
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Mining Time Series Data: Moving from Toy Problems to Realistic Deployments

Permalink
https://escholarship.org/uc/item/0p33x5zx

Author
Hu, Bing

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0p33x5zx
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

RIVERSIDE

Mining Time Series Data: Moving from Toy Problems to Realistic Deployments

A Dissertation submitted in partial satisfaction

of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Bing Hu

December 2013

Dissertation Committee:

 Dr. Eamonn Keogh, Chairperson

 Dr. Stefano Lonardi

 Dr. Gianfranco Ciardo

Copyright by

Bing Hu

2013

The Dissertation of Bing Hu is approved:

 Committee Chairperson

University of California, Riverside

iv

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my sincerest gratitude to my advisor

Dr. Eamonn Keogh for the invaluable guidance, supervision, and generous support during

my doctoral study. I deeply appreciate that in summer 2010, he has me as one of his Ph.D

students, which has totally changed my life. During my three and a half year’s Ph.D

study, I am blessed with Dr. Keogh’s priceless insightful advice, brilliant research

philosophy and his valuable time. It is very fortunate that I have him as my advisor.

Thanks a lot!

I humbly thank Dr. Stefano Lonardi and Dr. Gianfranco Ciardo who are my

committee members, for their generous support and valuable comments. Dr. Michalis

Faloutsos and Dr. Ertem Tuncel for being committee members in my oral-qualification

exam. I also want to thank Ms. Amy Ricks for all the helpful advice whenever I

approached her.

I express gratitude to my colleagues in the data mining lab at UCR (names in random

order), who offered me valuable help and friendship: Gustavo Batista, Thanawin (Art)

Rakthanmanon, Abdullah Mueen, Bilson Campana, Qiang Zhu, Xiaoyue Wang, Yanping

Chen, Mohammad Shokoohi-Yekta, Jesin Zakaria, Nurjahan Begum and Liudmila

Ulanova. Also I would like to thank Denisa Duma for fruitful discussion for the Multi-

dimensional classification paper.

Finally, I would like to gratefully thank my family for always being there with me,

providing constant inspirations. Without my parents’ support, I would not be me like this.

I also would like to thanks all my friends at UCR for being part of this wonderful journal.

v

ABSTRACT OF THE DISSERTATION

Mining Time Series Data: Moving from Toy Problems to Realistic Deployments

by

Bing Hu

Doctor of Philosophy, Graduate Program in Computer Science

University of California, Riverside, December 2013

Dr. Eamonn Keogh, Chairperson

Data mining and knowledge discovery has attracted a lot of research interest in the

last decade. Although there is extensive research in this area, we argue that most of the

work is not as useful, since the datasets that they are dealing with and the methods that

they proposed to solve the problems are more like ‘toy examples’ compared to the much

more complicate real-world scenario. We have observed the following two problems that

widely exist in most of data mining research. First, parameters will hurt the potential of

spreading the ideas in the research community. In a lot of works, there are usually several

parameters to tune in the proposed method. We claim that the parameter turning can kill

the usefulness of an algorithm and reduce the number of citations. Second, the

prevalently existed assumptions about the data further limit their application to solve the

real-world problem. We strive to mitigate the above two problems. The contribution of

this dissertation is as follows:

vi

First, we demonstrate a parameter free framework using MDL to discover the

intrinsic features of the data. With the intrinsic cardinality and dimensionality of the time

series, we can further understand the underlying meaning of the data, before consulting

the domain experts. In addition, the intrinsic features can be used as dimensionality

reduction and have huge applications in the various lower bounding techniques. Second,

we show a time series classification framework that has none of the prevalent

assumptions. We propose to use the data editing technique to automatically build a data

dictionary. In addition, our classification framework has the capability to say ‘I do not

know’ at a certain point when classifying the incoming queries that does not belong to

any concept in the training data. Our results show that a small fraction of all the data can

achieve even better classification results than using all the data. In the last, we propose a

dynamically weighted multi-dimensional classification framework, which can smartly

choose the weight of each data dimension. The results over extensive datasets from

various domains show that our framework is more accurate and robust to the occluded

data.

vii

List of Figures

Figure 1: left) A snippet from a two-lead polysomnogram. right) At certain
times, V5R becomes noisy while V5 remains almost unaffected. At
other times (not shown), we see these roles reversed. 8

Figure 2: Two snippets of gyroscope data (110Hz) from a physical activity
dataset [95]. Activities denoted rope-jumping (red/left) and

ascending-stairs (purple/right) are more obvious from the
wrist and shoe sensors, respectively... 9

Figure 3: Three unrelated industrial time series with low intrinsic cardinality. I)
Evaporator (channel one). II) Winding (channel five). III) Dryer
(channel one) ... 12

Figure 4: Each point on this plot corresponds to a pair of time series: the x-axis
corresponds to their Euclidean distance, while the y-axis corresponds
to the Euclidean distance between the 8-bit quantized
representations of the same pair .. 17

Figure 5: A sample time series T that will be used as a running example in this
section ... 21

Figure 6: Time series T (blue/fine), approximated by a one-dimensional APCA
approximation H1 (red/bold). The error for this model is represented
by the vertical lines ... 22

Figure 7: Time series T (blue/fine), approximated by a two-dimensional APCA
approximation, H2 (red/bold). Vertical lines represent the error 22

Figure 8 : left) The figure shown in Figure 6 contrasted with an attempt to
approximate the raw data with a constant segment that clearly has
too great a mean value (right). Note that while the number of
repeated residuals (“errors”) is identical in both cases, the magnitude
of the residuals is much greater in the latter case. It is this
unnecessarily large magnitude that tells us this is a poor choice of an
approximation ... 24

Figure 9 : The log2 of the range of the residual errors for all possible single
constant polynomial models of the data introduced in Figure 5. Note

viii

that the model that minimizes this value (with a tie) is also the model
that minimizes the residual error. ... 25

Figure 10: A time series T shown in bold/blue and three different models of it
shown in fine/red: from left to right: DFT, APCA, and PLA 26

Figure 11 : A toy example of a time series that has more than one state 34

Figure 12 : A version of the Donoho-Johnstone block benchmark created ten
years ago and downloaded from [46] ... 39

Figure 13 : The knee-finding L-Method. top) A residual error vs. size-of-model
curve (blue/bold) is modeled by all possible pairs of regression lines
(red/light). Here, just one possibility is shown. bottom) The location
that minimizes the summed residual error of the two regression lines
is given as the optimal “knee” ... 41

Figure 14 : The description length of the Donoho-Johnstone block benchmark
time series is minimized at a dimensionality corresponding to twelve
piecewise constant segments, which is the correct answer [46] 41

Figure 15 : The description length of the Donoho-Johnstone block benchmark
time series is minimized with a cardinality of ten, which is the true
cardinality [46] .. 42

Figure 16: The description length of the Donoho-Johnstone block benchmark
time series is minimized with a piecewise constant model (APCA), not
a piecewise linear model (PLA) or Fourier representation (DFT)...................... 43

Figure 17 : top) An excerpt from the Muscle dataset. bottom) A zoomed-in
section of the Muscle dataset which had its model, dimensionality
and cardinality set by MDL .. 43

Figure 18: left) The description length of the muscle activation time series is
minimized with a cardinality of three, which is the correct answer.
right) The Persist algorithm, using the code from [32], predicts a value
of four .. 44

Figure 19: top) The distribution of intrinsic dimensionalities of star light curves,
estimated over 5,327 human-annotated examples. bottom) Three
typical examples of the class RRL, and a high intrinsic dimensionality
example, labeled as an outlier by [40] .. 46

ix

Figure 20: top) The distribution of intrinsic dimensionalities of individual
heartbeats, estimated over the 200 normal examples in record 108 of
the MIT BIH Arrhythmia Database (bottom) ... 46

Figure 21: left) A time series of temperatures in a region of Antarctica. right) Of
the hundreds of millions of such time series archived at NSIDC, this
time series (and a few thousand more) is unusual in that it has a very
low complexity, being best modeled with just two linear segments 48

Figure 22: A time series showing the annual discharge rate of Senegal River
from the year 1903 to 1988 .. 49

Figure 23: top) The blue/light line is Senegal River data. The black/bold line is
the segmentation result found in Section 5.1 of [19]. bottom) We
obtained the red/bold line by hard coding the number of segments to
five using the MDL algorithm .. 49

Figure 24: Our MDL algorithm predicts that the intrinsic dimensionality of the
annual discharge rate of the Senegal River is two. The approximation
is shown in red/bold .. 50

Figure 25: A time series showing the annual global temperature change from
the year 1700 to 1981 ... 50

Figure 26: top) The blue/light line is the annual global temperature change. The
black/bold line is the segmentation result found in Section 5.2 of [19].
bottom) We obtained a similar but slightly different model, as shown
in the red/bold line, by hard coding the number of segments to four
using the MDL algorithm ... 51

Figure 27: Our MDL algorithm obtains two as the intrinsic dimensionality of the
time series for the global annual mean temperature 51

Figure 28: A representative smFRET trace from [2][54] ... 52

Figure 29: top) The time series in blue from Figure 28 is predicted to have three
states [2][54]. The approximation is shown in black/bold. bottom)
Our algorithm also finds three as the intrinsic cardinality. Piecewise
constant approximation is shown in red/bold .. 53

x

Figure 30: top) An example of an operational variable in the PHM08 dataset.
bottom) An example of a non-operational variable in the PHM08
dataset ... 54

Figure 31: The blue/cross markers represent operational variables. The
red/circle markers represent non-operational variables. The variables
from 233 engines are analyzed in the plot ... 55

Figure 32: The description length of the synthetic time series shown in Figure
11 minimizes when the dimensionality is eight, which is the intrinsic
dimensionality ... 56

Figure 33: top) A toy time series shown in Figure 11 has constant, linear and
quadratic segments. bottom) data in top) is represented by a mixed
polynomial degree model. The segments are brushed with different
colors according to the polynomial degree of the representations. Red
indicates a constant representation. Black indicates a linear
representation and green indicates a quadratic representation 56

Figure 34: top) One snippet of a space shuttle time series that clearly has more
than one state. bottom) Another space shuttle time series that has
more than one state .. 57

Figure 35: The data shown in Figure 34 after we applied our mixed polynomial
degree segmentation. The segments are brushed with different colors
according to the polynomial degree of the representations. Red
indicates a constant representation. Black indicates a linear
representation and green indicates a quadratic representation 58

Figure 36: The robustness of our algorithm to various distortions added to the
DJB data. In (a).left we show the DJB data with no noise, and in
(a).right we plot the RMSE between (a).left and the corrupted
versions. In (b).left we start with the same data shown in Figure 12.
(the noise level in (b).left is also marked in pointed out in (a).right). In
(b).right, we show the RMSE between (b).left and the downsampled
versions of the data. In (c).left we again start with the data used in
Figure 12, and in (c).right we plot the RMSE between (c).left and the
linear trend added versions .. 61

Figure 37: The three most corrupted versions of the Donoho-Johnstone block
for which our framework makes a correct prediction of either the
cardinality or the dimensionality. (a) The nosiest example, (b) the

xi

example with the lowest sampling rate, (c) the example with the
greatest linear trend added……………………………………………………………62

Figure 38: A comparison of the effect from differing cardinalities on our
framework’s ability to discover the correct intrinsic dimensionality of
DJB data. For any cardinality from 512 to 4, the discovered intrinsic
dimensionality does not change. Only when the cardinality is set to a
pathologically low three or two (bottom right) does the cardinality
value affect the predicted dimensionality .. 64

Figure 39: The running time comparison between our MDL based approach
(red/fine) and the APCA (blue/bold) approximation for Donoho-
Johnstone benchmark dataset. The x axis is the length of different
instantiations of the DJB data ... 65

Figure 40: A snippet of BIDMC Congestive Heart Failure Database ECG - Record-
08 [68]. (a) is weakly-labeled data, which exhibits both extraneous
data, a section of recording when the machine was not plugged in,
and redundant data (only one pair of redundancies are shown in bold
(red/green). (b) A minimally redundant set of representative
heartbeats (a data dictionary) could be used as training data 72

Figure 41: A snippet of BIDMC Congestive Heart Failure Database ECG: Record-
03 [68]. Note that this section of ECG data exhibits more variability
than the data in Figure 40. .. 74

Figure 42: left) A toy example data dictionary which was condensed from a
large dataset. These seven subsequences in data dictionary A span
the concept space of the bulls/bears problem. right) Note that if we
had a distance measure that was invariant to linear scaling, we could
further reduce data dictionary A to data dictionary B 76

Figure 43: left) A data dictionary learned from a 15-class ECG classification
problem (just class 01 is shown here). At first glance, the two
exemplars seem redundant apart from their (irrelevant) phases. right)
By using the Euclidean distance between the two patterns we can see
that the misalignment of the beats would cause a large error. The
problem solved by using the Uniform Scaling distance [87]............................. 77

Figure 44: top) A snippet of BIDMC Congestive Heart Failure Database ECG
data: Record-08 [68]. bottom) the distance vector of an incoming

xii

query. The nearest neighbor and its distance of q is colored in
red/bold ... 81

Figure 45: top) A snippet of BIDMC Congestive Heart Failure Database ECG
data: Record-08 [68]. bottom) the extracted subsequence has twice
the query length .. 88

Figure 46: The green/left histogram contains the nearest neighbor distances of
correctly classified queries for the ECG data used in Section 3.3.2. The
red/right histogram shows nearest neighbor distances for queries

from the other class ... 90

Figure 47: Anytime algorithms are interruptible after initialization. This plot
shows the result quality increases with computation time 90

Figure 48: The classification error rates for D from D0.39% to D14.2% for the
physical activity dataset [95] ... 97

Figure 49: The pink/green(bold) curves are train/test error rates obtained when
we replaced Euclidean distance with Uniform Scaling distance 98

Figure 50: Two examples of rejected queries. Both queries contain significant
amount of noise .. 98

Figure 51: The classification error rates for D from D0.28% to D5.82% for BIDMC
Congestive Heart Failure Database [68] .. 100

Figure 52: The pink/green(bold) curves are train/test error rates obtained when
we replaced Euclidean distance with Uniform Scaling distance 100

Figure 53: The classification error rates for D from D0.17% to D5.32% for [67] 101

Figure 54: The blue/brown(bold) curves are train/test error rates obtained
when we replaced Euclidean distance with Uniform Scaling distance.
Note the other curves are taken from Figure 53 for comparison
purposes .. 102

Figure 55: Classification accuracy of complexity as an index in the anytime
classifier on constant query streams with different arrival rates for
datasets in Section 3.3.1 to 3.3.3. ... 103

Figure 56: The red dot/blue triangle represent sensors mounted in wrist/shoe,
respectively. left) A two dimensional time series (T1 , T2), T1 from a

xiii

sensor on the wrist and T2 from a sensor on the shoe. right) A query q
with two dimensions (q1 and q2), will find their nearest neighbors in
T1 and T2 , respectively. ... 109

Figure 57: The performance of four classifiers (a), (b), (c), and (d) on four
activities. In each classifier, the height of the bar is the confidence
score for each activity. .. 111

Figure 58: The distributions of nearest neighbor distances for true positives
(green/left) and false positives (red/right) in the classification of
activity running using data from wrist (top) and activity rope-jumping
using data from shoe (bottom).. ... 114

Figure 59: A snippet of BIDMC Congestive Heart Failure Database ECG, Record-
03. (a) WT, which exhibits both extraneous and redundant data.
There are two types of anomalous heartbeats (V, S) and normal beat
(N) in WT. (b) A minimally redundant set of representative heartbeats
(a data dictionary) could be used as training data. ... 118

Figure 60. left) A snippet of sound spectrum and MFCCs from 2 to 5 for the East
Brazilian Pygmy Owl. right) A snippet of sound spectrum and MFCCs
from 2 to 5 for the Common Potoo. ... 131

Figure 61: x, y, z acceleration data from right hand (brown) and left hand (blue)
for two signals Six and Leg Bye.. ... 133

Figure 62. Visualization of the six gesture classes. This figure from [136] is used
with permission. .. 135

Figure 63. a) Modified Wii Remotes embedded in specially designed utensils. b)
A subject is preparing salad. This figure is used with permission from
[148]. ... 136

xiv

List of Tables

Table 1 : Generic MDL algorithm for time series ... 28

Table 2 : Our algorithm specific to APCA .. 29

Table 3 : Our algorithm specific to PLA ... 31

Table 4 : Our algorithm specific to DFT .. 33

Table 5 : Our algorithm specific to the mixed polynomial degree model 36

Table 6 : Bottom-up mixed polynomial degree model algorithm 38

Table 7: Classification Algorithm using Data Dictionary .. 79

Table 8: Nearest Neighbor Search within a Time Series ... 80

Table 9: Classification of Training Data ... 86

Table 10: Anytime Nearest Neighbor Classification Algorithm .. 91

Table 11: using Complexity as an Index .. 93

Table 12: Adjusted Confidence Classification Algorithm .. 123

Table 13: Learning the Confidence Score ... 125

Table 14: Classification Results on the Physical Activity Data for ACV and Seven
Straw Men ... 129

Table 15: Classification Results on the Cricket Data ... 134

Table 16: Classification Results on the Gesture Data ... 135

Table 17: Classification Results on the Kitchen Data .. 136

xv

Table of Contents

List of Figures……………………………………………………………………………vi

List of Tables……………………………………………………………………………xii

Chapter 1: Introduction .. 1

1.1 Discover the Intrinsic Features…. .. 1

1.2 Doing More Realistic Research………………………….……………………………2

1.3 Multi-Dimensional Time Series Classification……………………………………….6

Chapter 2: Discovering the Intrinsic Cardinality and Dimensionality of Time Series using

MDL .. 11

2.1 Introduction ... 11

2.1.1. A Concrete Example ... 14

2.2 Definitions and Notation ... 15

2.3 MDL Modeling of Time Series... 21

 2.3.1. An Intuitive Example of Our Basic Idea .. 21

 2.3.2.Generic MDL for Time Series Algorithms ... 27

 2.3.3.Adaptive Piecewise Constant Approximation……......………...………………29

 2.3.4 Piecewise Linear Approximation…...……………..……………..…..…………30

 2.3.5 Discrete Fourier Transform………………………..…….………..…………….31

 2.3.6 A Mixed Polynomial Degree Model…………………..…………………......…33

2.4 Experimental Results .. 39

 2.4.1 A Detailed Example on a Famous Problem………………………..……..……..39

xvi

 2.4.2 An Example Application in Physiology……………...…………………………43

 2.4.3 An Example Application in Astronomy………………………………………..44

 2.4.4 An Example Application in Cardiology………………………………………46

 2.4.5 An Example Application in Geosciences…………………………………….47

 2.4.6An Example Application in Hydrology and Environmental

Science……………………………………………………………………………..…….49

 2.4.7 An Example Application in Biophysics……………………...……………….52

 2.4.8 An Example Application in Prognostics……………………...………………53

 2.4.9 Testing the Mixed Polynomial Degree Model……………….................…….56

 2.4.10 An Example Application in Aeronautics……………..……………………..57

 2.4.11 Quantifiable Experiments…………….……………………………………..58

2.5Time and Space Complexity………………………………………………...………..62

2.6Discussion and Related Work………………………………………………...………65

2.7Conclusions………………………………………...…………………………………67

Chapter 3: Time Series Classification under More Realistic Assumptions……………...69

3.1 Definitions and Notation……………………………………………………………..70

 3.1.1 A Discussion of Data Dictionaries…………………………………………….73

 3.1.2 An Additional Insight on Data Redundancy……………………….…………75

 3.1.3 On the Need for a Threshold……………………..……………………………78

3.2 Algorithms……………………………………………………………...………..…..78

 3.2.1 Classification Using A Data Dictionary…………………………..…………..78

 3.2.2 Building the Data Dictionary……………………………………….…….…...81

xvii

 3.2.3 Learning the Threshold Distance…………………………………….………..89

 3.2.4 Anytime Classification using Complexity As An Index………………………90

 3.2.5 Uniform Scaling Technique……………………………………………………93

3.3 Experimental Evaluation……………………………………………………………..93

 3.3.1 An Example Application in Physiology………………………………..……..95

 3.3.2 An Example Application in Cardiology………..……………………………..99

 3.3.3 An Example Application in Daily Acitivies…………………………………101

 3.3.4 Speed Up The Search Using Complexity As Index………………………....102

3.4 Conclusion and Future Work……………………………………………...……….106

Chapter 4: Classification of Multi-Dimensional Streaming Time Series by Weighting

each Classifier's Track Record……………………………………………....…………107

4.1 Notation and Background…………………………………………..………………107

 4.1.1 Basic Time Series Definitions……………………………………..……….107

 4.1.2 Supporting Confidence-Based Classification…………………….…….…..109

 4.1.3 Supporting Distance-Based Classification……………………………..…..112

 4.1.4 Allowing Real World Deployment…………………………………...……116

4.2 Related Work………………………………………………………………………119

 4.2.1 Relationship to Ensemble Methods………………………..………………120

 4.2.2 The Adjusted Confidence vs. the Weight in Weighted

Voting…………………………………………………………………………………..121

4.3 Algorithms…………………………………..……………………………………..122

xviii

 4.3.1 Classification of Multi-Dimensional Time Series using the Adjusted

Confidence Scores……………………………………………………………………..122

 4.3.2 Learning the Confidence Score……………………………………………124

 4.3.3 Learning the Adjusted Confidence Score………………………………… 125

4.4 Experiments……………………………………………………...…………………126

 4.4.1 Physical Activity Data………………………………………………………128

 4.4.2 Avian Audio Data………………………………………..………………….130

 4.4.3 Recognition of Cricket Umpire Signals……………………………………..132

 4.4.4 Gesture Recognition…………………………………………………..……..134

 4.4.5 Kitchen Activity Data……………………………………………………….135

 4.4.6 Robustness to Irrelevant Features………………………….………………..136

4.5 Conclusion……………………………………………………………….…………137

Chapter 5: Conclusion…………………………………………………………….…….137

Bibliography……………………………………………………………………………140

1

Chapter 1: Introduction

Time series data are being generated at an unprecedented scale and rate from almost

every application domain, e.g. medical and biological experimental observations,

streaming data generated from the various sensors, daily prices in the stock market, etc.

In the last decade, there is dramatically increasing research in query and mining time

series data. However, we have observed the following two problems that widely exist in

most of data mining research. First, parameters will hurt the potential of spreading the

ideas in the research community. In a lot of works, there are usually several parameters to

tune in the proposed method. We claim that the parameter turning can kill the usefulness

of an algorithm and reduce the number of citations. Second, the prevalently existed

assumptions about the data further limit their application to solve the real-world problem.

 In this dissertation, we strive to mitigate the above two problems from the following

three aspects. First, in Chapter 2 we demonstrate a parameter free framework to discover

the intrinsic features of time series. Second, we illustrate how to do time series

classification under more realistic assumptions in Chapter 3. In the last, we extend the

framework in Chapter 3 to a multi-dimensional classification framework.

In the following text, we show the detail of the motivations of each project.

1.1 Discover the Intrinsic Features

Many algorithms for data mining or indexing time series data do not operate directly

on the raw data, but instead they use alternative representations that include transforms,

2

quantization, approximation, and multi-resolution abstractions. Choosing the best

representation and abstraction level for a given task/dataset is arguably the most critical

step in time series data mining.

In Chapter 2, we investigate the problem of discovering the natural intrinsic

representation model, dimensionality and alphabet cardinality of a time series. The

ability to automatically discover these intrinsic features has implications beyond selecting

the best parameters for particular algorithms, as characterizing data in such a manner is

useful in its own right and an important sub-routine in algorithms for classification,

clustering and outlier discovery. We will frame the discovery of these intrinsic features in

the Minimal Description Length (MDL) framework. Extensive empirical tests show that

our method is simpler, more general and more accurate than previous methods, and has

the important advantage of being essentially parameter-free.

1.2 Doing More Realistic Research

In virtually all time series classification research, long time series are processed into

short equal-length “template” sequences that are representative of the class. For example,

individual and complete gait cycles for biometric classification[62][72][79][88],

individual and complete heartbeats for cardiological classification [70][82], individual

and complete gestures for gesture recognition [111], etc. In most cases, the segmentation

of long time series into these idealized snippets is done by hand [72][79][88][90].

However, for many real-world problems this either cannot be done, or only done with

great effort [76][91][96].

3

As a concrete example, consider the famous Gun/Point problem [84][103], which has

appeared in at least one hundred works [71][86][93]. To create this dataset, the original

authors [102][103] used a metronome that signaled every three seconds to cue both the

actor’s behavior and the start/stop of the recording apparatus [102]. This allowed the

extraction of perfectly aligned data, containing all of the target behavior and only the

target behavior. Unsurprisingly, dozens of papers report less than 10% classification error

rate on this problem. However, does such an error rate reflect our abilities with real-world

data?

Such contriving of time series datasets seems to be the norm. For example, [111]

notes, “one subject performed one trial of an action (in exactly) 10 seconds.” and [95]

tells us that human editors should carefully discard “all transient activities between

performing different activities.” Likewise, a recent paper states: “We assume that the

trajectories are segmented in time such that the first and last frames are already aligned

(and) the resulting model has the same length” [108]. Note that these authors are to be

commended for stating their assumptions so concretely. In many cases, no such

statements are made, but we suspect that similar “massaging” of the data has occurred.

We believe that such contriving of the data has led to unwarranted optimism about

how well we can classify real-time series data streams. For real-world problems, we

cannot always expect the training data to be so idealized, and we certainly cannot expect

the testing data to be so perfect.

A more realistic idea for data gathering is to capture data “in the wild” as in

[67][98][104], etc. However, this opens the problem of data editing and cleaning. For

4

example, a one-hour trace of data labeled “walking” will almost certainly contain non-

representative subsequences, such as the subject pausing at a crosswalk, or introducing a

temporary asymmetry into her gait as she answers her phone. The current solution to

preprocess such data requires human intervention to examine and edit such traces, and

keeping data that demonstrate the sought-after variability (walking uphill,

downhill, level, walking fast, normal, slow), while discarding data that is

atypical of the class.

Moreover, in virtually all time series classification research, the data must be

arranged to have equal length [108]. For example, in the world’s largest collection of

time series datasets, the UCR classification archive, all forty-five time series datasets

contain only equal-length data [84].

Most of the literature assumes that all objects to be classified belong to exactly one of

two or more well-defined classes. For example, in the Gun/Point problem, every one of

the instances is either a gun-aiming or a finger-pointing (unarmed) behavior. However,

the vast majority of normal human actions are clearly neither. How well do current

techniques work when most of the data is not from the well-defined classes?

The fourth and final unrealistic assumption is that queries to be classified are

presented at equal time intervals. For example, if we know a system will produce queries

ten times a second, we can then plan the hardware resources needed, and the maximum

size of the training set. However, in many real world systems the available time for

classification is not known a priori and may change as a consequence of external

circumstances [105]. For example, for some ECG classification systems, the individual

5

beats are detected, and then passed to the classification system. Given that human heart

rates vary from about 40 to 200 beats per minute, the query arrival rate can range

between 0.6Hz to 3.3Hz
1
. The classification of flying insects can be fruitfully considered

a time series problem and there the arrival rates can vary by at least four orders of

magnitude [65][80]. If we plan only for the fastest possible arrival rate, then we may be

forced to invest in computational resources that are unused 99.99% of the time, or to only

consider a tiny training dataset, when 99.99% of the time we could have searched a larger

dataset.

To summarize, much of the progress in time series classification from streams in the

last decade is almost certainly optimistic, given that most of the literature implicitly or

explicitly assumes one or more of the following:

 Copious amounts of perfectly aligned atomic patterns can be obtained

[79][109][111].

 The patterns are all of equal length [79][84][88][96][104].

 Every item that we attempt to classify belongs to exactly one of our well-

defined classes [76][84][96][103].

The queries arrive at a constant rate that is known ahead of time.

In Chapter 3, we demonstrate a time series classification framework that does not

make any of these assumptions.

1
 Note that only some ECG classification systems do beat extraction then classification [74]. Many researchers believe

that robust beat extraction can be a harder problem than classification itself (cf. Figure 40 and Figure 41), and thus

present every subsequence extracted by a sliding window for classification. This is the approach we consider in

Section 3.3

6

Our approach requires only very weakly-labeled data, such as “This ten-minute trace

of ECG data consists mostly of arrhythmias, and that three-minute trace seems mostly

free of them”, removing assumption (1). Using this data we automatically build a “data

dictionary”, which contains only the minimal subset of the original data to span the

concept space. This is because the data dictionary can contain, say, one example of

walking fast, one example of walking normal, etc. This mitigates assumption (2).

As a byproduct of building this data dictionary, we learn a rejection threshold, which

allows us to address assumption (3). A query item further than this threshold to its nearest

neighbor is assumed to be in the other class. We show that using the Uniform Scaling

distance measure [87] instead of Euclidean distance also addresses assumption (2).

Finally, we introduce a novel technique to search the data dictionary in an anytime

manner [105], allowing us to handle dynamic arrival rates and addressing assumption (4).

1.3 Multi-Dimensional Time Series Classification

Extensive research on time series classification in the last decade has produced fast

and accurate algorithms for the single-dimensional case. However, the increasing

prevalence of inexpensive sensors has reinforced the need for algorithms to handle multi-

dimensional time series. For example, modern smartphones have at least a dozen sensors

capable of producing streaming time series, and hospital-based (and increasingly, home-

based) medical devices can produce time series streams from more than twenty sensors.

The two most common ways to generalize from single to multi-dimensional data are to

use all the streams or just the single best stream as determined at training time. However,

7

as we show here, both approaches can be very brittle. Moreover, neither approach

exploits the observation that different sensors may be considered “experts” on different

classes. In this work, we introduce a novel framework for multi-dimensional time series

classification that weights the class prediction from each time series stream. These

weights are based not only on each stream’s previous track record on the class it is

currently predicting, but also on the distance from the unlabeled object. As we

demonstrate with extensive experiments on real data, our method is more accurate than

current approaches and particularly robust in the face of concept drift or sensor noise.

Many physiological, medical, and scientific processes produce copious amounts of

Multi-Dimensional Time series (MDT) data [133][140][151][156]. If we need to classify

patterns manifest on just a single (independent) stream from an MDT, there is strong

evidence that the simple nearest neighbor algorithm should be the algorithm of choice

[123][129][132]. However, in many cases, the m individual time series in the MDT may

reflect different views of the same underlying phenomena we want to classify. For

example, we may have two different leads recording an ECG (Figure 1) or several

gyroscopes on a Body Area Network (BAN) (Figure 2). In such a case, how should we

use information from multiple sensors? The obvious choices are:

ALL: Use all m time series [151]. In this category, we include efforts that transform

all m time series into a new space, using SVD [155] or Markov models [157], etc.

BEST: Use only the single best time series, which is either found empirically or

suggested by domain knowledge [130]. In many research efforts the latter is probably

done as a matter of course and reported fait accompli without discussion.

8

SUB: Use the best subset of the time series that is either found empirically or

suggested by domain knowledge [128][133][146][149][155].

Note that while SUB includes ALL and BEST as special cases, the latter two choices

are usually made without an effort to evaluate other possible subsets.

There are two reasons why we believe that none of the above is the ideal solution for

the task at hand.

First, consider the two-lead ECG snippets shown in Figure 1. below. Here, we want to

classify myocardial ischemias in this patient to correlate them with (independently

recorded) sleep states. While the example shown in Figure 1.left could be classified from

either the V5 or V5R lead, other examples are much more subtle and benefit from using

both leads. However, suppose we use ALL, pooling evidence from both leads, then later

on if either of them becomes noisy or disconnected (a very common occurrence

[120][130]), we will do very poorly.

Figure 1: left) A snippet from a two-lead polysomnogram. right) At certain times, V5R becomes

noisy while V5 remains almost unaffected. At other times (not shown), we see these roles reversed.

The second reason why most of the current approaches are sub-optimal is even more

intuitive. The best subset of time series to use is almost always class-dependent. To see

this, consider the BAN data shown in Figure 2. As we might expect, rope-jumping

activities can be more easily classified using data from a sensor on the wrist than using

myocardial ischemia

V5

V5R

1 sec

…

…

9

data from a sensor on the shoe. Conversely, to classify ascending-stairs behavior,

using data from a sensor on the shoe is more accurate than using data from a sensor on

the wrist. This can be easily explained if we imagine how the body moves during these

behaviors.

Figure 2: Two snippets of gyroscope data (110Hz) from a physical activity dataset [95]. Activities

denoted rope-jumping (red/left) and ascending-stairs (purple/right) are more obvious

from the wrist and shoe sensors, respectively.

In this work, we introduce a novel framework to address these two observations. At

classification time, each sensor is polled for its vote on the class label. However, the vote

is weighted by the sensor’s self-reported confidence in its prediction. This self-reported

confidence is based on two factors:

Confidence-based classification: the sensor’s expertise on the class in question. This

element is independent of the object to be classified. The expertise simply reflects that a

sensor should not be confident in predicting one class if it was mostly wrong when it

predicted this class during the training phase.

Distance-based classification: the similarity of the object to be classified and the

examples seen during the training phase should be considered. This element reflects the

fact that a sensor should not be confident in predicting any class if the object to be

classified is significantly different than exemplars encountered during training.

shoe

2 sec

rope-jumping

wrist
ascending-stairs

…

…

10

As we shall demonstrate, by taking into account these two factors, we can make MDT

classification both more accurate and more robust.

11

Chapter 2:

Discovering the Intrinsic Cardinality and

Dimensionality of Time Series using

Minimum Description Length

In this chapter, we will demonstrate a framework to discover the intrinsic features that

has implications beyond selecting the best parameters for particular algorithms. We break

the chapter into seven sections. Section 2.1 illustrates the motivation of the work. We

give the definitions and intuitions of the algorithm in Section 2.2. Section 2.3

demonstrates the detail of the proposed algorithms. We demonstrate an extensive

experimental evaluation of the proposed algorithm in Section 2.4. Section 2.5 clarifies the

time and space complexity of our framework. Section 2.6 discusses the related work. In

the last, we offer the conclusion of our work in Section 2.7.

2.1 Introduction

Most algorithms for indexing or mining time series data operate on higher-level

representations of the data, which include transforms, quantization, approximations and

multi-resolution approaches. For instance, Discrete Fourier Transform (DFT), Discrete

Wavelet Transform (DWT), Adaptive Piecewise Constant Approximation (APCA) and

Piecewise Linear Approximation (PLA) are models that all have their advocates for

various data mining tasks and each has been used extensively [7] . However, the question

12

of choosing the best abstraction level and/or representation of the data for a given

task/dataset still remains. In this work, we investigate this problem by discovering the

natural intrinsic model, dimensionality and (alphabet) cardinality of a time series. We

will frame the discovery of these intrinsic features in the Minimal Description Length

(MDL) framework [13][24][36][43]. MDL is the cornerstone of many bioinformatics

algorithms [9][42], and has had some impact in data mining, however it is arguably

underutilized in time series data mining [18][35].

The ability to discover the intrinsic dimensionality and cardinality of time series has

implications beyond setting the best parameters for data mining algorithms. For instance,

it can help characterize the nature of the data in a manner that is useful in its own right. It

can also constitute an important sub-routine in algorithms for classification, clustering

and outlier discovery [40][58]. We illustrate this idea in the following example in Figure

3, which consists of three unrelated datasets.

Figure 3: Three unrelated industrial time series with low intrinsic cardinality. I) Evaporator

(channel one). II) Winding (channel five). III) Dryer (channel one)

The number of unique values in each time series is, from top to bottom, 14, 500 and

62. However, we might reasonably claim that the intrinsic alphabet cardinality is instead

2, 2, and 12, respectively. As it happens, an understanding of the processes that produced

20 40 60 80 100

-1

0
1

100 200 300 400 500

-1

0
1

0

0

0 300 600 900

-4
0
4

I

II

III

13

this data would perhaps support this claim [23]. In these datasets, and indeed in many

real-world datasets, there is a significant difference between the actual and intrinsic

cardinality. Similar remarks apply to dimensionality.

Before we define more precisely what we mean by actual versus intrinsic cardinality,

we should elaborate on the motivations behind our considerations. Our objective is

generally not simply to save memory
2
: if we are wastefully using eight bytes per time

point instead of using the mere three bytes required by the intrinsic cardinality, the

memory space saved is significant; however, memory is getting cheaper, and is rarely a

bottleneck in data mining tasks. Instead, there are many other reasons why we may wish

to find the true intrinsic model, cardinality and dimensionality of the data. For example,

there is an increasing interest in using specialized hardware for data mining [47].

However, the complexity of implementing data mining algorithms in hardware typically

grows super linearly with the cardinality of the alphabet. For example, FPGAs usually

cannot handle cardinalities greater than 256 [47].

Some data mining algorithms benefit from having the data represented in the lowest

meaningful cardinality. As a trivial example, consider the time series: ..0, 0, 1, 0, 0, 1, 0,

0, 1. We can easily find the rule that a ‘1’ follows two appearances of ‘0’. However,

notice that this rule is not apparent in this string: ..0, 0, 1.0001, 0.0001, 0, 1,

0.000001, 0, 1 even though it is essentially the same time series.

Most time series indexing algorithms critically depend on the ability to reduce the

dimensionality [7] or the cardinality [28] of the time series (or both [1][3]) and search

2
 However, Section 2.1.1 shows an example where this is useful.

14

over the compacted representation in main memory. However, setting the best level of

representation remains a “black art.”

In resource-limited devices, it may be helpful to remove the spurious precision

induced by a cardinality/dimensionality that is too high. We elaborate on this issue by

using a concrete example below.

Knowing the intrinsic model, cardinality and dimensionality of a dataset allows us to

create very simple outlier detection models. We simply look for data where the

parameters discovered in new data differ from our expectations learned on training data.

This is a simple idea, but it can be very effective as we show in our experimental section.

2.1.1. A Concrete Example

For concreteness, we present a simple scenario that shows the utility of understanding

the intrinsic cardinality/dimensionality of data. Suppose we wish to build a time series

classifier into a device with a limited memory footprint such as a cell phone, pacemaker

or “smartshoe”[50]. Let us suppose we have only 20kB available for the classifier, and

that (as is the case with the benchmark dataset, TwoPat [23]) each time series exemplar

has a dimensionality of 128 and takes 4 bytes per value.

One could choose decision trees or Bayesian classifiers because they are space

efficient; however, recent evidence suggests that nearest neighbor classifiers can be

difficult to beat for time series problems [7]. If we had simply stored forty random

samples in the memory for our nearest neighbor classifier, the average error rate over

fifty runs would be a respectable 58.7% for a four-class problem. However, we could also

down-sample the dimensionality by a factor of two, either by skipping every second point,

15

or by averaging pairs of points (as in SAX [28]), and place eighty reduced-quality

samples in memory. Or perhaps we could instead reduce the alphabet cardinality by

reducing the precision of the original four bytes to just one byte, thus allowing 160

reduced-fidelity objects to be placed in memory. Many other combinations of

dimensionality and cardinality reduction could be tested, which would trade reduced

fidelity to the original data for more exemplars stored in memory. In this case, a

dimensionality of 32 and a cardinality of 6 allow us to place 852 objects in memory and

achieve an accuracy of about 90.75%, a remarkable improvement in accuracy given the

limited resources. As we shall see, this combination of parameters can be found using our

MDL technique.

In general, testing all of the combinations of parameters is computationally infeasible.

Furthermore, while in this case we have class labels to guide us through the search of

parameter space, this would not be the case for other unsupervised data mining

algorithms, such as clustering, motif discovery [29], outlier discovery [4] [52][58], etc.

As we shall show, our MDL framework allows us to automatically discover the

parameters that reflect the intrinsic model/cardinality/dimensionality of the data without

requiring external information or expensive cross validation search.

2.2 Definitions and Notation

 We begin with the definition of a time series:

Definition 1 : A time series T is an ordered list of numbers. T= t1,t2,...,tm. Each

value ti is a finite precision number and m is the length of the time series T.

16

Before continuing, we must justify the decision of (slightly) quantizing the time series.

MDL is only defined for discrete values
3
, but most time series are real-valued. The

cardinality of a set is defined as the measure of the number of elements of the set. In math,

discrete values have a finite cardinality, and real numbers have an infinite cardinality.

When dealing with values stored in a digital computer, this distinction can be problematic,

as even real numbers must limited to a finite cardinality. Here we simply follow the

convention that for very high cardinalities numbers can be considered essentially real-

valued, thus we need to cast the “effectively infinite” 2
64

 cardinality we typically

encounter into a more obvious discrete cardinality to allow MDL to be applied.

The obvious solution is to reduce the original number of possible values to a

manageable amount. Although the reader may object that such a drastic reduction in

precision must surely lead to a loss of some significant information, this is not the case.

To illustrate this point, we performed a simple experiment. From each of the twenty

diverse datasets in the UCR archive [23] we randomly extracted one hundred pairs of

time series. For each pair of time series we measured their Euclidean distance in the

original high dimensional space, and then in the quantized 256-cardinality space, and

used these pairs of distances to plot a point in a scatter plot. Figure 4 shows the results.

3
 The closely related technique of MML (Minimum Message Length [55]) does allow for continuous real-valued data. However, here

we stick with the more familiar MDL formulation.

17

Figure 4: Each point on this plot corresponds to a pair of time series: the x-axis corresponds to

their Euclidean distance, while the y-axis corresponds to the Euclidean distance between the 8-bit

quantized representations of the same pair

The figure illustrates that all of the points fall close to the diagonal, and thus the

quantization makes no perceptible difference. Beyond this subjective visual test, we also

reproduced the heavily cited UCR time series classification benchmark experiments [23],

replacing the original data with the 256-cardinality version. For all cases the difference in

classification accuracy was less than one tenth of one percent (full details are at [61]).

Based on these considerations, in this work we reduce all of the time series data to its 256

cardinality version by using a discretization function:

Definition 2 : A discretization function normalizes a real-valued time series T into

b-bit discrete values in the range [-2
b-1

, 2
b-1

-1]. The discretization function used in

this manuscript is as follows:

1min
() ()*(2 1) 2

max min

b b

b

T
Discretization T round 

  


where min and max are the minimum and maximum values in T, respectively
4
.

4
 This slightly awkward formula is necessary because we use the symmetric range [-128,127]. If we use range [1, 256] instead we get

a more elegant: () (

) () .

0 10 20 30 40
0

10

20

30

40

Euclidean dist of real-valued pairs

E
u

cl
id

ea
n

 d
is

t
o
f

re
d

u
ce

d

ca
rd

in
al

it
y

p
ai

rs

18

Given a time series T, we are interested in estimating its minimum description length,

i.e., the smallest number of bits it takes to represent it.

Definition 3 : A description length DL of a time series T is the total number of bits

required to represent it. When Huffman coding is used to compress the time series

T, the description length of the time series T is defined by:

DL (T) = | HuffmanCoding (T) |

In the current literature, the number of bits required to store the time series depends

on the idiosyncrasies of the data format or hardware device, not on any intrinsic

properties of the data or domain. Here we are instead interested in knowing the minimum

number of bits to exactly represent the data, i.e., the intrinsic amount of information in

the time series. The general problem of determining the smallest program that can

reproduce the time series, known as Kolmogorov complexity, is not computable [26].

However, the Kolmogorov complexity can be approximated by using general-purpose

data compression methods, like Huffman coding [13][52][60]. The (lossless) compressed

file size is an upper bound to the Kolmogorov complexity of the time series [6].

Observe that in order to decompress losslessly HuffmanCoding(T), the Huffman tree

(or the symbol frequencies) is needed, thus the description length could be more precisely

defined as DL(T) = |HuffmanCoding(T)| + |HuffmanTree(T)|. One could use a simple

binary representation to encode the Huffman tree. For each node, starting at root (1) if

leaf, output “1” + character (byte), (2) If not leaf, output bit “0”, then encode both

children (left, then right) the same way recursively. The number of bits required to store

the Huffman tree depends on the number of symbols (2
b
) in the discretization of the time

19

series. There are two reasons why (for simplicity) we do not consider the cost Huffman

tree in our formulation:

In practice the size of the tree is negligible compared to the number of bits required to

represent the time series.

In practice the size of |HuffmanTree(T)| has very low variance, and thus can be

regarded as a “constant” term. This is especially true when comparing similar models, for

example a model with a dimensionality of ten to a model with a dimensionality of nine or

eleven. When comparing vastly different models, for example a model with a

dimensionality of ten with a model with a dimensionality of one hundred, the differences

of the sizes of the relevant Huffman trees are greater, but this difference is dwarfed by the

bit saving gained by discovering the true dimensionality.

In the extensive experiments in Section 2.4 we found there is no measureable

difference in outcome of the formulations with or without the cost of |HuffmanTree(T)|

included, thus we report only the simpler formulation.

One of the key steps in finding the intrinsic cardinality and/or dimensionality requires

one to convert a given time series to another representation or model, e.g., by using DFT

or DWT. We call this representation a hypothesis:

Definition 4 : A hypothesis H is a representation of a discrete time series T after

applying a transformation M.

In general, there are many possible transforms. Examples include Discrete Wavelet

Transform (DWT), Discrete Fourier Transform (DFT), Adaptive Piecewise Constant

Approximation (APCA), and Piecewise Linear Approximation (PLA), among others [7].

20

Figure 10 shows three illustrative examples, DFT, APCA, and PLA. In this paper, we

demonstrate our ideas using these three most commonly used representations, but our

ideas are not restricted to these time series models (see [7] for a survey of time series

representations).

Henceforth, we will use the term model interchangeably with the term hypothesis.

Definition 5 : A reduced description length of a time series T given hypothesis H

is the number of bits used for encoding the time series T, exploiting information in

the hypothesis H, i.e., DL (T│H), and the number of bits used for encoding H, i.e.,

DL (H). The reduced description length is defined as:

DL (T, H) = DL (H) + DL (T│H)

The first term DL (H) is called the model cost and represents the number of bits

required to store the hypothesis H. For instance, the model cost for the Piecewise Linear

Approximation would include the bits needed to encode the mean, slope and length of

each linear segment.

The second term, DL (T│H), called the correction cost (in some works it is called the

description cost or error term) is the number of bits required to rebuild the entire time

series T from the given hypothesis H.

There are many possible ways to encode T given H. Perhaps the simplest way is to

store the differences (i.e., the difference vector) between T and H: one can easily

reconstruct exactly the time series T from H and the difference vector. Thus, we simply

use DL (T│H) = DL (T-H).

21

We will demonstrate how to calculate the reduced description length in more detail in

the next section.

2.3 MDL Modeling of Time Series

2.3.1. An Intuitive Example of Our Basic Idea

For concreteness, we will consider a simple worked example comparing two possible

dimensionalities of data. Note that here we are assuming a cardinality of 16, and a model

of APCA. However, in general we do not need to make such assumptions. Let us

consider a sample time series T of length 24:

T = 1 1 1 2 3 4 5 6 7 8 9 10 11 11 12 12 12 12 11 11 10 10 9 7

Figure 5 illustrates a plot of T.

Figure 5: A sample time series T that will be used as a running example in this section

We attempt to model this data with a single constant line, a special case of APCA.

We begin by finding the mean of all of the data, which (rounding in our integer space) is

eight. We can create a hypothesis H1 to model this data, which is shown in Figure 6. It is

simply a constant line with a mean of eight. There are 16 possible values this model

could have had. Thus, DL (H1) = 4 bits.

1 2 4 6 8 10 12 14 16 18 20 22 24

22

Figure 6: Time series T (blue/fine), approximated by a one-dimensional APCA approximation H1

(red/bold). The error for this model is represented by the vertical lines

Model H1 does not approximate T well, and we must account for the error5. The errors

e1, represented by the length of the vertical lines in Figure 6, are:

e1 = 7 7 7 6 5 4 3 2 1 0 -1 -2 -3 -3 -4 -4 -4 -4 -3 -3 -2 -2 -1 1

As noted in Definition 5, the cost to represent these errors is the correction cost; this

is the number of bits encoding e1 using Huffman coding, which is 82 bits. Thus, the

overall cost to represent T with a one-dimensional model or its reduced description

length is:

 () () ()

 ()

We can now test to see if hypothesis H2, which models the data with two constant

lines, could reduce the description length. Figure 7 shows the two segment approximation

lines created by APCA.

Figure 7: Time series T (blue/fine), approximated by a two-dimensional APCA approximation, H2

(red/bold). Vertical lines represent the error

5
 The word error has a pejorative meaning not intended here; some authors prefer to use correction cost.

1 2 4 6 8 10 12 14 16 18 20 22 24

1 2 4 6 8 10 12 14 16 18 20 22 24

23

As we expect, the error e2, shown as the vertical lines in Figure 7, is smaller than the

error e1. In particular, the error e2 is:

e2 = 2 2 2 1 0 -1 -2 -3 3 2 1 0 -1 -1 -2 -2 -2 -2 -1 -1 0 0 1 3

The number of bits encoding e2 using Huffman coding or the correction cost to

generate the time series T given the hypothesis H2, DL (T│H2), is 65 bits. Although the

correction cost is smaller than one-dimensional APCA, the model cost is larger. In order

to store two constant lines, two constant numbers corresponding to the height of each line

and a pointer indicating the end position of the first line are required. Thus, the reduced

description length of model H2 is:

 () () ()

 () () ⌈ ()⌉

Because we have () () , we prefer hypothesis H2 for our data.

We are not done yet: we should also test H3, H4, H5, etc., corresponding to 3, 4, 5,

etc. piecewise constant segments. Additionally, we could also test alternative models

corresponding to different levels of DFT or PLA representation and test different

cardinalities. For example, suppose we had been given T2 instead:

T2 = 0 0 0 0 4 4 4 4 4 0 0 0 0 8 8 8 8 8 8 12 12 12 12 12

Here, if we tested multiple hypotheses as to the cardinality of this data, we would

hope to find that the hypothesis
 that attempts to encode the data with a cardinality of

just 4 would result in the smallest model.

We have just one more issue to address before moving on. We had glossed over this

issue to enhance the flow of the presentation above. Consider Figure 8 which contrasts

24

the original single-segment approximation shown in Figure 6 with an alternative single-

segment approximation.

Figure 8 : left) The figure shown in Figure 6 contrasted with an attempt to approximate the raw

data with a constant segment that clearly has too great a mean value (right). Note that while the

number of repeated residuals (“errors”) is identical in both cases, the magnitude of the residuals is

much greater in the latter case. It is this unnecessarily large magnitude that tells us this is a poor

choice of an approximation

Intuitively, the alternative is much worse, vastly overestimating the mean of the

original data. However, on what basis could MDL make this distinction? If our MDL

formulation considered the Y-axis values to be categorical variables then there would be

no reason to prefer either model.

However, note that the sum of the magnitude of the residuals is much greater in for

Figure 8.right. This is true by definition, as using the mean minimizes this value.

However, nothing in our model description length explicitly accounts for this. An obvious

solution to this issue is to encode a term that accounts for the range of numbers required

to be modeled in the description length, in addition to their entropy. This issue is unique

to ordinal data, and does not occur with categorical data. For example, when dealing

with categorical data, there is no cost difference between say sx = a a a b , and sy = m m

m n . However, in our domain there is a significant difference between say ex = 1 1 1 2 ,

and ey = 3 3 3 4 , because the latter condemns us to consider values in a log2(4) range in

1 2 4 6 8 10 12 14 16 18 20 22 24 1 2 4 6 8 10 12 14 16 18 20 22 24

25

the description length for the model, whereas the former allows us to only consider

values in the smaller log2(2) range.

In principle, this term is included in the size of |HuffmanTree(T)|, but as we noted

above, we ignore this term in our model. The problem with Huffman coding is code

words in Huffman coding can only have an integer number of bits. Thus the size of

|HuffmanTree(T)|, does not distinguish between alternative models if we shift the mean

up or down a few values. Arithmetic coding can be viewed as a generalization of

Huffman coding, effectively allowing non-integer bit lengths. For this reason it tends to

offer significantly better compression for small alphabet sizes, and we should expect a

good hypothesis to have a small alphabet size by definition. In Figure 9, we show the

effect of considering fractional bits for this problem. Note that the factional bits have a

narrow range of 3 to 4, and the Huffman encoding does not make any distinction here.

Figure 9 : The log2 of the range of the residual errors for all possible single constant polynomial

models of the data introduced in Figure 5. Note that the model that minimizes this value (with a

tie) is also the model that minimizes the residual error.

The reader can now appreciate our why “solution” to this issue was to simply ignore

it. Because the underlying dimensionality reduction algorithms we are using (APCA,

-7 -6 -4 -2 0 2 4 6 8

3.0

3.2

3.4

3.6

3.8

4.0

lo
g

2
(|

e
m

a
x
|)

 b
it

s

e
m

a
x

is
 t

h
e
 l
a

rg
e
st

 i
n

te
g
e
r

in
 t

h
e
 r
e
si

d
u

a
l

e
rr

o
r

Mean value “predicted” by constant polynomalmodel

26

DFT, PLA) are attempting to minimize the residual error 6 , they are also implicitly

minimizing the range of residuals. As shown by Figure 9, if we explicitly added a term

for the range of residuals it would have no effect, as the dimensionality reduction

algorithm has already minimized it.

We have shown a detailed example using APCA. However, essentially all of the time

series representations can be encoded in a similar way. As shown with three

representative examples in Figure 10, essentially all of the time series models consist of a

set of basic functions (i.e., coefficients) that are linearly combined to produce an

approximation of the data.

Figure 10: A time series T shown in bold/blue and three different models of it shown in fine/red:

from left to right: DFT, APCA, and PLA

As we apply our ideas to each representation, we must be careful to correctly “charge”

each model for the number of parameters used in the model. For example, each APCA

segment requires the mean value and length, whereas PLA segments require the mean

value, segment length and slope. Each DFT coefficient can be represented by the

amplitude and phase of each sine wave; however, because of the complex conjugate

6
 DFT does minimize the residual error at any desired dimensionality given its set of basis functions. For both APCA

and PLA, while there are algorithms that can minimize the residual error, they are too slow to use in practice. We use

greedy approximation algorithms that are known to produce near optimal results [21][34].

0 40 80 120 0 40 80 120 0 40 80 120

27

property, we get a “free” coefficient for each one we store [3][7]. In previous

comparisons of the indexing performance of various time series representations, many

authors have given an unfair advantage to one representation by counting the cost to

represent an approximation incorrectly [20]. The ideas in this work explicitly assume a

fair comparison. Fortunately, the community seems to have become more aware of this

issue in recent years [3] [34].

In the next section we give both the generic version of the MDL model discovery for

time series algorithms and three concrete instantiations for DFT, APCA, and PLA.

2.3.2. Generic MDL for Time Series Algorithms

In the previous section, we used a toy example to demonstrate how to compute the

reduced description length of a time series with a competing hypothesis. In this section,

we will show a detailed generic version of our algorithm, and then explain our algorithm

in detail how we apply our algorithm to the three most commonly used time series

representations.

Our algorithm not only discovers the intrinsic cardinality and dimensionality of an

input time series, but it can also be used to find the right model or data representation for

a given time series. Table 1 shows a high-level view of our algorithm for discovering the

best model, cardinality, and dimensionality which will minimize the total number of bits

required to store the input time series.

Because MDL is the core of our algorithm, the first step is to quantize a real-valued

time series into a discrete-valued (but still fine-grained) time series, T (line 1). Next, we

consider each model, cardinality, and dimensionality one by one (line 3-5). Then, a

28

hypothesis H is created based on the selected model and parameters (line 6). For example,

a hypothesis H, shown in Figure 7, is created when the model M =APCA, cardinality

c=16, and dimensionality d=2; note that, in that case, the length of the input time series

was m=24.

Table 1 : Generic MDL algorithm for time series

__

Algorithm: Generic MDL algorithm for time series

Input: TS: time series

Output: intrinsic_model: intrinsic model

 intrinsic_card : intrinsic cardinality

 intrinsic_dim : intrinsic dimensionality

1. T = Discretization(TS)

2. bsf = ∞

3. for all M in {APCA,PLA,DFT,MIXTURE}

4. for all cardinality c

5. for all dimensionality d

6. H = ModelRespresentation(T,M,c,d)

7. total_cost = DL(H)+ DL(T|H)

8. if (bsf > total_cost)

9. bsf = total_cost

10. intrinsic_model = M

11. intrinsic_card = c

12. intrinsic_dim = d

13. end if

14. end for

15. end for

16. end for

__

 For concreteness, we will now consider three specific versions of our generic

algorithm.

29

The reduced description length is finally calculated (line 7), and our algorithm returns

the model and parameters that minimize the reduced description length for encoding T

(line 8-13).

2.3.3. Adaptive Piecewise Constant Approximation

As we have seen the example in Section 2.3.1, an APCA model is simple; it contains

only constant segments. The pseudo code for APCA, shown in Table 2, is very similar to

the generic algorithm.

Table 2 : Our algorithm specific to APCA

__

Algorithm: Intrinsic Discovery for APCA

Input: TS (time series)

Output: intrinsic_card ; intrinsic_dim

__

1. T = Discretization(TS)

2. bsf = ∞

3. for c = 2:256

4. for d = 2 to m/2

5. H = APCA(T,c,d)

6. model_cost = d*log2c+(d-1)*log2m

7. total_cost = model_cost + DL(T|H)

8. if (bsf > total_cost)

9. bsf = total_cost

10. intrinsic_card = c

11. intrinsic_dim = d

12. end if

13. end for

14. end for

__

First of all, we quantize the input time series (line 1). Then, we evaluate all

cardinalities from 2 to 256 and dimensionalities from 2 to the maximum, which is half of

30

the length of the input time series TS (line 3-4). Value m denotes the length of the input

time series.

Note that if the dimensionality were more than m/2, some segments would contain

only one point. Then, a hypothesis H would be created using the values of cardinality c

and dimensionality d, as shown in Figure 7, where c=16 and d=2. The model contains d

constant segments, so the model cost is the number of bits required for storing d constant

numbers, and d-1 pointers to indicate the offset of the end of each segment (line 6). The

difference between T and H is also required to rebuild T. The correction cost is computed;

then the reduced description length is calculated from the combination of the model cost

and the correction cost (line 7). Finally, the hypothesis that minimizes this value is

returned as an output of the algorithm (line 8-13).

2.3.4. Piecewise Linear Approximation

An example of a PLA model is shown in Figure 10.right. In contrast to APCA, a

hypothesis using PLA is more complex because each segment contains a line of any slope,

instead of a constant line in APCA. The algorithm used to discover the intrinsic

cardinality and dimensionality for PLA is shown in Table 3, which is similar to the

algorithm for APCA, except for the code in line 5 and 6.

A PLA hypothesis H is created from the external module PLA (line 5). To represent

each segment in hypothesis H, we record the starting value, ending value, and the ending

offset (line 6). The slope is not kept because storing a real number is more expensive than

log2c.

31

The first two values are represented in cardinality c and thus log2c bits are required

for each of them. We also require log2m bits to point to any arbitrary offset in T. Thus,

the model cost is shown in line 6. Finally, the reduced description length is calculated and

the best choice is returned (line 8-13).

Table 3 : Our algorithm specific to PLA

__

Algorithm: Intrinsic Discovery for PLA

Input: TS (time series)

Output: intrinsic_card; intrinsic_dim

__

1. T = Discretization (TS)

2. bsf = ∞

3. for c = 2:256

4. for d = 2 to m/2

5. H = PLA (T,c,d)

6. model_cost = 2*d*log2c +(d-1)*log2m

7. total_cost = model_cost + DL(T|H)

8 if (bsf > total_cost)

9. bsf = total_cost

10. intrinsic_card = c

11. intrinsic_dim = d

12 end if

13. end for

14. end for

__

2.3.5. Discrete Fourier Transform

A data representation in DFT space is simply a linear combination of sine waves, as

shown in Figure 10.left. Table 4 presents our algorithm specific to DFT. After we

32

quantize the input time series to a discrete time series T (line 1), the external module DFT

is called to return the list of sine wave coefficients that represent T. The coefficients in

DFT are a set of complex conjugates, so we store only half of all coefficients which

contain complex numbers without their conjugate, called half_coef [line 5]. When

half_coef is provided, it is trivial to compute their conjugates and obtain all original

coefficients.

Instead of using all of half_coef to regenerate T, we test using subsets of them as

the hypothesis to approximately regenerate T, incurring an approximation error. We first

sort the coefficients by their absolute value (line 6). We use top-d coefficients as the

hypothesis to regenerate T by using InverseDFT (line 8). For example, when d=1 we

use only the single most important coefficient to rebuild T, and when d=2 the

combination of top-two sine waves are used as a hypothesis, etc. However, it is expensive

to use 16 bits for each coefficient by keeping two complex numbers for its real part and

imaginary part. Therefore, in line 7, we reduce those numbers to just c possible values

(cardinality) by rounding the number to the nearest integer in a space of size c, and we

also need a constant number of bits (32 bits) for the maximum and minimum value of

both the real parts and the imaginary parts. Hence, the model contains top-d coefficients

whose real (and imaginary) parts are in a space of size c. Thus, the model cost and the

reduced description length are shown in lines 9 and 10.

33

Table 4 : Our algorithm specific to DFT

__

Algorithm: Intrinsic Discovery for DFT

Input: TS (time series)

Output: intrinsic_card; intrinsic_dim

__

1. T = Discretization (TS)

2. bsf = ∞

3. for c = 2:256

4. for d = 2 to m/2

5. half_coef = DFT(T)

6. sorted_coef = SortByPolar(half_coef)

7. round_coef = Round(sorted_coef, c)

8 H = InverseDFT(round_coef(1:n))

9. model_cost = 2*d*log2c+d*log2(m/2))+32

10. total_cost = model_cost + DL(T|H)

11. if (bsf > total_cost)

12. bsf = total_cost

13. intrinsic_card = c

14. intrinsic_dim = d

15. end if

16. end for

17. end for

__

For simplicity we placed the external modules APCA, PLA, and DFT inside two for-

loops; however, to improve performance, they should be moved outside the loops.

2.3.6. A Mixed Polynomial Degree Model

For a given time series T, we want to know the representation that can minimize the

reduced description length for T. We have shown how to achieve this goal by applying

34

the MDL principle to three different models (APCA, PLA and DFT). However, for some

complex time series, using only one of the above models may not be sufficient to achieve

the most parsimonious representation, as measured by bit cost, or by our subjective

understanding of the data [27][34]. It has been shown that averaged over many highly

diverse datasets, there is not much difference among the different representations [34].

However, it is possible that within a single dataset, the specific model used could make a

significant difference. For example, consider each of the two time series that form the

trajectory of an automobile as it drives through Manhattan. These time series are

comprised of a combination of straight lines and curves. We could choose just one of

these possibilities, either representing the automobile’s turns with many piecewise linear

segments, or representing the long straight sections with a degenerate “curve.” However,

a mixed polynomial degree model is clearly more natural here.

For clarity, we show a toy example that can benefit from a mixed polynomial degree

model in Figure 11. It is easy to observe that there are constant, linear and quadratic

patterns in this example. In Sections 2.4.9 and 2.4.10, we further demonstrate the utility

of our ideas on real datasets [21][27][33].

Figure 11 : A toy example of a time series that has more than one state

100 200 300 400 500 600 700 8000

35

Several works propose that it may be fruitful to use a combination of different models

within one time series [21][27][34]. For example, [27] proposes a mixed model wherein

the polynomial degree of each interval in one time series can vary. The polynomial

degree can be zero, one, two or higher. The goal of [27] is to minimize the Euclidean

error between the model and the original data for a given number of segments. However,

note that [27] requires the user to state the desired dimensionality, something we

obviously wish to avoid. Minimizing the Euclidean error between the model and the

original data is a useful objective function for some tasks, but it is not necessarily the

same as discovering the intrinsic dimensionality, which is our stated goal. In the

following, we show that our proposed algorithm returns the intrinsic model by

minimizing the reduced description length using MDL. Moreover, our algorithm is

essentially parameter-free.

We propose a mixed model framework using MDL that optimizes a mixture of

constant, linear and quadratic representations for different local regions of a single time

series. In this case, the operator space of the segmentation algorithm (Table 6) becomes

larger. Table 5 shows a high-level view of the algorithm. Lines 1 to 4 are similar to the

algorithm for APCA and PLA. The function in line 5 is the return for the d segments

with the hypothesis H, the model cost and the starting point of each segment. Table 6

illustrates how the bottom-up mixed polynomial degree algorithm works in detail. Each

segment is represented by a different polynomial degree to minimize the reduced

description length. The model costs for constant, linear and quadratic representations are

log2c bits, 2*log2c bits and 3*log2c bits, respectively. For example, if c is 256, the

36

model costs for the above three representations are 8 bits, 16 bits and 24 bits, respectively.

In line 7, In addition to the total model cost of all of the segments, the model cost of the

whole time series needs to use extra bits to store the starting point of each segment.

Observe that the model cost for a segment is independent of the length of the segment.

More specifically, the model cost for each segment is only determined by the polynomial

degree of the representation and the cardinality c.

Table 5 : Our algorithm specific to the mixed polynomial degree model

__

Algorithm: Intrinsic Model Discovery for the mixed polynomial degree

representations

Input: TS (time series)

Output: intrinsic_card; intrinsic_dim

__

1. T = Discretization (TS)

2. bsf = ∞

3. for c = 2:256

4. for d = 2 to m/2

5. segment_info= bottom_up_mixed(T,c,d) // See Table 6

6. H = sum(segment_info.H)

7. model_cost = sum(segment_info.model_cost) + (d-1)*log2m

8. total_cost = model_cost +DL(T|H)

9. if (bsf > total_cost)

10. bsf = total_cost

11. intrinsic_card = c

12. intrinsic_dim = d

13. end if

14. end for

15. end for

__

Table 6 shows the bottom-up mixed polynomial degree model algorithm. By

choosing the minimum description costs as the objection function, the algorithm shown

37

in Table 6 is a generalization of the bottom-up algorithm for generating the Piecewise

Linear Approximation (PLA) introduced in [21]. There are two main differences between

our bottom-up mixed model algorithm and the bottom-up algorithm described in [21].

The first is a minor pragmatic point: instead of using two points in the finest possible

approximation, the algorithm shown in Table 6 uses three points. This is because when

the polynomial degree of the representation is two, the number of points by using this

approximation must be at least three. Second, instead of using Euclidean distance as the

objective function, the algorithm in Table 6 uses MDL cost. The algorithm calculates the

MDL costs for three degrees of polynomial degree representations for a segment. The

polynomial degrees are zero, one and two, respectively. Next, it chooses the one that can

minimize the cost (the description length). The algorithm begins by creating the finest

possible approximation of the input time series. So for a length of n time series, there are

n/3 segments after this step, as shown in Table 6, line 2 to line 4. Then the cost of

merging each pair of adjacent segments is calculated, as shown in line 5 to line 7. To

minimize the merging cost for the two input segments, this calculate_MDL_cost

function calculates the MDL costs for three kinds of polynomial degree representations,

and then chooses the minimum one as the merging cost (line 6). After this step, the

algorithm iteratively merges the lowest cost pair until a stopping criterion is met. In this

scenario, the stopping criterion is the input number of segments. This means that the

algorithm will not terminate as long as the current number of segments is larger than the

input number of segments.

38

It is important to note that, similar to the algorithm [21], our algorithm is greedy in

the sense that once two regions have been joined together in a single segment, they will

remain together in that segment (which may get larger as it is iteratively joined with other

segments). There are only join operators; there are no split operators. However, if a

region in our algorithm is initially assigned to a polynomial of a particular degree, this

does not mean it cannot later be subsumed into a larger segment of a different degree. In

other words, a tiny region that locally may consider itself, say, linear has the ability to

later become part of a constant or quadratic segment as it obtains a more “global” view.

Table 6 : Bottom-up mixed polynomial degree model algorithm

__

Algorithm: Bottom-up algorithm for mixed polynomial degree model

Input: TS (time series), c, d

Output: Seg_TS

__

1. T = Discretization (TS)

2. for i = 1:3:length(T)

3. Seg_TS = concat(Seg_TS, T([i:i+2]))

4. end

5. for i = 1: length(Seg_TS) – 1

 //Find the merging cost of each pair of segments

6. merge_cost(i) = calculate_MDL_cost(merge(Seg_TS(i), Seg_TS(i+1)),c);

7. end

8. while length(segment) > d
9. ind = min(merge_cost) // Find cheapest pair to merge

10. Seg_TS(i) = merge(Seg_TS(ind), Seg_TS(ind+1))) // Merge them

11. delete(Seg_TS(ind+1)) // Update records

12. merge_cost(i)= calculate_MDL_cost(Seg_TS(i), Seg_TS(i+1)),c)

13. merge_cost(i-1)=calculate_MDL_cost(merge(Seg_TS(i-1), Seg_TS(i)),c)

14. end

39

2.4 Experimental Evaluation

To ensure that our experiments are easily reproducible, we have set up a website

which contains all data and code, together with the raw spreadsheets of the results [61].

In addition, this website contains additional experiments that are omitted here for brevity.

2.4.1. A Detailed Example on a Famous Problem

We start with a simple sanity check on the classic problem specifying the correct time

series model, cardinality and dimensionality, given an observation of a corrupted version

of it. While this problem has received significant attention in the literature [8][44][46],

our MDL method has two significant advantages over existing works. First, there are no

explicit parameter to set, whereas most other methods require several parameters to be set.

Second, MDL helps to specify the model, cardinality and dimensionality, whereas other

methods typically only consider the model and/or dimensionality.

To eliminate the possibility of data bias [22] we consider a ten-year-old instantiation

[46] of a classic benchmark problem [8]. In Figure 12, we show the classic Donoho-

Johnstone block benchmark. The underlying model used to produce it consists of twelve

piecewise constant sections with Gaussian noise added.

Figure 12 : A version of the Donoho-Johnstone block benchmark created ten years ago and

downloaded from [46]

Donoho-Johnstone Benchmark

0 500 1000 1500 2000

40

The task is challenging because some of the piecewise constant sections are very

short and thus easily dismissed during a model search. Dozens of algorithms have been

tested on this time series (indeed, on this exact instance of data) in the last decade: which

should we compare to? Most of these methods have several parameters, in some cases as

many as six [10][11]. We argue that comparisons to such methods are inappropriate,

since our explicit aim is to introduce a parameter-free method. The most cited parameter-

free method addressing this problem is the L-Method [44]. In essence, the L-Method is a

“knee-finding” algorithm. It attempts to explain the residual error vs. size-of-model curve

using all possible pairs of two regression lines. Figure 13.top shows one such pair of

lines, from one to ten and from eleven to the end. The location that produces the

minimum sum of the residual errors of these two curves, R, is offered as the optimal

model. As we can see in Figure 13.bottom, this occurs at location ten, a reasonable

estimate of the true value of twelve.

We also tested several other methods, including a recently-proposed Bayesian

Information Criterion-based method that we found predicted a too coarse four-segment

model [59]. No other parameter-free or parameter-lite method we found produced

intuitive (much less correct) results. We therefore omit further comparisons in this paper

(however, many additional experiments are available at [61]).

41

Figure 13 : The knee-finding L-Method. top) A residual error vs. size-of-model curve (blue/bold)

is modeled by all possible pairs of regression lines (red/light). Here, just one possibility is shown.

bottom) The location that minimizes the summed residual error of the two regression lines is given

as the optimal “knee”

We solve this problem with our MDL approach. Figure 14 shows that of the 64

different piecewise constant models it evaluated, MDL selected the twelve-segment

model, which is the correct answer.

Figure 14 : The description length of the Donoho-Johnstone block benchmark time series is

minimized at a dimensionality corresponding to twelve piecewise constant segments, which is the

correct answer [46]

The figure above uses a cardinality of 256, but the same answer is returned for (at

least) every cardinality from 8 to 256.

Beyond outperforming other techniques at the task of finding the correct

dimensionality of a model, MDL can also find the intrinsic cardinality of a dataset,

something for which methods [44][59] are not even defined. In we have repeated the

0 10 20 30 40 50 60 70 80 90 100
0

100,000

0 10 20 30 40 50 60 70 80 90 100

Two regression lines from 1 to K, and from K+1 to end. Here K =10 (lines

shifted up for visual clarity)

The sum of the residual errors of these two lines is denoted R

Residual error between piecewise constant model and benchmark data for different

numbers of segments, K

R

The value of R for all values of K from 2 to 100

The minimum is at 10

0 10 20 30 40 50 60

0

500
1000

DL(H)

DL(T |H)

DL(T |H) + DL(H)The minimum is at 12

42

previous experiment, but this time fixing the dimensionality to twelve as suggested above,

and testing all possible cardinality values from 2 to 256.

Figure 15 : The description length of the Donoho-Johnstone block benchmark time series is

minimized with a cardinality of ten, which is the true cardinality [46]

Here MDL indicates a cardinality of ten, which is the correct answer [46]. We also

re-implemented the most referenced recent paper on time series discretization [11]. The

algorithm is stochastic, and requires the setting of five parameters. In one hundred runs

over multiple parameters we found it consistently underestimated the cardinality of the

data (the mean cardinality was 7.2).

Before leaving this example, we show one further significant advantage of MDL over

existing techniques. Both [44][59] try to find the optimal dimensionality, assuming the

underlying model is known. However, in many circumstances we may not know the

underlying model. As we show in Figure 16, with MDL we can relax even this

assumption. If our MDL scoring scheme is allowed to choose over the cross product of

model = {APCA, PLA, DFT}, dimensionality = {1 to 512} and cardinality = {2 to 256},

it correctly chooses the right model, dimensionality and cardinality.

0
500

1000

0 10 50 100 150 200 250

DL (T |H) + DL (H)

DL (T |H)

The minimum is at 10

DL (H)

43

Figure 16: The description length of the Donoho-Johnstone block benchmark time series is

minimized with a piecewise constant model (APCA), not a piecewise linear model (PLA) or

Fourier representation (DFT)

2.4.2. An Example Application in Physiology

The Muscle dataset studied by Mörchen and Ultsch [32] describes the muscle

activation of a professional inline speed skater. The authors calculated the muscle

activation from the original EMG (electromyography) measurements by taking the

logarithm of the energy derived from a wavelet analysis. Figure 17.top shows an excerpt.

At first glance it seems to have two states, which correspond to our (perhaps) naive

intuitions about skating and muscle physiology.

Figure 17 : top) An excerpt from the Muscle dataset. bottom) A zoomed-in section of the Muscle

dataset which had its model, dimensionality and cardinality set by MDL

We test this binary assumption by using MDL to find the model, dimensionality and

cardinality. The results for the model and dimensionality are objectively correct, as we

DL(T |H) + DL(H)
DFT

0 10 20 30 40 50 60

0
500

1000

PLA

APCA

0 1000 2000 3000 4000

0 10000 20000

stroke stroke

glide glide glide

push offpush off

44

might have expected given the results in the previous section, but the results for

cardinality, shown in Figure 18.left, are worth examining.

Our MDL method suggests a cardinality of three. Glancing back at Figure 17.bottom

shows why. At the end of the stroke there is an additional level corresponding to an

additional push-off by the athlete. This feature was noted by physiologists who worked

with Mörchen and Ultsch [32]. However, their algorithm weakly predicts a value of four7.

Here, once again we find the MDL can outperform this latter approach, even though [32]

acknowledges that their reported result is the best obtained after some parameter tuning

using additional data from the same domain.

Figure 18: left) The description length of the muscle activation time series is minimized with a

cardinality of three, which is the correct answer. right) The Persist algorithm, using the code from

[32], predicts a value of four

2.4.3. An Example Application in Astronomy

In this section (and the one following) we consider the possible utility of MDL

scoring as an anomaly detector. Building an anomaly detector using MDL is very simple.

We can simply record the best model, dimensionality and/or cardinality predicted for the

training data, and then test on future observations that have significantly different learned

parameters. We can illustrate this idea with an example in astronomy. We begin by

7
 The values for k = 3, 4 or 5 do not differ by more than 1%.

DL(H)

0 10 20 30 40 50 60

0

2000

4000

DL(T |H)

DL(T |H) + DL(H)

The minimum is at 3

0

0.2

0.4

0.6

0.8

k
2 3 4 5 6 7

P
e

rs
is

te
n
c
e

45

noting that we are merely demonstrating an additional possible application of our ideas.

We are only showing that we can reproduce the utility of existing works. However note

that our technique is at least as fast as existing methods [40][41]., and does not require

any training data or parameter tuning, an important advantage for exploratory data

mining.

Globally there are hundreds of telescopes covering the sky and constantly recording

massive amounts of astronomical data [40]. Moreover, there is a worldwide effort to

digitize tens of millions of observations recorded on formats ranging from paper/pencil to

punch cards over the last hundred years. Having humans manually inspect all such

observations is clearly impossible [30]. Therefore, outlier detection can be useful to catch

anomalous data, which may indicate an exciting new discovery or just a pedestrian error.

We took a collection of 1,000 hand-annotated RRL variable stars [40] [41], and measured

the mean and standard deviation of the DFT dimensionality, which turned out to be 22.52

and 2.12, respectively. As shown in Figure 19.top, the distribution is Gaussian.

We then took a test set of 8,124 objects, known to contain at least one anomaly, and

measured the intrinsic DFT dimensionality of all of its members, and discovered that one

had a value of 31. As shown in Figure 19.bottom, the offending curve looks different

from the other data, and is labeled RRL_OGLE053803.42-695656.4.I.folded ANOM. This

curve is a previously known anomaly. In this case, we are simply able to reproduce the

anomaly finding ability of previous work [40][41]. However, we achieved this result

without extensive parameter tuning, and we can do so very efficiently.

46

Figure 19: top) The distribution of intrinsic dimensionalities of star light curves, estimated over

5,327 human-annotated examples. bottom) Three typical examples of the class RRL, and a high

intrinsic dimensionality example, labeled as an outlier by [40]

2.4.4. An Example Application in Cardiology

In this section we show how MDL can be used to mine ECG data. Our intention is not

to produce a definitive method for this domain, but simply to demonstrate the utility and

generality of MDL. We conducted an experiment that is similar in spirit to the previous

section. We learned the mean and standard deviation of the DFT dimensionality on 200

normal heartbeats, finding them to be 20.82 and 1.70, respectively. As shown in Figure

20.top, the distribution is clearly Gaussian

Figure 20: top) The distribution of intrinsic dimensionalities of individual heartbeats, estimated

over the 200 normal examples in record 108 of the MIT BIH Arrhythmia Database (bottom)

0 10 15 20 25 30 350

500

1000

1500
5,327 Star light curves annotated as

class RRL.

Mean DL = 22.52

STD of DL = 2.12

RRL_ OGLE053803.42-

695656.4.I.folded ANOM

200 400 600 800 10000

0 2000 4000 6000 8000

Premature ventricular contraction

10 15 20 25 30 35
0

20

40

60
Approx 200 heartbeats

annotated as normal

Mean DL = 20.82

STD of DL = 1.70

A B

47

. We used these learned values to monitor the rest of the data, flagging any heartbeats

that had a dimensionality that was more than three standard deviations from the mean.

Figure 20.bottom shows a heartbeat that was flagged by this technique.

Once again, here we are simply reproducing a result that could be produced by other

methods [58]. However, we reiterate that we are doing so without any parameter tuning.

Moreover, it is interesting to note when our algorithm does not flag innocuous data (i.e.,

produces false positives). Consider the two adjacent heartbeats labeled A and B in Figure

20.bottom. It happens that the completely normal heartbeat B has significantly more noise

than heartbeat A. Such non-stationary noise presents great difficulties for distance-based

and density-based outlier detection methods [58], but MDL is essentially invariant to it.

Likewise, the significant wandering baseline (not illustrated) in parts of this dataset has

no medical significance and is ignored by MDL, but it is the bane of many EEG anomaly

detection methods [4].

2.4.5. An Example Application in Geosciences

Global-scale Earth observation satellites such as the Defense Meteorological Satellite

Program (DMSP) Special Sensor Microwave/Imager (SSM/I) have provided temporally

detailed information about the Earth’s surface since 1978, and the National Snow and Ice

Data Center (NSIDC) in Boulder, Colorado makes this data available in real time. Such

archives are a critical resource for scientists studying climate change [37]. In Figure 21,

we show a brightness temperature time series from a region in Antarctica, using SSM/I

daily observations over the 2001-2002 austral summer.

48

We used MDL to search this archive for low complexity annual data, reasoning that

low complexity data might be amenable to explanation. Because there is no natural

starting point for a year, for each time series we tested every possible day as the starting

point. The simplest time series we discovered required a piecewise constant

dimensionality of two with a cardinality of two, suggesting that a very simple process

created the data. Furthermore, the model discovered (piecewise constant) is somewhat

surprising, since virtually all climate data is sinusoidal, reflecting annual periodicity; thus,

we were intrigued to find an explanation for the data.

Figure 21: left) A time series of temperatures in a region of Antarctica. right) Of the hundreds of

millions of such time series archived at NSIDC, this time series (and a few thousand more) is

unusual in that it has a very low complexity, being best modeled with just two linear segments

After consulting some polar climate experts, the following explanation emerges. For

most of the year the location in question is covered in snow. The introduction of a small

amount of liquid water will significantly change the reflective properties of the ground

cover, allowing the absorption of more heat from the sun, thus producing more liquid

water in a rapid positive feedback cycle. This explains why the data does not have a

sinusoidal shape or a gradual (say, linear) rise, but a fast phase change, from a mean of

about 155 Kelvin to a ninety-day summer of about 260 Kelvin.

0 100 200 300 3650 100 200 300 365
140

160

180

200

220

240

260

280

Days since July 1, 2001 Circular rotation of 2001 data, starting at Dec 1st

D
eg

re
es

 K
el

v
in

Melt day (154)

SSM/I Brightness Temperature

Piecewise Constant

Approximation

49

2.4.6. An Example Application in Hydrology and Environmental Science

In this section we show two applications of our algorithm in hydrological and

environmental domains.

The first application is the hydrology data studied by [19] describing the annual

discharge rate of the Senegal River. This data was measured at Bakel station from the

year 1903 to 1988 [19], as shown in Figure 22.

Figure 22: A time series showing the annual discharge rate of Senegal River from the year 1903 to

1988

The authors of [19] reported the optimal segmentation occurs when the number of

segments is five using a Hidden Markov Model (HMM)-based segmentation algorithm,

as shown in Figure 23.top.

Figure 23: top) The blue/light line is Senegal River data. The black/bold line is the segmentation

result found in Section 5.1 of [19]. bottom) We obtained the red/bold line by hard coding the

number of segments to five using the MDL algorithm

Years
1900 1920 1940 1960 1980

0

400

800

1200

m
3
/s

1900 1920 1940 1960 1980
Years

0

400

800

1200

m
3
/s

1900 1920 1940 1960 1980
Years

0

400

800

1200

m
3
/s

50

As illustrated in Figure 23.bottom, we get a similar plot by hard coding the number of

segments to five, using the MDL-based Adaptive Piecewise Constant Approximation

algorithm shown in Table 2. However, as shown in Figure 24, our MDL algorithm

actually predicts two as its intrinsic dimensionality of data in Figure 22. Note that there is

no ground truth for this problem 8 . Nevertheless, for the Donoho-Johnstone block

benchmark dataset that has ground truth in Section 2.4.1, we have correctly predicted its

intrinsic dimensionality, and we would argue that the two-segment solution shown in

Figure 24 is at least subjectively as plausible as the five segment solution.

Figure 24: Our MDL algorithm predicts that the intrinsic dimensionality of the annual discharge

rate of the Senegal River is two. The approximation is shown in red/bold

Below we consider an application of our algorithm in a similar domain in

environmental data. The data we consider is the time series of the annual global

temperature change from the year 1700 to 1981 [19], as shown in Figure 25.

Figure 25: A time series showing the annual global temperature change from the year 1700 to

1981

8
 In [19] authors claimed that to obtain the optimal segmentation, the number of segments should be five. This claim is

very subjective, simply because this “optimal” segmentation is with respect to the total deviation from segment

means. Moreover, there is no hydrological interpretation of the five segments with regard to the real data.

1900 1920 1940 1960 1980
0

400

800

1200

m
3
/s

Years

1700 1750 1800 1850 1900 1950 2000
Years

-

T
em

p
er

at
u

re

C
h

an
g
e
 C

0.4

0.2

0

0.2

0.4

51

In [19] the authors suggest that the optimal segmentation occurs when the number of

segments is four, as shown in Figure 26.top.

Figure 26: top) The blue/light line is the annual global temperature change. The black/bold line is

the segmentation result found in Section 5.2 of [19]. bottom) We obtained a similar but slightly

different model, as shown in the red/bold line, by hard coding the number of segments to four

using the MDL algorithm

As illustrated in Figure 26.bottom, using the algorithm in Table 2, we obtain a very

similar plot by hard coding the number of segments to four. As before there is no external

ground truth explanation as to why the optimal segmentation of this global annual mean

temperature time series should be four. However, as shown in Figure 27, our MDL

algorithm predicts that the intrinsic dimensionality of the global temperature change data

is two.

Figure 27: Our MDL algorithm obtains two as the intrinsic dimensionality of the time series for

the global annual mean temperature

Here, there is at least some tentative evidence to support our two segment model.

Research done by [25] [33] and [48] suggests that there was a global temperature rise

between 1910 and 1940. To be more precise, this period of rapid warming was from 1915

-
1700 1750 1800 1850 1900 1950 2000

Years

-

T
em

p
er

at
u

re

C
h

an
g
e
 C

0.4

0.2

0

0.2

0.4

1700 1750 1800 1850 1900 1950 2000
Years

-

T
em

p
er

at
u

re

C
h

an
g
e
 C

0.4

0.2

0

0.2

0.4

1700 1750 1800 1850 1900 1950 2000

-

T
em

p
er

at
u

re

C
h

an
g
e
 C

0.4

0.2

0

0.2

0.4

Years

52

to 1942 [25][48]. Moreover, there were no significant temperature changes after 1700

other than during this rapid warming period.

2.4.7. An Example Application in Biophysics

In [2], the authors also proposed an HMM-based approach (distinct from, but similar

in spirit to that described in [19] and discussed in the previous section) to segment the

time series from single-molecule Förster resonance energy transfer (smFRET)

experiments. Figure 28 shows a time series from the smFRET experiment [2][54].

Figure 28: A representative smFRET trace from [2][54]

The authors in [2] noted that there are biophysical reasons to think that the data is

intrinsically piecewise constant, but the number of states is unknown. Their method

suggests that there are three states in the above time series, as shown in Figure 29.top).

We obtain the same results, as our algorithm finds that the intrinsic cardinality for the

data in Figure 28 is also three using the algorithm in Table 2. Figure 29. bottom)

illustrates our approach. However, there are several parameters in the HMM-based

approach used by [2]. Moreover, their approach iteratively finds the number of states

with the maximum likelihood, which results in a very slow algorithm. In contrast, our

algorithm is parameter-free and significantly faster. Note that we do not even have to

have the assumption (made by [2]) that the data is piecewise constant. The mixed

0 50 100 150 200 250

0.2

0.6

1

- 0.2

F
R

E
T

Time step

53

polynomial algorithm introduced in Section 2.3.6 considered and discounted a linear,

quadratic or mixed polynomial model to produce the model shown in Figure 29.bottom).

Figure 29: top) The time series in blue from Figure 28 is predicted to have three states [2][54]. The

approximation is shown in black/bold. bottom) Our algorithm also finds three as the intrinsic

cardinality. Piecewise constant approximation is shown in red/bold

2.4.8. An Example Application in Prognostics

In this section, we demonstrate our framework’s ability to aid in clustering problems.

Recently, the field of prognostics for engineering systems has attracted a huge

amount of attention due to its ability to provide an early warning for system failures,

forecast maintenance as needed, and estimate the remaining useful life of a system

[12][39][49][56][57]. Data-driven prognostics are more useful than model-driven

prognostics, since a model-driven prognostic requires incorporating a physical

understanding of the systems [12]. This is especially true when we have access to large

amounts of data, a situation that is becoming more and more common.

There may be thousands of sensors in a single engineering system. Consider, for

example, a typical oil-drilling platform that can have 20,000 to 40,000 sensors on board

[16]. All of these sensors stream data about the health of the system [16]. Among the

huge number of variables, there are some variables called operational sensors that have a

0 50 100 150 200 250

0.2

0.6

1

- 0.2
F

R
E

T

Time step

0 50 100 150 200 250

0.2

0.6

1

- 0.2

F
R

E
T

Time step

54

substantial effect on system performance. In order to do a prognostic analysis, first the

operational variables should be filtered from the non-operational variables that are just

responding to the operational ones [56].

We analyzed the Prognostics and Health Management Challenge (PHM08) dataset

which contains data from 233 different engines [38][39]. Each engine has data from

around 900 engine cycles for one aircraft. Each engine cycle represents one aircraft flying

from one destination to another. Figure 30 implies that the data from the operational

variable and the non-operational variable are visually very similar.

Figure 30: top) An example of an operational variable in the PHM08 dataset. bottom) An example

of a non-operational variable in the PHM08 dataset

The defined task here is to cluster the operational variables and non-operational

variables into two groups. For ease of exposition, we only consider one variable in each

group. Nevertheless, our framework can be easily extended to multivariate problems. We

calculate the intrinsic cardinality and the reduced description length for one operational

variable and one non-operational variable from all of the 233 engines. One marker in

Figure 31 represents one variable from one engine.

100 200 300 400 500 600 700 800 9000

100 200 300 400 500 600 700 800 9000

Engine Cycles

Engine Cycles

55

Although data from the two kinds of variables look very similar (Figure 30), our

results in Figure 31 show that there is a significant difference between them: the

operational variables lie in the lower left corner of Figure 31 with low cardinalities and

small reduced description lengths. In contrast, the non-operational variables lie in the

upper right corner of Figure 31 with high cardinalities and large reduced description

lengths. This implies that the data from the operational variables is relatively ‘simple’

compared to the data from the non-operational variables, since the intrinsic cardinalities

and reduced description lengths of the data from the operational variables are relatively

small. This result was confirmed by a Prognostics expert: the hypothesis for filtering out

the operational variables is that data from operational variables tends to have simpler

behavior, since there are only several crucial states for the engines [14][38][39][56][57].

Note that in our experiment we did not need to tune any parameters, while most of the

related literature for this dataset use multi-layer perceptron neural networks [14][56][57],

which have the overhead of parameter tuning and are prone to overfitting.

Figure 31: The blue/cross markers represent operational variables. The red/circle markers

represent non-operational variables. The variables from 233 engines are analyzed in the plot

5 10 15 20 25 30 35 40 45
Intrinsic Cardinality

M
in

im
al

R
ed

u
ce

d

D
es

cr
ip

ti
o

n

L
en

g
th

Clustering of Operational Variables and Non-Operational Variables

400

600

800

1000

1200

1400

56

2.4.9. Testing the Mixed Polynomial Degree Model

In Section 2.3.6 we introduced an algorithm for finding mixed polynomial degree

models for a time series. In this section, we demonstrate the application of our proposed

algorithm to the synthetic time series shown in Figure 33. As shown in Figure 32, we

calculated its intrinsic dimensionality using the algorithms in Table 5 and Table 6. The

minimum cost occurs when the dimensionality is eight.

Figure 32: The description length of the synthetic time series shown in Figure 11 minimizes when

the dimensionality is eight, which is the intrinsic dimensionality

Figure 33 shows the data and its intrinsic mixed polynomial degree representations.

In Figure 33 bottom), we observed that there are four constant segments, two linear

segments and two quadratic segments, which correctly reflects how we constructed this

toy data.

Figure 33: top) A toy time series shown in Figure 11 has constant, linear and quadratic segments.

bottom) data in top) is represented by a mixed polynomial degree model. The segments are

brushed with different colors according to the polynomial degree of the representations. Red

number of dimensionality

0

2000
1000

100 90 80 70 60 50 40 30 20 10 1

DL(T|H)

DL(H)

The minimum is at 8
DL(T|H) + DL(H)

100 200 300 400 500 600 700 8000

100 200 300 400 500 600 700 8000

57

indicates a constant representation. Black indicates a linear representation and green indicates a

quadratic representation

2.4.10. An Example Application in Aeronautics

Having demonstrated the mixed polynomial degree model on a toy problem, we are

now ready to consider a real-world dataset. The Space Shuttle dataset contains time series

produced by the inertial navigation system error correction system, as shown in Figure 34.

Figure 34: top) One snippet of a space shuttle time series that clearly has more than one state.

bottom) Another space shuttle time series that has more than one state

Using only one approximation to represent the time series like the ones in Figure 34

does not achieve a natural segmentation, since the data itself is intrinsically composed of

more than one state. We applied the mixed polynomial degree algorithm in Table 5 and

Table 6 to the data shown in Figure 34. The algorithm returns different polynomial

degrees for different segments, as demonstrated in Figure 35.

0 200 400 600 800 10000

1

Time

0 200 400 600 800 10000

1

Time

58

Figure 35: The data shown in Figure 34 after we applied our mixed polynomial degree

segmentation. The segments are brushed with different colors according to the polynomial degree

of the representations. Red indicates a constant representation. Black indicates a linear

representation and green indicates a quadratic representation

We observe that there are three different states in both of the two time series shown in

Figure 34. An understanding of the processes that produced this data seems to support

this result [23].

2.4.11. Quantifiable Experiments

We conclude this section with a set of quantifiable experiments that explicitly allow

us to demonstrate the robustness of our algorithm to various factors that can cause it to

fail. In every case, we push our algorithm passed its failure point, and by archiving all

data [61] we establish baselines for researchers to improve on our results. We are

particularly interested in measuring our algorithms sensitivity to:

Noise: The results shown in Sections 2.4.1 and 2.4.2 suggest that our framework is at

least somewhat robust to noise, but it is natural to ask at what point it breaks down, and

how gracefully it degrades.

0 200 400 600 800 10000

1

0 200 400 600 800 10000

1

Time

Time

59

Sampling Rate: For many applications the ubiquity of cheap sensors and memory

means that the data is sampled at a rate higher than any practical application needs. For

example, in the last decade most ECG data has gone from being sampled at 256Hz to

sampling rates of up to 10KHz, even though there is little evidence that this aids analysis

in any way. Nevertheless, there are clearly situations in which the data may be sampled at

a lower rate than the ideal, and again we should consider how gracefully our method

degrades.

Model Assumptions: While we have attempted to have our algorithm as free of

assumptions/parameters as possible, we still must specify the model class(es) to search

over, i.e. DFT, APCA, and PLA. Clearly even if we had noise-free data, the data may not

be exactly a “platonic idea” created from pure components of our chosen model. Thus we

must ask ourselves how much our model assumptions can be violated before our

algorithm degrades.

To test these issues we created modifications of the Donoho-Johnstone block

benchmark [46]. Our version is essentially identical to the version shown in Figure 12,

except it initially has no noise. We call this initial prototype signal P. After adding

various distortions/modifications to the data, we can measure the success of our

algorithm in three ways:

The Root-Mean-Square-Error (RMSE). This is the average of the sum of squared

differences between P and the predicted output of our algorithm. This is essentially the

mean of square lengths of the gray hatch lines shown in Figure 7. While zero clearly

indicates a perfect recreation of the data, the absolute value of RMSE otherwise has little

60

intuitive value. However the rate at which it changes due to a distortion is of interest here.

This measure is shown with blue lines in Figure 36.

Correct Cardinality Prediction: This is a binary outcome, either our algorithm

predicted the correct cardinality or it did not. This is shown with black lines in Figure 36.

Correct Dimensionality Prediction: This is also a binary outcome, either our

algorithm predicted the correct dimensionality or it did not. Note that we only count a

correct prediction of dimensionality if every segment endpoint is within three data points

of the true location. This measure is shown with red lines in Figure 36.

As shown in Figure 36 our strategy is to begin with an easy case for our algorithm

and progressively add more distortion until both the cardinality and dimensionality

predictions fail. Concretely:

In Figure 36.top we start with the initial prototype signal P which has no noise, and

we add noise until the signal-to-noise (SNR) ratio is -4.0. The SNR is calculated

according to the standard equation in [45]. As we can see, the cardinality prediction fails

at a SNR of about -1.7, and the dimensionality prediction shortly thereafter.

In Figure 36.middle we start with the initial prototype signal P with an SNR of -0.22,

which is the published DJB data with the medium-noise setting [46]. We progressively

resample the data from 2048 datapoints (the original data) down to just 82 datapoints.

Both the cardinality and dimensionality predictions fail as we move from 300 to 320

datapoints.

In Figure 36.bottom we again start with the initial prototype signal P with an SNR of -

0.22, this time we gradually add a global linear trend from zero to 0.45, as measured by

61

the gradient of the data. Both the dimensionality and cardinality predictions fail as the

gradient is increase pasted 0.3.

Figure 36: The robustness of our algorithm to various distortions added to the DJB data. In (a).left

we show the DJB data with no noise, and in (a).right we plot the RMSE between (a).left and the

corrupted versions. In (b).left we start with the same data shown in Figure 12. (the noise level in

(b).left is also marked in pointed out in (a).right). In (b).right, we show the RMSE between (b).left

and the downsampled versions of the data. In (c).left we again start with the data used in Figure 12,

and in (c).right we plot the RMSE between (c).left and the linear trend added versions

 The results in Figure 36 suggest our algorithm is quiet robust to these various

distortions. To give the reader a better appreciation of when our algorithm fails, in Figure

R
o
o
t

M
ea

n
 S

q
u

ar
e

E
rr

o
r

0

10

20

30

40

0

Gradient

Dimensionality

Cardinality

0 500 1000 1500 2000

R
o
o
t

M
ea

n
 S

q
u

ar
e

E
rr

o
r

0

20

40

60

80

F
la

g

0

1

0

1

0 500 1000 1500 2000

Dimensionality

Cardinality

Sampling Rate

R
o
o
t

M
ea

n
 S

q
u

ar
e

E
rr

o
r

0

20

40

60

80

0.06 0.12 0.18 0.24 0.360.3 0.420 500 1000 1500 2000

(a)

(b)

(c)

0

Signal to Noise Ratio

Dimensionality

-4.0

Cardinality

The amount of noise shown in

(b).left and (c).left

2048 1638 1229 819 410 205 82

62

37 we show the most corrupted version of the signals for which our algorithm correctly

predicted either the cardinality or the dimensionality.

Figure 37: The three most corrupted versions of the Donoho-Johnstone block for which our

framework makes a correct prediction of either the cardinality or the dimensionality. (a) The

nosiest example, (b) the example with the lowest sampling rate, (c) the example with the greatest

linear trend added

It is important to reiterate that the experiment that added a linear trend to the data but

only considered a constant model was deliberately testing the mismatch between

assumptions and reality. In particular if we repeat the technique shown in Figure 16, of

testing over all models spaces in {DFT, APCA, PLA}, our algorithm does correctly

predict the data in Figure 37(c) as consisting of piecewise linear segments, and still

correctly predicts the cardinality and the dimensionality.

2.5 Time and Space Complexity

The space complexity of our algorithm is linear in the size of the original data. The

time complexity of the algorithms that use APCA and PLA as the representation in Table

0 500 1000 1500 2000

0 50 100 150 200

(a)

(b)

(c)

0 500 1000 1500 2000

63

2 and Table 3 is O (m
2
) and the time complexity of the algorithm using DFT as the

approximation in Table 4 is O (mlogm). Although we have two for-loops in the above

three tables, the for-loops just add constant factors; they do not increase the degree of the

polynomial to the time complexity. This is because outer for-loop is the range of

cardinalities c from 2 to 256 and the inner for-loop is the range of the dimensionalities d

from 2 to 64.

Our framework achieves the time complexity of O (m
2
). Note that the data in Section

2.4.5 were obtained over a year and the datasets in Section 2.4.6 were obtained over more

than 80 years. Thus compared to how long it takes to collect the data, our algorithm’s

execution time (a few seconds) is inconsequential for most applications.

Nevertheless, we can use the following two methods to speed up the search by pruning

the search space of combinations of every c and d that are very unlikely to be fruitful.

First, there are nested for-loops in Table 2, 3 and 4. It appears that we have to

calculate the MDL cost for every combination of each c and d, thus the results will form a

2D matrix. However, instead of finding the MDL cost from the every combination of

each c and d, we can just calculate the MDL cost in a very small subset of the matrix, in

particular, just one row and one column. This works as follows, for a given time series,

we first calculate its intrinsic dimensionality given a fixed cardinality of 256. Secondly,

with the intrinsic dimensionality in hand, we scan a range of cardinality from 2 to 256 to

find out the intrinsic cardinality. We illustrate the intuition as to why searching only one

row and one column of the matrix are generally sufficient for finding the intrinsic

cardinality and dimensionality. Consider the Donoho-Johnstone Benchmark (DJB) data

64

as an example in Figure 38, there is no need to search over the whole matrix, because

changing the cardinality from 512 to 4 does not produce different predicted

dimensionalities.

Figure 38: A comparison of the effect from differing cardinalities on our framework’s ability to

discover the correct intrinsic dimensionality of DJB data. For any cardinality from 512 to 4, the

discovered intrinsic dimensionality does not change. Only when the cardinality is set to a

pathologically low three or two (bottom right) does the cardinality value affect the predicted

dimensionality

In order to calculate the intrinsic dimensionality for DJB, we first fix the cardinality

at 256, then find the MDL cost with dimensionality from range 2 to 64 (the inner for-loop

in Table 2). In this example, the time complexity for finding the intrinsic dimensionality

is O (m
2
). After we discover the intrinsic dimensionality is 12, we hardcode the

dimensionality at 12, then calculate the MDL cost with cardinality ranging from 2 to 256.

Thus, the time complexity for finding the intrinsic cardinality is O (m
2
). Using with this

method, there is no need to calculate the MDL cost for every combination of c and d.

500 1000 1500 20000

-100

-50

0

50

100

500 1000 1500 20000

-100

-50

0

50

100

cardinality = 512

predicted dimensionality is 12

cardinality = 4

predicted dimensionality is 12

500 1000 1500 20000

-100

-50

0

50

100

500 1000 1500 20000

-100

-50

0

50

100

cardinality = 64

predicted dimensionality is 12

cardinality = 2

predicted dimensionality is 8

65

Second, we further can optimize the algorithm by caching the results from the

PLA/APCA/DFT approximations. We can do the DFT/PLA/APCA decomposition once

at the finest granularity, and cache the results, leaving only a loop that performs efficient

calculations on integers with Huffman coding. After this optimization, the time taken for

our algorithms is O (m
2
) without any constant factors for using PLA and APCA

approximation. Figure 39 demonstrates the comparison of running time using APCA and

our MDL framework. As Figure 39 shows, after caching the results for PLA, the

overhead ratio for calculating the MDL costs is relatively small and decreases for larger

dataset. This is because the overhead is dominated by the Huffman coding, whose time

complexity is only O (mlogm).

Figure 39: The running time comparison between our MDL based approach (red/fine) and the

APCA (blue/bold) approximation for Donoho-Johnstone benchmark dataset. The x axis is the

length of different instantiations of the DJB data

2.6 Discussion and Related Work

We took the opportunity to show an initial draft of this manuscript to many respected

researchers in this area, and this paper greatly benefits from their input. However, many

researchers passionately argued often mutually exclusive points related to MDL that we

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

5

10

15

20

25

30

R
u

n
n

in
g
 t
im

e
(s

ec
o
n

d
s)

Length of Donoho-Johnstone Benchmark data

Running time using MDL framework to

calculate the intrinsic dimensionality

Running time using APCA, given

the number of segment at 12

66

felt were orthogonal to our work and irrelevant distractions from our claims. We will

briefly address these points here.

The first issue is who should be credited with the invention of the basic idea we are

exploiting, that the shortest overall two-part message is most likely the correct

explanation for the data. Experts in complexity theory advocate passionately for Andrey

Kolmogorov, Chris Wallace, Ray Solomonoff, Jorma Rissanen or Gregory Chaitin, etc.

Obviously, our work is not weighing in on such a discussion, and we refer to [26] as a

good neutral starting point for historical context. We stand on the shoulders of all such

giants.

One researcher felt that MDL models could only be evaluated in terms of the

prediction of future events, not on post-hoc explanations of the models discovered (as we

did in Figure 17, for example). However, we have carried out prediction experiments.

For example, in the introduction we used our MDL technique to predict which of

approximately 700 combinations of settings of the cardinality/dimensionality/number of

exemplars would produce the most accurate classifier under the given constraints. Clearly

the 90.75% accuracy we achieved significantly outperforms the default settings that gave

only 58.70%. However, a brute force search shows that our predicted model produced the

best result (three similar settings of the parameters tied with the 90.75% accuracy).

Likewise, the experiment shown in Figure 20 can be cast in a prediction framework:

“predict which of these heartbeats a cardiologist is most likely to state is abnormal.” To

summarize, we do not feel that the prediction/explanation dichotomy is of particular

relevance here.

67

There are many works that use MDL in the context of real-valued time series.

However, our parameter-free method is novel. For example, [10] uses MDL to help guide

a PLA segmentation of time series; however, the method also uses both hybrid neural

networks and hidden Markov models, requiring at least six parameters to be set (and a

significant amount of computational overhead). Similarly, [31] use MDL in the context of

neural networks, inheriting the utility of MDL but also inheriting the difficulty of

learning the topology and parameters of a neural network.

Likewise, the authors of [5] use MDL to “find breaks” (i.e., segments) in a time

series, but their formulation uses a genetic algorithm which requires a large

computational overhead and the careful setting of seven parameters. Finally, there are

now several research efforts that use MDL for time series [51][53] that were inspired by

the original conference version of this work [15].

There are also examples of research efforts using MDL to help cluster or carry out

motif discovery in time series; however, to the best of our knowledge, this is the first

work to show a completely parameter-free method for the discovery of the

cardinality/dimensionality/model of a time series.

2.7 Conclusions

We have shown that a simple, yet powerful methodology based on MDL can robustly

identify the intrinsic model, cardinality and dimensionality of time series data in a wide

variety of domains. Our method has significant advantages over existing methods in that

it is more general and is essentially parameter-free. We have further shown applications

68

of our ideas to resource-limited classification and anomaly detection. We have given

away all of our (admittedly very simple) code and datasets so that others can confirm and

build on our results from [61].

A reader may assert that our claim to be parameter-free is unwarranted because: we

“choose” to use a binary computer instead of say a ternary computer9, we use Huffman

coding, not Shannon–Fano coding and we hard code the maximum cardinality of time

series to 256. However, a pragmatic data miner will still see our work as being a way to

explore time series data, free from the need to have to adjust parameters. In that sense our

work is truly parameter-free.

In addition to the above, we need to acknowledge other shortcomings and limitations

of our work. Our ideas, while built upon the solid theoretical foundation of MLD, are

heuristic, we have not proved any properties of our algorithms. Moreover, our method is

essentially a scoring function; as such it will inherit any limitations of the search function

used (cf. Table 3). For example while there is an optimal algorithm for finding the

cheapest (in the sense of lowest root-mean-squared error) PLA of a time series given any

desired d, this algorithm is too slow for most practical purposes and thus we (and

virtually all the rest of the community) must content ourselves with an approximate PLA

construction algorithm [21].

9 Of course, no commercial ternary computers exist, however they are at least a logical possibility.

69

Chapter 3:

Time Series Classification under More

Realistic Assumptions

Most literature on time series classification assumes that the beginning and ending

points of the pattern of interest can be correctly identified, both during the training phase

and later deployment. In this work, we argue that this assumption is unjustified, and this

has in many cases led to unwarranted optimism about the performance of the proposed

algorithms. As we shall show, the task of correctly extracting individual gait cycles,

heartbeats, gestures, behaviors, etc., is generally much more difficult than the task of

actually classifying those patterns. We propose to mitigate this problem by introducing an

alignment-free time series classification framework. The framework requires only very

weakly annotated data, such as “in this ten minutes of data, we see mostly normal

heartbeats...,” and by generalizing the classic machine learning idea of data editing to

streaming/continuous data, allows us to build robust, fast and accurate classifiers.

We demonstrate on several diverse real-world problems that beyond removing

unwarranted assumptions and requiring essentially no human intervention, our

framework is both significantly faster and significantly more accurate than current state-

of-the-art approaches.

This chapter is organized as follows: In Section 3.1, we introduce definitions and

notation used in this chapter. Note that although some of the terms (i.e. time series) have

70

already been defined in Chapter 2: in order to make each chapter self-contained, we still

redefine the term in each chapter. In Section 3.2.1, we show how classification is

achieved with our data dictionary model. In Section 3.2.2, we illustrate how to actually

learn the data dictionary by utilizing data editing techniques [94][101][107][110].

Section 3.2.3 demonstrates how our framework learns the threshold distances. We

demonstrate the algorithm to remove the forth assumption by using the algorithm

introduced in Section 3.2.4. In Section 3.3, we present a detailed empirical evaluation of

our ideas. We discuss related work in Section 3.3.5. Finally, in Section 3.4, we offer

conclusions and directions for future work.

3.1 Definitions and Notation

We begin with the definition of time series:

Definition 6: Time Series: T = t1,… tm is an ordered set of m real-valued variables.

We are only interested in local properties of a time series, thus we confine our interest

to subsequences:

Definition 7 : Subsequence: Given a time series T of length m, a subsequence Sk of

T is a sampling of length n ≤ m of contiguous position from T with starting position

at k, Sk = tk,…tk+n-1 for 1 ≤ k ≤ m-n+1.

The extraction of subsequences from a time series can be achieved by use of a sliding

window:

Definition 8 : Sliding Window: Given a time series T of length m, and a user-

defined subsequence length of n, all possible subsequences can be extracted by

71

sliding a window of size n across T and extracting each subsequence, Sk. For a time

series T with length m, the number of all possible subsequences of length n is m-

n+1.

For concreteness, we take the step of explicitly defining training data, as our

definition of training data explicitly removes the assumptions inherent in most works

[72][79][84][88][96][104][108].

Definition 9 : Training Data: A Training Data C is a collection of the weakly-

labeled time series annotated by behavior/state or some other mapping to the

ground truth.

By weakly-labeled we simply mean that each long data sequence has a single global

label and not lots of local labeled pointers to every beginning and ending of individual

patterns, e.g., individual gestures. There are two important properties of such data that we

must consider:

Weakly-labeled training data may contain extraneous/irrelevant sections. For

example, after a subject reaches down to turn on an ankle sensor to record her gait, there

may be a few seconds before she actually begins to walk [104]. Moreover, during the

recording session, the subject may pause to shop, or jump to avoid a puddle. It seems

very unlikely that such recordings could avoid having such spurious data. Note that this

claim is not mere speculation; we observed this phenomenon in the first few seconds of

the BIDMC Congestive Heart Failure dataset [68] as shown in Figure 40, and similar

phenomena occur in all the datasets we examined.

72

Weakly-labeled training data will almost certainly contain significant redundancies.

While we want lots of data in order to learn the inherent variability of the concept we

wish to learn, significant redundancy will make our classification algorithms slow when

deployed. Consider Figure 40 once more. Once we have a single normal heartbeat, say

pattern A, then there is little utility in adding any of the 14 or so other very similar

patterns, including pattern B. However, to robustly learn this concept (beats belonging to

Record-08), we must add either example of the Premature Ventricular Contraction

(PVC).

Figure 40: A snippet of BIDMC Congestive Heart Failure Database ECG - Record-08 [68]. (a) is

weakly-labeled data, which exhibits both extraneous data, a section of recording when the

machine was not plugged in, and redundant data (only one pair of redundancies are shown in bold

(red/green). (b) A minimally redundant set of representative heartbeats (a data dictionary) could

be used as training data

Rather than these large weakly-labeled training datasets, we desire a smaller “smart”

training data subset that does not contain spurious data, while maintaining coverage of

the target concept by having one (ideally, exactly one) instance of each of the many ways

the targeted behavior is manifest. For example, from the training data shown in Figure

40, we want just one PVC example and just one example of a normal heartbeat (perhaps

either A or B). However, we do not want to require costly human effort to obtain this.

While the time series shown in Figure 40 would be fairly easy to edit by hand, it is only

0.16% of the full ECG dataset we consider in Section 3.3.2. Therefore, our objective is to

0 1000 2000 3000

PVC1 PVC2

A B

(a)

Extraneous data

(b)

A PVC1

73

build this idealized subset of the training data automatically. We begin by defining it

more concretely as a data dictionary.

Definition 10 : A Data Dictionary D is a (potentially very small) “smart” subset of

the training data. We allow an input parameter x, where x is the percentage of the

training data C used in data dictionary D. The range of x is (0,100%], and a

dictionary with the percentage x of the original data is denoted as Dx.

As the Data Dictionary is at the heart of our contribution, we will take the time to

discuss it in detail.

3.1.1. A Discussion of Data Dictionaries

As defined above, there are a huge number of possible data dictionaries for any

percentage x, as any random subset of C satisfies the definition. However, we obviously

wish to create one with some desirable properties.

Clearly, the classification error rate obtained from using just D should be no worse

than that obtained from using all the training data. We do not wish to sacrifice accuracy.

As we shall show, this is a surprisingly easy objective to achieve. In fact, as we shall

show later, the classification error rate using a judiciously chosen D is generally

significantly lower than using all of C. This is because the data dictionary contains less

spurious and therefore, potentially misleadingdata.

Another desirable property of D is that it be a very small percentage of the training

data. This is to allow real-time deployment of the classifier, especially on resource

limited devices (embedded devices, smartphones, etc. [67][75]). This requirement may be

seen as conflicting with the above classification error rate requirement; however, again

74

we will show that in most real-world problems we can judiciously throw away more than

95% of C to obtain a D5% that is at least as accurate as using all the data in C.

Note that the number of subsequences within each class in D may be different. That is

to say, our algorithm for building D is not round-robin; rather the algorithm adaptively

adds more subsequences to cover the more “complicated” classes of D. For example, the

ECG data from Record-08 shown in Figure 40 is relatively simple. In contrast, the ECG

of Record-03 shown in Figure 41 has a more complicated trace, and at least four kinds of

beats (normal, S, PVC and Q). Therefore, we might expect the number of subsequences

for Record-03 in D to be greater than that for Record-08, something that is empirically

borne out in our experiments (Section 3.3).

Figure 41: A snippet of BIDMC Congestive Heart Failure Database ECG: Record-03 [68]. Note

that this section of ECG data exhibits more variability than the data in Figure 40.

Finally, there is the question of what value we should set x to. In fact, we can largely

bypass this issue by providing an algorithm that produces a “spectrum” of data

dictionaries in the range of x = (0,100%], together with an estimate of their error rate on

unseen data. The user can examine this error rate vs. value-of-x curve to make the

necessary trade-offs. Note that these data dictionaries are “nested”, that is to say, for any

value of x we have Dx  Dx+ɛ. Thus, we can consider our data dictionary creation

algorithm an anyspace algorithm [110].

400020000 6000

PVCS
Q

75

Given the above considerations, how can we build the best data dictionary? As we

will later show, we can heuristically search the space of data dictionaries using the simple

algorithm in Section 3.2.2.

3.1.2. An Additional Insight on Data Redundancy

Based on our experience with real-world time series problems, we noted the

following: in many cases, D contains many patterns that appear to be simply (linearly)

rescaled versions of each other. For clarity, we illustrate our point with a synthetic

example in Figure 42; however, we will later show some real examples.

This situation is a consequence of our requirement that data dictionary D has the most

representative subsequences of training data C. For example, if one class contains

examples of walk, we hope to have at least one representative of each type of walk—

perhaps one example of a leisurely-amble, one example of a normal-paced-

walk, one example of a brisk-walk, etc. It is important to note that in this example,

the three walking styles are not simply linearly rescaled versions of each other. They

have different foot strike patterns, and thus produce different prototypical time series

templates [69][92]. Nevertheless, within each sub-class of walk，there may also be a

need to allow some linear rescaling of the time series. Using the Euclidean distance our

search algorithm can achieve this by attempting to ensure that the data dictionary

contains each gait pattern over a range of speeds. This is what our toy example in Figure

42 illustrates.

76

Figure 42: left) A toy example data dictionary which was condensed from a large dataset. These

seven subsequences in data dictionary A span the concept space of the bulls/bears problem. right)

Note that if we had a distance measure that was invariant to linear scaling, we could further reduce

data dictionary A to data dictionary B

For example, when reducing a dataset of daily human activities, we may have to

extract examples of a brisk- walk at 6.0km/h, 6.1km/h, 6.2km/h, etc. However, by

generalizing from the Euclidean distance to the Uniform Scaling distance [87], we allow

our algorithm to keep just one example of the walk, and still achieve coverage of the

target concept by using a flexible measure instead of lots of data. The Uniform Scaling

distance is a simple generalization of the Euclidean distance that allows limited

invariance of the length of the patterns being matched [87]. The maximum amount of

linear scaling allowed is a user-defined parameter [87]. As we later show, allowing just a

small amount of scaling, say 25%, can greatly improve accuracy.

To see this in a real dataset, consider Figure 43.left, which shows one of fifteen

classes that was processed into a data dictionary in an experiment we performed in

Section 3.3.2. At first glance, the two patterns seem redundant
10

, violating one of the

requirements stated above.

10

 Note the fact that the two patterns are out of phase does not make them non-redundant, as at query time only queries half their length are used, and they are

sliding across the entire length of the patterns. Details in Section 3.3.2.

class bears

left) Data dictionary A

class bulls

right) Data dictionary B

class bears

class bulls

III.

IV.

I.

II.

77

Figure 43: left) A data dictionary learned from a 15-class ECG classification problem (just class

01 is shown here). At first glance, the two exemplars seem redundant apart from their (irrelevant)

phases. right) By using the Euclidean distance between the two patterns we can see that the

misalignment of the beats would cause a large error. The problem solved by using the Uniform

Scaling distance [87]

Instead of having two similar but different scaled patterns, just a single pattern is kept

using the Uniform Scaling distance. We have found that using the Uniform Scaling

distance allows us to have a significantly smaller data dictionary. In Figure 43, we could

delete either one of the two patterns and cover the space of possible heartbeats from

Record-01. For example, in Figure 42, we could further delete patterns I, II and IV and

still cover the space of possible “bulls”.

However, beyond reducing the size of data dictionaries (thus speeding up

classification), there is an additional advantage of using Uniform Scaling; it allows us to

achieve a lower error rate. How is this possible? It is possible because we can generalize

to patterns not seen in the training data.

Imagine the training data does contain some examples of gaits at speeds from 6.1 to

6.5km/h. As noted above, if the data dictionary has enough examples to cover this range

of speeds, we should expect to do well. However, suppose the unseen data contains some

walking at 6.7km/h. This is only slightly faster than we have seen in the training data, but

the Euclidean distance is very sensitive to such changes [87]. Using the Uniform Scaling

distance allows us to generalize our labeled example at 6.5km/h to the brisker 6.7km/h

Euclidean

Distance

Uniform

Scaling

Distance200 4000

78

instance. This idea is more than speculation. As we show in Section 3.3, using the

Uniform Scaling distance does produce a significantly lower error rate.

3.1.3. On the Need for a Threshold

As noted above, the training set may have extraneous data. Likewise, in most realistic

deployment scenarios, we expect some (often most) of the data to be classified as the

other class. In these cases, we wish our algorithm to label the objects as such. To

achieve this, the data dictionary must have a distance threshold r beyond which we reject

the query as unclassifiable (i.e., the other class). As we will show, we can learn this

threshold as we build the dictionary.

3.2 Algorithms

In order to best explain our framework, we first assume a data dictionary with the

appropriate threshold has already been created and begin by explaining how our

classification model works. Later, in Section 3.2.2, we revisit the more difficult task of

learning the data dictionary.

3.2.1. Classification Using A Data Dictionary

Our classification model requires just a data dictionary with its accompanying

threshold distance, r.

For an incoming object to be classified q, we classify it with the data dictionary using

the classic nearest neighbor algorithm [107]. In Table 7, we show how to determine the

class membership of this query, including the possibility that this query does not belong

79

to any class in this data dictionary. For our purposes, there are exactly two possibilities of

interest:

If the query’s nearest neighbor distance is larger than the threshold distance, we say

this query does not belong to any class in this data dictionary (line 12).

If the query’s nearest neighbor distance is smaller than the threshold distance, then it

is assigned to the same class as its nearest neighbor (line 14).

The algorithm begins by initializing the bsf distance to infinity and the predicted

class_label to NaN in lines 1 and 2. From lines 3 to 9, we find the nearest neighbor

of the query q in data dictionary D. The subroutine NN_search (shown in Table 8)

returns the nearest neighbor distance of q within a time series. If the nearest neighbor

distance within a time series in line 4 is smaller than the bsf, then in lines 6 and 7 we

update the bsf and the class_label.

Table 7: Classification Algorithm using Data Dictionary

Input:

Output:

D, a data dictionary that has N classes; The

total number of time series in D is k

r, a threshold distance of D

q, a query

The class membership of q, including the

possibility of a special class ‘other’

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

bsf = ∞; //initialize the best-so-far distance

class_label = NaN;

for i = 1 to k

 dist = NN_search(q, D(i));

 if dist < bsf

 bsf = dist;

 class_label = class of D(i);

endif

endfor

NN_dist = bsf;

if NN_dist > r

 return q belongs to ‘other’ class;

elseif NN_dist <= r

 return q belongs to ‘class_label’
th
 class;

endif

80

From lines 11 to 15, we compare the nearest neighbor distance to the threshold

distance r. If the nearest neighbor distance is smaller than r, then this query belongs to

the same class as its nearest neighbor. Otherwise, this query does not belong to any class

within this data dictionary and is thus classified as the other class.

As we show in Table 7 line 4, the function NN_search is slightly different from the

classic nearest neighbor search algorithm [84]. NN_search returns not only the nearest

neighbor distance of a query, but also a distance vector that contains distances between

the query and all the possible subsequences in a time series. This distance vector is not

exploited at classification time, but as we show in Section 3.2.2, it is exploited when

building the data dictionary. For concreteness, we briefly discuss the NN_search

function in Table 8 below.

Table 8: Nearest Neighbor Search within a Time Series

Input:

Output:

q, a query T, a time series

dist_vector,a vector that contains distances

between q and all possible subsequences in T

NN_dist, the nearest neighbor distance

1

2

3

4

5

 6

 7

 8

w = set of all possible subsequences in T;

dist_vector = zeros(1,|w|);

for i = 1 to |w|

 dist_vector(i) = distance(q,w(i));

endfor

NN_dist = minimum(dist_vector);

return dist_vector ;

return NN_dist ;

In line 1, using a sliding window (cf. Definition 8), we extract all the subsequences of

the same length as the query. From lines 3 to 5, the distances between q and all the

possible subsequences are calculated. We calculate the nearest neighbor distance in line

6. Note that in line 4, the distance could be Euclidean distance [84], or Uniform Scaling

distance [87], etc. We will revisit this choice in Section 3.3.

81

In addition to finding the nearest neighbor, this function also returns a distance

vector. This additional information is exploited by the dictionary building algorithm

discussed later in Section 3.2.2. Figure 44.bottom shows an example of such a distance

vector.

Having demonstrated how the classification model works in conjunction with the data

dictionary, we are in position to illustrate how to build the data dictionary, which is a

more difficult task.

Figure 44: top) A snippet of BIDMC Congestive Heart Failure Database ECG data: Record-08

[68]. bottom) the distance vector of an incoming query. The nearest neighbor and its distance of q

is colored in red/bold

3.2.2. Building the Data Dictionary

As discussed in Section 3.1, we want to build the data dictionary automatically. Using

human effort to manually edit the training data into a data dictionary is clearly not a

realistic solution: as it is not scalable to large datasets and invites human bias into the

process.

Before introducing our dictionary-building algorithm, we will show a worked

example on a toy dataset in the discrete domain. We use a small discrete domain example

simply because is it easy to write intuitively; our real goal remains large real-valued time

series data.

E
u
cl

id
ea

n

d
is

ta
n
ce

0 1000 2000 3000
0

15

30

0 1000 2000 3000

Sliding window

query

PVC1 PVC2

82

A. The intuition behind data dictionary building

Suppose we have a training dataset that contains two classes, C1 and C2:

 C1 = { dpacekfjklwalkflwalkklpacedalyutekwalksfj}

 C2 = { jhjhleapashljumpokdjklleaphfleapfjjumpacgd}

In this toy example, the data is weakly-labeled. The colored/ bolded text is for the

reader’s introspection only; it is not available to the algorithm. Here the reader can see

that in C1, there appears to be two ways a shorter subsequence query might belong to this

class; if it contains the word pace or walk. This is similar to the situation shown in Figure

40 where a query will be classified to the class of Record-08 if it contains pattern A or

pattern PVC.

We want to know whether any incoming queries belong to either class in this training

data or not. In our proposed framework, we search just the data dictionary.

Recall that one of the desired properties of the data dictionary is that it contains a

minimally redundant set of patterns that is representative of the training data. In this

example for C1, these are clearly the substrings pace and walk. Likewise for C2, leap and

jump seem to completely define the class. Thus, the data dictionary D should be the

following:

 D = C1:{ pace ; walk }; C2: { leap ; jump}, r = 1

Consider now two incoming queries ieap and kklp. The former is a noisy version of a

pattern found in our dictionary, but as it is within our rejection threshold of (hamming)

distance r of 1, it is correctly labeled as C2. In contrast, kklp has a distance of 3 to its

nearest neighbor in D, so it is correctly rejected.

83

Note that had we attempted to classify against the raw data rather than the dictionary,

the query kklp would have been classified as C1 (it appears in the middle

of ..lwalkklpaced.). This misclassification is clearly contrived, but it does happen

frequently in the real data. Consider the flat section of time series at the beginning of

Figure 41. As noted above, it is extraneous data, due to a temporary disconnection of the

sensor. However, many other patients’ ECG traces also have these flat sections, but

clearly that does not mean we should classify them as belonging to patient Record-08.

In our example, we have considered two separate queries; however, a closer analogue

of our real-valued problem is to imagine an endless stream that needs to be classified:

 .. ttgpacedgrteweerjumpwalkflqrafertwqhafhfahfahfbseew..

Up to this point we have not explained how we built our toy dictionary. The answer is

simply to use the results of leaving-one-out classification to score candidate substrings.

For example, by using leaving-one-out to classify the first substring of length 4 in C1 dpac,

it is incorrectly classified as C2 (it matches the middle of ..umpacgd.. with a distance of 1).

In contrast, when we attempt to classify the second substring of length 4 in C1, pace, we

find it is correctly classified. By collecting statistics about which substrings are often

used for correct predictions, but rarely used for wrong predictions, we find that the four

substrings shown in our data dictionary emerge as the obvious choices. This basic idea is

known as data editing [94][97][107]. In the next section, we formalize this idea, and

generalize it to real-valued data streams.

84

B. Building the data dictionary

The high-level intuition behind building the data dictionary is to use a ranking

function to score every subsequence in C. These “scores” rate the subsequences by their

expected utility for classification of future unseen data. We use these scores to guide a

greedy search algorithm, which iteratively selects the best subsequence and places it in D.

How do we know this utility? We simply estimate it by cross validation, e.g. looking at

the classification error rate and some additional information as explained below.

As previously hinted, our algorithm iteratively adds subsequences to the data

dictionary. Each iteration has three steps. In Step 1, the algorithm scores the

subsequences in C. In Step 2, the highest scoring subsequence is extracted and placed in

D. Finally, in Step 3, we identify all the queries that cannot be correctly classified by the

current D. These incorrectly classified items are passed back to Step 1 to re-score the

subsequences in C.

There is an important caveat. Once we have removed the best subsequence in Step 2,

the scores of all the other subsequences may change in the next iteration. To return to our

running example in Figure 40, either subsequence A and B would rank highly. However

once we have placed one, say A, in D, there is little utility in adding B, since having A in

D is sufficient to correctly classify similar patterns in Step 3. Thus we expect the scores

of B will be low in the next iteration, given that the correctly classified queries by the

current D will not be used to re-score C in the next iteration.

The process iterates until we run out of subsequences to add to D or the unlikely

event of perfect training error rate having been achieved. In the dozens of problems we

85

have considered, the training error rate plateaus well before 10% of the training data has

been added to the data dictionary.

Below we consider each step in detail.

Step 1 : In order to rank every point in the time series, we use the leaving-one-out

classification algorithm
11

. However, we do not want to use just the classification error

rate to score the subsequences. Imagine we have two subsequences S1 and S2, either of

which is found to correctly predict 70% of the queries tested with them. Either appears to

be a good candidate to add to D. However, suppose that in addition to being close enough

to many objects with the same class label (friends), allowing its 30% error rate, further

suppose that S1 is also very close to many objects with different class labels (enemies). If

S2 keeps a larger distance from its enemy class objects, it is a much better choice for

inclusion in D.

This idea, that instead of using just the error rate of classification, you must also

consider the relative distance to “friends” and “enemies” has been investigated

extensively in the field of data editing [97][107].

Given a query length l, we randomly choose a query q from the training data C
12

. In

Table 9, lines 2 and 3, we first split the training data into two parts, Part A (friends only)

and Part B (enemies only). Using the NN_search algorithm in Table 8, we find nearest

neighbor friend in Part A (lines 5 to 13) and nearest neighbor enemy (lines 14 to 22) in

Part B.

11 Where tractably is an issue, we may sample a subset of the queries.

12 We defer the discussion on how to choose a query length to Section 3.4.

86

In lines 23 to 27, the nearest neighbor friend distance and the nearest neighbor enemy

distance are compared. If the nearest neighbor friend distance is smaller than the nearest

neighbor enemy distance, we discover all the distances of the query q in Part A that are

also smaller than the nearest neighbor enemy distance. Such subsequences are likely true

positives. That is to say, our confidence that these subsequences can produce correct

classifications of unseen data has increased.

Table 9: Classification of Training Data

Input:

Output:

C, the training data

likely true/false positive subsequences

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

q = a randomly selected subsequence in C;

A = friends ;

//all the time series in C that have the same class as q, q is removed from A;

B = enemies ; // all the time series in C that have different class from q;
dists_A = []; dists_B = [];

bsf = ∞; //initialize the best-so-far distance

for i = 1 to |A|

[dist_vector, NN_dist] = NN_search(q, A(i));

if NN_dist < bsf

 bsf = NN_dist;

endif

dists_A = [dists_A ; dist_vector];

endfor

NN_friend_dist = bsf; // nearest neighbor distance in same class

bsf = ∞; //initialize the best-so-far distance

for j = 1 to |B|

[dist_vector, NN_dist] = NN_search(q, B(j));

 if NN_dist < bsf

 bsf = NN_dist;

 endif

 dists_B = [dists_B ; dist_vector];

endfor

NN_enemy_dist = bsf; // nearest neighbor distance in different class
if NN_friend_dist < NN_enemy_dist

likely_true_positives = find(dists_A < NN_enemy_dist)

elseif NN_friend_dist >= NN_enemy_dist

likely_false_positives = find(dists_B < NN_friend_dist)

endif

Similarly, if the nearest neighbor friend distance is larger than the nearest neighbor

enemy distance, we find all the distances of the query q in Part B that are also smaller

than the nearest neighbor friend distance. We call the corresponding subsequences likely

false positives.

87

Given the likely true/false positives found in Table 9, we are now in a position to

discuss how to rank them.

By utilizing the simple rank function introduced in [107], we generalize an algorithm

that gives positive score to likely true positives and negative score to the likely false

positives.

Note that subsequences that are not used to classify any queries (correctly or not) get

a zero score. Using a large number of queries, we compute a score vector for every time

series in C. We denote rank(S) as the score for a subsequence S in the time series.

In the next step, we demonstrate how to extract the current best subsequence using

the score vectors.

Step 2: We extract the highest scoring subsequence and place it in D. We

demonstrate this step by using the example in Figure 45. Suppose in one of the iterations

in Step 1, the starting point of the red/bold heartbeat has the highest score. We therefore

need to extract this heartbeat. Because the Euclidean distance is very sensitive to even

slight misalignments, and our scoring function is somewhat “blurred” as to its exact

location in the x-axis. Extracting exactly the subsequence with query length l would be

very brittle. Therefore, we “pad” the chosen subsequence some time series from the left

and to the right, in particular with the l/2 data points to either side.

1,

() 2 / (_ _ 1), (1)

0,
k

likely true positives

rank S num of class likely false positives

other




  





88

Figure 45: top) A snippet of BIDMC Congestive Heart Failure Database ECG data: Record-08

[68]. bottom) the extracted subsequence has twice the query length

Note that there is a slight difference between the first iteration and the subsequent

iterations. Before the first iteration, D is empty. After the first iteration, D should contain

exactly one subsequence from each class. This is the smallest D logically possible.

Therefore, instead of splitting C to the friends part and the enemies part, the algorithm

finds the most representative subsequence in each class in Step 1, and then adds them

into D in Step 2.

After the first iteration, we extract only the one subsequence that holds the highest

score in C and add it into D. Thus, the class sizes in D can be skewed, as the algorithm

adds more exemplars to the more diverse/complicated classes. While we are iteratively

building D, the size of C becomes smaller, as the extracted subsequence is removed from

C.

Step 3: The algorithm examines the quality of the current D by doing classification

using all the queries. The queries that are correctly classified by the current D will not be

used to re-score C in the next iteration Step 1, since the current D is sufficient to correctly

classify them. Only the misclassified queries will proceed back to Step 1 to re-score C. In

Step 3, we redo classification experiments on D using all the queries, since the correctly

classified queries in Dx may become misclassified in Dx+ɛ.

ll/2 l/2

the point that has the highest score

the extracted subsequence

89

After building a data dictionary for a training data, our last obligation is to learn the

distance threshold.

3.2.3. Learning the Threshold Distance

After the data dictionary is built, we learn a threshold to allow us to reject future

queries, which do not belong to any of our learned classes. We begin by recording a

histogram of the nearest neighbor distances of testing queries that are correctly classified

using D, as shown in Figure 46. Next, we compute a similar histogram for the nearest

neighbor distances of queries, which should not have a valid and meaningful match

within D (i.e., the other class). Where can we get such queries? In the example shown

in Figure 46, we simply used gesture data as the other class, knowing gestures should

not match a set of heartbeats. Note that it is occasionally possible that a gesture will

match a heartbeat by coincidence; but our approach is robust to such spurious matches so

long as they are relatively rare. If external datasets are in short supply, we can also simply

permute subsequences of D to produce the other class, for example flipping heartbeats

upside-down and backwards.

Given the two histograms, we choose the location that gives the equal-error-rate as

the threshold (about 7.1 in Section 3.3.1).However, based on their tolerance to false

negatives, users may choose a more liberal or conservative decision boundary.

90

Figure 46: The green/left histogram contains the nearest neighbor distances of correctly classified

queries for the ECG data used in Section 3.3.2. The red/right histogram shows nearest neighbor

distances for queries from the other class

3.2.4. Anytime Classification using Complexity As An Index

A. Anytime classification

 Anytime classification algorithm is the algorithm that sacrifices the quality of

experimental results for faster running time [77][105][112]. The algorithm becomes

interruptible after a short time of initialization. Figure 47 demonstrates the tradeoff

between the quality of experimental result and the computation time.

Figure 47: Anytime algorithms are interruptible after initialization. This plot shows the result

quality increases with computation time

Anytime classification algorithm can mitigate the assumption that the arriving time of

queries is known ahead of time, since the computation can be interrupted any time after a

short time of initialization. Table 10 demonstrates how the anytime classification

framework works. The algorithm begins by initializing the bsf distance to infinity and the

0 2 4 8 10 12 14 16 18 206
0

200

400

600 Decision boundary

Nearest neighbor distances of
the correctly classified queries

Nearest neighbor distances of
queries from other class

Euclidean distance

N
u

m
b

er
 o

f

q
u

er
ie

s

R
es

u
lt

 Q
u
al

it
y

Termination of Computing

Time

Initialization

91

predicted class_label to NaN in lines 1 and 2. In line 3, we extracted all the possible

subsequences in the training data in a specific order. Note that the order of all the

subsequences can be defined by different methods. For example, in Table 8 line 1, all

possible subsequences are extracted in a left-to-right order using a sliding window. Thus

the search process in Table 8 is sequential search. In contrast, in Section B. , we propose

to index all the possible subsequences using complexity of each subsequence. We show

our proposed indexing method in Table 11. From line 4, we start to calculate the distance

between q and each subsequence. If the distance is smaller than the bsf in line 6 is smaller

than the bsf, then in lines 7 and 8 we update the bsf and the class_label. From line 10 and

line 12, if the stopFlag is true, then the computation will be stopped and return the current

class_label associated with the bsf distance.

Table 10: Anytime Nearest Neighbor Classification Algorithm

Input:

Output:

T, the training data

q, a query

stopFlag = 0, the value of stopFlag can be changed

during the computation process;

The class membership of q;

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

bsf ← ∞; // initialize the best-so-far distance
class_label ← NaN;

subs ← some_order_of_all_possible_subsequences(T);

for i ← 1 to |subs|

dist ← distance(q,subs(i));

if dist < bsf

 bsf = dist;

 class_label = subs(i).class;

end

 if stopFlag == 1

 return class_label;

end

end

B. Using complexity as an index

We propose to use complexity as an index to speed up the search within the data

dictionary. Every subsequence is indexed according to its complexity. The complexity of

92

a time series can be calculated by different methods, such as Kolmogorov complexity

[89], variants of entropy [62][64],etc. There are several desirable properties of a

complexity measure [66], such as,

 Low time and space complexity;

 Few parameters, ideally none;

 Intuitive and interpretable;

Given the above consideration, we propose to use one complexity measure shown in

equation (2), which has O (1) space and O (n) time complexity. More importantly, this

complexity measure has a natural interpretation with zero parameter.

1
2

2
1

1

() () (2)
n

i i

i

CE q q q






 

We are not claiming this is the optimal indexing approach for speed up. We want to

show an existence proof of an indexing technique that can mitigate the assumption (4).

Table 11 demonstrates the indexing algorithm. In line 1, we calculate the complexity of

the incoming query. We extract all the possible subsequences in line 2 using a sliding

window. The sliding window length is the same length as the query. This extraction is the

same as the one in line 1 in Table 8. From line 3 to line 6, we calculate the absolute

difference of the complexity between the query and each subsequence. Last we sort all

the complexity differences with an ascending order in line 7. After the sorting, the

subsequence, which is closer to the query in terms of complexity, will have a higher rank.

In another word, in Table 10 line 3, the subsequence that has a similar complexity as the

93

query does, will have a higher priority for calculating its distance between the incoming

query.

Table 11: using Complexity as an Index

Input:

Output:

T, training data

q, an incoming query

indexing_Order,The indexing using complexity for all the

subsequences in T

 1

 2

 3

 4

 5

 6

 7

CE_q ← CE(q); // equation (2)

|subs|← all_possible_subsequence(T);

for i ← 1 to |subs|

CE_subs(i) ← CE(subs(i));

diff_CE(i) ← abs|CE_subs(i) – CE_q|;

end

indexing_Order = ascend_sort(diff_CE);

3.2.5. Uniform Scaling Technique

Finally, we can trivially replace the Euclidean distance with Uniform Scaling
13

distance in the above data dictionary building and threshold learning process [87]. We

choose the maximum scaling factor based on the variability of time series in the domain

at hand, see discussion in Section 3.3. A naive implementation of Uniform Scaling would

be slow, but [87] shows that it can be computed in essentially the same time as Euclidean

distance.

3.3 Experimental Evaluation

We begin by discussing our experimental philosophy. To ensure that our experiments

are easily reproducible, we have built a website, which contains all the datasets and code

[114]. In addition, this website contains additional experiments, which are omitted here

13

 The reader may ask why not Dynamic Time Warping? Empirically, we tried it and it does not help. Moreover, we should not expect it to

help this problem [114].

94

for brevity. Our experimental results support our claim that using only the data dictionary

is more accurate and faster than using all the available training data.

We compare our algorithm with several widely used rival approaches. The most

widely used rival approach extracts feature vectors from the data and reports the best

result among multiple models [67][98][104]. In addition, we compare with the obvious

strawman of using all the training data, which is just a special case of our framework, in

which all the training data is used (i.e. D100%).

To support our claim that the real-world streaming data is not as clean as the

contrived datasets used in most literature, we report the percentage of the rejected queries

produced by the learned threshold and show some examples
14

.

We report the error rate using both Euclidean distance and Uniform Scaling distance

to support our claim that the latter can be very useful for time series classification

problems.

While we are ultimately interested in the testing error rate, we also report the training

error rate, as this can be used to predict the best size of the data dictionary for a given

problem. However, for completeness, we build and test the data dictionary Dx for every

value of x, from the smallest logically possible size to whatever value minimizes the

holdout error rate (this is generally much less than x = 10%).

The reader may object that error rate is not the correct measure here. Imagine that our

rejection threshold is so high that we reject 999 of 1,000 queries, and just happen to get

one classified object correct. In this case, reporting a 0% error rate would be dubious at

14 Due to space limitations, we only show the rejected queries in the first case study. See [114] for examples of rejected

queries from the other case studies.

95

best. This is of course what precision/recall and similar measurements are designed to be

robust to. However, in all our case studies, our rejection rate is much less than 10%, so

reporting just the error rate is reasonable, and allows us to present more visually intuitive

figures. Moreover, we will show experiments where we consider the correctness of

rejections made by our algorithm.

Finally, we defer experiments that consider the scalability of dictionary building to

[114], noting in passing that this is done offline, and that in any case we can do this faster

than real-time. In other words, we can learn the dictionary for an hour heartbeats in much

less than one hour.

3.3.1. An Example Application in Physiology

We consider a physical activity dataset containing eight subjects performing activities

such as: normal-walking, walking-very-slow, descending-stairs,

cycling, and inactivity (an umbrella term for lying-in-bed/sitting-still/standing-

still), etc [95]. Approximately eight hours of data at 110Hz was collected from wearable

sensors on the subjects’ wrist, chest, and shoes.

For simplicity of exposition, we consider only a single time series, recording the roll-

axis from the sensor placed in the subjects’ shoe. However, our algorithm trivially

extends to multi-dimensional data (examples appear at [114]). Note that although our

algorithm only uses a single axis from the sensor, we demonstrate that our results are

significantly better than rival algorithms that use all three-axis data (roll, pitch and yaw)

from the same sensor [104].

96

We randomly choose 60% of the data as training data, and treat the rest as testing data.

In Figure 48, we show the training/testing error rates as our algorithm grows D from the

smallest logically possible size (about 0.39% of all the training data) to the point where it

is clear that our algorithm can no longer improve. Although our algorithm bottoms out

earlier in the plot, we wish to demonstrate that the output is very smooth over a wide

range of values.

We compare with the widely-used rival approach [67][104], which extracts signal

features from the sliding windows. For fairness to this method, we used their suggested

window size [104], and tested all of the following classifiers: K-nearest neighbors (K=5),

SVM, Naïve Bayes, boosted decision trees and C4.5 decision tree [67][98][104]. The best

classification result is 0.364 achieved by the C4.5 decision tree.

For the commonly used strawman of using all the training data, the testing error rate

is 0.221. However, our framework equals this testing error rate using only 1.6% (i.e.

D1.6%) of the training data and obtains the significantly lower error rate of 0.152 at D8.3%.

Moreover, given that we are using only about one-twelfth the data, we are able to classify

the data about twelve times faster.

Our algorithm is clearly highly competitive, but does it owe its performance to choice

of which subsequences are placed in D by our algorithm? To test this, we built another D

by randomly extracting subsequences from C. As Figure 48 also shows, our systematic

method for ranking subsequences is significantly better than random selection.

97

Figure 48: The classification error rates for D from D0.39% to D14.2% for the physical activity dataset

[95]

A final observation about these results is that the training error rate is a very good

predictor of the test error rate. As Figure 48 shows, the training error is only slightly

optimistic.

We are now ready to test our claim that Uniform Scaling (c.f. Section 3.1.2) can help

in datasets containing signals acquired from human behavior/physiology. We repeated

the experiments above under the exact same conditions, except we replaced Euclidean

distance with Uniform Scaling distance in both the training and testing phases.

Based on studies of variability for human locomotion [62][69][92], we chose a

maximum scaling factor of 15%; that is to say, queries are tested at every scale from 85%

to 115% of their original length. Uniform Scaling obtains a 0.085 testing error rate at

D8.1%, significantly better than Euclidean distance, as shown in Figure 49.

E
rr

o
r

 R

at
e

Test error : randomly built D

Test error

Percent of the training data used by the data dictionary

4.0% 8.0% 12.0%

Train error

0.0%

Using all the training data, the testing error rate

is 0.22

0.39%

0

0.4

0.6

0.2

98

Figure 49: The pink/green(bold) curves are train/test error rates obtained when we replaced

Euclidean distance with Uniform Scaling distance

We learned a threshold distance of 14.5 for D
15

. With this threshold, our algorithm

rejects 9.5% of the testing queries. In Figure 50, we see that the vast majority of rejected

queries do belong to the other class and are thus correctly rejected.

Figure 50: Two examples of rejected queries. Both queries contain significant amount of noise

We do not present formal numerical results for the rejected queries, as the weakly-

annotated format of the original data does not provide the label of the objects with

certainty.

This dataset draws from sporting activities. We also consider a similar but

independent dataset [67], which considers more quotidian activities such as tooth-

brushing etc. We achieve near identical improvements on this dataset, thus we

relegate a discussion of it to [114].

15

Experimental results show that the threshold distances for D built with Euclidean distance and Uniform Scaling distance are almost

identical. Therefore, we only report one threshold distance.

E
rr

o
r

 R

at
e

4.0% 8.0% 12.0%0.0%

0.39%

Test error : Uniform Scaling

Train error : Uniform Scaling

0

0.2

0.4 Euclidean train

error (from Fig. 8)

for reference

Percent of the training data used by the data dictionary

0 100 200 300
-4

-2

0

2

4

0 100 200 300

-4

-2

0

2

4

99

3.3.2. An Example Application in Cardiology

We apply our framework to a large ECG dataset: the BIDMC Congestive Heart

Failure Database [68]. The dataset includes ECG recordings from fifteen subjects with

severe congestive heart failure. The individual recordings are each about 20 hours in

duration, sampled at 250 Hz.

Ultimately, the medical community wants to classify patient-independent types of

heartbeats. However, in this experiment, we classify individuals’ heartbeats. This is

simply because we are able to obtain huge amounts of labeled data this way. Note that as

hinted at in Figure 41, the data is complex and noisy. Moreover, a single (unhealthy)

individual may have many different types of beats. Cardiologist Helga Van Herle from

USC informs us this is a perfect proxy problem.

We use a randomly selected 150 minutes of data for training, and 450 minutes of data

for testing.

In Figure 51, we show the training/testing error rates as our algorithm grows the data

dictionary from the smallest possible size (D0.28%) to the point where it is clear that our

algorithm can no longer improve.

Note that the testing error rate is 0.102 using the strawman of using all the training

data, which is significantly better than the default error rate 0.933. However, our

framework duplicates this error rate using only 2.1% (i.e. D2.1%) of the training data, and

obtains the much lower error rate of 0.076 at D4.5%. From Figure 51 we again see that our

method for building dictionaries is much better than random selection.

100

Figure 51: The classification error rates for D from D0.28% to D5.82% for BIDMC Congestive Heart

Failure Database [68]

We again test the Uniform Scaling distance instead of Euclidean distance in both the

training/testing phases. Based on studies of variability for human heartbeats [68][73] and

advice from a cardiologist, we chose a maximum scaling factor of 25%. In Figure 52,

Uniform Scaling obtains a 0.035 testing error rate at D4.6%, significantly better than using

the Euclidean distance.

As illustrated in Figure 46, the threshold distance for D is 7.1. With this threshold, the

algorithm rejects 4.8% of the testing queries. Once again, these rejections (which can be

seen at [114]) all seem like reasonable rejections due to loss of signal or extraordinary

amounts of noise/machine artifacts.

Figure 52: The pink/green(bold) curves are train/test error rates obtained when we replaced

Euclidean distance with Uniform Scaling distance

E
rr

o
r

R

at
e

Test error : randomly built D

Test error

0

0.2

0.4

Percent of the training data used by the data dictionary

0.28%

2.0% 3.0% 4.0%

Train error

0.0%

Using all the training data, the testing error rate is 0.102

1.0% 5.0%

0.6

E
rr

o
r

R

at
e

0

0.1

0.2

0.3

Percent of the training data used by the data dictionary

0.28%

2.0% 3.0% 4.0%0.0% 1.0% 5.0%

Test error : uniform scaling

Train error : uniform scaling

Euclidean train

error (from Fig. 11)

for reference

101

3.3.3. An Example Application in Daily Acitivies

Finally, we apply our framework to a widely studied benchmark dataset that contains

20 subjects performing approximately 30 hours of daily activities [67], such as:

running, stretching, scrubbing, vacuuming, riding-escalator,

brushing-teeth, walking, bicycling, etc. The data was sampled at 70 Hz. We

randomly chose 50% of the data as training data, and treated the rest as testing data.

In Figure 53, we show the training/testing error rates as our algorithm grows the data

dictionary from the smallest size (D0.17%) to the point where it is clear that our algorithm

no longer improves. The use-all-the-training-data strawman [67][98][104], has a testing

error rate of 0.237; however, we duplicate this error rate at D1.1% and obtain the

significantly lower error rate of 0.152 at D3.8%.

We also compare with the widely used rival approach discussed in Section 3.3.1

[67][104]. The best result is error rate of 0.314 achieved by C4.5 decision tree [114].

Figure 53: The classification error rates for D from D0.17% to D5.32% for [67]

In Figure 54, we show that using Uniform Scaling distance again beats Euclidean

distance, obtaining a mere 0.091 testing error rate at D4.6%. The threshold learned for D is

13.5, which rejects 6.3% of the testing queries [114].

E
rr

o
r

ra

te

Percent of data dictionary to all the training data

0.17%

2.0% 3.0% 4.0%0.0%

Using all the training data, the testing

error rate is 0.237

1.0%
0

0.2

0.4

0.6

5.0%

Test error : randomly built D

Test error

Train error

102

Figure 54: The blue/brown(bold) curves are train/test error rates obtained when we replaced

Euclidean distance with Uniform Scaling distance. Note the other curves are taken from Figure 53

for comparison purposes

3.3.4. Speed Up The Search Using Complexity As Index

To evaluate the performance of our proposed indexing method, we simulate the

classification of queries with varying arrival rates k. For the purpose of generality over

all datasets, the arrival rates is modeled in equation (3) as a function of the number of all

the subsequences |subs| in the data dictionary [105]. This is because using the

concrete numerical values (e.g. the frequency of the data generated at 250Hz) may not

always be meaningful or applicable, due to the wide variability in dataset characteristics:

number of available exemplars, number of classes, etc.

ArrivalTime(k) = |subs|*k, 0.1≤ k ≤ 1 (3)

For k = 1, the arrival rate of the streaming queries is exactly the time needed to

calculate all the data dictionary, which is the same amount of time for the sequential

search in Table 8. For k = 0.1, the arrival time of the streaming queries is only one-tenth

the time of calculating the entire data dictionary.

E
rr

o
r

ra

te

Percent of data dictionary to all the training data

0.17%

2.0% 3.0% 4.0%0.0% 1.0%
0

0.2

0.4

0.6

5.0%

Test error : uniform scaling

Train error : uniform scaling

Euclidean train error (from Fig. 1 in the

additional experiment) for reference

103

Figure 55: Classification accuracy of complexity as an index in the anytime classifier on constant

query streams with different arrival rates for datasets in Section 3.3.1 to 3.3.3.

3.3.5. Related Work

There is significant literature on time series classification [67][71][75][93][103][106]

both in the data mining community and beyond. However, almost all of these works

make the three assumptions we relaxed in this work, and are thus orthogonal to the

contributions here. Our algorithm can be seen as building a data dictionary of primitives

for the very long streaming/continuous time series [99][100]. Other works have also done

PAMAP Dataset

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.02
0

0.2

0.4

0.6

0.8

1 RoundRobin Indexing using Complexity

A
cc

u
ra

c
y

Arrival Time (k)

ECG Dataset

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.02
0

0.2

0.4

0.6

0.8

1 RoundRobin Indexing using Complexity

A
cc

u
ra

c
y

Arrival Time (k)

RoundRobin Indexing using Complexity

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.02
0

0.2

0.4

0.6

0.8

1

MIT Dataset

A
cc

u
ra

c
y

Arrival Time (k)

104

this, such as [100], but they use significant amount of human effort to hand-edit the time

series into patterns. In contrast, we build dictionaries automatically, with no human

intervention.

In the following, we show the widely existence of the unrealistic assumptions in

literature.

Many publications assume a large number of perfectly aligned atomic patterns are

available. Our proposed concepts of weakly-labeled data and the data dictionary do not

require the well-processed patterns. However, some researchers either derive non-trivial

algorithms to extract such patterns from the original raw data or interpose the data

generation process to produce such patterns. For example, [79] notes, “…it is desirable to

identify the boundaries of single gait cycles, or steps, and process them individually...”

However, the task of segmenting the data can be more difficult than classifying them. In

[79], the authors also admit that, “Finding gait cycle boundaries requires identification of

landmark features in the waveforms that occur each cycle. Natural gait variation and

differences between normal and pathological gait make this task non-trivial.”

The widely existed missing data phenomenon further increase the difficulty to the

extraction of perfectly aligned atomic patterns. Our proposed weakly-labeled data can

significantly mitigate this problem. However, researchers often “clean” datasets before

publicly release them [82]. This is a noble idea, but one that perhaps shields the

community from the realities of real-world deployment. Indeed, authors have been

critiqued for releasing less ideal data. For example, authors in [88] criticize the UC-

105

Berkeley WARD dataset [111] by noting “part of the sensed data is missed due to battery

failure”.

There are many examples of human intervention of the data generation procedure to

produce the perfectly aligned data. For example, [113] has a very rigid data generation

process, by noting that “When the subject was asked to perform a trial of one specific

activity, an observer standing nearby marked the starting and ending points of the period

of the activity performed. ” In addition, the subject was asked to repeat each activity

multiple times. However, in the real-world scenario, the human does not perform the

daily activities in this way.

Another widely existed unrealistic assumption is that the patterns to be classified are

all of equal length [79][84][88][96][104]. The most famous and widely used time series

benchmark is the UCR archive [84] . All the forty-seven datasets are well preprocessed

and are of equal length. However, in reality, patterns can be of different lengths. For

example, the human heart rate can be different. People can walk at different speed, etc.

Authors in [88] observed, “It is clearly visible that despite the normalization steps taken,

there is still considerable variation within the same gesture type from the same person.”

The assumption that exists in almost all the time series classification literature is that

they assume every item to be classified belongs to exactly one of the well-defined classes

[76][84][96][103]. Here we use a simple example to demonstrate the widely existence of

this assumption. For example, in [96], authors report the classification result of seven

daily activities, lie, row, bike, sit/stand, run, nordic-walk, walk.

However, in reality, there are much more human activates than the mentioned above. For

106

example, hand-shake, push-the-door, etc. If the query with a concept other

than the seven concepts, their classifier will still mistakenly report a class label. In our

proposed framework, we use a rejection threshold to prevent this problem.

3.4 Conclusion and Future Work

We introduced a novel framework that requires only very weakly-labeled data and

removes the unjustified assumptions made in virtually all time series classification

research. We demonstrated over several large, real-world datasets that our method is

significantly more accurate than several common strawman algorithms. Moreover, with

less than one tenth of the original data kept in D, we are at least ten times faster at

classification time.

Our algorithm has just one parameter, the length of queries. In our activity datasets,

we simply used the original authors values [67][95], and for ECGs we used a

cardiologist’s suggestion. By changing these suggested values we empirically found that

we are not sensitive to this parameter. Nevertheless in future work, we plan to learn it

from the data.

107

Chapter 4:

Classification of Multi-Dimensional

Streaming Time Series by Weighting

Each Classifier’s Track Record

Although there is extensive research on time series classification, the problem of

multi-dimensional time series classification is still understudied. In this chapter we

demonstrate a proposed framework with classification of multi-dimensional time series

data. This chapter is organized as follows. We first introduce the notations and intuition

behind our framework in Section 4.1. We will defer the discussion of related work in

Section 4.2, when the reader’s intuition for the domain has been developed. Section 4.3

explains how our novel voting framework works. In Section 4.4, we provide an extensive

evaluation of our ideas with several real-world datasets from diverse domains. Finally,

we offer conclusions and directions for future work in Section 4.5.

4.1 Notation and Background

In this section, we describe the definitions and intuition of our framework. We begin

with the basic definitions.

4.1.1. Basic Time Series Definitions

We begin with the definition of a time series:

108

Definition 11: A time series T = {t1,t2,...,tn} is a continuous sequence of n real-

valued numbers.

The recent ubiquity of inexpensive sensors, for example, in smartphones or medical

devices, has led to greater interest in multi-dimensional time series [142][151][156]. We

define multi-dimensional time series (MDT) as follows:

Definition 12: A multi-dimensional time series MDT = {T1; T2;…Tm}consists of m

time series Ti, which are synchronously recorded streams.

For convenience in this work, we refer to each dimension in MDT as a stream or a

sensor, where there is no ambiguity.

There is near unanimous consensus that the nearest neighbor (NN) classifier is the

best option for time series data [123][129][132]. Thus, this is our classifier of choice. In

order to use the nearest neighbor classifier in classification of MDT, we must slightly

generalize from ubiquitous single time version [123][129][132]. We define the nearest

neighbor classifier in the classification of MDT as follows:

Definition 13: The nearest neighbor classifier for an MDT is an algorithm that for

each dimension qi in an incoming MDT query q = {q1;q2;…qm} finds its

nearest neighbor only in the corresponding dimension Ti from the MDT training

data {T1; T2;…Tm}. The class label of q is determined by a combination of the

nearest neighbor results for qi.

Hereafter, when we refer to a classifier, we mean a single nearest neighbor classifier

operating on a single dimension in MDT.

109

As shown in Figure 56, the query qi from a given dimension only finds its nearest

neighbor in the respective dimension Ti in training data; the query qi does not find its

nearest neighbor in any other dimension Tj.

Figure 56: The red dot/blue triangle represent sensors mounted in wrist/shoe, respectively. left) A

two dimensional time series (T1 , T2), T1 from a sensor on the wrist and T2 from a sensor on the

shoe. right) A query q with two dimensions (q1 and q2), will find their nearest neighbors in T1 and

T2 , respectively.

4.1.2. Supporting Confidence-Based Classification

As noted above, rather than using an approach that uses the ALL, BEST, or SUB

streams of an MDT, we propose to evaluate and exploit the expertise of each data stream.

In other words, for each time series stream in MDT, we have an individual nearest

neighbor classifier, and a (dynamically determined) combination of classifier’s

predictions is used as the overall class prediction.

At query time, each classifier tells us not only what it predicts for the class label, but

also how confident it is in its prediction. Our central claim in this work is that by

judiciously considering these confidence-annotated predictions, we can outperform all the

obvious rival methods. While similar ideas (weighted voting [121][127][131][160],

Bayesian classification [121]) exist in the literature for general classification (cf. Section

4.2), the application and adaption to the unique structure of time series data we present in

this work is novel.

training data testing data

T1 from wrist

T2 from shoe

q1

q2

110

Our technique opens several questions, the most immediate of which is how to learn

each classifiers’ expertise?

The expertise of each classifier could be labeled by domain experts. For example, a

clinician may know that an ECG from electrodes placed on the right of the sternum (S5)

are generally better for recognizing atrial flutter, whereas data from the patient’s back

(V7, V8, V9) tends to be better for detecting myocardial infraction [120][126]. However,

experts are expensive. Thus, we will create a framework that automatically learns the

expertise of each classifier directly from the training data. As our framework requires that

each classifier must report a score indicating how confident it is for its predicted class

label, we define confidence score as follows:

Definition 14: A confidence score C with range [0, 1] is a self-reported confidence

of a classifier on its prediction result. Numbers closer to 1 indicate higher

confidence in prediction.

Before we demonstrate how we learn and use the confidence scores in Section 4.3, we

show an intuitive example to demonstrate that the expertise of classifiers does vary. In

Figure 57, we show the confidence score of classifiers learned for various human

activities (more details in Section 4.4) in a heavily cited benchmark dataset for human

activity recognition [140].

111

Figure 57: The performance of four classifiers (a), (b), (c), and (d) on four activities. In each

classifier, the height of the bar is the confidence score for each activity.

Note that classifier (b) which tracks a sensor on the wrist has high confidence in the

upper body activities ironing and rope-jumping 16 , but has relatively low

confidence in ascending-stairs and running, which are clearly lower body

activities. Conversely, classifiers (c) and (d), which are embedded in the participant’s

shoes, have the opposite expertise.

If there are p concepts to be learned, then we must learn a confidence score vector

C_vector = [C1,C2,…Cp] for each stream in MDT. Each element Ci represents how

confident the classifier is when predicting the i
th

 class label.

Accordingly, for an MDT comprised of m streams, our framework learns a confidence

score matrix C_matrix = {C_vector1; C_vector2; …C_vectorm} with row number m and

column number p for the m classifiers. This, in essence, is what Figure 57 illustrates.

16

 We classify rope-jumping as upper body because the participant may have variable footwork, skipping on left, right or both

legs; however their wrist action has very low variability.

acceleration data (x axis)

from sensor on wrist

gyroscope data (x axis)

from sensor on wrist

acceleration data (x axis)

from sensor on shoe

gyroscope data (x axis)

from sensor on shoe

(a)

(b)

(c)

(d)

ironing
rope-

jumping

ascending-

stairs
running

S
co

re

0

0.5

1

S
co

re

0

0.5

1

S
co

re

0

0.5

1

S
co

re

0

0.5

1

112

4.1.3. Supporting Distance-Based Classification

The confidence scores in Figure 57 are learned offline in training phase. However, as

noted in the introduction, we have an additional observation we plan to exploit, and this

observation requires adjustment of confidence in the testing (or deployment) stage. Our

observation is that an individual stream classifier should not be confident predicting any

class if the object being classified is significantly different than the exemplars

encountered during training. This problem was hinted at in Figure 1 and was observed in

nearly all of the case studies in Section 4.4. A common trivial reason for this occurring is

that a battery dies on one sensor, and thus the time series to be classified is just a constant

line. This effect is very commonly seen in medicine when one lead is unplugged or falls

off the patient. Moreover, the sensor failure problem has been frequently observed in the

literature. For example, a recent paper states: “…part of the sensed data is missed due to

battery failure…” [159].

Furthermore, there are other possible reasons why the testing data might differ from

the training data. If one of the concepts we learned with high confidence is

ascending-stairs, we may find the new behaviors to be classified range from near

identical time series patterns to more and more distorted patterns. This is because we may

encounter data from a user that is tired, or wearing new shoes, or carrying heavy

groceries, or encountering fresh snow etc. In these cases, even if the time series is still

closer to ascending-stairs than any other class, the relevant classifier should

signal a more tentative class prediction.

113

In Figure 58, we show a concrete example to demonstrate the importance of

integrating the nearest neighbor distance with the confidence score. This is real-world

data which we have slightly contrived for clarity. For simplicity, assume that there is an

MDT with two dimensions. Further assume that at query time there is an incoming query

q with two dimensions (q1 and q2). We want to determine the class membership of q

using the confidence score approach.

Consider a case when we discover that among a dozen possible classes, q1 and q2

report that their nearest neighbors are different, say running and rope-jumping,

respectively. (If they had agreed on a class label, then our prediction would have just

been the agreed upon that label.) Given our observation about the confidence scores, we

can break the tied vote by trusting the more confident classifier, which in this case was

running with a confidence score 0.82.

However, as shown in Figure 58, this may not be the optimal decision. While q1 is a

little closer to running than q2 is to rope-jumping, neither is particularly similar to

its class prototypes. We simply do not have much experience with such objects.

Nevertheless, if we take into account the learned distributions of nearest neighbor

distances for the two classifiers, we find that the probability of being a true positive for

q2 is much higher than q1. In Section 4.3.3, we formalize this visual intuition of how we

adjust the prior knowledge – the confidence score − to a posterior probability by

integrating the nearest neighbor distance as the new evidence. We discover that the

prediction rope-jumping from the second classifier has a higher confidence score

after this adjustment, which is the correct answer in this example.

114

Figure 58: The distributions of nearest neighbor distances for true positives (green/left) and false

positives (red/right) in the classification of activity running using data from wrist (top) and activity

rope-jumping using data from shoe (bottom).

Note that the above observation only makes an overall difference in accuracy if there

is variability in the distributions observed in each class. Empirically, we find that this is

almost always the case for real-world problems. Some classes are intrinsically simple;

for example there is only so much variability possible in say, running. However, some

behaviors such as ironing are much more amiable to individual idiosyncrasies.

Moreover, variability in equipment or clothing being ironed will also tend to produce

distributions with greater means and larger standard deviations.

In summary, simply voting with the confidence score learned in the training phase

may be sub-optimal, unless the testing data is exactly like the training data, an unlikely

eventuality.

To take into account the above observation, we define the adjusted confidence score

as follows:

The probability of being a

true positive for q1 is 0.57 running

Confidence Score: 0.82

0

2000

4000

6000

N
u
m

b
er

 o
f

 Q
u
er

ie
s

0 2 4 8 10 12 14 16 18 206

TP
FP

The probability of being a

true positive for q2 is 0.94

0

2000

4000

6000

Euclidean Distance
0 2 4 8 10 12 14 16 18 206

rope-jumping

Confidence Score: 0.64

115

Definition 15: The adjusted Confidence score (adC) with range [0, 1] is a score

that subsumes the confidence score (c.f. Definition 16) by incorporating

information about the distance between testing objects and the training objects as

measured at query time.

In Section 4.3.3, we show how we adjust the confidence score in a principled way by

combining the nearest neighbor distance at query time using Bayes theorem [121]. If the

query is not similar to any class that the classifier learned, the adC for predicting the label

of this query should be very low.

We use ACV as the abbreviation for our algorithm Adjusted Confidence Vote, which

incorporates these observations.

As we have shown in Figure 58, the nearest neighbor distance distributions of true

positives and false positives for each class play an important role in adjusting the

confidence score at query time. We define distributions of nearest neighbor distances as:

Definition 17: The distributions of nearest neighbor distances (DN) are two

distributions; one is the distribution for nearest neighbor distances of the true

positives and another one is for the false positives. For each concept that a classifier

learns during the training phase has two such distributions.

In Definition 18, we showed that our algorithm learns C in the training phase by

evaluating the classification performances for each classifier. During this process, we

also store the distributions of nearest neighbor distances. For each classifier, we have a

vector of distributions DN_vector = [DN1,DN2,…DNp] with length p.

116

4.1.4. Allowing Real World Deployment

Recently, it has been noted that much of the literature on time series classification

implicitly or explicitly makes unjustified assumptions that limit the applicability of the

proposed algorithms to real-world scenarios [129][130]. These assumptions are:

Large amounts of perfectly aligned atomic patterns can be obtained [122][129][132].

That is to say, the algorithms assume they will only be given whole and complete

heartbeats/gait cycles/atomic behaviors, with no extra spurious leading or trailing data.

The patterns are all of equal length [130][132][147][152]. For example, in the world’s

largest collection of time series datasets, the UCR classification archive, all forty-five

time series datasets contain only equal-length data [132].

All patterns presented to the classifier will belong to one of two or more well-defined

classes, that is to say, there is no possibility for the classifier to label an object as

unknown [123][132].

These unrealistic assumptions are violated by most real-world datasets. In particular

at least one assumption is violated by all five datasets we consider in Section 4.4. Thus,

while we know a lot about the ability of various classification paradigms on the datasets

found in the UCR archive [132], based on the hundred-plus research efforts that report

results on it [152], we know a lot less about how well these ideas will perform in a real-

world deployment.

Thus, while it is not strictly necessary to demonstrate our novel observations, in this

work we will follow the lead of [129] and introduce our framework in a way that does not

117

make such unwarranted assumptions about the data. The next two definitions are required

to remove these assumptions.

We define the weakly-labeled training data as follows:

Definition 19: weakly-labeled training data (WT) is a collection of the weakly-

labeled time series annotated by behavior/state or some other mapping to the

ground truth.

This is best understood by contrast to strongly-labeled training data (i.e. all of the

UCR datasets [132]). Strongly-labeled data presents objects with explicitly labeled

sections. For example, in the Kitchen Activity Dataset we consider in Section 4.4.5,

someone has taken the effort to annotate the precise moment that the various atomic food

preparation activities begin and end. In contrast, in WT data, we are given data labeled

like this: “in these two minutes of data there are some examples of chopping.” This is

clearly a more realistic and scalable way to annotate data and our efforts are made with

these more assumptions in mind.

There are two important properties of WT that we must consider and which are

illustrated in Figure 59.a.

First, WT will generally contain extraneous/irrelevant sections. For example, when

recoding ECG data, a section of recoding is clearly extraneous when the machine was not

plugged in, as shown by the “flatline” in Figure 59.a. Similar phenomena occur in all the

datasets we examined. Second, WT will almost certainly contain significant

redundancies. Consider Figure 59.a again. Once we have a single normal heartbeat, say

pattern N1 (Normal beat), then there is little utility in adding additional examples of the

118

same type of ECG in the training data. Rather, what we should add into the training data

are representative examples of other types of heartbeats, in this case, one example of the

pattern S (Supraventricular Ectopic Atrial) and one example of the pattern V1 or V2

(Premature Ventricular Contraction).

Figure 59: A snippet of BIDMC Congestive Heart Failure Database ECG, Record-03. (a) WT,

which exhibits both extraneous and redundant data. There are two types of anomalous heartbeats

(V, S) and normal beat (N) in WT. (b) A minimally redundant set of representative heartbeats (a

data dictionary) could be used as training data.

Rather than having the redundant data in WT, we desire a smaller but smarter training

subset that does not have the spurious data, while still covering the target concepts. For

example, Figure 59.b consists of just one example of N, V and S. We define the

minimally redundant training subset as a data dictionary:

 Definition 20: A data dictionary D is a (potentially very small) “smart” subset of

WT, while covering all the p concepts in WT.

Note that in our simple example in Figure 59.b, it happens to be the case that one

example from each of {N, S, V} suffices to cover the concept space. This does not have

to be the case; for example, the class V could be polymorphic and we may need to have

multiple examples of it in order to represent its variability.

(a)

V1 N1
Extraneous data V2 N2

S

0 1000 2000 3000 4000
(b)

SV2
N1

119

While D could be manually built by domain experts, again we note that human

domain expertise is expensive. The framework in [129] demonstrates how to build D

automatically using a simple data editing technique, which removes data redundancy

while retaining just enough examples of the concept to cover the space of its

“variability.”

There are two important properties of D. First, the classification accuracy obtained

from using just D is generally much higher than that obtained from using all WT [129].

This may be a little surprising, as we generally think more is better when it comes to

data. Recall that D is designed so that it does not contain spurious data. If we have

voluminous spurious data, then there is a high probability that some of it will be close to

an exemplar from a different class, reducing classification accuracy.

The second important property of D is its size. In most real-world settings, D is a very

small fraction of WT, perhaps only one-hundredth its size. This allows real-time

deployment on resource limited devices (embedded devices, smartphones, etc. [119]).

For an MDT with m dimensions, our framework must learn m data dictionaries for the

respective dimension.

4.2 Related Work

Since the adjusted confidence score is at the heart of our contribution, we will take

the time to discuss its relationship with the related work.

120

4.2.1. Relationship to Ensemble Methods

We are finally in a position to clarify the relationship between our algorithm ACV and

the ensemble methods that it superficially resembles, for example, Boosting or Bagging

[117][127][131][145][160].

In brief, our approach is different from such ensemble methods in the sense that we

do not generate redundant classifiers that later combine for prediction [160].

 The common approach in the first step of Boosting and Bagging is that they both

generate multiple base classifiers in order to produce diverse “views” of the data [160].

However, we do not generate classifiers. Instead, we perform the classic nearest neighbor

classifier on each single data stream as an individual classifier. For example, the most

famous algorithm in Boosting is AdaBoost [160]. In order to focus more on the training

examples that are “difficult” to classify, AdaBoost iteratively generates different

classifiers to focus on the training examples that are incorrectly classified. However, our

ACV framework does not generate classifiers to adapt the data.

The last step of ensemble methods performs a combination of the votes from the base

classifiers [160]. Our contribution of the novel voting scheme using adC was informed by

this combination step. In particular, using just C is similar to the weight in weight voting.

(There is still a difference between using just C and the weight in weighted voting, which

we clarify in 4.2.2). However, we augment weighted voting by adjusting the weight with

the similarity measure at query time.

121

In Section 4.4, we show using several large datasets from diverse domains that ACV

framework beat the most popular voting methods: majority weight and weighted voting

[160].

4.2.2. The Adjusted Confidence vs. the Weight in Weighted Voting

In general, our voting framework is similar to weighted voting

[121][127][131][144][160]. Since adC is an augmentation of C, we first clarify the

difference between C (Definition 14) and the “weight” in weighted voting.

In weighted voting, the key decision is how to choose the weight [160]. To obtain the

best performance, the general intuition is that the weights should be chosen in proportion

to the performance of individual classifiers [160]. Our confidence score C has a similar

intuition in the sense that both of them are chosen based on the performance of the

classifiers in the training phase. However, unlike the weights in weighted voting, which

are chosen based on the overall performance of the classifier, C is calculated based on the

performance of the classifier for each individual class in the classifier.

In other words, for all the classes considered by a classifier, there is a corresponding

C for each class. As shown in Section 4.1.2, instead of having a single weight for each

classifier as the weighted voting does, we have a C_vector = [C1,C2,…Cp] for each

classifier.

As adC is an augmentation of C, it can also be seen as an extension of the strategy of

the weighted voting algorithm [121][127][131][160]. The modification lies in the fact

that adC is the posterior probability by combining the new evidence (nearest neighbor

distance at query time) and a prior knowledge (the confidence score) using Bayes

122

theorem [124]. In contrast, the weighted voting only uses prior knowledge, in particular

the past performance of the classifiers [160].

As we will show in Table 12, our framework takes the predicted label with the

highest posteriori probability, the highest sum of adC. The optimality of using the

maximum posteriori estimation together with Naïve Bayes over other approaches has

already been proven [115][124][158]. These optimality results require that we treat the

multiple data streams as independent of each other. This may be an unrealistic

assumption, but it has been shown that Naïve Bayes is surprisingly robust to violations of

this assumption [124][158]. The experimental results in Section 4.4 will show that our

ACV approach is more accurate and robust than all the rival methods.

4.3 Algorithms

In order to best explain our framework, we first explain how our classification model

works given that the confidence scores of an MDT C_matrix, the distributions of nearest

neighbor distances DN_matrix, and the data dictionaries D_matrix for WT have already

been created. Later, in Section 4.3.2 and 4.3.3, we revisit the task of learning them.

4.3.1. Classification of Multi-Dimensional Time Series using the Adjusted

Confidence Scores

For an incoming m-dimensional unlabeled object q, we classify each dimension with

the corresponding classifier in D_matrix using the classic one nearest neighbor algorithm

[132]. For each class pj, we sum the adC of each classifier that assigned class pj to query

q. The class with the highest sum is returned as the class prediction for q.

123

In Table 12, we explain the algorithm in more detail. We begin in line 1 by

initializing all of the m adC from the m classifiers to zeros. In line 3, we calculate the

nearest neighbor for each dimension of q with the corresponding classifier in D_matrix.

To be clear, each dimension is considered completely independently of all others.

The function One_NN_search is simply the classic one nearest neighbor

algorithm discussed in Definition 13 [132]. We omit details of the function

One_NN_search, as it is well known [123][151]. Note that while the distance measure

used in line 3 could be any measure [123], we only consider the Euclidean distance，as it

has been shown to be an extremely competitive measure [129][132][154]. In line 4, the

algorithm computes the adjusted confidence score calculated by equation (1) in Section

4.3.3.

Table 12: Adjusted Confidence Classification Algorithm

Input

C_matrix, a confidence score matrix that contains p columns
and m rows(from m classifiers)

DN_matrix, distributions of nearest neighbor distances
D_matrix, a matrix that has m data dictionaries
q, a query with m dimensions

Output The class membership of q

score, the total confidence for the prediction

1
2
3

4
5
6

adC_vector ← zeros(1,m);
for i ← 1 to m
[NN_labels(i),NN_dist] ← One_NN_search(q{i},D_matrix{i});

 // NN_labels is a vector with m elements for the m classifiers
 adC_vector(m) ← calculate_adC(NN_labels(i),NN_dist);
endfor
[class_label,score]←
class_with_highest_sum(adC_vector,NN_labels);

Note that if we only use the confidence score retrieved from C_matrix without any

adjustment, ACV degenerates to the weighted voting algorithm scheme [160]. (Although

to our knowledge, this has never been done for time series before.) However, as we

124

argued in Section 4.1, we need to augment this confidence score with the observed

nearest neighbor distances.

We take the class label that has the highest sum of adjusted confidence scores.

Having demonstrated how the classification model works in conjunction with

C_matrix and DN_matrix, we are now in a position to illustrate how to learn them.

4.3.2. Learning the Confidence Score

We learn the confidence scores by evaluating the classification performance for each

classifier during the training phase. As a byproduct of this, we also obtain DN for every

class in all the classifiers, which we use to calculate the probability of being a true

positive given the nearest neighbor distance at query time. To be concrete, for each class,

we use the precision [150] of the classification as the confidence score.

In Table 13, we show how we learn C_matrix and DN_matrix. Note that we randomly

split the weakly-labeled training data into two parts. We learn the data dictionaries from

one fold using the framework in [129] and treat another fold as holdout data.

We first randomly sample a large number of queries from the holdout data in line 1.

From lines 2 to 10, we calculate the C_vector and DN_vector for each classifier. In line 3,

we calculate the classification result for queries in the i
th

 classifier. Then the algorithm

retrieves the DN (i.e. NN_true and NN_false) from NN_dists in lines 5 to 6. Line 7

shows that the algorithm adds DN to DN_matrix. In line 8 the algorithm calculates the

precision for the classification result as the confidence score for the j
th

 class in the i
th

classifier.

125

Table 13: Learning the Confidence Score

Input

 D_matrix, The number of classes in each D is p;
 Holdout_WT, holdout data in the WT

Output
 C_matrix, confidence score matrix contains m confidence vectors
 for the m classifiers;
 DN_matrix, the distributions NN distances

1

2

3

4

5

6

7

8

9

10

qs ← a large number of multi-dimensional queries randomly sampled

from Holdout_WT
for i ← 1 to m

 [NN_labels,NN_dists]← One_NN_search(qs(i),MD(i));

 // perform classification for the ith classifier
 for j ← 1 to p

 NN_true ← NN_dists for true positives in j
th
class

NN_false ← NN_dists for false positives in j
th

class
 // DN is NN_true and NN_false

 DN_matrix(i,j) ← [NN_true,NN_false];

 C_matrix(i,j)← calculate_precision(NN_true,NN_false)
 endfor

endfor

In the next section, we illustrate how we adjust the confidence score at query time by

combining the nearest neighbor distance and the confidence score in a principled manner.

4.3.3. Learning the Adjusted Confidence Score

The adjusted confidence score is the confidence score augmented by integrating the

nearest neighbor distance at query time.

The Bayes theorem is the optimal model to learn the adjusted confidence score [124].

This is because the adjusted confidence score is the posterior probability by combining

the new evidence (nearest neighbor distance at query time) and the prior knowledge (the

confidence score). We denote the following:

 pl : predicted nearest neighbor label

 tl: true label

 dist: the nearest neighbor distance calculated at query time

The adjusted confidence score is calculated as follows:

126

(|)P pl tl dist 
(|) ()

()

P dist pl tl P pl tl

P dist

  

(|) ()

(|) () (|) ()

P dist pl tl P pl tl

P dist pl tl P pl tl P dist pl tl P pl tl

  


      
 (1)

In the above equation, ()P pl tl is the confidence score that we have learned using

algorithm in Table 13. We can easily calculate (|)P dist pl tl given DN and the dist

with density estimation.

4.4 Experiments

We begin by stating our experimental philosophy. To ensure that our experiments are

easily reproducible, we have built a website which contains all the datasets and code

[161]. In addition, this webpage contains further experiments which are omitted here for

brevity.

Before listing the seven straw men that we compare to, we note that in addition we

have compared our approach with many other widely-used rival classification

frameworks, in particular SVM, boosted decision trees and the C4.5 decision tree

[140][157][160]. The best result among these is achieved by C4.5 decision tree; however

it is still not competitive with results produced by our algorithm ACV. Thus for clarity

and brevity we relegate these results to our website [161]. We do not claim this as a novel

finding, the superiority of nearest neighbor methods over eager leaning methods for time

series has been noted by many others [123][152].

We test on five datasets (plus another three we relegated to [161]), which we believe

is the largest set of MDT datasets ever considered in a single work. In particular, more

127

than 90% of the papers on this problem test on exactly one dataset [128][130][140][149]

[156][159].

For the purpose of comparison, we list the seven straw men we use. Note that each

straw man has been used in at least one recent paper. We begin by explaining ALL,

BEST, and SUB in more detail.

For ALL, we calculate the sum of the distance
17

 between query q with m dimensions

and the m classifiers and then find the one with the minimum distance as the nearest

neighbor of q.

For BEST, at query time, we use only the one classifier that has the best performance

in the training phase [149].

For SUB, in the training phase, we perform a heuristic greedy search over all the

classifiers until the accuracy starts to decrease [128][133][146][155].

In addition to ALL, BEST, and SUB, there are four other obvious rival approaches in

the literature that we need to compare:

Minimum Distance Vote: choose the class label of the classifier that reported the

minimum distance among the nearest distances from all the classifiers [151].

Majority Vote: choose the most commonly predicted class label [160]. (Technically,

this is a “plurality” and not a “majority,” but we will use the common term).

Random Vote: at classification time, randomly choose a classifier and take its class

prediction [160].

17 We considered other variants, including summing the squared distances, etc. Our chosen variant was empirically the

best method that used all dimensions.

128

Weighted Vote: choose the class label with the highest sum of the weights from the

classifiers that agreed on that class label. The weight is learned purely based on the past

performance of the classifiers on the training data [160].

4.4.1. Physical Activity Data

We consider a physical activity dataset containing 36 axis synchronous measurements

from three Inertial Measurement Units (IMUs) located on the wrist, chest and ankle. This

dataset has eight subjects performing activities such as: ironing, rope-jumping,

running, folding laundry, ascending-stairs, etc [140]. Approximately

eight hours of data at 110Hz was collected.

We performed the following experimental procedure. We randomly chose 40% of the

dataset as training data, and treat the rest as testing data. A data dictionary matrix

D_matrix that contains less than ten percent of all the training data is learned using the

framework in [129].

Note that in all of our case studies, our experiment are subject independent

evaluation, which is considered much harder than subject dependent evaluation [136]

[140][149].

As shown in Table 14, our ACV approach achieved a classification error rate of 0.05.

In contrast, the original authors of the data reported an overall classification error rate at

0.10 [140][149]. While these two results are not exactly commensurate, the evaluation

procedure in [140][149] would be expected to produce higher accuracy based on their

split sizes. Their method extracts signal features from sliding windows and reports the

129

best result after testing the feature vectors with all the popular classification algorithms

using Weka [149].

Table 14: Classification Results on the Physical Activity Data for ACV and Seven Straw Men

Algorithms Accuracy:

Original Data

Accuracy:

Occluded Data

ALL [119][133] 0.19 0.16

BEST [136][140] 0.72 0.63

SUB [2][133][146] 0.78 0.64

Minimum NN

dists[151]

0.59 0.58

Random[160] 0.51 0.47

Majority Vote [160] 0.84 0.76

Weighted Vote [160] 0.89 0.77

Adjusted Confidence

Vote

0.95 0.94

 Moreover, Table 14 shows that the ACV method beats all seven straw men by a

significant margin.

Recall that the strongest motivation for our ideas is to produce a framework that is

robust for missing (or “occluded”) data. Our claim is that such missing data is very

common, but researchers often “clean” datasets before publicly releasing them. This is a

noble idea, but one that perhaps shields the community from the realities of real-world

deployments. Indeed, authors have been critiqued for releasing less than idealized data;

For example, authors in [159] criticize the UC-Berkeley WARD Dataset [156] by

noting“part of the sensed data is missed due to battery failure”.

While we have seen multiple real examples of occluded data, to allow systematic

testing we must synthetically occlude data. Let us revisit this widely studied dataset [140]

as an example (Later datasets had a similar treatment.) There are 36 data streams,

arranged in 12 triplets. For example, there are x, y, z axes for the acceleration data, and

roll, pitch, and yaw for gyroscope data. We perform our occlusion experiments by

130

simulating sensor failure of one triplet at a time. For each of the three streams, in a

randomly chosen triple, we toss a fair coin to decide if we should replace it with either a

straight line or a sine wave. We report the average performance by testing all the 12

cases. In Table 14, rightmost column, we show the classification result for these data

occlusion experiments.

As we can observe, ACV also achieves the highest accuracy for occluded data.

Among the seven straw men, the Majority Vote and Weighted Vote methods return

competitive results in using original data. However, when it comes to data with

occlusion, the performance of these two algorithms drops precipitously. This is because

data in the testing phase is different from data used in the training phase. While only one

tenth of the data is different (by definition), this is enough to make a drastic difference in

their performance.

In contrast, our ACV approach is relatively robust for data with occlusion, since ACV

carefully factors in the nearest neighbor distances in the testing phase.

Given the relatively poor performance of the five straw men on both the original and

occluded data (shown in gray in Table 14), we omitted the results for these approaches in

the rest of this work. Instead, we put the results of a complete comparison on the

supporting webpage [161].

4.4.2. Avian Audio Data

Audio classification typically begins by extracting acoustic features such as Mel-

Frequency Cepstral Coefficients (MFCCs) from audio signals [118][138]. MFCCs

131

represent the speech amplitude spectrum in a compact form by transforming the audio

data into thirteen coefficients18.

In most algorithms that use the MFCCs for speech recognition, researchers either use

one coefficient or use all the coefficients [118][138][153]. As noted above, it is our claim

that both these choices may result in poor performance. To see this, we consider two

species, East Brazilian Pygmy Owl (Glaucidium minutissimum) and Common Potoo

(Nyctibius griseus) as examples. As shown in Figure 60, it is clear that for the Owl, the

patterns (green/bold) exhibited in the third and fourth coefficients (red) are much clearer

than the ones in the second and fifth coefficients. While for Potoo, the patterns in the

third and fourth coefficients seem random.

Figure 60. left) A snippet of sound spectrum and MFCCs from 2 to 5 for the East Brazilian Pygmy

Owl. right) A snippet of sound spectrum and MFCCs from 2 to 5 for the Common Potoo.

Clearly, it is not a trivial task to automatically identify which coefficients are most

useful for which species, even for experienced avian bio-acousticians. Moreover, even

within a single species, the bird calls in the testing phase may be subtly different from in

18

 Usually the top thirteen coefficients are used for audio analysis. The first coefficient is a normalized energy parameter, which is not

used for speech recognition [138].

coef : 2

coef : 3

coef : 4

coef : 5

East Brazilian Pygmy Owl Common Potoo

132

the training phase, as the inevitable background noise may affect different coefficients in

different ways.

Thus, we see this domain as an ideal candidate for our ideas and treat the twelve

coefficients as an MDT.

Xeno-canto is a large data pool of bird sound files with the aim of sharing bird

sounds. Avian audio files are uploaded by volunteers from all over the world [153]. We

randomly chose four hours of audio data from four species of birds to perform a

classification experiment. The four species are East Brazilian Pygmy Owl, Common

Potoo, Dusky Capped Flycatcher (Myiarchus tuberculifer), and Acadian Flycatcher

(Empidonax virescens). We have placed the original audio files and the extracted MFCCs

time series on the supporting webpage [161].

In the bird sound datasets, we do not need to explicitly perform experiment with

occlusion because of the natural variability of the bird sounds, recorded—in some

cases—years and hundreds of miles apart [153].

Our dataset consists of approximately eighteen hundred bird calls. We randomly

chose 40% of the data as training data and treated the rest as testing data. The

classification accuracy using our ACV approach is 0.87, while for Majority Vote and

Weighted Vote, the classification accuracy is 0.66 and 0.79, respectively.

4.4.3. Recognition of Cricket Umpire Signals

Cricket is a very popular game in British Commonwealth countries. An umpire

signals different events in the game to a distant scorer/book-keeper. The signals are

communicated with motions of the hands. For example, No Ball is signaled by

133

touching each shoulder with the opposite hand. A complete list of signals can be found in

[137].

The dataset in [134] consists of four umpires performing twelve signals. There are

four umpires performing each signal ten times. The data with frequency 184Hz was

collected by placing two accelerometers on the wrists of the umpires. Each accelerometer

has three synchronous measures for three axes (x, y and z). Thus, we have a six

dimension MDT from the two accelerometers. Figure 61 shows the data for two example

signals, Six and Leg Bye. To signal Six, the umpire raises both hands above his

head. Leg Bye is signaled with a hand touching the umpire’s raised knee three times.

Figure 61: x, y, z acceleration data from right hand (brown) and left hand (blue) for two signals

Six and Leg Bye.

We randomly chose 40% of the data as the training data and treated the rest as testing

data. The classification results are shown in Table 15. As noted in Section 4.4.1, since the

Majority Vote and Weighted Vote methods return the most competitive results among the

seven straw men, we only list the results using these two straw men due to space

limitations. However, we reiterate that we have put the full result on the supporting

webpage [161].

Six
right hand left hand

x

y

z

x

y

z

x

y

z

Leg Bye

0 300 600 900 1200 0 300 600 900 1200

x

y

z

(a) (b)

(c) (d)

134

To produce real-world occluded data, we had two experienced officials perform the

twelve cricket signals under the same experimental conditions as in [134]. By contriving

a battery failure, we arranged that one subject had a sensor failure on the left hand and the

other subject had a sensor failure on the right hand. We added this data to the original

data in [134].

As we can see in the result for occluded data in the rightmost column of Table 15, our

ACV approach is significantly more robust to sensor failure than Majority Vote or

Weighted Vote. Moreover, for original data [134], ACV once again achieves the highest

accuracy.

Table 15: Classification Results on the Cricket Data

Algorithms Accuracy

Original Data

Accuracy

Occluded Data

Majority Vote [160] 0.88 0.71

Weighted Vote [160] 0.92 0.78

Adjusted Confidence

Vote

0.96 0.93

4.4.4. Gesture Recognition

Almost all modern smartphones are equipped with multiple sensors (i.e. acceleration

sensors, gyroscopes, etc.). This has inspired dozens of research efforts on creating gesture

recognizers for mobile devices [136].

The dataset provided in [136] is rapidly becoming a benchmark in this domain. The

data was created by fifteen subjects wearing iPhones on their wrists to create six hand

gestures as shown in Figure 62. Each participant provided each gesture fifteen times.

There are six dimensions comprised of 3-axis acceleration data and 3-axis gyroscope data

recorded at a frequency of 80Hz.

135

Figure 62. Visualization of the six gesture classes. This figure from [136] is used with permission.

We randomly chose 40% of the data as the training data and treated the rest as the

testing data. Using the same method discussed in Section 4.4.1, we randomly choose half

of the testing subjects for the occluded data experiment. The comparison in Table 16

shows that our ACV approach obtains the highest accuracy in both cases of using the

original data and data with occlusion.

Table 16: Classification Results on the Gesture Data

Algorithms Accuracy

Original Data

Accuracy

Occluded Data

Majority Vote [160] 0.86 0.67

Weighted Vote [160] 0.89 0.74

Adjusted Confidence

Vote

0.97 0.93

4.4.5. Kitchen Activity Data

A recent European effort in assisting elderly people to live more independently [148]

has investigated technology to support activities in the kitchen, including automatic

guidance while cooking and cleaning. Sensors embedded into kitchen utensils provide

continuous data streams while being used. This provides an ideal test bed to demonstrate

our framework. The first major dataset released [125][148] has four Wii-remote

instrumented utensils to collect acceleration data, as shown in Figure 63. Twenty subjects

performed seven hours of a recipe for a mixed salad preparation [125]. There are eleven

(a) Left-Right (b) Circle c) Left-Right-Arc

(d) Infinity (e) Triangle (f) Hand Rotation

136

classes, including peeling, slicing, scraping, chopping, etc. The data was

recorded at a frequency of 40Hz.

Figure 63. a) Modified Wii Remotes embedded in specially designed utensils. b) A subject is

preparing salad. This figure is used with permission from [148].

Since in this dataset there are only three axes, we cannot use the same method with

occluded data. Instead, we perform our occlusion experiments by simulating sensor

failure of one axis at a time. By randomly choosing 40% data as training data and the rest

as testing, we obtain the classification result as shown in Table 17. Once again, our ACV

approach obtains the highest accuracy in both cases.

Table 17: Classification Results on the Kitchen Data

Algorithms Accuracy

Original Data

Accuracy

Occluded Data

Majority Vote [160] 0.74 0.54

Weighted Vote [160] 0.84 0.76

Adjusted Confidence

Vote

0.92 0.88

4.4.6. Robustness to Irrelevant Features

To demonstrate the robustness of our approach, we repeated the experiments above

with an interesting modification. We added time series with no relation to the class into

the data.

Let us consider the cricket dataset as an example. Originally, the dataset is an MDT

with six dimensions. However, we added another six dimensions of random walk data to

(a) (b)

137

the original data. To be clear, none of the explicit algorithms “know” which, if any,

dimensions are irrelevant.

We repeated the experiment shown in Table 15 with the modified dataset. Both the

Majority Vote and Weighted Vote are quite brittle to the additional irrelevant data, as

their classification accuracies drop steeply to 0.69 and 0.78, respectively. However, our

ACV approach obtains an accuracy of 0.95, barely affected by the irrelevant features. This

is very important advantage when exploiting new domains in which we may have poor

intuitions as to which features are useful.

4.5 Conclusion

Building on the general techniques of weighted voting [121][160] and Bayesian

classification [121], and extending the techniques of “realistic assumptions” dictionary-

based classification [129], we have introduced a novel voting framework for accurate

classification of multi-dimensional time series. We demonstrated on several large, real-

world datasets from diverse domains that our approach is significantly more accurate and

robust than rival approaches. In particular, we have shown that our framework is very

robust to missing data and irrelevant, a problem that frequently occurs in the real world

[156]. Finally, we have given away all code and data to allow others to confirm, extend

and use our work [161].

138

Chapter 5:

Conclusion

Time Series data is growing fast, especially in this ‘Big Data’ era. Although there is

extensive research on time series data mining, in this dissertation we argue that most of

the work is not as useful, since the datasets that they are dealing with and the way that

they solved the problems are more like ‘toy examples’ compared to the much more

complicate situation in the real-world scenario. We have observed the following two

problems that widely exist in most of data mining research. First, parameters will hurt the

potential of spreading the ideas in the research community. In a lot of works, there are

usually several parameters to tune in the proposed method. We claim that the parameter

turning can kill the usefulness of an algorithm and reduce the number of citations.

Second, the prevalently existed assumptions about the data further limit their application

to solve the real-world problem. We strive to mitigate the above two problems.

In this context, the contributions of this dissertation are as follows.

 We demonstrate a parameter free framework using MDL to discover the intrinsic

features of the data. With the intrinsic cardinality and dimensionality of the time

series, we can further understand the underlying meaning of the data, before

consulting the domain experts. In addition, the intrinsic features can be used as

dimensionality reduction and have huge applications in the various lower

bounding techniques.

139

 We show a time series classification framework that has none of the prevalent

assumptions. We propose to use the data editing technique to automatically build

a data dictionary. In addition, our classification framework has the capability to

say ‘I do not know’ at a certain point when classifying the incoming queries that

does not belong to any concept in the training data. Our results show that a small

fraction of all the data can achieve even better classification results than using all

the data.

 We illustrate the limitations of the current multi-dimensional classification

framework. Using ALL, SUB, BEST of the data cannot generate the optimal

results. We propose a dynamically weighted multi-dimensional classification

framework, which can smartly choose the weight of each data dimension. The

results over extensive datasets from various domains show that our framework is

more accurate and robust to the occluded data.

140

Bibliography

Chapter 2

[1] I. Assent, R. Krieger, F. Afschari, and T. Seidl. “The TS-Tree: Efficient Time Series

Search and Retrieval.” EDBT, 2008

[2] J.E. Bronson, J.Fei, J.M. Hofman, R.L.Gonzalez and C.H. Wiggins, “Learning Rates

and States from Biophysical Time Series: A Bayesian Approach to Model Selection

and Single-Molecule FRET Data,” Biophysical Journal, vol 97, pp 3196-3205, 2009

[3] A. Camerra, T. Palpanas, J. Shieh, and E. Keogh. “ iSAX 2.0: Indexing and Mining

One Billion Time Series, ”International Conference on Data Mining, 2010

[4] V. Chandola, A. Banerjee, and V. Kumar. “Anomaly detection: A survey,” ACM

Comput. Surv. 41, 3, 2009

[5] R.A. Davis, T.C.M. Lee, and G. Rodriguez-Yam. “ Break Detection for a Class of

Nonlinear Time Series Models ,” J. of Time Series Analysis, 29, 834-867, 2008

[6] S. De Rooij and P. Vitányi. “Approximating Rate-Distortion Graphs of Individual Data:

Experiments in Lossy Compression and Denoising, ” IEEE Transactions on Computers,

2006

[7] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh. “ Querying and

Mining of Time Series Data: Experimental Comparison of Representations and

Distance Measures, ” VLDB, pp. 1542-1552, 2008

[8] D.L. Donoho and I. M. Johnstone. “Ideal Spatial Adaptation via Wavelet Shrinkage.”

Journal of Biometrika 81, pp. 425-455, 1994

[9] S.C. Evans et al. “ Microrna Target Detection and Analysis for Genes Related to Breast

Cancer Using MDL Compress.” EURASIP J. Bioinform. Syst. Biol., pp. 1-16, 2007

[10] L. Firoiu and P. R. Cohen. “ Segmenting Time Series with A Hybrid Neural Networks

Hidden Markov Model. ” Proc. 8
th
 Nat. Conf. Artif. Intell, p.247, 2002

[11] D. García-López and H. Acosta-Mesa. “Discretization of Time Series Dataset with a

Genetic Search.” MICAI, pp. 201-212, 2009

http://www.cwi.nl/~paulv

141

[12] K. Goebel, B. Saha and A. Saxena, “A Comparsion of Three Data-Driven Techniques

for Prognostics,” Failure prevention for system availability, 62th meeting of the MFPT

Society, pp119-131, 2008

[13] P.D. Grünwald, I.J. Myung, and M.A. Pitt, “Advances in Minimum Description Length:

Theory and Applications ,” MIT Press, 2005

[14] F.O. Heimes and BAE Systems, “Recurrent Neural Networks for Remaining Useful

Life Estimation,” International Conference on Prognostics and Health Management,

2008

[15] B.Hu, T. Rakthanmanon, Y. Hao, S. Evans, S. Lonardi and E. Keogh, “Discovering the

Intrinsic Cardinality and Dimensionality of Time Series using MDL,” ICDM, 2011

[16] International Business Machiness (IBM), “Harness the Power of Big Data,” accessed

on Nov 7, 2012.

[17] public.dhe.ibm.com/common/ssi/ecm/en/imm14100usen/IMM14100USEN.PDF.

[18] I. Jonyer, L. B. Holder, and D. J. Cook, “ Attribute-Value Selection Based on

Minimum Description Length,” International Conference on Artificial Intelligence,

2004

[19] Ath. Kehagias, “A Hidden Markov Model Segmentation Procedure for Hydrological

and Enviromental Time Series, ” Stochastic Environmental Resea, 41, 2004

[20] E. Keogh and M. J. Pazzani, “A Simple Dimensionality Reduction Technique for Fast

Similarity Search in Large Time Series Databases ,” PAKDD, pp.122-133, 2000

[21] E. Keogh, S. Chu, D. Hart and M. Pazzani, “ An Online Algorithm for Segmenting

Time Series,” KDD, 2011

[22] E. Keogh and S. Kasetty. “On the Need for Time Series Data Mining Benchmarks: A

Survey and Empirical Demonstration, ” Journal of Data Mining and Knowledge

Discovery, pp.349-371, 2003

[23] E. Keogh, Q. Zhu, B. Hu, Y. Hao , X. Xi, L. Wei, and C. A. Ratanamahatana. The

UCR Time Series Classification /Clustering Homepage:

www.cs.ucr.edu/~eamonn/time_series_data/, 2006

[24] P. Kontkanen and P. Myllym. “MDL histogram density estimation,” Proceedings of the

Eleventh International Workshop on Artificial Intelligence and Statistics, 2007

[25] E. Linacre and B. Geerts, www-das.uwyo.edu/~geerts/cwx/notes/chap15/global_temp.html, Resources in

atmospheric science, 2002. (Accessed 1th Dec 2011)

142

[26] M. Li and P. Vitanyi. “An Introduction to Kolmogorov Complexity and Its

Applications,” 2
nd

 Ed, Springer, 1997

[27] D. Lemire, “A Better Alternative to Piecewise Linear Time Series Segmentation,”

SDM, 2007

[28] J. Lin, E. Keogh, L. Wei, and S. Lonardi. “Experiencing SAX: A Novel Symbolic

Representation of Time Series,” Journal of DMKD 15, 2, pp. 107-144, 2007

[29] J. Lin, E. Keogh, S. Lonardi, and P. Patel. “ Finding Motifs in Time Series”. In Proc. of

2
nd

 Workshop on Temporal Data Mining, 2002

[30] K. Malatesta, S. Beck, G. Menali, and E. Waagen. “The AAVSO Data Validation

Project,” Journal of the American Association of Variable Star Observers (JAAVSO) 78,

pp. 31–44, 2005

[31] Y.I. Molkov, D. N. Mukhin, E. M. Loskutov, and A. M. Feigin, “ Using the Minimum

Description Length Principle for Global Reconstruction of Dynamic Systems from

Noisy Time Series,” Phys. Rev. E 80, 046207, 2009

[32] F. Mörchen and A. Ultsch. “Optimizing Time Series Discretization for Knowledge

Discovery,” KDD, 2005

[33] National Aeronautics and Space Administration, (Accessed Dec 1, 2011).

http://data.giss.nasa.gov/gistemp/, GISS surface temperature Analysis, 2011

[34] T. Palpanas, M. Vlachos, E. Keogh, and D. Gunopulos. “Streaming Time Series

Summarization Using User-Defined Amnesic Functions,” IEEE Trans. Knowl. Data

Eng. 20, 7, pp. 992-1006, 2008

[35] S. Papadimitriou, A. Gionis, P. Tsaparas, A. Väisänen , H. Mannila and C. Faloutsos .

“Parameter-Free Spatial Data Mining using MDL,” ICDM, 2005

[36] E.P.D. Pednault. “Some Experiments in Applying Inductive Inference Principles to

Surface Reconstruction,” IJCAI, pp. 1603-1609, 1989

[37] G. Picard, M. Fily, and H. Gallee. “Surface Melting Derived from Microwave

Radiometers: A Climatic Indicator in Antarctica,” Annals of Glaciology, 47, pp.29 – 34,

2007

[38] PHM data challenge competition,

http://www.phmconf.orgjOCS/index.php/phm/2008/challenge, 2008.

143

[39] Prognostics Center of Excellence, National Aeronautics and Space Administration

(NASA), ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/, accessed on Nov

7, 2012

[40] P. Protopapas, J. M. Giammarco, L. Faccioli, M. F. Struble, R. Dave, and C. Alcock. “

Finding Outlier Light-Curves in Catalogs of Periodic Variable Stars,” Monthly Notices

of the Royal Astronomical Society, 369, pp. 677–696, 2006

[41] U. Rebbapragada, P. Protopapas, C. E. Brodley, and C. R. Alcock, “Finding

Anomalous Periodic Time Series,” Machine Learning 74, 3, pp. 281-313, 2009

[42] J. Rissanen. “Stochastic Complexity in Statistical Inquiry,” World Scientific,

Singapore, 1989

[43] J. Rissanen, T. Speed and B. Yu. “Density Estimation by Stochastic Complexity,”

IEEE Trans. On Information Theory, 38, 315-323, 1992

[44] S. Salvador and P. Chan. “Determining the Number of Clusters/Segments in

Hierarchical Clustering/Segmentation Algorithms,” International Conference on Tools

with Artificial Intelligence, pp. 576-584, 2004

[45] Signal to Noise Ratio, http://en.wikipedia.org/wiki/Signal-to-noise_ratio

[46] W. Sarle, Donoho-Johnstone Benchmarks: Neural Net Results,

ftp://ftp.sas.com/pub/neural/dojo/dojo.html, 1999

[47] D. Sart, A. Mueen, W. Najjar, V. Niennattrakul, and E. Keogh. “Accelerating Dynamic

Time Warping Subsequence Search with GPUs and FPGAs,” IEEE International

Conference on Data Mining, pp. 1001- 1006, 2010

[48] US Environmental Protection Agency,

www.epa.gov/climatechange/science/recenttc.html, Climate Change Science, accessed

on Dec 6, 2011

[49] G. Vachtsevanos, F.L. Lewis, M. Roemer, A. Hess and B. Wu, “Intelligent Fault

Diagnosis and Prognosis for Engineering Systems,” Wiley, 1
st
 edition, 2006

[50] A. Vahdatpour and M. Sarrafzadeh. “Unsupervised Discovery of Abnormal Activity

Occurrences in Multi-dimensional Time Series, with Applications in Wearable

Systems,” SIAM International Conference on Data Mining, 2010

[51] R. Vatauv, “The Impact of Motion Dimensionality and Bit Cardinality on the design of

3D Gesture Recognizers”, International Journal of Human-Computer Studies, 2012

144

[52] N. Vereshchagin and P. Vitanyi. “Rate Distortion And Denoising Of Individual Data

Using Kolmogorov Complexity,” IEEE Trans. Information Theory 56, 7, pp. 3438–

3454, 2010

[53] U. Vespier, A. Knobbe, S. Nijssen and J. Vanschoren, “MDL-Based Analysis of Time

Series at Multiple Time-Scales,” Lecture Notes in Computer Science (LNCS), Volume

7524, 2012

[54] vbFRET toolbox, vbFRET.sourceforge.net, accessed on Nov8,2012

[55] C.S. Wallace and D. M. Boulton. “An Information Measure for Classification,”

Computer Journal 11, 2, pp.185-194, 1968

[56] T. Wang, J. Yu, D. Siegel and J. Lee, “A Similarity-Based Prognostics Approach for

Remaining Useful Life Estimation of Engineered Systems,” International Conference

on Prognostics and Health Management, 2008

[57] T. Wang and J. Lee, “On Performance Evaluation of Prognostics Algorithms,”

Proceedings of MFPT, pp 219-226, 2006

[58] D. Yankov, E. Keogh, and U. Rebbapragada. “Disk Aware Discord Discovery: Finding

Unusual Time Series in Terabyte Sized Datasets,” Knowl. Inf. Syst. 17, 2, pp. 241-262,

2008

[59] Q. Zhao, V. Hautamaki, and P. Franti. “Knee Point Detection in BIC for Detecting the

Number of Clusters”, ACIVS, 5259, pp. 664–673, 2008

[60] H.J. Zwally and P. Gloersen. “Passive Microwave Images of the Polar Regions and

Research Applications”, Polar Records 18, pp. 431-450, 1977

[61] Project URL: www.cs.ucr.edu/~bhu002/MDL/MDL.html This URL contains all data

and code used in this paper, as well as many additional experiments omitted for brevity

Chapter 3

[62] S.L.G Andino, et al, Measuring the complexity of time series: an application to

neurophysiological signals. Human Brain Mapping, 11(1), pages 46-57, 2000

[63] K. Aspelin, Establishing Pedestrian Walking Speeds. Portland State University.

www.usroads.com/journals/p/rej/9710/re971001.htm, retrieved 2009-08-24.

[64] W. Aziz and M. Arif, Complexity analysis of stride interval time series by threshold

dependent symbolic entropy, EJAP, 98 (1), pages 30-40, 2006

http://www.westernite.org/datacollectionfund/2005/psu_ped_summary.pdf
http://en.wikipedia.org/wiki/Portland_State_University

145

[65] G. Batista, E. Keogh, A, Mafra-Neto and E. Rowton, Sensors and Software to Allow

Computational Entomology, an Emerging Application of Data Mining, SIGKDD demo,

2011.

[66] G. Batista, X. Wang and E. Keogh, A Complexity-Invariant Distance Measure for

Time Series, SDM, 2011.

[67] L. Bao and S.S. Intille, Acitivity Recognition from User-Annotated Acceleration Data,

In Proc’ of the 2
nd

 International Conference on Pervasive Computing, pages1-17, 2004.

[68] The BIDMC Congestive Heart Failure Database,

www.physionet.org/physiobank/database/chfdb/

[69] G.A. Cavagna, N.C. Heglund and C.R. Taylor, Mechanical work in terrestrial

locomotion: two basic mechanisms for minimizing energy expenditure, Journal of

Physiology 233(5): R243-R261, 1977.

[70] P.de Chazal, M. O’Dwyer, and R. B. Reilly, Automatic classification of ECG

heartbeats using ECG morphology and heartbeat interval features, IEEE Trans.

Biomed. Eng., vol. 51, pp. 1196-06, Jul.2004.

[71] L. Chen, M. T. Özsu and V.Oria, Robust and fast similarity search for moving object

trajectories , In Proc’ of the ACM SIGMOD, 2005.

[72] CMU Graphics Lab Motion Capture Database, mocap.cs.cmu.edu/, retrieved 2012-04-

24.

[73] Electrocardiography,en.wikipedia.org/wiki/Electrocardiography.

[74] M. Faezipour, A. Saeed, S. Bulusu, M. Nourani, H. Minn and L. Tamil, A patient-

adaptive profiling scheme for ECG beat classification. IEEE Transactions on

Information Technology in Biomedicine 14(5), p1153-1165, 2010.

[75] D. Gafurov, K. Helkala and T. Søndrol, Biometric Gait Authentication Using

Accelerometer Sensor, Journal of Computers , (1) 6, 2006.

[76] D. Gafurov and E. Snekkenes, Towards Understanding the Uniqueness of Gait

Biometric, 8th IEEE International Conference on Automatic Face & Gesture

Recognition, 2008.

[77] J.Grass and S. Zilberstein, Anytime Algorithm Development Tools. Technical Report.

UMI Order Number:

[78] UM-CS-1995-094., University of Massachusetts.

http://mocap.cs.cmu.edu/
http://en.wikipedia.org/wiki/Electrocardiography
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4810099

146

[79] M.A. Hanson, H.C. Powell Jr, A.T. Barth, J. Lach, M.B.C, Brown, Neural Network

Gait Classification for On-Body Inerital Sensors, In Proc’ of the 2009 Sixth

International Workshop on Wearable and Implantable Body Sensor Networks, 2009.

[80] Y. Hao, Y. Chen, J. Zakaria, B. Hu, T. Rakthanmanon and E. Keogh, Towards Never-

Ending Learning from Time Series Streams, SIGKDD, 2013.

[81] B. Hu, Y. Chen and E. Keogh, Time Series Classification under More Realistic

Assumptions, SDM, 2011

[82] B. Hu, Y. Chen, J. Zakaria, L.Ulanova and E. Keogh, Classification of Multi-

Dimensional Streaming Time Series by Weighting each Classifier’s Track Record,

ICDM, 2013

[83] B. Hu, T. R Rakthanmanon, Y. Hao, S. Evans, S. Lonardi, and E. Keogh, Discovering

the Intrinsic Cardinality and Dimensionality of Time Series using MDL, ICDM, 2011.

[84] E. Keogh, Q. Zhu, B. Hu, Y. Hao , X. Xi, L. Wei, and C. A.

[85] Ratanamahatana. The UCR Time Series Classification/Clustering Homepage:

www.cs.ucr.edu/~eamonn/time_series_data/, 2006.

[86] E. Keogh, S. Lonardi and C. Ratanamahatana, Towards Parameter-Free Data Mining ,

In Proc’ of the tenth ACM SIGKDD, 2004.

[87] E. Keogh, T. Palpanas, V.B. Zordan, D. Gunopulos and M. Cardle, Indexing Large

Human-Motion Databases, VLDB, 2004.

[88] P. Koch, W. Konen and K. Hein, Gesture Recognition on Few Training Data using

Slow Feature Analysis and Parametric Bootstrap , IJCNN, 2010.

[89] M. Li, P. Vitanyi, An introduction to Kolmogorov complexity and its applications,

Second Edition, Springer Verlag, 1997

[90] J. Lester, T. Choudhury, N. Kern, G. Borriello and B. Hannaford, A Hybrid

Discriminative/Generative Approach for Modeling Human Activities, IJCAI, 2005.

[91] J. Liu, K. Yu, Y. Zhang and Y. Huang, Training Conditional Random Fields Using

Transfer Learning for Gesture Recognition, ICDM,2010

[92] T.A. McMahon, G.C. Cheng, The mechanics of running : How does stiffness couple

with speed, Journal of Biomechanics, Vol 23, 1990.

[93] M. Morse and J.M. Patel, An Efficient and Accurate Method for Evaluating Time Series

Similarity, Proc SIGMOD, 2007.

N
o

te
 t

o
 r

ev
ie

w
er

s:
 O

u
r

p
ap

er
 is

 1
0

0%
 s

el
f

co
n

ta
in

ed
.

In

 a
d

d
it

io
n

 w
e

p
la

ce
d

 o
n

 o
u

r
w

eb
si

te
 [

?]
 m

an
y

ad
d

it
io

n
al

 e
xp

er
im

en
ts

, m
o

re
 d

et
ai

le
d

 e
xp

la
n

at
io

n
s

o
f

th
e

d
at

as
et

s
an

d
 d

at
a

p
re

p
ro

ce
ss

in
g,

 a
ll

th
e

d
at

as
et

s
(w

it
h

 t
ra

in
/t

es
t

sp
lit

s
ca

re
fu

lly
 a

n
n

o
ta

te
d

 e
tc

)
an

d
 a

ll
th

e
co

d
e.

 G
iv

en
 t

h
is

 w
e

h
av

e
ch

o
se

n
 n

o
t

to
 u

se
 t

h
e

o
p

ti
o

n
al

 f
iv

e
p

ag
es

 a
llo

w
ed

. N
o

te
 t

h
at

 w
e

co
m

m
it

 t
o

ke
ep

in
g

o
u

r
w

eb
p

ag
e

o
n

lin
e

fo
r

at
 le

as
t

fi
ve

 y
ea

rs

147

[94] V. Niennattrakul, E. Keogh and C.A. Ratanamahatana, Data Editing Techniques to

Allow the Application of Distance-Based Outlier Detection to Streams, ICDM, 2010.

[95] PAMAP, Physical Activity Monitoring for Aging People, www.pamap.org/demo.html ,

retrieved 2012-05-12.

[96] J. Pärkkä, M. Ermes, P. Korpipää, J. Mäntyjärvi, J. Peltola, and I.Korhonen, Activity

classification using realistic data from wearable sensors, IEEE Trans. Inf. Tech.

Biomed., vol. 10, pp. 119-28, 2006.

[97] E. Pekalska, R.P.W. Duin and P. Paclík, Prototype selection for dissimilarity-based

classifiers, Pattern Recognition, 39, 2006.

[98] C.Pham, T. Plötz, P. Olivier, A dynamic time warping approach to real-time activity

recognition for food preparation, In Proc’ of the First international joint conference on

Ambient intelligence, 2010.

[99] M. Raptis, D. Kirovski, and H. Hoppes, Real-Time Classification of Dance Gestures

from Skeleton Animation, In Proc’of the ACM SIGGRAPH symposium on Computer

animation, 2011.

[100] M. Raptis, K. Wnuk, and S. Soatto, Flexible Dictionaries for Action Recognition,

In Proc’ of the 1st International Workshop on Machine Learning for Vision-based

Motion Analysis, 2008.

[101] T.Rakthanmanon, E. Keogh, S. Lonardi, and S. Evans. Time Series Epenthesis:

Clustering Time Series Streams Requires Ignoring Some Data. ICDM 2011.

[102] C.A. Ratanamahatana (2012). Personal communcation. May 2012.

[103] C.A. Ratanamahatana and E. Keogh, Making Time-series Classification More Accurate

Using Learned Constraints, SDM, 2004.

[104] A. Reiss and D. Stricker, Introducing a Modular Activity Monitoring System, 33
th

International EMBC, 2011.

[105] J.Shieh and E. Keogh, Polishing the Right Apple:Anytime Classification also Benefits

Data Streams with Constant Arrival Times, ICDM, 2010.

[106] J. Song and D. Kim, Simultaneous Gesture Segmentation and Recognition based on

Forward Spotting Accumulative HMM, In Proc’ of the 18
th
 ICPR, 2006.

[107] K. Ueno, X. Xi, E. Keogh and D. Lee, Anytime Classification Using the Nearest

Neighbor Algorithm with Applications to Stream Mining, ICDM, 2010.

148

[108] J. Usabiaga, G. Bebis, A. Erol, M. Nicolescu, Recognizing simple human actions using 3D

head movement, Computational Intelligence, 23(4), 2007.

[109] R.D. Vatavu, The Effect of Sampling Rate on the Performance of Template-based

Gesture Recognizers, Proc of ICMI, 2011.

[110] L. Ye, X. Wang, E. Keogh and A. Mafra-Neto, Autocannibalistic and Anyspace Indexing

Algorithms with Applications to Sensor Data Mining, SDM, 2009.

[111] A.Y. Yang, A. Giani, R. Giannatonio, K. Gilani, etc. Distributed Human Action

Recognition via Wearable Motion Sensor Networks,

www.eecs.berkeley.edu/~yang/software/WAR/index.html

[112] S. Zilberstein and S. Russell, Approximate reasoning using anytime algorithms. In

Imprecise and Approximate Computation. Kluwer Academic Publishers, 1995

[113] M. Zhang, A.A. Sawchuk, USC-HAD: A Daily Activity Recognition using Wearable

Sensors. ACM International Conference on Ubiquitous

Computing (UbiComp) Workshop on Situation, Activity and Goal

Awareness(SAGAware), 2012

[114] Project URL: sites.google.com/site/sdm13realistic/

Chapter 4

[115] J. Aldrich, R.A. Fisher and the making of maximum likelihood 1912-1922, Statistical

Science, 12(3), 1922.

[116] P. Bartlett, Y. Freund, W. Lee and R. Schapire, Boosting the Margin: A New

Explanation for the Effective of Voting methods, The Annals of Statistics, vol(26),1998.

[117] E. Bauer and R. Kohavi, An Empirical Comparison of Voting Classification

Algorithms: Bagging, Boosting and Variants, Journal of Machine Learning, 1998.

[118] F. Briggs, R. Raich and X. Fern, Audio Classification of Bird Species: a Statistical

Manifold Approach, ICDM, 2009.

[119] L. Bao and S.S. Intille, Activity Recognition from User-Annotated Acceleration Data,

2
nd

 International Conference on Pervasive Computing, 2004.

[120] E. Braunwald, Heart Disease: A Textbook of Cardiovascular Medicine, Ninth Edition,

2011.

[121] C.M. Bishop, M. Svensén, Bayesian Hierarchical Mixtures of Experts, Procs of 19
th

Conference on Uncertainty in Artificial Intelligence, 2003.

149

[122] Y. Chen, B. Hu, E. Keogh and G. E. P.A Batista, DTW-D, Time Series Semi-

Supervised Learning from a Single Example, KDD, 2013

[123] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang and E. Keogh, Querying and Mining

of Time Series Data: Experimental Comparison of Representations and Distance

Measures, PVLDB 1(2): 1542-1552 , 2008.

[124] P. Domingos and M. Pazzani, Beyond Independence: Condition for the Optimality of

thhe Simple Bayesian Classifier, Machine Learning, vol(29),p(103-137), 1997.

[125] Digital Interaction at Culture Lab, di.ncl.ac.uk/publicweb/AmbientKitchen/, accessed on

Jan 9, 2013.

[126] Electrocardiography, en.wikipedia.org/wiki/Electrocardiography

[127] Y. Freund and R. Schapire, A Short Introduction to Boosting, Journal of Japanese

Society for Artificial Intelligence, vol(14), 1999.

[128] S. Günnemann, I. Färber, K. Virochsiri, and T. Seidl, Subspace Correlation Clustering:

Finding Locally Correlated Dimensions in Subspace Projections of the Data, KDD,

2012.

[129] B. Hu, Y. Chen and E. Keogh, Time Series Classification under More Realistic

Assumptions, SDM, 2013.

[130] Y. Hu, S. Palreddy and W. Tompkins, A Patient-Adaptable ECG Beat Classifier using

a Mixture of Experts Approach, IEEE Transactions on Biomedical Engineering,

vol(44),2007.

[131] M. Jordan and R. Jacobs, Hierarchical Mixtures of Experts and the EM Algorithm,

A.I.Memo No.1440, C.B.C.L.Memo. No.83, 1993.

[132] E. Keogh, Q. Zhu, B. Hu, Y. Hao, X. Xi, L. Wei and C.A. Ratanamahatana. The UCR

Time Series Classification/Clustering Homepage:

www.cs..ucr.edu/~eamonn/time_series_data/, 2006.

[133] H. Kremer, S. Günnemann, A. Held and T. Seidl, Mining of Temporal Coherent

Subspace Clusters in Multivariate Time Series Databases, PAKDD, 2012.

[134] M.H. Ko, G. West, S.Venkatesh and M. Kumar. Online context recognition in

multisensory system using dynamic time warping. In Intelligent Sensors, Sensor

Networks and Information Processing Conference, 2005.

[135] J. Kolter and M. Maloof, Dynamic Weighted Majority: A New Ensemble Method for

Tracking Concept Drift, ICDM, 2003.

150

[136] S. Kratz and M. Rohs, A $3 Gesture Recognizer – Simple Gesture Recognition for

Devices Equipped with 3D Acceleration Sensors, IUI, 2010.

[137] Lord’s, The Home of Cricket, www.lords.org/laws-and-spirit/laws-of-cricket/laws/,

accessed on Feb 5
th
, 2013.

[138] P. Mermelstein, Distance measures for speech recognition, psychological and

instrumental, Pattern Recognition and Artificial Intelligence, 1976.

[139] M. Miller and A. Stoytchev, Hierarchical Voting Experts: An Unsupervised Algorithm

for Hierarchical Sequence Segmentation, ICDL, 2008.

[140] PAMAP, Physical Activity Monitoring for Aging People,

[141] www.pamap.org/demo.html, retrieved 2012-05-12

[142] J. Pärkkä, M. Ermes, P. Korpipää, J. Mäntyjärvi, J. Peltola, and I. K Korhonen,

Activity classification using realistic data from wearable sensors, IEEE Trans. Inf.

Tech. Biomed., vol. 10, pp. 119-28, 2006.

[143] R.E. Schapire, and Y. Singer, Improved Boosting Algorithms using Confidence-rated

Predictions, Journal of Machine Learning, 1999.

[144] W. Street and Y. Kim, A Streaming Ensemble Algorithm (SEA) for Large-Scale

Classification, KDD, 2001.

[145] D. Optiz and R. Maclin, Popular Ensemble Methods: An Empirical Study, Journal of

Artificial Intelligence Research, vol(11),1999.

[146] D. Optitz, Feature Selection for Ensembles, AAAI, 1999

[147] M. Radovanović,A. Nanopoulos and M. Ivanović, Time Series Classification in Many

Intrinsic Dimensions, SDM, 2010.

[148] C.Pham and P.Olivier, Slice & Dice: Recognizing Food Preparation Activities using

Embedded Accelerometers, Procs of the European Conference on Ambient Intelligence,

2009.

[149] A. Reiss and D. Stricker, Introducing a Modular Activity Monitoring System, 33rd

IEEE EMBS，2011.

[150] C.J. van Rijsbergen, Information Retrieval, London, GV, 2
nd

 Edition, 1979, ISBN 0-

408-70929-4

151

[151] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos and E. Keogh, Indexing Multi-

Dimensional Time Series with Support for Multiple Distance Measures, KDD, 2003.

[152] X. Xi, E. Keogh, C. Shelton, L.Wei and C. Ratanamahatana, Fast Time Series

Classification Using Numerosity Reduction, ICML, 2006.

[153] Xeno-canto, Sharing Bird Sounds from around the World, www.xeno-canto.org/,

accessed on Feb 6, 2013.

[154] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, E. Keogh,

Experimental comparison of representation methods and distance measures for time

series data. DMKD, vol26(2), 2013.

[155] H. Yoon, K. Yang, C. Shahabi, Feature Subset Selection and Feature Ranking for

Multivariate Time Series, IEEE Trans. Knowl. Data Eng. 17(9): 1186-1198 , 2005.

[156] A.Yang, A. Giani, R. Giannatonio, K. Gilani, Distributed Human Action Recognition

via Wearable Motion Sensor Networks, Journal of Ambient Intelligence and Smart

Environments, 2009.

[157] J.Yin and Q. Yang, Integrating Hidden Markov Models and Spectral Analysis for

Sensory Time Series Clustering, ICDM, 2005.

[158] H. Zhang, The Optimality of Naïve Bayes, AAAI, FLAIRS Conference, 2004.

[159] M. Zhang and A.A. Sawchuk, USC-HAD: A Daily Activity Dataset for Ubiquitous

Activity Recognition Using Wearable Sensors, UbiComp, 2012.

[160] Z. Zhou, Ensemble Methods: Foundations and Algorithm, Chapman and Hall/CRC, 1
st

edition, 2012.

[161] Project webpage : sites.google.com/site/kddmdtbing/

http://www.xeno-canto.org/

