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Abstract

The pressure torque by a liquid core that drove Mercury to the nominal Cassini state

of rotation is dominated by the torque from the solid inner core. The gravitational torque

exerted on Mercury’s mantle from an asymmetric solid inner core increases the equilibrium

obliquity of the mantle spin axis. Since the observed obliquity of the mantle must be com-

patible with a solid inner core of any size, the moment of inertia inferred from the occupancy

of the Cassini state must be reduced to compensate the torque from the inner core and bring

Mercury’s spin axis to the observed position. The unknown size and shape of the inner core

means that the moment of inertia is more uncertain than previously inferred.

1Deceased 14 May 2015
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1. Introduction

Mercury is in a stable spin–orbit resonance in which the rotational angular velocity is

precisely 1.5 times the mean orbital motion (Pettengill and Dyce 1965; Colombo and Shapiro

1966). This rotation state is a natural outcome of tidal evolution (Goldreich and Peale 1966)

or other dissipative effects, although the details of the resonance capture mechanism are still

debated (Correia and Laskar 2004, 2009; Wieczorek et al. 2012; Correia and Laskar 2012;

Noyelles et al. 2014). In addition, the same dissipation brings Mercury to Cassini state

1, wherein Mercury’s spin axis remains coplanar with the orbit normal and Laplace plane

normal as the spin vector and orbit normal precess around the latter with a ∼ 300, 000 yr

period (Colombo 1966; Peale 1969, 1974). Because the Laplace plane is itself variable on

long time scales, one can invoke an instantaneous Laplace plane that is valid at the present

epoch (Yseboodt and Margot 2006). On the basis of theoretical calculations, Mercury is

expected to remain close to the Cassini state (Peale 2006). That Mercury is very close to

this state has been verified with radar observations, which give an obliquity of 2.04 ± 0.08

arcmin (Margot et al. 2007, 2012), consistent with analysis of MESSENGER spacecraft

gravity data, laser altimetry, and stereo digital terrain models (Mazarico et al. 2014; Stark

et al. 2015). The most recent observations show that the best-fit solutions are offset from

the Cassini state by a few arcseconds, but the uncertainty at one standard deviation includes

the Cassini state.

Pressure torque between Mercury’s fluid core and its mantle drive Mercury’s spin axis

to the Cassini state (Peale et al. 2014) (hereinafter Paper 1). It thereby dominates dissi-

pative viscous, topographic, and magnetic effects that would otherwise result in significant

displacement of the observable spin axis from the Cassini state position. This result is reas-

suring as Mercury’s spin is observed to occupy the Cassini state (Margot et al. 2007, 2012;

Mazarico et al. 2014; Stark et al. 2015), but at the same time it frustrates the establishment

of any constraints on Mercury’s interior that could result from a measurable displacement.

We show here that the increase in the obliquity from torques exerted by an asymmetric solid

inner core can be reversed by the reduction of Mercury’s polar moment of inertia from the

value inferred if there is no inner core. For a small inner core, the current best estimate of

the moment of inertia would be unchanged, but for a large inner core, the revised estimate

would be smaller than the current estimate.

The assumed model of the planet consists of four homogeneous layers: crust, mantle,

fluid outer core, and solid inner core (Fig. 1). Ri and ρi designate the radii and densities

of the various layers, with subscript c for crust, m for mantle, f for fluid outer core, and s

for solid inner core. Rc = 2440 km is the measured planetary radius, and the selected value
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of ρc is described below. The crustal thickness is specified by the choice of Rm. The inner

core ρs and Rs are also specified. We will evolve the spin configuration for three values of ρs
(8.0, 9.3, and 10.0 g/cm3) to span the uncertainty in this value. Five inner core radii will be

assumed (0.0 or no inner core, 0.3, 0.4, 0.5, and 0.6 Rc, where Rc should not be confused with

Rf ). The densities ρf , ρm along with the radius Rf of the core–mantle boundary (CMB)

will be solved to produce the known values of the total planetary mass m, the total moment

of inertia C/mR2
c , and the moment of inertia of the mantle–crust alone (Cm + Cc)/C.

Fig. 1.— Model of Mercury’s interior as four concentric and homogeneous layers. Note that

in our notation Rc is the radius of the crust, which is that of the planet. This symbol is often

used in other publications to indicate the radius of the fluid core, which in our notation is

Rf . We assume Rc = 2440 km and ρc = 2.8 g/cm3 in all our calculations.

The second-degree zonal and tesseral spherical harmonic gravitational coefficients J2 and

C22 can be expressed in terms of the densities and radii of the layers and their ellipticities.

The ellipticities of the top of the crust have been measured; the mean polar ellipticity
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ǫc = 5.534 × 10−4 and the equatorial ellipticity ξc = 4.919 × 10−4 (Perry et al. 2015).

Expressions for J2 and C22 along with relations for the assumed equipotential surfaces at the

CMB and inner core boundary (ICB) provide a sufficient number of equations to solve for all

the remaining ellipticities, which change with a change in the assumed inner core radius. The

ellipticities are required to calculate the torques. We will neglect the ∼ 15◦ misalignment of

the equatorial long axis and the ∼ 6◦ misalignment of the short axis of the crust with those

of the geoid as determined by MESSENGER laser altimetry and radio occultations (Perry

et al. 2015).

In Section 2 we write the general dynamical equations that are derived in Paper 1.

Although written for the mantle–crust combination, they apply to the other two layers

representing the fluid core and the solid inner core with a change in the subscripts of the

parameters. There are three sets of equations that must be solved simultaneously to map

the evolution of the system equations for the combined crust and mantle and the outer and

inner core to the equilibrium configuration. The various torques to be used in the equations

are developed in several subsections. The ICB will be at least gravitationally distorted by

the non-radial internal field of the mantle–crust and fluid outer core and less so by the solar

and rotational fields (Paper 1). We include the mutual gravitational torques that result from

any misalignment of the ellipsoidal shape of the inner core with that of the mantle. This

torque is sustained since the inner core obliquity remains larger than the mantle obliquity in

equilibrium. We consider this mutual torque along with the direct solar gravitational torques

acting on each of the three layers, the mantle–crust, the fluid outer core, and the solid inner

core. The first is considered a single layer for the dynamical equations, since mantle and

crust move together. Pressure torques acting at the CMB and at the ICB include those

induced by gravity and by the fluid velocity at the ICB and CMB. A viscous interaction

provides a dissipative evolution to an equilibrium configuration whereby the spin axes of the

respective layers remain fixed in a frame precessing with the orbit. The torques from tides,

magnetic coupling, and topographic coupling treated in Paper 1 are small and do not affect

the evolution to the equilibrium state. These latter torques are therefore not included here.

We chose a crustal density ρc = 2.8 g/cm3, which we maintain for all of the calculations.

This choice is based on results from the Moon, where the mean crustal density is 2.6 g/cm3,

which implies considerable porosity (12%) (Wieczorek et al. 2013). The lunar crustal density

approaches 2.4 g/cm3 at the shallowest depths. The 2.8 g/cm3 chosen for Mercury’s crust

can then account for Mercury’s higher surface gravitational acceleration and perhaps a lower

porosity. The inner core density is arbitrary except that ρs = 8 g/cm3 is taken as a lower

limit to possible values. That the mantle–crust obliquity decreases with C/mR2
c suggests that

by reducing C/mR2
c we can compensate for the increased obliquity caused by the interaction
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between the mantle–crust and the inner core. When the moment of inertia is that which is

appropriate for no inner core, the mantle obliquity is displaced to larger and larger obliquities

as the inner core size increases. The mantle obliquity is matched to within the observational

uncertainty by appropriate reductions in C/mR2
c for each core size. These reductions increase

as the inner core size increases. Some of the models obtained for the range of inner core

densities are unlikely.

The results are detailed in Section 3 for the ranges of inner core sizes and densities

considered. We show that for an ICB and a CMB that are equipotential surfaces, the

equilibrium position of the mantle spin is displaced toward obliquities higher than that of

the Cassini state appropriate to Mercury with no solid inner core and therefore higher than

the observed obliquity. We demonstrate below that the required reductions in C/mR2
c are

significant for Rs > 0.3Rc. The displacement of the evolved mantle spins from the Cassini

state for the unaltered C/mR2
c = 0.346 determined from the observed obliquity and deduced

for Mercury with a fluid core but no solid inner core is shown for ρs = 8.0 g/cm3 only. The

restoration of the evolved mantle-crust spin to the observed position for all three inner core

densities is shown with appropriate reductions in C/mR2
c .

The mantle–crust obliquity increases with the inner core size. The displacement vanishes

if the direct gravitational torque between the mantle and inner core is set to zero. The

obliquity is used to determine the moment of inertia of Mercury (e.g., Peale et al. 2014).

The increase in the obliquity of the mantle from gravitational torques due to the inner core

means that C/mR2
c must be reduced by an amount that increases with inner core radius to

bring the mantle spin back to the observed position. We discuss the implications in Section

4 where the values of C/mR2
c versus Rs, the radius of the solid inner core, are given. This

exercise is repeated for inner core densities of 9.3 g/cm3 and 10.0 g/cm3.

2. Equations of variation

The coordinate systems and angles for the equations that govern the rotational motion

of Mercury are shown in Fig. 2, where X ′, Y ′, Z ′ are quasi-inertial axes with the X ′Y ′ plane

being the Laplace plane on which Mercury’s orbit precesses at nearly a constant inclination

I and nearly constant angular velocity µ = −µkL (kL=normal to Laplace plane). The XY Z

orbit system has the X axis along the ascending node of the orbit plane on the Laplace

plane, and the XY plane is the orbit plane. The xyz system is fixed in the body, with z

along the spin axis and x along the axis of minimum moment of inertia in the equator plane.

The Euler angles orienting the xyz system relative to the XY Z system are Ω, i, ψ, where Ω
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is the longitude of the ascending node of the equator plane on the XY orbit plane measured

from the X axis, i is the inclination of the equator plane to the orbit plane, and ψ is the

angle from the ascending node of the equator on the orbit plane to the x axis of minimum

moment of inertia. The three Euler angles and the body coordinates will have subscripts

m, f , or s to designate mantle–crust, fluid core, or solid inner core, respectively, as in Paper

1. We use subscript c when we refer to the crust alone. Angle I is the inclination of the orbit

plane to the Laplace plane, Ωo is the longitude of the ascending node of the orbit plane on

the Laplace plane, ω is the argument of perihelion, f is the true anomaly of the Sun, and r

is the distance from Mercury to the Sun.

Fig. 2.— Coordinate systems and relevant angles. The Euler angles orienting the body-fixed

xyz system relative to the orbit XY Z system are Ω, i, and ψ. These angles as well as the

xyz coordinates will have subscripts m, f , or s for mantle–crust, fluid core, and solid inner

core, respectively.

We assume principal axis rotation for all three layers throughout, in part because free
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rotational modes of the mantle and crust are expected to damp on relatively short (∼ 105

y) time scales (Peale 2005). Following Paper 1, we arrive at the following for the variation

of the Euler angles orienting the mantle frame relative to the orbit frame of reference:

dψ̇m

dt
= pmNmX − qmNmY +

√

1− p2m − q2mNmZ

dpm
dt

=
1

ψ̇m

[

(1− p2m)NmX + pmqmNmY − pm
√

1− p2m − q2mNmZ

]

dqm
dt

= −
1

ψ̇m

[

pmqmNmX + (1− q2m)NmY + qm
√

1− p2m − q2mNmZ

]

, (1)

where Nmi are the components of Nm in the XY Z orbit frame of reference with

Nm =
〈Tm〉

Cm + Cc
− µ× ψ̇m,

pm = sin im sinΩm,

qm = sin im cosΩm, (2)

where Tm is the total torque on the mantle–crust and the angled brackets indicate an average

over the orbit. In Eq. (2), µ is the orbit precession angular velocity. The equations for the

fluid and solid core motions are identical to Eqs. (1) and (2) with subscripts changed to f

and s, respectively. The evolution of the spin state is governed by the solution of the set of

nine equations under the action of appropriate torques the forms of which we now determine.
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2.1. Solar gravitational torque

The averaged solar torque on the mantle was developed in Paper 1 with the result

〈Tm
solar〉X

Cm + Cc
= −

n2

αm

[

3

2
J2 sin im cos im cos Ωmg1(e)

+
3

2
C22 sin im(1 + cos im) cos (Ωm − 2γ)g2(e)

+
3

2
C22 sin im(1 + cos im) cos (2ω − Ωm + 2γ)g3(e)

]

,

〈Tm
solar〉Y

Cm + Cc
= −

n2

αm

[

3

2
J2 sin im cos im sin Ωmg1(e)

+
3

2
C22 sin im(1 + cos im) sin (Ωm − 2γ)g2(e)

−
3

2
C22 sin im(1 + cos im) sin (2ω − Ωm + 2γ)g3(e)

]

,

〈Tm
solar〉Z

Cm + Cc

= −
n2

αm

{

3

2
C22(1 + cos im)

2

[

g2(e) sin 2γ + g4(e) sin (4ω − 4Ωm + 2γ)

]}

, (3)

where the moment of inertia of the mantle–crust Cm + Cc = αmmR
2
c defines αm and n2 =

Gm⊙/a
3 has been used with n = orbital mean motion, G = gravitational constant, m⊙ =

solar mass, and a = orbital semimajor axis. The choice of Cm + Cc in Eqs. (3) means they

apply to the mantle–crust alone, and the second-degree gravitational harmonic coefficients

J2 and C22 correspond only to this part of Mercury. The averaged solar gravitational torque

on the solid inner core 〈Ts
solar〉/Cs is the same as Eqs. (3) with subscripts m replaced by s.

In Paper 1 it was shown that the gravitationally induced pressure torque on the CMB adds

to the direct gravitational torque as if the thin ellipsoidal shell of core fluid that protrudes

into the mantle is added to the mantle. The contributions of the fluid core are therefore

included in the values of J2 and C22 in Eq. (3). We show in Appendix A that the pressure

torque on the inner core due to the gravity field opposes the direct gravitational torque such

that the effective torque is the same as the direct gravity on a body with the shape of the

inner core, but with a density ρs − ρf , where ρs, ρf are the densities of the inner core and

fluid core, respectively.
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In Eqs. (3)

g1(e) = (1− e2)−3/2

g2(e) =
7e

2
−

123e3

16
+

489e5

128
+ ...

g3(e) =
53e3

16
+

393e5

256
+ ...

g4(e) =
85e5

2560
+ ..., (4)

where e is the orbital eccentricity. There are additional terms in the X and Y components of

Tm
solar to order e5 with factors sin im(1−cos im). Since Mercury’s obliquity is about 2 arcmin

(Margot et al. 2007, 2012) and since we always start the integrations close to the final state,

these factors coupled with lowest-order factors of e3 or e5 make these terms negligibly small

compared with the terms that are retained. With fluid core and inner core parameters, Eqs.

(3) apply to the fluid and inner core as well, but we show below that pressure forces between

fluid core and mantle and separately the inner core effectively cancel the gravitational torque

on the fluid outer core.

2.2. Gravitational torque on the inner core from the mantle

If a > b > c are the three semiaxes, an ellipsoidal surface is represented by x2/a2+y2/b2+

z2/c2 = 1 or x2 + y2/(1 − ξ)2 + z2/(1− ǫa)
2 = a2, where ǫa = (a − c)/a and ξ = (a − b)/a.

If we write (x, y, z) in terms of spherical polar coordinates (radius r, colatitude θ, longitude

φ),
r

a
= 1−

(

ǫa
3
+
ξ

3

)

−

(

2ǫa
3

−
ξ

3

)

P20(cos θ) +
ξ

6
P22(cos θ) cos 2φ, (5)

to first order in ǫa and ξ where P20 and P22 are Legendre functions. The coefficient of P20

can be written (−2/3)(ǫa/2+ ǫb/2) = (−2/3)ǫ, where ǫb = (b− c)/a and ǫ is thereby a mean

polar ellipticity. Then

r

a
= 1−

(

ǫ

3
+
ξ

2

)

−
2

3
ǫP20(cos θ) +

ξ

6
P22(cos θ) cos 2φ, (6)

where the ellipsoidal surface is characterized by the ellipticities ǫ and ξ. As noted above, we

model Mercury as four homogeneous layers with densities ρc, ρm, ρf , and ρs for the crust,

mantle, fluid outer core, and solid inner core, respectively. The surface of each layer is

distinguished by placing the same subscripts on the two ellipticities. The crust and mantle
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are rigidly attached and move together, but the mutual torques are calculated separately for

the crust and mantle.

We shall first assume an inner core density of 8 g/cm3 or slightly above and several values

for the inner core radius. With these assumptions, the three quantities ρm, ρf , and Rf , the

radius of the fluid core (CMB), can be determined to be consistent with measured values of

C/mR2
c , (Cm + Cc)/C, and total mass m, where Cm + Cc is the polar moment of inertia of

the mantle–crust. The observed values of the second degree gravitational coefficients, J2 and

C22, can be expressed as a sum of contributions from the ellipsoidal shapes of the surfaces of

each layer (e.g., Paper 1). Equipotential surfaces at the CMB and the ICB give additional

relations among the ellipticities. The known parameters are J2 = 5.03×10−5, C22 = 0.809×

10−5, C/mR2
c = 0.346, (Cm + Cc)/C = 0.431, and m = 3.301 × 1026g, where C/mR2

c and

(Cm+Cc)/C are the values derived assuming that there is no solid inner core. (We show below

that C/mR2
c must be reduced and (Cm + Cc)/C increased when there is an elliptical solid

inner core.) The values of J2, C22, and m come from Smith et al. (2012) and Mazarico et al.

(2014), and C/mR2
c and (Cm + Cc)/C from Margot et al. (2012). In summary there are 16

unknowns (4ǫs, 4ξs, 4ρs, and 4Rs) and 10 equations (C/mR2, (Cm +Cc)/C, m, Rc, J2, C22,

two equipotential surface conditions at the CMB, and two at the ICB). Our specification of

Rm = 2390 km yields a crustal thickness of 50 km. Padovan et al. (2015) found a crustal

thickness near 35 km, although 50 km is within their uncertainty at one standard deviation.

There was a negligible change in the evolution if 35 km was used instead of 50 km. With

the four specified values of the parameters, ρs, Rs, ρc, and Rm and the measured values

ǫc = 5.534 × 10−4 and ξc = 4.919 × 10−4 (Perry et al. 2015) the number of unknowns is

reduced to 10. The procedure for solution was carried out in Appendix A of Paper 1 for

a three-layer model. One only need add terms to Eqs. (41) in that paper to accommodate

the crust, and the set is solvable for Rf , ρf , ρm as before to yield the observables. The

ellipticities follow as in Paper 1, except now there are additional ellipticities at the crust–

mantle boundary.

The major contrast from the ρs = 8.0 g/cm3 case for ρs = 9.3 and 10.0 g/cm3 is a much

larger difference between the density of the inner core and that of the fluid outer core, which

may be more likely given the change in phase at the ICB and the probable light elements

(e.g., S, Si) in the fluid core (Hauck II et al. 2013). The details of these models, e.g., densities

and CMB radii, are displayed in Table 1. The final obliquities of each part of Mercury are

also included. The inner core obliquity is separated from the mantle–crust obliquity more

than the equilibrium fluid core obliquity for all sets of parameters. The precession causes

the difference in obliquities to be maintained in equilibrium, leading to a maintained torque

between the mantle–crust and the inner core. The fluid outer core obliquity usually falls
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between that of the mantle–crust and that of the inner core, but not always. The inner core

density was chosen to be 8.05 g/cm3 instead of 8.0 g/cm3 on the fifth line of the first part of

Table 1 to force the fluid core density to be less than that of the inner core. A model with

ρf > ρs seems immediately rejectable.

If we multiply Eq. (6) by a, subtract the constant term on the right-hand side from both

sides, and replace a by the mean radius, which we call Rm, Rf , and Rs for the three surfaces,

an expression for the deviation of the radius of the surface from a sphere ∆r results. We

can then determine the non-radial potential inside and outside the surface mass distribution

given by

σ(θ, φ) = −
2

3
ǫRiρP20(cos θ) +

ξ

6
RiρP22(cos θ) cos 2φ, (7)

where the potential interior to the mantle–crust from the surface mass distributions on the

inner and outer surfaces of mean radii Rm and Rf is (e.g., Appendix A of Paper 1)

Φint(r, θ, φ) =
8πGr2

15
[ǫmρm+(ρf−ρm)ǫf ]P20(cos θ)−

2πGr2

15
[ξmρm+ξf(ρf−ρm)]P22(cos θ) cos 2φ.

(8)

The spherical coordinates are relative to the mantle–crust principal axes, and the inner and

outer ellipsoidal surfaces of the mantle are assumed to be aligned. The torque on the inner

core from the gravitational field of the mantle for the uniform density layers is given by

Ts
mantlegrav = −

∫∫∫

IC

r× (ρs − ρf )∇ΦintdV, (9)

where the fluid core density ρf is subtracted because of the pressure force on the inner

core surface (demonstrated in Appendix A), and where the integral is over the volume of

the inner core. Another way to motivate the density difference at the inner core is to

note that the torque must vanish if ρf = ρs. With a homogeneous inner core, the integral

can be changed to a surface integral over a surface distribution of mass like Eq. (7) with

(ρs− ρf )dV → (σs−σf )dS = (ρs− ρf )∆rsdS, since the integral over the interior spherically

symmetric distribution of mass vanishes. For each element dS, the integrand of Eq. (9)

represents the torque on that element of mass due to the gravitational potential of the mantle.

The total torque is the integral over the surface. The asymmetric part of the interior potential

due to the mantle can be written Φint = (8πG/15)Ka[z
2
m−(x2m+y

2
m)/2]−(2πG/5)Kb(x

2
m−y

2
m)

in Cartesian coordinates, where Ka = ǫmρm + ǫf (ρf − ρm) and Kb = ξmρm + ξf(ρf − ρm).

With rm = xmim + ymjm + zmkm and (im, jm,km) as unit vectors along the principal axes of

the mantle, it is easy to obtain

r× (−∇Φ) =
4π

5
G[−(2Ka −Kb)ymzm im + (2Ka +Kb)xmzm jm − 2Kbxmym km], (10)
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which yields the components of the torque on the element (ρs − ρf )∆rsdS along the mantle

principal axis directions in terms of the mantle coordinates of the point.

In order to integrate over the surface of the inner core, the mantle coordinates of the point

must be expressed in terms of the inner core coordinates. If (ℓ1, ℓ2, ℓ3), (m1, m2, m3), and

(n1, n2, n3) comprise the rows of the orthogonal matrix relating the coordinates xm, ym, zm to

xs, ys, zs, then xm = ℓ1xs+ℓ2ys+ℓ3zs, ym = m1xs+m2ys+m3zs and zm = n1xs+n2ys+n3zs.

To integrate the torque on the surface mass elements over the spherical surface, we write

xs = Rs sin θs cos φs, ys = Rs sin θs sinφs, zs = Rs cos θs. Eq. (9) becomes

Ts
mantlegrav =

∫∫

ICB

r× (−∇Φ)(σs − σf )dS (11)

=

∫ π

0

∫ 2π

0

r× (−∇Φ)(ρs − ρf )

[

−
2

3
ǫsRsP20(cos θs)

+
ξs
6
RsP22(cos θs) cos 2φs

]

R2
s sin θsdθsdφs,

where Eq.(10) is inserted for r × (−∇Φ) with xm, ym, zm expressed in terms of xs, ys, zs
through the rotation matrix with components ℓi, mi, ni. The cross product r × (−∇Φ)

involves products of mantle system coordinates, which become products of inner core coor-

dinates after the transformation. There results

Ts
mantlegrav = −

16

225
Gπ2(ρs − ρf)R

5
s{(2Ka −Kb)[2ǫs(m1n1 +m2n2 − 2m3n3) + 3ξs(m1n1 −m2n2)]im

−(2Ka +Kb)[2ǫs(ℓ1n1 + ℓ2n2 − 2ℓ3n3) + 3ξs(ℓ1n1 − ℓ2n2)]jm

+2Kb[2ǫs(ℓ1m1 + ℓ2m2 − 2ℓ3m3) + 3ξs(ℓ1m1 − ℓ2m2)]km},

= −
16

75
Gπ2(ρs − ρf )R

5
s{(2Ka −Kb)[−2ǫsm3n3 + ξs(m1n1 −m2n2)]im

−(2Ka +Kb)[−2ǫsℓ3n3 + ξs(ℓ1n1 − ℓ2n2)]jm

+2Kb[−2ǫsℓ3m3 + ξs(ℓ1m1 − ℓ2m2)]km}, (12)

where the second form follows from the null values of products of rows or columns of orthog-

onal matrices.

The torque must be expressed in terms of the variables used in the differential equations

(pi, qi), which refer to the orbit system of coordinates and where pi = sin ii sin Ωi, qi =

sin ii cos Ωi. The variables ψi will be rapidly varying because of the rotations. We will

average over the ψi to retain only the slowly varying components. The core and mantle

systems of coordinates are oriented relative to the orbit system through the Euler angles

Ωi, ii, ψi with the orthogonal transformation A given by Goldstein (1980, p. 147) with

rows (A11, A12, A13), (A21, ...), (A31, ...). The X, Y, Z orbit system has the X axis along the
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ascending node of the orbit on the Laplace plane on which the orbit precesses with a nearly

constant inclination at nearly a constant rate with a ∼ 300, 000 year period. The Z axis

is normal to the orbit (XY ) plane. I,J,K are unit vectors along the X, Y, Z axes. From

Goldstein (1980), (Xm, Ym, Zm) = A−1
m (xm, ym, zm), so that, for example, im = (1, 0, 0) in

the mantle frame has components Am11I+ Am12J+ Am13K in the orbit frame, with similar

expressions for jm and km in terms of the Amij . The unit vectors along the mantle principal

axes (im, jm,km) are thus expressed in the orbit system in terms of the appropriate Euler

angles. A similar set of expressions involving the components of the transformation As

orienting the inner core relative to the orbit plane in terms of the Euler angles Ωs, is, ψs

yields the components of is, js,ks in the orbit system.

From the definition of the transformation with components ℓi, mi, ni orienting the inner

core relative to the mantle, we can deduce that ℓ1 = is · im, ℓ2 = js · im, ℓ3 = ks · im,

m1 = is · jm, m2 = js · jm, m3 = ks · jm, n1 = is · km, n2 = js · km, n3 = ks · km. Since the

components of all the unit vectors are known in the orbit system of coordinates in terms of

the respective sets of Euler angles, the torque on the inner core from the asymmetric mantle

is known in terms of the same coordinates. Finally, expressing im, jm,km in terms of their

components along I,J,K and collecting terms for each of the latter unit vectors yields the

components of Ts
mantlegrav in the orbit system in terms of the respective Euler angles.

The many terms in Ts
mantlegrav are expanded into products of circular functions whose

arguments are single Euler angles orienting the mantle and inner core relative to the orbit

system. This expansion is averaged over the Mercury day to eliminate the high-frequency

terms. We will consider only small starting values of the Euler angles im and is (obliquities)

close to the current obliquity of the mantle of ∼ 2 arcmin (Margot et al. 2007, 2012). As

the obliquities will remain small throughout the calculation, we keep only those terms in

the sum of products of the circular functions with single angles as arguments representing

Ts
mantlegrav that are first order in ic, im. (The thousands of lines involved in this exercise were

handled with the Mathematica software package, but considerable hand editing of the files

was necessary in order to use editorial macros to efficiently eliminate the higher-order terms.)

Mercury’s 3:2 spin-orbit resonance requires ψ̇m = 1.5n+ γ̇m and ψ̇s = 1.5n+ γ̇s, where n is

the orbital mean motion and γ̇m and γ̇s allow for small deviations of the rotation rates from

the resonant values. The stability of the resonance requires the axis of minimum moment

of inertia of Mercury to be nearly aligned with the direction to the Sun when Mercury is at

perihelion. A slight displacement from this condition will cause a free libration in longitude

about this position that will be damped by dissipation. Because of the small obliquities
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assumed, we can write

ψm = 1.5M + ω − Ωm + γm

ψs = 1.5M + ω − Ωs + γs, (13)

which follows from inspection of Fig. 1, where ω is the argument of perihelion, M is the

mean anomaly, and the Euler angles Ωm and Ωs are the longitudes of the ascending nodes

of the equator planes of the mantle and inner core, respectively, measured from the X axis

in the orbit plane. With ψm and ψs replaced by the expressions in Eq. (13), we perform the

operation

〈Ts
mantlegrav〉 =

1

4π

∫ 4π

0

Ts
mantlegravdM, (14)

to obtain the averaged torque on the inner core due to the gravitational potential of the

asymmetric mantle–crust. In the average, the only quantity to survive from the expressions

for ψm and ψs is 2γm − 2γs, always in this combination.

〈Ts
mantlegrav〉 contains circular functions with arguments containing im, Ωm, is, Ωs in ad-

dition to circular functions with argument 2γm − 2γs. The circular functions involving the

Euler angles are expressed in terms of pm, qm, ps, qs. 〈Ts
mantlegrav

〉 is thereby expressed in

terms of the variables in the differential equations, where dψ̇i/dt is replaced by dγ̇i/dt. The

torque on the mantle due to the asymmetric inner core is −〈Ts
mantlegrav〉. Simplification of

many lines leads to the expression for 〈Ts
mantlegrav〉 to be used in the equations of motion:

〈T s
mantlegrav

〉X =
16

75
π2GR5

s(ρs − ρf){[4Kaǫs +Kbξs cos(2γm − 2γs)](qm − qs)

+ξsKb(pm + ps) sin(2γm − 2γs)},

〈T s
mantlegrav

〉Y =
16

75
π2GR5

s(ρs − ρf){[4Kaǫs +Kbξs cos(2γm − 2γs)](pm − ps)

−ξsKb(qm + qs) sin(2γm − 2γs)},

〈T s
mantlegrav

〉Z =
16

75
π2GR5

s(ρs − ρf){[−4Kaǫs +Kbξs cos(2γm − 2γs)](psqm − pmqs)

+ξs[Kb(pmps + qmqs) + 2Kb] sin(2γm − 2γs)}, (15)

where
Ka = ǫmρm + ǫf (ρf − ρm),

Kb = ξmρm + ξf(ρf − ρm),

Eqs. (15) are accurate to first order in im, ic. To be consistent with this assertion, the

products of the qs and ps should also be ignored in 〈T s
mantlegrav〉Z .
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2.3. Viscous torques

The viscous torque provides the necessary dissipation to bring the system to equilibrium

from initial conditions that are close to the equilibrium but otherwise arbitrary. The viscous

torque at the CMB and ICB is assumed to be simply proportional to the difference in the

vector angular velocities. This assumption is consistent with the fluid core rotating as a rigid

body (Poincaré 1910).

〈Tm
viscous〉 = −β1(ψ̇m − ψ̇f ),

〈Ts
viscous〉 = −β2(ψ̇s − ψ̇f ),

〈Tf
viscous〉 = −Tm

viscous −Ts
viscous (16)

are the viscous torques on the mantle, solid inner core, and fluid outer core, respectively,

where the viscous torques are intrinsically averaged since they do not contain the mean

anomaly and where

β1 =
ν

R2
f

(Cm + Cc)Cf

Cm + Cc + Cf
,

β2 =
ν

R2
s

CsCf

Cs + Cf

(17)

are the coefficients for the CMB and the ICB, respectively. In Eqs (17), ν is the kinematic

viscosity of the core fluid and the Cs are polar moments of inertia. These forms are found

by equating the time constant for the decay of a differential angular velocity as determined

from Eqs. (16) with the viscous time scale R2/ν (e.g., Paper 1).

With ψ̇m = ψ̇mkm = ψ̇m[pmI − qmJ +
√

1− p2m − q2mK] and with a similar expression

for ψ̇f , we can write for the viscous torque on the mantle

〈Tm
viscous〉X = −β1(pmψ̇m − pf ψ̇f),

〈Tm
viscous〉Y = −β1(−qmψ̇m + qf ψ̇f ),

〈Tm
viscous〉Z = −β1(ψ̇m

√

1− p2m − q2m − ψ̇f

√

1− p2f − q2f ), (18)

which is now expressed in terms of the variables in the variational equations. Similar ex-

pressions apply for the viscous torque on the inner core with superscripts and subscripts m

replaced by s.
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2.4. Pressure torques

From Appendix A, the pressure torques on the mantle–crust at the CMB and on the

inner core at the ICB are

Tm
pressure =

∫∫

CMB

r× nPdS,

Ts
pressure = −

∫∫

ICB

r× nPdS, (19)

where n is the normal to the surface in the positive radial direction. The surface integrals

can be expressed in terms of an integral over the volume of the fluid core (Appendix A)

∫∫∫

V

r×∇PdV,

where ∇P = −ρf (∂v/∂t + (v · ∇)v + ∇Φ) separates the contributions to the pressure

torque into two parts—one depending on the fluid motion and the other on the gravitational

potential Φ at the point. We have already accounted for the contributions of Φ to the

pressure torque at the CMB by including the thin layer of fluid core material that is outside

the largest sphere that fits inside the CMB with J2 and C22 of the mantle, and at the ICB

by substituting ρs − ρf for ρs in the expression for the ordinary gravitational torque on the

solid inner core (Appendix A). We will assume a steady state, so ∂v/∂t = 0, which leaves

the contribution from (v · ∇)v to be determined.

From the discussion at the beginning of Section 2.2, we can represent an axially sym-

metric ellipsoidal CMB by x′2 + y′2 + fǫfz
′2 = a2, where x′, y′, z′ are non-rotating coordi-

nates along principal axes defining the CMB and fǫf = 1 + 2ǫf to first order in ǫf . We

choose axial symmetry here to take advantage of developments applied to the Earth’s in-

terior by Melchior (1986). The normal to this ellipsoidal surface is n = ∇a2/|∇a2| =

(x′i′+y′j′+fǫfz
′k′)/

√

x′2 + y′2 + f 2
ǫf
z′2. In Paper 1 we followed Melchior (1986, p. 218–222)

by representing the velocity of the fluid in the core as a perturbation of rigid body motion:

v = (ψ̇fy′z
′ − ψ̇fz′y

′)i′ + (ψ̇fz′x
′ − ψ̇fx′z′)j′ +

(ψ̇fx′y′ − ψ̇fy′x
′)

fǫf
k′, (20)

which satisfies the boundary condition of v · n = 0. In Eq. (20) ψ̇fi are the components of

fluid velocity in the principal axis x′y′z′ system that does not rotate with the fluid core. In

Paper 1, Eq. (20) is used to determine (v · ∇)v, and the scalar representing the pressure

PCMB is determined such that ∇PCMB has the components of −(ρfv ·∇)v. Integration of the
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first of Eqs. (19) with this expression for PCMB yields for this part of the pressure torque

on the mantle,

T(m)(v·∇)v
pressure = −

8π

15
ρf ǫfR

5
f ψ̇fz′(ψ̇fy′i

′ − ψ̇fx′j′). (21)

The form of the fluid velocity at the ICB is identical to that in Eq. (20) for the CMB

except now the coordinates refer to the principal axes of the solid inner core, and the com-

ponents of the angular velocities are relative to these axes. The pressure

P = −ρf

[

x′y′ψ̇fy′ψ̇fx′

fǫs
+ z′x′ψ̇fz′ψ̇fx′ + z′y′ψ̇fz′ψ̇fy′ − (x′2 + z′2)

ψ̇2
fy′

2fǫs
− (x′2 + y′2)

ψ̇2
fz′

2
− (y′2 + z′2)

ψ̇2
fx′

2fǫs

]

(22)

produces the components of that part of ∇P that comes from (v ·∇)v except for fǫs missing

in two terms in the denominator of the k′ component. But

r× n =
fǫs − 1

Rs

z′(y′i′ − x′j′), (23)

contains the factor ǫs, so fǫs in the denominator becomes 1 in the numerator of Eq. (19)

to first order in ǫs. With Cartesian coordinates changed to spherical surface harmonics,

integration of the second of Eq. (19) yields

T(s)(v·∇)v
pressure =

8π

15
ρf ǫsR

5
sψ̇fz′(ψ̇fy′i

′ − ψ̇fx′j′), (24)

for the torque on the inner core due to the (v · ∇)v part of ∇P . Note that this is the same

form as Eq. (21) except the coordinates refer to the solid inner core principal axis system

and the sign is reversed.

Eqs. (21) and (24) must be written in terms of the variables in Eq. (1). Since the

bracketed term in these two equations is −k′ × ψ̇f , the choice of orientation of i′ and j′ in

the respective equator planes is arbitrary. We chose to orient i′ along the ascending node of

the equator plane on the orbit plane such that for the inner core

i′ =
qs

√

p2s + q2s
I+

ps
√

p2s + q2s
J

j′ = −
ps
√

1− p2s − q2s
√

p2s + q2s
I+

qs
√

1− p2s − q2s
√

p2s + q2s
J+

√

p2s + q2sK (25)

With k′ = psI − qsJ +
√

1− p2s − q2sK and a similar expression for k′
f and with ψ̇fz′ =



– 18 –

ψ̇fk
′
f · k

′, ψ̇fx′ = ψ̇fk
′
f · i

′, and ψ̇fy′ = ψ̇fk
′
f · j

′, we can write

ψ̇fx′ = ψ̇f

(

pfqs
√

p2s + q2s
−

qfps
√

p2s + q2s

)

ψ̇fy′ = ψ̇f

(

−
pfps

√

1− p2s − q2s
√

p2s + q2s
−
qfqs

√

1− p2s − q2s
√

p2s + q2s
+
√

(1− p2f − q2f)(p
2
s + q2s)

)

ψ̇fz′ = ψ̇f

[

pfps + qfqs +
√

(1− p2f + q2f )(1− p2s − q2s )
]

. (26)

Substitution of Eqs. (26) and (25) into Eq. (24) yields T
(m)(v·∇)v
pressure in terms of the variables of

Eq. (1). Eqs. (25) and (26) also apply to the conversion of Eq. (21) to the proper variables

in the equations of variation by changing the subscripts s to m.

2.5. Torque on the fluid core

The fluid core is subject to the negatives of the pressure torques on the mantle at the

CMB and on the inner core at the ICB. The potential part of the pressure torque on the

mantle is equivalent to the gravitational torque on the thin layer of core fluid outside the

largest sphere that fits inside the CMB. The negative of this torque, part of the pressure

torque on the fluid core, exactly cancels the direct gravitational torque on this part of the

core. Similarly, the negative of the pressure torque exerted on the inner core is a positive

torque on a thin sheet of material of fluid core density outside the largest sphere that fits

inside the ICB. This is exactly canceled by the direct negative torque on the fluid core from

the absence of that material in the same thin sheet. The gravitational torque on the fluid

core thereby completely disappears, and the only torques remaining are the pressure torques

from the (v · ∇)v source and the negative of the viscous torques on the CMB and the ICB.

Tf = −T(m)(v·∇)v
pressure −T(s)(v·∇)v

pressure −Tm
viscous −Ts

viscous (27)

All the necessary torques on each of the distinct layers in Mercury are now collected. We

have only to insert these torques into Eqs. (1) and integrate the system of nine equations

from initial conditions close to the final state until an equilibrium configuration is reached.

The torques on each layer are summarized below.

〈Tm〉 = 〈Tm
solar〉 − 〈Ts

mantlegrav〉+ 〈T(m)(v·∇)v
pressure 〉+ 〈Tm

viscous〉

〈Tf〉 = −〈T(m)(v·∇)v
pressure 〉 − 〈T(s)(v·∇)v

pressure 〉 − 〈Tm
viscous〉 − 〈Ts

viscous〉

〈Ts〉 = 〈Ts
solar〉+ 〈Ts

mantlegrav〉+ 〈T(s)(v·∇)v
pressure 〉+ 〈Ts

viscous〉 (28)
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Other formulations for gravitational and pressure torques between inner core, outer core,

and mantle have been given by Szeto and Xu (1997); Baland and van Hoolst (2010); Baland

et al. (2011).

3. Results

The expressions for 〈Tm〉, 〈Tf〉, and 〈Ts〉 in Eqs. (28) are substituted into the first of

Eqs. (2) with the appropriate subscripts, and the resulting expressions for the components

of Nm, Nf , and Ns are substituted into the three sets of equations of the form of Eqs.

(1). The set of nine equations are solved numerically with a Bulirsh-Stoer algorithm with

initial conditions that are close to the final equilibrium state to sustain the approximations

used to derive the equations but are otherwise arbitrary. Since ψ̇i = 1.5n + γ̇i, dγ̇i/dt

replaces dψ̇i/dt in Eqs. (1). The initial conditions for all the calculations are as follows:

im = 0.01◦, if = 0.0◦, is = 0.01◦, Ωm = 0.0◦, Ωf = 180◦, Ωs = 90◦, γm = 0.01◦, γ̇m =

0.0001◦/day, γ̇f = 0.0001◦/day, γs = 0.0◦, γ̇s = 0.0001◦/day. The equations are integrated

until there is no further change in the spin positions to 8 significant figures.

A typical damping of the spin angular velocities from the initial conditions forRs = 0.6Rc

for viscosity ν = 7.15 × 103 cm2/s and ρs = 8.0 g/cm3 is shown in Fig. 3. The value of the

viscosity determines the rate of approach to the equilibrium rotation rates. The inner core

and the mantle both progress to the exact resonance with γ̇m and γ̇s going to zero. This

equilibrium is a consequence of the axial asymmetry of both the mantle–crust and the solid

inner core. Both ψ̇m and ψ̇s must necessarily librate about the resonant 1.5n, which librations

damp to zero amplitude as shown. Interestingly, the fluid outer core ends up with an angular

velocity slightly less than the resonant value. For the case of Rs = 0.6Rc shown, the fluid

core is rotating 8.714 × 10−7 ◦/day slower than the mantle and inner core. The fluid core

makes one revolution relative to the mantle in 1.13 × 106 yr. This period corresponds to a

differential motion of 3.1 cm/day at the equator of the CMB. The relative rotation of the

fluid core increases as the inner core shrinks, with one revolution relative to the mantle and

inner core in 3.47 × 105 yr for Rs = 0.4Rc (10.1 cm/day) and 3.14 × 105 yr for Rs = 0.3Rc

(11.2 cm/day) for the case with ρs = 8.0 g/cm3. Recall that only the pressure torques

from the fluid motion and viscous torques at the CMB and the ICB act on the fluid core,

where the relative rotation of the fluid core is essentially the same for the two values of

viscosity for Rs = 0.6Rc, which indicates that the viscous torques are relatively unimportant

in determining the final state.

An illustration of a typical evolutionary trajectory for the projection of the unit mantle
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Fig. 3.— An example of damping of the mantle–crust, solid inner core, and fluid outer core

to their final equilibrium rotation rates for Rs = 0.6Rc. The mantle and inner core end up

precisely in the spin-orbit resonance, but the fluid core rotates at a slightly slower rate as

described in the text.

spin vector onto the orbit plane is shown Fig. 4. The decay of the spin toward equilibrium

is fast (5.9 × 106 yr) because of the artificially high viscosity of ν = 2.26 × 105 cm2/s. The

left panel shows the evolution from the initial conditions, and the right panel shows the final

approach to the equilibrium circle traced by the spin axis in the steady state. The position of

the equilibrium depends on the argument of perihelion of Mercury’s orbit, and the projection

of the spin vector makes two circuits of the circle per period of perihelion precession. The

radius of the circle is 0.87 arcsec, and the displacement of the center of the circle from the

nominal Cassini-state position marked by the large X is 1.38 arcsec, both considerably less

than the current 5 arcsec uncertainty in the spin axis position (Margot et al. 2012). (The

theoretical position of the Cassini state is that determined for a rigid planet that depends on

J2, C22, and C/mR
2
c (e.g., Peale 1969, 1974). The same position results for a planet with a

fluid core but no solid inner core (Peale et al. 2014). The measured values of the obliquity, J2,

and C22 are, in fact, used together with the obliquity to determine C/mR2
c .) The equilibrium

circle is reached in about 1.07 × 108 yr if the viscosity is reduced to 7.15 × 103 cm2/s. The

more complicated approach to equilibrium for the lower viscosity is shown in Fig. 5. Here the

trajectory oscillates about the equilibrium circle and gradually becomes more confined near
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the curve as the dissipation continues. The white trajectory in the figure marks the near

approach to the equilibrium circle. There is a 0.05 arcsec displacement of the equilibrium

circle toward the fourth quadrant in the right panel of Fig. 4 because of the higher viscous

dissipation. Such displacement is almost undetectable in Fig. 5 with the lower viscosity.

Fig. 4.— Evolution of the projection onto the orbit plane of the unit spin vector of the

mantle for inner core radius Rs = 0.3Rc and density ρs = 8.0 g/cm3 as an example of rapid

damping for a viscosity ν = 2.26 × 105 cm2/s. The left panel is the initial spiral toward

the equilibrium position. The right panel shows the final decay to the limiting circle that

is traced because of the advance of the orbit perihelion. The large X is the location of

the nominal Cassini state. Since the angles are small, the coordinates represent radians.

(6× 10−4 rad = 2.06 arcmin.)

The location of the equilibrium spins as a function of inner core size Rs for ρs = 8.0 g/cm3

is shown in Fig. 6 (left panel). The inner core spin always has the largest obliquity and is

represented by the lower of the two points marked for each Rs in the Figure. The other points

in each pair are the fluid core positions. The large X symbols denote the projection of the

Cassini state onto the orbit plane and the position of the fluid core spin for Rs = 0. The

mantle–crust spins are grouped near the projection of the Cassini state. Only the mantle–

crust spin position for Rs/Rc = 0.6 is indicated with an arrow. The other mantle–crust

equilibrium spins for smaller Rs lie above that for Rs/Rc = 0.6 as shown in the higher-

resolution figure in the right panel.
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Fig. 5.— Final damping of the projection of the unit mantle spin for the same parameters as

those in Fig. 4 except that the viscosity is reduced to 7.15× 103 cm2/s. The large X marks

the position of the nominal Cassini state. The white superposed curve is approaching the

same limiting circle seen in the right panel of Fig. 4.

The displacement of the mantle–crust spin axis from the Cassini state increases as Rs

increases. For each value of Rs and density ρs, Eqs. (1) are integrated until there is no longer

any change in the configuration to 8 significant figures. The equilibria of the spin positions

so attained are characterized by the small circles of less than 1 arcsec radius traced by the

projections of the unit spin vectors onto the orbit plane shown in the right panel of Fig. 4

and in Fig. 5. The final equilibrium states for the spins of all the Mercury parts for five

values of Rs are illustrated in the left panel in Fig. 6, again as projections of the unit spin

vectors onto the orbit plane. The large X symbols mark the nominal Cassini state for the

mantle and the corresponding position of the fluid core for Rs = 0. The small ellipse bounds

the one-standard-deviation uncertainty in the observed location of the mantle spin (Margot

et al. 2012). The equilibrium location of the mantle spin for Rs = 0.3Rc is within the

observational uncertainty of the mantle spin position, and the circles traced by projections

of the unit spins of the fluid outer core and solid inner core for this Rs are almost coincident

and are similarly close to the fluid core spin for Rs = 0. But for Rs = 0.4R, the mantle

spin is displaced to a higher obliquity that is outside the one-standard-deviation uncertainty

of the observed spin location. This displacement increases as the size of the inner core is
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increased, with equilibria for additional values of Rs shown in the right panel of Fig. 6.

Fig. 6.— (Left) Distribution of equilibrium spins as a function of the inner core size for

ρs = 8.0 g/cm3. The large upper and lower X symbols mark the Cassini state projection

and the projection of the fluid core spin for Rs = 0, respectively. The inner core obliquity is

always greater than that of the fluid core, and it is represented by the lower point associated

with each Rs. The mantle spins are grouped close to the nominal Cassini state, moving

farther away to higher obliquities as Rs increases. For Rs/Rc = 0.6 a third arrow shows the

mantle spin position, below the uncertainty ellipse. (Right) A high-resolution figure shows

the distribution of mantle spins explicitly. Reminder: Rc is the radius of the planet.

For the viscosity ν = 7.15 × 103 cm2/s (and smaller viscosities) all the spin equilibria

are nearly centered on the plane defined by the orbit and Laplace plane normals, where the

Cassini state of the mantle is also located. The inner and outer cores end up in their own

Cassini states. The obliquities are maintained during the precession.

The equivalent of Fig. 6 is shown in Fig. 8 for inner core densities of 9.3 and 10.0 g/cm3.

All the models are summarized in Table 1.



– 24 –

4. Discussion

We reduced the 16 unknowns to 10 by specifying ρs, Rs, ρc, Rm and by using the mea-

sured values of ǫc and ξc. With the six known quantitiesm, Rc, C/mR
2
c , (Cm+Cc)/C, J2, C22

and four equations for the equipotential surfaces, the 10 equations allowed the solution for

the 10 unknowns, and we could characterize Mercury for each of the assumed inner core sizes

and densities. Inherent in all the solutions is the use of C/mR2
c determined from the obliq-

uity of the mantle spin and coefficients J2 and C22. Therein lies the clue to understanding

the meaning of the displacement of the spin axis away from the Cassini state by the addition

of the ellipsoidal solid inner core.

It appears that an inner core radius Rs >∼ 0.35Rc would drag the mantle spin away

from the Cassini state by an amount that exceeds the current observational uncertainty of

∼ 5 arcsec. The fact that the torque from the inner core can change the position of the

spin means that the classical determination of the Cassini state position is not complete.

We must add the torque from the inner core on the mantle to the external torque from the

Sun in evaluating the Cassini state position. This result also means that the determination

of C/mR2
c will depend on the size and shape of the inner core and that it will thereby be

more uncertain than heretofore assumed. Peale et al. (2014) found that as the dissipative

core–mantle torques weakened, the mantle spin approached a Cassini state with a lower

obliquity. The weakened dissipative torque means that the mantle is less affected by the

fluid core, and the Cassini state approached is that for the smaller moment of inertia of

the mantle alone. This result suggests that a smaller moment of inertia can compensate

for the gravitational torque from the solid inner core and bring the mantle spin back to

its observed position in the presence of the inner core. We found earlier that dissipative

torques displaced the spin from the Cassini state by amounts that exceeded observational

uncertainties, but that pressure torques between a liquid core and solid mantle restored the

mantle spin to the nominal Cassini state position (Peale et al. 2014). Here the introduction

of an ellipsoidal solid inner core overrides this pressure effect and moves the mantle spin

away from the Cassini state that corresponds to there being no solid inner core. The cause

of this displacement is entirely due to the gravitational torque between the solid inner core

and the mantle. If this torque is set to zero with all other torques remaining, the mantle

spin goes back to the nominal Cassini state.

A procedure for ascertaining C/mR2
c as a function of the inner core size, where the latter

is assumed to be in hydrostatic equilibrium in the internal gravitational field of the mantle, is

as follows: We choose an inner core size and density, then guess the value of C/mR2
c < 0.346

that will lead to an obliquity within the observational uncertainty. The smaller C/mR2
c will
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lead to a larger (Cm + Cc)/C as determined by the equation
(

Cm + Cc

B − A

)(

B − A

mR2
c

)(

mR2
c

C

)

=
Cm + Cc

C
, (29)

where the first factor follows from the amplitude of the physical libration in longitude (Margot

et al. 2012), and the second from the MESSENGER determined value of C22 (Smith et al.

2012; Mazarico et al. 2014). C/mR2
c , (Cm+Cc)/C, and m are used in Eq. (41) of Appendix

A of Peale et al. (2014) to determine ρm, ρf , and Rf . The procedure of Appendix A of

Peale et al. (2014) is then used to determine the mean polar and equatorial ellipticities of

the ICB, CMB, and mantle surface that are consistent with their respective contributions

to the known values of J2 and C22 and consistent with hydrostatic equilibrium of the CMB

and the ICB. This procedure allows the several torques to be determined for use in Eqs.

(1). Starting with initial conditions close to the equilibrium values of the spin positions,

the system is then evolved to equilibrium through the numerical solution of Eqs. (1), where

the viscous dissipation takes the spin vectors to the new positions appropriate to the chosen

values of Rs, ρs, and C/mR2
c . If the obliquity of the mantle is outside the observational

uncertainty, C/mR2
c is adjusted in a direction that reduces or increases the obliquity as

necessary, and the entire procedure is repeated.

Fig. 7.— Positions of the mantle–crust spins adjusted by reducing C = mR2
c to the indicated

values for ρs = 8 g/cm3. All the spins are now within the uncertainty of the observed pole

position. Reminder: Rc is the radius of the planet.

The result of this exercise is shown in Fig. 7 for ρs = 8.0 g/cm3, where the moved
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positions of the mantle spins are shown along with the necessary value of C/mR2
c to bring

the spin within the observational uncertainty of the mantle spin position as a function of

Rs. The changes required in C/mR2
c are significant and increase with Rs. We do not know

the density of the inner core. So to bridge a possible range of inner core densities, we have

performed a similar exercise for inner core densities of 9.3 and 10.0 g/cm3, for which the

results are shown in Fig. 8. The increased inner core densities seem to require even smaller

Fig. 8.— Values of C/mR2
c necessary to restore mantle spins to observed positions for

ρs = 9.3 and 10.0 g/cm3.

values of C/mR2
c , which also decrease with increasing Rs. The figures equivalent to the left

panels of Fig. 6 generated for the higher-density cores with C/mR2
c ≡ 0.346 resemble the

left panels in Fig. 6. The details of these models are found in Table 1.

This exercise is completed for values of Rs = 0.3, 0.4, 0.5, 0.6, for ρs = 8.0 g/cm3 and

the values of C/mR2
c , (Cm + Cc)/C, ρs, ρf , ρm, ǫs, ǫf , ǫm, ξs, ξf , ξm, is, if , im are shown in

Table 1 for each choice of Rs and ρs. The limiting circles traced by the projections of the

spin axes onto the orbit plane for each choice of Rs and consequent value of C/mR2
c are

shown in Fig. 7, where the obliquities given in Table 1 correspond to the centers of the

circles. The close grouping of the mantle spins are all within the one-standard-deviation

uncertainty of the observation indicated by the ellipse. The most important results are the

values of C/mR2
c and (Cm+Cc)/C as these are crucial constraints on the interior structure.

The dependence of C/mR2
c on the inner core size means that we can reduce the uncertainty

in its value only with a future determination of the properties of the inner core.
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The most important and complete information about the models is contained in Table

1. Therein are all the densities and radii of the various layers both assumed and derived for

all of the models. Here is where the viability of the various models can be ascertained. Some

densities may be out of bounds on the basis of geochemical constraints, and the density

contrast between layers, say between the inner core and the fluid outer core, may be too

small or too large. For the larger values of Rs and ρs = 8.0 g/cm3, there is very little

contrast in density between inner and outer core. Is this unreasonable? The advantage of

these models is that they are consistent with the observables. Readers may then consider

models that cater to their own views concerning Mercury’s interior.

A model with ρs = 8 g/cm3 would have to have rather special chemical partitioning and

material properties. Due to the 5–8-fold increase in pressure across Mercury’s core (e.g.,

Hauck II et al. 2013), the mean density difference between the inner core and outer core is

driven largely by self-compression. Still, even for pure Fe the expected density difference

between solid and liquid is about 4%. Thus, consistent with internal structure calculations

constrained by an equation of state (Hauck II et al. 2013; Rivoldini and Van Hoolst 2013)

models with inner core densities closer to 9.3g/cm3 are more likely as are the corresponding

models in Fig. 8 and Table 1. Interestingly, in those models with inner cores larger than

0.3Rc we infer mean mantle densities of ∼ 3 g/cm3. Whereas there is some trade-off with the

crustal density, such a result is in distinct contrast with the larger densities for Mercury’s

mantle given in previous work (Smith et al. 2012; Hauck II et al. 2013). Regardless, such

a low mean mantle density is a potential challenge to explain because it is lower even than

Mg-rich olivine and Mg-rich orthopyroxene, which have densities of 3.2 − 3.3 g/cm3 and

likely dominate Mercury’s Fe-poor interior. Should the densities of such minerals be invoked

to constrain the lower bound on the mantle density of the planet we would then infer that

Mercury must have an inner core that is not larger than 0.3Rc.

An interesting property of Table 1 is the relatively large and negative values of the

mantle ellipticities ǫm and ξm. These ellipticities pertain to the interface between crust and

mantle. The large values result from the very large contribution of the crust to J2 and

C22. The mantle–crust interface is prolate instead of oblate to compensate the large crustal

contribution with the long axis of the ellipsoid parallel to the spin axis. A similar distortion

in the equatorial plane has the long axis of the equatorial ellipse perpendicular to the x axis.

This geometry means that the crust is thinner at the poles and at the extremes of the y axis.

For ǫm = 0.005 the crust is about 12 km thinner at the poles than the average thickness of

50 km. For ǫm = 0.002 it would be about 5 km thinner.
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5. Conclusions

The influence of an inner core on Mercury’s obliquity reduces our confidence in the

knowledge of the moment of inertia of Mercury. If the inner core is small (Rs/Rc < 0.35)

and our assumed range of inner core densities (8− 10 g/cm3) encompasses the actual value,

then the existing estimate of C/MR2
c = 0.346 ± 0.014 remains valid. However, if the inner

core size exceeds that threshold, we will need to measure the inner core size in order to revise

the estimate of the moment of inertia. Current constraints on crustal density coupled with

interior structure models (Hauck II et al. 2013) seem to favor inner core sizes that do not

exceed 30% of the planet radius (Rs/Rc < 0.3). Likewise, dynamo models that can reproduce

peculiar features of Mercury’s magnetic field (Cao et al. 2014) favor a small inner core

(Rs/Rf < 0.4). A large inner core (Rs/Rc > 0.4) may produce detectable signatures in the

88-day librations of the planet (Van Hoolst et al. 2012), although not at the current sensitivity

levels. Detecting the influence of an inner core on the long-period librations (Yseboodt et al.

2013) would likewise require higher precision observations. In order to tighten our estimates

of Mercury’s moment of inertia, improved measurement of the librations or measurements

of the inner core size will be required. The latter is the more powerful approach and is best

achieved by deploying seismometers on the surface.

6. Appendix A: Gravitational torque on inner core

Here we derive the direct gravitational torque on the inner core and the contribution of

the gravity field to the pressure torque. We find that the combination of these torques is

equivalent to the direct gravitational torque but for an inner core of density ρs − ρf . The

torque due to gravity must vanish if ρf = ρs.

6.1. Gravitational torque

The direct gravitational torque on the inner core due to the Sun is r ×∇V , where r is

the vector distance to the Sun from Mercury’s center and where

V = −
Gm⊙ms

r

[

1− J2s
R2

s

r2

(

3 cos2 θ

2
−

1

2

)

+ 3C22s
R2

s

r2
sin2 θ cos 2φ

]

, (30)

is the potential of the Sun in the gravitational field of Mercury’s inner core up to second

spherical harmonic degree. In Eq. (30), ms and m⊙ are the masses of Mercury’s inner core
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and the Sun, respectively, G is the gravitational constant, Rs is the radius of Mercury’s

inner core, θ, φ are spherical polar coordinates relative to the principal axis system of the

inner core, which define the direction to the Sun, and J2s = [Cs − (As + Bs)/2]/msR
2
s and

C22s = (Bs −As)/(4msR
2
s) are the zonal and tesseral coefficients of degree 2 in the spherical

harmonic expansion of the inner core gravitational field. As < Bs < Cs are the principal

moments of inertia of the inner core.

We determine the components of r×∇V in spherical coordinates and make the substi-

tutions êθ = cos θ cosφis + cos θ sinφjs − sin θks and êφ = − sin φis + cosφjs, where êθ, êφ =

unit vectors in the θ and φ directions and is, js, ks = unit vectors along the principal axes

of the inner core, to arrive at the solar torque on the inner core

r×∇V =
Gm⊙

r3
[cos θ sin θ sin φmsR

2
s(3J2s − 6C22s)is − cos θ sin θ cos φmsR

2
s(3J2s + 6C22s)js

+12 sin2 θ sinφ cosφmsR
2
sC22sks], (31)

For comparison with the pressure torque below, we write Eq. (31) in a different form.

For a homogeneous ellipsoid, the moments of inertia about the principal axes are given by

A =M(b2 + c2)/5, B =M(a2 + c2)/5, C =M(a2 + b2)/5 so that C − A = M(a2 − c2)/5 =

4πa2bc(a + c)ρ[(a − c)/a]/15 ≈ 8πρR5ǫa/15 to first order in ǫa, where a > b > c are the

semiaxes of the ellipsoid. Similarly, C − B = 8πρR5ǫb/15 and B − A = 8πρR5ξ/15. From

the expressions for J2s and C22s we can write

r×∇V =
4π

15

Gm⊙

r3
ρsR

5
s [−(2ǫs − ξs)P21(cos θ) sinφis + (2ǫs + ξs)P21(cos θ) cosφjs

+ξsP22(cos θ) sin 2φks], (32)

where P21(cos θ) = −3 sin θ cos θ, and P22 = 3 sin2 θ.

6.2. Pressure torque

Consider the fluid outer core bounded by the surfaces at the core-mantle boundary

(CMB) and the inner core boundary (ICB). Then an application of the divergence theorem

allows us to write for the pressure P

∫∫∫

V

r×∇PdV =

∫∫

S

r× n′PdS =

∫∫

CMB

r× nPdS −

∫∫

ICB

r× nPdS, (33)

where V is the volume of the fluid core, S is the total surface area consisting of the CMB

and the ICB, r is the radius vector from the center of Mercury, n′ is a unit normal pointing
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out of the volume on both surfaces, and n is the unit normal pointing in the outward radial

direction on both surfaces. This definition of n requires the negative sign on the surface

integral over the ICB. From Newton’s law applied to a unit volume of fluid,

∇P = −ρf
dv

dt
− ρf∇Φ = −ρf

[

∂v

∂t
+ (v · ∇)v +∇Φ

]

, (34)

where ρf is the fluid density, v is the fluid velocity at the point, and Φ is the gravitational

potential.

The two surface integrals at the right extreme of Eq. (33) are the pressure torques

exerted on the mantle and the inner core, respectively. The contribution to this pressure

torque on the inner core from the gravitational potential is
∫∫

ICB

r× nρfΦdS, (35)

where the potential of the Sun interior to Mercury is

Φ = −
Gm⊙

r

∞
∑

l=0

l
∑

m=0

(

r′

r

)l

(2− δ0m)
(l −m)!

(l +m)!
Plm(cos θ)Plm(cos θ

′) cosm(φ− φ′), (36)

and where r, θ, φ are the spherical coordinates of the Sun in the principal axis system of co-

ordinates of the inner core, r′, θ′, φ′ are the spherical coordinates of a point on the ICB

with the ellipsoidal surface of the ICB represented by r′ = Rs(1 − (2ǫs/3)P20(cos θ
′) +

(ξs/6)P22(cos θ
′) cos 2φ′, and Pℓm are Legendre functions. Here Rs is the mean radius of

the ICB and ǫs and ξs are the mean polar and equatorial ellipticities defined by ǫs =

ǫsa/2+ ǫsb/2 = (a− c)/2a+ (b− c)/2a and ξs = (a− b)/a, respectively, with a > b > c being

the principal axis radii. We can form the function

H = r′ − Rs[1− (2ǫs/3)P20(cos θ
′) + (ξs/6)P22(cos θ

′) cos 2φ′], (37)

so that the surface normal is

n =
∇H

|∇H|
= êr − cos θ′ sin θ′ (2ǫs + ξf cos 2φ) êθ′ + ξs sin θ

′ sin 2φ′êφ′ , (38)

where |∇H| is O(1 + ǫ2s or ξ
2
s ) and

r′ × n = −Rs[cos θ
′ sin θ′ (2ǫs + ξs cos 2φ

′) êφ′ + ξs sin θ
′ sin 2φ′êθ′]. (39)

Substitution of Eqs. (39) and (36) into Eq. (35) yields the pressure torque on the ICB from

the solar potential. For the integration over the surface, we convert the unit vectors in spher-

ical coordinates to unit vectors in Cartesian coordinates with ê′φ = − sinφ′is + cosφ′js and
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êθ′ = cos θ′ cosφ′is+cos θ′ sinφ′js− sin θ′ks. All the terms in the is and js components of the

integrand contain the product cos θ′ sin θ′, which selects only the P21(cos θ
′) = −3 sin θ′ cos θ′

term in Φ, and the ks component contains sin2 θ′, which selects only the P22(cos θ
′) term in

Φ from the orthogonality of the Legendre functions. Integration yields

Γs
P⊙ =

4π

15

Gm⊙

r3
R5

sρf
[

(2ǫs − ξs)P21(cos θ) sinφis

−(2ǫf + ξs)P21(cos θ) cosφjs − ξsP22(cos θ) sin 2φks

]

. (40)

The components of Eq. (40) are identical to the components in Eq. (32) except ρf is the

factor instead of ρs and the sign is reversed. That means that the torque on the inner core

due to the gravity field of the Sun is equivalent to the gravitational torque on the body with

the shape of the inner core, but with density ρs − ρf . The torque vanishes if the densities

are the same.

The pressure torque (Eq. (35)) on the inner core due to the internal potential of the

mantle and that part of the fluid core protruding into the mantle is found in the same way.

The internal potential from the material above the inner core is given in Eq. (8), and the

surface density of the inner core material outside of the largest sphere that would fit within

is given in Eq. (7). The internal potential can be written

Φint =
8πG

15
Ka[z

2
m − (x2m + y2m)/2]−

2πG

5
Kb(x

2
m − y2m) (41)

where Ka = ǫmρm + ǫf (ρf − ρm) and Kb = ξmρm + ξf(ρf − ρm), and where xm, ym, zm are

again Cartesian coordinates of a point inside the inner core along the principal axes of the

mantle. The torque on the inner core from this potential is (Eq. (16))

Tic = −

∫∫∫

V

r× ρs∇ΦdV,

where the integration is over the volume of the inner core.

In Section 2.2 we worked with the components of the torque along the mantle principal

axes. Here it is more convenient to work with the components along the inner core principal

axes for comparison with the pressure torque. To this end we transform the coordinates in

Eq. (41) to the inner core frame with xm = ℓ1xs + ℓ2ys + ℓ3zs, ym = m1xs +m2ys +m3zs,

and zm = n1xs + n2ys + n3zs, which are defined in Section 2.2. ∇Φ is now in terms of the

inner core coordinate system, and r = (xs, ys, zs). In Eq. (16) the inner core is homogeneous,

so the integral over the sphere with radius Rs vanishes. Then the volume integral can be

treated as a surface integral with ρsdV = ρs∆rdS with

ρs∆r = σs(θs, φs) = −
2

3
ǫsRsρsP20(cos θs) +

ξs
6
RsρsP22(cos θs) cos 2φs, (42)
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which follows from Eq. (7). For integration over the ICB surface we change (xs, ys, zs) to

(Rs sin θs cosφs, Rs sin θs sinφs, Rs cos θs). Then Eq. (16) becomes

Tic = −

∫ 2π

0

∫ π

0

r×∇sΦσs(θs, φs)R
2
s sin θsdθsdφs

= −
16

75
π2GρsR

5
s

[

(2ǫs − ξs)[2Kan2n3 −Kb(ℓ2ℓ3 −m2m3)]is

+(2ǫs + ξs)[−2Kan1n3 +Kb(ℓ1ℓ3 −m1m3)]js

+ξs[4Kan1n2 − 2Kb(ℓ1ℓ2 −m1m2)]ks

]

. (43)

The pressure torque on the inner core due to the internal potential of the mantle starts

with Eq. (35), where Φ is now Eq. (41). The cross product r × n in Eq. (39) is converted

to Cartesian components in the inner core as are the mantle system coordinates in Eq. (41).

The inner core coordinates are converted to spherical polar coordinates for integration over

the ICB. There results

ΓPmantle =

∫ 2π

0

∫ π

0

r× nρfΦintR
2
s sin θsdθsdφs

=
16

75
π2GρfR

5
s

[

(2ǫs − ξs)[2Kan2n3 −Kb(ℓ2ℓ3 −m2m3)]is

+(2ǫs + ξs)[−2Kan1n3 +Kb(ℓ1ℓ3 −m1m3)]js

+ξs[4Kan1n2 − 2Kb(ℓ1ℓ2 −m1m2)]ks

]

. (44)

Eq. (44) is identical to Eq.(43) except ρf replaces ρs and the sign is reversed. Hence,

the pressure torque on the inner core due the applied potentials alone opposes the direct

gravitational torque for both the solar and mantle potentials and is included by the factor

ρs− ρf in the calculation of the direct gravitational torque on the inner core. We conjecture

that this statement is true for any arbitrary potential applied to the inner core.
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Table 1: Values of densities, radii, obliquities, and ellipticities for all the models.

Parameters versus inner core size and density

Rs /R C /M R 2 Cm/C ρs g/cm3 ρ f g/cm3 ρm g/cm3 ρc g/cm3 R f km Rm km im
′ i f

′ is
′

0.0 0.346 0.431 - 7.237 3.285 2.8 1999 2390 2.05 5.65 -

0.3 0.346 0.431 8.0 7.152 3.311 2.8 2004 2390 2.06 5.33 5.42

0.4 0.340 0.439 8.0 7.372 3.174 2.8 1979 2390 2.06 4.68 4.91

0.5 0.334 0.446 8.0 7.682 3.035 2.8 1949 2390 2.04 4.24 4.50

0.6 0.332 0.449 8.05 7.996 2.939 2.8 1926 2390 2.08 1.77 3.54

0.3 0.343 0.435 9.3 7.156 3.272 2.8 1997 2390 2.07 4.89 5.15

0.4 0.330 0.452 9.3 7.618 3.007 2.8 1943 2390 2.04 3.61 4.16

0.5 0.327 0.456 9.3 7.335 3.011 2.8 1944 2390 2.08 2.18 3.06

0.6 0.323 0.462 9.3 6.671 3.023 2.8 1947 2390 2.07 1.51 2.41

0.3 0.343 0.435 10.0 7.077 3.295 2.8 2000 2390 2.08 4.69 5.06

0.4 0.325 0.459 10.0 7.742 2.933 2.8 1925 2390 2.03 3.18 3.88

0.5 0.321 0.465 10.0 7.355 2.960 2.8 1925 2390 2.05 1.82 2.84

0.6 0.316 0.472 10.0 6.386 2.960 2.8 1931 2390 2.03 1.27 2.29

Ellipticities

ρs g/cm3 Rs /R εs ε f εm εc ξs ξf ξm ξc

- 0.0 - 6.047× 10−5
−2.183× 10−3 5.534× 10−4 - 3.464× 10−5

−2.260× 10−3 4.919× 10−4

8.0 0.3 5.800× 10−5 6.043× 10−5
−2.070× 10−3 5.534× 10−4 3.322× 10−5 3.461× 10−5

−2.144× 10−3 4.919× 10−4

8.0 0.4 5.835× 10−5 5.981× 10−5
−2.832× 10−3 5.534× 10−4 3.342× 10−5 3.426× 10−5

−2.931× 10−3 4.919× 10−4

8.0 0.5 5.865× 10−5 5.916× 10−5
−4.513× 10−3 5.534× 10−4 3.359× 10−5 3.389× 10−5

−4.668× 10−3 4.919× 10−4

8.0 0.6 5.858× 10−5 5.890× 10−5
−5.197× 10−3 5.534× 10−4 3.355× 10−5 3.374× 10−5

−5.377× 10−3 4.919× 10−4

9.3 0.3 5.438× 10−5 6.008× 10−5
−2.240× 10−3 5.534× 10−4 3.115× 10−5 3.441× 10−5

−2.231× 10−3 4.919× 10−4

9.3 0.4 5.510× 10−5 5.856× 10−5
−5.107× 10−3 5.534× 10−4 3.156× 10−5 3.355× 10−5

−5.289× 10−3 4.919× 10−4

9.3 0.5 5.514× 10−5 5.806× 10−5
−4.991× 10−3 5.534× 10−4 3.158× 10−5 3.326× 10−5

−5.178× 10−3 4.919× 10−4

9.3 0.6 5.517× 10−5 5.738× 10−5
−4.694× 10−3 5.534× 10−4 3.160× 10−5 3.287× 10−5

−4.881× 10−3 4.919× 10−4

10.0 0.3 5.250× 10−5 6.005× 10−5
−2.131× 10−3 5.534× 10−4 3.007× 10−5 3.439× 10−5

−2.209× 10−3 4.919× 10−4

10.0 0.4 5.350× 10−5 5.786× 10−5
−7.929× 10−3 5.534× 10−4 3.065× 10−5 3.314× 10−5

−8.216× 10−3 4.919× 10−4

10.0 0.5 5.351× 10−5 5.715× 10−5
−7.723× 10−3 5.534× 10−4 3.065× 10−5 3.274× 10−5

−8.020× 10−3 4.919× 10−4

10.0 0.6 5.347× 10−5 5.625× 10−5
−6.539× 10−3 5.534× 10−4 3.063× 10−5 3.222× 10−5

−6.813× 10−3 4.919× 10−4




