of source fol-

lower for analog output probe

VAMP LOW Lowest voltage reference for voltage divider selecting

amplitude of PWAM

VAMP HIGH Highest voltage reference for voltage divider select-

ing amplitude of PWAM

VWIDTH BIAS LOW Lowest voltage reference for voltage divider selecting

width of PWAM

VWIDTH BIAS HIGH Highest voltage reference for voltage divider select-

ing width of PWAM

VINPUT CURRENT BIAS Voltage bias governing the gate voltage of current

source for width modulation in PWAM

VWIDTH BIAS Voltage bias governing the gate voltage of comparator

current source

VTRANSCAP BODY Body bias voltage of transcap transistor

VBP pMOS voltage bias governing the gate voltage of the

pMOS in the feedback loop in the row and column

arbiters

VBN nMOS voltage bias governing the gate voltage of the

nMOS at the input to the NAND gates of the buffered

outputs and feedback signals in the row and column

arbiters

SYNAPSE DRIVE LOW Lowest voltage level of synaptic driving voltage level

when it is not driven

Continued on next page
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Table A.2 IFAT Analog Pin Definitions, Continued.

Name Description
VCAPBIAS Voltage bias governing the gate voltage of transcap

transistor

VTHRESH Threshold level for spiking neuron action potentials

VSPIKE Maximum voltage level for neuron action potentials

VSS SYNAPSE Lowest voltage level of synapse variable

GCOMP Signal at the gate of a single transistor implementing

the conductance connection between neuron compart-

ments

VPDN nMOS voltage bias governing the gate voltage of the

row and column request lines in the neurons

VBIAS pMOS voltage bias governing the gate voltage of the

pMOS current load at the input of the neurons

VRESET Reset level for spiking neuron action potentials

VPUP pMOS voltage bias governing the gate voltage of the

pMOS at the input of the row and column arbiters

VPUP REQ pMOS voltage bias governing the gate voltage of the

column and row request inputs

EREV<3:0> Reversal potential value for synapse 0-3

VTAU<3:0> Tau voltage value governing the membrane dynamics

profile for synapse 0-3

ELEAK Reversal potential leakage parameter for each neuron

compartment

GLEAK PROXIMAL Signal at the gate of a single transistor implementing

the conductance leakage from proximal compartment

GLEAK DISTAL Signal at the gate of a single transistor implementing

the conductance leakage from distal compartment

V U PROBE<3:0> For Vu, synapse 0-3, voltage buffered through source

follower

Continued on next page
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Table A.2 IFAT Analog Pin Definitions, Continued.

Name Description
VMEM PROXIMAL PROBE For proximal compartment membrane voltage, volt-

age buffered through source follower

VMEM DISTAL PROBE For distal compartment membrane voltage, voltage

buffered through source follower

Table A.3: IFAT Digital Pin Definitions

Name Description
INPUT DATA ACK Acknowledge signal for address event from system to

chip

INPUT DATA REQ Request signal for address event from system to chip

INPUT DATA<23:0> 24 bit address event from system to chip

OUTPUT DATA ACK Acknowledge signal for address event from chip to

system

OUTPUT DATA REQ Request signal for address event from chip to system

OUTPUT DATA<13:0> 14 bit address event from chip to system

PULSE GEN RST Active high reset signal for pulse width and amplitude

modulation (PWAM) modules

RESETLFSR Active high reset signal for LFSR

RESET IFAT Active high reset signal for the IFATs

ASYNC RST Active high reset signal for asynchronous modules

SHIFT REG RST Active high reset signal for the shift registers

SHIFT REG D SPI input for serial chain register selecting a neuron

to probe buffered analog output

COL SHIFT REG CLK Clock for serial chain of column select register

ROW SHIFT REG CLK Clock for serial chain of row select register

ARRAY SHIFT REG CLK Clock for serial chain of array select register
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A.2 IFAT Pinout Table

This section includes the pinout information table for the IFAT packaging.

Table A.4: IFAT Pin Name

Number Pin Name Pin Number
1 DVDDL G5

2 VSS A1

3 VDDL J5

4 PORT0 OUTPUT DATA<11> E2

5 PORT0 OUTPUT DATA<12> D4

6 PORT0 OUTPUT DATA<13> E1

7 VSS R15

8 VDDL K5

9 PORT0 ASYNC RST D1

10 PORT0 RESET IFAT F2

11 PORT0 RESETLFSR E4

12 PORT0 PULSE GEN RST F1

13 PORT0 ROW SHIFT REG CLK E3

14 PORT0 COL SHIFT REG CLK G2

15 PORT0 INPUT DATA<0> F4

16 PORT0 INPUT DATA<1> G1

17 PORT0 INPUT DATA<2> F3

18 PORT0 INPUT DATA<3> H2

19 PORT0 INPUT DATA<4> G4

20 PORT0 INPUT DATA<5> H1

21 PORT0 INPUT DATA<6> G3

22 PORT0 INPUT DATA<7> J2

Continued on next page
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Table A.4 IFAT Pin Name, Continued.

Number Pin Name Pin Number
23 PORT0 INPUT DATA<8> H4

24 PORT0 INPUT DATA<9> J1

25 PORT0 INPUT DATA<10> H3

26 PORT0 INPUT DATA<11> K2

27 PORT0 INPUT DATA<12> J4

28 PORT0 INPUT DATA<13> K1

29 PORT0 INPUT DATA<14> J3

30 PORT0 INPUT DATA<15> L2

31 DVDDL H5

32 VSS B1

33 VDDL L5

34 VSS L15

35 PORT0 INPUT DATA<16> K4

36 PORT0 INPUT DATA<17> L1

37 PORT0 INPUT DATA<18> K3

38 PORT0 INPUT DATA<19> M2

39 PORT0 INPUT DATA<20> L4

40 PORT0 INPUT DATA<21> M1

41 PORT0 INPUT DATA<22> L3

42 PORT0 INPUT DATA<23> N1

43 PORT0 INPUT DATA REQ M4

44 PORT0 INPUT DATA ACK N2

45 PORT0 SHIFT REG D M3

46 PORT0 SHIFT REG RST P1

47 PORT0 ARRAY SHIFT REG CLK N3

48 EVDD0 M5

49 VSS N13

50 AVDDLU N5

Continued on next page
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Table A.4 IFAT Pin Name, Continued.

Number Pin Name Pin Number
51 PORT0 VBIAS SF P2

52 PORT0 VBIAS UNITYBUFFER N4

53 GVDD P5

54 VSS P13

55 GVDD R5

56 VSS R13

57 PORT2 VBIAS UNITYBUFFER R1

58 PORT2 VBIAS SF P4

59 AVDDLB U5

60 VSS T13

61 EVDD2 T5

62 PORT2 ARRAY SHIFT REG CLK R2

63 PORT2 SHIFT REG RST P3

64 PORT2 SHIFT REG D T1

65 PORT2 INPUT DATA ACK R3

66 PORT2 INPUT DATA REQ T2

67 PORT2 INPUT DATA<23> R4

68 PORT2 INPUT DATA<22> U1

69 PORT2 INPUT DATA<21> T3

70 PORT2 INPUT DATA<20> U2

71 PORT2 INPUT DATA<19> T4

72 PORT2 INPUT DATA<18> V1

73 PORT2 INPUT DATA<17> U3

74 PORT2 INPUT DATA<16> V2

75 VSS N15

76 VDDLB V5

77 VSS AE1

78 DVDDLB AA5

Continued on next page
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Table A.4 IFAT Pin Name, Continued.

Number Pin Name Pin Number
79 PORT2 INPUT DATA<15> U4

80 PORT2 INPUT DATA<14> W1

81 PORT2 INPUT DATA<13> V3

82 PORT2 INPUT DATA<12> W2

83 PORT2 INPUT DATA<11> V4

84 PORT2 INPUT DATA<10> Y1

85 PORT2 INPUT DATA<9> W3

86 PORT2 INPUT DATA<8> Y2

87 PORT2 INPUT DATA<7> W4

88 PORT2 INPUT DATA<6> AA1

89 PORT2 INPUT DATA<5> Y3

90 PORT2 INPUT DATA<4> AA2

91 PORT2 INPUT DATA<3> Y4

92 PORT2 INPUT DATA<2> AB1

93 PORT2 INPUT DATA<1> AA3

94 PORT2 INPUT DATA<0> AB2

95 PORT2 COL SHIFT REG CLK AA4

96 PORT2 ROW SHIFT REG CLK AC1

97 PORT2 PULSE GEN RST AB3

98 PORT2 RESETLFSR AC2

99 PORT2 RESET IFAT AB4

100 PORT2 ASYNC RST AD1

101 VDDLB W5

102 VSS T15

103 PORT2 OUTPUT DATA<13> AC3

104 PORT2 OUTPUT DATA<12> AD2

105 PORT2 OUTPUT DATA<11> AC4

106 VDDLB Y5

Continued on next page
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Table A.4 IFAT Pin Name, Continued.

Number Pin Name Pin Number
107 VSS AF1

108 DVDDLB AB5

109 VSS L16

110 PORT2 OUTPUT DATA<10> AC5

111 PORT2 OUTPUT DATA<9> AD4

112 PORT2 OUTPUT DATA<8> AE3

113 PORT2 OUTPUT DATA<7> AD6

114 PORT2 OUTPUT DATA<6> AE4

115 PORT2 OUTPUT DATA<5> AC6

116 PORT2 OUTPUT DATA<4> AD5

117 PORT2 OUTPUT DATA<3> AB6

118 PORT2 OUTPUT DATA<2> AE5

119 PORT2 OUTPUT DATA<1> AD7

120 PORT2 OUTPUT DATA<0> AF2

121 PORT2 OUTPUT DATA REQ AC7

122 PORT2 OUTPUT DATA ACK AF3

123 VSS R11

124 AVDDB AA22

125 VSS T11

126 PORT2 VTRANSCAP BODY AB7

127 PORT2 VBP AE6

128 PORT2 VBN AD8

129 PORT2 SYNAPSE DRIVE LOW AF4

130 PORT2 VCAPBIAS AC8

131 PORT2 ELEAK AF5

132 PORT2 VTHRESH AB8

133 PORT2 GLEAK DISTAL AE7

134 PORT2 VSPIKE AD9

Continued on next page
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Table A.4 IFAT Pin Name, Continued.

Number Pin Name Pin Number
135 PORT2 E REV<1> AF6

136 PORT2 V TAU<2> AC9

137 PORT2 V TAU<0> AE8

138 PORT2 VSS SYNAPSE AB9

139 VSS L12

140 PORT2 VAMP LOW AD10

141 PORT2 VAMP HIGH AF7

142 PORT2 VWIDTH BIAS LOW AC10

143 PORT2 VWIDTH BIAS HIGH AE10

144 PORT2 VINPUT CURRENT BIAS AB10

145 PORT2 VWIDTH BIAS AE9

146 PORT2 V U PROBE<1> AD11

147 PORT2 V U PROBE<0> AF8

148 PORT2 VMEM PROXIMAL PROBE AC11

149 PORT2 VMEM DISTAL PROBE AE11

150 PORT2 V U PROBE<3> AB11

151 PORT2 V U PROBE<2> AF9

152 PORT2 GCOMP AD12

153 PORT2 E REV<0> AF10

154 PORT2 E REV<3> AC12

155 PORT2 V TAU<3> AF11

156 PORT2 V TAU<1> AB12

157 PORT2 VPDN AE12

158 PORT2 VBIAS AD13

159 PORT2 VRESET AF12

160 PORT2 E REV<2> AC13

161 PORT2 GLEAK PROXIMAL AF13

162 PORT2 VPUP AB13

Continued on next page
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Table A.4 IFAT Pin Name, Continued.

Number Pin Name Pin Number
163 PORT2 VPUP REQ AE13

164 PORT3 VPUP REQ AB14

165 PORT3 VPUP AE14

166 PORT3 GLEAK PROXIMAL AC14

167 PORT3 E REV<2> AF14

168 PORT3 VRESET AD14

169 PORT3 VBIAS AF15

170 PORT3 VPDN AB15

171 PORT3 V TAU<1> AE15

172 PORT3 V TAU<3> AC15

173 PORT3 E REV<3> AF16

174 PORT3 E REV<0> AD15

175 PORT3 GCOMP AF17

176 PORT3 V U PROBE<2> AB16

177 PORT3 V U PROBE<3> AE16

178 PORT3 VMEM DISTAL PROBE AC16

179 PORT3 VMEM PROXIMAL PROBE AF18

180 PORT3 V U PROBE<0> AD16

181 PORT3 V U PROBE<1> AE17

182 PORT3 VWIDTH BIAS AB17

183 PORT3 VINPUT CURRENT BIAS AF19

184 PORT3 VWIDTH BIAS HIGH AC17

185 PORT3 VWIDTH BIAS LOW AE18

186 PORT3 VAMP HIGH AD17

187 PORT3 VAMP LOW AF20

188 VSS M12

189 PORT3 VSS SYNAPSE AF21

190 PORT3 V TAU<0> AB18

Continued on next page
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Table A.4 IFAT Pin Name, Continued.

Number Pin Name Pin Number
191 PORT3 V TAU<2> AE19

192 PORT3 E REV<1> AC18

193 PORT3 VSPIKE AF22

194 PORT3 GLEAK DISTAL AD18

195 PORT3 VTHRESH AE20

196 PORT3 ELEAK AB19

197 PORT3 VCAPBIAS AF23

198 PORT3 SYNAPSE DRIVE LOW AC19

199 PORT3 VBN AF24

200 PORT3 VBP AD19

201 PORT3 VTRANSCAP BODY AE21

202 VSS N12

203 AVDDB AB22

204 VSS P12

205 PORT3 OUTPUT DATA ACK AB20

206 PORT3 OUTPUT DATA REQ AE22

207 PORT3 OUTPUT DATA<0> AC20

208 PORT3 OUTPUT DATA<1> AE23

209 PORT3 OUTPUT DATA<2> AD20

210 PORT3 OUTPUT DATA<3> AD22

211 PORT3 OUTPUT DATA<4> AC21

212 PORT3 OUTPUT DATA<5> AC22

213 PORT3 OUTPUT DATA<6> AB21

214 PORT3 OUTPUT DATA<7> AE24

215 PORT3 OUTPUT DATA<8> AD21

216 PORT3 OUTPUT DATA<9> AF25

217 PORT3 OUTPUT DATA<10> AD23

218 VSS M16

Continued on next page
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Table A.4 IFAT Pin Name, Continued.

Number Pin Name Pin Number
219 DVDDRB W22

220 VSS N11

221 VDDRB T22

222 PORT3 OUTPUT DATA<11> AC25

223 PORT3 OUTPUT DATA<12> AD24

224 PORT3 OUTUPT DATA<13> AC26

225 VSS N16

226 VDDRB U22

227 PORT3 ASYNC RST AD25

228 PORT3 RESET IFAT AB25

229 PORT3 RESETLFSR AC23

230 PORT3 PULSE GEN RST AB26

231 PORT3 ROW SHIFT REG CLK AC24

232 PORT3 COL SHIFT REG CLK AA25

233 PORT3 INPUT DATA<0> AB23

234 PORT3 INPUT DATA<1> AA26

235 PORT3 INPUT DATA<2> AB24

236 PORT3 INPUT DATA<3> Y25

237 PORT3 INPUT DATA<4> AA23

238 PORT3 INPUT DATA<5> Y26

239 PORT3 INPUT DATA<6> AA24

240 PORT3 INPUT DATA<7> W25

241 PORT3 INPUT DATA<8> Y23

242 PORT3 INPUT DATA<9> W26

243 PORT3 INPUT DATA<10> Y24

244 PORT3 INPUT DATA<11> V25

245 PORT3 INPUT DATA<12> W23

246 PORT3 INPUT DATA<13> V26

Continued on next page
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Table A.4 IFAT Pin Name, Continued.

Number Pin Name Pin Number
247 PORT3 INPUT DATA<14> W24

248 PORT3 INPUT DATA<15> U25

249 DVDDRB Y22

250 VSS P11

251 VDDRB V22

252 VSS P15

253 PORT3 INPUT DATA<16> V23

254 PORT3 INPUT DATA<17> U26

255 PORT3 INPUT DATA<18> V24

256 PORT3 INPUT DATA<19> T25

257 PORT3 INPUT DATA<20> U23

258 PORT3 INPUT DATA<21> T26

259 PORT3 INPUT DATA<22> U24

260 PORT3 INPUT DATA<23> R25

261 PORT3 INPUT DATA REQ T23

262 PORT3 INPUT DATA ACK R26

263 PORT3 SHIFT REG D T24

264 PORT3 SHIFT REG RST P26

265 PORT3 ARRAY SHIFT REG CLK R23

266 EVDD3 R22

267 VSS R12

268 AVDDRB P22

269 PORT3 VBIAS SF P25

270 PORT3 VBIAS UNITYBUFFER R24

271 VSS T12

272 GVDD M22

273 VSS L13

274 GVDD N22

Continued on next page
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Table A.4 IFAT Pin Name, Continued.

Number Pin Name Pin Number
275 PORT1 VBIAS UNITYBUFFER N25

276 PORT1 VBIAS SF P23

277 AVDDRU K22

278 VSS M13

279 EVDD1 L22

280 PORT1 ARRAY SHIFT REG CLK N26

281 PORT1 SHIFT REG RST P24

282 PORT1 SHIFT REG D M26

283 PORT1 INPUT DATA ACK N23

284 PORT1 INPUT DATA REQ M25

285 PORT1 INPUT DATA<23> N24

286 PORT1 INPUT DATA<22> L26

287 PORT1 INPUT DATA<21> M24

288 PORT1 INPUT DATA<20> L25

289 PORT1 INPUT DATA<19> M23

290 PORT1 INPUT DATA<18> K26

291 PORT1 INPUT DATA<17> L24

292 PORT1 INPUT DATA<16> K25

293 VSS M15

294 VDDR E22

295 VSS L11

296 DVDDR H22

297 PORT1 INPUT DATA<15> L23

298 PORT1 INPUT DATA<14> J26

299 PORT1 INPUT DATA<13> K24

300 PORT1 INPUT DATA<12> J25

301 PORT1 INPUT DATA<11> K23

302 PORT1 INPUT DATA<10> H26

Continued on next page
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Table A.4 IFAT Pin Name, Continued.

Number Pin Name Pin Number
303 PORT1 INPUT DATA<9> J24

304 PORT1 INPUT DATA<8> H25

305 PORT1 INPUT DATA<7> J23

306 PORT1 INPUT DATA<6> G26

307 PORT1 INPUT DATA<5> H24

308 PORT1 INPUT DATA<4> G25

309 PORT1 INPUT DATA<3> H23

310 PORT1 INPUT DATA<2> F26

311 PORT1 INPUT DATA<1> G24

312 PORT1 INPUT DATA<0> F25

313 PORT1 COL SHIFT REG CLK G23

314 PORT1 ROW SHIFT REG CLK E26

315 PORT1 PULSE GEN RST F24

316 PORT1 RESETLFSR E25

317 PORT1 RESET IFAT F23

318 PORT1 ASYNC RST D26

319 VDDR F22

320 VSS P16

321 PORT1 OUTPUT DATA<13> E24

322 PORT1 OUTPUT DATA<12> D25

323 PORT1 OUTPUT DATA<11> E23

324 VDDR G22

325 VSS M11

326 DVDDR J22

327 VSS R16

328 PORT1 OUTPUT DATA<10> B24

329 PORT1 OUTPUT DATA<9> C21

330 PORT1 OUTPUT DATA<8> C23

Continued on next page
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Table A.4 IFAT Pin Name, Continued.

Number Pin Name Pin Number
331 PORT1 OUTPUT DATA<7> D21

332 PORT1 OUTPUT DATA<6> D22

333 PORT1 OUTPUT DATA<5> E21

334 PORT1 OUTPUT DATA<4> B23

335 PORT1 OUTPUT DATA<3> C20

336 PORT1 OUTPUT DATA<2> A25

337 PORT1 OUTPUT DATA<1> D20

338 PORT1 OUTPUT DATA<0> A24

339 PORT1 OUTPUT DATA REQ E20

340 PORT1 OUTPUT DATA ACK C22

341 VSS L14

342 AVDDT E5

343 VSS M14

344 PORT1 VTRANSCAP BODY C19

345 PORT1 VBP B22

346 PORT1 VBN D19

347 PORT1 SYNAPSE DRIVE LOW A23

348 PORT1 VCAPBIAS E19

349 PORT1 ELEAK A22

350 PORT1 VTHRESH C18

351 PORT1 GLEAK DISTAL B21

352 PORT1 VSPIKE D18

353 PORT1 E REV<1> A21

354 PORT1 V TAU<2> E18

355 PORT1 V TAU<0> B20

356 PORT1 VSS SYNAPSE C17

357 VSS N14

358 PORT1 VAMP LOW D17

Continued on next page
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Table A.4 IFAT Pin Name, Continued.

Number Pin Name Pin Number
359 PORT1 VAMP HIGH B19

360 PORT1 VWIDTH BIAS LOW E17

361 PORT1 VWIDTH BIAS HIGH A20

362 PORT1 VINPUT CURRENT BIAS C16

363 PORT1 VWIDTH BIAS B18

364 PORT1 V U PROBE<1> D16

365 PORT1 V U PROBE<0> A19

366 PORT1 VMEM PROXIMAL PROBE E16

367 PORT1 VMEM DISTAL PROBE A18

368 PORT1 V U PROBE<3> C15

369 PORT1 V U PROBE<2> B17

370 PORT1 GCOMP D15

371 PORT1 E REV<0> A17

372 PORT1 E REV<3> E15

373 PORT1 V TAU<3> B16

374 PORT1 V TAU<1> C14

375 PORT1 VPDN A16

376 PORT1 VBIAS D14

377 PORT1 VRESET B15

378 PORT1 E REV<2> E14

379 PORT1 GLEAK PROXIMAL A15

380 PORT1 VPUP E13

381 PORT1 VPUP REQ A14

382 PORT0 VPUP REQ D13

383 PORT0 VPUP B14

384 PORT0 GLEAK PROXIMAL C13

385 PORT0 E REV<2> B13

386 PORT0 VRESET E12

Continued on next page
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Table A.4 IFAT Pin Name, Continued.

Number Pin Name Pin Number
387 PORT0 VBIAS A13

388 PORT0 VPDN D12

389 PORT0 V TAU<1> A12

390 PORT0 V TAU<3> C12

391 PORT0 E REV<3> B12

392 PORT0 E REV<0> E11

393 PORT0 GCOMP A11

394 PORT0 V U PROBE<2> D11

395 PORT0 V U PROBE<3> B11

396 PORT0 VMEM DISTAL PROBE C11

397 PORT0 VMEM PROXIMAL PROBE A10

398 PORT0 V U PROBE<0> E10

399 PORT0 V U PROBE<1> A9

400 PORT0 VWIDTH BIAS D10

401 PORT0 VINPUT CURRENT BIAS B10

402 PORT0 VWIDTH BIAS HIGH C10

403 PORT0 VWIDTH BIAS LOW A8

404 PORT0 VAMP HIGH E9

405 PORT0 VAMP LOW B9

406 VSS P14

407 PORT0 VSS SYNAPSE A7

408 PORT0 V TAU<0> D9

409 PORT0 V TAU<2> B8

410 PORT0 E REV<1> C9

411 PORT0 VSPIKE B7

412 PORT0 GLEAK DISTAL E8

413 PORT0 VTHRESH A6

414 PORT0 ELEAK D8

Continued on next page
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Table A.4 IFAT Pin Name, Continued.

Number Pin Name Pin Number
415 PORT0 VCAPBIAS B6

416 PORT0 SYNAPSE DRIVE LOW C8

417 PORT0 VBN A5

418 PORT0 VBP E7

419 PORT0 VTRANSCAP BODY A4

420 VSS R14

421 AVDDT F5

422 VSS T14

423 PORT0 OUTPUT DATA ACK D7

424 PORT0 OUTPUT DATA REQ A3

425 PORT0 OUTPUT DATA<0> C7

426 PORT0 OUTPUT DATA<1> B5

427 PORT0 OUTPUT DATA<2> E6

428 PORT0 OUTPUT DATA<3> C5

429 PORT0 OUTPUT DATA<4> D6

430 PORT0 OUTPUT DATA<5> B4

431 PORT0 OUTPUT DATA<6> C6

432 PORT0 OUTPUT DATA<7> B25

433 PORT0 OUTPUT DATA<8> D5

434 PORT0 OUTPUT DATA<9> D2

435 PORT0 OUTPUT DATA<10> C1

436 VSS T16
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Figure A.1: IFAT packaging substrate

A.3 Substrate Design

Substrate material is Megtron 6 and plating finish in terms of ENEPIG process as

shown in Tab. A.5. Designed substrate is, shown in Fig. A.1, fabricated in 35⇥35 mm2

4 layers PCB. Packaging ball map is shown in Fig. A.2.

Table A.5: ENEPIG Process
Material Thickness (µm)

Electroless nickel 100-150
Immersion gold 1-3

Electroless palladium 3-6
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Figure A.2: IFAT pinout diagram.



Appendix B

Imager User Guide

B.1 Imager Pin Definitions

Following tables list the pin definitions used in imager.

B.1.1 Imager Power and Ground

Table B.1: Imager Power and Ground

Pin Name Direction Description Level (V)
VDDIO Power Voltage level for driving I/O pad 1.8

VDD

INJECT

Power Voltage level for current injection 1.8

VDD ADC Power Voltage level for driving asynchronous

ADC

1.8

VDD ARB Power Voltage level for arbitration logic 1.8

VDD

CORE

Power Voltage level for driving core logic 1.8

VSSIO Ground Ground level for I/O pad 0

VSS Ground Ground level for entire chip 0

99
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B.1.2 Imager Digital Input and Output

Table B.2: Imager ADC Digital Input and Output.

Pin Name Direction Description Recommend
Initial Value

DATA IN

<14:0>

input Input address event to access pixel

for intensity read-out <13:7> Column,

<6:0> Row

-

REQ IN input Handshake request signal -

ACK IN output Handshake acknowledge signal -

ADC

DATA

OUT

<9:0>

output 10bit asynchronous ADC output en-

coded in Gray code

-

SDI ADC input 1bit SPI input for serial chain register

controlling ADC configuration

-

SCK ADC input Clock for SPI -

SLOAD

ADC

input Active high SPI enable signal -

CLOCK

GEN

INIT

input Initialize clock generation chain on

asynchronous input path

-

PRE BUF output PRE signal generated from clock gener-

ation chain. We can probe for debugging

purpose.

-

INJECT

BUF

output INJECT signal generated from clock

generation chain. We can probe it for de-

bugging purpose.

-

Continued on next page
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Table B.2 Imager ADC Digital Input and Output, Continued.

Pin Name Direction Description Recommend
Initial Value

ADC

ENABLE

BUF

output ADC ENABLE signal generated from

clock generation chain. We can probe

for debugging purpose.

-

PROBE input Enable folded cascode amplifier for

buffering probe signals.

0

OVER VIN input Enable over writing VIN node with sig-

nal input from EXT VIN pin.

0

OVER

AMP

OUT

input Enable over writing AMP OUT node

with signal input from EXT AMP OUT

0

INJECT

EXT

input External INJECT signal for driving

ADC externally.

0

CDS

PRE

EXT

input External CDS PRE signal for driving

ADC externally.

0

EN EXT input External EN signal for driving ADC ex-

ternally.

0

LATCH

EXT

input External LATCH signal for driving ADC 0
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Table B.3: Imager Temporal Event Digital Input and Output

Pin Name Direction Description
DATA

<14:0>

output ON/OFF pixel spike event output encoded in address

event <14:8> Row, <7> Sign(0:ON, 1:OFF), <6:0>

Column

REQ IN output Handshake request signal

ACK IN input Handshake acknowledge signal

RSTARRAY input Active high signal for resetting pixel array

RST LFSR input Active high signal for resetting LFSR

PIXEL

RST B

input Active high signal for pixel reset

GLOB

ADAPT

RST B

input Active low signal for resetting DC operating voltage of

global adaptation node

Table B.4: Imager Bias Calibration SPI

Pin Name Direction Description

SDI input 1bit SPI input for serial chain register controlling bias

calibration

SCK input Clock for bias calibration SPI register

RESET input Reset bias calibration SPI register

DATA EN input Load register value to bias calibration SPI register

SDO output Serial chain output from bias calibration SPI register
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B.1.3 Imager Analog Input and Output

Table B.5: Imager Analog for Core

Pin Name Direction Description Recommend
Initial Value

NBIAS

COMP

input Bias current for comparator in pixel 50n

VOFF TH input Global voltage bias governing the ref-

erence voltage implementing off-event

threshold

800 mV

VPRE input Global voltage bias governing the refer-

ence voltage implementing reset level of

pixel comparator

900 mV

VON TH input Global voltage bias governing the ref-

erence voltage implementing on-event

threshold

1 V

PBIAS input Bias current for inverting amplifier in

pixel

100n

VC HIGH input Voltage bias governing the gate voltage

of the cascode bias block (High)

900 mV

VC LOW input Voltage bias governing the gate voltage

of the cascode bias block (Low)

700 mV

VC BIAS input Current for injecting current to pixel for

CDS

100 nA

PIXEL

ANALOG

OUTPUT

output Analog output value of addressed pixel -

SF BIAS input Bias current for source follower in pixel

array

5u

Continued on next page
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Table B.5 Imager Analog for Core, Continued.

Pin Name Direction Description Recommend
Initial Value

NBIAS

HYST

input Bias current for comparator in clock

generation chain implementing clock

pulse with hysteresis

100 nA

NBIAS input Bias current for comparator in clock

generation chain implementing clock

pulse

120 nA

CLOCK

GEN

VREF

input Voltage reference for comparator in

clock generation chain

900 mV

IBIAS

PMOS

CLK1

output Current defining duration of PRE signal

pulse width with RC time constant com-

paring CLOCK GEN VREF

200 nA

IBIAS

PMOS

CLK2

output Current defining duration of INJECT

signal pulse width with RC time con-

stant comparing CLOCK GEN VREF

200 nA

VBP input Global pMOS voltage bias governing the

gate voltage of the pMOS in the feed-

back loop in the row and column ar-

biters, the buffered outputs from the row

and column arbiters, and the pMOS in

async input control logic for weak pull

up

900 mV

VPUP input Global pMOS voltage bias governing the

gate voltage of the pMOS at the input of

the row and column arbiters

900 mV

Continued on next page
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Table B.5 Imager Analog for Core, Continued.

Pin Name Direction Description Recommend
Initial Value

VPUPREQ input Global pMOS voltage bias governing the

gate voltage of the column and row re-

quest inputs

900 mV

NBIAS SF input Bias current for source follower in pixel 50n

B.2 Imager Pinout Table

Table B.6: Imager Pin Name

Number Pin Name Type
1 NBIAS COMP ANALOG

2 VOFF TH ANALOG

3 VPRE ANALOG

4 VON TH ANALOG

5 PBIAS ANALOG

6 VC HIGH ANALOG

7 VC LOW ANALOG

8 VC BIAS ANALOG

9 PIXEL ANALOG OUTPUT ANALOG

10 SF BIAS ANALOG

11 NBIAS HYST ANALOG

12 NBIAS ANALOG

13 CLOCK GEN VREF ANALOG

14 IBIAS PMOS CLK1 ANALOG

15 IBIAS PMOS CLK2 ANALOG

Continued on next page
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Table B.6 Imager Pin Name, Continued.

Number Pin Name Type
16 VSS POWER/GND

17 VDD INJECT POWER/GND

18 VDD INJECT POWER/GND

19 VSSIO POWER/GND

20 VDDIO POWER/GND

21 SDI DIGITAL

22 SCK DIGITAL

23 RESET DIGITAL

24 DATA EN DIGITAL

25 PIXEL RST B DIGITAL

26 SDO DIGITAL

27 PRE BUF DIGITAL

28 INJECT BUF DIGITAL

29 ADC ENABLE BUF DIGITAL

30 ACK IN DIGITAL

31 REQ IN DIGITAL

32 CLOCK GEN INIT DIGITAL

33 DATA IN<0> DIGITAL

34 DATA IN<1> DIGITAL

35 DATA IN<2> DIGITAL

36 DATA IN<3> DIGITAL

37 DATA IN<4> DIGITAL

38 DATA IN<5> DIGITAL

39 DATA IN<6> DIGITAL

40 DATA IN<7> DIGITAL

41 DATA IN<8> DIGITAL

42 DATA IN<9> DIGITAL

43 DATA IN<10> DIGITAL

Continued on next page
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Table B.6 Imager Pin Name, Continued.

Number Pin Name Type
44 DATA IN<11> DIGITAL

45 DATA IN<12> DIGITAL

46 DATA IN<13> DIGITAL

47 VSS POWER/GND

48 VDD ADC POWER/GND

49 VDD ADC POWER/GND

50 VSS POWER/GND

51 VIN EXT ANALOG

52 REF EXT ANALOG

53 IBIAS PROBE ANALOG

54 VCM ANALOG

55 IBIAS AMP ANALOG

56 PBIAS COMP ANALOG

57 VHI ANALOG

58 VLOW ANALOG

59 EXT IN ANALOG

60 EXT AMP OUT ANALOG

61 PROBE VIN ANALOG

62 PROBE AMP OUT ANALOG

63 GLOB ADAPT OUT ANALOG

64 GLOB ADAPT BIAS ANALOG

65 GLOB ADAPT REF ANALOG

66 VSSIO POWER/GND

67 VDDIO POWER/GND

68 GLOB ADAPT RST B DIGITAL

69 ADC DATA OUT<0> DIGITAL

70 ADC DATA OUT<1> DIGITAL

71 ADC DATA OUT<2> DIGITAL

Continued on next page
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Table B.6 Imager Pin Name, Continued.

Number Pin Name Type
72 ADC DATA OUT<3> DIGITAL

73 ADC DATA OUT<4> DIGITAL

74 ADC DATA OUT<5> DIGITAL

75 ADC DATA OUT<6> DIGITAL

76 ADC DATA OUT<7> DIGITAL

77 ADC DATA OUT<8> DIGITAL

78 ADC DATA OUT<9> DIGITAL

79 PROBE DIGITAL

80 OVER VIN DIGITAL

81 OVER AMP OUT DIGITAL

82 SLOAD ADC DIGITAL

83 SDI ADC DIGITAL

84 SCK ADC DIGITAL

85 INJECT EXT DIGITAL

86 CDS PRE EXT DIGITAL

87 EN EXT DIGITAL

88 LATCH EXT DIGITAL

89 VSSIO POWER/GND

90 VDDIO POWER/GND

91 DATA<14> DIGITAL

92 REQ IN DIGITAL

93 DATA<13> DIGITAL

94 DATA<12> DIGITAL

95 DATA<11> DIGITAL

96 DATA<10> DIGITAL

97 DATA<9> DIGITAL

98 DATA<8> DIGITAL

99 DATA<7> DIGITAL

Continued on next page
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Table B.6 Imager Pin Name, Continued.

Number Pin Name Type
100 DATA<6> DIGITAL

101 DATA<5> DIGITAL

102 DATA<4> DIGITAL

103 DATA<3> DIGITAL

104 DATA<2> DIGITAL

105 DATA<1> DIGITAL

106 DATA<0> DIGITAL

107 ACK IN DIGITAL

108 RSTARRAY DIGITAL

109 RST LFSR DIGITAL

110 VSS POWER/GND

111 VDD ARB POWER/GND

112 VDD ARB POWER/GND

113 VSS POWER/GND

114 VDD CORE POWER/GND

115 VDD CORE POWER/GND

116 VSS POWER/GND

117 VBP ANALOG

118 VPUP ANALOG

119 VPUPREQ ANALOG

120 NBIAS SF ANALOG
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B.3 Chip Packaging

Fig. B.1 shows 5⇥5 mm2 imager chip packaged in Thin Quad Flat Pack (TQFP)

package with 128 leads, 14⇥14 mm2 body and 0.4 mm pitch.

Figure B.1: Imager chip packaging in TQFP 128 leads, 14⇥14 mm2 body and 0.4 mm
pitch
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B.4 Test Board

Fig. B.2 shows test PCB for imager testing.

FPGA
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Figure B.2: Imager test board
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