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ABSTRACT
As urban energy systems become decarbonized and digitalized, buildings are increasingly intercon-
nectedwith one another andwith the industrial and transportation sector. Transformation strategies
to cost-effectively integrate distributed energy sources, and to increase load flexibility and efficiency,
generally increase complexity. This complexity causes challenges that the industry is unprepared
to deal with. Today’s simulation programs, and the processes in which they are used, have not
been developed to meet the challenges of decarbonization. Nor have they been designed for, or
do they keep pace with, the energy system digitalization. Modeling, simulation and optimization
tools, and the processes in which they are used, need to undergo an innovation jump. We show a
path tomoreholistic tools andworkflows that address thenew requirements brought forwardby the
increased complexity. Without concerted actions, the building simulation community will fall short
of supporting the 2050 decarbonization targets declared by many governments.
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1. Introduction

The need to decarbonize the energy sector by 2050
increases complexity and risk in design, deployment, and
operation of building and district energy systems. Sys-
tems become increasingly integrated, not only among
energy carriers such as thermal, electrical, and natural
or synthetic gas, but also among sectors such as build-
ings, industry, and transportation. The urgency to suc-
ceed on the rapid decarbonization path of many gov-
ernments, coupled with the large capital investments of
renewable energy infrastructure, puts pressure on the
timeline and robustness of the transformation. Future
energy systems will be decentralized and integrated to
harvest renewable energy, provide storage, and enhance
efficiency in a cost-effective way. Flexibility in these sys-
tems’ design and operation will be essential to manage
the distributed assets and ensure the greatest security
of supply. Demanding integration, modular decentral-
ization and flexible operation on a rapid timeline poses
unique design and operational challenges.

To comprehend the scale of building decarbonization,
consider the US, which has around 110 million buildings.
To decarbonize them in the next 25 years will require
decarbonizing around 10,000 buildings per day. To stay
on such a rapid decarbonization path, industry is being
asked to rush the deployment of established equipment
in new, unproven system designs. This will likely lead to
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unmet performance goals, extensive retrofits, and even
strandedassets, as is frequently observedwhennovel sys-
tem configurations are deployed. While such problems
are reported rarely in the literature, as they can taint one’s
reputation and can have legal implications, challenges
in the deployment of new building energy systems can
be found; see, for example, Scofield (2002), Vetterli and
Sulzer (2015), Egger (2015), and Fumagalli et al. (2017).

As will be shown below, modelling can help to
address these challenges if modelling supports a holis-
tic design-build-operate process. Before we discuss mod-
elling needs in support of a process that can manage
the complexity and reduce the technical risks of decar-
bonizedenergy systems, let us revisit the current situation
and discuss the upcoming challenges.

2. Current situation and emerging challenges

Today, building energy systems are typically selected
based on a limited set of technology options, such as
oil, gas, or wood-fired boilers or heat pumps for heat-
ing, and chillers with dry or wet cooling towers for cool-
ing. The supply of electricity is typically settled with the
specification of the grid connection. Generally, the tech-
nologies being installed are sized either using design-day
calculations assuming continuous system operation, or,
particularly for larger plants, using a load duration curve
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or a static operation schedule for selected typical weeks
that allows partial curtailing of peak loads with the use
of thermal storage. Similarly, district heating systems are
designed using a high-temperature distribution network
for heating and a separate low-temperature distribution
network for cooling (Lund et al. 2014). Energy and water
flow are uni-directional, from plants to consumers. Heat-
ing and cooling systems are generally designed in a siloed
approach, in which designing the control strategy and
control sequences is not an integrated part of the design
process, but rather a subsequent task in the construc-
tion phase. Optimization is almost never used in practice
to select and size components and configure systems; at
best simulation is used to inform and analyse proposed
design solutions.

Newerdistrict energy systemsoftenhavebi-directional
energy flow, and sometimes bi-directional water flow, to
share low-grade waste heat, to shift loads, and to convert
and optimize between different energy carriers including
thermal heat at different temperature levels, electricity,
andnatural or synthetic gas (Buffa et al. 2019). This decen-
tralization and integration lead to increased complexity
due to the need to match fluctuating distributed energy
resources with the temporal requirements of loads. To
manage this complexity, we argue that model-based
engineering is needed. The need for model-based engi-
neering, as a stepwithin a Platform-BasedDesignProcess,
is explained in a companionpaper (Sulzer et al. 2023). This
poses new opportunities, but also new challenges and
requirements on energy modelling. These include

• Selectionandsizingof technologyassets forenergy
conversion and storage: The types of viable energy
conversion and storage technologies are rapidly
expanding and may include: for thermal energy con-
version (beyond the conventional boilers and chillers),
heat pumps, biomass combined heat and power (CHP)
facilities, waste heat integration (industrial or sewage),
and solar collectors; for daily and seasonal thermal
storage, geothermal systems and sensible or latent
storages; and for electrical systems, solar photovoltaics
(PV), wind turbines, batteries, and storage systems
such as vehicle-to-grid and power-to-X. In addition,
energy systems may be designed to exchange energy
with each other by importing and exporting energy
between the electricity grid, gas system, and a ther-
mal grid. The appropriate configuration of such tech-
nology assets needs to consider local demand and
supply, sector integration, and current as well as antic-
ipated evolution of the district heating and cooling
system.

• Selection and conception of network technologies
and topologies for energy distribution: Network

technologies need to be selected and designed in
order to integrate and connect the above technology
assets. These networks need to provide a conduit to
transfer thermal energy at different temperature lev-
els, transfer alternating current and direct current (AC
and DC) power, and transfer natural and synthetic gas
among plants, storage devices, buildings, and indus-
trial processes. The design has to take into account not
only the current conditions but also future scenarios,
allowing for expansion and adaptation.

• Configuration of equipment and networks under
consideration of dynamic operation: The selection,
layout, and sizing of the above assets and networks
needs to be undertaken in away that leads to a Pareto-
optimal system solution. Multi-criteria optimization,
e.g. in terms of life-cycle costs and carbon emissions,
must be weighed against each other to find the pre-
ferred design. System complexity increases evenmore
as assets need to be operated dynamically to account
for the variability of loads and renewable resources.

Keymetrics for optimizing the selection and sizing not
only include life-cycle costs and carbon emissions, but
need to consider dynamic energy prices, time-dependent
carbon intensity of electricity, local regulations, and busi-
ness models of investors and operators. These diverse
and intersecting requirements makes it natural to formu-
late the design problem as amulti-objective optimization
problem.

2.1. Shortfalls in energy and building system
optimization

The Pareto-optimal configuration and operation of the
energy system requires optimization under consideration
of the system dynamics. Design day sizing calculations,
or static calculations such as load duration curves, are no
longer appropriate.

For electrical systems, optimization tools that optimize
selection and sizing of technology assets under consider-
ation of hourly or sub-hourly optimal dispatch schedules
have existed for some time; in some cases they have been
expanded to cover certain thermal systems, and more
recent software also covers multiple energy carriers and
optimize over multiple investment stages of the system
life-cycle (Cutler et al. 2017; Evins et al. 2014; Mashayekh
et al. 2017; Petkov et al. 2022; Terlouw et al. 2023; Wu
et al. 2022). These types of optimization software typically
formulate an optimization problem using Mixed Inte-
ger Linear Programming (MILP). One advantage of MILP
is that optimization problems can be solved efficiently.
However, formulating cost and constraint functions for
MILP requires significant model simplifications to make
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models piece-wise linear and to remove fast dynam-
ics that may require an excessively fine temporal grid.
Another approach is to use nonlinear dynamic models
and optimization using collocation as is used in Köppen
et al. (2022) to co-design a carbon-neutral manufacturing
plant. Since this method only handles continuous deci-
sion variables, the decision of whether an asset should
be installed can be made based on its optimal size, as
assets that are not technically or economically viable will
have zero sizes. Naturally, collocation also requiresmodel
simplifications such as the removal of fast dynamics and
non-differentiabilities, as are commonly introduced by
controllers.

While either approach is well suited to handle opti-
mal technology selection and sizing, both are based on
idealized models representing the real-world system in
an abstract, highly idealized and imprecise way. More-
over, MILP satisfies the first but not necessarily the sec-
ond law of thermodynamics, as flows of each energy car-
rier are considered as ‘buses’, balancing inputs, outputs,
and energy of storage devices. They do not account for
temperature differentials and pressure differentials that
drive heat and mass flow. Moreover, in general, both
approaches assume perfect control, perfect knowledge
of the system, and perfect foresight. Thus, they abstract
actual systems at a very high level, and implementation
still bears significant design andoperational risks because
such models lack: (i) implementable control logic, (ii) reli-
able operation based on temperature and pressure dif-
ferentials, (iii) subsystem coupling that can cause con-
trol instability, and (iv) nonlinear physical phenomena
that can impede performance. By omitting such real-
world effects, systems might not behave as expected or
could fail in operation. For example, reports that show the
importance of these effects include the following:

• Control sequences: A survey by Barwig et al. (2002)
found that control programming errors were themost
frequent control-related problem in commercial build-
ings with built-up heating, ventilation, and air con-
ditioning (HVAC) systems, accounting for one-third
of all reported problems. Crowe et al. (2020) show
that control problems persist to be a key impedi-
ment to achieve high operational performance. Zhang
et al. (2022) showed that advanced control sequences
for variable air volume flow systems can reduce HVAC
energy consumption by a wide range with an aver-
age of 31%, and Sommer et al. (2020) showed that in a
reservoir district energy system,dynamic control of the
distributionpump reduced total electric energyuse for
circulationpumps andheat pumpsby about one-third.

• Hydronic system: Pressureproblems indistrict energy
systems at ETH Zurich caused pump cavitation and

required retrofit measures (Egger 2015). Monitoring at
an installation called Suurstoffi in Switzerland showed
that shortcomings in the hydronic system caused high
pump energy (Vetterli and Sulzer 2015).

• Subsystem coupling: Renewable systems generally
have a tighter coupling of subsystems at the district
level, at the building level, and across these scales.
At the district level, consider the Quayside Toronto
district energy system that was planned as part of
a major urban retrofit. The initial hydronic configu-
ration that allowed for reversing the water flow in
pipes, which would have reduced electricity demand
for the heat pumps,was abandoneddue to fundamen-
tal control instabilities caused by the hydronic config-
uration (Wetter and Hu 2019). At the building level,
a helpful explanation of the problem of tightly cou-
pled control loops can be found in Bortoff et al. (2022).
The authors developed an H∞ Loop-Shaped Model
Predictive Controller for a variable refrigerant flow sys-
tem that enforces constraints while exhibiting excel-
lent stability margins. To see coupling effects among
the space heating system and the district heating dis-
tribution network, consider the fifth-generation com-
bined district heating and cooling system presented
in Maccarini et al. (2023). The authors show that for
such systems in which a heat pump boosts tempera-
ture from a reservoir network to the building heating
system, the design temperatures of the building heat-
ing system impact sizing of the reservoir network loop,
because the needed capacity of the heat pump evap-
orator depends on the required condenser tempera-
ture. Another example of coupling between buildings
and district is the need to thermally balance geother-
mal borefields,whichhasbeen shown to lead toopera-
tional problems (Vetterli and Sulzer 2015) that can lead
to year-long retrofit measures.

• Nonlinear phenomena: Nonlinear phenomena such
as the presence of moving groundwater in geother-
mal applications require detailed nonlinear mod-
els (Doughty et al. 2021; Hu et al. 2020) that are
not applicable for use with MILP or collocation-based
optimization. MILP simplifications that optimize only
for energy flows but neglect nonlinearity due to
fluctuating temperatures (which show up as the bi-
linear product of mass flow rate times temperature)
have shown to lead to considerable errors and solu-
tions that are infeasible in practice (Moretti, Man-
zolini, and Martelli 2020). Also, pumping energy in
fifth-generation district energy systems can be quite
high, but can be reduced with proper sizing and
flow rate control (Sommer et al. 2020; Vetterli and
Sulzer 2015) which requires inclusion of nonlinear
effects.
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2.2. Shortfalls inmechanical system and controls
simulation

In view of the above simplifications that are needed to
solve the optimization problem efficiently, models that
are more refined than those used for optimization are
needed for developing design specifications for imple-
mentation.Onlybyholistically consideringallmajorphys-
ical effects, which includes mass transport, tempera-
ture, and pressure changes, can mechanical systems and
their controls be developed in a way that ensures sta-
ble and reliable operation, guaranteeing that equipment
operates within permissible operation envelopes. Conse-
quently, models need to account for the pressure and
temperature differentials that drive mass and heat flow,
e.g. they need to properly model the 2nd law of thermo-
dynamics and the transport equations, which generally
are not regarded in MILP formulations.

Above, the risk in deploying decarbonized, grid-
responsive energy systems has been shown. In addition,
design and operational problems incurred expensive
retrofit and potential reputational damages. It is there-
fore prudent tomanage and reduce such risks. This canbe
done using refined models that capture the physics and
dynamics of mass, temperature, and pressure of energy
systems, coupled to feedback control loops that deter-
mine how the system operates over time. The problem
here is not whether simulations for de-risking systems
can be done, as various publications showed how simula-
tions could verify the design prior to deployment. Rather,
the problem is whether risk-reducing simulations can be
conducted at scale by energy modellers beyond a few
experts.

To discuss shortfalls, let us look at the intersection of
the mechanical design and controls of an energy sys-
tem: Similar to the islands of tools that are suited either
for optimized asset selection or for system simulation,
there are islands of tools for modelling building or HVAC
systems and testing and verification of controls. As a con-
sequence, in many projects that require control devel-
opments, whether predictive control or classical regula-
tory feedback control, mechanical, electrical and control
engineers are developing their own tool sets or models,
respectively. Common reasons for such bespoke model
development are as follows:

• Manybuilding energy simulators operateHVACequip-
ment based on load. They calculate howmuch energy
needs to be provided over the next simulation time
step to meet a room temperature set point, and then
try to dispatchHVAC equipment at some fictitious part
load operation that provides the required energy. In

contrast, real control measures a quantity, for exam-
ple, a room temperature or air flow rate, and then
computes an actuation command for a compressor,
damper, or fan speed using a feedback controller that
takes as input the error between setpoint and mea-
surement. Thus, the inputs, outputs, and the control
logic are fundamentally different from load-based sim-
ulators.

• Many building energy simulators are just simulators;
they don’t expose the equations but rather are mono-
lithic tools thatmake it hard to conduct controls analy-
sis as for the above-mentioned Model Predictive Con-
troller by Bortoff et al. (2022), for development of an
observer that estimates non-measurable disturbances
as shown in Bortoff and Laughman (2019), or for gain
scheduling as shown in Wetter (2009). Moreover, their
monolithic software architecture makes it hard to iso-
late a subsystem and design a controller for it. They
also lack real-world effects because of their simplified
models and solving principles.

• The use of classical linear and nonlinear control theory,
as well as many optimization-based predictive control
algorithms, requiresmodels tobedifferentiable,which
is not the case for models in typical building energy
simulators.Moreover,most buildingenergy simulators
do not allow reinitializing state variables as required
for Model Predictive Control algorithms.

• The time steps of many building energy simulators
are too large to resolve the fast dynamics of control
loops, or the simulators use fixed time steps that, if
selected to be sufficiently small to resolve fast dynam-
ics of controls within the required error tolerance, lead
to excessively high computing time.

• Many building energy simulators are unable to model
the physics that is needed for pressure calculations
in duct or pipe networks, transport delay in ducts
or pipes, or computational fluid dynamics in rooms.
These effects are important for proper calculation of
the physics and dynamics of feedback control loops
(see, for example, Qiao et al. 2019;Wetter andHu 2019;
Zuo et al. 2016). However, for historical reasons that
prevented pressure-driven flow distributions in pipe
and duct networks, most building energy simulators
balance heat and mass flow rates, but they do not
compute mass flow rates based on pressure distribu-
tion in piping and/or duct networks. (Some tools allow
coupling with airflow network simulations, or they
approximate pressure in piping networks, although
such approximations balance flow without satisfying
pressure balance at flow junctions (EnergyPlus Engi-
neering Reference 2023, Sec 9.9.12)).
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2.3. Shortfalls in supporting verification of design
intent versus as-installed control logic

Above, itwas shown that programmingerrors account for
a largemajority of control-related problems, that controls
are critical to reduce energy use and shift loads, and that
control logic is inherently more complex in decarbonized
energy systems. Complexity can be managed through
appropriate design processes and formal verification;
however, today’s energy modelling tools and building
control systems fall short in supporting formal verifica-
tion of installed control logic. The shortfall is caused by a
lack of building simulationprograms tomodel actual con-
trol, as was discussed above. It is also caused by a lack of
support by building automation systems for formal veri-
fication of control logic due to three main reasons: First,
many building automation systems do not support test-
ing faster than in real time. Second, they have models of
computations (Lee and Sangiovanni-Vincentelli 1998) –
e.g. rules that describewhenoutputs are computed– that
are not documented. Third, they do not guarantee deter-
ministic execution, meaning that for two executions with
the same set of inputs and initial state variables, one can-
not expect identical output. In fact, such behavior, while
critically important for formal verification, is also not guar-
anteed for programmable logic controllers that are gov-
erned by the International Electrotechnical Commission
(IEC) 61131 Standard, as Sehr et al. (2021) argue:

Future programmable logic controller (PLC) designsmust
rely less on priority-based cyclic executionmodels whose
timing depends on unrelated tasks running on the PLC
or elsewhere in the network. Instead, PLC designs should
specify timing behaviours, such as deadlines, and hard-
ware and operating system infrastructure should ensure
that the behavior is as specified. This implies less reliance
on priorities because, given only priorities, the actual
behavior of one component depends on other, unre-
lated components. Instead of priorities, software compo-
nents should specify timing requirements and the com-
pilers and operating systems should ensure these timing
requirements are met.

Thus, today’s building automation product lines were
not designed with formal verification of the control logic
in mind.

2.4. Themissing link between design and operation

Our building energy modelling community has devel-
oped many powerful tools for specific applications that
support individual steps within the design-build-operate
process. Notable initiatives include design analysis inte-
gration (Augenbroe, Malkawi, and de Wilde 2004) and
analytic target cascading which decomposes the design
problem (Choudhary, Malkawi, and Papalambros 2005).

However, despite these efforts, sharingdata amongappli-
cations for energy system design, construction and oper-
ation remains a big challenge and causes considerable
workflow inefficiencies and inconsistencies. There are
also fundamental gaps: While many tools have import
and export capabilities for different data formats such as
IFC or gbXML, these data formats need to be enriched
with other, ad-hoc, custom data. For example, neither IFC
nor gbXML has the capability to express how HVAC sys-
tems are controlled beyond very high-level information
such as IfcBuildingControls, which only supports types
such as sensors, actuators, and very basic controllers.
IfcBuildingControls does not support expressing control
logic in a way that allows its use to generate a specifi-
cation or a simulation model suitable to simulate or ver-
ify system behavior. This is perhaps because a couple of
decades ago, energymodelling was simply not advanced
enough to use realistic control implementations. There-
fore, tools are missing for integrating control workflows
with energy systemdesign. However, since control imple-
mentation choices can affect HVAC energy use, with sav-
ings in the range of 23% to 30% being common for most
building types (Fernandez et al. 2017; Zhang et al. 2022),
and implemented control logic often have errors (Barwig
et al. 2002; Crowe et al. 2020), a new standard is needed.

The need is for a standard for the digital specification
of control logic. Such a standard should enable testing
correctness of building control logic, improving the con-
trol logic to increase systemperformance inmodel-based
design with an energy model in the loop, and providing
a digital specification for bidding, implementation, and
verification as part of formal commissioning. In response
to these needs, a Control Description Language (CDL)
and associated workflow for digitalized control delivery
has been developed (Wetter et al. 2022; Wetter, Graho-
vac and Hu 2018). CDL serves as the basic framework
for a standardization process by the American Society
of Heating, Refrigerating and Air-Conditioning Engineers
(ASHRAE) that develops ASHRAE Standard 231P, ‘CDL – A
Control Description Language for Building Environmen-
tal Control Sequences’. This standard is orthogonal and
complementary to semantic models such as Brick (Bal-
aji et al. 2016) and the currently developed ASHRAE
Standard 223P ‘Semantic Data Model for Analytics and
Automation Applications in Buildings’. Together, the dig-
ital specification of control logic and semantic models
are poised to enable simulation-based control testing
and performance assessment and a highly automated,
digitalized deployment, configuration, and commission-
ing of control logic, system-level automated fault detec-
tion, diagnostics and correction, including the required
communication. In such a workflow, the semantic model
streamlines pairing sensor and actuator signals of actual
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control systems with the corresponding inputs and out-
puts of the model of the control logic. During commis-
sioning, the control model takes as input the trended
building automation data, and it outputs the antici-
pated response. If the actual response from the build-
ing automation system is within a prescribed tolerance
of the simulated response, the control logic is imple-
mented correctly (Wetter et al. 2022, 2019). Such a pairing
between building automation system and model then
also opens up the opportunity to use physics-informed
data-driven methods for predictive control, which has
shown tohavehighperformancewith lower data require-
ments compared to purely data-driven methods (Bün-
ning et al. 2022). Another frontier will be how to integrate
models that encode design specifications not only for
predictive control, but also for system-level automated
fault detection, diagnostics and correction of integrated
energy systems.

2.5. Conclusions regarding the current situation

A model is always a mathematical abstraction, designed
to answer specific questions, or – ideally, as we will see
below – to provide a specification for how to build an
engineered system. Tools that incorporate such mod-
els and provide capabilities for model authoring, com-
pilation, simulation or optimization, and inspection of
results should be designed to support the intendedmod-
elling use cases. We will never avoid the need for spe-
cialized tools for designing, building, commissioning,
and operating energy systems, for several fundamental
reasons.

First, themathematical properties needed for effective
optimization, simulation, and control are distinct from
one another. Second, the fact that data availability is
scarce in early design and increases along the design-
build-operate process naturally lends itself to usingmod-
els at different levels of abstraction. Third, experience in
Platform-Based Design for complex systems shows that
generally better system-level performance is obtained
by constraining the design space and by applying suit-
able abstractions at each level of the design. Other-
wise, complexity would overwhelm the designer and
render the design optimization intractable (Sangiovanni-
Vincentelli 2007). Therefore, having an all-encompassing
model that supports all major use cases is a pipe dream.

Similar to models being developed for a specific use
case, data formats are developed to describe elements
in a virtual environment. Domain-specific data lead to
siloed databases that are not able to represent other
domains. For example, trying to represent a control logic
in IFC would be unwise. The challenge is to create these
domain-specific data in a way that allows them to be

linked to one another so that system queries can be
doneacross domains. Suchqueries across domainswould
allow for holistic data modelling of integrated systems.

3. Model-based engineering is the new normal

3.1. Seamless design-build-operate workflow

The above discussion shows that many solutions exist
to address specific use cases, but these solutions are
insular. Progress needs to be made to ensure that these
insular tools and workflows are interoperable, in order
to ensure fluidity of performance requirements, fluid-
ity of data that specify system configuration and equip-
ment performance, and fluidity of control specification.
Also, the design process for building energy systems is
still structured around a paper-based process used 30
years ago. While simulation models are used for cer-
tain energy compliance verifications, and are used to
support design decisions and sizing of equipment, the
overall design-build-operate process has not evolved to
effectively address the new needs. Converting models
(meaning a set of requirements, systems, and equip-
ment specifications) from one stage of the process to the
next, which may require the use of different tools, can
be so prohibitively time-intensive that users often aban-
donmodel-based engineering. Consequently, models for
early design are seldom refined for detailed design, and
practically never used as a specification of the construc-
tion or to support commissioning and operation. How-
ever, modelling should not be an isolated task within
particular design steps. Instead,modelling should be fully
integrated into the whole design-build-operate process.
At any stage, models should provide a specification of
the design. Integrating interoperable, modular tools into
a holistic ecosystem will support an efficient and effec-
tive workflow to tackle the challenges of future energy
systems.

3.2. Usability of interoperable tools

In the rare cases in which models are reused and refined
throughout the different stages of the building life cycle,
this is done today using an ad hoc process. This inher-
ently poses a risk, is expensive, time-consuming and
does not scale. Often, models are not built to be reused
in subsequent tools that would answer more refined
questions, such as when progressing from conceptual to
detailed design and to construction and commissioning.
Moreover, we regularly see users applying a tool that is
not appropriate because it lacks the required physics or
dynamics. In some cases, users resort to patching the
tool deficiencies with fragile spreadsheet calculations to
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squeeze some plots out of it that may lead to question-
able decisions.

In our opinion, there are two reasons that people use
such patch solutions. First, users tend to keep using tools
with which they are familiar due to the lack of time,
resources, andmanagement support to learn amore suit-
able tool. Second, many building energy modelling tools
are difficult to expand to include new components and
systems, or to add the physics and dynamics needed in
the next, more refined stage of the planning process. This
makes it impractical for users to add new capabilities, and
it often takes years for development teams to add user-
requested new capabilities. However, using such patch
solutions is inappropriate because creating them is time
consuming, there is a high risk of not considering the
needed systemdynamics, and reusability in a subsequent
step of the planning process is low, as is reuse in similar
projects.

What our community should strive for is an ecosystem
of interoperable tools that canbe applied indifferent con-
figurations as use cases require. Users should be able to
rapidly add new models or reuse models. This will also
reduce human bias introduced by a user’s choice of a
system that is well supported by the tool being used.
Just because a system design is time-consuming or dif-
ficult to model due to lack of tool support should not
exclude it from the set of possible design options. Energy
modelling tools should also better support collabora-
tion betweenmodelling and application experts. In other
industries, amore formal separation exists between those
who develop a model, such as for a car engine, and those
who use the model, for example, to develop a controller
for that engine. But in our industry, collaboration inwhich
different experts share their models and possibly extend
and refine their models is rare.

3.3. Harmonization of tools and processes

What is needed, in our view, is a formalization of the
design-build-operation process for building and district
energy systems. However, such a process needs clear
steps in which requirements for functionality and per-
formance are explicit and are used to select a realiza-
tion from a set of candidate solutions; at every level of
abstraction or at every process step, respectively, the
selection of the most appropriate solutions has to be
performed. At the next process step, the selection made
serves again as requirements for functionality and perfor-
mance, but is now enrichedwith additional requirements
for that new, refined level of abstraction, and the pro-
cess is repeated until an implementation is fully specified.
Platform-Based Design, as described by Sangiovanni-
Vincentelli (2007), formalizes such a process and is a

promising approach to master these complex design
challenges. Sulzer et al. (2023) propose a new design-
build-operate workflow based on Platform-Based Design
to achieve rapid, cost-effective and reliable decarboniza-
tion of energy systems, and present an example of how
to apply Platform-Based Design to a pareto-optimal dis-
trict energy system design. This Platform-Based Design
process requires suitable tools to evaluate design com-
pliance and system performance at the various levels of
abstraction. Platform-Based Design also needs the flu-
idity of functional requirements, performance targets,
and equipment and system specification in a way that
allows the successive refinement of the design. It also
allows the verification of the performance at each layer of
abstraction. The subsequent implementation step allows
for the digitalized deployment of the controls, ensuring
correct-by-construction, thereby providing as-designed
operational performance. Thus, interoperable tools and
associated models must be modular and extensible so
that they can be used throughout the life cycle of build-
ings and energy systems.

3.4. The purpose of themodelmatters – we building
engineers usemodels the wrongway

At this point, it is worth noting that one key imped-
iment to the digitalization of the design-build-operate
process is caused by our community’s relation between
a model and an energy system. In the buildings indus-
try, engineers generally build a model to be sufficiently
faithful to the expected behavior of an energy system.
The model may then be updated to reflect changes dur-
ing the design-build-operate process – or, more often, it
may be abandoned, as explained above. However, mod-
els can serve better use cases. Consider, for example,
the electronic design automation industry, in which engi-
neers write models, and products are developed to con-
form to the model. As Lee (2018, p. 42) explains, we have
two different mechanisms available to get a good model
fidelity:

We can either choose (or invent) a model that is faithful
to the [system], or we can choose (or invent) a [system]
that is faithful to the model. The former is the essence of
what a scientist does. The latter is the essence of what an
engineer does.

He summarizes:

In engineering, a model is useful if we can find an imple-
mentation that is reasonably faithful to the model. In
science, a model is useful if it is reasonably faithful to a
system given to us by nature. In other words, a scientist
asks, ‘Can I make a model for this thing?’ and an engineer
asks, ‘Can I make a thing for this model?’

Furthermore, Lee and Sirjani (2018) state:
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. . .we distinguish models that we call scientific models,
which are intended to reflect the behavior of a pre-
existing system, from models that we call engineering
models, which are intended to specify the behavior of a
system to be built. It is important to recognize whether a
model is to be used in a scientific way or an engineering
way. For example, adding detail may enhance a scientific
model and degrade an engineering model.

As we reflect on how building energy engineers use
models, we see that we use models like scientists, rather
than engineers. In view of the daunting task of master-
ing the complexity of decarbonized energy systems, and
the need to accelerate the deployment of such systems
in a robust way, it is time to change how models are
used in our field. This requires a transformative change in
how models are built and evolve so that they represent
engineering specifications for how energy systems and
buildings are designed, built, commissioned, and oper-
ated.

4. A call to action

The integration of distributed energy resources can effi-
ciently be achieved by buildings. Through the deploy-
ment of ‘behind-the-meter’ technologies such as PV,
heat pumps, electrical vehicles, and batteries, buildings
are evolving as active nodes in the future energy sys-
tem. Such a transformation causes a rapid increase of
requirements for building and district energy systems to
meet decarbonization challenges. Designing and operat-
ing such systems in a cost-effective, robustway that scales
at the rate needed to achieve the decarbonization goals
of various governments is a challenge that our industry is
not equipped to meet.

IBPSA should take responsibility for providing the
foundation that the building industry needs to succeed
in decarbonizing building and district energy systems.
IBPSA should establish a roadmap for the development of
tools, models, and data formats needed by its members
in their efforts to decarbonize the sector. The research
and development activities of IBPSA members should be
oriented on such a roadmap to ensure the fast, cost-
effective, and reliable transition of our industry. A contin-
ually renewing expert committee would review the state
of national and international R&Ddevelopment every two
years and, as necessary, adapt the roadmap to the latest
research findings.

To take advantage of digitalization and to achieve
the transformation needed, the workflow and the role of
engineers, architects, contractors and other actors within
our highly fragmented buildings industry will need to be
restructured. Forty years ago, designing and installing a
PV system was a difficult pioneering task using an ad hoc

workflow. Today there is a vibrant industry that delivers
PV, batteries, and financing on a routine basis. The IBPSA
community should work on implementing a digitalized,
formal workflow that uses computational tools and data
formats that enable a similar transformation process for
the design, deployment, and operation of decarbonized
building and district energy systems.

Our vision is a set of interoperable tools that allow
hierarchical design space exploration and refinement;
risk quantification andmanagement under consideration
of the inherent uncertainty and variability of external
factors and users; and digitally supported installation,
commissioning, and operation. In a seamless design-
build-operate process, models need to be modular and
formal to allow the abstraction and refinement of sys-
tems and subsystems. They need to serve as spec-
ifications for how systems are built, with a fidelity
that allows formal verification of installed systems rel-
ative to these specifications. Orthogonal, open stan-
dards should be leveraged, and further advanced as
needed,

• to express the cyber-physical behavior of building and
energy systems, usingdifferent facets for optimization;
for code generation for simulation or real-time oper-
ation; for verification, and for operational monitoring,
and

• to represent data that showhow requirements, system
specifications, and performance evolve during design
and operation.

Our field can learn from how other industries tamed
the complexity through workflows such as Platform-
Based Design, and enabled collaborative design and
manufacturing of engineered systems through open
standards such as Modelica, FMI, eFMI and SSP (Fritz-
son and Engelson 1998; Junghanns et al. 2021; Lenord
et al. 2021; Mattsson and Elmqvist 1997; Modelica Asso-
ciation 2019). Some advances have been made via col-
laborations such as IEA EBC Annex 60 (Wetter and van
Treeck 2017), IBPSA Project 1 (Wetter et al. 2019), and
the recently formed IBPSA Modelica Working Group, as
well as through the ongoing standardization of CDL and
semantic models via the currently developed ASHRAE
Standards 231P and 223P. These collaborative efforts
advanced modular modelling and work toward digital-
ization of the control delivery process. The anticipated
outcome of these efforts includes modular, multi-fidelity
models that bridge energy modelling and controls, pro-
vide interoperability of control logic among control mod-
elling software and commercial control product lines, and
lead to standardization of the graph representation of
building systems. When integrated, these technologies
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provide a path toward digitalized, performance-based
HVAC control delivery and operation (Roth et al. 2022).

However, much more remains to be done on a com-
prehensive andholisticworkflowandon supporting tools
and data representations to enable a robust, rapid decar-
bonization of energy systems. For example, we need edu-
cation in model-based engineering for all stakeholders
of the building delivery process, ensuring not only that
designers can conduct it, but also that building owners
demand a design process that delivers high-performance
systems in a robust, cost-effective, predictable way.
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