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Regularization Parameter Selection for Penalized-likelihood List-
mode Image Reconstruction in PET

Mengxi Zhang1, Jian Zhou2, Xiaofeng Niu2, Evren Asma2, Wenli Wang2, and Jinyi Qi1

1University of California – Davis, CA, USA

2Toshiba Medical Research Institute USA, Inc

Abstract

Penalized likelihood (PL) reconstruction has demonstrated potential to improve image quality of 

positron emission tomography (PET) over unregularized ordered-subsets expectation-

maximization (OSEM) algorithm. However, selecting proper regularization parameters in PL 

reconstruction has been challenging due to the lack of ground truth and variation of penalty 

functions. Here we present a method to choose regularization parameters using a cross-validation 

log-likelihood (CVLL) function. This new method does not require any knowledge of the true 

image and is directly applicable to list-mode PET data. We performed statistical analysis of the 

mean and variance of the CVLL. The results show that the CVLL provides an unbiased estimate of 

the log-likelihood function calculated using the noise free data. The predicted variance can be used 

to verify the statistical significance of the difference between CVLL values. The proposed method 

was validated using simulation studies and also applied to real patient data. The reconstructed 

images using optimum parameters selected by the proposed method show good image quality 

visually.

Keywords

Image reconstruction; penalized likelihood reconstruction; parameter selection; positron emission 
tomography

1. Introduction

Iterative image reconstruction has been widely used for positron emission tomography 

(PET) to improve image quality. Maximum likelihood (ML) expectation maximization (EM) 

algorithm and its accelerated variant ordered-subset (OS) EM (Hudson and Larkin, 1994) 

estimate images from projections by maximizing the log-likelihood of measured data. 

Generally, statistical image reconstruction can achieve higher image quality compared to 

filtered back projection (FBP), because it can model data noise distributions and non-ideal 

system responses. However, a true ML solution is usually very noisy. As a result, ML 

algorithm is often stopped at early iterations before convergence and post-filtering is applied 

in clinical applications.
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Penalized likelihood (PL) image reconstruction incorporates a penalty function into the 

objective function to control noise. It is also known as maximum a posteriori (MAP) 

reconstruction in the Bayesian framework (Qi and Leahy, 2006). One or more regularization 

parameters are usually required to balance the relative strength between the log-likelihood 

function and the penalty function. Larger regularization parameter leads to smoother images 

but also blurs small objects and edges. The selection of optimal parameters is rather 

challenging since it depends not only on the penalty itself but also on the unknown images. 

Different penalty functions have different effects on PL image reconstruction, so a 

regularization parameter that is suitable for one penalty function usually does not work well 

for other penalty functions. One approach is to choose the regularization parameters to 

achieve a desired spatial resolution by theoretically analyzing the noise and resolution 

properties of PL reconstructions (Fessler and Rogers, 1996, Qi and Leahy, 2000). 

Furthermore, the penalty function can be designed to maximize the lesion detectability if 

prior knowledge of the lesion is available (Yang et al., 2013). However, the theoretical 

analysis only works for quadratic penalty functions and cannot be applied to edge-

preserving regularizations.

There is also a large body of parameter selection methods that seek to minimize the total 

predicted mean squared error (MSE) (Thompson et al., 1991). Since the true MSE is 

impractical to compute, many approximate methods have been developed, including the L-

curve method (Hansen and O'Leary, 1993), the χ2 method, and generalized cross validation 

(GCV) (Thompson et al., 1991). The most attractive one is the use of Stein’s unbiased risk 

estimate (SURE) (Stein, 1981), which provides an unbiased estimation of the true MSE 

without requiring the noise-free data. SURE was originally developed for Gaussian noise. 

Modifications have been proposed to tackle Poisson noise in the applications of image 

deconvolution (Hudson and Lee, 1998, Bardsley† and Laobeul, 2008, Carlavan and Blanc-

Féraud, 2012). Zanella et al (Zanella et al., 2009) also proposed a discrepancy principle for 

image denoising in Poisson noise. In PET, SURE has been used to select the low-pass filter 

for the FBP reconstruction (Pawitan and O'Sullivan, 1993). Recently, Zhou et al applied a 

Monte Carlo SURE-based parameter selection method to PL image reconstruction in PET 

(Zhou and Qi, 2014). The key component of SURE computation is the first-order derivative 

of the image estimator with respect to the data. Closed-form solution is generally 

unavailable since the PL estimator is a nonlinear function of data and is computed using an 

iterative algorithm. Even when a closed-form expression is available, evaluation of the 

Jacobian matrix often involves inversion of a huge matrix, which can be difficult to compute 

due to the large matrix size.

Since PET data follow a Poisson distribution, MSE based criterion is less desirable. Here we 

propose a cross-validation method based on the Poisson log-likelihood function. Cross 

validation has been proposed to select the number of iterations in ML EM algorithm for both 

conventional PET (Llacer et al., 1993) and dynamic PET reconstruction (Selivanov et al., 

2001). In these papers, the measured data were randomly separated into two identically 

distributed datasets and both datasets were reconstructed using the other dataset for cross 

validation. The final reconstructed image is the sum of the two optimal reconstructions.
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Here we use the cross validation method to select regularization parameters in PL 

reconstruction. We divide the events unequally, using majority of the events for 

reconstruction and leaving a small fraction of events out for validation. The ratio between 

counts for reconstruction and for cross validation will be determined based on the statistical 

analysis of the variance. Similar to the SURE-based parameter selection method, it does not 

require any knowledge of the true image, but has a much simpler form and less 

computational burden. We demonstrate the effectiveness of the proposed method using both 

simulation and real data.

The rest of this paper is organized as follows. Section 2 introduces the penalized likelihood 

reconstruction and the proposed cross validation method. Section 3 describes the details of 

the simulation setup and patient data acquisition. Reconstructed images and quantitative 

studies are shown in Section 4. Finally, we discuss important findings in Section 5 and draw 

conclusions in Section 6.

2. Methods

2.1 Penalized likelihood reconstruction

In PET image reconstruction, the measured data y can be modeled as a collection of 

independent Poisson random variables whose mean ȳ(x) is related to the unknown emission 

image x through an affine transform

where P = {pi,j} ∈ ℝM×N denotes the probability of detecting an emission event from pixel j, 
j ∈ 1,…,N, at detector pair i, i ∈ 1,…,M, and r denotes the mean of background scattered 

and random events. The expectation of the background, r, is estimated before reconstruction, 

and is treated as a known vector during the reconstruction. The PL reconstruction is obtained 

by maximizing a penalized likelihood function

where L (y|x) is the Poisson log-likelihood function defined as

and U(x; δ) is the penalty function with β and δ being the regularization parameters.

2.2 Cross validation

All penalty functions in PL reconstructions require one (β) or more (β, δ) parameters. 

Selecting the proper values of the regularization parameters often requires the knowledge of 

the true image, such as those based on the mean squared error (MSE) either in the image 

domain or the sinogram domain. Here we propose a parameter selection method that does 

not rely on the ground truth based on cross validation.
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Let y1 and y2 denote two independent identically distributed noisy realizations, and x̂β (y1) 

and x̂β (y2) denote the respective reconstructed images with the regularization parameter(s) β 
1. We propose to select the optimum regularization parameter(s) by maximizing the cross-

validation log-likelihood (CVLL) function that is defined as the log-likelihood function 

value of x̂β (y2) based on data y1

(1)

Because the two datasets are independent, the reconstructed image from one dataset can 

only fit to the true signal, but not the noise, in the other dataset. As we will show later, 

equation (1) is an unbiased estimate of the log-likelihood function computed from the noise-

free data

which we refer to as the true log-likelihood. This measurement represents how well the 

reconstructed image explains the noise-free data, and would be one of the golden standards 

if the noise-free data could be measured.

In addition to modeling of Poisson distribution, another advantage of the CVLL over the 

traditional projection-space MSE (PMSE) is that it can be directly applied to list-mode PET 

data. The CVLL in the list-mode format can be written as

(2)

where K1 is the total number of events in data y1, ik denotes the LOR index of the kth event 

in data y1, and  is the sensitivity of the jth voxel. For list-mode time-of-flight 

(TOF) data, calculating CVLL has much less computational burden than calculating the 

projection MSE because there is no need to calculate every sinogram bin and every time bin 

in the forward projection.

In practice, there is only one dataset. In order to perform the CVLL calculation, the dataset 

will be split into two parts by random sampling, one for reconstruction and the other for 

cross validation. Previous studies have split data equally into two datasets and perform two 

sets of reconstructions. Here we only use a small fraction of the data that is necessary for 

cross validation. When the count levels between the reconstruction and validation datasets 

are different, a scale factor is used to compensate for the difference in the count levels. 

Specifically, if only  events in y1 are used for cross validation, the formula becomes

1For simplicity we use β to denote the collection of all regularization parameters.
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(3)

2.3. Mean and Variance of the CVLL

Here we analyze the mean and variance of the CVLL to determine the minimum amount of 

data for cross validation. Let yn,i denote the measured data and ȳn,i denote the expected 

number of events in LOR i, where n =1,2 represent two independent realizations. For a given 

emission image x, ȳ1,i = ȳ2,i = ȳ(x)i. For convenience, we define that

as the forward projection of the estimated image x̂ from dataset yn using parameter β.

The CVLL can be written as

Since  are independent Poisson variables and pβ,2 is a constant once the 

reconstructed image x is fixed, the expectation and variance of CVLL with respect to the 

cross-validation dataset are given by

and

It shows that the CVLL is an unbiased estimate of the true log-likelihood function computed 

using the noise-free data ȳ(x)i with a predictable variance. If only a fraction  of events 

are used in the CVLL calculation, a simple calculation can show E[CVLLα(β)] = 

E[CVLL(β)] and var[CVLLα(β)] = α×var[CVLL(β)], i.e., CVLLα is an unbiased estimation 

of the true log-likelihood independent of α value and the variance of CVLLα is linearly 

proportional to α, which is the ratio of number of events for reconstruction over the number 

of events for cross validation.

In this work, we focus on finding the maximum point of the CVLL with respect to the 

regularization parameter β. Therefore, we are interested in the difference between CVLL 

values, not the CVLL value itself. Let βr denote a reference point, which is roughly close to 
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the optimal point. We are going to calculate the expectation and variance of CVLL(β) − 

CVLL(βr) as below.

Hence the expectation of the difference is

(4)

and the variance of the difference is

If the cross-validation dataset has only  events of the reconstruction dataset, the variance of 

the difference will be

(5)

Equation (5) also shows that the variance of the difference is linearly proportional to α. This 

allows us to predict the variance according to α and estimate the minimum fraction of data 

for the cross validation to achieve a certain accuracy in the optimum parameter estimation. 

By accuracy we mean obtaining a standard deviation that is small enough to make the 

difference reliable. While in reality the noiseless data ȳ(x)i is unavailable, the variance in (5) 

can be estimated using the measured data in the place of ȳ(x)i (Li et al., 2004). Examples of 

this approach are given in Section 4.1.2 and 4.2.2.

3. Simulation and patient data

3.1 Simulation setup

We simulated a clinical whole-body PET scanner operated in a 2D imaging mode. The 

scanner consists of 40 detector blocks arranged in a ring of diameter 90.9 cm. Each block 
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contains 16 scintillation crystals. The individual crystal size is 4 mm (transaxial) ×12 mm 

(radial). An accurate system matrix was precomputed using a multi-ray tracing method that 

models the solid angle effect and photon penetration (Huesman et al., 2000). A Hoffman 

brain phantom shown in Figure 1 was forward projected to generate a noise-free sinogram. 

Noisy realizations were obtained by introducing independent Poisson noise to the noiseless 

projection. Two different count levels (250k and 500k) were examined. The mean of 

scattered and random events was assumed to be uniform across all sinogram bins. The final 

sinogram contains about 30% randoms and scatters. Images were reconstructed into a 

102×102 pixel array of 2-mm square pixels using MAP-EM algorithm with a quadratic 

penalty function (De Pierro, 1995).

For quantitative evaluation, we compared the CVLL with the true log-likelihood function. 

We studied the mean and variance of the CVLL as a function of different cross-validation 

count levels (1%, 5%, 10%, 25%, 50% and 100%) of the reconstruction counts level, (which 

are equivalent to α = 100, 20, 10, 4, 2, 1, respectively). We computed the theoretically 

predicted variance using Equation (5) and validated the results using the sample variance 

from 500 independent realizations.

To examine the importance of datasets independence, we generate a series of cross-

validation datasets by combining y2 and y1 with different ratio as

with ξ = 0, 0.2, 0.3, 0.5, 1. Note ξ = 0 represents the true cross validation and ξ = 1 is 

completely self-validation, because datasets y1 and y2 are independent. The CVLL will be 

calculated using equation (3) with y1 replaced by ym. The reconstructed dataset y2 remains 

the same.

3.2. Patient data study

The clinical data come from a Toshiba whole-body TOF PET/CT. The scanner consists of 40 

detector blocks arranged in a ring of diameter 90.9 cm. Each block contains 16×48 lutetium-

based scintillation crystals. The individual crystal size is 4 mm (transaxial) × 4 mm (axial) × 

12 mm (radial). The timing resolution is approximately 400 ps. For a whole-body scan, eight 

50% overlapping bed positions were combined into one dataset with 216 virtual rings in the 

axial direction. The dataset was divided into 4 independent identically distributed (i.i.d.) 

datasets with a total number of counts about 115 million each. One dataset was used for 

reconstruction and the other three datasets were used to generate cross-validation datasets by 

resampling the list-mode data. Resampling means to randomly choose a certain number of 

events from the other three datasets without replacement. Here “without replacement” means 

one event cannot appear twice in a single realization. One hundred realizations were 

generated at different count levels to compute the mean and standard deviation of the CVLL 

difference. An ordered-subset list-mode MAP-EM algorithm was used to reconstruct 

images, with 10 subsets and 5 iterations. Images were reconstructed using 150×150×216 

voxels with a voxel size of 4×4×4 mm3. The attenuation factors were obtained from the CT 

scan. The normalization factors were computed based on a uniform cylinder scan. Randoms 
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were estimated using the delayed window method. Scatters were estimated using the single-

scatter simulation.

In addition to the quadratic penalty, we also studied a patch-based Fair penalty which has a 

form of

where jl denotes the lth voxel in the patch of voxel j, kl denotes the lth voxel in the patch of 

voxel k. nl is the total number of voxels in a patch. hl is a positive weighting factor equal to 

the normalized inverse spatial distance between voxel jl and voxel j with

ϕ(t) is the Fair (a.k.a Lange) function

The derivative of the Fair function is

Therefore, the Fair function is equivalent to L1 penalty when δ ≪ |t|, and approaches a 

quadratic function when δ ≫ |t|, as shown in Figure 2.

4. Results

4.1. Simulation results

4.1.1 Mean and variance of CVLL—Figure 3 shows the reconstructed images using the 

quadratic penalty with different regularization strengths. The count level for the images in 

the top row is 250K and for the bottom row is 500K. As expected, the image becomes 

smoother from left to right as the regularization strength increases. The β values were 

chosen to show a range of reconstructed images that include both un-regularized images and 

over-smoothed images.

Figure 4 compares the true log-likelihood (LL) and CVLL at different count levels. The 

cross-validation count level is the same as the reconstruction count level (i.e., α = 1). The 

error bars were estimated from 500 independent realizations. We can see that as the 

regularization strength varies, there is a maximum point in the true log-likelihood curve. It is 

consistent with our knowledge that a proper regularization parameter can reduce the noise in 
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reconstructed images and improve image quality, but a poorly selected regularization 

parameter, either too large or too small, will result in worse reconstructed images. More 

importantly, the CVLL curves yield the same maximum point as the true log-likelihood. 

Hence, the CVLL can be used to select regularization parameters that maximize the true log-

likelihood without knowing the ground truth. Comparing Figure 4 (b) and (d), we can see 

that when the count level decreases, the optimum regularization parameters increase. This is 

as expected because noisier datasets require stronger regularization strength to suppress the 

noise. Finally, as predicted, the CVLL is an unbiased estimation of the true log-likelihood. 

Although the variance of the absolute CVLL value is much larger than the difference of the 

mean, it does not prevent us from choosing the optimal regularization parameters because 

the CVLL values of different β are highly correlated. In fact, all 500 CVLL curves yields the 

same optimal parameters as the true log-likelihood.

4.1.2. Mean and variance of CVLL difference—Figure 5 shows the mean and standard 

deviation of the CVLL difference with comparison to the true log-likelihood difference. All 

curves are normalized to their peak values. We can see that the CVLL difference predict the 

true LL difference very well and that the optimal β values (2−13 for 250K and 2−15 for 

500K) are reliable with the current count level (α = 1) for cross validation. It also shows that 

as β moves away from the reference βr, the standard deviation of CVLL difference 

increases. This is expected because the difference between x̂β and x̂βr increases.

Figure 6 shows that the variance of the CVLL difference as a function of cross-validation 

count level. We replaced the noiseless data ȳ(x)i in Equation (5) with noisy data y1,i. Each 

experimental point in the figure was obtained by the average of 500 independent noisy 

realizations. The standard deviation of the variance estimation is smaller than the size of the 

symbol (not shown). The results show that the variance of CVLL difference is inversely 

proportional to the cross-validation count level, as predicted by Equation (5). Therefore, 

with an estimate of the variance at a given count level, one can easily predict the variance of 

the CVLL difference at any other count level, which is useful to find the minimum number 

of events for the cross validation to get a reliable estimate of an optimal β. For example, if 

the number of counts for cross validation is doubled, the variance of the CVLL difference is 

going to be halved. Hence, if the variance of CVLL is desired to be reduced by a factor of n, 

the number of events for cross validation should be increased by a factor of n.

As shown in Figure 5, the closest mean and standard deviation of CVLL difference are 12.0 

± 4.7 and 11.9 ± 4.9, for 250k and 500k count levels, respectively. Therefore, the maximum 

α that can be used while keeping the standard deviation less than the CVLL difference are 

 and  for 250k and 500k counts level, respectively, for this phantom 

image.

Figure 7 shows the importance of data independence in cross validation. The curve of black 

stars shows the true log-likelihood, and other color curves show the CVLL with validation 

data including different proportion (ξ) of reconstruction data. All curves are normalized with 

respect to their own peaks. As the correlation between the reconstruction data and validation 

data increases, the optimal β predicted by the CVLL becomes smaller and is pushed further 
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away from the true optimal β. In the case of self-validation (ξ = 1), the predicted optimal β 
becomes zero and the reconstruction becomes the maximum likelihood estimation. These 

results clearly show that it is critical to maintain independence between the reconstruction 

data and validation data.

4.2. Patient data reconstructions

4.2.1. Parameter selection for the quadratic penalty—Figure 8 shows the mean and 

standard deviation of the CVLL difference computed from 100 realizations. The range of the 

β value is different from that used for the 2D simulation because the image intensity of the 

patient image is very different from that of the 2D phantom image. We studied the CVLL 

using 1%, 5%, 10%, or 25% count levels of the reconstruction dataset, which corresponds to 

α values of 100, 20, 10, 4, respectively. The reference point was chosen at β = 106.5 It yields 

the maximum CVLL across all cross-validation count levels, which is consistent with the 

analytical result that the estimation is unbiased, independent of the count level. With 1% 

cross-validation data, we can determine that β = 106.5 and β = 107 result in higher CVLL 

values than either β = 106 or β = 107.5. When the count level exceeds 10%, we are certain 

that β = 106.5 provides a higher CVLL than β = 107. Therefore, β = 106.5 is the best 

regularization parameter among the regularization strengths examined here. However, since 

the CVLL values of β = 106.5 and β = 107 are very close, the optimal β value is likely 

somewhere in-between, which can be estimated by fitting the three highest CVLL points to a 

quadratic function.

Figure 9 shows the reconstructed image of the patient data using different β values. The two 

best images selected by the CVLL are on the upper right (β = 3×106) and lower left (β = 

107). Visually these images have acceptable image quality, i.e. neither too noisy nor too 

blurry.

4.2.2. Parameter selection for the edge-preserving Fair penalty—The Fair penalty 

has two parameters, regularization strength β and a built-in tuning parameter δ. Hence we 

performed a two-dimension search for β and δ simultaneously. Since the mean intensity of 

reconstructed images is around 10−6 and the difference between neighboring voxels is on the 

same order, we chose δ = 2×10−12, 2×10−7, 2×10−6, 2×10−5, which covers the transition 

range from the L1 penalty to the quadratic penalty, according to the derivative of the Fair 

penalty.

Table I shows the CVLL function value of the patch-based Fair penalty with different β and 

δ. The CVLL was calculated using α = 1, i.e. the count level for reconstruction and the 

count level for cross validation were the same. Since the CVLL curve has a single peak as a 

function of β, there is no need to calculate every slot in the table once we can identify the 

optimal β value. For small δ values, the optimal β value is 70, while for δ = 2×10−5, the 

optimal β value is 90. The latter matches the quadratic penalty result, because the Fair 

penalty approaches a quadratic penalty with parameter of . Figure 10 shows the 

reconstructed images of patch-based Fair penalty using the optimal β selected by the CVLL 

for different δ.
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Table II shows the corresponding CVLL difference and its standard deviation. Since the 

variance is inversely proportional to the cross-validation count level, we can predict that the 

minimum fraction of events for a reliable estimate of the optimal β in the table. For example, 

when δ = 2×10−7, the CVLL difference between β = 70 and β = 90 is 13 with a standard 

deviation of 5.4. The maximum α value that we can use while still keeping the standard 

deviation to be less than 13 would be . Since the total counts for reconstruction is 

115 million, the required number of events for cross validation is 115/5.8 = 19.8 million.

5. Discussion

We have proposed a practical method to select regularization parameters in penalized 

likelihood reconstruction based on the cross-validation log-likelihood (CVLL). Statistical 

analysis shows that the CVLL function is an unbiased estimate of the log-likelihood 

calculated from the noise-free data. The proposed method does not require any prior 

knowledge of the true image nor the noiseless projection, and can be applied to a wide range 

of penalty functions and reconstruction algorithms. While a series of images with different 

regularization parameters need to be reconstructed to calculate the CVLL, there is no need to 

have multiple realizations. Therefore, the computational cost is greatly reduced compared 

with a lesion detectability study or Monte Carlo based SURE method. Simulation study 

shows that as the regularization strength varies, there is a maximum point in the true log-

likelihood curve. More importantly, CVLL curve calculated from the proposed method 

reaches the maximum value at the same parameter as the true log-likelihood curve. In our 

simulation study, all 500 independent CVLL curves yield the same optimal parameter as the 

ground truth, and the mean of CVLL difference is unbiased, as predicted.

In practice, measured data need to be split into two parts, one for reconstruction and the 

other for cross validation. It is important to keep the reconstruction dataset and the cross 

validation dataset independent. Otherwise, the cross validation result will be problematic, as 

shown in Figure 7. Apparently, most events should be reserved for reconstruction and the 

number of events for cross validation should be kept as little as possible. The variance 

analysis provides a practical way to estimate the minimum number of cross-validation events 

to keep the CVLL result reliable. We can start with an initial α value (e.g., α = 6, which 

corresponds to 85% for reconstruction and 15% for cross-validation) and perform 

reconstruction and cross validation. Based on the resulting variance estimated using 

Equation (5) and the CVLL difference, we can then find the proper α value for a pre-

determined variance as described in Section 4.2.2. The criterion that we used here is to have 

the standard deviation of the CVLL difference to be less than the CVLL difference itself, 

although a more (or less) stringent criterion could also be used. However, because a more 

stringent criterion would require more events in the validation dataset, a compromise has to 

be made to keep most events for reconstruction. Similarly the maximum α value is also 

affected by the step size of the regularization parameters. For the quadratic penalty in the 

simulation, we used a 2× ratio between adjacent β values, which corresponds to a 15–20% 

change in the FWHM of the spatial resolution measured using the method suggested by 

Gong et al (Gong et al., 2016). A larger ratio between β values would result in a larger 

Zhang et al. Page 11

Phys Med Biol. Author manuscript; available in PMC 2018 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CVLL difference and hence would require less validation events to satisfy the same 

criterion.

In the simulation, we have shown that the optimal regularization strength decreases, as the 

number of counts increases. It is consistent with our expectation that higher SNR data 

require less regularization. While the optimal regularization parameters can be affected by 

the number of counts, as well as the PET scanner characteristics, such as scanner geometry, 

detector resolution, field-of-view, etc., the applicability of the proposed method is not 

affected by these parameters because the CVLL is an unbiased estimate of the log-likelihood 

function computed using the noise free data regardless of the count level. We have shown 

that the proposed method can be applied to 2D non-TOF PET in the simulation as well as 

fully 3D TOF PET in the real experiment. In addition to the results shown in Section 4, we 

have also tested the simulation data with the count level ranging from 50k to 2M and found 

that the proposed method can identify the optimal β with similar accuracy and precision.

The results in Section 4 show that the perceptual quality of images selected by the proposed 

method is reasonable, although it may not be perfect, because the proposed method is based 

on an objective global figure of merit instead of human perception. It is possible that the 

proposed method does not agree with a subjective figure of merit, similar to the image mean 

squared error, which has been widely criticized, especially when dealing with perceptual 

important signals, such as speech and images (Wang and Bovik, 2009). Another interesting 

direction is to investigate the correlation between CVLL and local figure of merits, such as 

lesion contrast curve or lesion detectability.

6. Conclusion

We have presented a regularization parameter selection method based on the cross validation 

log-likelihood (CVLL) for penalized likelihood PET image reconstruction. The proposed 

method finds the optimal regularization parameter(s) that maximize the CVLL and does not 

require any knowledge of the true image. Our simulation and real data studies showed that 

the proposed method works well for PL reconstruction. Besides regularization parameter 

selection, the proposed method can also be applied to the selection of other reconstruction 

parameters, such as the iteration number and post-reconstruction filter in the ML-EM 

algorithm.
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Figure 1. 
The digital Hoffman brain phantom.
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Figure 2. 
Fair penalty functions with different δ.
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Figure 3. 
Reconstructed images of Hoffman brain phantom. From left to right: β = 0, 2−17, 2−16, 2−15, 

2−14, 2−13, 2−12, 2−11, 2−10. Top row: count level of 250K. Bottom row: count level of 500K.
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Figure 4. 
Comparison of the true log-likelihood and CVLL as a function of regularization parameter β 
for the quadratic penalty. (a): count level of 250K. (b): (a) without error bar. (c) count level 

of 500K. (d): (c) without error bar.
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Figure 5. 
The mean and standard deviation of CVLL difference. Left: 250K. Right: 500K.
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Figure 6. 
Variance of CVLL difference between β = 2−14 and β = 2−13 as a function of count ratio α. 

Left: reconstruction count level of 250K. Right: reconstruction count level of 500K.
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Figure 7. 
Cross validation log likelihood when including different fraction of the reconstruction data. 

All curves are normalized with respect to their own peak values. The count level is 250k.
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Figure 8. 
Mean and standard deviation of the CVLL difference with respect to the reference point at β 
= 106.5 using different count levels in the cross validation.
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Figure 9. 
Reconstructed images with β = 0, 106, 3×106, 107, 3×107, 108, using quadratic penalty 

function.
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Figure 10. 
Patch-based Fair penalty reconstruction. (a): δ = 2×10−12, β = 70. (b): δ = 2×10−7, β = 70. 

(c): δ = 2×10−6, β = 70. (d): δ = 2×10−5, β = 90.
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Table I

CVLL of patch-based Fair penalty reconstruction.

β /δ 2×10−12 2×10−7 2×10−6 2×10−5

50 −22836997 −22837021 −22837104 −22837248

70 −22836963 −22836990 −22837078 −22837215

90 −22836975 −22837003 −22837086 −22837202

100 - - - - - - −22837279
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Table II

CVLL difference and its standard deviation using β = 70 as the reference.

β / δ 2×10−12 2×10−7 2×10−6 2×10−5

50 −34 ± 6.6 −31 ± 6.5 −26 ± 5.9 −33 ± 4.2

70 0 0 0 0

90 −12 ± 5.5 −13 ± 5.4 −12 ± 4.9 13 ± 3.5

100 - - - - - - −64 ± 5.1
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