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Abstract

Understanding the topographic basis for microclimatic variation remains fundamental to pre-

dicting the site level effects of warming air temperatures. Quantifying diurnal fluctuation and

seasonal extremes in relation to topography offers insight into the potential relationship

between site level conditions and changes in regional climate. The present study investi-

gated an annual understory temperature regime for 50 sites distributed across a topographi-

cally diverse area (>12 km2) comprised of mixed evergreen-deciduous woodland vegetation

typical of California coastal ranges. We investigated the effect of topography and tree cover

on site-to-site variation in near-surface temperatures using a combination of multiple linear

regression and multivariate techniques. Sites in topographically depressed areas (e.g., val-

ley bottoms) exhibited larger seasonal and diurnal variation. Elevation (at 10 m resolution)

was found to be the primary driver of daily and seasonal variations, in addition to hillslope

position, canopy cover and northness. The elevation effect on seasonal mean temperatures

was inverted, reflecting large-scale cold-air pooling in the study region, with elevated mini-

mum and mean temperature at higher elevations. Additionally, several of our sites showed

considerable buffering (dampened diurnal and seasonal temperature fluctuations) com-

pared to average regional conditions measured at an on-site weather station. Results from

this study help inform efforts to extrapolate temperature records across large landscapes

and have the potential to improve our ecological understanding of fine-scale seasonal cli-

mate variation in coastal range environments.

Introduction

Human-induced climate change is a major cause of species extinctions and biodiversity loss

globally [1]. Widespread species range shifts in response to warming are already evident [2,3],
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and substantial additional reshuffling of plant and animal communities is likely [4]. However,

mounting evidence suggests that small scale topographic variation promotes high levels of cli-

matic heterogeneity [5,6], potentially mediating expected large scale range shifts caused by

macroclimatic change [2,7,8]. Facilitated by unique micro-topographic characteristics [8,9],

this can offer opportunities for species to persist in place, rather than shift in space, in response

to climate change [10–13].

Topography and vegetation create microclimates that differ from regional climates. These

local departures can be explained by physio-topographic attributes such as elevation, slope and

aspect, depressions and ridgetops, canopy cover, distance to coast, and proximity to the forest

edge [14–16]. These features give rise to spatio-temporal heterogeneity expressed on local

scales, affecting minimum and maximum temperatures, and the resulting magnitude of diur-

nal (daily maximum vs. minimum) and seasonal (summer vs. winter) temperature variations

[9,17]. Furthermore, the resulting minimum and maximum extreme temperatures, are known

to structure plant and animal distributions [18–20]. In topographically heterogeneous land-

scapes in particular, steep topographic gradients create strong microclimate heterogeneity

[21].

One effect that may occur locally is microclimatic buffering at diurnal, seasonal or interan-

nual scales. We define buffering as reduced temperature fluctuations relative to free atmo-

spheric conditions measured by e.g., weather stations [11,22]. Buffering capacity, in the

context of our study, refers to the ability of a specific location to moderate or lessen tempera-

ture fluctuations [6,23]. When a location has a high buffering capacity, it can effectively reduce

the magnitude of temperature variations, providing more stable and moderated temperature

conditions. Alternatively, a reduced buffering capacity implies that the location is less effective

at mitigating temperature fluctuations, resulting in more pronounced and variable tempera-

ture changes [20]. Vegetation canopies have important buffering effects, with lower daytime

maxima and higher nighttime minima [24–26], and buffering of temperature extremes in

comparison with a forest clearing e.g., clearcuts [27–29].

Cold-air pooling modifies the coupling of sites with free-air temperature in conjunction

with physiographic features. Coupling is defined as having a 1:1 linear relationship with the

free-air temperature (e.g., clearcut site or a weather station) [22]. The cold-air pooling condi-

tions keep cold air trapped in convergent environments like valley bottoms, yielding stable

microclimates in some circumstances [30]. Generally, the relationship between temperature

and elevation (or altitude) is explained by the adiabatic lapse rate of 6–8˚C decrease per 1000

meters increase in elevation. However, ridgetops and valley bottoms can influence tempera-

tures via orographic effects, causing adiabatic cooling on windward slopes and potential warm-

ing on leeward sides [31,32]. By contrast, the higher density of cold air can lead to

accumulation in low-lying regions, and to temperature inversions with warm air resting above

layers of cold air [33]. This is predominantly manifested during the winter on clear nights with

light winds. Hence, cold-air pooling is a key determinant of the degree of coupling between

the boundary layer and free atmosphere [32,34].

Previous research has pointed to the role of micro-topographic and vegetative features in

buffering or coupling of microclimates with respect to regional climate. However, what

remains less clear is the way different landscape patterns (characterized by topographic fea-

tures and vegetation) influence mean diurnal and seasonal temperature variations as such. In

fact, the potential impacts of temperature variability and extremes can pose a greater risk to

species than increases in mean temperature [35,36]. It is likely that organisms occupying sites

that have higher seasonal and diurnal fluctuations may exhibit greater tolerance of heat

extremes and greater potential to withstand climate change impacts. This notion is not new:

Janzen (1967) predicted decades ago that species experiencing large environmental variability
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will acclimate better and have increased range limits than the ones in lower variability regimes.

Greater temperature fluctuations may better prepare species to tolerate future warming as they

have evolved or acclimated to broader climatic tolerances.

Here, we study a large mixed-hardwood forest landscape in Northern California to determine

the role of topography and vegetation in diurnal and seasonal fluctuations, with a focus on canopy

cover, slope, aspect, and hillslope position. We specifically examine how topography drives diurnal

and seasonal minimum, maximum, and mean temperatures, and how it influences resulting diur-

nal and seasonal temperature fluctuations. We hypothesize that valley bottoms will show greater

temperature fluctuations, due to the combination of cold-air pooling and reduced diurnal mixing

with the local free atmosphere [32,37,38], leading to reduced temperature buffering capacity com-

pared to ridge-tops (conceptual model in Fig 1). Knowing how species respond to changes in diur-

nal temperature fluctuations is crucial for understanding their adaptation to climate [39,40].

Methods

Study design

The study was conducted at Pepperwood Preserve (Sonoma Co., 38.57˚N, 122.68˚W) in northern

California (Fig 2: Pepperwood Preserve Study Area, Fig B.4 in S1 Appendix with site numbers).

The preserve is representative of deciduous and evergreen woodlands in the region, and exhibits

elevations from 122 m to 462 m, with rugged undulating topography. The local climate is coastal

Mediterranean, with hot summers, cool winters, and predominantly winter precipitation. The

long-term average temperature at the study site was found to be 15.37˚C, with a standard devia-

tion of 0.53˚C. In contrast, the regional temperature is found to be 14.49˚C with a standard devia-

tion of 0.55˚C. These values signify the variability in temperature over the past 40 years.

Climate data collection

Fifty 20 x 20 m vegetation plots were situated by stratifying on micro-topographic features and

vegetation types [41]. In the summer of 2013, 50 temperature data loggers (Onset HOBO

Model U23, Onset Corp., Bourne, MA) were installed at each plot. Each logger was placed 1.2

Fig 1. Conceptual diagram illustrating possible topographic effects on diurnal and seasonal fluctuations.

https://doi.org/10.1371/journal.pone.0300378.g001
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m above the ground inside a radiation shield (Fig A.3 in S1 Appendix). Loggers were placed at

the edge of each plot, and under representative canopy cover conditions. All of the loggers

were placed in the understory and are part of a long-term forest dynamics research project

[41,42]. Data loggers recorded temperature (˚C) and relative humidity (RH%) at half-hour

intervals. At each site, average hourly temperatures were first calculated at the site level, and

then from those, average daily temperatures (minimum, maximum and diurnal) were calcu-

lated for winter (December 2013-February 2014), spring (March-May 2014), summer (June-

August 2014) and autumn (Sep-Nov 2014) months. From these daily metrics, 18 summary sta-

tistics were calculated (Table 1) representing daily minimum, mean, maximum, and diurnal

variation in each season, plus growing degree day accumulation and the variation in seasonal

means (difference between summer mean and winter mean). A permanent weather station at

the Pepperwood Preserve (situated in an open area) was used as a reference in our study. To

evaluate coupling and buffering of a site with regional climate (in this case. we used a weather

station), quantification was done following methods of De Frenne et al. 2021.

Topographic and canopy characterization

Spatial analysis using a GIS [43] was performed on a 10 m digital elevation model (DEM) of

Pepperwood Preserve [41] to derive topographic variables (for details on topographic variables

Fig 2. Pepperwood Preserve with 50 study sites. Each site was equipped with a microclimate logger (Onset HOBO

Model U23, Onset Corp., Bourne, MA) that was installed at 1.2m height above the ground (see Fig A.3 in S1 Appendix

for a picture of the logger). Image credits © Stamen Design, © OpenStreetMap.

https://doi.org/10.1371/journal.pone.0300378.g002
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used in this study see Oldfather et al. 2016) (Table 2 and Table A.2 in S1 Appendix). Variables

included TPI (topographic position index), which is calculated as the difference (m) between

the elevation of a point and the mean elevation in a surrounding radius. This measure indi-

cates how elevated or depressed a site is in relation to its surroundings (positive for ridges and

hilltops, and negative for valley bottoms). 100 m and 500 m radii were used to produce TPI100

and TPI500, which capture fine-scale variations and larger terrain features, respectively. TPI is

essentially a local elevation, in contrast to DEM which is the global elevation. Similarly, PLP

(percent lower points) is defined as the percentage of points within a given radius that are

lower than the focal point (higher percentages indicate hilltops, and lower percentages identify

valleys). PLP and TPI measures at each scale were strongly correlated (pairwise r2 ranged from

.84 to .94); furthermore, the metrics calculated using 500 m were similar to 100 m, so only

PLP500 was used in this study [41]. Slope and aspect were calculated using the raster R package

[44]. Northness was calculated as cosine(aspect)*sine(slope) [42] (aspect on its own was exam-

ined but did not contribute to the final analysis). Pairwise Pearson correlation coefficients

among topographic variables ranged from -0.26 to 0.29, with the highest between DEM and

PLP500, as these are two measures of site elevation. Canopy cover was recorded in mid-

Table 1. Derived climate variables and their minimum, mean, and maximum across the 50 logger sites.

Description unit abbreviation min, max (mean)

Mean summer daily diurnal variation (Max–Min) ˚C mean_fluct_summer 11.56, 19.75 (15.96)

Mean daily min temperature in summer. ˚C mean_summer_min 11.30, 13.93 (12.28)

Mean daily max temperature in summer. ˚C mean_summer_max 25.48, 31.60 (28.23)

Mean daily temperature in summer. ˚C summer_mean 18.04, 20.38 (19.06)

Mean winter daily diurnal variation. ˚C mean_fluct_winter 4.44, 15.78 (9.57)

Mean daily min temperature in winter. ˚C mean_winter_min 1.94, 9.56 (6.64)

Mean daily max temperature in winter. ˚C mean_winter_max 12.78, 23.61 (16.21)

Mean daily temperature in winter. ˚C winter_mean 8.19, 14.68 (10.75)

Growing degree days accumulated in the growing season. Defined as thermal units accumulated above 10˚C degree-days gdd 1616, 2675 (2191)

Mean spring daily diurnal variation. ˚C mean_fluct_spring 8.64, 17.64 (12.59)

Mean daily min temperature in spring. ˚C mean_spring_min 6.60, 10.63 (8.74)

Mean daily max temperature in spring. ˚C mean_spring_max 17.06, 27.37 (21.33)

Mean daily temperature in spring. ˚C spring_mean 11.53, 17.68 (14.28)

Mean autumn daily diurnal variation. ˚C mean_fluct_autumn 7.85, 16.30 (12.01)

Mean daily min temperature in autumn. ˚C mean_autumn_min 8.79, 13.37 (11.11)

Mean daily max temperature in autumn. ˚C mean_autumn_max 20.90, 26.40 (23.13)

Mean daily temperature in autumn. ˚C autumn_mean 14.28, 17.12 (16.05)

Seasonal mean fluctuation (summer mean–winter mean) ˚C seasonal_mean_fluct 4.77, 11.31 (8.31)

https://doi.org/10.1371/journal.pone.0300378.t001

Table 2. Topographic and canopy variables measured at each of the 50 sites.

Description unit abbreviation min, max (mean)

Elevation derived from Digital Elevation Model (referred as

elevation in the text)

m DEM (Elevation) 121.89, 461.52

(272.02)

Percent of pixels lower in a 500m radius % PLP500 (Topographic

position)

6.14, 99.85 (47.15)

Measure of steepness ˚ slope 3.55, 29.77 (18.80)

Canopy cover % canopy 32.85, 91.03

(74.72)

Northness (cos(aspect)*sin(slope) northness -0.43, 0.42 (0.06)

https://doi.org/10.1371/journal.pone.0300378.t002
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summer when the plots were initially established, using a forest densiometer [41]. Note that

plots have varying proportions of deciduous trees (0 to 100%); the cover values are thus most

relevant for analysis of summer temperatures. Canopy cover for winter was modified by sub-

tracting the deciduous fraction from the total canopy cover.

Statistical analyses

Each site is a 20 x 20 m plot and constitutes a study unit. Two data matrices were produced for

analysis; the climate matrix contained all the climatic descriptors for the sites (50 sites x 18 var-

iables), and the physiographic matrix included topographic and canopy related variables (50

sites x 5 variables). All the variables were continuous. Two sites (Site 1348 and 1350) were

missing climate data for roughly six months but were still included in all the analyses for com-

pleteness, and removing or including them did not alter the outcome.

To reduce the dimensionality and to assess dominant variables in climate and physio-

graphic space, principal component analysis (PCA) was employed. PCA is known to work bet-

ter than stepwise regression in multivariate datasets where high correlations exist between the

variables. Correlation matrix was used for PCA as variables differed in their measurement

units. PCA was performed separately on the physiographic and climate matrices. A Monte

Carlo randomization test was used to assess the statistical significance of each principal com-

ponent (PC) axis.

Multiple linear regression was performed to tease apart variations in climatic space for indi-

vidual seasons. Additionally, principal component regression (PCR) was used to assess the

association between physiographic characteristics (summarized according to PC1 and PC2)

and the minimum, maximum, mean, and diurnal variations in summer and winter tempera-

tures. A complementary redundancy analysis (RDA) was also conducted to investigate the

relationship between the entire suite of climate and physiographic variables. We further per-

formed selective RDA by subsetting seasonal (winter, summer, autumn and spring) climate

variables and seeking out the dominant topographic variables contributing to corresponding

diurnal variations in different seasons. Aggregate climate metrics (min, max, mean, and sea-

sonal fluctuations) were normalized for RDA analysis using log-10 transformation.

All analyses were performed using R software [45] using several R packages, including ‘tidy-
verse’, ‘raster’ and ‘vegan’ [44,46,47].

Results

Over the 12-month cycle (December 2013-November 2014), temperatures across the land-

scape varied from a minimum of -2.7˚C to a maximum of 40.4˚C; mean hourly temperatures

across the seasons (over all the days in a season) were between 9˚C and 30˚C (Fig 3A–3C),

with an overall site mean temperature of 15˚C (over all sites and days). Across the landscape,

altitude was positively correlated with average temperature (Fig B.3 in S1 Appendix; R2 = 0.23,

p< 0.001). Sites across the Pepperwood Preserve show significant diurnal variations in differ-

ent seasons. In summer, the average diurnal variation was approximately 16˚C and in winter it

was approximately 9˚C. Winter maximum temperatures exhibited the greatest spatial variabil-

ity across sites (Fig 3D).

Multiple regression analysis revealed that seasonal climate metrics were strongly related to

elevation and moderated by micro-topographic and canopy features (Table 3). Diurnal varia-

tions in each season decreased with DEM (elevation), indicating that higher elevations exhib-

ited lower diurnal variations than did lower elevation sites. Diurnal variations for autumn,

spring and summer (all seasons except winter) were correlated negatively with PLP500 and

canopy cover. Diurnal variation was also found to be negatively associated with northness in
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autumn only. Seasonal minimum temperatures were positively associated with elevation, sug-

gesting temperature inversions, in contrast with max temperatures that were negatively associ-

ated with elevation. Minimum temperatures were positively associated with global elevation

(DEM) and local elevation or hillslope position (PLP500), except in winter where it was DEM

only. Seasonal maximum temperatures were negatively associated with elevation but were

found to be moderated by canopy cover in summer and in autumn. Additionally, autumn and

winter maximum temperatures were negatively associated with northness. Seasonal

Fig 3. Seasonal minimum, maximum average temperatures with corresponding variability (lines are loess fits). (A) Mean hourly temperatures of 50 sites

by season. (B) Maximum hourly temperatures of 50 sites by season. (C) Minimum hourly temperatures of 50 sites by season. (D) Standard deviation of seasonal

mean, minimum and maximum across sites.

https://doi.org/10.1371/journal.pone.0300378.g003
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fluctuations (summer mean minus winter mean) decreased with elevation only. Slope was not

significantly related to any of the variables.

Significant proportions of the variability were captured by the first two PCs in climate and

physiographic space. In the first PCA (climate), PC1 and PC2 explained 37.2% and 30.0%,

respectively, of the climatic variability across Pepperwood Preserve (Fig 4A). Variables with

positive loadings on PC1 included mean minimum temperatures from winter, summer, and

autumn, and winter and autumn mean temperatures. Variables with negative loadings on PC1

included summer and winter fluctuations and seasonal maxima. Negative loadings on PC2

included GDD, and several seasonal means and maxima. In the ensuing PCA results, we show

the R2 of the respective correlations in parentheses.

In the second PCA (physiography), PC1 and PC2 explained 54.3% (27.2% and 27.1%

respectively) of the topographic variability across Pepperwood Preserve (Fig 4B). Topography-

related variables were positively correlated with PC1 except for DEM which was negatively

correlated: DEM (R = -0.77), slope (R = 0.42), northness (R = 0.42) and PLP 500 (R = 0.07).

Canopy was positively correlated on PC1 (R = 0.74). Hence, positive values of PC1 represent

sites that are low elevation north facing ridges with steep slopes and denser canopy. PC2 of

physiographic space was largely composed of positively correlated topographic variables: DEM

(R = 0.35), PLP500 (R = 0.88) and northness (R = 0.63). Canopy and slope were negatively cor-

related on PC2 (R = -0.20 & -0.14). Positive values of PC2 can be interpreted as low canopy

cover sites on higher elevations (ridgetops).

Table 3. Partial coefficients from the multiple linear regression of climate variables by topographic drivers (p-value significance codes in bold: ‘***’ < 0.001, ‘**’<
0.01, ‘*’< 0.05, ‘.’ < 0.1, ‘‘< 1).

Variable Beta coefficients of main physiographic variables R-Squared

DEM Slope Canopy PLP500 Northness

mean_fluct_winter -0.019*** 0.047 -0.018 -0.016 -3.284 0.42

mean_fluct_spring -0.015*** -0.025 -0.036* -0.026** -0.451 0.68

mean_fluct_summer -0.011*** 0.003 -0.050*** -0.014* 0.266 0.72

mean_fluct_autumn -0.016 *** -0.006 -0.041*** -0.022*** -1.781** 0.86

winter_mean 0.007** 0.041 -0.006 0.009 -1.292 0.34

spring_mean -0.003 -0.022 -0.012 0.010 -0.013 0.11

summer_mean -0.000 -0.008 -0.021*** 0.005* 0.098 0.59

autumn_mean 0.003*** -0.004 -0.014** 0.014*** -1.041*** 0.64

winter_min 0.016*** 0.026 0.000 0.014 -0.504 0.62

spring_min 0.004** -0.011 0.002 0.022*** -0.288 0.51

summer_min 0.003*** -0.005 0.002 0.013*** -0.202 0.66

autumn_min 0.009*** -0.003 0.002 0.023*** -0.717 0.80

winter_max -0.003 0.073 -0.018 -0.002 -3.788* 0.21

spring_max -0.011*** -0.036 -0.034 -0.004 -0.739 0.36

summer_max -0.008*** -0.002 -0.048*** -0.001 0.065 0.66

autumn_max -0.008*** -0.010 -0.040*** 0.001 -2.498 *** 0.67

seasonal_amplitude

(summer and winter)

-0.007*** -0.051 -0.016 -0.002 1.144 0.38

gdd -0.224 -4.976 -8.044*** 3.328** -375.866** 0.44

https://doi.org/10.1371/journal.pone.0300378.t003
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A multivariate linear regression model with the physiographic PCs was explored against all

the climate variables (Figs A.1 and A.2 in S1 Appendix). Summer mean and summer maxi-

mum temperatures were positively correlated with PC1 of physiographic PCA axes (R2 = 0.37

& R2 = 0.23, p-value < 0.0001), summer diurnal variations were marginally correlated (R2 =

0.13, p-value < 0.05), but winter temperature measures were not correlated with PC1. PC2 of

topographic space reflected the gradient from valley bottoms to high elevation sites and

explained variation in winter temperature measures. Winter minimum and winter mean tem-

peratures were positively correlated with PC2 of physiographic PCA axes (R2 = 0.42 & R2 =

0.09, p-value < 0.0001 and p-value < 0.05), but winter diurnal variations and winter maxi-

mum temperatures were negatively correlated (R2 = 0.37 & R2 = 0.07, p-value < 0.0001 and p-

value < 0.05) with PC2 of physiographic PCA axes (Fig A.2 in S1 Appendix).

RDA confirmed the strong influence of topographic variables on climate variability. RDA

results show that topographic variables DEM, PLP500, northness and slope explained a signifi-

cant proportion of climatic variability across all the seasons (Fig 5). Table A.1 in S1 Appendix

shows the RDA output when all the topographic variables were selectively constrained against

seasonal climate variables. In autumn, statistical significance (p-value< 0.005) is observed for

topographic features such as DEM, PLP500, and northness, as well as canopy. However, in

spring, only topographic features DEM and PLP500 demonstrate significance (p-

value < 0.005). In summer, DEM, PLP500 and canopy are found to be statistically significant

(p-value < 0.005), and in winter, only DEM is found to be statistically significant (p-

value < 0.005). Additionally, temperature metrics (maximum and diurnal) overlap with can-

opy and slope explaining the seasonal variation in all seasons, but canopy plays an important

role in summer (Fig 5). RDA analysis shows that DEM is the most dominant topographic vari-

able which explains the variation in climate across a heterogeneous landscape.

Fig 4. Biplots of climate and physiographic PCA analysis (A) PCA of climate space (B) PCA of physiographic space. Dots on the panels

represent sites, and arrows represent variables, with their length indicating their contribution to the principal component.

https://doi.org/10.1371/journal.pone.0300378.g004
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Inversion of minimum temperatures was found across Pepperwood Preserve in all the sea-

sons. Lower elevation sites are colder than the higher elevation sites, especially in winter as evi-

denced by the positive association of minimum temperatures with elevation (Fig 6A). Autumn

and spring are intermediate, with a slightly stronger pattern in autumn (Fig 6A). Unlike the

minima, maximum temperatures decline with elevation, and the pattern was weakest in winter

(Fig 6B). Higher elevation sites have lower diurnal variation in all seasons as opposed to lower

elevation valley sites (Fig 7A). Across all the seasons, diurnal variations were highest in sum-

mer with the lowest experienced in winter.

Comparison of daily mean temperatures of HOBOs with Pepperwood weather station

showed a general trend of buffered temperatures in the understory compared to the weather

station (Fig 8, Fig B.1 in S1 Appendix). A majority of sites were found to be cooler in spring

and summer, but warmer in fall and winter. The pattern was not evident in some of the high

elevation sites (cluster of sites around 400 m elevation) where it tended to be nearly aligned

with the weather station (Fig 8B). Furthermore, comparison of diurnal variation of loggers

with weather station shows lower diurnal variation of valley bottom sites than the high eleva-

tion sites with respect to weather station (Fig B.2 in S1 Appendix)

Discussion

Our study supports the general understanding that elevation is the primary driver of tempera-

ture variation, but also illustrates the additional influence of local vegetation and topography

on the climatic conditions manifested at the site level in mountainous terrain. We confirm the

role of elevation at a larger landscape level influencing both diurnal and seasonal temperature

fluctuations [9,48], but found it to be inverted for minimum temperatures and following a

Fig 5. Topographic variables contributions deduced by RDA across all the seasons. Elevation was found to be a prominent driver of

variability in all seasons, with smaller contributions from other topographic features.

https://doi.org/10.1371/journal.pone.0300378.g005
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gradient for maximum temperatures (Fig 6A and 6B). Additionally, topographic features like

topographic position (PLP500, direct measure of hilltop/valley bottoms) and northness con-

tributed to the diurnal and seasonal variability, minima, and maxima. We also revealed that

canopy mediates the diurnal variation in different seasons [49]. Valley-bottom sites were in a

cold-air pool and showed more variability (diurnal and seasonal), thus supporting our main

hypothesis. Given that our results align with general understanding of elevation as the key fac-

tor in temperature, its interaction with more detailed physiographic features influence temper-

ature variation [9,50]. This supports the validity of downscaling approaches that use coarse-

grain climate grids to produce fine-grained products using only the elevation [51,52]. How-

ever, one needs to be cautious as seasonal and region-specific lapse rates like shown here are to

be considered when downscaling [31]. Additionally, our study only used a year of climate data

to look at topographic effects; a longer time period is warranted to confirm the uncovered

patterns.

Fig 6. Linear fits of seasonal minima and maxima across the elevational gradient. (A) Lower elevation sites are found to be colder than the

high elevation suggesting inversion (temperature increasing with elevation); autumn minimum temperatures exhibiting higher rate of

increase by elevation than in the spring; autumn (R2 = 0.65), spring (R2 = 0.28), summer (R2 = 0.41), and winter (R2 = 0.58) all significant at

p-value< 0.001; (B) Summer maximum temperatures are found to be declining with elevation, but is less pronounced in winter; maximum

temperatures association with elevation in autumn is found to be less pronounced compared to spring; autumn (R2 = 0.31), spring (R2 =

0.31), summer (R2 = 0.45) significant at p-value<0.001, and winter (R2 = 0.02) not significant at p-value = 0.31.

https://doi.org/10.1371/journal.pone.0300378.g006
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Diurnal and seasonal temperature fluctuations are largely influenced by elevation but mod-

erated by a combination of landscape and physiographic features. Average diurnal variations

across the sites in all seasons were influenced by elevation (DEM) with lower elevations show-

ing larger diurnal variation (Fig 7). Furthermore, in our study site, we find that the more

exposed a site is, like the ridgetops, the fluctuations are more coupled to free-air temperature

than the valley bottom sites that tend to be less coupled ([9], Fig B.2 in S1 Appendix). Diurnal

fluctuations in different seasons were strongly influenced by topographic position and moder-

ated by canopy, similar to findings in previous studies [6,24,25,53].

Winter minimum temperatures were not influenced by finer physiographic features (Fig

6A). However, ridgetops showed higher summer and winter mean temperatures than the val-

ley bottoms. Our finding is consistent with past works that suggest valley bottoms receive less

radiation load in comparison to ridgetops [48,53]. Winter temperatures were found to be

increasing with elevation (Fig 6). The northwest portion of the Pepperwood Preserve exhibited

strong inversion patterns, and potentially is part of a large-scale cold-air pool linked to a larger

valley to the northwest of our study area (Fig A.4 in S1 Appendix).

In winter and autumn, we see that maximum temperatures are driven by northness (Fig 5),

which agrees with past studies on the importance of aspect for radiation load. In winter,

Fig 7. Linear fits of seasonal diurnal fluctuations as a function of elevation. Higher elevation sites exhibit lower diurnal variation in all

seasons; autumn (R2 = 0.69, p-value< 0.001), spring (R2 = 0.57, p-value< 0.001), summer (R2 = 0.57, p-value< 0.001), and winter (R2 = 0.31,

p-value< 0.001) (A) and lower seasonal variation (difference between mean summer and winter fluctuation); R2 = 0.25, p-value< 0.001(B).

https://doi.org/10.1371/journal.pone.0300378.g007
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maximum temperatures were only explained by northness, reflecting effects of low daytime

sun angles on the difference in solar insolation between north and south-facing slopes. During

the winter months, when the sun’s angle is lower, there is reduced direct sunlight compared to

the higher sun angles experienced in summer. This difference in sunlight exposure is likely a

key factor explaining the canopy effects observed exclusively during the summer season. These

effects are pronounced due to variations in canopy cover, with summer showing a greater sea-

sonality because of the trees providing more effective shading during this period [54,55]. A

recent study at Pepperwood Preserve reported that site aspect was the most important deter-

minant of species distributions of trees [42]. But as our temperatures are from understories,

mediated by canopy cover, it is most relevant to seedlings/understory vegetation rather than

the overstory [56]. Our findings suggest possible stronger effects of winter minima (because of

cold-air pools) that may influence future species distributions, more than summer maxima

[57].

We infer that the lower elevation valley sites that also happen to be in cold-air pools would

be more unstable microclimatically (larger daily fluctuations) than the high elevation sites. In

our study area, low elevation valley bottom sites are strongly buffered and high elevation sites

are the most coupled (used weather station as a proxy to free-air; Fig B.2 in S1 Appendix, Figs

7 and 8). A variation that is indicative of the underlying topographic heterogeneity

[9,17,29,58]. Physiographic features influence the degree of coupling of a site to the free-air

temperature [6,9,59].

Canopy cover in conjunction with topographic attributes plays a role in diurnal and sea-

sonal fluctuations. We find the higher elevation sites that exhibit less diurnal and seasonal

Fig 8. Linear fit of mean daily temperatures of HOBOs against the Pepperwood Preserve weather station (A) and slope of the relationship with

elevation (B). Relationship highlighting that most of the sites are cooler in comparison to the weather station, but also show some of the high

elevation sites are fundamentally aligned with the weather station climatically. Note that in panel A, dots refer to the day of the year, solid black

line is 1:1, and the colored lines are individual linear fits in relation to the weather station.

https://doi.org/10.1371/journal.pone.0300378.g008

PLOS ONE Topography influences diurnal/seasonal microclimate fluctuations in hilly environments of coastal California

PLOS ONE | https://doi.org/10.1371/journal.pone.0300378 March 29, 2024 13 / 19

https://doi.org/10.1371/journal.pone.0300378.g008
https://doi.org/10.1371/journal.pone.0300378


variation have lower canopy cover as opposed to lower valley bottom sites that exhibit higher

variations (diurnal and seasonal). Canopy that has been noted in many studies to be contribut-

ing to microclimatic buffering is found here to be contributing to diurnal/seasonal variability

[24]. One caveat to our study is that it is possible that we did not find very strong effects of can-

opy cover because all our loggers were under canopies (range of 30–90%). However, as

expected, the buffering effects of forest canopies are strongest when compared with an open

site [22,26] (see Fig 8). So, canopy cover mediates regional and macroclimatic climatic patterns

in relation with elevational gradient and is likely contributing to lower variability diurnally

and seasonally [60]. Also, despite having a short canopy cover gradient, we see strong effects of

canopy in the summer (Fig 5); this could be particularly important for management and con-

servation [61].

Implications for global change biology

The results presented here highlight the importance of microclimates, such as valley bottoms,

that may be both cooler (at night and in winter) and warmer (during the day and in summer),

compared to more exposed sites that are strongly coupled with regional climate. This pattern

raises two sets of questions related to impacts of future climate change. First is the question of

whether sites that are more variable diurnally or seasonally (i.e., valley bottoms) will change

more or less in response to regional climate change [62]. The null expectation is that warming

will be equivalent across sites, so the patterns of diurnal and seasonal variability will be main-

tained but all sites will be warmer. In midlatitudes it is widely observed that nighttime warm-

ing is greater than daytime [63,64]. Thus, diurnal variability should be declining across the

landscape, though we are not aware of direct quantification of this effect. This change may

lead to species distribution shifts at cold temperature limits, such as downslope movement

into valleys as cold-air pools shrink (see [65]), or (in coastal California) shifts away from the

coast for species sensitive to winter frost. However, we are not aware of observations or first

principles analysis addressing whether nighttime warming is greater in some sites vs. others, at

a fine topographic scale.

The second set of questions is concerned with the impact of new extreme high temperatures

on species [35]. The comparison of hilltop to valley bottom sites is analogous to studies of mar-

itime vs. continental climates [66], or tropical vs. temperate climates [67], in terms of the con-

trasts in diurnal and seasonal means and consequences for responses to climate change. By

analogy there are two new contrasting hypotheses. The first is that the buffered sites with

cooler daytime and summer high temperatures will remain cooler in the future, so they will be

buffered from the most extreme impacts of climate change. Alternatively, the species occupy-

ing these sites may be adapted to the narrower range of temperatures, and thus be more sensi-

tive to rising temperatures. By contrast, those that occupy sites with high diurnal and seasonal

variability may also be better adapted to withstand new extremes under a changing climate

[36].

Limitations

We want to emphasize that the study was carried out on only one year of data, so one must be

cautious on drawing broad scale inferences. Secondly, the study was carried out in a particular

coastal landscape, so the inferences arrived here might not be the same if a similar study is car-

ried out at a different landscape. However, our results confirm that elevation explains most of

the seasonal variation in temperature. Next, we found the influence of cold-air pools in the

observed temperatures in our study system, and one needs to be aware that such phenomena

affect seasonal and region-specific lapse rates, and that might not be the case in a different
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study system [68]. Another point of caution relates to the potential uncertainties in the col-

lected data due to the stratification of temperature loggers as the readings may be influenced

by environment around the loggers, such as shading from canopy or being in open [40,69,70].

Additionally, the use of radiation shields can introduce bias in temperature readings, empha-

sizing the importance of being mindful of the type of radiation shielding employed [71]. None-

theless, this study provides ecologists and global change biologists a way to interpret

downscaled climate variables and the topographic, canopy, and seasonal interactions they may

be incorporating.

Conclusion

Our study quantifies the importance of fine physiographic features like topographic position,

northness and canopy on diurnal and seasonal variability in temperatures in a topographically

heterogeneous landscape in central California. With a range of about 300 m in elevation, we

found that temperature inversions dominate, with warmer temperatures at higher elevations.

We suggest that interactions with finer physiographic features would be key to understanding

current and future species distributions. It is likely that sites having a larger diurnal or seasonal

variation (valley sites in our study) might also be the same sites that are buffered from regional

climatic patterns as they would be experiencing higher maximum temperatures, and thus

would most likely be better adapted to withstand new extremes under a changing climate.

Though this study was limited to one-year, future work spanning multiple years can be done

to ascertain buffering from climate change offered by temperature refugia (different rate of

warming). Buffered areas can protect native species and ecosystems from the negative effects

of climate change in the short term and provide longer-term havens from climate impacts for

biodiversity and ecosystem function [72,73].
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