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ABSTRACT OF THE DISSERTATION

Three-Dimensional NoC Reliability Evaluation Automated Tool
(TREAT)

By

Ashkan Eghbal

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2016

Professor Nader Bagherzadeh, Chair

Technology scaling and higher operational frequencies are no longer sustainable at

the same pace as before. The processor industry is rapidly moving from a single

core with high-frequency designs to many-core with lower frequency chips; Network-

on-Chip (NoC) has been proposed as a scalable and efficient on-chip interconnection

among cores. In addition, employing Three-Dimensional (3D) integration instead of

Two-Dimensional (2D) integration is the other trend to keep the traditional expected

performance improvements. The combination of 3D integration and NoC technologies

provides a new horizon for on-chip interconnect design. In more detail, the reduction

of the length and number of global interconnects; by applying Through-Silicon Via

(TSV) is the major advantage of 3D NoCs.

However, shrinking transistor sizes, smaller interconnect features, and 3D packaging

issues, lead to higher error rates and unexpected timing variations. Although many

researches have focused on reliability issues for 3D NoC architectures, To develop a

general technique to advance both the intuitive understanding and the quantitative

measurement of how potential physical faults influence the behavior of 3D NoC is

lacking. The goal of my dissertation is to develop a Three-Dimensional NoC Reliabil-

xiii



ity Evaluation Automated Tool (TREAT), for the first time, as an automated analysis

tool to analyze effects of static and dynamic faults in 3D NoC architectures. It is

capable of evaluating the vulnerability of different architectural components in the

presence of faults by using the fault injection method. This approach allows injecting

faults into the 3D NoC platform dynamically by monitoring the status of links and

components to decide where and when inject faults accurately. TREAT provides the

strength of different components in terms of reliability-based metrics such as Mean

Time Between Failure (MTBF) and header/data/trailer flit failure rate for different

level of granularity. The output reports of TREAT are critical in devising fault-

tolerant techniques with low overhead cost. TREAT can be used at the early stage of

the design process in order to prevent costly redesigns after assessing dependability

for the target architecture.

Comparing to existing fault injector tools, TREAT is specifically developed for 3D

NoC platforms and it is not a general fault injector tool. Such a tool is needed since

the characteristics and behavior of a 3D NoC component is different from other com-

putational platforms; 3D NoCs are susceptible to different fault sources that are not

fully addressed by existing tools. Furthermore, one of the most important advantages

of TREAT is supporting dynamic fault injection by monitoring the status of the NoC

platform. This is critical since based on the reported experiments in this dissertation,

random TSV coupling fault injection may result in 26%-99% inaccuracy of reliability

evaluation process. The fault injector interface is responsible for injecting fault ac-

curately where and when they should in order to enhance the reliability evaluation.

None of the existing tools offer these capabilities as a single package.
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Chapter 1

Introduction

Since the technology scaling does not treat wire delay and gate delay equally, many-

cores’ interconnection design became challenging. Consequently, a novel communica-

tion method is required to take the benefits of many-core designs as they are highly

demanded for both embedded systems and super-computers. Additionally, the relia-

bility characteristic is of crucial importance in today’s High Performance and Energy

Efficient Computing (HPEEC) applications since the malfunctioning of a component

results in lower performance and waste of energy, [112]. Therefore, similar to any new

technology the reliability of the proposed communication methodologies is a crucial

issue.

With this in mind, a reliability analysis tool is needed to uncover the sensitive compo-

nents and to evaluate the efficiency of the proposed robust designs. Although many

general analysis tools have been presented especially for investigating the reliabil-

ity properties of the processors, these tools are not accurate enough to reveal fault

tolerance characteristics of the next generation on-chip communication links.

The purpose for this research is to develop a specific reliability analysis tool, to

1



address the unexpected effects of physical faults in on-chip interconnections statically

and dynamically. In the rest of this chapter, the necessity and the basic concepts

of on-chip links with their reliability issues are briefly discussed. Additionally, the

available reliability analysis tools are also introduced and compared with the one

which is proposed in this dissertation. Then the contributions of this research are

listed and discussed and finally, the outline of the dissertation is provided.

1.1 The Future Design Trends

The three well known factors in traditional high performance Processing Element

(PE) designs are: Instruction Level Parallelism (ILP), gates per clock, and process

technology. However, the first two factors have already reached their limits [40, 67].

The problem of process technology scaling is more related to wire issues and energy

consumption concerns rather than the device design challenges. Applying higher fre-

quencies results in more energy consumption, clocking synchronization concerns, and

signal/power integrity issues. Moreover, the unexpected heat generation in PEs is

already known as a major concern though they have never been super-fast yet. In

addition, technology and supply voltage scaling slows down due to physical limita-

tion in nano fabrication feature size. The leakage energy consumption, lithography

complexity, and process variation issues are some critical examples of these physical

constraints. On the other side, there are plentiful of computational applications in

the market that demand more complex processing calculations such as smart phones,

gaming consoles, or weather forecast applications. With these limitations there are

significant concerns in moving forward to follow the Moore’s law for next generation

of IC designs. Therefore, different solutions have been suggested by researchers to

exploit the technology capacity and keep the traditional performance improvements

2



such as: proposing many-core designs, Three-Dimensional (3D) integration, and new

generation of interconnections [67, 33, 89]. Each of these solutions is discussed sepa-

rately in the following subsections.

1.1.1 Moving from Single Core to Many-core

With each passing year, the number of problems where experiments are impossible,

dangerous, or inordinately costly is growing. To provide vastly more accurate predic-

tive models and the analysis of massive quantities of data are some examples of these

problems [2]. In order to meet performance demands, parallel computing is ample

motivation for proposing many-core architectures as predicted by ITS reports which

is shown in Figure 1.1. Based on the represented trend in Figure 1.1 the number of

cores will be increased by a factor of 10 by the next decade.

However, many-core popularity is not only limited to super-computer applications.

Modern embedded systems also require massive processing power due to computa-

tionally intensive embedded applications, such as self-driving automobiles’ control

unit, real-time speech recognition, video conferencing, software-defined radio, and

cryptography. With these considerations it is concluded that, many-core design is

the only de facto solution for HPEEC applications [42], which has been already found

its way into mass production. Two major benefits of replacing a high frequency single

core chip by the many-core designs with a reasonable frequency are providing better

level of resource sharing and occupying less Printed Circuit Board (PCB) space. The

other advantage of many-core design is increasing the raw performance by enhancing

the clock per instruction factor rather than frequency, which consequently results in

slower growth in energy consumption. Therefore, many-core architecture manifests a

good tradeoff between technology scaling and limited energy budget requirement.
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Figure 1.1: SoC consumer portable design complexity trends [44]

1.1.2 Moving from 2D to 3D Integration

The other solution which has been recently become popular is to add one more dimen-

sion to the 2D state of the art architectures (resulting in 3D designs). This method

provides numerous opportunities to connect PEs and memory cells on one package

with larger bandwidth. The 3D memory, known as Hyper Memory Cube (HMC),

is an industrial example of applying this technique [47, 105]. Figure 1.2 shows the

graphical structure of 3D memory in which memory banks are stacked on top of each

other and connected through vertical interconnection known as Through Silicon-Via

(TSVs). One of the promises of HMC is that it eliminates the so-called ”memory

wall,” the problem of the disparity between CPU clock speed/bandwidth and the

memory systems [24]. The 32-layer V-NAND flash memory is the other example of

this approach which has been started for mass production by Samsung Company.

In addition to industrial examples, the 3D cache architecture has become a popular

topic of study among researchers [128, 37, 124].
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Figure 1.2: TSV-based 3D multiple-stacked memory

In general, 3D ICs are proposed as a viable solution for integrating more PEs on a

chip, without the need for extra footprint area [126]. According to the characteristics

of the 3D architectures, data transmission is done both horizontally and vertically at

the same time. Moreover, 3D designs provide shorter interconnect links in which cores

are usually located centimeters apart on a chip are now could be placed millimeters

apart from each other vertically. Therefore, as 3D ICs compared to the 2D ones are

expected to support higher performance, lower latency, smaller form factor, and less

energy consumption.

1.1.3 Moving from Bus-based to Network-based Intercon-

nects

The chip data transmission needs more attention as the complexity of systems in-

creases, in a way that devising a new communication infrastructure is necessary. In

other words, the traditional, bus-based core communication infrastructures, are con-

sidered as one of the performance bottleneck in many-core systems. The reason is

that the wire delays have become more critical in smaller feature size, as technology
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scaling results in larger capacitance for global wires. It has been reported that under

45nm technology size, Metal-1 and intermediate-level metal wires (local wires) are

expected to have the same line-widths and thicknesses, demonstrating similar process

variation effects. The effect of process variations on local metal layers are expected to

have smaller effect on overall circuit delay because of their relatively shorter lengths

as compared to global wires [125]. Therefore, global wires are not scalable in terms

of delay, energy consumption, and bandwidth. In addition, global clocking is an-

other challenge in traditional bus-based interconnections. The clock tree method has

been suggested to resolve this issue, but it consumes large portion of energy and area

budget. In addition, due to clock skew effect even larger portion of the total cycle

time [67] is needed. It should be also added that a bus-based system has a limited

capability of concurrent communication. The intrinsic resistance and capacitance of

the bus also increase by connecting more number of cores. Moreover, buses broadcast

the data to transfer them among the cores in which the entire bus wires should be

switching from on to off state periodically; resulting in large waste of energy. Because

of these important considerations, the Network-on-chip (NoC) architecture has been

proposed as a practical alternative for the traditional system-on-chip (SoC) approach,

supporting better modularity, scalability and higher bandwidth [29, 92, 67]. In fact,

an NoC consists of multiple point-to-point data links interconnected by routers to

implement the connectivity of on-chip Intellectual Properties (IPs).

1.1.4 3D NoC

NoCs have become significant over the past 10 years in order to fully utilize the

integration capacity with billion-transistor on a chip. However, because of the afore-

mentioned benefits of 3D IC designs, as discussed in subsection 1.1.2, the 2D NoC

designs must be expanded to support 3D schemes [89]. The combination of 3D inte-
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Figure 1.3: Side view of 3D NoC

gration and NoC technologies provides a new horizon for on-chip interconnects design,

which combines the benefits of short vertical interconnects of 3D ICs and the scalabil-

ity of NoCs. Compared with 2D NoCs, 3D NoCs greatly reduce the network diameter

and overall communication distance; they improve communication performance and

reduce energy consumption [89].

The TSV is currently the most popular technology to connect 2D NoC routers verti-

cally. They are actually large vertical wires which are surrounded by an insulation and

depletion layers. Additionally, TSVs are very short and fine-pitched links, which pro-

vide high-bandwidth communication channels. They are also highly compatible with

the standard CMOS process which makes them capable of integrating into existing

circuits without extra design cost.

In more details, 2D NoC routers are connected by TSVs (inter-die interconnects)

through connectors with small diameters called Microbumps [19]. Microbumps are

actually the metal connectors on both topside and backside of the chip which are
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integrated into the copper filled TSV process for electrical connection between chips.

Figure 1.3 shows 3D structure of stacked 2D NoC routers vertically connected by Mi-

crobumps and TSVs. The buffer, crossbar switch, and routing unit are the fundamen-

tal components of a 2D NoC router, which are individually explained in Section 3.2.

In fact, TSVs implement a serial data transmission method in which each TSV is

capable of single bit data transmission at a time, sequentially. This is why each NoC

router is connected to several TSVs and Microbumps as shown in Figure 1.3. It should

be noted that, due to large sizes of TSVs, all the routers cannot be connected to the

routers of the other layers. Therefore, vertically partially connected 3D NoCs are

more practical and have been the focus of majority of researchers instead of vertically

fully connected 3D NoCs.

On the other side, 3D NoC architectures demand many trade-offs in order to meet

some specific performance requirements, which results in various design issues. One

of these major design concerns is the reliability of 3D NoC which is the goal of this

research. The reliability issue in 3D NoC is briefly described in subsection 1.2 and

further discussed in Chapter 4.

1.2 Reliability of 3D NoC

To design a robust computing circuit has been considered for many years ago. Re-

cently it has received a great deal of attention as the CMOS technology approaches

the nanoscale level. Shrinking transistor sizes, smaller interconnect features, 3D pack-

aging issues, and higher frequencies of CMOS circuits lead to higher error rates and

more thermal and timing violations [70]. Many approaches have been proposed to en-

hance the robustness of NoCs, mostly in the areas of routing algorithms [88, 82], com-

munication infrastructure [12, 76, 77, 98], or micro-architecture designs [57, 74, 29].
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Many fault-tolerant routing algorithms have been proposed for both 2D [23] and 3D

NoC [79] designs. The idea of bypassing faulty data paths within failed routers has

been suggested as a lightweight fault-tolerant method [58]. A fault-aware IP-core

mapping to NoC routers is proposed in [69]. They address the problem of transient

link failures by means of temporally and spatially redundant transmission of messages.

A stochastic communication paradigm is proposed in [12] to provide a fault-tolerant

communication. This approach is based on probabilistic broadcast where packets are

forwarded randomly to the neighboring nodes. However, none of them protect faulty

datapath inside routers. In [9], the authors deploy some error correcting schemes

to achieve combined energy minimization and reliability optimization design goals.

A fault-tolerant router architecture is proposed in [29] to guarantee the functional-

ity of NoC in the presence of faults. They detect the most tenuous components of

router against different sources of faults first and then tolerate them to save power

and area overhead of employing fault-tolerant techniques. An adaptive fault-tolerant

NoC router with the power consumption consideration is proposed in [74]. They

improve error correction capability of their design based on the frequency of fault oc-

currence. A novel bidirectional fault-tolerant NoC architecture capable of mitigating

both static and dynamic channel failures is also proposed [108].

However, in all of these approaches the dependability of NoC design is improved,

regardless of imposing redundancies (hardware, information, and time) or based on

reliability analysis reports with general tools. Also, there is no measurement capa-

bility to compare the effectiveness of the proposed reliable 3D NoC architectures.

In fact, experimental and analytical techniques are two popular methods to explore

the dependability of systems. Categorizing the effects of potential faults on the per-

formance of a system is a necessity for both techniques. An analytical model for

reliability evaluation of 2D NoC has been presented in [21], but it is not reusable for

3D die-stacking designs in which new sources of faults are presented.
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Many major reliability issues are presented by the emergence of 3D structures such

as thermal concerns and TSV issues as a result of 3D structures. The unwanted heat

generation by PEs in 3D NoC should be removed effectively otherwise it may result

in other problems. Three major effects of heat generation are increasing the device

temperature, generating thermal stress, more thermomigration as a result of cooling

down methods. In addition, TSVs may also cause unwanted noise sources as a re-

sult of inductive and capacitive coupling effects. These effects are different from the

traditional crosstalk issues due to differences between the physical characteristics of

TSVs and 2D wires.They are still active areas of research. Additionally, the gener-

ated noise signals by TSVs, may also have undesirable effect on the performance of

2D components such as transistors or 2D wires. A minimum distance between TSVs

and these components is required to prevent undesirable effects of TSVs impacting

the functionality of the 3D NoC architectures. Furthermore, there are still additional

issues for developing 3D architecture EDA tools [14]. Accuracy of simulated environ-

ment is a concern for experimental methods in order to analyze dependability of a

system. On the other hand, measurements are expensive and time consuming while

time-to-market cycle is of great importance.

Consequently, developing general analytical techniques to advance both the intuitive

understanding and the quantitative measurement of how potential physical faults

influence the behavior of 3D NoC are still lacking although many researches have

focused on reliability issues for 3D NoC architectures.

1.3 Contribution of this Thesis

The goal of this dissertation is to present an accurate reliability analysis tool for 3D

NoC platform. The presented reliability analysis tool in this dissertation is called
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Three-Dimensional NoC Reliability Evaluation Automated Tool (TREAT). TREAT

is able to analyze effects of static and dynamic faults in 3D NoC architectures. This

tool can be applied investigating the capability of proposed fault-tolerant 3D NoC

approaches at the early stage of the design, which saves both time and cost of design.

The major stages of my dissertation are:

• Discovering the source of physical faults in 3D NoC and categorizing them based

on their possible effect on the functionality and performance of the 3D NoC. In more

details, all possible potential sources of physical faults in 3D NoC environment have

been studied. The impacts of all potential physical faults on 3D NoC components

are also addressed to be used for reliability metrics in TREAT. All main components

of a 3D NoC router architecture and sensitive entities with their possible responses

to physical faults are categorized in this dissertation [26].

• Designing and developing an HDL environment of 3D NoC router as a platform of

running the experiments, called Three-Dimensional HDL Emulator NoC (THENoC).

As a side project an optimized on-chip routing algorithm is also proposed which

takes advantages of both source routing and distributed routing algorithms for 2D

NoC and scalable to 3D NoC designs. This method eliminates the heavy routing

process of intermediate routers for each packet from source toward its destination

by imposing a light overhead independent from the network size [119].

• Modeling the logic-level of all possible physical faults in 3D NoC router and defin-

ing the property of injected faults dynamically by profiling the status of different

components. These logic-level faults are modeled and applied as fault libraries in

TREAT. By comparing the value of selected signals and their assertion time in 3D

NoC components after running both faulty and faultless experiments the vulnera-

bility of each component is reported. The effect of psychical fault models which are

discussed in Chapter 4 are used as evaluation metrics in TREAT.
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• Automating the fault injection and reliability evaluation processes and verifying its

functionality with THENoC. It is capable of implementing static fault injection based

on the provided information by the user or to accomplish dynamic fault injection

process based on the analyzed feedback from the simulator. For static fault injection

process this experiment is repeated as many times as the user defines for various fault

activation time and periods, while a single experiment is needed for dynamic fault

modelings.

1.4 Similar Tools

Fault injection is one of the popular method of reliability analysis which is addressed

in Chapter 2. The impacts of faults have been evaluated by several research groups for

various design objectives. Different methods are proposed with the goal of fault injec-

tion based on the analysis such as software fault injection, simulation fault injection

and physical level fault injection.

Physical-based fault injection involves augmenting the system under analysis with

specially designed test hardware to allow for the injection of faults into the system

and examine their effects. Although the experimental process in this method is fast,

but the experimental set up is time consuming. In addition, this method needs the ac-

tual hardware in order to run the fault injection process, resulting in a costly method.

Software-based fault injection includes the modification of the running software on the

system under analysis in order to modify the system state according to the program-

mers modeling view of the system. This is popular for cases that have communicative

or cooperative functions so that there is enough interaction to make fault injection

useful. Comparing to physical-based fault models they do not need the actual model

of the system, but they have some limitation in terms of fault injection coverage and
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observability. Finally, simulation-based fault injection method requires an accurate

model of the system under analysis. The accuracy of the model and simulation time,

are major concerns for these approaches, but they have full control of fault injection

and fault modeling. This approach is not expensive either, since it does not need the

actual hardware of the design. Because TREAT is a simulation-based fault injector

tool, various simulation-based fault injector tools are introduced to show they are not

appropriate for 3D NoC reliability analysis objective.

• MEFISTO-C: is a VHDL-based fault injection tool developed at Chalmers Uni-

versity of Technology, Sweden that conducts fault injection experiments using VHDL

simulation models. The tool is an improved version of the MEFISTO which was de-

veloped jointly by LAAS-CNRS and Chalmers. Also a similar tool called MEFISTO-

L has been developed at LAAS-CNRS. MEFISTO-C uses the vantage optimum

VHDL simulator and injects faults via simulator commands in variables and signals

defined in the VHDL model. It offers the user a variety of predefined fault models as

well as other features to set-up and automatically conducts fault injection campaigns

on a network of UNIX workstations. This tool generates modified components de-

scriptions called mutants. The mutants generation is based on a static information

and the model has to be recompiled for each experiment [34].

• VHDL-based Evaluation of Reliability by Injection Faults Efficiently

(VERIFY): is developed at University of Erlangen-Nurnberg, Germany. VERIFY

uses an extension of VHDL for describing faults correlated to a component, enabling

hardware manufacturers, which provide the design libraries, to express their knowl-

edge of the fault behavior of their components. Multi-threaded fault injection which

utilizes checkpoints and comparison with a golden run is used for faster simulation

of faulty runs. The proposed extension to the VHDL language requires modifica-

tion of the VHDL language itself. VERIFY uses an integrated fault model, the
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dependability evaluation is very close to that of the actual hardware [101].

• HEARTLESS: is a hierarchical register-transfer-level fault-simulator for perma-

nent and transient faults that was developed, by CE Group-BTU Cottbus in Ger-

many, to simulate the fault behavior of complex sequential designs such as processor

cores. Furthermore, it serves for the validation of online test units of embedded pro-

cessors. It can support permanent stuck-at faults, transient bit flip and delay faults.

HEARTLESS was developed in ANSI C++. The whole design or parts (macros)

can be selected for fault simulation based on fault list generation. Fault list is re-

duced according to special rules derived from logic level structures and signal traces.

HEARTLESS can be enhanced by utilizing macros described in a C-function [93].

• GSTF: is another VHDL-based fault injection tool developed by Fault Tolerance

Systems Group at the Polytechnic University of Valencia, Spain. This tool is pre-

sented as an automatic and modeling dependent fault injection tool for use on an

IBM-PC or compatible system to inject faults into VHDL models (at gate, register

and chip level). The tool has been incorporated into a commercial VHDL simulator

(V-System by Model Technology) and can implement the main injection techniques:

Simulator commands, saboteurs and mutants. Both transient and permanent faults,

of a wide range of types, can be injected into medium-complexity models. The tool

can inject a wide range of fault models, surpassing the classical models of stuck-at

and bit-flip and it is able to analyze the results obtained from the injection cam-

paigns, in order to study the error syndrome of the system model and/or validate

its fault-tolerance mechanisms [6].

• Fault Tolerance Injection (FTI): is developed at Universidad Carlos III de

Madrid in Spain, for fault-tolerant digital ICs in the RT abstraction level. The

main objective of FTI is to generate a fault-tolerant VHDL design description. De-

signer provides an original VHDL description and some guidelines about the type

14



of fault-tolerant techniques to be used and their location in the design. FTI tool

processes original VHDL descriptions by automatic insertion of hardware and infor-

mation redundancy. Therefore, a unified format to deal with descriptions is needed.

There are several intermediate formats that represent, by means of a database, the

VHDL description in a formal way that could be accessed and processed with some

procedural interface. Fault-tolerant components to be included into VHDL original

descriptions have already been described and stored in a special library called FT li-

brary. These components come from previous researches about FT and designer just

use them. FTI use an intermediate format for VHDL descriptions (FTL/TAURI)

and it will work only with synthesizable descriptions IEEE 1076 [32].

Many other fault injector tools have been presented for various design objectives by

research groups in addition to the famous ones which are listed in this section. How-

ever, none of the existing tools are efficiently reusable for 3D NoC platforms, since 3D

NoCs are susceptible to different fault sources that are not fully addressed by existing

tools like 3D design issues. Furthermore, components and behavior of a 3D NoC is

different from other computational platforms as discussed in [26]. ARROW [11] is the

only fault injector tool for NoC platform, which only supports 2D NoC design and

it does not provide any reliability analysis. TREAT is specifically developed for 3D

NoC platforms and it is not a general fault injector tool. Additionally, one of the most

advantages of TREAT is its capability of intelligent fault injection by monitoring the

status of the NoC platform (dynamic faults), while most of existing fault injector

tools inject faults randomly. This is critical since based on our experiments; random

fault injection may result in 26%-99% inaccuracy of reliability evaluation process.

The presented tool is capable of evaluating the Verilog model of 3D NoC architecture

or fault-tolerant techniques. TREAT includes the following features which none of

the mentioned tools offer them all in one package:
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• Automatic fault-injection

• Rich set of fault models

• Designed specifically for NoC

• Single and multi-bit fault activation

• Dynamic and static fault models

• 3D IC-specific fault models

• NoC specific reliability analysis and reporting

1.5 Dissertation Outline

The rest of the thesis is organized as follows: Chapter 2 discovers the basic termi-

nologies in fault-tolerant and fault evaluation communities which are used in other

chapters. The basic components for a general fault injector tool are also discussed in

this chapter. The 3D NoC architecture is explained in detail in Chapter 3, which is

needed to recognize the major causes of fault occurrence and their effects on a 3D

NoC design. The presented 3D NoC architecture in Chapter 3 is also applied in this

dissertation to as a platform to run the experiments. The reliability challenges in 3D

NoC interconnection are uncovered in Chapter 4, with their logic-level fault models.

The effects of each of presented physical fault on the functionality of 3D NoC design

are also discussed in this chapter. The framework of TREAT is introduced in Chap-

ter 5. The experimental results of both static and dynamic fault injection processes

are also presented in Chapter 6 to verify the capability of TREAT. Finally, Chapter 8

concludes the dissertation and discusses the potential directions for future work of

this research.
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Chapter 2

Dependability Threats and Means

To guarantee the correctness of computing and communication services of many-

core systems, has always been a major challenge for both designers and end users.

Designers need to develop more complex architectures which are capable of providing

the expected services even in a faulty environment with limited energy consumption

and area overhead. On the user’s side, adding the dependability and fault tolerance

features to electronic devices convey higher market prices. As an example, the price

of the DDR memory slots with ECC (Error Correction Code) functionality is almost

double the price of elemental components. In general, dependability is defined as the

ability to deliver service that can justifiably be trusted.

A systematic exposition of the concepts of dependability consists of three parts: the

threats to, the attributes of, and the means by which dependability is attained. There

are many well-known attributes for dependability such as: reliability, availability,

safety, security, survivability, maintainability, and other well known attributes. As

discussed in Chapter 1, the goal of this dissertation is to provide a reliability analysis

tool for 3D NoC environments which is considered one of the major attributes of the
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system dependability. The dependability threats and means terminologies in addition

to the concept of fault injection which are all needed for discussions of the following

chapters are addressed in this chapter.

2.1 Dependability Threats

A system may not always perform as it is expected to, because of environmental

conditions or internal faults. Higher temperature or voltage, neutrons and alpha par-

ticles, interconnect noises, electromagnetic interferences, and electrostatic discharge

are some examples of undesirable environmental conditions for on-chip circuits. Each

of these environmental conditions may result in an internal fault and consequently

causes other unexpected behavior in the system. In general, causes and consequences

of deviations from the promised functionality of a system are known as dependability

threats including: fault, error, and failure. Each of these terminologies is individually

discussed in the following subsections [8, 3]:

2.1.1 Fault

Fault is a physical defect, imperfection, or flaw that occurs within some hardware

or software component. A delay in an electronic circuit or missing the priority of

operators in a math equation in a software program are some examples of faults.

A fault is classified into two major categories which are called active and dormant

ones. A fault is active when it ends in an error, otherwise it is dormant. An active fault

is either an internal or external fault. An internal fault was actually a dormant fault

which has been triggered by the computation process or environmental conditions.
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An active fault may again become dormant, awaiting a new trigger. Most of internal

faults switch repeatedly between their dormant and active states. As an example

assume there is a memory cell with a predefined operational temperature. If the

environmental temperature has changed for an unexpected reason the memory cell

will be infected by the thermal fault. This is an example of external fault in which

a dormant fault is converted to an active one. Also as an example of internal fault

assume a single bit is infected by a fault before it is accessed. In this case the infected

single data bit represents as a dormant fault until it is approached. Once this data

bit is read, it becomes an active fault [38]. In case of write access, the infected fault

bit is called to be overwritten before causing an error.

In other words, faults can also be categorized based on their temporal persistence

known as: transient, permanent, or intermittent. A transient fault has an active

status for a limited time and never gets activated again till the end of system’s

simulation. However, a permanent fault exists in the system till the end of system’s

life time. In addition, many of the faults switch between their dormant and active

states which are called intermittent faults. But their activation time and intervals’

length are not necessarily the same.

2.1.2 Error

An error is defined as a deviation from accuracy or correctness which is the manifes-

tation of a fault. To miss capturing the serial data bits by a memory cell because of

delay fault or to generate an unexpected value as a result of missing the priority of

operators are both error examples.

Similar to faults, an error can be categorized into two types which are: detected or

latent errors. With applying error detection techniques; an error is called a latent
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one, as long as it has not been recognized, otherwise it remains as latent error in

the system [86]. As an example an error in a single memory bit of the cache entry

caused by positive charge and kinetic energy of alpha particles, known as Single Event

Upset (SEU) fault, can be either latent or detected. If the ECC decoder unit of the

cache entry has recognized the result of SEU fault, it is detected; otherwise it keeps

its latent status. In addition, a latent error may disappear or be overwritten before

it is detected. But, most often many of the errors are propagated and consequently

generate more errors or pass through the system which result in single or more failures.

2.1.3 Failure

A failure is the non-performance of some action that is due or expected. Such as

packet loss in data transmission because of missing correct data capturing or missing

a software event as a result of regenerating unexpected values are examples of failures.

A component failure causes a fault for the system which it belongs to or the other

components which are interacting with.

Figure 2.1 summarizes the relation between faults, errors, and failures. This figure

also includes an example for each transition from a component’s fault to failure which

results in another component’s fault and consequently a system failure. To illustrate

this example assume there is a many-core system in which instructions are supposed

to be prefetched from the memory, while the memory and cores are connected to

each other through a network. If a fault in arbitration component of routing unit is

activated; it will generate an unfair packet transmission through the system which

consequently results in a packet latency failure. In a normal condition the maximum

delay for each packet including instructions is predictable if the arbitration component

works correctly, otherwise the packet will be captured with an unknown latency.
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Figure 2.1: Fault, error, and failure

This failure can be considered as a kind of delay latency in the receiver side which

is supposed to perform the prefetching operation. The activation of the delay fault

results in an error in which the packet is not needed anymore. This error results in

a system failure in the prefetching process. This example is a typical case especially

in modern GPUs that are composed of many-core and memory units in which the

prefetching technique has been proposed in order to increase the performance.

In addition to dependability threats, the means of dependability are also discussed

in the next subsection to classify the types of methods discussed with the goal of

resolving the unexpected behavior of faulty electronic circuits.
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Figure 2.2: Fault means

2.2 Dependability Means

Dependability means can be grouped into four major classes to attain the expected

level of dependability attributes. These categories are: fault prevention, fault toler-

ance, fault removal, and fault forecasting. Figure 2.2 summarizes these approaches

which are discussed individually in the following subsections; through they are not

independent from each other.

2.2.1 Fault Prevention

It includes all the methods which prevent the occurrence or introduction of faults.

In more details, any hardware (such as hardware shielding and radiation hardening)

or software activities (such as information hiding and modularized programming)

at design time with the goal of protecting the system from different sorts of fault
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occurrence is known as fault prevention. However, if the applied method is not

resilient enough to prevent the fault occurrence, they cannot resolve the issue.

2.2.2 Fault Tolerance

These methods are proposed to protect the system in the presence of active faults

to deliver its correct service. In higher level of abstraction fault-tolerant approaches

intend to remove the errors from the system (known as error processing techniques)

or to prevent the transition of dormant faults to be active ones (by applying fault

handling methods). These two methods are discussed separately in the following

paragraphs:

Error Processing

The error processing technique can be implemented by either of applying error recov-

ery or error compensation approaches. For the error recovery approach, the erroneous

state is replaced by an error-free state, while for the error compensation technique

the integrated redundancies guarantee the delivery of error-free service. The error

detection method is a critical step in error recovery approaches, for recognizing the

erroneous state, resulting in the notion of self-checking component. The error recov-

ery process is implemented in two different formats which are: backward recovery or

forward recovery. For the backward recovery there is a transition from the current

state to the state prior to error occurrence. As expected this method cannot resolve

the permanent faults. On the other hand, for the forward recovery there is a tran-

sition from the current erroneous state to a new state from which the system can

operate correctly.

In error compensation approach, the self-checking component is still needed. In this
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method the execution of non-failed component is delivered to present the correct ser-

vice, if the error is detected by the self-checking component. In more details, when

error compensation is performed in a system, composed of self-checking components

partitioned into classes executing the same tasks, there is simple switching within

a class from a failed component to non-failed one. Additionally, error recovery ap-

proach imposes larger time overhead but less hardware or information redundancy as

compared to the error compensation method.

Fault Handling

Fault handling is the other well-known technique proposed for a fault-tolerant design

by preventing the located faults to be activated again. Fault handing is accomplished

in four stages:

[C1] to locate and recognize the cause(s) of errors.

[C2] to prevent faults to be activated again which can be done by isolating the faulty

identified components from the system.

[C3] to reconfigurable the system if it is not able to deliver the system without the

faulty isolated component.

[C4] to reinitialize the system by checking and updating the new configuration of the

system.

To select either of error processing and fault handling techniques and their implemen-

tation depends on the system requirement, overhead budget, and underlying fault as-

sumption. It is critical that the fault-tolerant mechanisms are resilient enough against

the faults that can affect them [86, 3]. Additionally, for any given fault-tolerant

method, the fault hypothesis and the fault coverage are two major properties which

should be considered by the designer. The fault hypothesis represents the types of

faults which the proposed technique should tolerate and the fault coverage shows the
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probability that the fault hypothesis is respected when a fault actually occurs in the

system.

2.2.3 Fault Removal

This method can be applied both during the development phase or operational sys-

tem’s lifetime. During the development phase fault removal is done in three stages

including: verification, diagnosis, and correction. In the verification stage it is checked

to investigate if the system fulfills the given properties, which are described as verifica-

tion conditions. If it does not, the other two steps follow: diagnosing the fault(s) that

prevented the verification conditions, and then performing the required alteration.

An important aspect of this technique during development stage is the verification

of fault tolerance mechanisms. Verifying the capability of the proposed fault-tolerant

methods is critical. Fault removal during the operational phase of a system’s life

is either corrective or preventive maintenance. The corrective methods remove the

reported faults ended in error(s), while protective approaches recognize and remove

faults before they cause an error [3].

2.2.4 Fault Forecasting

Fault forecasting is a method to evaluate the system behavior against the fault occur-

rence or activation. It can be accomplished in two different techniques: quantitative

(formal) evaluation and qualitative (experimental) one. For quantitative method, the

whole system is modeled by probabilistic equations. In this approach the malfunction-

ing probability of the modeled components are reported as measures of dependability.

This method is fast but complex especially as the size of system grows, but the sys-

tem is simulated and its behavior is evaluated in the presence of faults by running
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large number of experiments. This method is not as fast as formal methods, but it

has more controllability over more parts of the system. Fault injection technique is a

typical example of this method. Fault injection can also take place in the verification

stage of the fault removal method.

All of the four dependability means are somehow related to each other and in some

cases they have some overlaps. However, a typical question is that which of them

guarantees to deliver a dependable system. In most cases, the expected dependability

is not achieved by using any of them, separately. Different fault-tolerant techniques

have been introduced by researchers, but it would be more cost effective to employ

them if the resiliency of the target device against different sources of fault is available.

This knowledge can be achieved by applying fault forecasting methods in order to

address the vulnerable components of the system. With this strategy the expected

dependability is met while redundancies cost is kept low. In practice, fault removal

and fault forecasting methods are followed by each other. In other words, after

rejecting a system by the fault forecasting, several fault removal tests are applied.

These new tests provide actions that can help the designer to improve the system.

This loop is repeated until reaching the desirable design. The main goal of this

dissertation is to present a fault forecasting technique for 3D NoC environment. To

reach this goal fault injection technique is used which is briefly in the following Section.

2.3 Fault Injection

Fault injection is a process in which responses of the system are analyzed to verify the

behavior of the designed system in the presence of predefined faults. This is a popular

approach in reliability evaluation of computing and communication systems such as

processors, micro-controllers, and interconnections [31, 27, 116]. In this method faults

26



��������	
���
������



������

��	
�
�

�����

�����	��


��
�����

�������
�����
�

�
��
����

��
�
������
�

������

��������	
����


����
������
�������

�
���
�

��

����

���


������


���	������

����

����������	


��
��������

��������

�	
�������

• ��������	
��

• ��������

����


• ������������
��


• �����
�
��
���
���

• �����������������

	�����������

• �����
�����������
�

• ����������������	

Figure 2.3: A typical fault injector components

are injected into the system states and points, that were previously determined by an

initial system analysis. There are two major types of fault injection: hardware-based

and simulation-based [8]. In the hardware-based method the actual component is

examined by triggering some faults through the system and determining their effects.

This method is expensive and usually is considered at the final stage of mass produc-

tion. Moreover, the model of system is evaluated in the simulation-based approach

to study the behavior of it against the fault models. This method is much cheaper

than hardware-based evaluation and it is considered at the beginning stages of design,

but the simulation-based method takes longer time than the hardware-based one. In

addition, the other concern of simulation-based method is the accuracy of the model

of the target system, which can be verified by running different kinds of applications.
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Fault injection is often the only choice when the complexity of a target system pre-

cludes analytical solutions for reliability analysis. It facilitates fault removal and fault

forecasting methods, resulting in the following benefits:

• Understanding the effects of real faults on the system either internal or external

ones. A fault-tolerant designer is able to focus on the most vulnerable components

rather devising a general tolerant approach. This capability results in reliable coarse-

grained components designs and consequently more cost-efficient fault-tolerant sys-

tems.

• Efficiency assessment of fault-tolerant mechanisms embedded in the target system.

This method is also able to compare the resiliency of proposed fault-tolerant method

in the presence of different sorts of faults.

• Forecasting the faulty behavior of the target system, in particular developing a

measurement of the coverage provided by the fault-tolerant mechanisms.

• Estimating the failure coverage and latency of fault-tolerant mechanism.

Several efforts have been made to develop techniques for injecting faults into a system

prototype or model as introduced in Chapter 1. Figure 2.3, represents the typical

modules in a fault injection tool with their interactions which is composed of five

main components: user interface, workload, fault injector manager, target system,

and output.

The user interact with the fault injector tool by the help of the user interface

unit. Some examples of definitions which should be defined by the user are shown in

Figure 2.3, such as type, number, and activation time of faults.

The workload component is composed of benchmarks which are supposed to be run

on the target system while examining its behavior against injected fault models. The
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workload component may include either of synthetic or real applications or even both

of them. In some cases an interface between this component and target system is

needed to translate the generated raw data by the applications for the target system.

The fault injector manager is the heart of fault injector tool which is responsible for

activating the fault models which are predefined by the tool designer and accessible

by the fault injection unit. In other words, fault libraries are some fault models

which will be injected to different components of the target system based on the user

preference. The fault injection sub-component is responsible to activate each of the

injected faults into the system. The injected faults are the dormant faults and once

they are triggered by the fault injector tool, they will be treated as active faults. The

observatory list is another sub-component of the fault injector manager in which a

list of comparison signals are stored. The fault injector tools compare the values of

the observatory list signals after running each faulty run by golden run. A faulty run

is the execution of the workload once at least one of the injected faults is activated,

while the golden run refers to the execution of the workload over the target system

when all of the injected faults are in their dormant state.

The fourth major component is the target system, which is actually the model of

system that should be studied. The fault injector interface verifies the injected fault

models are syntax error free in the language in which target system is modeled. In

case of evaluating the proposed dependability means such as fault-tolerant or fault

removal methods, this component should be integrated with the proposed technique.

Finally, the result of golden run and fault run comparison is reported by the output

component, which are considered as an evaluation metrics to compare the reliability

of the target system in presence of different sorts of faults.
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Chapter 3

The 3D NoC Architecture

As discussed in Chapter 1, NoC is the dominant communication infrastructure for

many-core systems with thousands of cores. The NoC offers higher flexibility and

modularity, supporting simpler interconnection models with higher bandwidth as

compared to traditional SoC approaches. In addition, the advent of 3D integra-

tion results in considerably shorter interconnects wires in the vertical direction. The

3D integration supports new opportunities by providing feasible and cost effective ap-

proaches for developing heterogeneous cores to realize future computing systems. Ad-

ditionally, the 3D structure supports heterogeneous stacking because different types

of components can be fabricated separately, and silicon layers can be implemented

with different technologies. Furthermore, vertical integration technologies are partic-

ularly compatible with the traditional CMOS IC design process; they can be easily

integrated into the state of art designs. These capabilities are inherent to 3D NoCs,

and have been introduced as a promising scalable and energy-efficient communication

method for modern ICs with high performance [25, 90, 18, 78].

In general, a 3D NoC is composed of three major components including: links, routers,
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and Network Interface (NI). The links physically connect all the cores to perform

the communication process. There are two different types of links in 3D NoC which

are: inter-die connections and intra-die connections. The former one connects routers

in different layers, while the latter one relates to communication links among NoC

routers located in the same layer. The communication links inside the NoC router

also belong to intra-die interconnections category. The router is responsible to run

the communication protocols in order to accomplish the data transmission process

among the connected cores. In other words, the router receives data packets from

the shared links and based on their destination address, forwards them to the local

connected core or to the corresponding neighbor router. In the latter case, the router

is called an intermediate router. The routers’ protocols should support deadlock and

livelock free routing algorithms, fair data transmission by applying arbitration unit,

and performing an efficient switching methods. Finally, theNI is an interface between

IP cores and network, since the processed data format of each IP does not necessarily

match the data transmission format and network protocols. Before discussing the

architecture of the 3D NoC which is developed as a part of this dissertation, some

basic definitions are discussed first in the following subsections.

3.1 Basic Definitions

This section covers brief definitions for some of the well-known terminologies in the

NoC environment, including: flit and phit, flow control, routing algorithm, and topol-

ogy [20]. These terminologies are refereed to in the rest of this dissertation.
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3.1.1 Flit and Physical Unit (phit)

An injected message into the network by the local connected IP, is first segmented

into packets by the NI component, which are then divided into fixed-length flits. Flits

are the unit of data transmission flow control in the most popular NoC routers. In

other words, a flit is defined at the link level representing atomic units that form

packets. There are typically three types of flits: header flits, data flits, and tail

flits. Header flits contain the routing information for the whole packet and show the

presence of a new packet. Data flits include the actual data bits which are supposed

to be transferred among the cores. Finally, tail flits show the end of packets. Routers

release the dedicated resources once the tail flit reception is confirmed by the local

IP or neighbor router that the packets are forwarded to.

But, for some designs a smaller unit of data transmission is applied which is called

a phit. In general, a flit may be composed of several phits in applications with

highly serialized links [20]. But, in many research articles, a flit size is the same

as a phit size, which is the smallest unit of data transmission. In these cases, the

characteristics of different components in an NoC architecture such as the buffer size

and intra-die links’ bandwidth, are reported in terms of flits. In addition, flits are also

used as the performance evaluation metric units such as the number of transmitted

flits per second or the power consumption for each flit transmission. In the rest of

this dissertation the unit of data transmission is assumed to be a flit (or it is assumed

a flit is composed of a single phit).

3.1.2 Flow Control

Flow control is the mechanism which decides network resource allocation, such as

channel bandwidth and buffer capacity for each packet. A good flow control proto-
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col minimizes the average of packet transmission latency. In other words, a typical

flow control protocol improves the network throughput rather than the throughput

of individual routers. There is a tradeoff between the complexity of flow control im-

plementation and its efficiency. One of the critical factors affecting the efficiency of

flow control is to choose a suitable switching technique. Circuit switching, store and

forward, cut-through, and wormhole are the popular switching approaches for NoC

designs.

In circuit switching technique, the whole path is reserved from the source toward des-

tination for the entire duration of transmission. In this method all the intermediate

reserved links will be released once the message has arrived at the destination router

and the corresponding acknowledgment is confirmed by the source router. The ad-

vantage of this method is that the intermediate routers do not need any buffer unit.

On the other hand, this method has a set-up phase which is not efficient especially for

short messages. In addition, it violates the benefits of bandwidth sharing; resulting

in poor bandwidth utilization.

The other approach is packet-based flow control which has been proposed due to the

inefficiency of circuit switching method for NoC applications. The store and forward

and cut-through switching methods are some examples of packet-based flow control

technique. In packet-based method the message is divided into smaller units called

packets; packets are partitioned into smaller units of transmission (flits). In this

technique the links are not reserved and each packet can choose a different path to

reach the destination. So all the flits of a packet use the same path toward destination

like a train, consecutively. Unlike to circuit switching method, the buffer component

is needed to store in-flight packets. The only difference between store and forward

technique and cut-through switch method is that in the former the whole packet

should be received by an intermediate router before being forwarded to the Local
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IP core or the appropriate neighboring NoC router. This condition is not necessary

for transmission of packets with cut-through switching method. Finally, in wormhole

switching, which is the most popular one, the flits are allowed to be forwarded before

the entire packet is received by the intermediate routers similar to the cut-through

method. But, the required buffer size in this method is less than what is needed for

the cut-through approach. In other words, the buffer size in the wormhole switching

is always less than a packet size unlike the cut-through method [80].

3.1.3 Routing Algorithm

The routing algorithm includes the process of choosing the appropriate path for a mes-

sage through the network toward its destination. A good routing algorithm should

balance the traffic evenly all over the network in order to prevent congestion through

the network and consequently throughput degradation. Also, it should be imple-

mented with as low as possible complexity to not stretch the critical path delay or

impose area overhead. The routing algorithms are classified according to different

criteria. Depending on how a path is defined, routing algorithms can be classified

as deterministic or adaptive methods. The complexity of deterministic algorithm is

lower than the adaptive one. In this method, a predefined algorithm is run once

the header flit of a packet is received at each node. This method does not consider

the status of the network in choosing the path for incoming flits. The adaptive al-

gorithm may choose different paths for individual flits of a packet. This decision is

done by keeping track of the network status. The complexity of adaptive routing

algorithm implementation increases as more information of the network is needed for

routing decision. Furthermore, an adaptive routing algorithm can be considered as a

fault-tolerant method in case there is a fault on a packet’s path to the destination.
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There are two major types of routing algorithms: source routing and distributed

routing. In the source routing the whole path for a packet transmission through

all the intermediate routers are selected in source router. This routing information

should be added to the packet’s header flit. On the other hand, for distributed routing

algorithm choosing the path for packet transmission is done through the intermediate

routers. In the source routing method there is no need for routing decision process

through the intermediate nodes, resulting in lower latency and power consumption.

The disadvantage of this method is that the size of header flit increases for larger

network sizes. The best method to take advantageous of both of these methods is to

devise a mixed algorithm which has been done as a part of this research [119] and is

discussed thoroughly in Section 3.3.

3.1.4 Topology

Topology is another important factor in designing an NoC, which defines how the

routers are connected to each other. This connectivity affects the number of hops for

each packet transmission from source toward destination and also the interconnect

links; indirectly influencing the power consumption of the whole network. Many dif-

ferent topologies have been proposed inheriting from the traditional semantic network

topics, which are evaluated by different metrics such as degree, hop count, maximum

channel load, and path diversity [80]. The degree parameter refers to the number

of connected links to each router. In some topologies all the routers have the same

degrees such as the ring topology, while in some other cases different routers may

have different degrees such as the mesh topology. The hop count includes the number

of intermediate routers that a packet passes on its way from the source to the desti-

nation. The maximum hop count is usually considered as a factor of router and links

delay to estimate the maximum latency of flit transmission through the network. But,
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it may not be an accurate metric in case the network congestion occurs. Maximum

channel load factor predicts the maximum bandwidth that a router can support in

terms of bits per seconds (bps). The path diversity is the other metric which defines

the number of shortest path between a given source and destination pair. The path

diversity metrics shows the capability of the topology in supporting load-balancing

and fault-tolerant mechanisms.

In general, a network topology is divided into two major categories including: a direct

topology and an indirect topology. For direct topology, each IP core is connected

to a router. For this type of topology, each router is a source, destination, or an

intermediate one. Ring, mesh, tori, and torus are some of the well-known examples

for direct topologies. In an indirect topology, routers and IP cores are separated from

each other. All the IP cores are source and destination nodes, while routers are all

the intermediate nodes. The butterflies, Clos networks, and fat free topologies are

some examples of the indirect ones; the direct topologies are more common in on-chip

designs because of their ease of fabrication process.

3.2 The 3D NoC Router Architecture

The structure of the 3D NoC architecture is discussed in this subsection. This ar-

chitecture is designed and developed in Verilog HDL environment, called THENoC,

as an experimental platform for this dissertation. It supports wormhole switching,

mesh and torus topologies, and employs XYZ routing algorithm in which each router

is composed of 7 bidirectional ports. But, it is implemented completely modular and

consequentially capable of supporting other specifications with nominal modifications.

THENoC is actually a synchronous simulator with the capability of profiling all the

communication links during the packet transmission among connected local ports.
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The asynchronous design of the similar architecture for 2D NoC has been also devel-

oped, which is embedded with two synchronous to asynchronous and asynchronous to

synchronous wrappers [118]. The synchronous and asynchronous 2D NoC architec-

tures are compared in terms of their power consumption [114] and reliability [115, 120]

characteristics.

All the modules of THENoC are also developed synthesizable, for the goal of re-

porting the real power consumption and critical path delay. THENoC is also able

to report different performance metrics to compare the efficiency of any proposed

energy-efficient, fault-tolerant, or high performance techniques. It is composed of five

main components including the links, an NI, an input buffer, a routing management

unit, and a crossbar switch [119] which are discussed individually in the following

subsections.

3.2.1 Links

A 3D IC is a chip with multiple tiers of thinned-active 2D ICs that are stacked,

bonded, and electrically connected together. As discussed earlier two major types

of links in 3D NoC are: inter-die and intra-die links. The inter-die connections are

also known as 2D wires, since they connect routers of the same layer together. The

inter-die connections inside the router are depicted in detail in following subsections.

On the other hand, there are various vertical interconnect technologies. Wire-bonding

and flip-chip stacking have made their ways into mainstream semiconductor manufac-

turing in recent years, but they are not considered anymore for new generation of 3D

integrations [39]. TSVs are currently the most popular vertical-electrical connection

forms through silicon or oxide layers [39, 49] since they provide shorter signal paths

with superior electrical characteristics in terms of reduced resistive, inductive and ca-
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pacitive components. Additionally, the TSV technology provides more I/O terminal

ports comparing to tradition system in package integration methods. In the wire-

bonding for example the I/O ports should be located on the edges of the chip. With

this capability of supporting I/O ports in arbitrary locations of the TSV-based 3D

chips, they support more number of interconnections with higher levels of flexibility

of circuit layout [127].

A TSV is typically a cylinder composed of the uniform conducting material more of-

ten the copper. The TSV is surrounded by silicon dioxide as an insulator to prevent

leakage and resistive coupling through the silicon substrate. The TSV interconnec-

tions are fabricated in a silicon substrate and their distribution mainly depends on

partitioning and placement approaches. However, irregular TSV placement results

in a critical fabrication issue which is known as chip warpage. According to the pre-

diction of ITRS, the maximum height of TSV is about 200µm or less which is the

same as thickness of the Si chip. The diameter of vias in TSV is now 20µm and

may reach 5µm in the future [109]. A copper TSV in standard Si-bulk technology

normally will have via diameter of 2µm-8µm by 2018, 5µm by 5µm contact pads,

4µm-16µm via pitch, 0.5µm oxide thickness (tox), and 20µm-50µm layer thickness

including substrate and metallization [45].

A TSV-based 3D NoC structure is illustrated in Figure 3.1, in which TSVs are con-

nected to each other with Microbumps as discussed in Chapter 1. This figure is a

sample 3D design in which each layer has different types of processing elements, while

other designs can be different. It also shows a top view of a TSV which is typically

composed of three different layers: depletion, insulator, and conductor (TSV body).

It is critical to note that the TSV fabrication process is independent of the CMOS fab-

rication technology and TSVs do not scale down with the same pace. TSV diameters

and pitches are two to three orders larger than transistor gate lengths. Additionally,

38



TSV 2

Insulator
(ox)

Substrate

TSV 1

TSV
Body(cu)Depletion

TSV
Micro-bump
NoC-Router

3D NoC router with its local PE

Pitch

TSV
diameter

�

����������	��
�

Global Wire

Figure 3.1: TSV-based 3D NoC and TSV top view

TSVs have different characteristics other than 2D wires, resulting in new challenging

designs which are discussed in Chapter 4.

3.2.2 NI

The NI is responsible for interpreting generated data by the connected PE to each

of the NoC routers though the local ports. The functionality of this component

has been verified by injecting both realistic and synthetic data traffics. One of the

major tasks of the NI is to prepare the transmission units of data, which are flits

in this dissertation, by defining some special protocols. These protocols are defined

based on the 3D NoC router simulator implementation parameters and flow control

attributes such as buffer size, flit size, and switching method. Figure 3.2 illustrates the

functionality of NI component through an example in which the packet is composed

of 32 bits and the size of each flit is 8 bits plus the ID bits. The ID bits are used

by the router components to recognize the type of flits while transferring through

the network. The NI also generates both header and tail flits, attaching them to the
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Figure 3.2: Example of NI functionality

front and end of each packet, respectively. In this dissertation, the NI component

of THENoC simulator splits all the messages into 64-flit packets, while each flit is

composed of 32 bits. The generated header flit in this component also supports the

XYZ routing algorithm which is the default routing method in THENoC. The reverse

process is done again in the NI component of each router after capturing the incoming

packets through the local port. In this step, the incoming data flits are rearranged

into a readable message format for the connected PE to the local port.

The major components of router architecture for THENoC including: the input buffer,

routing management, and crossbar switch components, are discussed in the following

subsections. Figure 3.3 illustrates these components and their connections (inter-die

links).

3.2.3 Buffer

The buffer component is supposed to store the header, data, or tail flits on the inter-

mediate routers in packet-based switching methods as discussed in Section 3.1.2.

THENoC employs the input buffers rather than output buffer as they are more

energy-efficient [103]. Furthermore, the size of buffers are less than the packet size in

THENoC to support wormhole switching in which the data flits follow the header flit

as a chain of flits. In THENoC the input buffers are supposed to store the incoming

flits until they are granted with the appropriate output port. These output ports
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Figure 3.3: 3D NoC router architecture

are reserved until the whole flits of the packets reach the destination. Once the tail

flits leave any intermediate router the corresponding input buffer port is deallocated

and is available to service other requests. The buffer management is composed of

two state machines which are designed to handle the read/write process from/to the

buffer unit. In other words, this subcomponent is in charge of tracking the empty

and full spaces inside the buffer in order to preclude replacing the old flits with the

new ones, before they are transmitted. The buffer management grants the incoming

flits if there is a free space in the buffer unit, otherwise the requested flit waits in the

intermediate router’s buffer until to get the grant.

In a normal buffer implementation, there is a chance of suspending the buffer compo-

nent’s grants though there is a free space inside the corresponding buffer component.

But the input buffer component of THENoC is implemented as a circular queue to

address this issue. With this implementation, it is guaranteed that no port request of

a flit is stalled if the buffer has an empty space. For this implementation two pointers

are needed to keep track of occupied locations in the buffer component as shown
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in Figure 3.3. In THENoC implementation, the head pointer refers to the head of

queue, including the occupied cells of the buffer, and rear pointer refers to the empty

location right before the last occupied cell of the same queue. In this approach one

cell of the buffer is always reserved which cannot be used for storage usage.

3.2.4 Routing Management Unit

The routing management unit component is the central unit of the router architecture

which is composed of four subcomponents including: a header detector, a header

extractor, a header processor, and an arbitration unit in addition to a look-up table.

All of these units and their interactions are represented in Figure 3.3. An XYZ

routing algorithm is implemented in THENoC which can be replaced by other routing

algorithms with modifying the routing unit module of THENoC.

The header detection unit distinguishes the header flit from data and tail flits. In

THENoC, the buffer component has a counter which counts the total number of

received flits for each packet and it resets once the tail flit is read from the input

buffer and transferred to the appropriate output port. The header detector compo-

nent monitors this counter to recognize the header flit as shown in Figure 3.3. The

header extractor splits the header flits into different fields and prepares it for header

processor component which is responsible to run the routing algorithm. Each of the

input channels can reserve one of the output ports when the routing process is ac-

complished. An arbitration unit locks the dedicated output channel until the end of

packet transmission. It also guarantees a fair output channel allocation among input

ports. In more details, in case of receiving a request from the new header flit for an

already allocated output port channel, the new header flit is stalled and its request is

tagged in a priority queue. This priority queue is checked before the upcoming output
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port channel allocation to the header flit requests. This priority queue in Figure 3.3

is shown as the Reservation Table.

The routing unit grants the requested input port and updates the selector signals of

the output multiplexers once the routing process is accomplished successfully. Such

grant and activation signals are disabled as the tail flit of a packet is transmitted to

its desired output port.

3.2.5 Crossbar Switch

The crossbar switch is responsible to connect the active input buffer to their appro-

priate output ports. As shown in Figure 3.3, the crossbar switch is composed of

multiplexers for each of the output ports. The crossbar switch component actually

establishes the connection of input buffer to selected output port by reading the rout-

ing control signals which are provided by the routing management component. As

discussed earlier THENoC implements the wormhole switching, in which all of the

flits which follow the header flit, are directed toward destination in a pipeline man-

ner. In other words, the data and tail flits are blocked if their header is impeded on

its way towards destination. In this case these flits (data and tail flits) are kept in

the intermediate buffers until the header flit is granted the channel resources to start

moving toward destination. Once a packet transmission has been confirmed by each

intermediate or destination routers, the corresponding switch is unlocked to serve

other input channels.

As an additional aspect of this dissertation, an efficient routing algorithm has been

proposed which takes the advantages of both source and distributed routing methods,

called TagNoC [119]. The TagNoC algorithm and design are discussed in the following

section.
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3.3 Proposed TagNoC Routing Method

TagNoC is actually a hybrid routing algorithm which takes the advantages of both

source routing and distributed routing approaches. In other words, the goal of the

proposed TagNoC method is to reduce the intrinsic overhead of conventional source

routing and per hop routing decision process in distributed routing methods [119].

Additionally, TagNoC is actually a micro-architectural level method which can be

integrated to any deterministic routing algorithms. It inherits the routing-specific

characteristics of the target-oriented routing algorithm and supports all turn model

routing algorithms such as XY, NF, WF and NL. Since XY routing algorithm is

the reference model for most of the NoC related research, in this project XY-based

TagNoC coding and corresponding architecture are presented. But, the presented

architecture can be simply modified to support any other turn-based routing model.

In this approach a header flit is composed of the destination router’s coordination in

addition to, two extra bits which are called Tag bits. The header flit including the

Tag bits values are generated in the NI of the source router. In XY-based TagNoC

method, the header flits is first directed horizontally and then vertically toward its

destination similar to XY routing. With this methodology there is only one turn for

the header flit on its way toward the destination. With this knowledge the source

router is able to predict the turn point of the header flit. In this method for each

header flit at the turn point, there are three options: turn up, down, or choosing the

local port, if the source and destination have the same vertical coordination. These

three options are encoded for each header flit and presented by Tag bits as a part of

header flit as shown in Table 3.1.

With this technique in all of the routers the destination address is compared with the

corresponding coordination of the intermediate routers by employing XNOR gates.

The architecture of TagNoC routing approach is presented in Figure 3.4, in which the
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Table 3.1: Horizontal direction

Zx Tag[1] Tag[0] Rotation

0 × × no turn
1 0 1 turn up
1 1 0 turn down
1 1 1 local

Table 3.2: Vertical direction

Zy Tag[1] Tag[0] Rotation

0 × × 180◦

1 × × 0◦

output of XNOR gates for both horizontal and vertical dimensions are shown by Zx

and Zy, respectively. If Zx is equal to 1 it means the header flit does not have any

further horizontal movement toward destination or it has reached its turn point. The

Tag bits are evaluated at this point to choose the next movement of the header flit as

shown in the fourth column of the Table 3.1. After a header flit has turned the Tag

bits are not evaluated anymore as shown in Table 3.2, since the header flit has only

two options at this point which can be decided by the Zy signal.

The proposed TagNoC method is compared with other routing approaches in terms of

scalability, performance, and power consumption. These four routing algorithms are:

baseline (XY technique), None Encoded Address (NEA), Encoded Address (EA), and

Optimized Encoded Address (OEA) routing algorithms [119]. For the NEA method,

the header flit contains the coordinates of all intermediate routers from source toward

its destination. The elimination of routing decision through the intermediate routers

results in less latency and power consumption, at the cost of increasing header flit size.

But, NEA is not scalable and imposes a large data overhead. In the EA technique,

only two bits are needed to identify the output port for each of the intermediate

routers in a 5-port 2D NoC assuming the packet from any of the incoming ports is

not directed to the same port. To encode four of output ports dynamically, the output

ports are flagged by a turning degree value. Based on the proposed definition, the

local port is always labeled by 0◦. The other output ports are labeled as 90◦, 180◦,

and 270◦ values in a counter clock wise direction starting from the incoming port as

illustrated in Figure 3.5. In Figure 3.5a. it is assumed that incoming port is the
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Figure 3.4: TagNoC architecture for a 5-port NoC router

west port, while for the incoming header flit from the east port (see Figure 3.5b), the

north, west, and south output ports will be recognized by 90◦, 180◦, and 270◦ labels,

respectively. With this dynamic labeling output ports, relative to the incoming port,

there is no need to use an extra bit for storing the appropriate output port for the

EA technique.

The idea of OEA approach is to use the same encoding technique as EA method

until the header flit changes its dimension toward the destination. Then the header

flit has only two options, choosing the local port or traversing in the same direction.

For the OEA routing techniques one bit per hop is employed to navigate the header

toward destination, after the header turns to move vertically. This optimization is

because of the property of the dimension order routing algorithms in which only one
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turn is permitted. The comparison of these four approaches with the TagNoC method

is discussed in the following subsections.

3.3.1 Scalability

Routing algorithm plays a major role in the degree of scalability for an NoC design.

The number of enforced bits in the header flit by a routing algorithm is the limiting

factor. The size of header flit influences the flit size which directly impacts the

bandwidth of the network. If the size of a flit is large, the limiting factor in wire

routing or bandwidth efficiency parameters is not satisfied.

Table 3.3: Header size comparison of proposed methods

Approach Header size Header bits

Baseline (⌈log2 X⌉+ ⌈log2 Y ⌉) 8 bits
NEA (⌈log2 X⌉+ ⌈log2 Y ⌉)×ND 144 bits
EA 2×ND 36 bits
OEA 2× (X − 1) + (Y − 1) 27 bits

TagNoC (⌈log2 X⌉+ ⌈log2 Y ⌉) + 2 10 bits

Another critical factor for the NoC is communication reliability. Any fault occurrence
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on the header flit may result in a misrouting [29] of the whole packet. The probability

of fault occurrence on header flit grows as the header flit size increases, with the same

Bit Error Rate (BER)1 for both data and control flits. The extra routing information

bits in the header flit which limits the scalability and decrease the reliability of NoC

is the major problem of source routing methods.

The minimum number of bits in a header flit for all discussed approaches are presented

in Table 3.3 where X and Y represent the horizontal and vertical size of the network,

respectively. The third column of the Table 3.3 demonstrates the header size for each

of discussed routing approaches in a 10× 10 NoC mesh. ND term represents network

diameter which is (X + Y − 2) for a mesh topology.

For the EA method, two bits are needed for each intermediate node from the source

to destination. Comparing to NEA, EA method is more scalable but still is a function

of network dimensions. In comparison with EA, the header flit in the OEA method

requires even fewer bits. The reason is that in OEA method, two bits are needed

for each horizontal movement while after the turn; only one bit is enough for each

vertical movements. In TagNoC, regardless of NoC dimensions, only two extra Tag

bits are used so the number of header flit bits for TagNoC technique is considerably

smaller than the rest of proposed approaches, while it is almost with the same order

of baseline XY routing algorithm. The presented function in Table 3.3 are visually

compared for different range of network sizes in Figure 3.6. In this figure, it is

demonstrated that the size of header flit in TagNoC grows logarithmically, similar to

the baseline distributed XY routing with negligible constant amount of overhead.

The performance, power consumption, area overhead, and the frequency of TagNoC

1 The Packet Error Rate (PER) is the number of received data packets with errors divided by the
total number of received packets. A packet is faulty, if at least one bit is erroneous. This assessment
depends on the Bit Error Rate (BER) as a standard measure of the performance of a channel in the
presence of fault.
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Figure 3.6: Routing overhead bits in the header flit vs. number of nodes

method is compared with baseline, EA, and OEA approaches in the following para-

graphs. The NEA method is not considered for these evaluation metrics because of

its large design complexity and overhead.

3.3.2 Performance

In this section, the experimental framework is introduced first and then experimental

results are reported to compare the efficiency of all proposed methods.

Experimental Setup

A 16-node, 4 × 4 mesh network with 16-bit interconnection links is implemented in

Verilog as an NoC simulator for this experiment. The accuracy of the NoC model is

verified by tracing the traverse of packets through the network with the help of Sys-

temVerilog language for different traffic patterns. Both synthetic and application-level

traffics analyses are considered in order to investigate the efficiency of the proposed

hybrid routing approach under different performance constraints.
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Routers contain five 128-bit buffers per input port and operate with the frequency of

1 GHz. Selected signals for the simulation are profiled after the simulator is warmed

up and the majority of routers are involved in packet transmissions as source or

intermediate nodes in order to report accurate results. Header flit arrival time and the

moment which the whole packet is received by its destination local port are captured

in order to measure packet transmission delay. Throughput is defined as the rate at

which packets are delivered by the network for a particular traffic pattern [22]. Each

network is designed to operate at its maximum frequency with the assumption that

processor tiles operate on their own frequency domain asynchronously with respect

to the interconnection network, similar to recent industry many-core chips [41].

Zero-load network latency and both synthetic and application-level traffic patterns

are used in order to analyze impacts of the proposed router architecture on the NoC.

This factor is widely used as a performance metric for traditional interconnection

networks which gives a lower bound on the average latency of a packet through

an empty network in which a packet never contends with other packets to obtain

resources [22]. It does not depend on type of the generated traffic patterns as there

is no contention among routers to access the interconnection resources.

The zero-load latency in this experiment, is implemented by the injection rate of

0.1%. The impact of proposed architectures on zero-load latency for different number

of nodes under the uniform random traffic pattern is plotted as shown in Figure 3.7 for

baseline, EA, and TagNoC methods. All EA, OEA, and TagNoC methods require the

same number of clock cycles with different clock cycle time since they have different

routing unit architectures. Figure 3.7 shows that as the network size increases, the

latency for all methods increases. The performance of source routing methods scales

much better than the baseline architecture for a fixed network size. In a 100-node,

10 × 10 mesh network the zero-load latency of TagNoC technique is 26% less than
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Figure 3.7: Zero-load latency versus different network size

baseline method.

Synthetic Performance

Spatial distribution of messages in interconnection networks are considered using tra-

ditional synthetic traffic pattern to evaluate the latency of baseline and proposed rout-

ing approaches. These synthetic traffic patterns include Bit complement, Bit rotate,

Bit reverse, Neighbor, Shuffle, Tornado, Transpose, and Uniform [5]. Packets with

variable data flit sizes are injected to routers in this experiment, for each of traffic

patterns as the NoC designs are expected to support multiple applications. Figure 3.8

illustrates the average packet latency versus offered load for all the approaches under

running synthetic traffics as a function of aggregate offered load for mesh network

of 16 nodes. Latency and offered load are reported in units of nanoseconds and

packet/cycle/node, respectively. According to the experimental results, the perfor-

mance of the EA, OEA, and TagNoC routing algorithms are better than the baseline

method for the majority of synthetic traffics.
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Figure 3.8: Average packet latency under synthetic traffic
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Table 3.4: System configuration parameters

Parameter Value

Cores 16
Topology 4x4 mesh
Processor SPARC

L1 Cache I/D 64KB, 2-way, 3-cycle access
L2 Cache Shared, 6-cycle bank access

Cache Coherence Protocol MESI
Memory Access Latency 220 cycles

Packet Size 22 bytes
Flit Size 16 bits

Buffer Depth 8, 16-bit entries/port
Switching Scheme Wormhole
Routing Algorithm Dimension Ordered Routing

The only exception is the Bit reverse traffic for higher injection rate in which baseline

has better performance than EA method. The turning point of injection rate for the

synthetic traffic patterns is between 0.35-0.55 packets/node/cycle (see Figure 3.8).

With higher injection rates than the turning point ≈ 0.45 packets/node/cycle the

average latency of all approaches under running synthetic traffics rise sharply until

the network is saturated, while in TagNoC approach the network is saturated at

higher injection rate, which provides a better performance for all synthetic traffics.

Application Performance

Application traces are obtained from the GEMS simulator [72] using the SPLASH-2

application benchmark suites [113]. Full simulation system parameters are reported

in Table 3.4. The average packet latency versus offered load for the baseline, the

TagNoC, and the source routing approaches under running SPLASH-2 application

traffics as a function of aggregate offered load for mesh network of 16 nodes are

plotted in Figure 3.9.
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Figure 3.9: Average packet latency under SPLASH-2 application traffic
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The reported average packet latency for SPLASH-2 traffics demonstrate similar re-

sults of performance reports as reported for synthetic traffics, although the turning

point of diagrams for SPLASH-2 application traffics is between the offered load of

0.2-0.4 packets/node/cycle. TagNoC architecture has a better performance for all ap-

plication traffics (see Figure 3.9). This is because packets are buffered for shorter time

through intermediate routers and can be quickly routed; the NoC is able to handle

higher injection rates. The other conclusion of this fact is supporting shorter clock

cycle time in TagNoC approach as compared to other methods. With this feature the

NoC is able to support cores with higher operational frequencies.

3.3.3 Power Consumption

The power consumption and area overhead all discussed architectures are obtained

by a combination of cycle-accurate RTL router simulation, Verilog synthesis, and

performing post-synthesis gate-level simulation. The Verilog synthesis is done by

Synopsys Design Compiler with TSMC 40 nm standard cell library and post-synthesis

gate-level simulation is done by Synopsys PrimeTime in order to extract experimental

results.

Figure 3.10a shows dynamic power consumption under a 1 GB/s/node fft traffic load

for a 16-node network with the injection rate of 0.5 packets/node/cycle. NoC with

TagNoC router architecture is reported as the lowest power consumer in contrast

to other approaches since it eliminates extra comparison circuits. However, total

dynamic power consumption of the baseline, the TagNoC, and other source routing

techniques do not increase since they all employ the same buffer, crossbar, and ar-

biter components. Dynamic power consumption of the routing management unit of

different approaches are compared separately in order to highlight improvements of
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Figure 3.10: Power consumption and area occupation comparison

TagNoC technique (see Figure 3.10b). The extra power consumption of NI to gener-

ate the extra routing information bits is reported in Table 3.5 in terms of micro-watt

(µW ), which are negligible due to their tiny logic, as expected. It should be noted

this extra power consumption is imposed once per packet only during packet injection

into the router.

As it is shown in Figure 3.10b EA/OEA methods as source routing algorithms con-

sume considerably less power than the baseline distributed routing. This is due to the

Table 3.5: NI power overhead for extra routing information computation

Power consumption (µW ) TagNoC EA OEA

Dynamic power 0.69 9.066 10.86
Leakage power 18.2 210.94 186.9
Internal power 2.42 23.2 20.43

Total 21.37 243.18 218.23
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Table 3.6: Router clock periods

Architecture Clock period

Baseline 0.7466ns
EA 0.8196ns
OEA 0.7801ns

TagNoC 0.7328ns

elimination of routing logic in EA/OEA approaches. But, at the router level it can

be observed that EA/OEA methods consume slightly higher power than the baseline.

The reason behind this observation is that in EA/OEA methods the number of header

bits imposed by the routing algorithm is more than the baseline method which leads

to more power consumption. It is shown that TagNoC architecture consumes power

approximately 83% and 27% less than the baseline router and EA/OEA architectures.

3.3.4 Frequency Results

Table 3.6 summarizes the minimum clock cycle time for baseline and other methods,

extracted using Synopsys Design Compiler. Due to shifting the header bits, EA and

OEA routing circuits need higher clock cycle time in comparison with baseline method

as shown in Table 3.6. TagNoC is reported as the fastest technique by 2%, 12%, and

6% less clock period comparing to baseline, EA, and OEA techniques.

3.3.5 Area Analysis

Area values of routing logic for all the baseline, EA, OEA, and TagNoC architec-

tures are illustrated in Figure 3.10c. Since they do not impact the buffer, arbiter, and

crossbar components, there is no difference between them. Based on the experimental

results the area of input buffer, crossbar switch, and arbiter for all the architectures

are reported 9471µm2, 520µm2, and 1065µm2, respectively. As it is depicted in
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Figure 3.10c, TagNoC routing logic occupies 53% less than the distributed router em-

bedded with baseline routing algorithm. In total, TagNoC router architecture needs

138µm2 (2%) less silicon area than baseline router due to elimination of conventional

routing unit. Overall, the total TagNoC router saves area by elimination of routing

logic. The reason that EA and OEA methods seem to occupy approximately the same

amount of logic as baseline is because of applying a shift register in their architecture

design. They use this shift register to drop some parts of header flits and push the

rest to the front once the header flit passes each intermediate router.

58



Chapter 4

Reliability Challenges in 3D NoC

The need for reliability assessment of 3D NoC architecture has become critical with

shrinking CMOS technologies [64]. The anticipated fabrication geometry in 2018

scales down to 8nm with projected 0.6v supply voltage [45], which results in more

transistors on the same die area and tighter noise margin. With theses features higher

error rates are expected and consequently the probability of a chip failure is rising.

In addition, applying power and performance aware techniques such as power gating,

power density, prefetching methods, or even non-ideal threshold and supply voltage

scaling exacerbate the failure probability in 3D NoC architectures.

As discussed in Chapter 3, TSV-based 3D design is the most promising solution

for 3D integrations of future on-chip interconnections as compared to other radical

technologies, but the impact of sub-micron TSVs on future 3D NoCs is still an active

area of research [55].

Consequently, the mass production of 3D ICs for consumer electronic products are

not reliable enough without a systematic and thorough reliability assessment. Quan-

titative (analytical) and qualitative (experimental) techniques are well-known fault
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forecasting methods, as discussed in Chapter 2. Both of these methods need a com-

prehensive study on the sources of faults and their effects, which is the focus of this

chapter. These features should be addressed in order to develop the authentic fault

models and fault metrics as a part of the reliability evaluation of a given 3D NoC

architecture. The goal of this chapter is to highlight the reliability challenges of

TSV-based 3D NoCs design. More specifically, the potential physical-level faults in

3D NoC, their corresponding logic-level models, and their effects on the functionality

of 3D NoC components are covered in this chapter.

4.1 Physical-level Potential Faults in 3D NoC

Based on discussion of Chapter 2, either of internal or external causes results in

active faults. At the physical-level, a failure mechanism is the mechanical or chem-

ical action that actually causes the manufactured circuit to perform different than

what is expected. Figure 4.1 summarizes the potential physical faults, affecting the

performance of 3D NoC design. As shown in this figure, TSV issues, thermal con-

cerns, and SEE impacts are the main physical sources of faults in future 3D NoC

designs [109, 100, 85]. It is unlikely that existing technology becomes ubiquitous in

near future until there are solutions for these issues [45]. These physical fault sources

influence behavior of 3D NoC during packet transmission. Thermal concern has ef-

fects on both 2D planar and vertical links, while SEE impacts more transistor of 2D

planar designs. The presented categorization in Figure 4.1 enhances the accuracy and

efficiency of both fault injection and signal observation steps as major operations of

a fault injector tool. It is also useful for providing more realistic formal equations in

analytical techniques. Each of these three major physical faults in 3D NoC environ-

ment, which are individually divided into smaller subcategories, are discussed in the
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Faults in 3D NoC

Physical-level faults Logic-level fault models

TSV issues
Thermal  
concerns

SEE impacts

• Bit-flip
• Bridge
• Crosstalk
• Stuck-at 0/1
• Stuck-open
• Delay-fault
• Short-circuit
• Open-circuit

• Electromigration
• Thermomigration
• Time-dependent 

dielectric breakdown
• Thermal cycling

• Stress migration

• Chip warpage
• TSV coupling
• Thermal stress

• SEU

• SET

Figure 4.1: Potential physical-level and logic-level faults in 3D NoC

following subsections.

4.1.1 TSV Issues

3D NoCs are expected to offer various benefits such as higher bandwidth, smaller form

factor, shorter wire length, lower power, and better performance than the traditional

2D NoCs. These advantages may not be completely achieved because of chip warpage,

TSV coupling, and thermal stress as major TSV failure causes [109, 45].

Chip warpage: When TSVs are used for vertical interconnects, it may lead to

chip damage, since the TSVs are arranged in a non-uniform manner. The other

reason is that the thermal expansion of Si and Cu are different, resulting in chip

compression stress. Typically, TSVs are placed on the peripheral or the center of a
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chip. TSV-related defects might occur in the fabrication process of TSV placement,

in the bonding of the TSVs to the next layer like wafer warpage [109]. The wafer

warpage is considered a fabrication defect as a result of annealing process; it is more

interesting for test engineers rather than researchers with fault evaluation or fault-

tolerant design expertise.

TSV coupling: TSV (intra-die) links have larger capacitance values than 2D wires

(inter-die links), which consequently increase the latency of 3D signal paths. Although

buffer insertion method has been proposed with the goal of delay reduction, but it

imposes extra area and power consumption overheads. The unexpected delay of data

transmission through TSVs, depends on fabrication technology, physical parameters

and design factors of TSVs. This is because the occupied die area by TSVs is quite

significant which in turn compromises the wire length benefit of 3D ICs. On the other

hand, small TSVs causes larger capacitance values depending on the liner thickness

and doping concentration of the substrate. Meaning that, small TSVs have less area

overhead, but they cause serious delay overhead.

Furthermore, this will be more critical considering the CMOS technology integration

results in tighter timing requirements for circuits though TSV scaling and CMOS

technology scaling are independent. So, the TSV coupling is one of the major issues

for the future 3D NoC designs. In more details, TSV coupling may result in delay be-

cause of mutual coupling effects between adjacent TSV pairs [45, 62]. The term TSV

coupling refers to capacitive and inductive couplings among neighbor TSVs. Electric

field results in capacitance coupling and magnetic field is a source of inductive cou-

pling. Inductive coupling among neighbor TSVs is more critical in higher frequency

data transmissions [4], while capacitive coupling is more challenging in lower range of

frequencies [123]. TREAT, discussed in more detail in Chapter 5, is able to simulate
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the effect of capacitive TSV-to-TSV coupling fault models as dynamic fault injection.

Thermal stress: The mismatch between the Coefficient of Thermal Expansion

(CTE) of a TSV fill material and the silicon induces a residual thermal stress in

the region surrounding the TSV [73, 71]. The thermal stresses can drive interfa-

cial delamination between the TSV and the Si matrix, damaging the on-chip wiring

structures [96, 91]. It can affect the carrier mobility due to the piezoresistivity and

degrading the performance of the MOSFET devices. Thermal stress can also degrade

the saturation current of the transistor down to 30% [94]. This parameter limits the

maximum permitted number of TSVs on 3D NoC by increasing the Keep-Out Zone

(KOZ) parameter [63, 66].

4.1.2 Thermal Concerns

Thermal concerns and effective heat removal methods are highly demanded in 3D NoC

designs since on-chip circuits are stacked on top of each other and packed densely.

Temperature cycling and thermal shock accelerate fatigue failures depending on the

environmental temperature range [51]. Thermomigration is mass transport driven by

a temperature gradient, which unbalances a homogeneous alloy under a temperature

gradient. Thermomigration is not a concern in Al and Cu interconnect technology;

but it is now recognized as a serious reliability problem for flip chip solder joints in

3D packaging.

Transistors, contacts, multi-layered Cu, Al interconnects, and solders joints are the

sources of heat in 3D designs. The majority of power consumption is attributed to

transistors, because the resistivity of silicon is much higher than metals and there are

more than a billion transistors on advanced chips. Furthermore, the heat generated
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by solder joints is much lower than the transistor and interconnects metallization; it

affects locally the area surrounding (underfill) solder bumps. The polymer-based un-

derfill has a low glass transition temperature, so the thermal concern may change the

viscosity of the underfill. The flow of the underfill reduces its role in the protection

of the bump as well as the chip. Thermal concern is considered as waste-heat that

increases the conductor temperature, resulting in more joule heating. Thermal con-

cern increases the device temperature and affects atomic diffusion [109]. Four main

thermal issues in 3D NoCs are reported in the following subsections:

Electromigration: Electromigration is a failure mechanism where electrons flow-

ing through metal (Al, Cu) lines collide physically with the metal atoms, causing the

metal atoms to migrate and form voids in the metal lines which leads to increased

metal line resistance and disconnection. Electromigration is a key failure mechanism

that determines the long-term reliability of metal lines. It strongly depends on the

material of the metal. Copper has more resistance against electromigration as com-

pared to Aluminum. It also depends on the running temperature of the system [102].

Time-Dependent Dielectric Breakdown (TDDB): The importance of leakage

power has increased dramatically as technology scales down. Leakage (off-state) cur-

rent has a direct relation with temperature while it has reverse relation with on-state

current of a transistor [68]. Additionally, leakage current of MOSFET gates depends

on the quality and thickness of oxide gate. When the leakage current of gate ox-

ide reaches its limitation, the breakdown may happen which results in the failure of

device. Furthermore, thin gate oxides and their silicon/silicon-dioxide interface are

affected by various physical mechanisms like Hot Carrier Injection (HCI), Negative

Bias Temperature Instability (NBTI), and TDDB. TDDB has been considered among

researchers as a significant failure mode for deep sub-micron technologies. TDDB is
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known as one of the main issues for high temperature in thin oxides [68, 75, 65]. It is

much more critical in 3D designs because of thermal concerns and thermomigration

effect among the layers.

Stress migration: Stress migration is a failure mechanism in which the applied

stress to metal lines causes the metal atoms to be crept. Stress is generated in

the metal lines (Al, Cu) used in the IC due to temperature differences between the

heat treatment process in the manufacturing process and the operating environment

temperature. This stress can cause composition deformation in metal lines, resulting

in short-circuits between metal lines, or vacancies in the metal lines causing creep and

converge in a single location which consequently form a void [102]. In more details,

stress migration occurs due to the interaction between the metal line stress and the

metal atom creep speed. Whereas the metal atom creep speed increases at high

temperatures, the stress acting on the metal lines decreases at high temperatures, so

there is known to be temperatures peaks at which stress migration occurs.

Thermal cycling: Thermal cycling is the process of cycling through two tempera-

ture extremes. It causes cyclic strains and develops cracks in a similar way to natural

usage and weakens the joint structure by cyclic fatigue [15]. The effect of thermal

cycling gets worse in 3D design, since the temperature of different layers are not the

same and there is always a thermal flow between layers. Thermal cycling may also

affect other thermal issues such as electromigration, stress migration, and thermal

stress.
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4.1.3 Single Event Effect (SEE) Impacts

SEEs induced by heavy ions, protons, and neutrons become an increasing limitation

of the reliability of electronic components, circuits, and systems. SEE has been the

main concern in space applications, with potentially serious consequences for the

spacecraft, including loss of information, functional failure, or loss of control. It

can be destructive or transient, according to the amount of energy deposited by the

charged particle and the location of strike on the device. ICs malfunctions due to

radiation effects from high energy alpha particles at ground level are a major concern

because of continued technology size scaling [85]. The electron carriers are collected

by the electric field and cause the charge collection to expand resulting in a sudden

current pulse. The diffusion current dominates until all the excess carriers have been

collected, recombined, or diffused away from PN junction area [48, 35]. To investigate

the effects of physical SEE faults on electronic systems at system level is considered

by researchers to establish and verify the target system’s robustness with a reasonable

level of accuracy in shorter time. In general SEE is divided into two main categories:

Single Event Upset (SEU) and Single Event Transient (SET) [7].

SEU: It is a change of state caused by ions or electromagnetic radiation striking a

sensitive node in a micro-electronic device. These phenomena can affect the behavior

of sequential circuits such as memory cells, register files, pipeline flip-flops, and cache

memories. The sensitivity of both PMOS and NMOS transistors are high when they

are off. The upset rate of can be estimated by having the knowledge of the mechanism

by which radiation particles cause the anomaly. Traditionally, two different major

space radiation sources ending in SEUs were: high energy protons and cosmic rays,

specifically, the heavy ion component of either solar or galactic origins. The heavy ions

cause direct ionization within a device while protons can make a large contribution
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to the overall upset rate. However, within the Earths atmosphere and at the ground

level, neutrons are the most frequent cause of SEUs [111].

SET: It is a temporary variation in the output voltage or current of a combinational

circuit due to the passage of a heavy ion through a sensitive device results in an SET.

In analog devices, SETs called Analog Single Event Transients (ASETs), are mainly

transient pulses in operational amplifiers, comparators or reference voltage circuits.

When a charged particle hits a logic cell sensitive node in the combinational logic, it

generates a transient pulse in a gate that may propagate in a path and eventually be

latched in a storage cell [52].

As the goal of TREAT is to present a run-time reliability evaluation tool for 3D NoC,

the chip warpage is not considered as a fault library in the TREAT. However, it can

be easily added as a simple predefined permanent fault library in case it is needed. In

addition, to study the effects of thermal stress on TSVs and thermal concerns needs

a full system simulation to profile the chemical interaction of materials with different

CTEs. In other words, the physical parameters of TSVs are critical in accuracy

of any proposed dynamic thermal concern and thermal stress fault models for 3D

structures. So the current version of TREAT is not able to model dynamic thermal

stress and thermal concerns, but they are supported as static fault libraries in the

current version of TREAT. As discussed earlier due to structural implementation of

TREAT any fault library model can be added later as a plug-in to the TREAT.

4.2 Logic-level Fault Models

To model the presented faults in Section 4.1.1 at the physical-level, one has to develop

an accurate reliability evaluation of 3D NoC, but it is time consuming as compared to
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logic-level or higher level modeling. To model the physical fault effects by the logic-

level fault model is preferable in order to keep the complexity low and simulation

time short, while meeting the required accuracy [29, 36]. The logic-level fault models

which are capable of modeling each of the presented physical faults in 3D NoC envi-

ronment are also shown in Figure 4.1. Evaluating the reliability of 3D interconnection

architecture at the logic-level enforces and facilitates the process of fault injection as

a fault forecasting method.

Logic-level fault models represent the effect of physical faults on the behavior of the

modeled system. The results of early studies with logic-level fault models provide the

basis for fault simulation, test generation, and other testing analysis applications. A

higher level fault model allows derivation of the inputs that test the chip without any

knowledge of characteristics of physical-level failure causes. The accuracy of logic-level

fault modeling will be increased by covering all the necessary areas of testing analysis.

In addition, the physical-level is not adapted for the simulation of complex designs

such as 3D NoCs because of their long simulation time. This approach decreases the

complexity by employing a single logic-level fault model for different technologies,

and representing the effects of physical faults which are not completely understood.

Logic-level model of 3D NoC for the qualification test must be close enough to the

physical-level to include all the unwanted impacts of existing physical faults on the

system. Understanding causes and effects of physical faults prevents extreme com-

putation time augmentation in logic-level modeling by providing an intelligent fault

modeling technique. Table 4.1 summarizes the causes and correlated logic-level fault

models for each of the introduced physical faults. A brief description of all the repre-

sented logic-level fault models in Table 4.1 are presented in the following paragraphs:

• Bit-flip: It is used to emulate the effects of SEU and other transient disturbances.
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Table 4.1: Physical faults and their corresponding logic-level fault models

Physical Fault
Name

Cause Logic Fault
Model

Chip warpage • Crack in Micro-bumps [109] • Open-circuit

TSV coupling

• Increase path delay [59, 62]

• May result in a wrong logic function switch and
cause unintentional flip in the target signal

• Delay-fault

• Bit-flip

Thermal stress
• Affects carrier mobility of transistor which de-
grades the performance [91]

• Delay-fault

Electromigration
• Increase wire resistance [102]

• Disconnection

• Delay-fault

• Open-circuit

TDDB
• Dielectric breakdown of the gate dielectric film
influences on transistor behavior

• Stuck-at-0-1

Stress migration

• It deforms composition in metal lines or makes
vacancies (atom holes) in the metal lines, form-
ing a void by creeping and converging in a single
location [75]

• Open-circuit

• Short-circuit

Thermal cycling • Interfacial crack [94]
• Open-circuit

• Delay-fault

SEU
• Electrical noise induced by high energy ionizing
particles on sequential circuits

• Bit-flip

SET
• Electrical noise induced by high energy ionizing
particles on combinational circuits

• Stuck-open

A bit-flip in any resource will only manifest itself once this resource is read to perform

an operation [13]. Activating several of them at the same time results in modeling

Multiple Event Upset (MEU) physical faults.

• Stuck-at: If there are short circuits to the ground or to the supply voltage, a
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stuck-at-0 or stuck-at-1 fault has occurred, respectively. These sorts of faults can be

modeled by forcing a signal to logical value of 0 or 1 [13, 110].

• Bridging: It models a situation in which two signals are connected to each other

when they should not. This may result in a wired-OR or wired-AND logic func-

tion [83].

• Stuck-open: It models an open circuit in the drain or source interconnects of

parallel transistors in combinational logic gates which can occur during the opera-

tion [16].

• Delay-fault: It represents physical faults where the signal eventually carries the

correct value, but more slowly (or rarely, more quickly) than normal [84].

• Open-circuit: The open-circuit fault model simulates increasing the resistance of

wires to an extremely high value, ceasing the current flow [104].

• Short-circuit: Short circuit models any unwanted wiring connections in the sys-

tem [104].

4.3 Fault Effects on 3D NoC

The potential faulty locations are precisely recognized by exploring 3D NoC archi-

tecture in addition to the physical fault sources in Section 4.1. 3D NoC is composed

of different components and links, including 2D planar structures bound by inter-die

links as discussed in Chapter 3. The vulnerable components of 2D planar NoC and

TSV links are itemized in Figure 4.2. Categorizing sensitive components of 3D NoC

results in more accurate and faster reliability analysis evaluation. Therefore, a reli-

ability analysis tool can utilized this information to model the related fault models

in specified location rather than considering the whole design with random compo-
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Figure 4.2: Classification of faults and their effects in 3D NoC components

nent selection. In addition, different sources of fault have different effects in 3D NoC

components which are itemized in Figure 4.2. These fault effects can be utilized for

any 3D-NoC specific reliability evaluation metrics and some of them are applied in

TREAT. These effects include header/data flit loss, packet drop, packet truncation,

packet latency, misrouting, timing jitter, flit corruption, and disconnection. Report-

ing the percentage of each of these metrics is a an important approach to compare

the reliability of any fault-tolerant design. A brief description of them is listed next.

• Header/data flit loss: It represents any header/data flit alteration of an incoming

packet. It would happen if there is any problem with the logic circuit of crossbar

switches, FIFO controller, or internal connections among components inside a router.

Header flit loss which has a lower probability than data flit loss is more critical. A

packet might never reach its expected destination, if a header loss occurs.

• Packet drop: The incoming packet will be skipped or forwarded to an invalid

output port if a fault occurs in input buffer pointers/counters or output switch.

• Packet truncation: It happens when erroneously a data flit is recognized as a

tail flit, where one or more data flits from the end of a packet will be lost.
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• Packet latency: Packet latency is the result of the router arbitration malfunction

because of a fault inside the arbiter logic, internal connections, or TSV connections.

TSV issues and some of the thermal related faults may change the conductivity of

TSVs or internal links by changing their physical structures.

• Misrouting: Misrouting is the consequence of fault occurrence on either header flit

while transferring among NoC architecture components or on comparator modules

of routing unit component. It can be resolved if it happens because of any transient

faults. Permanent faults in a routing unit component result in extra number of

packet transmissions between adjacent routers and consequently causing congestion

in some parts of the network.

• Timing jitter: The short-term variations of a digital signals significant instants

from their ideal positions in time is called timing jitter. It is a significant, and usually

undesired, factor in the design of almost all communications links. The delay caused

by temperature variation and TSV coupling, leads to a timing jitter, which is more

significant for TSV because of its size.

• Flit corruption: Flit corruption in a packet happens when a fault occurs in the

data path of a router. It may occur in intra-router links, crossbar switch components,

or TSV link.

• Disconnection: Different types of faults may cause the vertical link components

(TSV body, contact, micro-bump) to fail. Electromigration affects the body and

micro-bumps, causing the path to be implied as an open link or disconnected.

TREAT uses some of these effects as reliability metrics that are discussed in more

details in Chapter 5 in which the framework of the TREAT is presented.
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Chapter 5

TREAT Framework

TREAT is a fault-injection based reliability analysis framework for 3D NoC environ-

ment. It uses logic-level fault models to evaluate the effects of physical faults which

were discussed in Chapter 4. These fault models are added to TREAT as fault model

libraries and they are inserted into the target model components based on user’s re-

quest. TREAT is capable of activating static and dynamic fault models through two

separate simulations set-ups. The current version of TREAT is able to model SEU,

SET, TDDB, Thermal cycling, Thermal stress, and Electromigration physical faults

through a static fault injection process. It is also able to estimate the effects of TSV

coupling physical fault in 3D NoC designs through a dynamic fault injection process.

It has been developed in a structural way to support future plug-in fault models. It

traces the given Verilog HDL description of a 3D NoC design regardless of its de-

scription types (behavioral, structural, or data flow) to accomplish the fault injection

process. This chapter describes the major components of TREAT in addition to the

static and dynamic fault modeling implementation in TREAT.
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5.1 TREAT Components

Similar to a typical fault injector tool, TREAT is composed of five major modules

including: workload, user interface, fault injector manager, target system, and statis-

tics report components. These modules with their subcompoents are illustrated in

Figure 5.1. This figure represents the modified version of Figure 2.3, in which the

basic components of a typical fault injector tool are discussed.

The workload component is necessary to evaluate the reliability of different compo-

nents by running various traffic patterns. More variety of workload applications is

desired to guarantee all routers are active during reliability evaluation process with

different network congestion spots. TREAT actually employs the NI component of

THENoC which interprets both synthetic and real data traffics and converts them

into appropriate transmission packets as discussed in Chapter 3. But, it is also able

to generate synthetic traffic applications such as random with uniform distribution

and permutation traffic patterns. For permutation traffic such as bit complement,

bit rotate, bit reverse, neighbor, transpose, tornado, and shuffle, there is a unique

destination for all source nodes [5].

The user interface module in TREAT interprets the given user defined information

to accomplish the fault injection process. A sample set of information from the user

is listed in Figure 5.1, which is mostly needed for the goal of static fault injection

routine. More specifically, TREAT traces through all of these predefined values and

stores them in a hash data structure, which is accessed periodically during fault

injection process.

The fault injector manager is able to monitor the 3D NoC (target system) to im-

plement dynamic fault injection and it also interacts with user interface to accomplish

static fault model experiment. In more details, this component is composed of fault
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Figure 5.1: TREAT components

library, fault injection unit, monitoring unit, and data collector subcomponents. The

fault library contains all the predefined fault models for TREAT. The supported fault

models in TREAT are shown in Figure 5.1. Some of the physical faults such as SEE

faults depends on environmental conditions while some others like capacitive TSV-

to-TSV coupling are data dependent as discussed in Section 5.3. Due to structural

implementation of TREAT, it is able to support the state of the art and future fault

models. The fault injection unit is responsible to update the target files for the fault

injection process by accessing the fault library, user information, and the feedback of

the target system. The feedback of the 3D NoC facilitates the process of dynamic

fault injection. The monitoring unit is capable of profiling the predefined monitoring
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list signals. It also analyzes the profiled signals and sends the results toward the

fault injection unit subcomponent. Data collector is the other subcomponent of fault

injector manager which profiles the observatory list signals with the goal of reporting

reliability evaluation statistics.

Target system is the RTL model of the system which is going to be evaluated.

THENoC is employed in this experiment, to verify the functionality of the TREAT.

The fault injector interface as the major subcomponent of target system is responsible

for injecting faults. The locations and time of fault injections are chosen randomly

for static fault models in TREAT. More specifically, it declares all faulty signals in

the top module of the target system in order to activate user defined fault models. It

also automatically distributes all faulty signals over the smallest modules of 3D NoC

design based on the user preference. To reach this goal, it updates all the needed

modifications through the port definition and port mapping sections of top module

down to the smallest ones. The result of this process supports the HDL syntax in

which the target system is implemented, without changing the functionality. Since

THENoC simulator is implemented in Verilog, the presented fault injector interface

supports Verilog syntax for the goal of injection process. Unlike to many existing fault

injector tools, TREAT does not need to merge all the HDL implemented module files

into single file. It only needs the knowledge of design hierarchy in which, the top

module and smaller components are specified. In addition, in case of having a vector

faulty signal, TREAT is able to choose the index numbers randomly or based on the

user preference. For dynamic fault injection experiments, TREAT is able to inject

the faults run-time based on the feedback from the system, ending in more accurate

reliability evaluation.

And finally, the statistics report module of TREAT is responsible to provide the

reliability evaluation metrics. In case of static fault modeling, TREAT automatically
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Figure 5.2: TREAT phases

runs the same simulation for various injection time and fault activation periods and

stores the values of user defined signals in separate files, called faulty runs. TREAT

also runs the simulation once without any fault activation and stores the values of

user defined monitoring signals as a golden run. The result analyzer subcomponent

compares the results of faulty and golden (faultless) experiments to present the reli-

ability evaluation of the given 3D NoC design. This component reports the effect of

psychical fault models which are discussed in [26] as evaluation metrics in TREAT. In

dynamic fault injection process, there is no need to repeat the faulty experiments for

several times since faults are accurately injected wherever and whenever they should

happen by profiling the run time system. In this cases the effects of them on the

functionality of different components of 3D NoC are reported as reliability evaluation

metrics. Both static and dynamic fault injection processes in TREAT are explained

in the following sections.
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5.2 Static Fault Models in TREAT

Static fault models are employed to disrupt the values of user defined signals with

predefined timing characteristics. Fault model injection time and life time are two

major of these timing characteristics. For TREAT, static fault models are activated

with a random uniform distribution function. TREAT guarantees to inject faults

when the target system is stable. The life time of the static fault models are also

defined by a random function with exponential distribution. The average value of this

exponential distribution is requested from the user. TREAT runs the experiment for

each of the static fault models for the predefined number of times specified by the

user. In each iteration, the random function chooses different injection time and life

time for the chosen fault model. The accuracy of reliability evaluation increases as

more the number of simulations are repeated. However, there is a trade-off between

the accuracy of the static fault modeling and simulation time.

The reliability evaluation of static fault models are accomplished in three phases (see

Figure 5.2) including: (1) Model Preparation and Fault Injection, (2) Golden and

Faulty Simulation, and (3) Comparison and Analysis, which are further discussed in

the following subsections.

5.2.1 Model Preparation and Fault Injection

In this phase, the user input values are traced and stored in a hash data structure.

This hash data structure is used several times during the fault injection process.

TREAT warns if there is a conflict in the user defined input values. For example if

the total number of requested faults in a component is less than the requested number

of fault models for the same component, TREAT prompts a warning message. Or if
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different fault models are defined to affect the same signal, TREAT notifies the user.

TREAT uses the input values to generate tcl commands for cadence incisive simu-

lator tool as a part of automatic fault injection process. These commands can be

simply replaced in case of applying any other simulator tools. It also provides the

corresponding tcl commands to profile the user defined monitoring signals. In addi-

tion to simulation preparation files, the fault models are also inserted into the given

Verilog models of the 3D NoC. TREAT recognizes the faulty signals and then inserts

fault models differently based on how they are assigned in the target Verilog models.

In other words, it uses different fault injection methods for concurrent and sequential

structures to support Verilog syntax rules.

TREAT keeps track of different sequential block statements to assure the same re-

quested signal is infected during the fault injection process. Also if there are multiple

assignments for a given signal under different conditions inside sequential statement,

all of them are infected with the same fault. For example if the given signal tx is

assigned with different values inside different case statements they are all infected

with the same fault if signal tx, is selected by user. With this consideration the effect

of faulty signal is evaluated regardless of the 3D NoC operation, resulting in more

accurate reliability evaluation reports.

Furthermore, TREAT is able to choose the victim indices of faulty vector signal or it

uses the predefined indices by the user. In case of random index selection, TREAT is

smart enough not to choose the same index numbers randomly. For example, if the

vector data with the size of 32 bit is chosen as a faulty vector, TREAT will choose

randomly 4 different index numbers by keeping track of all the previously generated

random numbers.
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5.2.2 Golden and Faulty Simulation

In this phase a script file is called to run the whole simulation process for both faulty

and golden runs. This script actually employs the generated tcl commands in previous

phase of fault injection. TREAT profiles the user defined monitoring signals in two

different database formats: Simulation History Manager (SHM) and Value Change

Dump (VCD) formats databases. In both of these data base formats, all the signals’

events with their event time are captured. The size of these files depends on the

simulation time and also the number of events on them. TREAT uses tcl commands

to store only the signals which are defined by the user to save both simulation time

and memory.

The VCD file is actually an ASCII file which includes header information, variable

definitions, and the value changes for specified variables in a given design. The value

changes for a variable are given in scalar or vector format, based on the nature

of the variable. TREAT is embedded with an open source VCD parser which is

able to interpret the value, time, and hierarchy of specified signals. The alternative

database is the SHM one, which is a cadence proprietary waveform database, to store

the selected signals. The current version of TREAT uses SHM database to report

reliability evaluation reports. However, as discussed it also provides the VCD files

and their interpreted versions for the same monitoring signals if needed.

5.2.3 Comparison and Analysis

The last phase of TREAT provides the reliability analysis reports of the given 3D NoC

design. In this phase, the SHM database of the faulty runs are compared with the

golden run. This comparison is accomplished by running another script in which the

values of monitoring signals are compared automatically. To recognize whether the
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signal values mismatch are because of timing delays or not, depends on the method

of 3D NoC implementation. In other words, in some cases the signal value mismatch

can be resolved by applying a fixed time shifting operation. If the given model of 3D

NoC is able to provide a unique ID for each flits, TREAT is able to distinct the packet

latency failure from the other types. But the current version of TREAT reports an

inconsistency of two simulation experiment, if the signal values are not the same or

they have same values in different timing slots.

TREAT is able to report analysis results such as: MTBF, %header flit loss, %data

flit loss, and %tailor flit loss. More specifically, it can report these values in different

granularity for each signals, module, or the whole system. It is also able to differenti-

ate these values for each experiment or fault models. Providing the MTTF values is

also possible by TREAT, but MTTF values are defined for none repairable systems

(permanent fault modeling). Because of the importance of transient faults in future

many-core systems, only transient fault model implementation are reported in this

experiment; MTTF values are not reported as reliability analysis results.

As discussed in Chapter 4 reporting other reliability metrics such as packet latency

needs to keep track of all the flits and depends on the test bench of the 3D NoC

model. THENoC is able to report these values but current version of TREAT does

not provide other reliability metrics independently.

5.3 Dynamic Fault Models in TREAT

In addition to different static fault models, one of the advantages of TREAT com-

pared to other fault injector tools is the capability of supporting dynamic fault models.

With this methodology, the accurate location and time are determined for fault in-
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jection process based on the dynamic monitoring of the system. In other words, for

dynamic fault models only a single experiment is needed. This feature compresses

the simulation time dramatically with high level of reliability evaluation accuracy.

Capacitive TSV-to-TSV coupling is the dynamic fault model supported by TREAT,

which is discussed in this section.

TSV-to-TSV coupling is a major source of crosstalk between adjacent TSVs. [30, 53].

Looking at the cross-sectional view of a TSV bundle, it is assumed for the sake

of analysis that mutual coupling is due only to neighboring TSVs that are directly

adjacent, not diagonally adjacent. This is because the distance of diagonal TSVs is

larger than adjacent TSVs, which is also assumed by other research groups [95, 17,

60, 107]. The presented Capacitive TSV-to-TSV Coupling (CTTC) categorizations

is based on this assumption. On the other hand, the number of neighboring TSVs

can vary depending on whether they are located in the middle or on the border of

TSV meshes. Figure 5.3 illustrates all the possible locations of a victim TSV (each

in a different color) relative to active adjacent (shown in gray). The colored and gray

TSVs in Figure 5.3 represent victim and aggressors, respectively.

In this Section an analysis of the current flow in TSVs is first presented which is

the fundamental concept for proposed dynamic fault model. Then the circuit-level

model of TSV used for this experiment in addition to classification of CTTC effects

are explored. This classification is based on the maximum capacitive coupling by a

victim TSV, while the value of the resulting crosstalk depends on the TSV current

flow direction. Finally, the CTTC effects on timing requirements of the circuits as

well as dynamic fault modeling process in TREAT are discussed.
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Figure 5.3: Different TSV patterns leading to various TSV coupling classes

5.3.1 Current Direction in TSV

In order to characterize the effects of capacitive and inductive coupling between TSVs

used in a CMOS digital circuit, it is first necessary to characterize the direction of

current in a given TSV, based on the direction of the data signal and the type of data

transition present. The six possible cases are illustrated in Figure 5.4. According to

these cases a TSV has three possible current flow directions including: Upward (⊗),

Downward (⊙), and No-current (#). For the cases where the data is transmitted

from an upper to a lower layer, Figure 5.4a shows that the TSV current is conducted

downward if its voltage makes a high-to-low transition; Figure 5.4b shows that the

TSV current is conducted upward if its voltage makes a low-to-high transition. For

the cases where the data is transmitted from an upper to a lower layer, the currents

are in the opposite direction of those indicated in Figure 5.4a and Figure 5.4b,
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Figure 5.4: Current flow direction in TSV.
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as shown in Figure 5.4c and Figure 5.4d, respectively. If there is no output data

transition on the TSV, then no current will conduct, as shown in Figure 5.4e and

Figure 5.4f. This is because there is no potential difference between two sides of a

TSV. In the rest of this dissertation a TSV without an electric current is called an

inactive TSV. Furthermore, in the following subsections, all possible TSV current

flow configurations resulting in different inductive and capacitive parasitic noises are

used to classify CTTC.

5.3.2 CTTC Circuit-level Modeling

A framework consisting of multiple TSVs at circuit-level using Synopsys HSPICE is

implemented in this experiment, to study the sources of CTTC effect. Developing

TSV simulation framework allows extracting the realistic accurate CTTC effect for

different parameters. The coupled TSV structure is modeled as a lumped RLC circuit.

The lumped RLC circuit circuit-level model of TSVs presented in [62, 56, 81] is

employed for this experiment.

Figure 5.5 illustrates the circuit-level model of TSV applied in this experiment, in

which RTSV , LTSV , Rsi, Csi, and CTSV represent TSV resistance, TSV inductance,

substrate resistance, substrate capacitance, and oxide capacitance, respectively. The

value of the circuit elements are modeled based on physical and operational parame-

ters of TSVs such as oxide thickness, silicon substrate height, TSV radius, and TSV

pitch and by material properties like dielectric constant and resistivity. The actual

values of these physical parameters are extracted from ITRS reports [45]. The ther-

mal impact is also considered in the TSV model using equations in [61]. Furthermore,

since the parasitic capacitive effect of a diagonal neighboring TSV is less than 1/5 of

an adjacent TSV neighbor [28], only the effect of adjacent TSV neighbors are exam-
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Figure 5.5: Circuit-level of victim TSV and its neighbors

ined in this experiment. However, our fault model can be expanded to support more

TSVs as well.

In this analysis, a TSV is connected to the output of an inverter (driver) on one

side and to the input of another inverter on the other side (load). These inverters

are needed to record the propagation delay and its dependency to parasitic capaci-

tivenoises. Two flip-flops, one before the driver inverter and one after the load inverter

are inserted to capture the parasitic capacitive effects on timing requirements of the

circuit. The input data pattern with output data pattern to catch the parasitic ca-

pacitive effects are compared.

Predictive Technology Model (PTM) [87] FinFET transistor models are employed

to implement inverters and flip-flops. Then a comprehensive set of simulations is

performed on the developed TSV framework. The impact of operational frequency,

temperature, technology, TSV radius, and TSV oxide thickness are investigated which
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is discussed in 5.3.4. SPICE model of TSVs are employed to examine the CTTC effect

among a victim and its aggressor TSVs.

The range of all of these parameters are also chosen according to ITRS [46] and

industrial interconnect reports. The minimum TSV depth normally is about 40-

100µm which is projected to reach 30-40µm by 2018. A copper TSV in standard Si-

bulk technology is expected to have minimum via diameter of 2-4µm, 1:20 minimum

aspect ratio, 4-7µm minimum via pitch, 0.5µm oxide thickness (tox), and there can

be up to 2-8 die per stack [46]. TSV diameters and pitches are two to three orders of

magnitude larger than transistor channel gate lengths. Furthermore, in order to reach

a high yield rate, manufacturers typically impose a minimum TSV density in order to

maintain the planarity of the wafer during chemical and mechanical polishing [106].

For example, Tezzaron requires that there be at least one TSV in every 250µm ×

250µm area [54].

The characterization for a range of operational frequency and different TSV parame-

ters is elaborated in Figure 5.6. In all of these graphs the vertical axis is the additional

delay, relative to the clock period, caused by the parasitic capacitive coupling, which

is given by:

TV =
APD −NPD

Tclk

= fclk (APD −NPD) (5.1)

where APD refers to Actual Path Delay (when there is CTTC), NPD refers to Nominal

Path Delay (when there is no CTTC), Tclk is clock period, and fclk is the clock

frequency.

In Figure 5.6a, increasing clock frequency does not have tangible effect on the CTTC

severity, but TV is increasing linearly for larger operational frequencies. This is

because tighter timing requirements are needed in higher operational frequencies. For
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Figure 5.6: Characterizing capacitive coupling against various parameters
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a TSV pair with a constant pitch, as the radii of the TSVs increase, more capacitive

coupling is observed; this results in larger TV values as shown in Figure 5.6b. As

the technology scales down the input capacitance of the flip-flop seen by the TSV

decreases, resulting in larger coupled voltage on the TSV (shown in Figure 5.6c).

The permittivity of the silicon rises as a weak linear function of temperature [61],

which results in an increase in capacitive coupling, also increasing coupling and TV, as

depicted in Figure 5.6d. Finally, as shown in Figure 5.6e, thicker oxide provides better

isolation and reduces the value of capacitive coupling, resulting in less capacitive

coupling and consequently less TV.

5.3.3 CTTC Effect on TV

Having analyzed and modeled the CTTC, the effect on realistic data traffic using

PARSEC benchmark has been evaluated. This realistic data benchmark is run on

the circuit-level model of 64 TSVs for various configurations. The TV values on the

receiver side of each TSV is captured. A configuration is a set of physical parameters

including TSV radius, length, pitch, oxide thickness, and process technology, oper-

ating frequency, and temperature. The configuration values are selected in a way to

cover different CTTC effects.

Figure 5.7 shows the probability of TV for PARSEC benchmark workloads for three

different TSV configurations (presented in Table 5.2). Each group of three bars in

this figure from left to right refer to configurations A, B, and C in Table 5.2.

In addition, the TV probabilities are reported for different percentage of maximum

synthesis frequencies. The results show that, the percentage of TV for lower synthesis

frequency drops down for all workloads, however, an average of 40% TV at 100%

synthesis frequency still confirms the importance of CTTC analysis for TSV-based
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Figure 5.7: Probability of TV for PARSEC benchmark workloads

3D-NoC architectures. Furthermore, the result of Figure 5.7 shows how CTTC limits

the maximum operational frequency of 3D NoCs. The reported values in Figure 5.7

are based on running PARSEC benchmarks under different conditions which are listed

in Table 5.2. The reason is that the propagation delay of TSVs are extended as an

effect of CTTC. In other words, the circuit is able to handle more percentage of TV

with lower operational frequency.

5.3.4 CTTC Classification

A capacitive coupling classification is presented here based on the severity of CTTC

parasitic values which depends on TSVs’ current flow. On the other hand, the current

flow direction of a TSV is data-dependent as discussed in Subsection 5.3.1; conse-

quently CTTC depends on the data pattern. The previous (Datai−1) and current

(Datai) data bit values of a TSV’s driver should be evaluated in order to identify the

current flow of each TSV. Assuming the effect of adjacent neighbor TSVs is higher

than diagonal ones, the capacitive coupling between an adjacent pair of TSVs is rep-

resented in this experiment, by 0C (if they both have the same current direction),

1C (if one of them is inactive and the other is active), 2C (if they are both active
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with reverse current direction). The total capacitive coupling voltage on the victim

TSV is equal to the sum of voltages coupled by each aggressor on the victim TSV.

Therefore, the total CTTC can be quantified as:

CTTCtot =
N
∑

i=1

|dvic − daggi| (5.2)

where CTTCtot is the total capacitive coupling factor on a given TSV (which is used

in categorizing capacitive coupling types in Table 5.1), N represents the number of

adjacent aggressors for a victim TSV, and d is the current direction for the corre-

sponding TSV. The current direction d in Equation 5.2 represents an upward current

with +1, a downward current with -1 and no-current with 0.

Figure 5.8 shows an example of current matrix generation process for the given data

bits values in a mesh of 3 × 3 TSVs. It also shows the generated CTTC factors

for all TSVs, caused by their adjacent neighbors. CTTCtot factor on the victim

TSV (situated in the middle one) for given data bit values in Figure 5.8 is equal to

5C, which is the sum of generated capacitive coupling values by each adjacent TSV

neighbors.
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There are 35 = 243 possible TSV arrangements for 5 TSVs with three possible current

flows, resulting in different capacitive coupling values from 0C to 8C. Many of these

243 arrangements generate the same capacitive coupling values, which are quantified

in terms of their frequency and probability of occurrence in Table 5.1. A sample

pattern resulting in each capacitive coupling is also shown in this table. The maximum

CTTCtot in this representation is equal to 8C, if the middle TSV has reverse current

flow comparing to all of its neighbors, as shown in the most right column in Table 5.1.

In addition, these capacitive coupling values can disrupt the timing requirement of

a 3D IC based on the operational and TSV physical parameters. This issue, called

Timing Violation (TV) in this experiment, is defined as additional delay to TSV

lines caused by parasitic coupling capacitance. The effect of CTTC for each of the

capacitive coupling types presented in Table 5.1 are characterized at the circuit-level

model.

5.3.5 CTTC Fault Model

Circuit-level simulation takes much longer than system-level simulation. This ap-

proach considers the effects of circuit-level representation of CTTC for a system-level

platform to reduce simulation time while maintaining accuracy. This operation is per-

formed at runtime by monitoring the data signals that are being transmitted through

Types 0C 1C 2C 3C 4C 5C 6C 7C 8C

Sample
pattern

⊙
⊙⊙⊙
⊙

⊙
⊙⊙⊙

#

⊙
⊙⊙⊙
⊗

⊙
⊙⊙#

⊗

⊙
⊙⊙⊗
⊗

#

⊙⊙⊗
⊗

⊗
⊙⊙⊗
⊗

⊗
#⊙⊗
⊗

⊗
⊗⊙⊗
⊗

Occurrence
frequency

3 16 44 64 54 32 20 8 2

Occurrence
probability

0.01 0.07 0.18 0.26 0.22 0.13 0.08 0.03 0.01

Table 5.1: CTTC categorization with occurrence probability of each type
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Table 5.2: Different configuration of TSV arrays

Configuration A B C

radius µm 3 3 2
length nm 15 20 25
pitch µm 9 9 6
Tox µm 3 2.5 1
Technology nm 20 16 10
Max Freq. GHz 1 1 1
Temperature ◦C 50 75 100

TSVs in order to identify where and when potential faulty TSVs occurred. Next these

faulty candidate TSVs are triggered with the observed effect at the circuit-level of

CTTC fault.

Figure 5.9 shows the 3D-NoC framework and the proposed CTTC fault model. The

fault model is envisioned to be employed as an intermediate component among TSVs

connecting routers in different dies, as shown in Figure 5.9a. This fault model does not

affect the functionality of 3D-NoC; it only decides the time and location of fault acti-

vation through the TSVs based on data input patterns and the provided fault library

at the circuit level. Figure 5.9b depicts the functionality of the proposed fault model

in details. The input parameters of the circuit-level model are TSV arrangement con-

figuration (number of rows and columns) connected to 3D-NoC, operating frequency,

process technology, silicon oxide thickness, TSV-to-TSV pitch, TSV length, and TSV

diameter. The output of this model is a table, which shows the corresponding para-

sitic capacitive factors violating the timing requirements for each configuration. An

example of the fault library table is shown in Figure 5.9b. This output is used as

a fault library in TREAT, in which the parasitic capacitive factors are extracted

by comparing the transmitted (Datai−1) and ready to transmit (Datai) data bits

through TSVs. With this configuration the CTTC fault model decides intelligently

and accurately when and where a CTTC fault should be activated. The steps of this
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methodology are as follows:

• Step.0 Configuration and Setup: Prior to instantiating and utilizing the de-

vised CTTC fault model, first it needs to be configured and setup. In this phase,

input parameters of the model such as the TSV length, TSV diameter, TSV pitch,
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Figure 5.9: Fault model usage demonstration in 3D-NoC
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oxide thickness of TSVs, process technology, frequency, and temperature are speci-

fied. Frequency and temperature parameters are defined as a range with a specific

granularity to support dynamic changes at run-time. The other inputs of the circuit-

level model is all the possible data inputs resulting in 9 parasitic capacitive factors

from 0C to 8C.

• Step.1 Capturing transferred data: In this step, the data bits transferring

through TSV links (Up/Down port) are captured as the input of fault model at

run-time. These captured data bits are adjusted if the fault activation condition is

met.

• Step.2 Data analysis to determine the TSV current directions: At this

step, the current directions of all TSVs are identified. The previous (Datai−1) and

current (Datai) data-bit values of a TSV’s driver are profiled and compared in order

to recognize the current direction of each TSV. This process is done with the same

approach as discussed in [30]. The output of this stage is stored as Current Direction

(CD) matrix.

• Step.3 Determine the induced capacitive coupling case for each TSV:

Looking at the current direction of each TSV and its adjacent neighbors, in this step

an appropriate capacitive case is assigned per TSV. Now the fault library generated

at pre-runtime is used to look up the timing delay associated for the corresponding

case and is recorded as Parasitic Coupling (PC) matrix.

• Step.4 Map circuit-level faults to system level delay fault/failure for each

TSV: Considering the timing requirement parameter of the destination receiver flip-

flop (input buffer of receiver router), at this point, using PC matrix, the decision

for faulty TSVs is made and an appropriate fault is applied to the detected faulty

TSVs. If the reported timing delay associated with the capacitive case violates the

timing requirement of the receiver logic, then the data bit is assumed faulty. The
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fault type, depending on the specified delay tolerance for the circuit, can be either

a “delay fault” or a “glitch fault”. However, if the specified timing requirement of

flip-flop tolerates the undesirable propagation delay because of CTTC, then this

fault will not have any impact and it is ignored in the model. Now the data is ready

to be forwarded towards destination. Also a copy of last transmitted data (flit) is

maintained for subsequent current direction determination.
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Chapter 6

TREAT Evaluation

A case study is presented in this chapter to show the capability of TREAT in reliabil-

ity evaluation of a 3D NoC platform. A cycle-accurate simulation, on the 64-node 3D

mesh NoC is performed in this experiment. The parameterizable THENoC (see Chap-

ter 3) simulator is applied as the target system in this experiment. More details about

the simulation parameters such as the network and packet properties are summarized

in Table 6.1.

The fault injection characteristics and experimental results for both static and dy-

namic faults are reported, separately. As discussed in Chapter 5 these simulations

are executed through separate processes. In case of static fault injection, for each of

the injected faults the simulation is repeated for user defined number of times, and

they are all compared with the result of golden run. But, in dynamic fault injection a

single experiment for each fault is enough to analyze the effect of capacitive coupling

on functionality of TSVs in terms of TV (defined in Chapter 5).
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Table 6.1: System configuration parameters

Parameter Value

Topology 3D fully connected Mesh
Network Size (4x4x4) 64 Routers

Flit Size 32 bits
Buffer Depth 8, 16-bit entries per port

Switching Scheme Wormhole
Routing Algorithm Dimension ordered routing

Simulator THENoC [117]
Frequency 1GHz

Simulation time 10000 ns

6.1 Static Fault Injection Parameters and Experi-

mental Results

As discussed in Chapter 5, TREAT interprets the user defined fault injection char-

acteristics in order to launch the static fault modeling evaluation through THENoC

simulator. The fault injection properties first discussed in this section and then the

reliability evaluation metrics reported by TREAT are presented.

6.1.1 Static Fault Injection Characteristics

Transient faults are known as the major cause of failure in systems and they occur

more frequently than permanent faults [99, 27, 31]. This experiment evaluates the

effects of transient faults although TREAT is able to model permanent fault by up-

dating the life time with the total running time value. This experiment is actually

based on injection of 2048 transient faults in various points of THENoC. Repeating

each experiment for 5 times results in 10240 transient fault injection process.

In this experiment, THENoC frequency is defined as 1GHz, and fault life time for

each fault model is defined by an exponential distribution with average of 5 ns. The
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Fault model
Components

Buffer
Header
extractor

Switch Routing unit
Tailor
detector

Arbiter

Bit-flip 50% – – 28.5% – 25%
Stuck-at-0/1 12.5% 50% 87.5% 28.5% 50% 25%
Delay-fault 25% 50% 12.5% 28.5% 50% 25%
Open-circuit 12.5% – – 14.25% – 25%

Total fault
distribution

though
components

25% 6.8% 25% 25% 6.8% 12.5%

Table 6.2: Fault injection distribution

fault injection process is executed when THENoC is stable. In this experiment,

THENoC is simulated for 10000 ns and the fault models are injected randomly with

uniform distribution in the simulation time gap between 1000 ns to 9000 ns. The fault

models are distributed through major components of THENoC simulator without

affecting the functionality of 3D NoC platform unless they are activated. The fault

locations and their quantity is chosen based on complexity of each component and

major physical fault causes in each component (as discussed in Chapter 4).

Table 6.2 summarizes the percentage and location of injected faults through different

components of THENoC for this experiment. As expected more portion of fault mod-

els are injected through the buffer, routing unit, and switch components of THENoC.

Also no Bit-flip fault is injected through the header extractor, switch, and tailor

detector components since they are all composed of combinational circuits.

Furthermore, this experiment considers single fault effects although TREAT is also

able to support multiple fault modeling with minimal modification of the function that

is responsible to generate simulation commands. In other words, the fault models are

activated and their effects are observed, separately.
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Figure 6.1: Header, data, tailor flit failure rate.

6.1.2 Experimental Results

One of the capabilities of TREAT is to report the percentage of header, data, and

tailor flit loss for different level of granularities such as per router, per component, and

even per signal. These values for each router are presented in Figure 6.1. The values

in this figure are normalized to the maximum failed router. Different failure rate for

header, data, and tailor flits are reported for each router under running FFT traffic

through THENoC, in this experiment. The reason is that the source-destination pairs

of routers are not uniformly selected in FFT traffic. For example, in this experiment,

no router send packet to any of the routers with index number higher than 48.

TREAT is also able to trace the input fault mapping table to categorize failure per-

centage of all flit types caused by each injected of fault models. With this fault

mapping table, it is able to report the effect of each category of injected faults on

the 3D NoC design and its components. These results are presented in Figure 6.2,

in which SA is Stuck-at, OC is Open-circuit, BF is Bit-flip, and DE is Delay-fault.

As shown in this figure, the importance of Bit-flip and Stuck-at logic-level fault mod-

els are higher than Open-circuit and Delay-fault in terms of header, data, tailor flit

loss rate. Although the reported experimental results depend on the running traffic

pattern, but with this information a fault-tolerant designer is able to choose more
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Figure 6.2: Failure rate contribution of each fault model.

efficient robust methods against major faults in some specific parts of the 3D NoC

architecture.

The other capability of TREAT is to provide the MTBF for different level of gran-

ularities in 3D NoC design. Figure 6.3 reports the MTBF for major components of

THENoC which are selected for the fault injection process. According to the exper-

imental results, the MTBF of buffer component is considerably less than the other

components, which shows the necessity of fault-tolerant design for this component.

6.2 Dynamic Fault Injection Parameters and Ex-

perimental Results

TREAT is also able to inject CTTC faults as dynamic fault modeling in 3D NoC

environment [121]. In this section first, the accuracy of the proposed fault model is
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evaluated. Then, the rate of TV occurrences by running PARSEC benchmark traces

in THENoC through vertical links is reported. Finally, the density of CTTC effects

over TV parameter in a matrix of TSVs for a specific synthetic traffic is illustrated

as the other output of TREAT. These reports are presented to show the capabilities

of TREAT for dynamic fault injection evaluation. They are all major parameters

for 3D-NoC designers to assess their design’s sensitivity against CTTC under various

TSV physical parameters and operating conditions accurately.

The proposed CTTC fault model is implemented as a dynamic fault model inside

TREAT which is called during the data transmission through TSVs at runtime to

locate and trigger the parasitic capacitive for the specific configuration of TSVs with

the given physical parameters, as elaborated in Chapter 5.

Prior to running the simulation, each configuration is run in HSPICE and the result is

passed as a static configuration library to the TREAT. By extracting the circuit-level

results from HSPICE (fail cases) and analyzing current direction matrix, the fault

model detects the CTTC fault and triggers the corresponding TSV on-the-fly. The

fault model operation is detailed in Chapter 5 and is illustrated in Figure 5.9b.
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6.2.1 Fault model accuracy

In order to demonstrate the accuracy of the proposed fault model, a comparison is

made with a crosstalk fault model [1]. These faults are activated with the uniform

random distribution. The comparison shows that the accuracy of conventional fault

model for TSVs is substantially insufficient.

First, TREAT is used to profile the number of fault occurrences for a TSV bundle

using the proposed CTTC fault model under running random traffic. Then, using

conventional fault model, the 3D-NoC simulation is run for 10000 iterations while

in each experiment, faults are injected randomly across the TSV bundles. These

simulations are repeated with different configurations, where a failing case is the

result of parasitic capacitive with a minimum value of 8C, 7C, 6C, 5C, 4C, and 3C

capacitive coupling values. In random fault injection, the reported probability of

each case in Table 5.1 is employed as a parameter for random function generation

process. For example, if 6C parasitic coupling results in failure based on the circuit-

level simulation for a given configuration, the failure probability of a TSV in random

simulation will be equal to the sum of occurrence probability of 8C, 7C, or 6C cases

which is 10/81 (as reported in Table 5.1). For a fair comparison, the occurrence

probability of capacitive coupling higher than 4C and 6C for TSVs on the corner and

boundaries in a TSV bundle are also extracted.

Finally the results of these two set of experiments are compared to measure the

reliability analysis inaccuracy of conventional random fault injection in modeling the

CTTC effects in 3D NoC environment.

Figure 6.4 shows the inaccuracy introduced by random fault model distribution for

different TSV configurations (leading to different failing cases). The inaccuracy of

0% means the random distribution matches the model’s probability of occurrence,
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Figure 6.4: Inaccuracy introduced by random fault models

while 100% inaccuracy implies that the random distribution does not predict the

corresponding fault type occurrence. It is observed that randomly distributed faults

across the 8 × 8 TSV bundle introduces almost 99% inaccuracy for a given TSV

specification leading to 8C capacitive coupling case. In other words, if the circuit-

level simulations shows the 8C capacitive coupling case results in failure the random

fault modeling is almost inaccurate for all the experiments. However, inaccuracy

percentages decrease as the factor of failing cases of parasitic capacitive reduces. The

reason is that the occurrence probability of parasitic capacitive with smaller values are

higher than the ones with larger factors. Consequently, the percentage of inaccuracy

decreases for smaller parasitic capacitive causing failure. However, even with these

considerations the 26% inaccuracy for 3C parasitic capacitive value is still reported.

6.2.2 CTTC Fault Characterization

In order to demonstrate the effects of network traffic on CTTC fault, the PARSEC

benchmark traces were collected using GEM5, and then injected them into THENoC

which its specifications is summarized in Table 6.1. Figure 6.5 shows the ratio of TV

occurrence over total number of data transmission in vertical links for three different
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Figure 6.5: Fault model usage demonstration in 3D-NoC

configuration at 90% synthesis frequency. The reported experimental results in Fig-

ure 6.5 are based on running PARSEC benchmark for different conditions which are

discussed in Table 5.2. For Configuration C, an average of 18% TV is observed be-

cause of running at higher temperature and low TSV oxide thickness both exacerbate

the CTTC effects. As the configuration parameter values get relaxed, the TV due to

CTTC also decreases accordingly.

Finally, CTTC fault density map for the 4 × 4 × 4 simulated network with Canneal

workload traffic is depicted in Figure 6.6. This figure illustrates 4× 4 NoC routers of

a specific layer sending data to their lower/upper layer routers (Down port/Up port).

The values are normalized to the maximum number of TV in entire 3D-NoC. The

layer 0 down port and layer 3 up port are not shown since they do not exist. With

this map designers have proper estimation which TSVs for a specific application are

more resilient and which of them are not. It can be seen that the data transmission

from layer 2 downward layer 1 cause a large number of CTTC faults.
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Chapter 7

Fault Mitigation Codings for

TSV-based 3D ICs

As a side project of this dissertation two separate methods have been proposed to

alleviate the unwanted effects of both capacitive and inductive TSV-to-TSV coupling

issue in 3D ICs. These methods are called: Inductive TSV-to-TSV Coupling Mit-

igation (ITCM) [122] and TSV-to-TSV Capacitive Coupling Mitigation Algorithm

(TCMA). A designer can choose either approach based on the operational frequency

of the target system. Comparing to [60], the proposed method in this chapter does

not include any information redundancy and the simulation results are based on

circuit-level simulations.

7.1 Proposed TCMA Technique

The probability of 7C and 8C capacitive coupling emergence are reduced by applying

by TCMA method in which the flits are adjusted before transmission. Mitigation is
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chosen in this experiment since eliminating all 7C and 8C capacitive coupling imposes

a complex architecture which is not scalable for any size of TSV meshes [60]. In

this section, the proposed baseline TCMA is discussed first which can be used in

smaller interconnections. Then the limitation of the baseline approach for larger

interconnections is highlighted. Finally, the enhanced TCMA is presented which

supports larger mesh of TSVs.

7.1.1 Baseline TCMA

The TTCC is data-dependent as described in Section 5.3. The basic idea of the

baseline TCMA is to encode, if necessary, the consecutive data bits transmitting over

the TSVs in order to mitigate the frequency of 7C and 8C capacitive coupling. This

method does not limit any pattern of data transmission bits by encoding them before

transmission and decoding them in receiver side, if needed. The inversion operation

is chosen as a simple but light and efficient practical coding method in TCMA in

order to keep the overhead low, while mitigating TTCC noise. In a mesh of TSVs, a

single bit per row is needed in TCMA to determine whether the inversion process is

needed or not at the receiver side. TCMA stores the last transmitted data bit of each

TSV and compares it with the available data bit which has not been transmitted yet.

The current direction matrix of all TSVs is generated by comparing these successive

data bits as described in Section 5.3. Then the capacitive coupling for each of TSVs

are calculated based on the current direction of its neighbor TSVs. Each row of 2D

array of TSVs including 8C or 7C parasitic capacitance values is nominated for the

data encoding process. By encoding the ready to transmit data bits, 8C capacitive

coupling will be 2C and 7C capacitive coupling will be 1C or 3C in this method.
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Figure 7.1: Probability of bad configuration occurrence

7.1.2 Enhanced TCMA

Although the baseline TCMA reduces the quantity of 8C and 7C parasitic capaci-

tance values, but it may have some undesirable side effects by converting a row of

data bits. For some special data patterns, converting a single row of data bits may

generate unexpected 8C or 7C parasitic capacitance values, which happens in a mesh

of TSV with more than 3 rows or 6 columns. These special cases are called bad

configuration in the rest of this chapter.

A bad configuration is a subset of TSV mesh which potentially generates unexpected

8C or 7C parasitic capacitance values by converting a single row of data bits. In more

details, the row encoding affects the other data bits of the same row or the data bits

in predecessor or successor rows in 2D matrix of TSVs. Since the probability of bad

configuration occurrence is low, specially for smaller matrices of TSVs, the baseline

coding is still efficient for smaller data buses (less than 64 bits) which are considered

in 3D Network-on-Chip (3D NoC applications). Figure 7.1 shows the probability of

bad configuration occurrences in different mesh size of TSVs.
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Table 7.1: Current flow of tsvs before and after encoding

Sent data Ready to send data CFbiCFbiCFbi CFaiCFaiCFai

0 0 # ⊙
0 1 ⊙ #

1 0 ⊗ #

1 1 # ⊗

This experiment is done by running the Monte Carlo simulations for 10000 iterations

for different row/column dimensions. According to experimental results the reported

percentage of bad configuration for all of the experimented dimensions is less than

2%. The baseline coding is not scalable for larger data buses (more than 64 bits)

which are applied in 3D memory applications according to the increasing trend in

Figure 7.1. The enhanced version of TCMA is devised for these sorts of application

to make sure the encoding process of a selected data bit of TSVs does not worsen the

total capacitive coupling. First, the bad configuration concept is explored in detail

and then the proposed solution is presented.

Table 7.1 summarizes the TSV current flow direction before and after encoding its

ready to send data bit. CFbi shows the current flow of TSV before inverting the

ready to send data, while CFai represents the current flow of TSV after inversion.

Based on this table an inactive TSV current flow (#) may convert to active TSV

(either ⊙ or ⊗), while an active TSV (either of the ⊙ or ⊗) is converted into an

inactive one (#) after inverting the ready to send data bits. Based on the experi-

mental result analysis, a bad configuration occurs in five cases, while two of them are

potential to generate unwanted 8C capacitive coupling and the other three may gen-

erate unwanted 7C capacitive coupling. They are called bad config8 1, bad config8 2,

bad config7 1, bad config7 2, and bad config7 3. Figure 7.2 illustrates these five cases

in top view of 2D array of TSVs in a 3x3 mesh of TSVs. The candidate row for

inversion is recognized by dashed lines in this figure. It also shows the capacitive

coupling value of middle TSV in the recognized row by dashed lines before and af-
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Figure 7.2: Potential configurations to generate 7C and 8C capacitive coupling

ter encoding process. Each of these bad configurations affects the result of baseline

coding with some conditions which are discussed in the following.

In the baseline method and in case of encoding, the 3C capacitive coupling, if any, is

converted into 7C (see Figure 7.2a) by encoding the second row of 2D array of TSVs

with following four conditions:

• There are exactly two inactive TSV next to each other in potential row for encoding

process as in TSV5 and TSV6.
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• TSV2 and TSV8 are active with the same current direction.

• The current direction of TSV6 after encoding should be the same as the current

direction of TSV2 and TSV8.

• The current direction of TSV5 should be reverse of the current direction in TSV2,

TSV6, and TSV8 after encoding.

The 1C capacitive coupling is converted into 7C (see Figure 7.2b) by encoding the

second row of 2D array of TSVs with following four conditions:

• There are at least three inactive TSV next to each other in potential row for

encoding process as in TSV4, TSV5, and TSV6.

• Either of TSV2 or TSV8 is inactive and the other should be active.

• The current direction of TSV4 and TSV6 after encoding should be the same as the

current direction of either TSV2 or TSV8 which was active.

• The current direction of TSV5 after encoding should be reverse of the current

direction of TSV4, TSV6, and either TSV2 or TSV8 which was active.

The 6C capacitive coupling is converted into 7C (see Figure 7.2c) by encoding the

third row of the 2D array of TSVs with following four conditions:

• In capacitive matrix there is a 6C capacitive coupling in predecessor row which is

selected for encoding in a way that TSV5 has reverse current direction of TSV2 and

either of TSV4 or TSV6.

• TSV8 which is in the nominated row for encoding is inactive.

• One of TSV4 or TSV6 is inactive and the other should should be active with reverse

current direction of TSV5.
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• The current direction of TSV8 after encoding should be same as current direction

of TSV2 and either of TSV4 or TSV6 which was active.

The 2C capacitive coupling is converted into 8C (see Figure 7.2d) by encoding the

second row of 2D array of TSVs with following four conditions:

• There are at least three inactive TSVs beside each other in potential row for en-

coding process like TSV4, TSV5, and TSV6.

• TSV2 and TSV8 are active with same current direction.

• The current direction of TSV4 and TSV6 after encoding should be the same as the

current direction of TSV2 and TSV8.

• The current direction of TSV5 should be reverse of the current direction in TSV2,

TSV4, TSV6, and TSV8 after encoding.

The 7C capacitive coupling is converted into 8C (see Figure 7.2e) by encoding the

third row of 2D array TSV, if the following conditions are satisfied:

• In capacitive matrix there is a 7C capacitive coupling in predecessor row which

is selected for encoding. The inactive TSV should be also in the selected row for

encoding.

• TSV8 has the reverse current direction of TSV5 after encoding.

The probability of bad configuration presence in a mesh of TSVs is very low since all

the discussed conditions should be satisfied simultaneously. However, the goal of the

enhanced TCMA, which is summarized in Algorithm 1 is to guarantee the encoding

process will not worsen the total number of 7C and 8C capacitive coupling in a 2D

array of TSVs. In the enhanced version of TCMA the encoding process will be done
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Algorithm 1 Enhanced TCMA coding algorithm

1: AMAT ← Sent data bits
2: BMAT ← To be sent data bits
3: CMAT ← Current direction of each TSV generated by AMAT & BMAT
4: CAPMAT ← Capacitive parasitic noise of each TSV generated by CMAT
5: INV ← Redundant vector for inversion process decision at receiver side
6: for each R ∈ Rows do

7: for each C ∈ Columns do

8: if CAPMAT[R][C] == 8 or CAPMAT[R][C] == 7 then

9: 78C counter ++
10: end if

11: if (there is a bad configuration bad config7 1 or bad config7 2 or bad config7 3)
then

12: bad config7 counter ++
13: end if

14: if (there is a bad config8 1 or bad config8 2) then
15: bad config8 counter ++
16: end if

17: end for

18: if (78C counter > bad config7 counter + bad config8 counter) then
19: Encode the BMAT[R]
20: INV[R]=1
21: end if

22: end for

if the total number of 7C and 8C capacitive coupling in capacitive matrix is higher

than the total number of bad configuration in each row.

7.1.3 TCMA Elaboration and Evaluation

Figure 7.3a illustrates an example of the baseline and enhanced algorithm for 7× 10

given AMAT and BMAT matrices. These matrices and the ones which are used in

following sentences are defined in Algorithm 1. This dimension has been chosen to

show the advantages of the enhanced approach over the baseline technique for higher

bandwidth data buses. First, CMAT and then CAPMAT matrices are generated form

the sent (AMAT) and not sent yet (BMAT) data lines. The current flow of each TSV

is presented with the same method as discussed in Section 5.3. Then, CAPMAT is

generated from CMAT by counting the total mutual capacitive parasitic difference

between each TSV and its adjacent neighbors. The INV matrix is evaluated in the

receiver side to extract the original data values if they are encoded. INVbaseline of
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Ready to send data

Sent data

0   0 0   0   1   1   1   1   1   0   
0   1   0   1   0   1   0   1   0   1
0   0   0   0   1   1   1   1   1   0
1   0   0   1   1   0   0   0   0   1
0   1   0   0   1   0   1   0   1   0
0   0   1   1   0   1   0   0   0   0
0   0   0   0   1   0   0   1   0   0

0   1   0   1   0   0   0   0   0   0   
1   0   1   1   0   1   0   1   0   1
0   1   0   1   0   0   0   0   0   0
1   1   0   1   1   1   1   1   1   1
1   0   1   0   0   0   1   0   1   1
0   0   0   0   1   0   0   0   0   0
0   0   0   0   0   1   0   0   0   0

INV baseline= 

0   
1   
0   
0
1
1
0   

INV enhanced= 

0   
0   
0   
0
0
0   

CMAT = 

CAPMAT = 

2   4 3   4   3   1   1   1   2   1   
4   8   5   3   2   2   2   2   2   0
2   4   3   5   4   3   3   3   4   1
2   4   2   1   3   4   3   3   4   2
4   7   6   3   5   3   1   1   2   3
1   2   4   4   8   6   1   1   0   1
0   0   1   2   5   5   2   3   1   0

BMAT + INV

BMAT Previous

bad_config8_1bad_config7_1
bad_config7_3 after encoding 

5th row of BMAT 

bad_config7_2/bad_config8_2  after 
inverting 5th row of BMAT 

(a) Example of baseline and enhanced TCMA

CMAT = CAPMAT =

1   3 2   5   4   0   2   0   3   2   
0   2   1   7 8 4   8 4   8 4
1   3   2   6   5   2   4   2   5   2
1   3   1   2   2   3   4   2   5   1
1   2   1   4   2   4   8 4   7 2
2   3   1   1   1   3   4   2   3   2
1   1  0   1   4   4   3   4   2   1

(b) CMAT and CAPMAT after baseline TCMA

Figure 7.3: An example that shows baseline algorithm issues

this example shows that the second, fifth, and sixth rows of the BMAT matrix have

been encoded since there are 8C or 7C parasitic capacitance values in these rows of

CAPMAT matrix. Since the number of 7C and 8C capacitive coupling are not higher

than the number of bad configuration in enhanced method, the INVenhanced shows

none of the rows the BMAT has been encoded.

Figure 7.3b represents the updated CMAT and CAPMAT matrices in the baseline

approach after encoding the second, fifth, and sixth rows of BMAT matrix in which

the total number of 7C and 8C capacitive coupling increases from 3 to 6. This example

illustrates all 5 possible bad configurations. The bad config7 1 and bad config8 1 are

depicted in second row of CMAT in Figure 7.3a, resulting in three 8C and one 7C
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after encoding second row of BMAT. The bad config7 2 of fifth row is highlighted in

CMAT matrix of Figure 7.3a. After encoding fifth row of BMAT, the undesirable

7C will be generated in CAPMAT[5][7], which is also bad config8 2. Furthermore,

encoding fifth row of BMAT generates a bad config7 3 in CAMPMAT[5][9].
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Figure 7.4: Number of 7C/8C for random data bit patterns in small mesh of TSVs

Since the encoding decision is supposed to be done row by row in one direction (from

top to bottom in this example) or reverse, the unwanted generated 7C and 6C in fifth

row of CAPMAT are potential to generate 8C and 7C, respectively by encoding the

sixth row of BMAT. Due to the presence of 8C in sixth row of CAPMAT, it is selected

for encoding process and both of bad config7 3 and bad config8 2 generate undesirable

8C and 7C in fifth row of CAPMAT which is shown in Figure 7.3b. However, the

enhanced algorithm prevents all of these bad effects by predicting them.
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(b) PARSEC application data bit patterns in 8× 32 mesh of TSVs

Figure 7.5: 7C and 8C capacitive coupling for random and PARSEC applications

To evaluate the advantages of the baseline TCMA for smaller mesh size, Monte Carlo

simulations for 10000 iterations on different sizes of TSV mesh are examined. The

total number of 7C and 8C capacitive coupling before and after applying the baseline

TCMA for different mesh size of TSVs is shown in Figure 7.4. It is depicted that

the mitigation rate of 7C and 8C capacitive coupling after applying the baseline
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TCMA are almost 98%, 94%, and 90% for 4 × 4, 6 × 6, and 8 × 8 mesh of TSVs.

The information redundancy of the baseline TCMA method for these sizes of mesh

of TSVs are 25%, 16%, and 12%, respectively. However, the mitigation rate of the

baseline TCMA is increased for large mesh of TSVs, as expected. This is because of

the probability of bad configuration occurrence rises by increasing the sizes of TSV

meshes. The Monte Carlo simulations for 10000 iterations for larger mesh of TSVs

are also examined for both baseline and enhanced TCMA to show the advantages

of enhanced TCMA. Although the mitigation rate of total number of 7C and 8C

capacitive coupling values is increasing by using larger mesh of TSVs, enhanced

TCMA prevents encoding process if the result is worsen. This is shown in Figure

7.5a, in which the mitigation rate of 7C and 8C capacitive coupling occurrence by

applying enhanced TCMA are always higher than baseline approach.

PARSEC benchmark [10] as a realistic data traffic for large size of mesh of TSVs are

also applied to check the performance of the baseline and enhanced TCMA. Memory

traces of PARSEC applications have been employed in this experiment, which are

extracted by the PIN tool [43], a dynamic binary instrumentation framework for the

IA-32 and x86-64 instruction-set architectures. The total number of 7C and 8C para-

sitic capacitance values for memory traces of PARSEC application workloads through

the TSVs are reported for a 8×32 mesh of TSVs in Figure 7.5b. The migration rate of

TCMA for Blackscholes, Facesim, Vips, and Raytraces are between 80% to 90% and

for the rest of them is almost 70%. Although the differences between the mitigation

rates of baseline and enhanced TCMA are not very much, but the result of enhanced

method is always better than baseline as it is expected. In other words, it is always

guaranteed that by applying the enhanced TCMA the total number of 7C and 8C

capacitive coupling will never be worse off because of the bad configuration presence.

In order to evaluate the proposed coding methods, the baseline and enhanced TCMA en-
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Table 7.2: Hardware synthesize results

Mesh size
Baseline Enhanced

Area (µm2) Power (µW ) Area (µm2) Power (µW )

8× 8 918 2340 1096 3000
8× 16 1818 4520 2173 5900
16× 8 2094 5260 2165 5880
8× 32 3321 8840 4331 11700
32× 8 4086 11000 4323 11700

coders are implemented in Verilog and synthesized by Synopsys Design Compiler using

28nm TSMC library (1.05V, 25 ◦C). Table 7.2 reports the synthesis results as repre-

senting power consumption and occupied area. The latency of the enhanced method

is reported by the critical path including: registers latching the adjusted output data

bits toward the feedback input for subsequent CMAT computation. In other words,

it does not depend on the dimension of TSV arrays. According to the logic syn-

thesis, the latency of the baseline and enhanced TCMA are reported as 69.5ps and

74.9ps for all the given TSV dimensions in Table 7.2. The feasibility of both proposed

coding algorithms are confirmed by considering the obtained coupled capacitive cou-

pling mitigation and its tangible footprint and power consumption. Decoder units are

not implemented in this experiment, since they are only composed of a comparator

and a mix of inverter gates. They are much lighter than encoder components in terms

of area, power consumption, and latency.

7.2 Inductive TSV-to-TSV Coupling Analysis and

Mitigation

Similar to the presented analysis of CTTC effect, the effect of Inductive TSV-to-TSV

Coupling (ITTC) is also reported in this section first and then the proposed ITCM
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technique is presented which is able to mitigate the undesirable effect fo ITTC effects.

7.2.1 ITTC Characteristics

Although the capacitive coupling is a well known source of noise in TSV-based

3D ICs, inductive coupling has also some undesirable effects like overshooting and

supply/ground bounces. This is because inductive coupling generates high amplitude

noise pulses with short durations comparing to capacitive coupling.

In order to evaluate the effect of ITTC, a 3×3 array of TSVs is modeled in HSPICE,

in which the middle TSV is considered to be the victim.

In simulations, the top end of each TSV is connected to the output of an inverter,

which drives the input of another inverter connected to the bottom end of the TSV.

Similar to CTTC evaluation, PTM library are used to implement inverters and circuit-

level model of TSVs are both simulated by Synopsys HSPICE tool.

The worst-case induced voltage on the victim TSV is reported as regression lines for

different TSV radii (Figure 7.6a), process technologies (Figure 7.6b), and TSV lengths

(Figure 7.6c) over different frequencies. As TSVs become longer the magnetic flux

linking the two TSVs increases proportionally. Thus the coupling voltage between

victim and aggressor TSVs and hence the total inductive coupled voltage increase as

the length of the TSVs increase(see Figure 7.6c).

Although the linkage flux between two TSVs is a strong function of the length, its

dependence on the TSV radius is very weak. Changing the radius of cylindrical TSVs

affects mutual inductance by changing the magnetic field because of TSV aggressors

and the exposed surface to the linkage flux. As long as the current distribution in

a TSV remains almost symmetric, assuming proximity effect and other high order
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Figure 7.6: Characterizing inductive coupling against various parameters

effects are trivial, and the magnetic field created by an aggressor is almost constant.

In other words, the TSV radius changes effect on the magnetic field of TSVs is not

critical. Since the length of the TSV is at least an order of magnitude longer than

its radius, the second effect is small, but the linkage flux and the mutual coupling

decreases slightly as the radius increases (see Figure 7.6a).

As shown in Figure 7.6b, induced voltage is a weak function of the process technology.

As processes scale down, the gate capacitance becomes smaller while the rise time

and fall time of the voltages become shorter. Overall the charging and discharging

current of gate capacitance remains almost constant. The same current that charges

(or discharges) the gate capacitance passes through TSV and causes the inductive

coupling to neighboring TSVs. Inductively coupled voltage remains almost constant
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Types1 0L |1|L |2|L |3|L |4|L

Sample pattern
⊙
⊗⊕⊗
⊙

⊙
⊙⊕⊗

#

⊙
⊙⊕⊙
⊗

⊙
⊙⊕#

⊙

⊙
⊙⊕⊙
⊙

Occurrence frequency 19 32 20 8 2
Occurrence probability 0.23 0.39 0.25 0.1 0.03
1 The absolute values are exactly same as α values in Equation 7.1

Table 7.3: ITTC categorization with occurrence probability of each type

for different technologies. As technology advances and supply voltage shrinks, the

coupled voltage becomes a greater portion of the Vdd and increases the probability of

error. Consequently, the length of TSVs has a major impact on inductive coupling,

resulting in unexpected noises in 3D NoC, as the number of layers increases.

If the inductive coupling voltage caused by a single horizontal or vertical neighboring

TSV is β, then the total inductively coupled voltage on a victim TSV ,VIcoupltot , is

proportional to αβ, where the value of integer α depends on the current flow direction

and arrangement of active neighboring TSVs, as will be shown shortly. Assuming the

electromagnetic proximity effect and other high-order effects are negligible, VIcoupltot

is equal to sum of the voltages induced by each aggressor TSV, based on Faraday’s

law:

VIcoupltot =
N
∑

i=1

VIcoupli =
N
∑

i=1

Mv,i

dIi
dt
∼ αβ (7.1)

where N is the total number of aggressors, VIcoupli is the voltage coupled on the

victim by ith aggressor, assuming all other aggressors have constant current. Mv,i is

the mutual inductance between ith aggressor and victim TSVs. Ii is the current of i
th

aggressor TSV. The Mv,i is found from Equation 7.2 [107].

Mv,i =
µ0

2π

[

lln

(

l +
√

di
2 + l2

di

)

+ di −
√

di
2 + l2

]

(7.2)
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where di is the distance of ith aggressor from the victim TSV and l is the length of a

TSV.

Since the effect of inductive coupling crosstalk caused by diagonal neighboring TSVs

is less than that caused by adjacent TSVs, they are not considered in this analysis.

With this assumption an ITTC is classified into five different classes based on the

number and arrangement of active neighbors for a victim TSV. This classification is

based on the absolute value of α for a given victim TSV caused by active neighbor

TSVs. Each victim TSV has four neighbors in horizontal or vertical directions. These

neighboring TSVs can be either active or inactive. An active TSV may have upward

or downward current directions, while there is no current flow in an inactive TSV. As

a result, there are 34 = 81 possible configurations of TSV neighbors for a victim TSV.

Since many of these 81 arrangements have similar |α| values, the behavior of all 81

configurations is summarized in Table 7.3. The absolute value of α is reported here

since the sign of α is chosen by the direction of its neighbor TSVs’ current direction

which are all similar and symmetric. In other words, the same effect occurs if all

adjacent neighbor TSVs of a victim TSV have upward or downward current flow.

Based on this classification, there are 5 different types of ITTC as shown in the first

row of Table 7.3, which are quantified in terms of their frequency and probability

of occurrence. The ⊙, ⊗ symbols in Table 7.3 represent the upward and downward

TSV current flow directions, respectively. The ⊕ symbol represents a victim TSV

regardless of its current direction which does not impact the proposed analysis.

A sample pattern resulting in each parasitic inductance in range of 0L to |4|L is also

shown in Table 7.3. The maximum VIcoupltot in this representation is equal to |4|, if

all adjacent neighboring TSVs have the same current flow, while it will be 0 if each

pair of neighboring TSVs has reverse current flow or if all the adjacent neighboring

TSVs are inactive. The frequency and probability of occurrence for each presented
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types of ITTC are also reported in this table.

7.2.2 Proposed ITCM Technique

Shield insertion on a chip [97] and TSV placement with a safe distance [50] approaches

have been proposed to mitigate mutual coupling, but they are not efficient. Similar

to TCMA method the sequence of bits of each flits are adjusted in the proposed

ITCM technique. This goal is not achievable for all data patterns due to intrin-

sic randomness property of the data, therefore the purpose of the proposed coding

method is to rearrange the data bits to replace the majority of larger total inductive

coupling values by smaller ones. As a practical approach for data-bit adjustments,

the inversion operation is chosen. Data bit inversion is done at the receiver side to

retrieve the original data-bit patterns. The overhead of this method is the extra bits,

to decide the inversion process at the receiver side. Considering one bit for each of

the data bits imposes a 100% information redundancy, in the proposed algorithm the

inversion operation is performed for each row with a single bit overhead.

Algorithm 2 summarizes the proposed inductive coupling mitigation coding method

for positive α values. There is a similar algorithm for negative α values, in which all

the IMAT [i][j] = BMAT [i][j] assignments from line 10 to line 50 of Algorithm 2 are

replaced by IMAT [i][j] = BMAT [i][j]. AMAT and BMAT input matrices are the

two consecutive data flits, which AMAT has been sent while BMAT is planned to be

sent. The proposed algorithm is able to invert the values of BMAT matrix based on

the values of AMAT matrix, as shown in Algorithm 2. In this algorithm, first the

current flow direction of each TSV is calculated by considering the data-bit pattern of

the corresponding elements in AMAT and BMAT, resulting in matrix CMAT. Then,

PMAT (α values for each TSV) is generated by adding the values of its corresponding
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Algorithm 2 ITCM algorithm

1: AMAT ← Sent data bits
2: BMAT ← To be sent data bits
3: CMAT ← Current flow direction of each TSV
4: PMAT ← α values in Equation 7.1 for each TSV
5: IMAT ← Inversion intention for each TSV
6: for each R ∈ Rows do

7: for each C ∈ Columns do

8: UP ← CMAT[R-1][C]
9: DOWN ← CMAT[R+1][C]

10: if PMAT [R][C] == 1 then

11: if UP == 0 then

12: IMAT[R-1][C] = BMAT[R-1][C]
13: else

14: IMAT[R-1][C] = 1
15: end if

16: else if PMAT [R][C] == 2 then

17: if UP == −1 or DOWN == −1 then

18: if UP == −1 then

19: IMAT[R-1][C] = 1
20: else

21: IMAT[R+1][C] = 1
22: end if

23: else if UP == 1 and DOWN == 1 then

24: IMAT[R-1][C] = 1
25: IMAT[R+1][C] = 1
26: else if UP == 0 and DOWN == 0 then

27: IMAT[R-1][C] = BMAT[R-1][C]
28: IMAT[R+1][C] = BMAT[R+1][C]
29: else if UP == 1 and DOWN == 0 then

30: IMAT[R-1][C] = 1
31: IMAT[R+1][C] = BMAT[R+1][C]
32: else if UP == 0 and DOWN == 1 then

33: IMAT[R-1][C] = BMAT[R-1][C]
34: IMAT[R+1][C] = 1
35: end if

36: else if PMAT [R][C] == 3 then

37: if UP == 1 and DOWN == 1 then

38: IMAT[R-1][C] == 1
39: IMAT[R+1][C] == 1
40: else if UP == 0 then

41: IMAT[R+1][C] == 1
42: IMAT[R-1][C] == BMAT[R-1][C]
43: else

44: IMAT[R-1][C] == 1
45: IMAT[R+1][C] == BMAT[R+1][C]
46: end if

47: else if PMAT [R][C] == 4 then

48: IMAT[R-1][C] == 1
49: IMAT[R+1][C] == 1
50: end if

51: end for

52: end for

53: for each Row ∈ IMAT do

54: Decides whether the inversion is needed or not
55: end for
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vertical and horizontal neighbors in CMAT based on Equation 7.1. There is a chance

of row inversion for each row, if conditions of the proposed algorithm are satisfied, as

shown in Algorithm 2 with the goal of replacing majority of larger values in PMAT

by smaller ones.

In the proposed method, each TSV votes for inversion of its vertical neighbors to

create IMAT. The decision of inverting data pattern of adjacent rows in IMAT matrix

may conflict each other, as inversion of a single row of IMAT matrix is suggested

for one of its adjacent row while it is not recommended for the other one. The

proposed coding algorithm addresses these dependencies and takes the best decision

considering the optimization of each row and their effect on the data. In this case,

the net benefit of inversion of each row should be calculated to find the best inverting

decision for different rows of IMAT matrix. There is a trade-off between the degree

of inductive coupling mitigation and performance/complexity of the design. The

proposed algorithm ignores the inverting process, if there is any conflict of decision

in inverting adjacent rows of IMAT matrix in order to save the timing constraints.

Finally, based on the number of inversion requests in each row the inversion decision

is made. It should also be noted that the encoding and decoding processes are only

needed at source and destination Network Interfaces (NI), also since NoC routers

require the header information, header flit is not encoded; B-bit (B shows the number

of rows) inversion indication bits are added to the header flit of the packet to prevent

imposing extra TSVs.

Figure 7.7 illustrates an example of the proposed algorithm for given AMAT and

BMAT as consecutive flits through a 4x4 mesh of TSV. Any changes from ’0’ to

’1’ in the corresponding elements of AMAT and BMAT matrices is represented as

1 in CMAT, while the reverse changes is shown by -1. A given element of CMAT

will be 0 if it corresponding element in AMAT and BMAT are the same. Then
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Input line 2

Input line 1

AMAT = 

1   0   0   0
0   1   0   0
0   0   0   0
0   0   1   1

BMAT = 

1   1   0   1
0   1   1   1
1   1   1   1
0   0   0   1

Output

Decision =

1
1
1
0

CMAT = 

0   1   0   1
0   0   1   1
1   1   1   1
0   0  -1   0

PMAT = 

1   0   3   1
1   3   2   3
1   2   2   2 
1   0   1   0

IMAT = 

1   1   0   1
0   1   1   1
1   1   1   1
0   0   1   1

Figure 7.7: 4x4 mesh of TSV example of ITCM

PMAT is generated from CMAT by adding the neighbors’ values in the corresponding

element of CMAT matrix. For example, the PMAT [1][1] is equal to 3, which is

the summation of CMAT[0][1], CMAT[1][0], CMAT[2][1], and CMAT[1][2]. Finally,

IMAT matrix is created by examining all elements of PMAT through the if conditions

of the Algorithm 2. The values of IMAT[0][1] and IMAT[2][1] are both 1 since the

condition of line 36 in Algorithm 2 (PMAT[1][1] == 3) is satisfied. The remaining

of values of IMAT matrix is completed by tracing the proposed algorithm. Decision

vector which is sent to the receiver side is generated by voting the number of ’1’

values of each row in IMAT matrix. If the sum of all values in each row is greater

than the half size of TSV array columns, the corresponding element of the decision

vector becomes 1 and the inverted values of the corresponding row of BMAT are

transmitted through the TSV lines.

7.2.3 ITCM Method Evaluation

In order to evaluate the efficiency of the proposed ITCM approach, two different

designs have been modeled; one embedded with encoder/decoder to implement the
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proposed ITCM approach, and the other without encoder/decoder components. Sim-

ilar to evaluation of the CTCA both random and realistic applications (PARSEC

benchmark traces) have been used.

Figure 7.8a shows the occurrence percentage of all possible ITTC categories in an 8×8

TSV bundle in both uncoded (left bar) and coded (right bar) models for random data

traffic. In Figure 7.8a, there are 5 pairs of columns, where the left one refers to the

uncoded system and the right column refers to the coded system. Figure 7.8b also

reports the mitigation factor for each class of ITTC. As is evident from Figure 7.8a

and Figure 7.8b, the majority of inductive coupling with larger α values are replaced

by smaller ones by using the proposed ITCMmethod.Figure 7.8c shows the occurrence

frequency of each of the ITTC classes for different applications of PARSEC benchmark

workload traffic before and after using the ITCM approach.

Similar to Figure7.8a the right column for each application reports the inductive cou-

pling values in a coded system while the left one shows inductive coupling values

for the uncoded one. In 7.8c, for each workload the left bar represents the uncoded

and the right bar shows the coded approach results. As expected the percentage of

the inductive coupling with smaller α values in the coded system is much higher than

similar ones in the uncoded system. Encoder of the ITCM approach was implemented

in Verilog and synthesized by Synopsys Design Compiler using 28nm TSMC library

(1.05V, 25 ◦C), for estimating the overhead cost. The latency, power consumption,

and area occupation of the proposed encoder are summarized in Table 7.4. But, the

decoder unit synthesis result is not reported, since it is only composed of a compara-

tor and a mix of inverter gates. It is considerably less complex than the encoder

component in terms of area, power consumption, and latency.
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Table 7.4: Hardware synthesis results of ITCM

Bus size Area Latency Power
64-bit 7290µm2 14ps 5.34mW
128-bit 13851µm2 20ps 10.06mW
256-bit 30200µm2 29ps 20.23mW
512-bit 61786µm2 41ps 40.48mW
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Chapter 8

Conclusion

3D technologies promise increased system integration at lower cost and reduced foot-

print. They support performance improvement such as increased bandwidth and

easier reuse by mixing and matching existing silicon. The fabrication process is be-

coming somewhat mature. However, reliability issues need to be addressed for an

eventual transition from laboratory to production. The goal of this project is to de-

velop a Three-Dimensional NoC Reliability Evaluation Automatic Tool (TREAT), for

the first time, as an analysis tool to analyze effects of static and dynamic faults in 3D

NoC architectures. This approach allows injecting faults into the 3D NoC platform

dynamically by monitoring the status of links and components to decide where and

when to inject faults accurately. The proposed tool reports the strength of different

components in terms of reliability based metrics. TREAT is useful for fault-tolerant

designers at the early stage of the design to save time and cost.

In more detail, in this research first all possible potential sources of physical faults

in 3D NoC environment have been studied. The impacts of all the potential physical

faults on 3D NoC components are also addressed to use them as reliability metrics
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in TREAT. All the main components of a 3D NoC router architecture and sensitive

entities with their possible responses to physical faults are categorized in this disser-

tation. An HDL model of 3D NoC environment as a platform to run my experiments

is also designed and implemented as a part of this project. Then, the physical causes

of faults in logic-level are modeled and applied as fault libraries in TREAT. TREAT

is able to model to support both static and dynamic fault injections. It has been

developed in a structural way to support future plug-in fault models. In static fault

injection phase TREAT runs the simulation for number of times which is defined by

the user. TREAT guarantees to inject faults when the target system is stable. The

life time of the static fault models are also defined by a random function with expo-

nential distribution. By comparing the value of selected signals and their assertion

time in 3D NoC components after running both faulty and faultless experiments the

vulnerability of each component is reported. The effect of psychical fault models are

used as evaluation metrics in TREAT. The presented tool is capable of evaluating

any Verilog model of 3D NoC architecture or fault-tolerant techniques.

In addition, by exploring the physical fault in 3D NoC environment, both Capacitive

and Inductive TSV-to-TSV coupling mitigation coding have been proposed as a side

related topic to this project. Furthermore, an efficient routing technique has been

developed as part of THeNoC simulator development.

Future work

From this thesis, major directions for future work can be derived. As discussed earlier

TREAT is implemented in a modular structure. One interesting field would be adding

more fault model libraries specially the dynamic fault models such as a thermal fault

model. Similar to what has been discussed for TSV coupling issue, the output of a

circuit-level model can be applied in system-level by TREAT to model the effect of

thermal issues in 3D NoC environment. The other interesting direction would be to
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add more reliability metrics which are introduced in Chapter 4, although they depend

on the capability of the test bench of 3D NoC model.
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