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Abstract

Although prematurity is the single largest cause of death in children under 5 years of age, the 

current definition of prematurity, based on gestational age, lacks the precision needed for guiding 

care decisions. Here, we propose a longitudinal risk assessment for adverse neonatal outcomes in 

newborns based on a deep learning model that uses electronic health records (EHRs) to predict a 

wide range of outcomes over a period starting shortly before conception and ending months after 

birth. By linking the EHRs of the Lucile Packard Children’s Hospital and the Stanford Healthcare 

Adult Hospital, we developed a cohort of 22,104 mother-newborn dyads delivered between 2014 

and 2018. Maternal and newborn EHRs were extracted and used to train a multi-input multitask 

deep learning model, featuring a long short-term memory neural network, to predict 24 different 

neonatal outcomes. An additional cohort of 10,250 mother-newborn dyads delivered at the same 

Stanford Hospitals from 2019 to September 2020 was used to validate the model. Areas under the 

receiver operating characteristic curve at delivery exceeded 0.9 for 10 of the 24 neonatal outcomes 

considered and were between 0.8 and 0.9 for 7 additional outcomes. Moreover, comprehensive 

association analysis identified multiple known associations between various maternal and neonatal 

features and specific neonatal outcomes. This study used linked EHRs from more than 30,000 

mother-newborn dyads and would serve as a resource for the investigation and prediction of 

neonatal outcomes. An interactive website is available for independent investigators to leverage 

this unique dataset: https://maternal-child-health-associations.shinyapps.io/shiny_app/.

INTRODUCTION

Prematurity is the leading cause of death in children under 5 years of age and is associated 

with increased risk of short- and long-term morbidity (1). Although gestational age and 

birth weight along with other measures give clinicians an approximation of risk for neonatal 

morbidities and mortality, these data are increasingly recognized as poor predictors of 

outcome (2–4). Understanding which premature neonates are more likely to develop an 

acquired complication of prematurity on the basis of their underlying personal risk is a 

critical quest aligned with the precision medicine mandate of the 21st century (5).

Accurate risk prediction is crucial in perinatal and neonatal medicine. Validated clinical 

prediction calculators have estimated risk trajectories for common outcomes related to 

prematurity, including death, neurodevelopmental impairment, bronchopulmonary dysplasia 

(BPD), and others (6–8). Risk estimates using prediction calculators help clinicians and 

families choose interventions to pursue in hopes of securing the outcome(s) they value or 

most desire. To date, most clinical prediction calculators have limited predictive power and 

clinical utility owing to the small number of parameters considered and the single time 

point used. A small subset has robust modeling incorporating multiple time points to predict 
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mortality, sepsis, and other diseases of the newborn (8–12). Here, we explore a deep learning 

approach to improve risk prediction by integrating serial and comprehensive neonatal and 

maternal information contained in electronic health records (EHRs) collected before and 

after birth.

Over the past decade, hospital systems have increasingly implemented EHR systems to 

capture and store clinical data. Longitudinal data capture along with the serialization of 

clinical information for patients with both acute and chronic health conditions, inpatient 

hospital stays, and outpatient care have revolutionized clinical medicine. EHRs have allowed 

formalized communication of large amounts of data among providers and have streamlined 

billing and, to some extent, research workflows (13). However, EHR clinical data are 

complex and difficult to interrogate. They are also heterogeneous and lack standardization 

(14). Recent computational advances help mitigate such limitations by data linkage and the 

availability of vast amounts of demographic, diagnostic, medication, and clinical data (14, 

15). Moreover, these data can often be retrieved at a fraction of the time and cost spent on 

prospective cohort studies or clinical trials and include thousands or tens of thousands of 

additional patients (15).

Using the entire available maternal and newborn EHR medical history, we have used long 

short-term memory (LSTM) neural networks (16) and leveraged multitask learning (17), 

which optimizes multiple loss functions, to simultaneously predict the risk of the most 

important adverse postnatal outcomes (Fig. 1). This can be done at any time during the 

pregnancy and postnatal course from before birth to many months postnatally. The data 

examined serve as a valuable reference tool for both individuals and institutions interested in 

comprehensive neonatal risk prediction.

RESULTS

Maternal/newborn characteristics and neonatal outcomes

Two delivery cohorts were obtained by linking maternal and newborn EHRs from the Lucile 

Packard Children’s Hospital and the Stanford Healthcare Adult Hospital. Cohort 1 included 

22,104 live births occurring from January 2014 to December 2018; cohort 2 included 

10,250 live births occurring from January 2019 to September 2020. Maternal and newborn 

sociodemographic characteristics of live births in the two cohorts are reported in Table 1 

along with the prevalence of each of the 24 neonatal outcomes. Concept codes in the EHR 

from five categories (conditions, medications, measurements, observations, and procedures) 

were extracted from both cohorts, with conditions and procedures each composing more 

than 40% of the overall feature set (fig. S1).

To investigate the relationship between the 24 neonatal outcomes, we constructed a 

correlation network showing tetrachoric correlations greater than 0.5 between pairs of 

outcomes (Fig. 2A) and based on the maternal factors extracted from the EHR (Fig. 2B). 

Several correlations were observed between various neonatal comorbidities justifying the 

use of multitask learning. Sepsis, pulmonary hemorrhage, and atelectasis each showed 

correlations greater than 0.5 with 14 other outcomes. Conversely, the correlations of 

candidiasis, polycythemia, and meconium aspiration syndrome (MAS) with any of the other 
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outcomes did not exceed 0.5. A hypothetical prediction model for BPD was generated 

incorporating known risk factors extracted from the maternal data (Fig. 2C).

Validation of the deep learning model to predict neonatal outcomes at delivery

A multi-input multitask deep learning model was trained using maternal and newborn’s 

information extracted from the EHRs of newborns in cohort 1 to predict the 24 neonatal 

outcomes at delivery/birth. This model was then tested in newborns in cohort 2, and the area 

under the receiver operating characteristic curve (AUC) and the area under the precision-

recall curve (AUPRC) were compared to those in cohort 1. The performance of the deep 

learning model was similar across the two cohorts (figs. S2 and S3). AUCs, AUPRCs, and 

AUPRCs compared with a random classifier are reported in table S1. AUPRC compared to 

a random classifier to predict necrotizing enterocolitis (NEC) was 38.3 in cohort 1 and 39.5 

in cohort 2. For intraventricular hemorrhage (IVH), AUPRC was 16.3 in cohort 1 and 28.9 in 

cohort 2. Given that the model showed satisfactory generalizability to independent datasets, 

we combined cohort 1 and cohort 2 and retrained the model at different time points (from 

5 months before delivery up to 2 months after delivery) using fivefold cross-validation. 

Hereafter, we present the results in the combined cohorts.

The deep learning model predicts neonatal comorbidities before, at, and after birth

The multi-input multitask deep learning model provides longitudinal risk prediction for 

neonatal morbidities. AUCs and AUPRCs as compared with the AUPRC of a random 

classifier at different prediction time points from 5 months before delivery up to 2 months 

after delivery are reported in Fig. 3 (A and B). Predictions at delivery achieved AUCs 

ranging from 0.64 (MAS) to 0.99 (BPD and anemia of prematurity), with AUCs exceeding 

0.9 for 10 of the 24 neonatal outcomes considered [IVH, NEC, retinopathy of prematurity 

(ROP), BPD, periventricular leukomalacia (PVL), pulmonary hemorrhage, death, atelectasis, 

cardiac failure, and anemia of prematurity] and between 0.8 and 0.9 for 7 additional 

outcomes [respiratory distress syndrome (RDS), patent ductus arteriosus (PDA), sepsis, 

cerebral palsy (CP), pulmonary hypertension, cardiac instability, and seizures]. The AUPRC 

was up to 62.7 times higher than that of a random classifier for PVL, 57.9 times higher 

for BPD, 41.4 times higher for death, and 39.4 for NEC (figs. S4 and S5). The calculators 

developed include detailed longitudinal outcome data such that a clinician can quantify risk 

for the fetus or infant.

The deep learning model showed good predictive performance before birth: 1 week before 

delivery, the AUC was higher than 0.9 for death and ROP and between 0.8 and 0.9 for 

IVH, NEC, BPD, PDA, PVL, pulmonary hemorrhage, CP, pulmonary hypertension (HTN), 

atelectasis, cardiac failure, and anemia of prematurity. Similarly, AUPRC at 1 week before 

delivery/birth was at least 10 times higher than that of a random classifier for 12 outcomes, 

in particular, 30.6 times higher for BPD, 25.1 times higher for atelectasis, and 24.8 and 24.4 

times higher for ROP and PVL, respectively.

Frequency of visits and the amount of information contained in EHRs during pregnancy can 

reflect a newborn’s risk of developing adverse outcomes, with more frequent visits and a 

greater number of records stored in the EHR system potentially being associated with higher 
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risk. A model that solely relies on the amount of EHR data would lack generalizability 

and applicability to other settings. Analyses aimed at evaluating the influence of amount of 

input information on the performance of the model showed that the deep learning model 

was robust to the amount of input information, leveraging the qualitative content of the EHR 

medical history rather than simply looking at the number of records available (tables S2 and 

S3).

Figure 3C demonstrates the predicted scores for an individual patient born at 24 weeks and 2 

days gestational age, incorporating this patient’s unique maternal, neonatal, and infantile 

time series data to formulate predictions on various outcomes related to prematurity. 

This patient was chosen to provide an example of the model’s ability to predict neonatal 

outcomes. This patient had EHR diagnoses of RDS, IVH (grade I bilateral), BPD, sepsis, 

PDA, anemia of prematurity, ROP, and hyperbilirubinemia. The individual prediction score 

at birth was highest for ROP, anemia of prematurity, RDS, hyperbilirubinemia, and sepsis, 

all diagnoses that the patient ultimately had. The prediction score at birth was lowest for 

IVH, NEC, pulmonary hypertension, CP, PVL, and death. In summary, these data suggest 

that our model can predict individual outcomes on both a population and an individual level.

Validation of simplified logistic regression models in an external cohort

The generalizability of the approach used was assessed using simplified logistic regression 

models, which enabled careful mapping of concept codes between Stanford and University 

of California San Francisco (UCSF) data. Simplified logistic regression models were trained 

to predict IVH, NEC, anemia of prematurity, RDS, and PDA using cohorts 1 and 2 

combined (overall, 32,354 mother-newborn dyads delivered at the Stanford hospitals). These 

simplified models were validated in an external cohort of 12,258 mother-newborn dyads 

obtained from UCSF EHRs (table S4). Details of the simplified models trained using 

Stanford data are outlined in table S5, and the results are visualized in fig. S6. AUCs of the 

models were similar across the Stanford and UCSF cohorts for all the five outcomes (IVH: 

0.903 in Stanford versus 0.925 in UCSF; NEC: 0.942 versus 0.923; anemia of prematurity: 

0.988 versus 0.944; RDS: 0.805 versus 0.793; and PDA: 0.849 versus 0.866). AUPRCs were 

comparable for IVH (0.188 in Stanford versus 0.230 in UCSF), PDA (0.316 versus 0.225), 

and RDS (0.504 versus 0.388); however, AUPRC dropped in the test data for NEC (0.195 

versus 0.032) and anemia of prematurity (0.668 versus 0.275).

Subgroup discovery algorithm identifies subsets of newborns for which the predictive 
ability of the deep learning model is improved

Subgroup discovery was used to identify subgroups of newborns for whom the deep learning 

model at delivery/birth showed the highest predictive ability in terms of AUPRC. Using 

a 128-dimensional latent space of maternal EHR sequences obtained using an LSTM 

autoencoder (Fig. 4A), subgroup discovery yielded subsets of newborns comprising at least 

30% of the whole study population (cohorts 1 and 2 combined) (Fig. 4B) where the model 

at delivery/birth achieved higher precision and recall (Fig. 4C and table S6). The subgroups 

identified achieved higher AUPRCs, particularly in comparison to a random classifier, for 

most neonatal outcomes. Above all, predictive ability of the model improved in subgroups 

identified for NEC (from 0.096 in the full dataset to 0.516 in the subgroup), ROP (from 
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0.690 to 0.860), BPD (from 0.487 to 0.641), PDA (from 0.394 to 0.466), hyperbilirubinemia 

(from 0.627 to 0.753), and anemia of prematurity (from 0.717 to 0.963). For most outcomes, 

subgroup discovery identified subsets of newborns with a lower prevalence of the outcome 

of interest compared with the full dataset. Because baseline AUPRC (the AUPRC of a 

random classifier) is equivalent to the prevalence of the outcome, it is important to compare 

the improvement with a random classifier. In subgroups identified, AUPRC of the model 

compared with a random classifier particularly improved for NEC (from 39.8 in the full 

dataset to 588.8 in the subgroup), anemia of prematurity (from 30.9 to 301.3), candidiasis 

(from 3.2 to 16.1), cardiac failure (from 16.7 to 64.3), atelectasis (from 29.4 to 103.2), 

and ROP (from 40.3 to 125.2). The subgroup discovery algorithm ultimately identified 

subgroups of newborns in which the predictive capability of the models was enhanced 

compared with the rest of the population, especially for outcomes that occur infrequently 

such as NEC.

Comparisons with currently used risk scores

Although current risk scores for newborns are limited in scope and predictive power, 

we did perform comparisons against those that were calculable using variables available 

in our EHR system. The model at delivery/birth largely outperformed the “Appearance, 

Pulse, Grimace, Activity, and Respiration” (Apgar) score at 1 and 5 min in terms of both 

AUC and AUPRC as shown in tables S7 and S8 and figs. S7 and S8. AUPRC and AUC 

of the model was higher than that of both Apgar scores for most of the 24 outcomes, 

including RDS, IVH, NEC, ROP, BPD, PDA, sepsis, pulmonary hemorrhage, CP, pulmonary 

hypertension, hyperbilirubinemia, and death (all P values of <0.001). When evaluated in 

preterm newborns, the model was notably better in terms of AUPRC and AUC compared 

with the National Institute of Child Health and Human Development (NICHD) risk score 

(table S9). The model showed a significant improvement compared with the NICHD score 

for all the outcomes, with the exception of polycythemia and other central nervous system 

(CNS) disorders. Of note, the model was designed to measure many additional outcomes 

beyond those measured by the National Institute of Child Health and Human Development 

Neonatal Research Network (NICHD-NRN) or the Apgar score models. Hence, accurate 

comparisons require further studies.

Leveraging EHR data to explore pathological processes underlying neonatal conditions

For each of the five identifiable categories of conditions, medications, observations, 

procedures, and measurements, heatmaps show the odds ratios between the 50 codes (rows) 

for which the average odds ratio across all 24 outcomes was the highest and each of the 

24 outcomes (columns) (figs. S9 to S13). All associations between concept codes and 

neonatal outcomes can also be interactively queried, visualized, and downloaded at https://

maternal-child-health-associations.shinyapps.io/shiny_app/.

Of note, fig. S13 is a heatmap of odds ratios between maternal laboratory measurements 1 

week before delivery and the 24 neonatal outcomes. Notable laboratory measurements that 

suggest a protective association against neonatal outcomes include serum albumin, serum 

protein, platelets, basophils, lymphocytes, and eosinophils. These data suggest that there is 
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interplay between the maternal immune system at 1 week before delivery and the relative 

health of the fetus that carries forward into the neonatal period and beyond.

The correlation network in fig. S14 shows the codes and the interactions between the codes 

for which the average odds ratio across all 24 outcomes was the highest. Among these codes 

strongly associated with neonatal outcomes were maternal puerperal sepsis, prelabor rupture 

of membranes (PROM), preterm premature rupture of membranes (PPROM) with onset 

of labor unknown, PPROM with onset of labor later than 24 hours after rupture, opioid 

dependence in remission, fetal-maternal hemorrhage, various congenital heart diseases, 

and renal failure or dependence on dialysis. In addition, there were codes that appeared 

to be previously unreported risk factors for outcomes such as methicillin-susceptible 

Staphylococcus aureus carrier status, renal failure, blood cell indices such as hematocrit, 

chemotherapy exposure, and certain medications, including phosphodiesterase inhibitors and 

opiates.

Simultaneous modeling of neonatal morbidities improves predictive power by leveraging 
connections between morbidities

We compared the predictive performance of our multi-input multitask model at delivery/

birth with that of 24 separate multi-input single-task models, each trained to predict one of 

the 24 outcomes of interest, to assess the benefit of the multitask approach. Results showed 

an improvement in both AUPRC and AUC of the multitask model in comparison with the 

single-task models (figs. S15 and S16). The largest improvements in terms of AUC were 

observed for PVL (0.515 for the single-task model versus 0.934 for the multitask model), 

NEC (0.629 versus 0.957), cardiac failure (0.618 versus 0.940), and pulmonary hemorrhage 

(0.687 versus 0.969). Given that there are a few neonatal outcomes that are exceptionally 

difficult for clinicians to predict, we undertook a detailed exploration of NEC and related 

outcomes of maternal anemia, neonatal anemia, and anemia of prematurity (Fig. 5, A to E). 

AUPRC and AUC for NEC using the single-task model were 0.007 and 0.629, respectively, 

as opposed to 0.095 and 0.957 obtained by the multitask model. The tetrachoric correlation 

between NEC and polycythemia was 0.13, whereas that between NEC and anemia of 

prematurity was 0.75. The two-output multitask model simultaneously predicting NEC and 

polycythemia achieved an AUPRC of 0.010 and an AUC of 0.636 for NEC, whereas the 

multitask model predicting NEC and anemia of prematurity achieved an AUPRC of 0.056 

and an AUC of 0.897 (Fig. 5B).

The deep learning model independently classifies patients into IVH grades without explicit 
clinical guidance

Because IVH can also be difficult for clinicians to predict, we analyzed the IVH predicted 

score outputted by the model at delivery/birth for newborns with IVH. Of note, the model 

was not aimed at predicting the grade of IVH but rather at predicting IVH versus no IVH. 

Newborns with IVH were grouped on the basis of the IVH grade using records in newborns’ 

EHR (the grade was unspecified when there were no records related to the grade of IVH). 

The model assigned a higher risk score to newborns with more severe IVH grades, without 

inputs that included the grades themselves. The IVH predicted score was, on average, lower 

for newborns with lower actual IVH grades compared with ones with higher IVH grades, 
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with statistically significant differences between “unspecified grade” and “grade IV” (P < 

0.001) and between “grade I” and “grade IV” (P = 0.02; Fig. 6A). Given that IVH typically 

occurs within the first 96 hours of life, the IVH predicted score only included maternal and 

neonatal inputs that occurred at and before birth to avoid backward contamination of the 

algorithm.

DISCUSSION

Using two cohorts with a total of 27,000 mothers linked to more than 32,000 neonates and 

validated externally with more than 12,000 newborns, we demonstrated the ability to serially 

and comprehensively predict neonatal outcomes from various maternal conditions extracted 

from EHRs. Using advanced machine learning methodologies, we have found previously 

unreported associations between maternal conditions (anemia, certain medication exposures, 

and social determinants of health) and neonatal outcomes such as NEC, BPD, IVH, PDA, 

and CP that have clinical plausibility. We have built a longitudinal clinical risk calculator 

incorporating longitudinal clinical data to predict neonatal outcomes beginning before birth 

and extending chronologically until 2 months of age. This calculator may have the potential 

to provide individualized care based on a risk assessment tool, understand longitudinal 

population level risk applied to individuals based on EHR data from two large quaternary 

medical centers, and assist in targeting individual patients most appropriate for enrollment 

into translational and clinical trials based on longitudinal risk for a given disease. Through 

subgroup discovery, we identified subgroups of newborns in which the models reached the 

best accuracy and precision, providing insight into the phenotypes of newborns for which 

the model is most reliable and, by exclusion, into those phenotypes in which the model 

lacks the necessary predictive power. These findings represent the first step toward reducing 

algorithmic bias and increasing fairness and equity across groups of the deep learning 

model, in view of a future deployment into practice.

The few clinical risk prediction models that do exist for neonates use algorithms based 

on a set of known risk factors captured at a singular point in time using data from 

large cohort studies. Within neonatology, calculators frequently used include the NICHD-

NRN calculator, the BPD outcome estimator, the outcome trajectory estimator, the clinical 

risk index for babies (CRIB), and the Score for Neonatal Acute Physiology (SNAP) (7, 

18, 19), among others. All of these predict survivability and other morbidities related 

to preterm birth or critical illness. However, these calculators only rely on information 

collected shortly before or after birth, making them difficult to rely on longitudinally. 

This is problematic given the lengthy hospitalizations of many critically ill neonates and 

the variable latencies for the most prevalent diseases. For instance, preterm birth often 

requires a 3- to 6-month neonatal intensive care unit hospitalization (20). Thus, the need 

for risk prediction calculators that incorporate longitudinal data is crucial, because risk in 

this population is dynamic, with an ever-increasing set of variables that serially accumulate 

and interact (20). Our EHR-based longitudinal clinical risk prediction tool has combined 

many of the advantageous elements of other calculators, including the ability to project 

risk for multiple morbidities concurrently while incorporating maternal and neonatal data 

simultaneously.
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The comprehensive nature of the clinical data extracted has enabled us to uncover previously 

unreported maternal factors and conditions associated with neonatal risk. We found that 

NEC risk in infants was associated with conditions that stem from chronic medical 

illness in mothers, including maternal anemia, social determinants of health (homelessness 

and incarceration), and certain prenatal maternal medications, including indomethacin 

and sildenafil (Fig. 5A). IVH risk was associated with maternal factors including opiate 

exposure, renal failure, and methicillin-sensitive S. aureus carrier status (Fig. 6B). It is 

possible that these findings are influenced in part by the confounding of maternal conditions 

with postnatal sequelae. Hence, further studies are needed to validate these findings.

In addition, our findings lend nuance to the notion of clustering of acquired diseases 

of prematurity. It is well established that infants born prematurely often experience a co-

occurrence of morbidities, including BPD, NEC, ROP, CP, and sepsis (21–23). We observed 

overlapping patterns of disease as evidenced by the large number of interconnected lines 

between each of the 24 different neonatal outcomes. RDS, anemia, BPD, sepsis, and NEC 

all highly correlated with one another as outcomes of prematurity. These outcomes can be 

predicted in aggregate on the basis of clinical trajectory of a maternal pregnancy but can also 

be identified individually, as for IVH. Our model demonstrates that IVH grade, based on the 

Papile grading system, can be predicted at birth. This suggests that the deep learning model 

is capable of categorizing outcomes in a manner similar to what has been corroborated by 

clinical epidemiologic research (21).

The current study is also one of the largest investigations of NEC risk that combines 

maternal and neonatal factors in a unified prediction. We found that in the multitask 

approach, anemia or anemia of prematurity was highly correlated with NEC. Our 

observation adds to prior evidence of association from smaller studies (24, 25). Severe 

anemia (hemoglobin <8) has been postulated as one of the first events in a cascading series 

of bowel-hypoxia-ischemia (25). Our findings suggest that the hemoglobin level in either 

mothers or neonates may also be associated with the development of NEC, because lower 

hemoglobin concentrations in mothers shortly after conception (mean maternal hemoglobin 

after conception was 13.1 g/dl for newborns who did not develop NEC and 12.0 g/dl for 

those who later developed NEC, P = 0.02) and at delivery (mean of 11.4 and 10.9 g/dl for 

those without and with NEC, P < 0.001) were correlated with neonates who later developed 

NEC. In addition, neonatal hemoglobin concentration at birth, along with greater variance 

in hemoglobin concentrations over the first 2 months of life, was also associated with the 

development of NEC. Impaired placental-fetal transfusion, which may occur with partial 

cord occlusion or early umbilical cord clamping, may be the first sentinel step in a sequence 

of events that contribute to anemia, transient hypovolemic shock, and ischemic stress that 

predispose for later NEC. Our findings suggest that maternal anemia may be a risk factor 

for NEC and that there is a relationship at delivery between the degree of maternal or 

neonatal anemia and subsequent risk of NEC. Ultimately, further prospective investigations 

are needed to validate this relationship.

There are several limitations that must be considered when evaluating this investigation. 

First, we recognize that Systemized Nomenclature of Medicine—Clinical Terms 

(SNOMED) coding as captured from the EHR does not always completely mimic or 
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replicate clinical findings in patients (26). This is particularly true for categories such as 

diagnoses where clinical variability and interpretation can result in subjectivity. We also 

submit that predictive algorithms such as the Apgar score and the NICHD-NRN mortality 

risk score are not ideal comparative models and that interpretation of these findings must be 

done with caution.

Neonatal mortality and morbidities more commonly occur in extremely preterm or 

extremely low–birth weight newborns. Although the proportion of extremely preterm and 

low–birth weight newborns in our cohort reflects that seen across the United States, absolute 

numbers are likely to be inadequate to fully investigate morbidity patterns in these groups. 

Although we used mechanisms to protect against data leakage, such as removing concept 

codes used to define outcomes in newborns and separating the input of the model from 

the outcomes based on time so that the input always precedes the time at which outcomes 

were entered in the EHR system, other potential sources of information leakage may remain. 

Our goal was to develop models that could deal with real-world EHR data; however, it 

must be acknowledged that these data could include records of conditions, medications, or 

procedures that reflect preventive measures or risk assessment prompted by the provider’s 

intuition. One limitation of the LSTM network used to model the sequence of concept 

codes in the EHR history of newborn-mother dyads is that it cannot account for the 

time intervals between elements of the sequence. The time difference between visits or 

admissions can vary over time for the same patient and also across patients. Such variation 

could be indicative of complications or slow/quick progression of certain conditions. Future 

advancements in the field should include the development of models that incorporate the 

irregularity in time intervals in longitudinal EHR data.

In addition, the possibility of systematic measurement errors in the definition of neonatal 

diseases cannot be excluded. Although blinded manual chart review indicated high 

agreement with EHR-based definitions, we urge caution when interpreting outcomes 

generated by algorithms consisting of a combination of diagnostic codes present in EHR 

databases. Thorough external validation of our deep learning model was not possible 

because of data incompatibility across institutions, and further studies are needed to 

verify the ability of the deep learning model to predict neonatal outcomes independent 

of institution. Nevertheless, the validation of simplified logistic regression models showed 

good generalizability across institutions, suggesting that the deep learning model could hold 

promise to perform with sufficient accuracy in other institutions once data standards are 

broadly adopted.

Moreover, clinical risk prediction models should recommend specific decisions that a 

clinician can use, because studies have shown that it is the recommendations that are 

likely to influence provider behavior (27). We have not made specific recommendations for 

clinical decisions because this investigation has been designed and intended as a first step in 

longitudinal risk prediction. Only through additional validation and prospective intervention 

studies can our predictive models reasonably be used to recommend specific interventions or 

therapies.
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The machine learning methodology used herein has allowed us to build predictive models 

for neonatal outcomes and will potentially serve as an important resource for clinicians and 

researchers to examine independently. The first longitudinal clinical risk prediction tool for 

various neonatal outcomes has been developed. We have also gained greater insight into 

the role of the fetal environment and its contribution to risk for neonatal disease. Future 

prospective studies are now needed to evaluate the model’s clinical impact.

MATERIALS AND METHODS

Study design

The aim of this study was to investigate the potential for longitudinal maternal and newborn 

EHRs to predict the risk over time of several adverse postnatal outcomes through a 

machine learning approach. This was a cohort study anchored in routinely collected EHRs 

at Stanford Hospital and Clinics and the Lucile Packard Children’s Hospital (California, 

USA). The linkage of the EHRs from the two hospitals allowed for a combination of serial 

maternal and neonatal data. All EHRs from inpatient and outpatient data were mapped to 

the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) 

version 5.3.1 (28, 29). Data included patient demographics; provider orders; diagnostic, 

procedural, medication, and laboratory tests; and clinical information collected during all 

inpatient and outpatient encounters. The study was approved by the Institutional Review 

Board of Stanford University (#39225).

An external validation cohort was obtained from EHRs from the UCSF Hospital and Clinics 

and the Benioff Children’s Hospital. The UCSF Perinatal Database provided the basis for 

the links between the pregnant patients and babies as well as gestational age at delivery. The 

UCSFOMOP Database contains demographics, diagnoses, medications, and procedures for 

pregnant patients and babies. This study was approved by the Institutional Review Board 

of UCSF (#17-22929). Further methodological details are available in the Supplementary 

Materials.

Delivery cohorts

We first identified a cohort of 193,546 pregnant patients of female gender aged between 

14 and 45 years with at least one pregnancy-related record between January 2014 and 

September 2020. A pregnancy-related record consisted of any record of the codes identified 

in (30) to identify pregnancy episodes, broadly encompassing live birth, stillbirth, abortion 

(spontaneous and induced), delivery, pregnancy test, and ectopic pregnancy. Of the 193,546 

pregnant patients identified, 27,521 were linked to 32,356 newborns delivered at one of the 

two hospitals between April 2014 and October 2020. For the remaining pregnancies, no 

resulting product of delivery was found because either this was only a record of pregnancy 

testing with no actual pregnancy, the pregnancy was delivered outside the two hospitals, or 

the pregnancy was terminated. Of the 32,356 newborns identified, 2 were further excluded 

because they had less than 30 days of observation time available after birth or because there 

were no records for the respective mothers before delivery. Among the 32,354 newborns 

from 27,519 mothers, 3639 were preterm, and 28,715 were term newborns; there were 

644 twin pregnancies and 60 triplet pregnancies. Of the 27,519 mothers, 4449 delivered 
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multiple infants at various points in time; 4087 delivered two newborns, 340 delivered 

three newborns, 20 delivered four newborns, and 2 delivered five newborns in total. The 

32,354 newborns were then split into two cohorts: cohort 1 consisting of newborns delivered 

between January 2014 and December 2018 and cohort 2 consisting of newborns delivered 

between January 2019 and September 2020.

In addition, an independent external cohort of 12,256 dyads of pregnant patients and babies 

was derived from the UCSF EHRs. All dyads in the UCSF Perinatal Database with delivery 

dates between January 2013 and December 2016 and with records in the UCSF OMOP 

Database were included. Among the 12,256 newborns from 10,696 pregnant patients, 1856 

were preterm and 10,400 were full term. There were 408 twin pregnancies and 11 triplet 

pregnancies. Of the 10,696 pregnant patients, 1466 delivered multiple infants during the 4 

years of data collected: 1378 delivered two newborns, 81 delivered three, and 7 delivered 

four.

Maternal medical history and feature extraction

For each newborn, the entire maternal medical history available in the EHR up to delivery 

was extracted. This consisted of all conditions, observations, medications, procedures, and 

measurements recorded under the mother’s patient identification number. Different types 

of records were as follows: (i) conditions: presence of a disease or medical condition; 

(ii) observations: observed clinical sequelae obtained as part of the medical history; 

(iii) medications: utilization of any prescribed and over-the-counter medicines, vaccines, 

and large-molecule biologic therapies; (iv) procedures: records of activities or processes 

ordered by or carried out by a health care provider on the patient for a diagnostic or 

therapeutic purpose; and (v) measurements: structured values obtained through systematic 

and standardized examination or testing of a patient or patient’s sample such as laboratory 

tests, vital signs, quantitative findings from pathology reports, and so on. Conditions, 

observations, medications, and procedures were organized by patient and date and time 

of the day at which they were entered into the EHR system. EHRs entered on the same 

day and same time were further ordered as follows: conditions first and then medications, 

procedures, and observation, respectively. Records corresponding to conditions used to 

identify newborn’s outcomes were excluded to avoid potential leakage of information about 

the outcomes into the input data. The resulting entire sequence of time-ordered records, up 

to the time point of prediction (for example, at delivery, 1 week before delivery, 2 weeks 

before delivery, and so on), formed one newborn’s personalized input to the model. In 

addition, the most common measurements, available in ≥10% of mothers, were extracted 

to form an additional newborn’s personalized input together with maternal demographics 

(age at delivery and ethnicity) and, when specified, the newborn’s sex, gestational age at 

delivery, and birth weight. The full list of measurements used is reported in table S10. For 

each measurement, the result closest to the time point of prediction (for example, delivery), 

within 15 days before or after the point of prediction, was extracted (Fig. 1).

Newborn’s medical history and outcomes

Similarly, the entire newborn’s medical history of all conditions, observations, medications, 

and procedures was extracted and organized by time. For each neonate, the resulting 
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sequence of records was combined to the sequence of records of the respective mother 

(up to delivery/birth) to form the input data for models at points of prediction after delivery.

Moreover, because we were interested in understanding whether machine learning could 

accurately predict a wide range of neonatal outcomes and to fully interrogate the shared 

neonatal pathologies via the multitask approach, a list of 24 neonatal outcomes was obtained 

as the presence or absence of any record related to each of these outcomes at any time in 

the newborn’s medical history that was available when the data were extracted (for example, 

from January 2021, allowing a minimum of 3 months of follow-up). Deaths occurring 

within 2 months after birth were considered. These outcomes were selected among those 

subsumed by the “Neonatal disorder” code (SNOMED code “22925008”) with enough cases 

(n ≥ 100) to allow meaningful analysis and excluding transient medical disorders such 

as tachypnea, vomiting, and electrolyte disturbance. Certain disorders affecting the same 

organ system were grouped to form a single, nongeneric outcome (for example, other CNS 

disorders). The codes used to identify the presence/absence of each outcome are reported 

in table S11. Blinded manual chart review of the 24 outcomes considered for 30 randomly 

sampled preterm newborns was conducted to assess the sensitivity and specificity of the 

definitions used. Overall sensitivity and specificity (across all outcomes) were 97.5 and 

98.8%, respectively, showing high concordance between manual chart review adjudication 

and EHR-based definitions.

Data extraction from clinical notes and calculation of neonatal risk scores

Gestational age at delivery and birthweight were extracted from clinical notes in the 

newborns’ EHRs. Free text in clinical notes was systematically searched using regular 

expressions for “Gestational Age” and “Birth Weight”. The text after any of these mentions 

was extracted and converted into days for gestational age and grams for birth weight. When 

multiple clinical notes were available for the same newborn and values were discordant, the 

most commonly occurring value was retained or the average across all the different values 

if two or more values appeared with the same frequency. To check the accuracy of the 

information extracted from clinical notes compared to manual chart review, we randomly 

sampled 40 newborns from cohort 1, and their gestational age at delivery and birth weight 

were extracted by manually reviewing electronic charts. Comparison of these data with those 

extracted from clinical notes showed good accuracy (fig. S17).

Several neonatal risk scores have been developed to quantify the risk of mortality or severe 

outcomes in newborns (18). Most of these scoring systems have been derived from preterm 

newborns and target a single outcome, such as mortality. Our approach was to target a 

broader range of neonatal outcomes, including mortality, on all newborns, regardless of the 

gestational age at delivery. We compared the classification performance of our proposed 

model with that of two neonatal risk calculators: the Apgar score (31) and the NICHD-NRN 

mortality risk score (19). The Apgar score is routinely used in pediatrics and obstetrics to 

quickly evaluate the physical condition of all newborns after delivery. Among the calculators 

commonly used to assess survivability and risk for neurodevelopmental impairment in 

preterm newborns, the NICHD-NRN mortality risk score is frequently used in clinical 

practice. The score provides risk estimates for newborns delivered between 22 and 25 
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completed weeks of gestation, with a birth weight between 401 and 1000 g. Information to 

calculate the Apgar score and the NICHD-NRN mortality risk score was obtained from the 

clinical notes and conditions extracted from the maternal EHR history, as described in the 

Supplementary Materials.

The multi-input multitask deep learning model

We trained several multi-input multitask deep neural networks to simultaneously predict 24 

neonatal outcomes at different time points from 5 months before delivery up to 2 months 

after delivery. For each of these models, the inputs of the model are the sequence of codes 

from the maternal and newborn’s medical history up to the time point of prediction, as 

well as maternal/newborn sociodemographic information, maternal measurements closest to 

the time of prediction, and when specified, gestational age and birth weight. Specifically, 

input codes included all of the maternal EHR records up to the time point of prediction 

or delivery, whichever occurred first, plus the newborn’s EHR records up to the time 

point of prediction (only for models predicting outcomes after delivery/birth). Demographic 

and clinical measurements were updated selecting the closest results to the time point 

of prediction or delivery (both within a 30-day time window), whichever occurred first, 

whereas gestational age and birth weight were added only in models obtained at delivery 

or onward. For example, for the model trained using data available at delivery/birth, input 

codes included all maternal EHR records up to delivery (the newborn date of birth) and 

no records from the newborn’s medical history, and demographic and clinical measurement 

input included measurements closest to delivery (within a 30-day time window), gestational 

age at delivery, and birth weight plus maternal/newborn sociodemographic information. On 

the other hand, the model obtained 1 week after delivery was based on the maternal medical 

history up to delivery combined with the newborn’s EHR codes up to 1 week after birth, and 

on the maternal/newborn sociodemographic information, gestational age at delivery, birth 

weight, and measurements closest to delivery formed input.

Global vector (GloVe) embeddings were trained for all the concept codes found in either 

the maternal or newborn’s medical histories; embeddings represent each concept code into 

a 128-dimensional space encoding some form of meaning. The GloVe model was trained 

on the nonzero entries of a global code-code co-occurrence matrix, which tabulated how 

frequently codes cooccur with one another in a patient’s EHR medical history.

EHR codes, after code embeddings, were fed into a bidirectional LSTM recurrent neural 

network with 128 units, whereas demographic data and clinical measurements were 

processed by a dense one-layer neural network with four units. The outputs of these two 

networks are then concatenated and fed into a dense one-layer neural network with 64 

units, followed by a set of dense layers, one set for each outcome, consisting of two dense 

layers and a single-unit output. This deep learning approach proved to yield more accurate 

predictions when compared with a more traditional approach such as logistic regression 

(table S12). Analyses to evaluate the influence of the sequence length in input codes on the 

predictions returned by the model are described in detail in Supplementary Materials and 

Methods.
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Model optimization and training was performed in cohort 1 using a nested fivefold cross-

validation approach to avoid overfitting to the data. The model was then tested in cohort 

2, and after assessing that model metrics were comparable across cohorts 1 and 2, the 

two cohorts were combined, and the models were retrained at different time points (from 

5 months before delivery up to 2 months after delivery) using fivefold cross-validation. 

Cross-validation AUPRC and AUC were used to assess the classification performance of 

the model. Whereas AUPRC is based on precision (positive predicted value) and recall 

(sensitivity or true positive rate), AUC is based on recall and true-positive rate. AUPRC is 

resistant and not affected by large proportions of true negatives in the population, which 

characterize rare outcomes, because the truenegative rate is not used in the calculation of 

either precision or recall. For example, in a scenario where there are only 5% positive cases 

(and 95% negative cases), the AUPRC will focus on how the model handles the 5% of 

positive cases and will not be affected by how the model handles the 95% negative cases. 

Thus, a model that misclassifies all the positive cases will still have a high true-negative 

rate (95%, because all the negative cases will be correctly classified) and get a relatively 

high AUC. Hence, providing both AUC and AUPRC results in the most complete picture of 

the predictive ability of models when outcomes are rare, like some of the targeted neonatal 

outcomes. The reference value for AUC, or the AUC achieved by a random classifier, is 

always 0.5, regardless of the prevalence of the outcome; on the other hand, the reference 

value for AUPRC corresponds to the prevalence of the outcome and, therefore, differs from 

outcome to outcome. For visualization purposes, we also reported the fold increase/decrease 

of the AUPRC obtained by the model compared with the AUPRC of a random classifier, 

which corresponds to the prevalence of the outcome (Table 1).

When measurements, gestational age, and birth weight were missing, they were imputed 

using the respective mean values in the available data. All the analyses were performed 

using R v3.6.3, and the multi-input multitask deep neural networks were implemented using 

Keras through the R package “keras.” Models were trained using a batch size of 512, Adam 

optimization, and binary cross-entropy loss with early stopping (training was stopped after 

10 consecutive epochs with no improvement in validation loss) or stopped after 100 epochs.

Internal and external validation

A multi-input multitask deep learning model, as described above, at delivery/birth was 

trained using fivefold cross-validation in newborns in cohort 1 and tested in newborns 

in cohort 2 to internally validate the deep learning model in an independent cohort. We 

then compared AUCs and AUPRCs obtained in the two cohorts. In addition, we trained 

a simplified model for five selected outcomes (RDS, NEC, IVH, PDA, and anemia of 

prematurity) using cohorts 1 and 2 combined and validated the performance in the external 

cohort obtained from the UCSF/Benioff Children’s Hospital. Linked maternal-newborn 

EHRs including conditions, medications, procedures, and measurements were available for 

12,256 neonates in the UCSF EHR database. We first identified 1808 different OMOP CDM 

concept codes that were present in the maternal medical history up to delivery of at least 

0.2% of pregnancies identified in the Stanford delivery cohorts (cohorts 1 and 2 combined). 

These were mapped to the relevant coding system used for UCSF EHRs: International 

Classification of Diseases (ICD) 9 and 10 for conditions, RxNorm for medications, Current 
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Procedural Terminology (CPT4) for procedures, and Logical Observation Identifiers Names 

and Codes (LOINC) for measurements. Mapping was done as indicated in the OMOP CDM 

concept relationship table. For each of the codes, we then compared the proportion of 

maternal medical histories in which these codes were present up to delivery in Stanford and 

UCSF pregnancies (fig. S7A). To avoid bias because of the differential utilization of codes in 

the two EHR systems, we restricted subsequent analyses to the 850 concept codes for which 

the proportions in the two datasets were similar (when the proportion of maternal medical 

histories at UCSF in which the concept code was present was at least half and less than 

twice the same proportion at Stanford).

Binary variables indicating the presence/absence of these selected 850 concept codes in the 

maternal medical history up to delivery were generated in both Stanford and UCSF data. For 

each selected outcome, concept codes were ranked on the basis of their association with the 

outcome (assessed using odds ratio) in the Stanford data, and a logistic model with the top 

10 codes plus gestational age was trained using Stanford cohorts. These models were then 

tested in the USCF data, and AUC and AUPRC were calculated. These simplified models 

served to verify the generalizability and transferability of the more complex multi-input 

multitask model to external health care settings. External validation of the full model was 

not possible because of the difference in the coding system used.

Associations between input features and outcomes

To investigate what information drives the predictions of neonatal outcomes, we evaluated 

the importance of each EHR code, also grouped in sets of conditions, medications, 

observations, and procedures. Maternal medical history and measurements up to 1 week 

before delivery in newborns in cohorts 1 and 2 were considered to identify features 

contributing to the development of neonatal outcomes beyond those immediately preceding 

delivery and during labor.

First, a code set removal experiment was conducted. In addition, we explored the importance 

of each EHR code toward the prediction of each neonatal outcome. A total of 13,668 

unique codes were found in maternal medical histories up to 1 week before delivery; of 

these, 7082 were present in fewer than five maternal medical histories and were therefore 

excluded from this analysis. For each of the 6586 unique codes found in at least five 

maternal medical histories, a binary variable was created indicating the presence/absence of 

that code in the maternal medical history up to 1 week before delivery. Then, odds ratios 

were calculated for each of these 6586 binary variables and for each of the 24 neonatal 

outcomes, alongside the respective P values to assess their significance. Similarly, odds 

ratios were calculated for each of the measurements considered (using the results closest 

to 1 week before delivery) and each of the 24 outcomes. Unless otherwise specified, each 

measurement was dichotomized splitting by the respective median, and logistic regression 

was used to calculate odds ratios and the corresponding P values. By the way in which they 

were defined, there were no missing data for the binary variables indicating the presence/

absence of concept codes. For measurements, missing data were not imputed; a complete 

case approach was used to estimate odds ratios.
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To balance between the strength of the association and the statistical significance, we 

developed a metric as follows: Odds ratios (or the inverse of their reciprocal: −1/odds ratio, 

for odds ratios <1) were multiplied by 1 minus the respective P value. The obtained metric 

was capped to 10 (or −10) to reduce the impact of outliers. The obtained metric ranged from 

−10 (a strong negative association between the code and outcome, meaning that the presence 

of the code in the maternal medical history, or the measurement being above the median, 

reduces the risk of the outcome) to +10 (a very strong positive association indicating that the 

presence of the code in the maternal medical history, or the measurement being above the 

median, increases the risk of the outcome).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Overview of the machine learning pipeline for prediction of neonatal outcomes.
(A) An example of a hypothetical patient timeline with multiple visits before and after 

delivery/birth; at each visit, any combination of conditions, observations, medications, and 

procedures can be recorded. (B) Architecture of the multi-input multitask deep learning 

model: The sequence of codes from the maternal/newborn medical history, after code 

embeddings, is fed into a bidirectional LSTM layer with 128 units, whereas maternal/

newborn sociodemographic information, maternal measurements, and, when specified, 

gestational age and birth weight are fed into a four-unit dense layer. The outputs of these 
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two networks are then concatenated and fed into a dense one-layer neural network with 

64 units, followed by a set of dense layers, one set for each outcome, consisting of two 

dense layers and a single-unit output. (C) A bidirectional LSTM layer learns bidirectional 

long-term dependencies between concept codes within a sequence: Embeddings of each 

code in the sequence are fed into a forward and a backward LSTM layer, and the outputs of 

the two layers are further concatenated. While processing, the hidden state from the layer of 

embeddings of the previous code in the sequence is passed to the layer of the embeddings 

of the following code of the sequence; the hidden state acts as the memory of the neural 

network, holding information on previous data the network has seen before. (D) Structure of 

a single LSTM layer for the tth code in the sequence: Ct is the cell state that carries relevant 

information throughout the processing of the sequence, ht is the hidden state of the tth code 

in the sequence that is passed to the layer of the next code in the sequence, and xt is the 

input to the layer processing the tth code in the sequence, that is, the vector corresponding 

to the embeddings of the tth code in the sequence. Each line carries an entire vector, circles 

represent pointwise operations, and boxes represent learned neural network layers with the 

indicated activation function. Lines merging denote concatenation, and line forking denotes 

that the content is copied and that the copies go to different locations. Conceptually, the 

LSTM layer learns what information must be discarded from the cell state and what new 

information has to be stored in the cell state; last, the output is calculated on the basis of the 

cell state and the processed input.
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Fig. 2. Overview of data components.
(A) Tetrachoric correlation plot of the 24 neonatal outcomes considered. The size of 

each node is proportional to its prevalence in the study dataset; nodes are connected 

if the correlation is greater than 0.5, and edge thickness and color are proportional to 

the strength of the correlation, with the darker green color and thicker lines showing 

stronger correlations. (B) Correlation plot of EHR codes in maternal medical histories 

and measurements: Each node represents a code or measurement. The size of the node is 

proportional to the metric (described in Materials and Methods) for feature importance, 
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averaged across all outcomes; edges connect nodes whose correlation is among the top 

1% of all correlations. (C) Hypothetical prediction timeline for a newborn with BPD; 

the predicted score from the deep learning model at different time points is based on 

various risk factors obtained from EHR records in the maternal and newborn history. 

Throughout pregnancy, at birth, and in the postnatal period, additional data are incorporated 

into the model, and the prediction model iteratively improves. BPD prediction scores 

should not be interpreted as individual probabilities for the later development of BPD. 

RDS, respiratory distress syndrome; IVH, intraventricular hemorrhage; NEC, necrotizing 

enterocolitis; ROP, retinopathy of prematurity; BPD, bronchopulmonary dysplasia; PDA, 

patent ductus arteriosus; PVL, periventricular leukomalacia; CP, cerebral palsy; HTN, 

hypertension; MAS, meconium aspiration syndrome; CNS, central nervous system; M, 

month.
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Fig. 3. Multitask analysis of EHR data results in a longitudinal and comprehensive predictive 
model of neonatal morbidity before and after birth.
(A and B) The heatmaps are shaded according to the multitask modeling output that results 

in a fold increase/decrease in AUPRC (A) compared with a random classifier or AUC (B) 

of the deep learning model. The x axis represents time from 5 months before delivery/birth 

(−5M) up to 2 months after delivery/birth (+2M); 0 indicates delivery/birth. Numbers in 

white are the fold increase/decrease in AUPRC compared with a random classifier or AUC 

of the deep learning model at delivery/birth. All outcomes before birth incorporate maternal 
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codes at either 5M,4M, 3M, 2M, 1M, 2W (2 weeks), or 1W before birth. All outcomes 

at birth incorporate all maternal inputs up to and including delivery. All outcomes after 

birth incorporate maternal and neonatal inputs up to a specific postnatal time point (1 week, 

2 weeks, 1 month, or 2 months). (C) An example of neonatal outcome prediction scores 

for an individual dichorionic patient born at Lucile Packard Children’s Hospital at the 

gestational age of 24 weeks and 2 days after PPROM, chorioamnionitis, and spontaneous 

PTL. Risk prediction was calculated on the basis of maternal and neonatal codes that 

chronologically lead up to and include a specific diagnosis but do not extend beyond the date 

of an individual diagnosis (when this occurs). The patient ultimately had EHR diagnoses 

of RDS, IVH (grade I bilateral), BPD, sepsis, PDA, anemia of prematurity, ROP, and 

hyperbilirubinemia. The individual prediction score at birth was highest for ROP, anemia 

of prematurity, RDS, and hyperbilirubinemia, all diagnoses that the patient ultimately had. 

The prediction score at birth was lowest for NEC, pulmonary hypertension, CP, PVL, and 

death. Despite this infant’s high risk for these diagnoses, the patient is alive and never 

developed any of these outcomes, with the exception of transient pulmonary hypertension. 

We acknowledge and thank the parents of this patient who gave us permission to create and 

publish this individual’s risk prediction score.
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Fig. 4. An LSTM-based autoencoder enables objective identification of subgroups with enhanced 
performance for the deep learning model.
(A) Architecture of the LSTM autoencoder used to extract a lower-dimensional encoded 

representation of the input sequences containing the maternal EHR history. (B) Subgroup 

discovery proceeds iteratively at each level by dividing the dataset into many overlapping 

subgroups defined by variables of the obtained latent space. The search path for a single 

subgroup proceeds down two levels. At the end of the procedure, subgroups are scored and 

ranked on the basis of predefined scoring criteria (such as AUPRC) for further analysis. (C) 

Classification accuracy, in terms of AUC, AUPRC, and AUPRC compared with a random 

classifier, in subgroups identified through subgroup discovery and in the full dataset (cohorts 

1 and 2 combined).
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Fig. 5. Pathological mechanisms underlying NEC that are leveraged by the multitask approach 
to improve NEC predictions.
(A) Correlation network of the top 20 conditions, medications, observations, procedures, 

and measurements with the strongest association across all of the 24 neonatal outcomes, 

including NEC; the metric obtained from odds ratios as described in Materials and Methods 

was used to rank conditions, medications, measurements, procedures, and measurements; 

the top 20 concept codes within each set, i.e., those for which the average of the obtained 

metrics across all neonatal outcomes was the highest, were selected. A t-distributed 

stochastic neighbor embedding (tSNE) map of the resulting concept codes was constructed. 

Nodes represent concept codes (conditions, observations, procedures, medications, and 

measurements), and edges connect nodes with a correlation exceeding 0.8. Correlations 

were assessed using tetrachoric, biserial, or Pearson’s correlation coefficient, as appropriate; 

the size of the nodes is proportional to the odds ratio of NEC. The larger the node, the 

stronger the association with the outcome, regardless of whether it is a positive or a negative 

association. (B) AUC for the prediction of NEC of the single-task model (black dashed line), 

the two-output multitask model simultaneously predicting NEC and polycythemia (green 
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line), and the two-output multitask model simultaneously predicting NEC and anemia of 

prematurity (blue line). (C) Comparison of neonatal hemoglobin concentrations at birth, 

1 month, 2 months, 3 months, and 4 months of age for neonates diagnosed with NEC 

versus those not diagnosed with NEC. Infants who developed NEC had lower hemoglobin 

concentrations at birth compared with infants who did not develop NEC. (D) Maternal 

hemoglobin concentration at the time of delivery versus NEC predicted score for neonates 

diagnosed with NEC and those never diagnosed with NEC. (E) Newborn hemoglobin 

at birth versus NEC predicted score for neonates diagnosed with NEC and those never 

diagnosed with NEC.
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Fig. 6. The deep learning model can discriminate between IVH gradings and provides insight 
into the pathological mechanisms underlying IVH.
(A) IVH predicted scores from the model at delivery in newborns stratified by IVH 

grading. Patients with higher IVH prediction scores (≥0.2) are twice as likely to develop 

IVH compared with those with lower IVH prediction. IVH prediction scores should not 

be interpreted as individual probabilities for the development of IVH. Neonates in the 

unspecific grade category had discrepancies in the IVH grade reported in the ultrasound 

reports and their SNOMED coding such that it was difficult to classify them according to 
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the Papile grading system. (B) Correlation network of the top 20 conditions, medications, 

observations, procedures, and measurements with the strongest association across all 24 

neonatal outcomes. The metric obtained from odds ratios was used to rank conditions, 

medications, measurements, procedures, and measurements and to select the top 20 

within each set with the highest average across neonatal outcomes. A tSNE map of the 

resulting features was constructed. Nodes represent conditions, observations, procedures, 

medications, and measurements, and edges connect nodes with a correlation exceeding 0.8; 

correlation was assessed using tetrachoric, biserial, or Pearson’s correlation coefficient, as 

appropriate. The size of the nodes is proportional to the odds ratio with IVH; the larger the 

node, the stronger is the association with the outcome, regardless of whether it is a positive 

or a negative association.
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