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Abstract

Mechanics of Lipid Bilayers with an Attached Cytoskeleton, Tilt and Distension

by

Brett Hendrickson

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor David Steigmann, Chair

The purpose of this thesis is to examine the mechanical aspects of biological lipid
bilayers. Constituting the cell membranes of nearly every organism, lipid bilayers are com-
posed of amphiphilic lipid molecules which self-assemble into bilayers in aqueous solution.
They exhibit a fascinating combination of flexural resistance as in shell structures and lateral
flow as in two-dimensional fluid sheets, giving rise to a host of complex phenomena. Lipid
bilayers represent a promising object of inquiry for medical innovation, as dysfunctional lipid
bilayers have been linked to disease formation. This work seeks to mathematically depict
previously unexplored lipid bilayer phenomena.

A simple model of lipid tilt and distension inspired by parallel research in molecular
dynamics is outlined and demonstrated numerically. This simple model assumes reflection
symmetry of lipid molecule orientation about the bilayer midsurface. Equilibrium config-
urations for a membrane of this type are presented for domains containing many closely
packed voids representing transmembrane proteins. Lipid tilt and distension patterns arise
due to the amphipathic nature of these proteins. Then, a model for a lipid bilayer involving
independent tilt fields for top and bottom leaflets of the bilayer is developed. This loosened
restriction leads to a complex but more general theory. A model for a lipid bilayer with a
conforming elastic cytoskeleton is then proposed and equilibrium equations are established.
The spontaneous curvature of the conventional Helfrich theory is shown to arise naturally
as a mechanical aspect of this system.
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Chapter 1

Introduction

Modern life science has emphasized interdisciplinary efforts to unravel the man-
ner in which the molecular building blocks of living cells physically interact. As a result,
continuum mechanics has become relevant in cell biology topics, such as in the study of
lipid bilayers. Their coupled chemical, topological, and mechanical properties can be in-
ternally modulated with amazing precision and speed [14]. Newly acquired knowledge of
lipid bilayers has been exploited in laboratories and clinical trials for use in cancer treat-
ments, drug-delivery, drug permeability testing, and biosensor design (including rapid toxin
assessment) [39]. The study of lipid bilayers has recently benefited from the increased par-
ticipation of the mechanics community, improving the understanding of coupled geometric
and mechanical lipid bilayer properties.

Compared to the ad-hoc nature of early lipid bilayer models, utilization of concepts
from differential geometry and shell theory has produced a more coherent mathematical basis
for describing lipid bilayers, yielding excellent predictive accuracy even at molecular length
scales [57]. Classical theories of lipid bilayers rely on the Helfrich model in which areal energy
density is established as a function of Gaussian and mean curvature. This standard approach
does not allow for the tilting of lipid molecule axes away from the surface normal nor axial
distension of lipids (Figure 1.1(B), (C)). However, experimental observations evidence tilt
and distension manifesting in many ways, including a ripple-like effect [58].

This work seeks to expand the theoretical understanding of mechanical lipid bilayer
phenomena, including tilt, distension, and other effects not included in the standard models.
The theoretical additions are then demonstrated using illustrative examples numerically.
The first introductory sections below give a brief discussion of the physical arrangement
and biological purpose of lipid bilayer membranes in cells. The next section summarizes the
background research performed by previous authors as a starting point for this thesis. The
last section gives a synopsis of the theoretical improvements contained in this work.
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Figure 1.1: Lipid bilayer with an embedded protein. A: No tilt/distention B: Lipid distension.
C: Lipid tilt [53].

1.1 Background on lipid bilayers

Membranes composed of phospholipid bilayers are an essential feature of cells.
They are found in all known living cells excluding just a handful of single-celled organisms
which contain monolayers [6]. Their essential functions are to serve as a container for the
rest of the cell, separating the cell from its environment, and as a facilitator of material
transport and signaling. Lipid bilayer membranes also similarly encapsulate and aid in the
function of many internal organelles, including the nucleus, mitochondria and chloroplasts.
Vesicle formation, in which materials are pinched into a small cavity surrounded by a lipid
bilayer for transport, may take place on the surface of the Golgi complex, the endoplasmic
reticulum, or form when material on the cell’s boundary becomes encased in its exterior
membrane. Integral membrane proteins which diffuse among the polar lipids of a membrane
act as signal transducers and regulate chemical transport across the lipid barrier. Many of
these proteins carry signals across the cell membrane, relaying information from the exterior
to the interior of the cell, and vice versa.

The major constituent of biological membranes are phospholipid molecules ex-
hibiting a hydrophilic head group and hydrophobic tail group. The head group is composed
of a phosphate group with a negative charge, resulting in a tendency toward electrostatic
attraction with polar water molecules. The tail group usually consists of two fatty acid
chains. These chains are non-polar and so are induced by hydrophobic effects to accumulate
in solution and exclude water molecules. Phospholipid amphiphiles that are exposed to water
then tend to naturally orient themselves into two stacked leaflets with the opposite orienta-
tion. This self-assembly process forms a lipid bilayer that minimizes the interaction of water
molecules with the hydrophobic tail groups and is only two molecules thick. These bilayers
favor the formation of enclosed shapes, as any open boundary of the bilayer entails distor-
tion of the phospholipids from their most favorable orientation. The precise composition of
each leaflet of the bilayer is often asymmetric, resulting in slightly asymmetric mechanical
properties between the top and bottom layer of the membrane.

The chemical properties of the various head and tail groups of the lipids forming
a bilayer also affect membrane function. For example, tail groups modulate the phase of the
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bilayer by influencing the temperature at which the bilayer transitions from a solid gel phase
to a fluid phase. This fluidity allows for lateral diffusion of molecules within the bilayer,
such as embedded proteins and cholesterol. Interactions between embedded molecules or
structures in the bilayer may then alter the curvature of the membrane surface or convey
signals across the membrane. Many biological functions extensively rely on the lateral flow of
bilayer components. Another functional aspect affected by the diversity of lipids in a typical
bilayer is propensity toward lipid tilt [54]. Lipids with larger head groups that have stronger
interactions, such as phosphatidylcholines, generally tend to tilt from the midsurface normal
direction more than lipids with smaller head groups, phosphatidylethanolamines for example
[63].

1.2 Literature review

The unique mechanical properties and physiochemical functions of a biological lipid
bilayer membrane emerge from its fundamental composition, formed through self-assembly
of individual molecules into fluid films with extremely fine cross-sectional thickness (< 10nm)
[28]. Despite this, membranes can remain stable even while encapsulating macroscopic vol-
umes [14]. Due to the tendency of the lipid molecules to resist deviating from a parallel
axial orientation relative to one another, changes in surface area associated with stretching
of the membrane require a comparatively large amount of energy. This amounts to an ef-
fective stiffness akin to the bending elasticity observed in solid shell structures which can be
incorporated into an energetic model of mechanical behavior by penalizing curvature.

In most physiological conditions, the lipids occur in a liquid phase. Although the
polar arrangement of the lipids prevents them from flowing transversely across the hydropho-
bic bilayer core and switching layer en masse, lateral flow within each layer allows lipids and
other embedded molecules to easily diffuse in plane across the membrane [25]. Thus, the
bilayer cannot support shear stresses consistent with typical fluid behavior. These attributes
imply that biological lipid bilayers can be cast as a two-dimensional fluid sheet with bending
stiffness.

A vast array of theoretical models of biological lipid bilayers have been proposed
and applied to study numerous physiological phenomena. One style of model relies on the
balance laws and constitutive relations of the continuum mechanics of nonlinear shells [11].
The natural preference of lipid orientation along the midsurface normal direction lends itself
to the application of Kirchhoff-Love shell theory to biomembranes. The effects of lateral
fluid flow are included by imposing material symmetry through the constitutive function.
The resolution of the resulting equations of motion along the normal direction generates the
so-called shape equation. The resolution of the equations of motion along the tangential
direction yields an equation governing the surface tension of the bilayer.

An alternate framework to the balance laws is the variational method [11]. In this
scheme, an energy functional is proposed and its variations minimized to find equilibrium
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equations. Normal variations return the shape equation and tangential variations govern
surface tension. The relevant basis for the models proposed in this thesis fall under the vari-
ational method. The two approaches described can be shown to give equivalent equilibrium
equations given the proper kinematic constraints [79].

In the variational approach, asymmetry in the chemical properties of the two sides
of the bilayer or other influences leading to curvature at equilibrium has been included in
two ways [83]. The first is known as the bilayer-coupling model. In this family of models, a
constraint is applied to the area difference of the top and bottom layers of the bilayer. In
the second variant, the spontaneous curvature model, curvature at equilibrium is accounted
for by the incorporation of an additional term in the strain energy per unit area function
called the spontaneous curvature [24].

By far the most familiar and widely used model for biomembrane mechanical
behavior is due to Canham [12] with an equivalent and more commonly used form given by
Helfrich [24]. The classical Canham-Helfrich theory incorporates a characteristic spontaneous
curvature and a strain energy which depends on Gaussian curvature linearly and mean
curvature quadratically. This model has been used successfully to study equilibrium shapes
of cells and other encapsulations of lipid bilayers, especially erythrocytes, along with many
other biological membrane behaviors such as the formation of invaginations, budding and
other aspects of endocytosis [68, 46, 27, 44].

The Helfrich model restricts the orientation of the lipid molecules to remain fixed
along the orthogonal normal direction of the membrane surface and to retain their fixed
lengths. These assumptions are in accordance with the kinematic assumptions underpinning
the Kirchhoff-Love theory of elastic shells, in which material filaments initially normal to
the shell midsurface remain straight and normal after deformation and the thickness of the
shell does not change [66]. The Helfrich model can therefore not accommodate for tilting
and distension of the lipid molecules, even for situations in which tilt and distension would
be energetically optimal. Models based on the Cosserat theory of shells have been applied to
include lipid tilt and distension, which also reduce to the Helfrich model under application
of the appropriate constraints [79].

Lipid biomembranes have been found to be modeled well by the Helfrich model
for problems at scales much larger than membrane thickness such as a complete cell or
vesicle [24, 12, 17, 91]. The formation of equilibrium shapes such as spheres, “dog-bones”
with high aspect-ratio and the transitions between such forms are some examples [92, 23,
83]. The biconcave discoid shape of the human erythrocyte has received particular atten-
tion. Numerous membrane integral proteins and their various attachments to the internal
cytoskeleton and the extracellular matrix have been found to regulate the amazing flexibility
of the erythrocyte and prevent it from collapsing [47].

For problems at scales approaching membrane thickness, however, other effects
such as membrane tilt and distension must be included as fields for a continuum theory to
remain applicable [91]. Lipid molecule tilt and distension has been found to be a critical
aspect of lipid bilayer fission [86, 87], fusion [69, 65], relaxation of stress due to membrane
inclusion [33, 85, 70, 55] and endocytosis [9, 59, 80]. Theories incorporating lipid tilt and
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distension have been proposed based on symmetry arguments [20, 56, 49, 81], and by deriving
larger-scale areal energy integrals from smaller-scale molecular theories [5, 89, 42, 35, 37].
These approaches have not addressed the possibility of an independent tilt field for the top
and bottom leaflets of the lipid bilayer.

The overview of previously completed research stated above constitutes a basis
and motivation for the additions to the theory presented in this thesis. The next section
summarizes this work.

1.3 Thesis summary

Parallel computational research into model protein/lipid biomembrane systems
using a particle based molecular dynamics approach has supported the notion that lipid
tilt and distension in the vicinity of an embedded protein affects bilayer mechanics [77, 43].
Inspired by this development from particle based methods and [77], we demonstrate a simple
model involving lipid tilt and distension in Chapter 2 using the nonlinear solver package of
the COMSOL Multiphysics software package. The derivation of equilibrium equations and
linearization of the system is reviewed and then the nonlinear system is solved numerically
and plotted for a square domain with numerous voids representing embedded proteins.

In Chapter 3, we discuss the mechanics of a lipid bilayer with a conforming cy-
toskeletal membrane in which the bilayer has the structure of a nematic liquid crystal and
the cytoskeleton that of a simple elastic solid. Under certain conditions the cytoskeletal
membrane mimics the effects of the so-called spontaneous curvature of the conventional
theory of lipid membranes. The model is used to predict the classical biconcave discoid
shape of red-blood cells in equilibrium. The equilibrium equations are then linearized in a
Monge representation and solved and plotted for a simple state of stress using COMSOL
Multiphysics.

Several competing two-dimensional models of the mechanical response of tilted
lipid bilayers have been proposed in the biophysics literature. Following an idea due to
Helfrich, in Chapter 4 we seek to settle this subject by deriving a two-dimensional model
via asymptotic analysis of three-dimensional liquid crystal theory in which lipid length plays
the role of the small parameter. Our model emerges as an example of Cosserat shell theory
featuring independent sets of director fields for each of the two leaves constituting the bilayer.
This appears to be the first model accommodating asymmetry in the tilt fields of the top
and bottom halves of the bilayer.

Chapter 5 concludes the thesis with a review of the salient results and some sug-
gestions for expanding on these results.
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Chapter 2

Simple model including lipid tilt and
distension1

2.1 Formulation of model

Although all biological lipid bilayer membranes share the same basic structure
composed of two oppositely oriented leaflets of phospholipids enclosing their hydrophobic
fatty acid tail groups, the combination of integral proteins diffusing within them varies
greatly [22]. Some types of embedded proteins may be conical in shape or contain residues
that interact with ionically with the hydrophilic/hydrophobic groups of the lipids composing
the bilayer. These interactions are known to induce lipid tilt and distension [45, 58].

The conventional Helfrich theory of lipid bilayers constrains the lipid molecules
to remain oriented along the bilayer midsurface normal direction and maintain constant
length. This precludes the possibility of lipid tilting or distension in the presence of an
interacting integral protein. To establish a simple model in which lipid tilt and distension is
unconstrained, consider the following problem (Figure 2.1).

Far from the embedded protein, the lipid molecules are aligned with the planar
midsurface normal n = k (fixed) and are not distended. In the vicinity of the bound-
ary between the bilayer and the integral protein, the lipid molecules become tilted and
their length changes (distension) in order to shield the hydrophobic core. For simplic-
ity, reflection symmetry of response to the embedded protein is assumed across the mid-
surface ω. In this case we can then model the tilt and distension as single field rep-
resenting the orientation of the lipids in the top leaflet and reflect this to the bottom.

1The model described in this chapter emanates from a lecture given by Prof. D.J. Steigmann at UC
Berkeley in September 2017 [77].
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Figure 2.1: Lipid bilayer with an embedded protein. The black rectangle represents an
integral protein with a hydrophobic patch. Far from the protein the lipids are of length d0

and aligned along the normal n to the midsurface ω. In the vicinity of the protein the lipids
are tilted and distended.

Define the vector field δ aligned with the lipid molecules (Figure 2.1)

δ = φ+ dk, (2.1)

where φ is the in-plane projection of δ onto ω and d is the projection of δ along the normal
direction.

The spatial gradient is then

∇δ = ∇φ+ k ⊗∇d. (2.2)

We seek a strain energy function W with the functional dependence

W (n, δ,∇δ) = W (δ,∇δ), (2.3)

where dependence on n can be neglected as n = k (a constant vector).
Propose a simple model for energy

W =
1

2
k|∇δ|2 +G(ξ, d), (2.4)

in which k is an elastic constant of the lipid molecules, ξ = |φ|, and G(ξ, d) is an appropriate
function of accounting for the energetic contribution of ξ and d. This ad hoc energy satisfies
rotational invariance requirements such that

W+ = W (Qδ,Q∇δQT ) = W (δ,∇δ) (2.5)
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Figure 2.2: Schematic representation of lipid molecule director field δ. The field φ is the
projection of δ onto the midsurface plane ω.

for all rotations Q, and is not derived from the classical Frank energy for liquid crystals.
Expanding the strain energy function (2.4), we find

W =
1

2
k(∇φ · ∇φ+∇d · ∇d) +G(ξ, d). (2.6)

Adopting a variational approach to derive equilibrium equations for the bilayer,
we seek to minimize the variation of the total energy E such that

Ė = 0, (2.7)

in which E is the integral of the strain energy over the fixed bilayer midsurface plane ω,

E =

∫
ω

Wda. (2.8)

Taking the variation of the integral is equivalent to integrating the variation of the integrand,
so that

Ė =

∫
ω

Ẇda, (2.9)

where

Ẇ =
∂W

∂d
ḋ+

∂W

∂φ
· φ̇+

∂W

∂∇d
· ∇ḋ+

∂W

∂∇φ
· ∇φ̇. (2.10)

Noting that

∂W

∂∇d
· ∇ḋ = div

[(
∂W

∂∇d

)T
ḋ

]
− ḋ div

(
∂W

∂∇d

)
, (2.11)
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and similarly for ∂W
∂∇φ · ∇φ̇, we can then apply the divergence theorem to rewrite Ė = 0 as

0 =

∫
ω

[
∂W

∂d
− div

(
∂W

∂∇d

)]
ḋ+

[
∂W

∂φ
− div

(
∂W

∂∇φ

)]
φ̇ da

+

∫
∂ω

ḋ

(
∂W

∂∇d

)
· ν + φ̇ ·

(
∂W

∂∇φ

)
ν ds,

(2.12)

where ν is the unit normal vector field of the bilayer boundary ∂ω. By exploiting the
arbitrariness of the variations ḋ and φ̇ in (2.12), we find the resulting Euler equations are

div

(
∂W

∂∇φ

)
=
∂W

∂φ
, (2.13)

div

(
∂W

∂∇d

)
=
∂W

∂d
, (2.14)

on ω.
The boundary conditions can be assigned on ∂ω as either

d and φ, (2.15)

or (
∂W

∂∇d

)
· ν and

(
∂W

∂∇φ

)
ν. (2.16)

For the form of W proposed above in (2.6), the equilibrium equations (2.13) and
(2.14) then become

∂W

∂∇φ
= k∇φ, (2.17)

∂W

∂∇d
= k∇d. (2.18)

Next, solve for ∂W
∂φ

by holding all variables fixed except φ to obtain

∂W

∂φ
· φ̇ = Gξ ξ̇ = ξ−1Gξφ · φ̇, (2.19)

which implies that
∂W

∂φ
= ξ−1Gξφ. (2.20)

Noting that
∂W

∂d
= Gd, (2.21)

the equilbrium equations (2.17) and (2.18) can then be represented as

k∆φ = ξ−1Gξφ, (2.22)
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k∆d = Gd, (2.23)

where ∆(·) = div[∇(·)] is the two dimensional Laplacian on ω.
Propose a Hookean energy for G,

G(ξ, d) =
1

2
c(t− d0)2 +H(d), (2.24)

where t =
√
d2 + ξ2, c is a material constant, and H(d) is a term appended to penalize lipid

collapse. This prevents t from vanishing, a highly unstable state in which the hydrophobic
tail groups are exposed to the aqueous environment.

Figure 2.3: Plot of an example function for the penalizing term H(d) vs. d.

H(d) is defined such that (Figure 2.3)

H(d0) = 0, H ′(d0) = 0, H ′′(d0) > 0. (2.25)

At this point the system is still nonlinear. Linearize the system about a base state
trivially satisfying the nonlinear system, (ξ, d) = (0, d0) =⇒ φ0 = 0.

⇒ φ = φ0 + φ̇ = φ̇, (2.26)

⇒ d = d0 + ḋ, (2.27)

for small perturbations φ̇ and ḋ.
Applying this linearization to the system defined by (2.22) and (2.23) yields

k∆φ̇ = (ξ−1Gξ)
·φ0 + (ξ−1Gξ)0φ̇, (2.28)

k∆ḋ = (Gdd)0ḋ+ (Gdξ)0ξ̇, (2.29)
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where (·)0 is the value of (·) at φ0 = 0 and d0.
For this choice of G(ξ, d)

(ξ−1Gξ)0 = 0, (2.30)

(Gdξ)0 = 0, (2.31)

(Gdd)0 = C +H ′′(d0) > 0. (2.32)

The resulting system then reduces to

∆φ̇ = 0, (2.33)

∆ḋ = κḋ, (2.34)

where κ = k−1(C + H ′′(d0)). Linearization of the system has thus decoupled φ and d.
Although it is now possible to solve this system analytically using modified Bessel functions
and separation of variables in polar coordinates [77, 78], we seek numerical solutions to the
nonlinear system in the next section.

2.2 Numerical solutions of nonlinear model

In order to generate representative plots of solutions to the nonlinear system con-
tained within (2.22) and (2.23), we use the form of G proposed in (2.24), with H(d) omitted
as solutions were found to not include d = 0 for the domains and boundary conditions chosen.
This system then takes the form

∆φ = c′
(

1− d0

t

)
φ, (2.35)

∆d = c′
(

1− d0

t

)
d, (2.36)

where c′ = c
k

and has units of
[

1
length2

]
For demonstration purposes the constant c′ is assigned a value of 1. The nonlinear

partial differential equation solver of COMSOL Multiphysics v5.6 was then used to present
representative plots of the solutions.

In Figure 2.4, a square domain with sides of length 100 nm containing an array
of circular voids was solved representing a patch of a lipid bilayer containing numerous
embedded proteins. The sides of the domain were assigned the boundary conditions φ = 0
nm and d = 1 nm. The boundaries representing the circular embedded proteins were assigned
φ = {abs(sin(5x))ex + abs(sin(5y))ey} nm and d = 0.5 nm. The resulting magnitude of the
vector δ representing the director field along the length of individual lipid molecules is
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Figure 2.4: Plot of patch with numerous voids representing embedded proteins.

plotted, and varies little except in the vicinity of the square sides. Figure 2.5 is a plot of |φ|
for the same data set and problem as Figure 2.4. The tilt field varies within the domain due
to the location dependence of the void boundary conditions. This demonstrates a departure
from models excluding lipid tilt.
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Figure 2.5: Plot of |φ| for patch with numerous voids representing embedded proteins. Same
conditions as in Figure 2.4.
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Chapter 3

Lipid bilayer with conforming
cytoskeletal membrane 1

3.1 Introduction

In this chapter we outline a model of the elastic response of a lipid bilayer with a
conforming cytoskeletal membrane. This is intended for application to the mechanics of red-
blood cells, which are known to consist of bilayers with subsurface cytoskeletal membranes
formed by spectrin filaments. These membrane-associated cytoskeletons are thought to be
arranged in networks that exhibit 6-fold hexagonal symmetry (Figure 3.1) [60, 10, 84, 32].
This model was recently supported by experimental evidence applying advances in super-
resolution fluorescence microscopy (Figure 3.2). This technique was used in [60] to confirm
a hexagonal cytoskeleton ultra-structure of triangular linkages of spectrin filaments with
actin-based junctional complexes.

The basic framework of our model is similar to that underpinning Krishnaswamy’s
pioneering work [30] in which material points of the bilayer and cytoskeleton are assumed
to be tethered by a so-called connector field while occupying distinct surfaces. The role of
this connector is to maintain contact between the bilayer and cytoskeleton as they deform.
In that work the bilayer is regarded as a fluid shell, as in Jenkins’ model [29], and the
cytoskeleton is considered to be a perfectly flexible solid membrane. Current work on the
mechanics of the cytoskeleton [62, 38] suggests that the extent to which it convects with
the bilayer is largely unknown. In the present chapter we therefore take the conservative
view that the role of Krishnaswamy’s connector is confined to maintaining congruency of the
cytoskeletal and bilayer surfaces while playing no significant further role in the mechanical
response.

1This chapter has appeared in a recent research article [40].
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Figure 3.1: Theoretical model of human erythrocyte cytoskeleton ultra-structure consisting
of hexagonal unit cells of spectrin filaments linked by actin-based junctional complexes [60],
used with permission.

In Section 3.2, we develop the model of the bilayer/cytoskeleton system cia asymp-
totic expansion in which the bilayer is regarded as a thin nematic liquid crystal film and the
cytoskeleton as a thin layer of a simple elastic solid. Certain vector fields arising in this
procedure occur algebraically in the reduced model and are accordingly evaluated before
proceeding further. This is explained in Section 3.3. In Section 3.4 we discuss material
symmetry conditions for the cytoskeleton and bilayer. Some basic aspects of the differential
geometry of surfaces [48, 13] are recalled in Section 3.5 and adapted there to the kinematics of
congruent configurations of the bilayer and cytoskeleton. Equilibrium equations are deduced
in Section 3.6 on the basis of a patchwise virtual-power postulate, and restrictions implied
by the operative versions of the Legendre–Hadamard condition are discussed in Section 3.7.
Section 3.8 demonstrates a derivation of a strain-energy function for the cytoskeleton which
is such as to admit a surface having the shape of the characteristic biconcave discoid of a
red-blood cell as an equilibrium state. We conclude, in Section 3.9, with a presentation of
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Figure 3.2: Image of human erythrocyte cytoskeleton ultra-structure obtained using super-
resolution microscopy in [60] (used with permission). Statistical analysis of the image sup-
ports hexagonal arrangement model of spectrin and actin network. Arrows point to unex-
pected voids in the network.

numerical solutions of the shape equation for a lipid bilayer membrane with an attached
cytoskeleton using COMSOL Multiphysics.

3.2 Leading-order asymptotic energy for small

thickness

Consider a configuration of the bilayer-cytoskeletal combination in the shape of
a prismatic cylinder generated by the parallel translation of a plane region Π forming the
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Figure 3.3: Small patch of lipid bilayer with a conforming cytoskeleton [40].

interface of the bilayer and cytoskeleton (Figure 3.3). The lipids of the bilayer are presumed
to be straight, parallel and of uniform length in this configuration. The bilayer has thickness
αh and the cytoskeleton (1− α)h, where h is the thickness of the cylinder and α ∈[0, 1].

The energy of the cylinder is

E =

∫
Π

U dA, (3.1)

where

U =

∫ αh

0

Ub dς +

∫ 0

−(1−α)h

Uc dς, (3.2)

in which Ub and Uc respectively are the volumetric energy densities of the bilayer and cy-
toskeleton and ς is the through-thickness coordinate.

A central aspect of the model to be developed is that Π is assumed to convect as
a material surface with respect to both the bilayer and the cytoskeleton deformations so as
to maintain congruency; that is, the (possibly distinct) images of Π under the bilayer and
cytoskeletal deformations are subsets of a single surface ω. We elaborate on the kinematical
implications of this restriction below. Here we assume that ω can be covered completely by
the images of such patches, each of which is assumed, for the sake of notational convenience,
to be parametrized by a single coordinate chart.

We suppose the thickness h to be much smaller than any other length scale, l say,
in a given problem. If the latter is used as the unit of length (l = 1), then the dimensionless
thickness h � 1. Regarding U as a function of h, we combine Leibniz’s rule with a Taylor
expansion to derive

U = hU + o (h) , with U = αUb + (1− α)Uc, (3.3)



CHAPTER 3. LIPID BILAYER WITH CONFORMING CYTOSKELETAL
MEMBRANE 18

in which Ub and Uc respectively are the values of Ub and Uc at ς = 0; i.e., at their common
interface Π. Accordingly,

E/h = E + o (h) /h, where E =

∫
Π

U dA, (3.4)

is the leading-order energy for small h.
Alternatively, in view of the fact that the thickness of the bilayer/cytoskeleton

composite is on the order of molecular dimensions, it is appropriate to contemplate a direct
theory based at the outset on the idea of a material surface without regard to thickness
effects. However, the present asymptotic approach offers guidance as to the features that
such a direct model should possess.

We assume the cytoskeleton to be a uniform elastic material with a strain energy
given by

Uc =Wc(F̃ ), (3.5)

where F̃ is the gradient of the cytoskeletal deformation χ̂ (x), with x ∈ Π× [− (1− α)h, 0],
i.e., x = ξ + ςk, where ξ is the projection of x onto the plane region Π with unit normal k
and ς ∈ [− (1− α)h, 0] . Thus, F̃ = F̂ (ξ, ς), where

F̂ = ∇χ̂+ χ̂′⊗k. (3.6)

Here (·)′ = ∂ (·) /∂ς, ∇ (·) is the (two-dimensional) gradient with respect to ξ, and χ̂ (ξ, ς) =
χ̃ (ξ + ςk). Then,

Uc =Wc(F̃ ), where F = ∇rc + d⊗ k, (3.7)

is the restriction to Π of the cytoskeletal deformation gradient, in which rc (ξ) = χ̂|Π is the
interfacial cytoskeletal deformation and d (ξ) = χ̂′|Π is the interfacial value of the normal
derivative of the deformation.

Following Helfrich [24], we model the lipid bilayer as a liquid crystal with an energy
density

Ub =Wb(ñ, D̃), (3.8)

where ñ is a field of unit vectors specifying the local molecular orientation and D̃ = gradñ
is its (spatial) gradient. It is customary [88] to specify a constitutive function for the energy
per unit current volume and to regard the liquid crystal as an incompressible medium.
Accordingly Ub is also the energy per unit reference volume, as assumed in the foregoing.
Then,

Ub =Wb(n,D), (3.9)

where n and D are the interfacial values of ñ and D̃, respectively. Here, as in Helfrich’s
theory [24], we suppress lipid tilt and thus take n to be the unit-normal field to the image
πb of the interface Π in the current configuration of the lipid/cytoskeleton system. In these
circumstances, we have

D = ∇sn+ η ⊗ n, (3.10)
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where ∇s (·) is the surficial gradient on πb and η is the restriction to πb of the derivative of
ñ in the direction of ñ. Because the latter is a field of unit vectors, we require n ·η = 0 and
conclude that η is a tangential vector field on πb.

The Gauss and Weingarten equations of differential geometry furnish

∇sn = −b, (3.11)

where b is the symmetric curvature 2-tensor on the local tangent planes of πb. We elaborate
further in Section 3.5 below.

The energy density of the composite is thus given, in an abuse of notation, by the
function

U(∇rc, b,d,n,η) = αUb(b,n,η) + (1− α)Uc(∇rc,d), (3.12)

where

Ub(b,n,η) =Wb(n,−b+ η ⊗ n) and Uc(∇rc,d) =Wc(∇rc + d⊗ k). (3.13)

We observe that the dependence of the energy on the fields d and η is purely algebraic. This
suggests a strategy, pursued in the next section, whereby we attempt to render the energy
stationary with respect to these fields a priori.

3.3 Determination of d and η

3.3.1 Cytoskeletal deformation

We decompose d into normal and tangential parts as

d = dnn+ (∇rc)e, (3.14)

where dn = d ·n, e is a 2-vector on Π and Jcn = F ∗k, in which F ∗ is the cofactor of F , and
we note that ∇rc maps Π to the tangent plane of the image πc of Π under the deformation
at the material point in question. Here Jc (= |F ∗k|) and n respectively are the areal stretch
of the interface due to the deformation of the cytoskeleton and the unit normal to πc; these
are determined by ∇rc. We then have detF = F k · F ∗k = Jcdn and thus require dn > 0.

The cytoskeletal energy is frame-invariant if and only if it depends on F via the
Cauchy–Green tensor C = F TF ; we write Wc(F ) = F (C), where, from (3.7)2 and (3.14),

C = c+ γ ⊗ k + k ⊗ γ + (d2
n + e · ce)k ⊗ k, (3.15)

with
c = (∇rc)T (∇rc) and γ = ce, (3.16)

and we remark that
J2
c = detc. (3.17)
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Let G(e) = F (C (e)), where C(e) is the function obtained by fixing dn and
∇rc in (3.15). We seek 2-vectors e that render G stationary. Consider materials that
exhibit reflection symmetry with respect to the plane Π, i.e., F (C) = F (RTCR) with
R = I − 2k ⊗ k, in which I is the three-dimensional identity. Thus,

RTCR = c− γ ⊗ k − k ⊗ γ + (d2
n + e · ce)k ⊗ k, (3.18)

and so reflection symmetry implies that G is an even function: G(e) = G(−e). It follows
that there is a function S such that G(e) = S(E), where E = e⊗ e. Sufficiency of this result
is immediate. To establish necessity, we show that if G(e) = G(−e), then G is determined
by e⊗e, i.e., that G(a) = G(b) whenever a⊗a = b⊗b. The latter yields a2a = (a ·b)b and
b2b = (a · b)a, where a = |a|, etc. The combination of these gives a = b and a2b2 = (a · b)2.
However, there is a θ ∈ R such that a · b = ab cos θ. Thus cos θ = ±1 and either of the
two equations yields b = ±a. The first alternative gives G(a) = G(b); the second yields
G(a) = G(−b), so that if G is insensitive to the choice of sign, as assumed, then G(a) = G(b)
whenever a⊗ a = b⊗ b.

Accordingly, Ge = 2(SE)e and the stationarity condition is satisfied if e = 0;
equation (3.15) then reduces to

C = c+ d2
nk ⊗ k, (3.19)

and the cytoskeletal energy is determined by c and dn:

Uc = F (c+ d2
nk ⊗ k). (3.20)

This is stationary with respect to dn(> 0) if and only if

k · (FC)k = 0, (3.21)

which fixes dn in terms of c.
As we are concerned with equilibria, it is appropriate to confine attention to de-

formations F that satisfy the strong-ellipticity condition; that is, to deformations satisfying

a⊗ b · (Wc)FF [a⊗ b] > 0, (3.22)

for all a ⊗ b 6= 0. In these circumstances the stationarity conditions have unique solutions
that minimize the energy absolutely [73].

3.3.2 The lipid bilayer

We model the lipid bilayer as a nematic liquid crystal described by Frank’s energy
(see [88], (3.63))

Wb(n,D) = k1(trD)2 + k2(W (n) ·D)2 + k3|Dn|2 + (k2 + k4)[tr(D2)− (trD)2], (3.23)
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where k1 − k4 are constants satisfying Ericksen’s inequalities

2k1 ≥ k2 + k4, k2 ≥ |k4| and k3 ≥ 0, (3.24)

in accordance with the assumed positive semidefiniteness ofWb(n, ·), and W (n) is the skew
tensor with axial vector n, i.e., W (n)v = n× v for all v. Then, with (3.10) and (3.11), we
have

W (n) ·D = η ·W (n)n−W (n) · b = 0, (3.25)

on account of the symmetry of b.
Further,

trD = −2H, H =
1

2
trb, (3.26)

is the mean curvature of πb: Combining

D2 = b2 − bη ⊗ n, (3.27)

with the Cayley–Hamilton formula

b2 = 2Hb−K1 where K = detb, (3.28)

is the Gaussian curvature of πb and 1 = I − n⊗ n is the (two-dimensional) identity on its
local tangent plane, we arrive at

tr(D2) = tr(b2) = 4H2 − 2K. (3.29)

Lastly, Dn = η so that, altogether,

Wb(n,D) = kH2 + kK + k3|η|2, (3.30)

with
k = 4k1 and k = −2(k2 + k4). (3.31)

For k3 nonzero this is stationary with respect to η at η = 0, and so we recover the classical
Canham–Helfrich energy [24, 12]

Ub = kH2 + kK, (3.32)

for lipid bilayers, which of course covers the possibility that k3 vanishes. For k3 > 0, it is
clear that (3.32) furnishes the minimum of (3.30).

It is well known that the term in square brackets in (3.23) is a null Lagrangian
in three-dimensional liquid-crystal theory [88]. This term is proportional to K, a null La-
grangian in the two-dimensional theory of lipid bilayers. Moreover, in this theory it is
customary to model a possible asymmetry in bending response by introducing a variable C,
the spontaneous curvature, via the modified energy [92]

Ub = k(H − C)2 + kK. (3.33)
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There are a number of physical effects that can give rise to a spontaneous curvature. Ex-
amples include diffusion of transmembrane proteins [1] and flexoelectricity [92]. One of our
objectives in this work is to demonstrate that a conforming cytoskeletal membrane effectively
mimics a spontaneous curvature under certain conditions.

With reference to (3.3) and (3.4), the net leading-order composite energy is

E =

∫
Π

W dA, (3.34)

where
W = Wb(H,K) +Wc(c), (3.35)

with
Wb(H,K) = κH2 + κK and Wc(c) = (1− α)F (c+ d2

n (c)k ⊗ k), (3.36)

and with κ = αk and κ̄ = αk̄.
We adopt the conventional assumption [16] that deformations of the bilayer/cytoskeleton

system conserve local surface area. This assumption is invoked for both the bilayer and cyto-
skeleton separately. For bilayers it is justified by bulk incompressibility in the parent theory
of liquid crystals and by the suppression of lipid tilt. The presumed inextensibility of the
lipids—expressed by the condition |n| = 1—then implies areal incompressibility. For the
cytoskeleton it is justified by empirical evidence [16] indicating that areal compressibility
of the bilayer/cytoskeleton system is typically negligible; areal incompressibility, in the case
of a convecting cytoskeleton, then follows from that of the bilayer. Here we impose areal
incompressibility of the cytoskeleton whether or not it convects with the bilayer (for a dis-
cussion of this issue, see [30]). Accordingly, the referential areal energy density W is also the
areal density in the current configuration of the system in the sense that

E =

∫
πb

Wb da+

∫
πc

Wc da, (3.37)

where πb ⊂ ω and πc ⊂ ω respectively are the images of Π under the bilayer and cytoskeletal
deformations.

3.4 Material symmetry

3.4.1 The cytoskeleton

Little if anything is known about the symmetry group for the cytoskeleton, re-
garded as a three-dimensional continuum. However, on the basis of work reported in [60] we
assume that the two-dimensional response of the cytoskeletal membrane exhibits hexatropic
symmetry relative to the plane configuration Π, characterized by mechanically equivalent
unit vectors i1, i2 and i3 aligned with the filaments of the cytoskeleton (Figure 3.4).
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Figure 3.4: Hexagonal substructure of the cytoskeletal spectrin filament network [40].

Thus the function Wc(c) is assumed to be such that [21]

Wc(c) = W (RTcR), (3.38)

for all two-dimensional orthogonal R belonging to the hexatropic symmetry group. This
group is characterized in [61], where it is proved that the list {trc, tr(c2), tr(hcc)} is a
function basis for hexatropic symmetry ([61], Table 1), with

hc = [(m · c)2 − (m′ · c)2]m− 2(m · c)(m′ · c)m′, (3.39)

in which the interposed dot is the inner product on the translation space Π’ of Π, and

m = e1 ⊗ e1 − e2 ⊗ e2, and m′ = e1 ⊗ e2 + e2 ⊗ e1, (3.40)

with
e1 = i1 and e2 = (i2 − i3)/

√
3. (3.41)

Alternatively, the Cayley–Hamilton formula yields the equivalent function basis {trc, Jc, tr(hcc)}
in which Jc = 1 by virtue of areal incompressibility. We suppress a possible explicit depen-
dence of the strain energy on the material point ξ ∈ Π due to any nonuniformity of the
material properties or of the orientation of the triad {ik}.

According to prevailing opinion [16, 7], the cytoskeletal membrane exhibits re-
sponse that is characteristic of an isotropic material. This view must be qualified by the
membrane-theoretic version of Noll’s rule giving the symmetry group relative to any configu-
ration when that relative to one of them is known, i.e., the membrane, if isotropic relative to
one configuration, cannot be isotropic relative to all. Here, to avoid ambiguity, we interpret
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prevailing opinion as implying isotropy relative to Π and thus do not include tr(hcc) among
the arguments of the strain-energy function. Thus we assume

Wc(c) = ω(I), where I = trc, (3.42)

for some function ω(·). Naturally, the symmetry group is thereby enlarged to the orthogonal
group. However, hexatropy may be reconciled with isotropy if the strain ε, defined by
2ε = c− 1Π, where 1Π is the identity on Π’, is sufficiently small.

Hexatropy implies that the strain energy, expressed as a function of the strain, has
as arguments the elements of the function basis {trε, tr(ε2), tr(hεε)}, where hε is defined by
(3.39) with c replaced by ε. This function basis is approximated at quadratic order in ε by
the basis {trε, tr(ε2)} for isotropy. Thus, the view expressed in the literature is consistent
with the substructure of the cytoskeletal network if terms through quadratic order in ε are
retained in the strain-energy function. Indeed, quadratic-order energies figure prominently
in Evans’ and Skalak’s extensive treatment [16] of cytoskeletal membranes in which isotropy
is assumed at the outset.

3.4.2 The bilayer

The bilayer energy may also be interpreted in the framework of material symmetry.
It is known, in the case of areal incompressibility [75, 93], that any function of the mean and
Gaussian curvatures H and K may be expressed as a function, B say, of c = (∇r)T (∇r)
and the bending strain κ = (∇r)Tb(∇r), where r(ξ) is the bilayer deformation, provided
that

B(c,κ) = B(RTcR,±RTκR), (3.43)

for all two-dimensional unimodular R (|detR| = 1), with the sign chosen in accordance with
that of detR. Here the minus sign is associated with the reflection symmetry of bilayers.
This restriction has its origins in Murdoch’s and Cohen’s extension [6] of Noll’s concept
[51] of material symmetry to elastic surfaces, and comports with his use of the concept of
material symmetry [52] in the interpretation of the constitutive response of liquid crystals.

3.5 Surface differential geometry

A configuration of the bilayer/cytosleletal system occupies a surface ω, which
we parametrize as r(θα) in which θα, α = 1, 2, are surface coordinates. The surface
parametrization induces the tangent basis {aα}, where aα = r,α; the (invertible) surface
metric aαβ = aα ·aβ; the dual metric aαβ, where (aαβ) = (aαβ)−1; and the dual tangent basis
{aα}, with aα = aαβaβ. The orientation of ω is specified by the unit-normal field n defined
by εαβn = aα × aβ, where εαβ =

√
aeαβ, with a = det(aαβ), is the Levi–Civita alternating

tensor and eαβ the permutation symbol (e12 = −e21 = 1, e11 = e22 = 0).
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Central to our development are the Gauss and Weingarten equations [13, 48]

r;αβ = bαβn and n,α = −bαβaβ, (3.44)

respectively, where
r;αβ = r,αβ − Γλαβr,λ, (3.45)

is the (symmetric) second covariant derivative of the surface position field. Here Γλαβ are the
Levi–Civita connection coefficients and bαβ are the coefficients of the second fundamental
form on ω; these are symmetric with respect to interchange of the subscripts, and the latter
induce the curvature tensor

b = bαβa
α ⊗ aβ. (3.46)

The surfacial gradient of the field n is∇sn = n,α⊗aα, in accordance with (3.11) and (3.44)2.
Here the connection coefficients are simply the Christoffel symbols and the connection is
therefore metric compatible, i.e., the covariant derivatives of the metric components vanish.

The mean and Gaussian curvatures of ω are (see (3.26)2 and (3.28)2)

H =
1

2
aαβbαβ and K =

1

2
εαβελµbαλbβµ, (3.47)

respectively, where εαβ = eαβ/
√
a, with eαβ = eαβ, is the contravariant alternator, and we

note the relation
bβµb̃

µα = Kaβα, (3.48)

where bβµ = aβαbαµ and

b̃αβ = εαλεβµbλµ, (3.49)

is the cofactor of the curvature, expressible as

b̃αβ = 2Haαβ − bαβ, (3.50)

this following on use of the identity

εαλεβµ = aαβaλµ − aαµaβλ. (3.51)

The Mainardi–Codazzi equations of surface theory are bλµ;β = bλβ;µ [13], or, more
concisely, εβµbλµ;β = 0. The metric compatibility of the connection implies that the covariant
derivatives of εαλ vanish and the Mainardi–Codazzi equations are therefore equivalent to

b̃αβ;β = 0. (3.52)
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3.5.1 Convected coordinates and surface-fixed coordinates

The literature on lipid bilayers relies exclusively on the use of surface-fixed coor-
dinates in the analysis of the so-called shape equation (see [92] for example). This formalism
is entirely analogous to the spatial description of continuum mechanics in which problems
are posed on a suitably parametrized fixed region of space. However, as in the latter setting,
while this description often affords advantages in the solution of problems, it is a conceptual
obstacle to the formulation of theories concerning material bodies. For the latter, convected
coordinates that label material points furnish the appropriate alternative.

We encounter precisely the same issue in the mechanics of material surfaces,
and thus pause to outline the distinction between parametrizations based on surfacefixed
coordinates—analogous to the spatial coordinates of conventional continuum mechanics—
and those based on convected coordinates. The relevant developments are due to Scriven
[71] and summarized in Chapter 10 of Aris’ book [8]. We present the main ideas in the
present subsection for the sake of completeness.

Consider configurations of a surface regarded as a material manifold parametrized
by a convected coordinate system ξα. This may be identified with the system θα of the
previous subsection at the value ε = 0, say, of a time-like parameter ε in a one-parameter
family of configurations. The associated surface Ω, with parametric representation r̂(ξα), is
fixed and may serve as a reference surface in a referential description of the motion. That
is, we regard these coordinates as being convected in the sense that they identify, via a map
r = r̂(ξα, ε), the position, associated with parameter value ε, of a material point occupying
position r̂(ξα) ∈ Ω at ε = 0. This notion may be generalized by regarding Ω as a surface
that is in one-to-one correspondence with that occupied at ε = 0, so that it need not actually
be occupied in the course of the deformation. The connection with the θα-parametrization
of ω is provided by

r̂ (ξα, ε) = r (θα (ξα, ε) , ε) . (3.53)

Thus we specify the fixed surface coordinates θα as functions ξα of ε and subject
to θα (ξα, 0) = ξα. We assume the relations giving θα in terms of ξα to be invertible, to
reflect the notion that at fixed ε the coordinates θα can be associated with a unique material
point (identified by fixed values of ξα). Any function, f (θα, ε), say, may then be expressed
in terms of convected coordinates as f̂ (ξα, ε), where

f̂ (ξα, ε) = f (θα (ξα, ε) , ε) . (3.54)

The variational derivative of f is its partial derivative with respect to ε in the convected-
coordinate representation, i.e., ḟ = ∂f̂ (ξα, ε) /∂ε, whereas its derivative in the fixed-coordinate
parametrization is fε = ∂f (θα, ε) /∂ε; these are related by ḟ = fε + (θα)·f,α.

The ε-velocity of a material point Ω on that has been convected by the deformation
to ω is u = ṙ = ∂r̂. We may write this in terms of components on the natural basis induced
by the fixed-coordinate θα-parametrization:

u = uαaα + wn. (3.55)
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This is related to the derivative rε by

u = (θα)· aα + rε. (3.56)

Following [8, 71] we adopt the fixed-coordinate parametrization defined by

d

dε
θα = uα

(
θβ, ε

)
, θα|ε=0 = ξα, (3.57)

where the derivative is evaluated at fixed {ξα} and hence equal to (θα)·. The normal virtual
velocity in (55) is then given by

wn = rε, (3.58)

and the convected and fixed-coordinate derivatives satisfy

ḟ = fε + uαf,α. (3.59)

We require the Lie derivative of the metric with respect to the velocity. This is
simply the variational derivative ȧαβ expressed in terms of the θα-parametrization. To this
end we adopt convected coordinates ξα whose values coincide with θα at ε = 0. The two sets
of coordinate systems will of course differ at different values of ε due to the fact that material
is moving with respect to the θα-system. Said differently, the material point located at the
place with surface coordinates at ε = 0 will have different locations at different values of and
hence be associated with different values of θα, whereas the values of ξα remain invariant.
Accordingly, while it is always permissible to identify ξα with θα at ε = 0, say, it is not
possible to do so over an interval of ε values. However, for our purposes this limitation is
not restrictive. Using ȧλµ = ȧλ · aµ + ȧµ · aλ and

ȧλ =

(
∂r

∂θλ

)·

=

[
∂r

∂ξµ

(
∂ξµ

∂θλ

)]·
=
∂u

∂ξµ

(
∂ξµ

∂θλ

)
+

∂r

∂ξµ

(
∂2ξµ

∂θλ∂θα

)
uα, (3.60)

together with ∂ξµ/∂θλ = δµλ (the Kronecker delta) and hence ∂2ξµ/∂θλ∂θα = 0 at ε = 0, we
derive ȧα = ∂u/∂ξα and

ȧλµ = u,λ · aµ + aλ · u,µ, (3.61)

where u,λ = ∂u/∂θλ at ε = 0.
Combining (3.55) with the Gauss and Weingarten equations yields

u,λ = (uα;λ − wbαλ)aα + (uαbαλ + w,λ)n, (3.62)

where aα = aαβaβ and uα;λ is the covariant derivative defined by

uα;λ = uα,λ − uβΓβαλ, (3.63)

in which Γβαλ are the connection symbols on ω pertaining to the induced metric in the θα-
system. Hence the desired expression:

ȧλµ = uµ;λ + uλ;µ − 2wbλµ. (3.64)
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For example, ifAαβ is the (fixed) metric on the surface Ω induced by the parametriza-

tion r̂ (ξα), then the areal stretch induced by the deformation is J =
√
a/A, where A =

det(Aαβ) The fact that the cofactor of aαβ is (a)aαβ then implies

J̇/J =
1

2
ααβȧαβ, (3.65)

and with (3.61) this may be reduced to

J̇/J = aα · u,α. (3.66)

3.5.2 Congruent configurations of the bilayer and cytoskeleton

This formalism may be adapted to the bilayer/cytoskeleton system by introducing
one-parameter families, r̂c (ξα; εc) and r̂b (ηα; εb) of cytoskeleton and bilayer deformations
respectively, in which and are convected coordinates. The surface-fixed coordinates on the
cytoskeleton and bilayer are θα(c)

(
ξβ; εc

)
and θα(b)

(
ηβ; εb

)
, respectively. Congruency then im-

plies that (see (3.53))

r̂c (ξα; εc) = r
(
θα(c)
(
ξβ; εc

)
, εc
)

and r̂b (ηα; εb) = r
(
θα(b)
(
ηβ; εb

)
, εb
)
, (3.67)

where r(θα, ε) is the surface-fixed parametrization of ω.
We stipulate that ξα = θα(c)

(
ξβ; 0

)
and ηα = θα(b)

(
ηβ; 0

)
; further, that θα(c)

(
ξβ; 0

)
=

θα(b)
(
ηβ; 0

)
= θα, so that

r̂b (ηα; 0) = r (θα) = r̂c (ξα; 0) , (3.68)

where, for the sake of brevity, we write r(θα) in place of r(θα, 0) . In this way we construct
convected coordinates ξα and ηα that coincide, at εc, εb = 0, with specified surface-fixed
coordinates θα on ω. This is tantamount to adopting the place r(θα) occupied by material
points of the bilayer (at εb = 0) and cytoskeleton (at εc = 0) as their common reference
position.

With reference to (3.57)1 we define the tangential virtual velocities

uα =
d

dεc
θα(c)|εc=0 and vα =

d

dεb
θα(b)|εb=0, (3.69)

of the cytoskeleton and bilayer, respectively, and assume, in keeping with congruency, that
the normal virtual velocities have a common value, w say:

∂r

∂εb

∣∣∣∣∣
εb=0

=
∂r

∂εc

∣∣∣∣∣
εc=0

= wn, (3.70)

(see (3.58)). Then the virtual velocities of the bilayer and cytoskeleton are

u (θα) = ṙb = uαaα + wn, (3.71)
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and
v (θα) = ṙc = vαaα + wn, (3.72)

respectively, where

ṙb =
∂r̂b
∂εb

∣∣∣∣∣
εb=0

and ṙc =
∂r̂c
∂εc

∣∣∣∣∣
εc=0

. (3.73)

The identification of n · u with n · v also features in a model proposed in [38].
The formula (3.64) for the variation of the surface metric applies as it stands to the

cytoskeleton if the superposed dot is interpreted as a derivative with respect to εc (evaluated
at εc = 0). It also applies to the bilayer if the superposed dot is interpreted as a derivative
with respect to εb (evaluated at εb = 0), with vµ substituted in place of uµ.

To interpret the cytoskeletal deformation tensor∇rc (see (3.7)2) in this framework,
let the patch Π be parametrized in the form ξ(ξα). This parametrization induces the tangent
basis Aα = ξ,α, metric Aαβ = Aα ·Aβ, dual metric Aαβ, and dual basis Aα. Then,

∇rc = aα ⊗Aα, (3.74)

and the surfacial Cauchy–Green deformation tensor is

c = aαβA
α ⊗Aβ. (3.75)

The areal dilation induced by the deformation is

Jc =
√

detc =
√
a/A. (3.76)

3.6 Energy, virtual power and equilibrium

3.6.1 Energy and power

To obtain equilibrium equations and edge conditions we invoke the virtual-power
principle for the simply-connected patch Π. We account for areal incompressibility by ex-
tending the energy to unconstrained states and introducing appropriate Lagrange-multiplier
fields. Reference may be made to Section 5.10 of [11], for example, for an exposition of this
idea together with some of its applications to continuum mechanics. From (3.34)–(3.37), the
extended energy of the patch is

E =

∫
Π

[JbWb + JcWc + λb (Jb − 1) + λc (Jc − 1)] dA+

∫
∂Π

µ̃ (Jb − 1) dS, (3.77)

where λb,c and µ̃ are Lagrange multiplier fields. We have included a multiplier on the bound-
ary because, as we show below, the tangential and normal derivatives of the virtual bilayer
velocity v, which figure in the expression for the variation of the energy, are constrained by
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areal incompressibility. To our knowledge this effect has not been discussed in the literature
on bilayers. However, similar terms are known to play a role in the mechanics of continua of
second grade [26, 74, 90], — as exemplified by lipid bilayers — in the presence of constraints
on the first-order gradients.

Having proposed an expression for the extended energy, we identify equilibria with
those states that satisfy

Ė = P, (3.78)

where P is the virtual power imparted to the patch. The form that this power takes is
deduced in the course of the ensuing development. Here the superposed dot refers to a
Gateaux derivative with respect to either εc or εb (evaluated at εc and εb equal to zero) or to
both simultaneously.

3.6.2 Tangential equilibrium of the cytoskeletal membrane.

For example, consider variations that preserve the bilayer configuration. These
are u(θα) = uαaα and v = 0, and yield

Ė =

∫
πc

[
Ẇc + (Wc + λc) J̇c/Jc

]
da, (3.79)

in which variation of λc has been suppressed as this merely returns the areal incompressibility
constraint. In the extended (unconstrained) formalism, JcWc is the cytoskeletal energy
density on Π. Thus, in the case of isotropy, for example, we make the identification

JcWc = ω̄ (I) , with I = aλµA
λµ, (3.80)

which reduces to (3.42) when the constraint is in effect. This depends via (3.75) and (3.76)
on the surfacial Cauchy–Green tensor c and thus evolves in response to variations ȧαβ of the
surface metric. Accordingly, we write

(JcWc)
· =

1

2
JcΣ

αβȧαβ, with
1

2
JcΣ

αβ = (JcWc)c ·A
α ⊗Aβ, (3.81)

which we combine with (3.65) to obtain

Ẇc + (Wc + λc) J̇c/Jc =
1

2
σαβȧαβ, with σαβ = Σαβ + λca

αβ. (3.82)

We note that Σαβ = Σβα, and thus σαβ = σβα , by virtue of the symmetry
of (JcWc)c. For example, in the case of isotropy, we have from (3.75) and (3.80) that
(JcWc)c = ω̄′ (I) 1Π, yielding

JcΣ
αβ = 2ω̄′ (I)Aαβ. (3.83)
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Combining this symmetry with (3.64) (with w = 0) we derive 1
2
σαβȧαβ = σαβuα;β and then

convert (3.79) via Stokes’ theorem to

Ė =

∫
∂πc

σαβνβuα ds−
∫
πc

σαβ ;βuα da, (3.84)

where νβ = εαβτ
α, in which τα = dθα/ds are the components of the rightward unit normal

to ∂πc with arclength parametrization θα(s); i.e., ν = τ × n, where τ = dr(θα(s)) and n
respectively are the unit tangent to ∂πc and the unit surface normal.

From (3.78) it follows that the virtual power is of the form

P =

∫
∂πc

tα(c)uα ds+

∫
πc

gα(c)uα da, (3.85)

and, with no further restrictions on uα, that

σαβ ;β + gα(c) = 0, in πc and tα(c) = σαβνβ, on ∂πc, (3.86)

in which gα(c) and tα(c) respectively are the distributed tangential force (per unit area) and

the tangential edge traction (force per unit length) acting on the cytoskeleton. From these
relations it is clear that σαβ plays the role of the cytoskeletal Cauchy stress. Equation (3.82)2

then yields the interpretation of λc as a reactive surface tension. Here, to compensate for
having suppressed variation with respect to the multiplier λc, it is necessary to impose Jc = 1
a posteriori. Thus, in the case of isotropy, we use (3.82)2 in (3.86) with

Σαβ = 2ω̄′ (I)Aαβ. (3.87)

3.6.3 Variational derivative of the bilayer energy

We pause to discuss some formulae of a general nature valid for arbitrary bilayer
virtual velocities v and subsequently specialize these to derive the tangential equilibrium
equations.

First we note that because Jb and Wb depend on the surface position field through
its first and second derivatives with respect to the coordinates, it follows that there are vector
fields Nα and Mα such that

Ẇb + (Wb + λb) J̇b/Jb = Nα · v,α +Mαβ · v;αβ, (3.88)

where v = ṙb is the virtual velocity and v;αβ = v,αβ − Γλαβv,λ is the second covariant
derivative of v. This is symmetric in the subscripts; therefore, no generality is lost by
imposing Mαβ = Mβα.

For example [2],

Ḣ =
1

2
aαβn · v;αβ − bαβaβ · v,α and K̇ = b̃αβn · v;αβ − 2Kaα · v,α, (3.89)
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whereas (see (3.66))
J̇b/Jb = aα · v,α. (3.90)

Using Ẇb = 2κHḢ + κ̄K̇ (from (3.36)1) we thus derive

Nµ = Nµβaβ and Mµβ = Mµβn, (3.91)

with

Nµβ =
(
λb + κH2 − κ̄K

)
aµβ − 2κHbµβ and Mµβ = κHaµβ + κ̄b̃µβ. (3.92)

Proceeding, we have

Nα · v,α +Mαβ · v;αβ = ϕα;α − v · T α
;α, (3.93)

where
T α = Nα −Mαβ

;β , (3.94)

with
Mαβ

;β = Mβα
;β n−M

βαbµβaµ, (3.95)

and
ϕα = T α · v +Mαβ · v,β, (3.96)

in which (3.91), (3.94) and (3.95) together give

T α =
(
Nαµ +Mαβbµβ

)
aµ −Mαβ

;β n. (3.97)

Combining (3.88) and (3.96) with Stokes’ theorem furnishes∫
πb

[
Ẇb + (Wb + λb) J̇b/Jb

]
da =

∫
∂πb

ϕαvα ds−
∫
πb

v · T α
;α da, (3.98)

where ν = ναa
α is the exterior unit normal ∂πb and

v · T α
;α = vµa

µ · T α
;α + wn · T α

;α, (3.99)

with
aµ · T α

;α =
(
Nαµ +Mαβbµβ

)
;α

+Mαβ
;β b

µ
α, (3.100)

and
n · T α

;α =
(
Nαµ +Mαβbµβ

)
bµα −Mβα

;βα. (3.101)

In the first term on the right-hand side of (3.98) we use the normal-tangential
decomposition

v,β = τβv
′ + νβvν , (3.102)

where τ = ταa
α = n × ν, is the unit tangent to ∂πb, v

′ = ταv,α = dv/ds is the tangential
derivative of v, and vν = ναv,α is the normal derivative. The term involving the tangential
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derivative is integrated by parts. If ∂πb is piecewise smooth in the sense that its tangent τ
is piecewise continuous, with discontinuities at a finite number of corners, then∫
∂πb

ϕανα ds =

∫
∂πb

({
T ανα −

(
Mαβνατβ

)′} · v +Mαβνανβ · vν
)
ds−

∑
Mαβ [νατβ]i · vi,

(3.103)
in which the square bracket refers to the forward jump as a corner of the boundary is
traversed, and the sum ranges over all corners. Thus, [·] = (·)+ − (·)−, where the subscripts
± respectively identify limits as a corner located at arclength station s is approached through
larger and smaller values of arclength.

3.6.3.1 Tangential bilayer equilibrium

Consider variations with v and vν vanishing on ∂πb (and at corners) that preserve
the configuration of the cytoskeleton, i.e., u = 0 and v = vµa

µ in the interior of πb. For
these we have

Ė =

∫
πb

[
Ẇb + (Wb + λb) J̇b/Jb

]
da = −

∫
πb

vµa
µ · T α

;α da, (3.104)

in which variation of λb has been suppressed, and it follows, from (3.78), that the virtual
power is of the form

P =

∫
πb

gµ(b)vµ da, (3.105)

where gµ(b) is a tangential force (per unit area) acting on the bilayer. Because vµ is unre-
stricted, we arrive at (

Nαµ +Mαβbµβ
)

;α
+Mαβ

;β b
µ
α + gµ(b) = 0, in πb. (3.106)

To reduce this we use (3.50), (3.52) and (3.92) to infer that

Nαµ +Mαβbµβ =
(
λb + κH2

)
aαµ − κHbαµ, (3.107)

with divergence(
Nαµ +Mαβbµβ

)
;α

= aαµ (λb),α + 2κHaαµH,α − κbαµH,α − κHbαµ;α , (3.108)

and combination with (see (3.92)2)

Mαβ
;β = κaαβH,β, (3.109)

furnishes (
Nαµ +Mαβbµβ

)
;α

+Mαβ
;β b

µ
α = aαµ (λb),α + κH

(
2aαµH,α − bαµ;α

)
, (3.110)

in which the second parenthetical term on the right is (2Haµα − bµα);α = b̃µα ;α. Then, with
(3.52), equation (3.110) reduces simply to

aαµ (λb),α + +gµ(b) = 0. (3.111)
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3.6.3.2 Comoving bilayer and cytoskeleton

If the cytoskeleton is anchored to the bilayer such as to convect with it, then u = v
in π∗ = πb ∩ πc. Choosing variations such that u, v and vν vanish on ∂π∗ and v = vµa

µ in
π∗, with u, v vanishing in ω�π∗, we obtain

Ė =

∫
π∗

[
Ẇ + (W + λ) J̇/J

]
da, (3.112)

with W = Wb + Wc, λ = λb + λc and J̇/J = vµ;µ. We could proceed from this statement to
derive the relevant balance equation directly, but it is more illuminating to combine (3.84)
and (3.104) to arrive at

Ė = −
∫
π∗

{
σµα;α + aαµ (λb),α

}
vµ da. (3.113)

The associated virtual power therefore has the form

P =

∫
π∗
gµvµ da, (3.114)

and with vµ unrestricted, (3.86)1 and (3.111) then deliver

gµ = gµ(b) + gµ(c). (3.115)

Equivalently,
(Σµα + λaµα);α + gµ = 0, (3.116)

in which the term in parentheses is the effective Cauchy stress for the bilayer/cytoskeleton
composite subjected to a net tangential force gµ.

3.6.4 Normal equilibrium of the bilayer and cytoskeleton

Having exhausted the consequences of the virtual-power statement for tangential
variations, we proceed next to normal variations. In view of (3.71) and (3.72), these involve
the bilayer and cytoskeleton together. Taking variations as in the previous subsection, now
with u = v = wn, with reference to (3.64), (3.82)1 and (3.98) we obtain

Ė = −
∫
π∗
w
(
σαβbαβ + n · T α

;α

)
da, (3.117)

and conclude that the associated power has the form

P =

∫
π∗
pw da (3.118)
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where p is the net lateral pressure acting on the surface in the direction of n. Thus, with
(3.101) and with w unrestricted, we arrive at

σαβbαβ +
(
Nαµ +Mαβbµβ

)
bµα −Mβα

;βα + p = 0, in π∗. (3.119)

To reduce this we use (3.92), finding that(
Nαµ +Mαβbµβ

)
bµα = 2λbH + 2κH3 − κHbαµbµα. (3.120)

The final term on the right is bαµbµα = tr(b2), and with (3.29) and (3.109), equation (3.119)
becomes

κ
[
∆H + 2H

(
H2 −K

)]
− 2λbH = σαβbαβ + p, (3.121)

where

∆H = aαβH;αβ =
1√
a

(√
aaαβH,β

)
,α

(3.122)

is the surfacial Laplacian of H.
Equation (3.121) is the classical shape equation for lipid bilayers in which the

right-hand side is the pressure transmitted to the bilayer [67, 29, 50]. Thus the cytoskeleton,
if curved, transmits an effective pressure to the bilayer that persists when the net pressure
p acting on the system vanishes. Vice versa, the bilayer transmits an equal but opposite
pressure to the cytoskeleton.

We may rewrite (3.121) in the form

κ
[
∆H + 2H

(
H2 −K

)]
=
(
Σαβ + λaµα

)
bαβ + p. (3.123)

This is the appropriate equation to use if the cytoskeleton convects with the bilayer because
the parenthetical term on the right is then subject to (3.116), and in this setting extends
the system obtained in [26] for strain-free deformations in which the entire metric, and not
just the local areal stretch, is constrained, with Tαβ = Σαβ + λaµα, in which the Σαβ are
constitutively indeterminate, then serving as the operative Lagrange multipliers.

3.6.5 Edge conditions

Boundary conditions are of limited relevance in this subject because bilayers typ-
ically form closed surfaces. Nevertheless, in the present approach based on the notion of
patchwise equilibrium, they deliver expressions for the various actions at the edge of a patch
which are of independent interest. Further, a number of models that entail boundary inter-
actions are available in the literature [2, 26, 64].

With the foregoing Euler equations satisfied on ω, the variation of the energy
reduces, with the aid of (3.77), (3.84) and (3.98), to

Ė =

∫
∂π∗

(
σαβνβuα + ϕανα + µJ̇b/Jb

)
ds, (3.124)
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where µds = (µ̃Jb)dS and ϕα is defined by (3.96).
We note, from (3.90) and (3.102), that the constraint Jb = 1 yields τ ·v′+v·vµ = 0,

implying that the normal and tangential derivatives of v on ∂π∗ are not independent. Because
v′ is determined by v|∂π∗ , it follows that v and vν cannot be specified independently. In the
extended formulation, this restriction is relaxed and an associated Lagrange multiplier µ is
introduced. Then, with (3.103) we obtain

Ė =

∫
∂π∗

{
σαβνβuα +

[
T ανα −

(
Mαβνατβ + µτ

)′] · v +
(
Mαβνανβ + µν

)
· vν
}
ds

−
∑[

Mαβνατβ + µτ
]
i
· vi. (3.125)

The virtual power is thus expressible in the form

P =

∫
∂π∗

(tc · u+ tb · v + µ · vν) ds+
∑

fi · vi, (3.126)

where tc, tb, and fi respectively are the cytoskeletal and bilayer tractions and the double
force and corner forces acting on the bilayer patch. Accordingly,

tc = σαβνβaβ, tb = T ανα −
(
Mαβνατβn+ µτ

)′
,

µ = Mn+ µν and fi = −
[
Mαβνατβn+ µτ

]
i
, with M =Mαβνανβ.

(3.127)

The first of these is just the condition (3.86)2 on ∂π∗.
The couple acting on the interior of ∂π∗ is

c = r × t+ rν × µ, (3.128)

where t = tb + tc is the net traction and rν = ναr,α = ν. Thus,

c− r × t = −Mτ , (3.129)

a pure bending couple acting at the edge that does not involve the multiplier µ. However,
it is not appropriate to assign the couple in a boundary-value problem. Rather, information
about µ is furnished by the specification of the double force [82].

If the bilayer and cytoskeleton are comoving, then (3.127)3,4 remain in effect but
(3.127)1,2 are replaced by the single equation

t =
(
T α + σαβaβ

)
να −

(
Mαβνατβn+ µτ

)′
. (3.130)

3.7 Legendre-Hadamard Conditions
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If the cytoskeleton convects with the bilayer, then because the effective energy
involves the spatial derivatives of a single deformation field through the second order, the
operative Legendre–Hadamard necessary condition for energy minimizers entails perturba-
tion of the latter only, at fixed values of the first derivatives [34]. Because the cytoskeletal
energy involves only first derivatives, the operative Legendre–Hadamard condition then in-
volves the bilayer energy alone. For the energy (3.36)1, this yields the nonnegativity of the
bending modulus k [3], as implied by (3.24)1 and (3.31)1.

If the cytoskeleton and bilayer are not comoving, then the membrane-theoretic
version of the Legendre–Hadamard condition is applicable, and implies that, at an arbitrary
material point p, say, the cytoskeletal energy, regarded as a function of ∇rc, is locally convex
with respect to perturbations of the form

u,α = akα, (3.131)

i.e.,
aµkα = uµ;α − wbµα and akα = uµbµα + w,α, (3.132)

with aµ = a ·aµ and a = a ·n, subject to aα ·akα = 0 on account of areal incompressibility
(see (3.66)). Thus, areal incompressibility imposes the restriction

aαβaβkα = 0, (3.133)

where aβ = aβµa
µ.

The operative Legendre–Hadamard condition is [76]

a ·
(
Eαβkαkβ

)
a ≥ 0, (3.134)

for arbitrary akα subject to (3.133), where

Eαβ = 2
∂W

∂aαβ
I + 4

∂2W

∂aαµ∂aβλ
aµ ⊗ aλ, (3.135)

in which W (aαβ) = Wc(aµλA
µ ⊗Aλ). Then, with (3.81)1, specialized to Jc = 1, we require

Σαβkαkβ|a|2 + 4
∂2W

∂aαµ∂aβλ
aµkαaλkβ ≥ 0, (3.136)

where Σαβ is the constitutively determined part of the cytoskeletal Cauchy stress.
This condition yields a nontrivial restriction on W even if the bilayer remains

undisturbed; i.e., if w = 0.
The choice a = an (aβ = 0) conforms to (3.133) and reduces (3.136) to

Σαβkαkβ ≥ 0, (3.137)

implying that the energetic part of the stress is positive semidefinite in energy minimizing
states. In the absence of constraints, this implies, in accordance with a restriction proposed
in [72], that the Cauchy stress is positive semidefinite.
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For example, in the case of isotropy (see (3.87)), (3.137)) reduces to ω̄′ (I) |k|2 ≥ 0,
where |k|2 = Aαβkαkβ, and is thus satisfied if and only if

ω̄′ (I) ≥ 0, (3.138)

whereas the full Legendre–Hadamard inequality (3.136), in the case of isotropy, is

ω̄′ (I) |a|2|k|2 + 2ω̄′′ (I) (kαaα)2 ≥ 0, (3.139)

with kα = Aαβkβ.

3.8 Equivalent monolayers with spontaneous

curvature

3.8.1 Equilibrium of monolayers

We expect the conforming cytoskeleton to confer asymmetry in the bending re-
sponse of the bilayer/cytoskeleton composite, whereas that of an isolated bilayer is symmetric
in the sense that the energy (3.36)1 is the invariant under b→ −b. Asymmetric bending is
also a feature of conventional monolayers, consisting of one sheet of oriented lipids instead
of two of opposing orientation (Figure 3.3). Conventionally, this asymmetry is modelled by
introducing a spontaneous curvature C(θα) [92] via the energy

W (H,K; θα) = κ (H − C)2 + κ̄K. (3.140)

The existence of these distinct models of asymmetric bending leads us to search for conditions
under which they might be equivalent.

Proceeding as in Section 3.3, we derive (3.97) but with (3.92) replaced by

Nαµ =
{
λm + κ (H − C)2 − κ̄K

}
aαµ − 2κ (H − C) bαµ,

and Mαµ =κ (H − C) aαµ + κ̄b̃αµ,
(3.141)

where λm is a Lagrange multiplier associated with the areal incompressibility of the mono-
layer. Then with some labor we find that (3.111) is replaced by

aαµ
[
(λm),α − 2κ (H − C)C,α

]
+ gµ(m) = 0, (3.142)

where gµ(m) is a tangential distribution of force on the monolayer; and, in the absence of the

cytoskeleton, that (3.121) is replaced by

κ
[
∆ (H − C) + 2 (H − C)

(
2H2 −K

)
− 2H (H − C)2]− 2λmH = p, (3.143)
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where p is the pressure exerted on the monolayer.
Evidently, (3.142) corresponds to (3.111) if C,α vanishes, i.e., if the spontaneous

curvature is uniform. In this case we have

κ
[
∆H + 2H

(
H2 −K

)]
− 2λmH = p+ 2κC (CH −K) , (3.144)

which corresponds to (3.121), provided that λm = λb and the cytoskeletal stress σαβ satisfies

σαβbαβ = 2κC (CH −K) . (3.145)

Equations (3.47) and (3.49) furnish 2H = aαβbαβ and 2K = b̃αβbαβ so a sufficient condition
for such correspondence is

σαβ = κC
(
Caαβ − b̃αβ

)
, (3.146)

provided that no tangential force is acting on the cytoskeleton. For, this expression for the
stress is automatically divergence-free and (3.86)1 requires that the tangential force vanish.

We observe, noting (3.123), that this same correspondence may be established
between the monolayer and the comoving cytoskeleton if λm = 0 and if λc = λ in (3.82)2.

These correspondences must be qualified by the fact that the constitutive response
of the cytoskeleton cannot be expected to yield (3.146) in general. Nevertheless, in the ab-
sence of tangential forces, the latter allows us to dispense with (3.86)1 or (3.116), which would
otherwise pose significant obstacles to analysis. Thus, we view (3.146) simply as a device for
generating potential solutions by selecting from among a number of explicit solutions that
are available for monolayers with constant spontaneous curvature [92]. Remarkably, these
include the characteristic biconcave discoid shape of red-blood cells in equilibrium.

3.8.2 Biconcave discoid

Consider a surface of revolution described by

r (θα) = rer (θ) + z (r)k, (3.147)

where r(= θ1) is the radius from the symmetry axis directed along the fixed unit vector k,
θ(= θ1) is the azimuthal angle, and er(θ) is a radial unit vector orthogonal to the axis of
symmetry at azimuth θ. Let ψ(r) be the angle defining the slope of a meridian: tanψ = z′(r).
Then with reference to Section 3.5, we compute

a1 = er (θ) + tanψk, a2 = reθ (θ) , (3.148)

where eθ = e′r(θ); the metric and dual metric

(aαβ) = diag
(
sec2 ψ, r2

)
,
(
aαβ
)

= diag
(
cos2 ψ, r−2

)
; (3.149)
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the curvature
(bαβ) = diag(ψ′ secψ, r sinψ); (3.150)

the mean and Gaussian curvatures

2H = r−1 (r sinψ)′ and K = r−1ψ′ sinψ cosψ; (3.151)

and the curvature cofactor(
b̃αβ
)

= diag
(
r−1 sinψ cos2 ψ, r−2ψ′ cosψ

)
. (3.152)

The Laplacian of the mean curvature, needed in (3.144), is (see (3.122))

∆H = r−1 cosψ [(r cosψ)H ′]
′
. (3.153)

Consider the particular surface of revolution described by

sinψ = r (d ln r + b) , (3.154)

where b, d are constants. Following the procedure outlined in Section 3.3 of [92] and adjusting
for differences in notation, with some effort it may be verified that (3.154) solves the shape
equation (3.144) for a monolayer with a constant spontaneous curvature, provided that

λm = 0, p = 0 d = 2C, (3.155)

and no tangential distributed force is acting.
In [92] this surface is described in terms of the dimensionless radius

x = r/r̄, where r̄ = exp (−b/d) , (3.156)

is such that sinψ(r̄) = 0, which we use to recast (3.154) as

sinψ = βx lnx, with β = 2Cr̄. (3.157)

Following [92], we fix β < 0 with |β| < 0, corresponding to a negative spontaneous curvature.
Evidently, sinψ vanishes at x = 0 and x = 1 and is maximized at x = e−1. Because sinψ ≤ 1
the domain of the variable x is [0, xe], where

xe lnxe = |β|−1, (3.158)

which yields a unique xe > 1 [92]. This is the dimensionless equatorial radius, where sinψ =
−1.

To obtain the shape of the surface we integrate tanψ = ς ′(x), where ς(x) = z(r)/r̄.
Thus,

ς (x) =

∫ x

xe

βt ln t√
1− β2t2 (ln t)2

dt, (3.159)
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Figure 3.5: Biconcave discoid (β = -1.4721) [40].

in which we have chosen the positive root for the cosine and normalized to ς(xe) = 0. A
numerical quadrature furnishes the upper half of a biconcave discoid, depicted in Figure 3.5.
This is extended by rotational and reflection symmetry to the entire discoid.

Some insight into the mechanics of the system may be gained by computing the
transverse shear traction S acting on a parallel of latitude. Assuming the component of the
double force to vanish on a parallel, we find, from (3.92)2 and (3.127)2, that S = n · T ανα,
where

n = cosψk − sinψer and ν = cosψer + sinψk, (3.160)

are the surface normal and the normal to a parallel, respectively. Then (3.92)2 and (3.97)
furnish S = −Mαβ

;β να = −κναH,α, i.e.,

S = −κ cosψH ′ (r) , (3.161)

which may be reduced, using (3.151), (3.154) and (3.155)3, to

S = −2κCr−1 cosψ. (3.162)

This vanishes at the equator, where sinψ = −π/2, and therefore meets a necessary
condition for reflection symmetry of the surface with respect to the equatorial plane. For, if
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there were a nonzero shear traction transmitted by the material below the equator to that
above, then equilibrium would require that it be balanced by an equal and opposite traction
exerted by the part of the membrane above the equator on that below, and this would destroy
reflection symmetry. However, the biconcave discoid is not free standing. There is a point
force Fk acting at the pole, where ψ = 0, given by

F = −2π lim
r→0

(rS) = 4πκC, (3.163)

which was overlooked in [92].

3.8.3 Mapping a plane cytoskeletal disc to a biconcave discoid

To adapt (3.154) to the bilayer/cytoskeleton composite, we must select a suitable
configuration relative to which the constitutive framework (3.87) for an isotropic cytoskele-
ton, say, may be implemented. Because the literature is ambiguous concerning this issue,
we consider a plane disc for the sake of illustration, and seek a strain-energy function which
is such as to admit (3.154) as an equilibrium configuration in the absence of any distributed
tangential forces acting on the bilayer or cytoskeleton.

We parametrize the disc by the position function ξ(θα) = ρ(r)er(θ) (see (6)). The
induced tangent basis elements, Aα = ξ,α, are

A1 = ρ′ (r) er (θ) and A2 = ρ (r) eθ (θ) , (3.164)

and the metric and dual metric are

(Aαβ) = diag
[
(ρ′)

2
, ρ2
]
,
(
Aαβ

)
= diag

[
(ρ′)

−2
, ρ−2

]
. (3.165)

With Jc =
√
a/A, where a = det(aαβ) and A = det(Aαβ), we obtain

Jc = r secψ/ (ρρ′) , (3.166)

and
I = aαβA

αβ = J2
c (ρ/r)2 + (r/ρ)2 . (3.167)

Areal incompressibility then yields

I = (ρ/r) + (r/ρ)2 , (3.168)

and furnishes a differential equation for ρ(r):

ρρ′ = r secψ. (3.169)

This integrates to (
X

x

)2

=
2

x2

∫ x

0

t secψ (t) dt, where X = ρ/r̄, (3.170)
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and we have imposed X = 0 at x = 0 (Figure 3.4).
The constitutive part of the stress is given by (3.87). We combine this with (3.82)2,

(3.87) and (3.146) to derive the system

λc cos2 ψ + 2ω̄′ (I) (ρ′)
−2

= −κCr−1 sinψ cos2 ψ + κC2 cos2 ψ,

λcr
−2 + 2ω̄′ (I) ρ−2 = −κCr−2ψ′ cosψ + κC2r−2,

(3.171)

which also applies in the case of a comoving cytoskeleton if the multiplier λc is replaced by
λ. Eliminating this multiplier, we obtain

2ω̄′ (I)
[
(ρ′)

−2 − (r/ρ)2 cos2 ψ
]

= −κC cos2 ψ
(
r−1 sinψ − ψ′ cosψ

)
, (3.172)

which may be simplified by using (3.166) to reduce the left-hand side. On the righthand side
we use (3.154), finding that

r−1 sinψ − ψ′ cosψ = −d. (3.173)

Then, with (3.155) we have

ω̄′ (I)
[
(ρ/r)2 − (r/ρ)2] = κC2, (3.174)

where, from (3.168), [
(ρ/r)2 − (r/ρ)2]2 = I2 − 3. (3.175)

With cosψ ∈ (0, 1] almost everywhere on the biconcave discoid (Figure 3.5), equa-
tion (3.169) implies that ρ/r(= X/x) > 1 almost everywhere (Figure 3.6). Then

(ρ/r)2 − (r/ρ)2 > 0 and (3.174), (3.175) deliver

ω̄′ (I) = κC2/
√
I2 − 4, (3.176)

which is meaningful if I > 2 (as required by (3.175)) and satisfies (3.138). Thus,

ω̄ (I) = κC2 ln

[
1

2

(
I +
√
I2 − 4

)]
, (3.177)

normalized to ω̄ (2) = 0.
We are not able to show that (3.176) satisfies the full Legendre–Hadamard in-

equality (3.139). However, as previously noted, the latter is not relevant if the cytoskeleton
and bilayer are comoving.

3.9 Linearized shape equation in Monge

parametrization
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Figure 3.6: Map from the biconcave discoid to the plane disc (β = -1.4721) [40].

In this section we seek to demonstrate additional numerical solutions for the results
above using the COMSOL Multiphysics nonlinear solver software. The procedure relies
on a linearization of the shape equations for a lipid bilayer with a conforming hexatropic
cytoskeleton using a Monge parametrization. The geometric quantities to be parametrized
and then linearized in this way are contained within (3.123),

κ[∆H + 2H(H2 −K)] = (Σαβ + λaαβ)bαβ + p, (3.178)

where κ is a material constant, H is mean curvature, K is Guassian curvature, Σαβ are stress
components, aαβ is the dual metric, bαβ are the components of the curvature tensor, and p
is a uniform pressure.

3.9.1 Monge parametrization
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To this end, we follow [15, 2] by considering a Monge parametrization in which
the membrane and attached cytoskeleton system is defined by its height z(θ) above a plane
p, in which θ denotes position on p. Then the position r(θα) of a particle on the membrane
midsurface ω is given by

r(θα) = θ + z(θ)k. (3.179)

Let p be parametrized by a system of orthonormal coordinates θα with basis {eα}
so that

θ = θαeα, (3.180)

which implies that ω is completely characterized by z(θ). Combining this with the definition
aα = r,α, we find

aα = eα + z,αk. (3.181)

The components of the metric tensor aαβ = aα · aβ on ω then reduce to

aαβ = δαβ + z,αz,β, (3.182)

which in turn reduces n(θα), defined above by εαβn = aα × aβ, to

n = (k −∇pz)
√
a, (3.183)

where ∇pz = z,αeα is the gradient on plane p, and

a = det(aαβ) = 1 + |∇pz|2. (3.184)

Proceeding with the consequences of parametrization, we note that

bαβ = z,αβ/
√
a, (3.185)

where the curvature tensor b = bαβa
α ⊗ aβ, and

a1 =
1

a
{[1 + (z,2)2](e1 + z,1k)− z,1z,2(e2 + z,2k)},

a2 =
1

a
{[1 + (z,1)2](e1 + z,2k)− z,1z,2(e2 + z,1k)},

(3.186)

where aα = aαβaβ and (aαβ) = (aαβ)−1 have been used.

3.9.2 Linearization in Monge parametrization

To linearize the quantities in (3.123) in their Monge representations, consider the
case where gradients of z(θ) are small enough so that their products may be neglected. This
leads to a linearization of equations (3.182 - 3.186) such that

a ≈ 1, n ≈ k −∇pz, aα ≈ eα + z,αk, b ≈ ∇2
pz. (3.187)
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The mean curvature H = 1
2
aαβbαβ then becomes

H ≈ 1

2
δαβz,αβ =

1

2
∆pz, (3.188)

where ∆pz = tr(∇2
pz) is the Laplacian operator on p, and the Guassian curvature K =

1
2
εαβελµbαλbβµ is then

K ≈ 0. (3.189)

Next, we proceed to linearize the shape equations for a bilayer with an attached
comoving cytoskeleton (3.123),

κ

{
∆p

(
1

2
∆pz

)
+ 2

(
1

2
∆pz

)[
�
�
�
�
��>

0(
1

2
∆pz

)2

− 0

]}
= (Σαβ + λδαβ)z,αβ + p, (3.190)

which simplifies to

κ

2
(z,xxxx + z,yyyy + 2z,xxyy) = (Σαβ + λδαβ)z,αβ + p. (3.191)

Now prescribe a simple state of stress Σαβ = σaαβ ≈ σδαβ. The linearized shape
equations are then

z,xxxx + z,yyyy + 2z,xxyy = η(z,xx + z,yy) + p′ (3.192)

where η = 2(σ+λ)
κ

, and p′ = 2p
κ

. This shape equation, for which Σαβ = σaαβ, can now be
solved for equilibrium shapes.

3.9.3 Plot of example equilibrium configuration

We now seek to visualize the vertical displacement of a circular patch of radius
10 × 10−4 [m] of an initially flat lipid bilayer with an attached cytoskeletal membrane as a
function of Cartesian coordinates, z(x, y). For demonstration purposes we assign simplifying
values for the constants such that

(σ + λ) = 1, κ = 2, (3.193)

where the dimensions of {σ, λ} are
[

force
length

]
, and the dimensions of κ are [force× length].

This reduces (3.192) to

z,xxxx + z,yyyy + 2z,xxyy = z,xx + z,yy + p. (3.194)

The value of the net pressure p is then assigned a value of 1000 MPa. We then
assign clamped boundary conditions at the edges of the patch to complete the problem. The
results shown in Figure 3.7 were solved and plotted using COMSOL Multiphysics v5.6.
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Figure 3.7: Plot of circular patch with simple stress state and uniform pressure.

The results match the expected outcome: the formation of a bubble with maxi-
mum vertical displacement of the membrane attained in the center of the circular domain.
Although this is a rather academic example, as cell turgor rarely exceeds 2 MPa [31] even
in plant cells and the constants were chosen to simplify the equation, it does demonstrate
the approximate response of a lipid bilayer/cytoskeleton system response to a net lateral
pressure.
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Chapter 4

Equations of equilibrium for
asymmetric tilted lipid bilayers 1

4.1 Introduction

In this chapter we extend the classical Canham-Helfrich model of lipid bilayer
surfaces [12, 24] to accommodate lipid tilt, defined as deviation from the surface normal of
a director field aligned locally with the axes of the lipids. Tilt typically manifests itself as
a kinematical accommodation between the lipids of the bilayer membrane and embedded
transmembrane structures such as inclusions and proteins [18]. A basic model of tilt was
advanced by Helfrich [24] on the assumption that liquid phases of lipid bilayers may be
modeled as thin liquid crystal films. This fruitful idea was further developed in [92] to achieve
a predictive model of the interplay between tilt and surface geometry in equilibrium. These
works rest on the premise that lipid bilayers may be modeled at the outset as elastic surfaces
endowed with fields of directors representing the local orientations of the lipid molecules.
An associated surfacial energy density is obtained by effectively assigning Frank’s energy
[19] for bulk liquid crystals directly to the surface of the bilayer. Further refinements of this
concept, culminating in several competing models of tilted bilayers, are described in [18, 37,
58, 36].

In the present chapter we pursue an alternative approach based on asymptotic
analysis of three dimensional liquid crystal theory in which lipid length - on the order of
molecular dimensions - plays the role of the small parameter. While this procedure may be
criticized on the grounds that an actual bilayer cannot be regarded as a three-dimensional
continuum, our confidence in it is nevertheless justified by the fact that it yields precisely
the classical Canham-Helfrich surface model at leading order when tilt is suppressed [4].
Moreover, the asymptotic framework offers guidance as to the features that a direct two-

1This chapter has appeared in a recent research article [41].
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dimensional surface model should possess. Among these are additional non-standard director
fields representing the restrictions to the surface of the curvatures of the three-dimensional
lipid trajectories [74].

Following a brief outline of the basic constitutive framework of three-dimensional
liquid-crystal theory in Section 4.2, in Section 4.3 we derive the leading-order two-dimensional
energy for asymmetric bilayers consisting of congruent leaflets having distinct properties and
director fields. In Section 4.4 this is combined with a virtual-power postulate to obtain
coupled equilibrium and boundary conditions for the surface and the leaflet director fields.
The response functions figuring in the theory are derived in Section 4.5. These are valid for
any bulk energy density in the considered class. They are specialized to energies of Frank
type in Section 4.6. Owing to the complexity of the model we limit ourselves merely to
its derivation in the hope that the community may find it useful for application to specific
problems involving lipid tilt.

4.2 Liquid-crystal energies

We model both leaves of the bilayer as nematic liquid crystals. Lipid molecules
are polar, in contrast to the non-polar molecules of conventional nematics. Accordingly, the
unit-vector field d̃ defining the molecular orientation is physically significant, i.e., the energy
is not invariant under d̃ −→ −d̃. The most general quadratic energy that takes this into
account is ([88]; eq. (3.36))

W(d̃, D̃) = k1(trD̃)2 + k2(W (d̃) · D̃)2 + k3|D̃d̃|2 + (k2 + k4)[tr(D̃2)− (trD̃)2]

+a0 + [a1 + a2W (D̃) · D̃]trD̃ + a3W (d̃) · D̃.
(4.1)

where
D̃ = gradd̃, (4.2)

is the spatial gradient of d̃, W (d̃) is the skew tensor with axial vector d̃, i.e.

W (d̃)v = d̃× v, (4.3)

for all v, and where k1−4 are constants satisfying Ericksen’s inequalities

2k1 ≥ k2 + k4, k2 ≥ |k4| and k3 ≥ 0, (4.4)

in accordance with the assumed convexity of the function W(d̃, ·). Here the dot interposed
between tensor variables is the Euclidean inner product, i.e., A·B = tr(ABT ), where tr is
the trace and BT is the transpose of B.

We use superposed tildes to identify three-dimensional fields. The same variables,
without tildes, are used in the remainder of the paper to denote the restrictions of these
fields to the surface of the bilayer.
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A more conventional representation of W is obtained on noting that

trD̃ = divd̃, (4.5)

the spatial divergence of d̃ and [88]

W
(
d̃
)
·D = d̃ · curld̃, (4.6)

where curl is the spatial curl. The third term in the expression for W is conventionally
written in terms of the curl via the identication ([88], eq. (3.24))

D̃d̃ = curl d̃×d̃. (4.7)

The chiral terms involving a0,1,2,3 account for the polarity of the lipids, whereas
Frank’s energy ([19], [88] eq. (3.63)), obtained on setting a0,1,2,3 = 0 pertains to conventional
non-polar nematics.

4.3 Leading-order asymptotic energy

Let t± respectively be the fixed, uniform lengths of the lipid molecules comprising
the upper and lower leaflets of the bilayer, and let E± be the leaflet energies. We assume
that t± are much smaller than any other length scale, l say, in the system, and adopt the
latter as the unit of length (l = 1), so that t± � 1. The total bilayer energy,

E = E+ + E−, (4.8)

satisfies
E/t = α+

(
E+/t+

)
+ α−

(
E−/t−

)
, (4.9)

where t = t+ + t−and α± = t±/t with α+ + α− = 1.
In Section 1.3 of [78] it is proved that

E±/t± = E± + o
(
t±
)
/t±, (4.10)

where

E± =

∫
ω

W±da, (4.11)

in which
W± = |d±n |W±

(
d±,D±

)
, (4.12)

where W± are the volumetric leaflet energy densities having possibly distinct material con-
stants, d± = d̃±|ω are the restrictions of the leaflet director fields to the interfacial surface ω,

D± = D̃±|ω are the restrictions of their spatial gradients to the surface, and

d±n = d± · n±, (4.13)
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in which
n+ = −n− = n, (4.14)

where n is the field of unit normals to ω (Figure 4.1).

Figure 4.1: Typical patch of director fields on the bilayer surface.

Accordingly, the limit of small t we have E/t→ E, where

E = α+E+ + α−E−. (4.15)

Thus Et is the leading-order energy for small t.
Further, in [78] it is proved that

D± = ∇d± +
(
d±n
)−1 [

η± −
(
∇d±

)
d±
]
⊗ n±, (4.16)

provided that d±n 6= 0, where ∇ (·) is the two-dimensional surficial gradient on ω and

η± = D±d±, (4.17)

are the restrictions to ω of the directional derivatives of d̃± in the directions d̃±. These are
the nonstandard director fields identified in the Introduction, representing the curvatures of
the trajectories aligned locally with the lipid molecules. Because d̃± are unit vectors, we
require

d± · η± = 0 (4.18)

on ω.
The energy densities in (4.11) are thus given by the functions

W± (n±,d±,∇d±,η±) = d±nW±
(
d±,D±

)
+H±

(
d±n
)
. (4.19)
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Ad hoc terms H± (d±n ) have been appended to penalize configurations having d±n = 0 in which
the hydrophobic tail groups of the lipids are exposed to the surrounding aqueous solution -
a highly energetic and unstable condition. We have also assumed d±n > 0 in accordance with
the arrangement of lipids depicted in Figure 4.1, and we note, from (4.14), that

d+
n = d+ · n and d−n = −d− · n. (4.20)

We observe that in the expressions for D±, and hence those forW±, the signs of n± are im-
material. Accordingly, these expressions are unaltered if the orientation n of ω is substituted
in place of n±. The energy is subject to constraints consisting of (4.18) and

|d±| = 1. (4.21)

Among the many possibilities for the penalty terms, the choices

H±
(
d±n
)

= −c±ln|d±n |, (4.22)

in which c± are positive constants, seem to be the simplest and most tractable.
For the purposes of deriving equilibrium equations we write the surface gradient

∇d, again with superscripts ± as appropriate, in the form

∇d = d,α ⊗ aα, (4.23)

where d,α = ∂d/∂θα, in which θα (α = 1, 2) are coordinates on ω and aα are the basis one-
forms on the tangent plane of ω at the point with coordinates θα. These are related to the
tangent basis aα = r,α (= ∂r/∂θα) in which r (θ1, θ2), is the position field on ω with metric
aαβ = aα · aβ, by aα = aαβaβ, where aαβ is the dual metric, i.e.,

(
aαβ
)

= (aαβ)−1. The
orientation of ω is defined by

n =
1

2
εαβaα × aβ, (4.24)

where εαβ = eαβ/
√
a is the contravariant permutation tensor, in which eαβ is the permutation

symbol (e12 = −e21 = 1; e11 = e22 = 0) and a = det (aαβ). Accordingly, the leaflet energies
may be expressed in the form

U±
(
aα,d

±,d±,α,η
±) = W± (n,d±,∇d±,η±) , (4.25)

and the net energy is
E = α+E+ + α−E−, (4.26)

with

E± =

∫
ω

U±
(
aα,d

±,d±,α,η
±) da. (4.27)
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4.4 Equilibrium

Following standard practice, we regard equilibria as states that satisfy the virtual-
power statement

Ė∗ = P, (4.28)

where P is the virtual power of external agencies acting on the bilayer, the superposed dot is
used to denote a variational derivative (evaluated at the considered equilibrium state), and

E∗ = α+ (E∗)+ + α− (E∗)− , (4.29)

with

(E∗)± =

∫
ω

[
U±
(
aα,d

±,d±,α,η
±)+

1

2
λ±
(
d± · d± − 1

)
+ µ±d± · η±

]
da (4.30)

being the extended energy, where λ±, µ± are Lagrange multiplier fields associated with
the constraints (4.18) and (4.21). Importantly, the variational problem (4.28) is entirely
unconstrained, and U± are to be treated as extensions of the actual leaflet energies from
their original domains, namely the manifolds defined by the constraints [11]. In this respect
our treatment differs from that found in [88], where Lagrange multipliers are avoided and
variations are computed on a constraint manifold directly.

For the purpose of computing the variation of the extended energy, we write

(E∗)± =

∫
Ω±

Φ±dA, (4.31)

with

Φ± = J±U± +
1

2
Λ±
(
d± · d± − 1

)
+ Π±d± · η±, (4.32)

where Λ± = J±λ±, Π± = J±µ±, and J± =
√
a/A± are the areal dilations of the leaflets in

which A± are the values of a on reference surfaces Ω±, on which the positions of the lipid
molecules constituting the leaflets, but not their orientations, are fixed. The variational
derivatives are then computed treating the lipid molecules, and thus Ω± as fixed. In a
departure from convention, we do not impose constraints on the areal dilations because such
constraints are not implied by the bulk incompressibility of liquid crystals [74].

We consider the possibility that the upper and lower leaflets may slide relative
to each other while remaining congruent to ω, and thus allow for distinct, but congruent,
reference surfaces Ω±. Accordingly,

Ė∗ = α+
(
Ė∗
)+

+ α−
(
Ė∗
)−

, (4.33)

where (
Ė∗
)±

=

∫
Ω±

Φ̇±dA =

∫
ω

J−1
± Φ̇±da, (4.34)
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and the virtual power is
P = α+P+ + α−P−, (4.35)

with

P± =
(
Ė∗
)±

. (4.36)

We suppress variations of the Lagrange multipliers Λ± and Π± in the computation of Φ̇± as
these merely return the constraints as the relevant Euler equations. The latter are therefore
to be appended to the final system of equilibrium conditions.

In addition to the multipliers, the functions Φ± depend on the list {aα,d±,d±,α,η±}.
For each leaflet of the bilayer, we define

JNα = Φaα , JMα = Φd,α , Jm = Φd and Jl = Φη, (4.37)

where Φaα , etc., are partial derivatives with respect to the indicated variables, and with ±

labels appended as appropriate. Then,

J−1Φ̇ = Nα · u,α +Mα · ḋ,α +m · ḋ+ l · η̇, (4.38)

where u = ṙ is the virtual velocity of the lipids on ω, the interposed dots are scalar products,
and we regard the coordinates θα as being convected with the lipids, so that ȧα = (r,α)· = ṙ,α
and (d,α)· = ḋ,α.

For each leaflet, Stokes’ theorem, applied to (4.36), then furnishes

P =

∫
∂ω

(
Nανα · u+Mανα · ḋ

)
ds+

∫
ω

[(
m−Mα

;α

)
· ḋ+ l · η̇ −Nα

;α · u
]
da, (4.39)

where Nα
;α = (

√
a)
−1

(
√
aNα),α, etc., is the covariant surface divergence on ω and να are the

components of the unit normal ν = ναa
α to the edge ∂ω lying in the tangent plane to ω.

We conclude that essential boundary conditions entail the specification of position
r and orientation d on subsets of ∂ω, the latter corresponding to the hard anchoring con-
dition of conventional liquid crystal theory [88]. For example, the individual leaflet director
tractions, power-conjugate to ḋ±, are

p± = Mα
±να. (4.40)

As we are allowing the leaflets to undergo relative slipping while remaining con-
gruent to ω, the leaflet virtual velocities are of the form

u± = uα±aα + wn, (4.41)

in which the normal velocity w is common to both leaflets and uα± = θ̇α± are the tangential
leaflet velocities at the lipids with coordinates θα on ω. In effect we stipulate that the con-
vected coordinates attached to the individual leaflets coincide, at the considered equilibrium
state, with the coordinates θα used to parametrize ω, but that they depart from the latter
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in the course of variation [40]. Accordingly, (4.39) furnishes tangential leaflet edge force
densities

t±β = aβ ·Nα
±να, (4.42)

which are power-conjugate to u̇α± and the shear-force density

S = n ·Nµνµ, (4.43)

power-conjugate to w, where
Nµ = α+Nµ

+ + α−Nµ
−. (4.44)

In the same way, assuming there are no virtual power terms associated with vari-
ation of d± or η± in the interior of ω, we conclude, from (4.28), (4.33) and (4.39), that(

Mα
±
)

;α
= m±, and l± = 0 on ω; (4.45)

and if f±β are tangential areal force densities acting on the leaflets, that

aβ ·
(
Nα
±
)

;α
+ f±β = 0 on ω, (4.46)

whereas the net lateral pressure p exerted on ω satisfies

n ·Nµ
;µ + p = 0 on ω, (4.47)

this generalizing the well known shape equation of conventional bilayer theory in which lipid
tilt is suppressed.

Some insight into the nature of the director tractions may be gained by considering
the overall equilibrium of the bilayer under rigid-body variations. These are of the form
u = ω × r + a, ḋ± = ω × d± and η̇± = ω × η±, where a and ω are constant vectors.
Because the liquid-crystal energy (4.1) is invariant under such variations [88], the same is
true of the extended bilayer energy (4.32), and (4.28) thus reduces to P = 0, i.e.,

a ·
(∫

∂ω

tds+

∫
ω

fda

)
+ ω ·

[∫
∂ω

(c+ r × t) ds+

∫
ω

r × fda
]

= 0, (4.48)

where, from (4.40)-(4.47),

t =
(
α+t+β + α−t−β

)
aβ + Sn, f =

(
α+f+

β + α−f−β
)
aβ + pn (4.49)

are the net edge and areal force densities, respectively, and

c = α+d+ × p+ + α−d− × p−. (4.50)

The arbitrariness of a and ω then furnishes the global force and moment balances∫
∂ω

tds+

∫
ω

fda = 0 and

∫
∂ω

(c+ r × t) ds+

∫
ω

r × fda = 0 (4.51)

and hence the interpretation of c as a couple traction on ∂ω.
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4.5 Response functions

To render the model explicit we require expressions for the derivatives listed in
(4.37). To this end we combine (4.19), (4.25) and (4.32) with the chain rule. Thus,

U̇ = ḋn [W +H ′ (dn)] + dn

(
Wd · ḋ+WD · Ḋ

)
(4.52)

in each leaflet, with labels ± appended as appropriate, whereWd andWD are the derivatives
of the extended (unconstrained) bulk energy, and (cf. (4.16))

Ḋ = (∇d)· − d−2
n ḋn [η − (∇d)d]⊗ n+ d−1

n [η − (∇d)d]⊗ ṅ

+d−1
n

[
η̇ − (∇d)· d− (∇d) ḋ

]
⊗ n,

(4.53)

with (cf. (4.20))
ḋ±n = ±(ḋ± · n+ d± · ṅ) (4.54)

and
(∇d)· = ḋ,α ⊗ aα + d,α ⊗ ȧα. (4.55)

For example, to compute the derivative Uη we fix d, aα (hence n) and ∇d, ob-
taining Ḋ = d−1

n η̇ ⊗ n. Then, (4.52) furnishes

Uη · η̇ =WD · η̇ ⊗ n = (WD)n · η̇. (4.56)

Because U is the extended energy, the variation η̇ is arbitrary; thus,

Uη = (WD)n. (4.57)

With reference to (4.32) we have Φη · η̇ = J(Uη + µd) · η̇, and (4.37)4 then gives

l = Uη + µd. (4.58)

Next, we fix d and aα, obtaining Ḋ = (∇d)· − d−1
n (∇d)· d ⊗ n. Using the rule

a ·Ab = a⊗ b ·A, we find that

Ud,α · ḋ,α = [dnWD − (WD)n⊗ d] · (∇d)· , with (∇d)· = ḋ,α ⊗ aα, (4.59)

and (4.32), (4.52) and (4.37)2 combine to yield

Mα = dn (WD)aα − dα (WD)n. (4.60)

According to (4.45)2, (4.57) and (4.58), (WD)n = −µd in equilibrium, yielding the leaflet
contribution p = dnd× (WD)ν to the couple traction on ∂ω.
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The computation of Ud proceeds in the same way. Fixing aα, η, and ∇d, we have

Ud · ḋ = ḋnW + dnWd · ḋ− d−2
n ḋn [η − (∇d)d] · (WD)n− d−1

n (∇d) ḋ · (WD)n. (4.61)

As we are concerned with the equilibrium value of Ud, we simplify matters by combining
(4.45)2, (4.57) and (4.58) to find that η · (WD)n = −µη · d, which vanishes by (4.18); and
(∇d)d · (WD)n = −µd · (∇d)T d, in which (∇d)T d vanishes because d is a unit vector.
The last term in (4.61) is disposed of similarly, and with (4.54) we obtain

Ud = dnWd ± [W +H ′ (dn)]n, (4.62)

again at equilibrium, with the sign pertaining to the leaflet in question, and where, for H as
in (4.22),

H ′±
(
d±n
)

= ∓c±/|d±n |. (4.63)

Combining this result with (4.32) and (4.37)3, we arrive at

m = Ud + λd+ µη. (4.64)

The derivation of the expressions for the response functions Nα is substantially
more involved. We fix d, η and d,α, and use (4.32) to infer that

Φaα · ȧα = J
(
U̇ + UJ̇/J

)
, (4.65)

where U̇ is given by (4.52) with

Ḋ = (∇d)· − d−2
n ḋn [η − (∇d)d]⊗ n− d−1

n (∇d)· d⊗ n+ d−1
n [η − (∇d)d]⊗ ṅ (4.66)

in which
(∇d)· = d,α ⊗ ȧα. (4.67)

Then,

WD · Ḋ =WD · (∇d)· − d−2
n ḋn [η − (∇d)d] · (WD)n− d−1

n (∇d)· d · (WD)n

+d−1
n [η − (∇d)d] · (WD) ṅ

(4.68)

wherein the 2nd term on the right-hand side again vanishes in equilibrium. The rule A ·a⊗
b = b ·ATa may then be used to arrive at

dnWD · Ḋ =
[
dn (WD)T − d⊗ (WD)n

]
d,α · ȧα + (WD)T [η − (∇d)d] · ṅ. (4.69)

Noting that [d⊗ (WD)n]d,α = −µ(d · d,α)d at equilibrium, which vanishes by (4.21), from
(4.52) we derive

U̇ = ± [W +H ′ (dn)]d · ṅ+ (WD)T [η − (∇d)d] · ṅ+ dn (WD)T d,α · ȧα. (4.70)
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To secure the desired result this must be expressed as a linear form in ȧα. Start
by expressing the variation ṅ in terms of ȧα through writing (4.24) in the form

Jn =
1

2
µαβaα × aβ, (4.71)

where µαβ = Jεαβ = eαβ/
√
A. Then,

ṅ = εαβȧα × aβ − (J̇/J)n, (4.72)

so that the 2nd term on the right-hand side of (4.70) may be reduced to

(WD)T [η − (∇d)d] · ṅ = εαβaβ × (WD)T [η − (∇d)d] · ȧα − (J̇/J) [η − (∇d)d] · (WD)n,
(4.73)

in which, as before, the 2nd term on the right vanishes. Continuing this procedure, consider
the inner product ṅ · n which renders

J̇/J = εαβȧα × aβ × n, (4.74)

where aβ × n = ελβa
λ and ελβ is the covariant permutation tensor. With εαβελβ = δαλ (the

Kronecker delta), we arrive at
J̇/J = aα · ȧα. (4.75)

To obtain ȧα in terms of ȧα, use ȧα = (aαβaβ)· with ȧαβ = −aανaβµȧνµ, which follows from
the identity aαγaγβ = δαβ . Using aνµ = aν · aµ, we then obtain

ȧαβ = −aβµaα · ȧµ − aαµaβ · ȧµ (4.76)

and finally
ȧα = aαβȧβ − [(aαβaµ + aβµaα) · ȧβ]aµ. (4.77)

Using (4.77), the 3rd term on the right-hand side of (4.70) may be written

dn (WD)T d,α · ȧα = dn

{
aαβ (WD)T d,β − [d,β · (WD)aµ]

(
aαβaµ + aαµaβ

)}
· ȧα. (4.78)

On combining these results with (4.37)1, (4.65) and (4.75), we finally obtain the rather
formidable formula

Nα = Uaα + εαβaβ × (WD)T [η − (∇d)d]± [W +H ′ (dn)]
(
εαβaβ × d− dnaα

)
+dn

{
aαβ (WD)T d,β − [d,β · (WD)aµ]

(
aαβaµ + aαµaβ

)}
.

(4.79)

The foregoing results are valid for any Galilean-invariant functionW(d,D) and are
therefore applicable to bilayers composed of extensible lipids, provided that the constraints
(4.18) and (4.21) are relaxed and the associated multipliers λ, µ are suppressed.
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4.6 Computation of WD and Wd

To complete the specification of the response functions we require expressions for
WD and Wd. The former is obtained by fixing d in (4.1) and (4.53), yielding

WD · Ḋ = (a1 + a2W (d) ·D + 2k1trD) trḊ + (k2 + k4)
[
tr
(
D2
)
− (trD)2]·

+ (a2trD + a3 + 2k2W (d) ·D)W (d) · Ḋ + 2k3Dd · Ḋd,
(4.80)

where
trḊ = I · Ḋ, (4.81)

with I the identity for 3-space, and[
tr
(
D2
)
− (trD)2] = 2

[
DT − (trD) I

]
· Ḋ. (4.82)

Thus,

WD = (a1 + a2W (d) ·D + 2k1trD) I + 2 (k2 + k4)
[
DT − (trD) I

]
+ (a2trD + a3 + 2k2W (d) ·D)W (d) + 2k3η ⊗ d.

(4.83)

To obtain Wd we hold D fixed, finding that

Wd · ḋ = (a2trD + a3 + 2k2W (d) ·D) Ẇ (d) ·D + 2k3Dd ·Dḋ, (4.84)

where (cf. (4.6))
Ẇ (d) ·D = curld · ḋ. (4.85)

Accordingly,
Wd = (a2trD + a3 + 2k2W (d) ·D) curld+ 2k3D

Tη. (4.86)

Here curld = (curld̃)|ω is the restriction to ω of the three-dimensional field curld̃. This is
given by [74]

curld = gi × d,i (4.87)

where
gα = aα − d−1

n dαn, g3 = d−1
n n, with dα = d · aα, (4.88)

and d,3 = η. Thus,
curld = aα × d,α + d−1

n n× [η − (∇d)d] . (4.89)

With these results, the constraints of Section 4.3 and the equilibrium equations
and edge conditions of Section 4.4 yield a complete system for the determination of the
position field r(θα), the leaflet director fields d±, η± and the multipliers λ±and µ± on the
bilayer surface.



60

Chapter 5

Conclusion

We now conclude this thesis with a brief review of the significant results and
mention some suggests for further expanding on those results.

In Chapter 2, a simple model of lipid tilt and distension proposed in [77] inspired
by parallel computational research in molecular dynamics was solved and plotted using
COMSOL Multiphysics. A simple energy was introduced in (2.4) resulting in the equilibrium
equations (2.22) and (2.23), which were then plotted using (2.24) as a choice for G. The
results showed a tilt gradient affected by the presence of idealized embedded proteins. Future
development of this idea would involve attempting to find forms of (2.4) that would precisely
match results of simulations based on particle methods. Further work may then extend of
this simple model to one in which predictions can be made and tested experimentally.

In Chapter 3, the equilibrium equations for a lipid bilayer with a comoving cy-
toskeletal membrane were derived, where (3.123) is the shape equation subject to the tangen-
tial equilibrium equations (3.116). This equation was used to predict the biconcave discoid
shape of a human erythrocyte in equilibrium (Figure 3.5). A possible advancement of this
model could be achieved by comparing a prediction made using (3.123) for an experimentally
testable form of Σαβ.

In Chapter 4, the equilibrium equations (4.46) and (4.47) were derived for a lipid
bilayer with asymmetric tilt fields in each leaflet as part of a complete system to determine
the position field r(θα) and other necessary fields. The next step in exploring this result
would be to propose an appropriate boundary value problem using this system of equations
and solve it for some elementary problems in which asymmetric tilt fields would yield a
different result than those of the standard symmetric tilt models.
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