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ABSTRACT OF THE DISSERTATION 

 

 

Mining Time Series Data: Moving from Toy Problems to Realistic Deployments 

 

 

by 

 

 

Bing Hu 

 

 

Doctor of Philosophy, Graduate Program in Computer Science 

University of California, Riverside, December 2013 

Dr. Eamonn Keogh, Chairperson 
 

 

Data mining and knowledge discovery has attracted a lot of research interest in the 

last decade. Although there is extensive research in this area, we argue that most of the 

work is not as useful, since the datasets that they are dealing with and the methods that 

they proposed to solve the problems are more like ‘toy examples’ compared to the much 

more complicate real-world scenario. We have observed the following two problems that 

widely exist in most of data mining research. First, parameters will hurt the potential of 

spreading the ideas in the research community. In a lot of works, there are usually several 

parameters to tune in the proposed method. We claim that the parameter turning can kill 

the usefulness of an algorithm and reduce the number of citations. Second, the 

prevalently existed assumptions about the data further limit their application to solve the 

real-world problem. We strive to mitigate the above two problems. The contribution of 

this dissertation is as follows: 
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First, we demonstrate a parameter free framework using MDL to discover the 

intrinsic features of the data. With the intrinsic cardinality and dimensionality of the time 

series, we can further understand the underlying meaning of the data, before consulting 

the domain experts. In addition, the intrinsic features can be used as dimensionality 

reduction and have huge applications in the various lower bounding techniques. Second, 

we show a time series classification framework that has none of the prevalent 

assumptions. We propose to use the data editing technique to automatically build a data 

dictionary. In addition, our classification framework has the capability to say ‘I do not 

know’ at a certain point when classifying the incoming queries that does not belong to 

any concept in the training data. Our results show that a small fraction of all the data can 

achieve even better classification results than using all the data. In the last, we propose a 

dynamically weighted multi-dimensional classification framework, which can smartly 

choose the weight of each data dimension. The results over extensive datasets from 

various domains show that our framework is more accurate and robust to the occluded 

data. 
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Chapter 1:  Introduction  

Time series data are being generated at an unprecedented scale and rate from almost 

every application domain, e.g. medical and biological experimental observations, 

streaming data generated from the various sensors, daily prices in the stock market, etc. 

In the last decade, there is dramatically increasing research in query and mining time 

series data. However, we have observed the following two problems that widely exist in 

most of data mining research. First, parameters will hurt the potential of spreading the 

ideas in the research community. In a lot of works, there are usually several parameters to 

tune in the proposed method. We claim that the parameter turning can kill the usefulness 

of an algorithm and reduce the number of citations. Second, the prevalently existed 

assumptions about the data further limit their application to solve the real-world problem.    

 In this dissertation, we strive to mitigate the above two problems from the following 

three aspects. First, in Chapter 2 we demonstrate a parameter free framework to discover 

the intrinsic features of time series. Second, we illustrate how to do time series 

classification under more realistic assumptions in Chapter 3. In the last, we extend the 

framework in Chapter 3 to a multi-dimensional classification framework.  

In the following text, we show the detail of the motivations of each project. 

1.1 Discover the Intrinsic Features  

Many algorithms for data mining or indexing time series data do not operate directly 

on the raw data, but instead they use alternative representations that include transforms, 
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quantization, approximation, and multi-resolution abstractions. Choosing the best 

representation and abstraction level for a given task/dataset is arguably the most critical 

step in time series data mining.  

In Chapter 2, we investigate the problem of discovering the natural intrinsic 

representation model, dimensionality and alphabet cardinality of a time series.  The 

ability to automatically discover these intrinsic features has implications beyond selecting 

the best parameters for particular algorithms, as characterizing data in such a manner is 

useful in its own right and an important sub-routine in algorithms for classification, 

clustering and outlier discovery. We will frame the discovery of these intrinsic features in 

the Minimal Description Length (MDL) framework. Extensive empirical tests show that 

our method is simpler, more general and more accurate than previous methods, and has 

the important advantage of being essentially parameter-free.   

1.2 Doing More Realistic Research 

In virtually all time series classification research, long time series are processed into 

short equal-length “template” sequences that are representative of the class.  For example, 

individual and complete gait cycles for biometric classification[62][72][79][88], 

individual and complete heartbeats for cardiological classification [70][82], individual 

and complete gestures for gesture recognition [111],  etc. In most cases, the segmentation 

of long time series into these idealized snippets is done by hand [72][79][88][90]. 

However, for many real-world problems this either cannot be done, or only done with 

great effort [76][91][96].  
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As a concrete example, consider the famous Gun/Point problem [84][103], which has 

appeared in at least one hundred works [71][86][93]. To create this dataset, the original 

authors [102][103] used a metronome that signaled every three seconds to cue both the 

actor’s behavior and the start/stop of the recording apparatus [102]. This allowed the 

extraction of perfectly aligned data, containing all of the target behavior and only the 

target behavior. Unsurprisingly, dozens of papers report less than 10% classification error 

rate on this problem. However, does such an error rate reflect our abilities with real-world 

data?    

Such contriving of time series datasets seems to be the norm. For example, [111] 

notes, “one subject performed one trial of an action (in exactly) 10 seconds.” and [95] 

tells us that human editors should carefully discard “all transient activities between 

performing different activities.” Likewise, a recent paper states: “We assume that the 

trajectories are segmented in time such that the first and last frames are already aligned 

(and) the resulting model has the same length” [108]. Note that these authors are to be 

commended for stating their assumptions so concretely. In many cases, no such 

statements are made, but we suspect that similar “massaging” of the data has occurred.   

We believe that such contriving of the data has led to unwarranted optimism about 

how well we can classify real-time series data streams. For real-world problems, we 

cannot always expect the training data to be so idealized, and we certainly cannot expect 

the testing data to be so perfect.  

A more realistic idea for data gathering is to capture data “in the wild” as in 

[67][98][104], etc. However, this opens the problem of data editing and cleaning. For 
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example, a one-hour trace of data labeled “walking” will almost certainly contain non-

representative subsequences, such as the subject pausing at a crosswalk, or introducing a 

temporary asymmetry into her gait as she answers her phone. The current solution to 

preprocess such data requires human intervention to examine and edit such traces, and 

keeping data that demonstrate the sought-after variability (walking uphill, 

downhill, level, walking fast, normal, slow), while discarding data that is 

atypical of the class.  

Moreover, in virtually all time series classification research, the data must be 

arranged to have equal length [108]. For example, in the world’s largest collection of 

time series datasets, the UCR classification archive, all forty-five time series datasets 

contain only equal-length data [84]. 

Most of the literature assumes that all objects to be classified belong to exactly one of 

two or more well-defined classes. For example, in the Gun/Point problem, every one of 

the instances is either a gun-aiming or a finger-pointing (unarmed) behavior. However, 

the vast majority of normal human actions are clearly neither. How well do current 

techniques work when most of the data is not from the well-defined classes?  

The fourth and final unrealistic assumption is that queries to be classified are 

presented at equal time intervals. For example, if we know a system will produce queries 

ten times a second, we can then plan the hardware resources needed, and the maximum 

size of the training set. However, in many real world systems the available time for 

classification is not known a priori and may change as a consequence of external 

circumstances [105]. For example, for some ECG classification systems, the individual 
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beats are detected, and then passed to the classification system. Given that human heart 

rates vary from about 40 to 200 beats per minute, the query arrival rate can range 

between 0.6Hz to 3.3Hz
1
. The classification of flying insects can be fruitfully considered 

a time series problem and there the arrival rates can vary by at least four orders of 

magnitude [65][80]. If we plan only for the fastest possible arrival rate, then we may be 

forced to invest in computational resources that are unused 99.99% of the time, or to only 

consider a tiny training dataset, when 99.99% of the time we could have searched a larger 

dataset. 

To summarize, much of the progress in time series classification from streams in the 

last decade is almost certainly optimistic, given that most of the literature implicitly or 

explicitly assumes one or more of the following: 

 Copious amounts of perfectly aligned atomic patterns can be obtained 

[79][109][111]. 

 The patterns are all of equal length [79][84][88][96][104].  

 Every item that we attempt to classify belongs to exactly one of our well-

defined classes [76][84][96][103].  

The queries arrive at a constant rate that is known ahead of time.   

In Chapter 3, we demonstrate a time series classification framework that does not 

make any of these assumptions. 

                                                           
1
 Note that only some ECG classification systems do beat extraction then classification [74]. Many researchers believe 

that robust beat extraction can be a harder problem than classification itself (cf. Figure 40 and Figure 41), and thus 

present every subsequence extracted by a sliding window for classification. This is the approach we consider in 

Section 3.3  
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Our approach requires only very weakly-labeled data, such as “This ten-minute trace 

of ECG data consists mostly of arrhythmias, and that three-minute trace seems mostly 

free of them”, removing assumption (1). Using this data we automatically build a “data 

dictionary”, which contains only the minimal subset of the original data to span the 

concept space. This is because the data dictionary can contain, say, one example of 

walking fast, one example of walking normal, etc. This mitigates assumption (2). 

As a byproduct of building this data dictionary, we learn a rejection threshold, which 

allows us to address assumption (3). A query item further than this threshold to its nearest 

neighbor is assumed to be in the other class. We show that using the Uniform Scaling 

distance measure [87] instead of Euclidean distance also addresses assumption (2). 

Finally, we introduce a novel technique to search the data dictionary in an anytime 

manner [105], allowing us to handle dynamic arrival rates and addressing assumption (4).  

1.3 Multi-Dimensional Time Series Classification 

Extensive research on time series classification in the last decade has produced fast 

and accurate algorithms for the single-dimensional case. However, the increasing 

prevalence of inexpensive sensors has reinforced the need for algorithms to handle multi-

dimensional time series. For example, modern smartphones have at least a dozen sensors 

capable of producing streaming time series, and hospital-based (and increasingly, home-

based) medical devices can produce time series streams from more than twenty sensors. 

The two most common ways to generalize from single to multi-dimensional data are to 

use all the streams or just the single best stream as determined at training time. However, 
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as we show here, both approaches can be very brittle. Moreover, neither approach 

exploits the observation that different sensors may be considered “experts” on different 

classes. In this work, we introduce a novel framework for multi-dimensional time series 

classification that weights the class prediction from each time series stream. These 

weights are based not only on each stream’s previous track record on the class it is 

currently predicting, but also on the distance from the unlabeled object. As we 

demonstrate with extensive experiments on real data, our method is more accurate than 

current approaches and particularly robust in the face of concept drift or sensor noise. 

Many physiological, medical, and scientific processes produce copious amounts of 

Multi-Dimensional Time series (MDT) data [133][140][151][156]. If we need to classify 

patterns manifest on just a single (independent) stream from an MDT, there is strong 

evidence that the simple nearest neighbor algorithm should be the algorithm of choice 

[123][129][132]. However, in many cases, the m individual time series in the MDT may 

reflect different views of the same underlying phenomena we want to classify. For 

example, we may have two different leads recording an ECG (Figure 1) or several 

gyroscopes on a Body Area Network (BAN) (Figure 2). In such a case, how should we 

use information from multiple sensors? The obvious choices are: 

ALL: Use all m time series [151]. In this category, we include efforts that transform 

all m time series into a new space, using SVD [155] or Markov models [157], etc. 

BEST: Use only the single best time series, which is either found empirically or 

suggested by domain knowledge [130]. In many research efforts the latter is probably 

done as a matter of course and reported fait accompli without discussion. 
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SUB: Use the best subset of the time series that is either found empirically or 

suggested by domain knowledge [128][133][146][149][155]. 

Note that while SUB includes ALL and BEST as special cases, the latter two choices 

are usually made without an effort to evaluate other possible subsets. 

There are two reasons why we believe that none of the above is the ideal solution for 

the task at hand.   

First, consider the two-lead ECG snippets shown in Figure 1. below. Here, we want to 

classify myocardial ischemias in this patient to correlate them with (independently 

recorded) sleep states. While the example shown in Figure 1.left could be classified from 

either the V5 or V5R lead, other examples are much more subtle and benefit from using 

both leads. However, suppose we use ALL, pooling evidence from both leads, then later 

on if either of them becomes noisy or disconnected (a very common occurrence 

[120][130]), we will do very poorly.  

 

Figure 1: left) A snippet from a two-lead polysomnogram. right) At certain times, V5R becomes 

noisy while V5 remains almost unaffected. At other times (not shown), we see these roles reversed.  

The second reason why most of the current approaches are sub-optimal is even more 

intuitive. The best subset of time series to use is almost always class-dependent. To see 

this, consider the BAN data shown in Figure 2. As we might expect, rope-jumping 

activities can be more easily classified using data from a sensor on the wrist than using 

myocardial ischemia

V5

V5R

1 sec

…

…
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data from a sensor on the shoe. Conversely, to classify ascending-stairs behavior, 

using data from a sensor on the shoe is more accurate than using data from a sensor on 

the wrist. This can be easily explained if we imagine how the body moves during these 

behaviors. 

 

Figure 2: Two snippets of gyroscope data (110Hz) from a physical activity dataset [95]. Activities 

denoted rope-jumping (red/left) and ascending-stairs (purple/right) are more obvious 

from the wrist and shoe sensors, respectively. 

In this work, we introduce a novel framework to address these two observations. At 

classification time, each sensor is polled for its vote on the class label. However, the vote 

is weighted by the sensor’s self-reported confidence in its prediction. This self-reported 

confidence is based on two factors: 

Confidence-based classification: the sensor’s expertise on the class in question. This 

element is independent of the object to be classified. The expertise simply reflects that a 

sensor should not be confident in predicting one class if it was mostly wrong when it 

predicted this class during the training phase. 

Distance-based classification: the similarity of the object to be classified and the 

examples seen during the training phase should be considered. This element reflects the 

fact that a sensor should not be confident in predicting any class if the object to be 

classified is significantly different than exemplars encountered during training.   

shoe

2 sec

rope-jumping

wrist
ascending-stairs

…

…
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As we shall demonstrate, by taking into account these two factors, we can make MDT 

classification both more accurate and more robust.  
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Chapter 2:   

Discovering the Intrinsic Cardinality and 

Dimensionality of Time Series using 

Minimum Description Length  

In this chapter, we will demonstrate a framework to discover the intrinsic features that 

has implications beyond selecting the best parameters for particular algorithms. We break 

the chapter into seven sections. Section 2.1 illustrates the motivation of the work. We 

give the definitions and intuitions of the algorithm in Section 2.2. Section 2.3 

demonstrates the detail of the proposed algorithms. We demonstrate an extensive 

experimental evaluation of the proposed algorithm in Section 2.4. Section 2.5 clarifies the 

time and space complexity of our framework.  Section 2.6 discusses the related work. In 

the last, we offer the conclusion of our work in Section 2.7. 

2.1 Introduction 

Most algorithms for indexing or mining time series data operate on higher-level 

representations of the data, which include transforms, quantization, approximations and 

multi-resolution approaches. For instance, Discrete Fourier Transform (DFT), Discrete 

Wavelet Transform (DWT), Adaptive Piecewise Constant Approximation (APCA) and 

Piecewise Linear Approximation (PLA) are models that all have their advocates for 

various data mining tasks and each has been used extensively [7] . However, the question 
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of choosing the best abstraction level and/or representation of the data for a given 

task/dataset still remains. In this work, we investigate this problem by discovering the 

natural intrinsic model, dimensionality and (alphabet) cardinality of a time series. We 

will frame the discovery of these intrinsic features in the Minimal Description Length 

(MDL) framework [13][24][36][43]. MDL is the cornerstone of many bioinformatics 

algorithms [9][42], and has had some impact in data mining, however it is arguably 

underutilized in time series data mining [18][35]. 

The ability to discover the intrinsic dimensionality and cardinality of time series has 

implications beyond setting the best parameters for data mining algorithms. For instance, 

it can help characterize the nature of the data in a manner that is useful in its own right. It 

can also constitute an important sub-routine in algorithms for classification, clustering 

and outlier discovery [40][58]. We illustrate this idea in the following example in Figure 

3, which consists of three unrelated datasets. 

 

Figure 3: Three unrelated industrial time series with low intrinsic cardinality. I) Evaporator 

(channel one). II) Winding (channel five). III) Dryer (channel one) 

The number of unique values in each time series is, from top to bottom, 14, 500 and 

62. However, we might reasonably claim that the intrinsic alphabet cardinality is instead 

2, 2, and 12, respectively. As it happens, an understanding of the processes that produced 
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this data would perhaps support this claim [23]. In these datasets, and indeed in many 

real-world datasets, there is a significant difference between the actual and intrinsic 

cardinality. Similar remarks apply to dimensionality. 

Before we define more precisely what we mean by actual versus intrinsic cardinality, 

we should elaborate on the motivations behind our considerations. Our objective is 

generally not simply to save memory
2
: if we are wastefully using eight bytes per time 

point instead of using the mere three bytes required by the intrinsic cardinality, the 

memory space saved is significant; however, memory is getting cheaper, and is rarely a 

bottleneck in data mining tasks. Instead, there are many other reasons why we may wish 

to find the true intrinsic model, cardinality and dimensionality of the data. For example, 

there is an increasing interest in using specialized hardware for data mining [47]. 

However, the complexity of implementing data mining algorithms in hardware typically 

grows super linearly with the cardinality of the alphabet. For example, FPGAs usually 

cannot handle cardinalities greater than 256 [47]. 

Some data mining algorithms benefit from having the data represented in the lowest 

meaningful cardinality. As a trivial example, consider the time series: ..0, 0, 1, 0, 0, 1, 0, 

0, 1. We can easily find the rule that a ‘1’ follows two appearances of ‘0’.  However, 

notice that this rule is not apparent in this string: ..0, 0, 1.0001, 0.0001, 0, 1, 

0.000001, 0, 1 even though it is essentially the same time series. 

Most time series indexing algorithms critically depend on the ability to reduce the 

dimensionality [7] or the cardinality [28] of the time series (or both [1][3]) and search 

                                                           
2
 However, Section 2.1.1 shows an example where this is useful. 
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over the compacted representation in main memory. However, setting the best level of 

representation remains a “black art.” 

In resource-limited devices, it may be helpful to remove the spurious precision 

induced by a cardinality/dimensionality that is too high. We elaborate on this issue by 

using a concrete example below. 

Knowing the intrinsic model, cardinality and dimensionality of a dataset allows us to 

create very simple outlier detection models. We simply look for data where the 

parameters discovered in new data differ from our expectations learned on training data. 

This is a simple idea, but it can be very effective as we show in our experimental section.  

2.1.1.  A Concrete Example 

For concreteness, we present a simple scenario that shows the utility of understanding 

the intrinsic cardinality/dimensionality of data. Suppose we wish to build a time series 

classifier into a device with a limited memory footprint such as a cell phone, pacemaker 

or “smartshoe”[50]. Let us suppose we have only 20kB available for the classifier, and 

that (as is the case with the benchmark dataset, TwoPat [23]) each time series exemplar 

has a dimensionality of 128 and takes 4 bytes per value. 

One could choose decision trees or Bayesian classifiers because they are space 

efficient; however, recent evidence suggests that nearest neighbor classifiers can be 

difficult to beat for time series problems [7]. If we had simply stored forty random 

samples in the memory for our nearest neighbor classifier, the average error rate over 

fifty runs would be a respectable 58.7% for a four-class problem. However, we could also 

down-sample the dimensionality by a factor of two, either by skipping every second point, 
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or by averaging pairs of points (as in SAX [28]), and place eighty reduced-quality 

samples in memory. Or perhaps we could instead reduce the alphabet cardinality by 

reducing the precision of the original four bytes to just one byte, thus allowing 160 

reduced-fidelity objects to be placed in memory. Many other combinations of 

dimensionality and cardinality reduction could be tested, which would trade reduced 

fidelity to the original data for more exemplars stored in memory. In this case, a 

dimensionality of 32 and a cardinality of 6 allow us to place 852 objects in memory and 

achieve an accuracy of about 90.75%, a remarkable improvement in accuracy given the 

limited resources. As we shall see, this combination of parameters can be found using our 

MDL technique.  

In general, testing all of the combinations of parameters is computationally infeasible. 

Furthermore, while in this case we have class labels to guide us through the search of 

parameter space, this would not be the case for other unsupervised data mining 

algorithms, such as clustering, motif discovery [29], outlier discovery [4] [52][58], etc.  

As we shall show, our MDL framework allows us to automatically discover the 

parameters that reflect the intrinsic model/cardinality/dimensionality of the data without 

requiring external information or expensive cross validation search. 

2.2 Definitions and Notation   

   We begin with the definition of a time series: 

Definition 1 :  A time series T is an ordered list of numbers. T= t1,t2,...,tm. Each 

value ti is a finite precision number and m is the length of the time series T. 
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Before continuing, we must justify the decision of (slightly) quantizing the time series. 

MDL is only defined for discrete values
3
, but most time series are real-valued. The 

cardinality of a set is defined as the measure of the number of elements of the set. In math, 

discrete values have a finite cardinality, and real numbers have an infinite cardinality. 

When dealing with values stored in a digital computer, this distinction can be problematic, 

as even real numbers must limited to a finite cardinality. Here we simply follow the 

convention that for very high cardinalities numbers can be considered essentially real-

valued, thus we need to cast the “effectively infinite” 2
64

 cardinality we typically 

encounter into a more obvious discrete cardinality to allow MDL to be applied. 

The obvious solution is to reduce the original number of possible values to a 

manageable amount. Although the reader may object that such a drastic reduction in 

precision must surely lead to a loss of some significant information, this is not the case. 

To illustrate this point, we performed a simple experiment. From each of the twenty 

diverse datasets in the UCR archive [23] we randomly extracted one hundred pairs of 

time series. For each pair of time series we measured their Euclidean distance in the 

original high dimensional space, and then in the quantized 256-cardinality space, and 

used these pairs of distances to plot a point in a scatter plot. Figure 4 shows the results. 

                                                           
3
 The closely related technique of MML (Minimum Message Length [55]) does allow for continuous real-valued data. However, here 

we stick with the more familiar MDL formulation. 
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Figure 4: Each point on this plot corresponds to a pair of time series: the x-axis corresponds to 

their Euclidean distance, while the y-axis corresponds to the Euclidean distance between the 8-bit 

quantized representations of the same pair 

The figure illustrates that all of the points fall close to the diagonal, and thus the 

quantization makes no perceptible difference. Beyond this subjective visual test, we also 

reproduced the heavily cited UCR time series classification benchmark experiments [23], 

replacing the original data with the 256-cardinality version. For all cases the difference in 

classification accuracy was less than one tenth of one percent (full details are at [61]). 

Based on these considerations, in this work we reduce all of the time series data to its 256 

cardinality version by using a discretization function: 

Definition 2 :  A discretization function normalizes a real-valued time series T into 

b-bit discrete values in the range [-2
b-1

, 2
b-1

-1]. The discretization function used in 

this manuscript is as follows: 

1min
( ) ( )*(2 1) 2

max min

b b

b

T
Discretization T round 

  
  

where min and max are the minimum and maximum values in T, respectively
4
. 

                                                           
4
 This slightly awkward formula is necessary because we use the symmetric range [-128,127]. If we use range [1, 256] instead we get 

a more elegant:                ( )        (      
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Given a time series T, we are interested in estimating its minimum description length, 

i.e., the smallest number of bits it takes to represent it. 

Definition 3 :  A description length DL of a time series T is the total number of bits 

required to represent it. When Huffman coding is used to compress the time series 

T, the description length of the time series T is defined by: 

DL (T) = | HuffmanCoding (T) | 

In the current literature, the number of bits required to store the time series depends 

on the idiosyncrasies of the data format or hardware device, not on any intrinsic 

properties of the data or domain. Here we are instead interested in knowing the minimum 

number of bits to exactly represent the data, i.e., the intrinsic amount of information in 

the time series. The general problem of determining the smallest program that can 

reproduce the time series, known as Kolmogorov complexity, is not computable [26]. 

However, the Kolmogorov complexity can be approximated by using general-purpose 

data compression methods, like Huffman coding [13][52][60]. The (lossless) compressed 

file size is an upper bound to the Kolmogorov complexity of the time series [6].  

Observe that in order to decompress losslessly HuffmanCoding(T), the Huffman tree 

(or the symbol frequencies) is needed, thus the description length could be more precisely 

defined as DL(T) = |HuffmanCoding(T)| + |HuffmanTree(T)|. One could use a simple 

binary representation to encode the Huffman tree. For each node, starting at root (1) if 

leaf, output “1” + character (byte), (2) If not leaf, output bit “0”, then encode both 

children (left, then right) the same way recursively. The number of bits required to store 

the Huffman tree depends on the number of symbols (2
b
) in the discretization of the time 
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series. There are two reasons why (for simplicity) we do not consider the cost Huffman 

tree in our formulation: 

In practice the size of the tree is negligible compared to the number of bits required to 

represent the time series.  

In practice the size of |HuffmanTree(T)| has very low variance, and thus can be 

regarded as a “constant” term. This is especially true when comparing similar models, for 

example a model with a dimensionality of ten to a model with a dimensionality of nine or 

eleven. When comparing vastly different models, for example a model with a 

dimensionality of ten with a model with a dimensionality of one hundred, the differences 

of the sizes of the relevant Huffman trees are greater, but this difference is dwarfed by the 

bit saving gained by discovering the true dimensionality.         

In the extensive experiments in Section 2.4 we found there is no measureable 

difference in outcome of the formulations with or without the cost of |HuffmanTree(T)| 

included, thus we report only the simpler formulation.  

One of the key steps in finding the intrinsic cardinality and/or dimensionality requires 

one to convert a given time series to another representation or model, e.g., by using DFT 

or DWT. We call this representation a hypothesis: 

Definition 4 :   A hypothesis H is a representation of a discrete time series T after 

applying a transformation M.  

In general, there are many possible transforms. Examples include Discrete Wavelet 

Transform (DWT), Discrete Fourier Transform (DFT), Adaptive Piecewise Constant 

Approximation (APCA), and Piecewise Linear Approximation (PLA), among others [7].  
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Figure 10 shows three illustrative examples, DFT, APCA, and PLA. In this paper, we 

demonstrate our ideas using these three most commonly used representations, but our 

ideas are not restricted to these time series models (see [7] for a survey of time series 

representations).   

Henceforth, we will use the term model interchangeably with the term hypothesis.  

Definition 5 :  A reduced description length of a time series T given hypothesis H 

is the number of bits used for encoding the time series T, exploiting information in 

the hypothesis H, i.e., DL (T│H), and the number of bits used for encoding H, i.e., 

DL (H). The reduced description length is defined as: 

DL (T, H) = DL (H) + DL (T│H) 

The first term DL (H) is called the model cost and represents the number of bits 

required to store the hypothesis H. For instance, the model cost for the Piecewise Linear 

Approximation would include the bits needed to encode the mean, slope and length of 

each linear segment. 

The second term, DL (T│H), called the correction cost (in some works it is called the 

description cost or error term) is the number of bits required to rebuild the entire time 

series T from the given hypothesis H.  

There are many possible ways to encode T given H. Perhaps the simplest way is to 

store the differences (i.e., the difference vector) between T and H: one can easily 

reconstruct exactly the time series T from H and the difference vector. Thus, we simply 

use DL (T│H) = DL (T-H).  
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We will demonstrate how to calculate the reduced description length in more detail in 

the next section. 

2.3 MDL Modeling of Time Series 

2.3.1.  An Intuitive Example of Our Basic Idea 

For concreteness, we will consider a simple worked example comparing two possible 

dimensionalities of data. Note that here we are assuming a cardinality of 16, and a model 

of APCA. However, in general we do not need to make such assumptions. Let us 

consider a sample time series T of length 24: 

T   =  1  1  1  2  3  4  5  6  7  8  9  10  11  11  12  12  12  12  11  11  10  10  9  7 

Figure 5 illustrates a plot of T. 

 

Figure 5: A sample time series T that will be used as a running example in this section 

We attempt to model this data with a single constant line, a special case of APCA. 

We begin by finding the mean of all of the data, which (rounding in our integer space) is 

eight. We can create a hypothesis H1 to model this data, which is shown in Figure 6. It is 

simply a constant line with a mean of eight. There are 16 possible values this model 

could have had. Thus, DL (H1) = 4 bits.  

1 2 4 6 8 10 12 14 16 18 20 22 24
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Figure 6: Time series T (blue/fine), approximated by a one-dimensional APCA approximation H1 

(red/bold). The error for this model is represented by the vertical lines 

Model H1 does not approximate T well, and we must account for the error5. The errors 

e1, represented by the length of the vertical lines in Figure 6, are: 

e1 = 7  7  7  6  5  4  3  2  1  0  -1  -2  -3  -3  -4  -4  -4  -4  -3  -3  -2  -2  -1  1 

As noted in Definition 5, the cost to represent these errors is the correction cost; this 

is the number of bits encoding e1 using Huffman coding, which is 82 bits. Thus, the 

overall cost to represent T with a one-dimensional model or its reduced description 

length is:  

  (    )    (    )    (  )  

  (    )               

We can now test to see if hypothesis H2, which models the data with two constant 

lines, could reduce the description length. Figure 7 shows the two segment approximation 

lines created by APCA.  

 

Figure 7: Time series T (blue/fine), approximated by a two-dimensional APCA approximation, H2 

(red/bold). Vertical lines represent the error 

                                                           
5
 The word error has a pejorative meaning not intended here; some authors prefer to use correction cost.  

1 2 4 6 8 10 12 14 16 18 20 22 24

1 2 4 6 8 10 12 14 16 18 20 22 24
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As we expect, the error e2, shown as the vertical lines in Figure 7, is smaller than the 

error e1. In particular, the error e2 is:  

e2 = 2  2  2  1  0  -1  -2  -3  3  2  1  0  -1  -1  -2  -2  -2  -2  -1  -1  0  0  1  3 

The number of bits encoding e2 using Huffman coding or the correction cost to 

generate the time series T given the hypothesis H2, DL (T│H2), is 65 bits. Although the 

correction cost is smaller than one-dimensional APCA, the model cost is larger. In order 

to store two constant lines, two constant numbers corresponding to the height of each line 

and a pointer indicating the end position of the first line are required. Thus, the reduced 

description length of model H2 is:  

  (    )    (    )    (  )  

  (    )              (  )  ⌈    (  )⌉          

Because we have   (    )     (    ) , we prefer hypothesis H2 for our data. 

We are not done yet: we should also test H3, H4, H5, etc., corresponding to 3, 4, 5, 

etc. piecewise constant segments. Additionally, we could also test alternative models 

corresponding to different levels of DFT or PLA representation and test different 

cardinalities. For example, suppose we had been given T2 instead:  

T2 = 0  0  0  0  4  4  4  4  4  0  0  0  0  8  8  8  8  8  8  12  12  12  12  12 

Here, if we tested multiple hypotheses as to the cardinality of this data, we would 

hope to find that the hypothesis   
   that attempts to encode the data with a cardinality of 

just 4 would result in the smallest model. 

We have just one more issue to address before moving on. We had glossed over this 

issue to enhance the flow of the presentation above. Consider Figure 8 which contrasts 
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the original single-segment approximation shown in Figure 6 with an alternative single-

segment approximation.  

 

Figure 8 : left) The figure shown in Figure 6 contrasted with an attempt to approximate the raw 

data with a constant segment that clearly has too great a mean value (right). Note that while the 

number of repeated residuals (“errors”) is identical in both cases, the magnitude of the residuals is 

much greater in the latter case. It is this unnecessarily large magnitude that tells us this is a poor 

choice of an approximation      

Intuitively, the alternative is much worse, vastly overestimating the mean of the 

original data. However, on what basis could MDL make this distinction? If our MDL 

formulation considered the Y-axis values to be categorical variables then there would be 

no reason to prefer either model.  

However, note that the sum of the magnitude of the residuals is much greater in for 

Figure 8.right. This is true by definition, as using the mean minimizes this value. 

However, nothing in our model description length explicitly accounts for this. An obvious 

solution to this issue is to encode a term that accounts for the range of numbers required 

to be modeled in the description length, in addition to their entropy. This issue is unique 

to ordinal data, and does not occur with categorical data. For example, when dealing 

with categorical data, there is no cost difference between say sx = a  a  a  b , and sy = m  m  

m  n . However, in our domain there is a significant difference between say ex = 1  1  1  2 , 

and ey = 3  3  3  4 , because the latter condemns us to consider values in a log2(4) range in 

1 2 4 6 8 10 12 14 16 18 20 22 24 1 2 4 6 8 10 12 14 16 18 20 22 24
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the description length for the model, whereas the former allows us to only consider 

values in the smaller log2(2) range.  

In principle, this term is included in the size of |HuffmanTree(T)|, but as we noted 

above, we ignore this term in our model. The problem with Huffman coding is code 

words in Huffman coding can only have an integer number of bits. Thus the size of 

|HuffmanTree(T)|, does not distinguish between alternative models if we shift the mean 

up or down a few values. Arithmetic coding can be viewed as a generalization of 

Huffman coding, effectively allowing non-integer bit lengths. For this reason it tends to 

offer significantly better compression for small alphabet sizes, and we should expect a 

good hypothesis to have a small alphabet size by definition. In Figure 9, we show the 

effect of considering fractional bits for this problem. Note that the factional bits have a 

narrow range of 3 to 4, and the Huffman encoding does not make any distinction here. 

 

Figure 9 : The log2 of the range of the residual errors for all possible single constant polynomial 

models of the data introduced in Figure 5. Note that the model that minimizes this value (with a 

tie) is also the model that minimizes the residual error. 

The reader can now appreciate our why “solution” to this issue was to simply ignore 

it. Because the underlying dimensionality reduction algorithms we are using (APCA, 
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DFT, PLA) are attempting to minimize the residual error 6 , they are also implicitly 

minimizing the range of residuals. As shown by Figure 9, if we explicitly added a term 

for the range of residuals it would have no effect, as the dimensionality reduction 

algorithm has already minimized it.     

We have shown a detailed example using APCA. However, essentially all of the time 

series representations can be encoded in a similar way. As shown with three 

representative examples in Figure 10, essentially all of the time series models consist of a 

set of basic functions (i.e., coefficients) that are linearly combined to produce an 

approximation of the data.  

 

Figure 10: A time series T shown in bold/blue and three different models of it shown in fine/red: 

from left to right: DFT, APCA, and PLA 

As we apply our ideas to each representation, we must be careful to correctly “charge” 

each model for the number of parameters used in the model. For example, each APCA 

segment requires the mean value and length, whereas PLA segments require the mean 

value, segment length and slope. Each DFT coefficient can be represented by the 

amplitude and phase of each sine wave; however, because of the complex conjugate 

                                                           
6
 DFT does minimize the residual error at any desired dimensionality given its set of basis functions. For both APCA 

and PLA, while there are algorithms that can minimize the residual error, they are too slow to use in practice. We use 

greedy approximation algorithms that are known to produce near optimal results [21][34].   
   

0 40 80 120 0 40 80 120 0 40 80 120
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property, we get a “free” coefficient for each one we store [3][7]. In previous 

comparisons of the indexing performance of various time series representations, many 

authors have given an unfair advantage to one representation by counting the cost to 

represent an approximation incorrectly [20]. The ideas in this work explicitly assume a 

fair comparison. Fortunately, the community seems to have become more aware of this 

issue in recent years [3] [34]. 

In the next section we give both the generic version of the MDL model discovery for 

time series algorithms and three concrete instantiations for DFT, APCA, and PLA. 

2.3.2. Generic MDL for Time Series Algorithms 

In the previous section, we used a toy example to demonstrate how to compute the 

reduced description length of a time series with a competing hypothesis. In this section, 

we will show a detailed generic version of our algorithm, and then explain our algorithm 

in detail how we apply our algorithm to the three most commonly used time series 

representations. 

Our algorithm not only discovers the intrinsic cardinality and dimensionality of an 

input time series, but it can also be used to find the right model or data representation for 

a given time series. Table 1 shows a high-level view of our algorithm for discovering the 

best model, cardinality, and dimensionality which will minimize the total number of bits 

required to store the input time series. 

Because MDL is the core of our algorithm, the first step is to quantize a real-valued 

time series into a discrete-valued (but still fine-grained) time series, T (line 1). Next, we 

consider each model, cardinality, and dimensionality one by one (line 3-5). Then, a 
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hypothesis H is created based on the selected model and parameters (line 6). For example, 

a hypothesis H, shown in Figure 7, is created when the model M =APCA, cardinality 

c=16, and dimensionality d=2; note that, in that case, the length of the input time series 

was m=24. 

Table 1 :  Generic MDL algorithm for time series 

________________________________________________________________________________________ 

Algorithm: Generic MDL algorithm for time series 

Input:  TS:  time series   

Output: intrinsic_model:  intrinsic model 

        intrinsic_card :  intrinsic cardinality 

        intrinsic_dim  :  intrinsic dimensionality 

_______________________________________________________________________________________ 

1. T = Discretization(TS)  

2. bsf = ∞ 

3. for all M in {APCA,PLA,DFT,MIXTURE} 

4.     for all cardinality c 

5.        for all dimensionality d 

6.            H = ModelRespresentation(T,M,c,d) 

7.            total_cost = DL(H)+ DL(T|H) 

8.            if (bsf > total_cost) 

9.               bsf = total_cost 

10.             intrinsic_model = M 

11.             intrinsic_card  = c 

12.             intrinsic_dim   = d 

13.           end if 

14.      end for 

15.     end for 

16.  end for 

________________________________________________________________________________________ 

   For concreteness, we will now consider three specific versions of our generic 

algorithm. 
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The reduced description length is finally calculated (line 7), and our algorithm returns 

the model and parameters that minimize the reduced description length for encoding T 

(line 8-13). 

2.3.3. Adaptive Piecewise Constant Approximation 

As we have seen the example in Section 2.3.1, an APCA model is simple; it contains 

only constant segments. The pseudo code for APCA, shown in Table 2, is very similar to 

the generic algorithm.  

Table 2 : Our algorithm specific to APCA 

________________________________________________________________________________________ 

Algorithm: Intrinsic Discovery for APCA 

Input:  TS (time series) 

Output: intrinsic_card ; intrinsic_dim 

________________________________________________________________________________________ 

1. T = Discretization(TS)  

2. bsf = ∞ 

3.     for  c = 2:256 

4.        for d = 2 to m/2 

5.            H = APCA(T,c,d) 

6.            model_cost = d*log2c+(d-1)*log2m 

7.            total_cost = model_cost + DL(T|H) 

8.            if (bsf > total_cost) 

9.               bsf = total_cost 

10.             intrinsic_card  = c 

11.             intrinsic_dim   = d 

12.           end if 

13.       end for 

14.   end for 

________________________________________________________________________________________ 

First of all, we quantize the input time series (line 1). Then, we evaluate all 

cardinalities from 2 to 256 and dimensionalities from 2 to the maximum, which is half of 
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the length of the input time series TS (line 3-4).  Value m denotes the length of the input 

time series. 

Note that if the dimensionality were more than m/2, some segments would contain 

only one point. Then, a hypothesis H would be created using the values of cardinality c 

and dimensionality d, as shown in Figure 7, where c=16 and d=2. The model contains d 

constant segments, so the model cost is the number of bits required for storing d constant 

numbers, and d-1 pointers to indicate the offset of the end of each segment (line 6). The 

difference between T and H is also required to rebuild T. The correction cost is computed; 

then the reduced description length is calculated from the combination of the model cost 

and the correction cost (line 7). Finally, the hypothesis that minimizes this value is 

returned as an output of the algorithm (line 8-13).  

2.3.4. Piecewise Linear Approximation 

An example of a PLA model is shown in Figure 10.right. In contrast to APCA, a 

hypothesis using PLA is more complex because each segment contains a line of any slope, 

instead of a constant line in APCA. The algorithm used to discover the intrinsic 

cardinality and dimensionality for PLA is shown in Table 3, which is similar to the 

algorithm for APCA, except for the code in line 5 and 6.  

A PLA hypothesis H is created from the external module PLA (line 5). To represent 

each segment in hypothesis H, we record the starting value, ending value, and the ending 

offset (line 6). The slope is not kept because storing a real number is more expensive than 

log2c. 
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The first two values are represented in cardinality c and thus log2c bits are required 

for each of them. We also require log2m bits to point to any arbitrary offset in T. Thus, 

the model cost is shown in line 6. Finally, the reduced description length is calculated and 

the best choice is returned (line 8-13).  

Table 3 : Our algorithm specific to PLA 

________________________________________________________________________________________ 

Algorithm: Intrinsic Discovery for PLA 

Input:  TS (time series) 

Output: intrinsic_card; intrinsic_dim 

________________________________________________________________________________________ 

1. T = Discretization (TS)  

2. bsf = ∞ 

3. for   c = 2:256 

4.    for d = 2 to m/2 

5.         H = PLA (T,c,d) 

6.         model_cost = 2*d*log2c +(d-1)*log2m 

7.         total_cost = model_cost + DL(T|H) 

8          if (bsf > total_cost) 

9.         bsf = total_cost 

10.         intrinsic_card = c 

11.           intrinsic_dim = d 

12         end if 

13. end for 

14. end for 

________________________________________________________________________________________ 

2.3.5. Discrete Fourier Transform 

A data representation in DFT space is simply a linear combination of sine waves, as 

shown in Figure 10.left. Table 4 presents our algorithm specific to DFT. After we 
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quantize the input time series to a discrete time series T (line 1), the external module DFT 

is called to return the list of sine wave coefficients that represent T. The coefficients in 

DFT are a set of complex conjugates, so we store only half of all coefficients which 

contain complex numbers without their conjugate, called half_coef [line 5]. When 

half_coef is provided, it is trivial to compute their conjugates and obtain all original 

coefficients. 

Instead of using all of half_coef to regenerate T, we test using subsets of them as 

the hypothesis to approximately regenerate T, incurring an approximation error. We first 

sort the coefficients by their absolute value (line 6). We use top-d coefficients as the 

hypothesis to regenerate T by using InverseDFT (line 8). For example, when d=1 we 

use only the single most important coefficient to rebuild T, and when d=2 the 

combination of top-two sine waves are used as a hypothesis, etc. However, it is expensive 

to use 16 bits for each coefficient by keeping two complex numbers for its real part and 

imaginary part. Therefore, in line 7, we reduce those numbers to just c possible values 

(cardinality) by rounding the number to the nearest integer in a space of size c, and we 

also need a constant number of bits (32 bits) for the maximum and minimum value of 

both the real parts and the imaginary parts. Hence, the model contains top-d coefficients 

whose real (and imaginary) parts are in a space of size c. Thus, the model cost and the 

reduced description length are shown in lines 9 and 10. 
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Table 4 : Our algorithm specific to DFT 

________________________________________________________________________________________ 

Algorithm: Intrinsic Discovery for DFT 

Input:      TS (time series) 

Output:     intrinsic_card; intrinsic_dim 

________________________________________________________________________________________ 

1. T = Discretization (TS)  

2. bsf = ∞ 

3. for   c = 2:256 

4.    for d = 2 to m/2 

5.         half_coef = DFT(T) 

6.         sorted_coef = SortByPolar(half_coef) 

7.         round_coef = Round(sorted_coef, c) 

8          H = InverseDFT(round_coef(1:n)) 

9.      model_cost = 2*d*log2c+d*log2(m/2))+32 

10.        total_cost = model_cost + DL(T|H) 

11.        if (bsf > total_cost) 

12.             bsf = total_cost 

13.             intrinsic_card = c 

14.             intrinsic_dim  = d 

15.        end if 

16. end for 

17. end for 

________________________________________________________________________________________  

For simplicity we placed the external modules APCA, PLA, and DFT inside two for-

loops; however, to improve performance, they should be moved outside the loops. 

2.3.6. A Mixed Polynomial Degree Model  

For a given time series T, we want to know the representation that can minimize the 

reduced description length for T. We have shown how to achieve this goal by applying 
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the MDL principle to three different models (APCA, PLA and DFT). However, for some 

complex time series, using only one of the above models may not be sufficient to achieve 

the most parsimonious representation, as measured by bit cost, or by our subjective 

understanding of the data [27][34]. It has been shown that averaged over many highly 

diverse datasets, there is not much difference among the different representations [34]. 

However, it is possible that within a single dataset, the specific model used could make a 

significant difference. For example, consider each of the two time series that form the 

trajectory of an automobile as it drives through Manhattan. These time series are 

comprised of a combination of straight lines and curves. We could choose just one of 

these possibilities, either representing the automobile’s turns with many piecewise linear 

segments, or representing the long straight sections with a degenerate “curve.” However, 

a mixed polynomial degree model is clearly more natural here.  

For clarity, we show a toy example that can benefit from a mixed polynomial degree 

model in Figure 11. It is easy to observe that there are constant, linear and quadratic 

patterns in this example. In Sections 2.4.9 and 2.4.10, we further demonstrate the utility 

of our ideas on real datasets [21][27][33]. 

 

Figure 11 : A toy example of a time series that has more than one state 
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Several works propose that it may be fruitful to use a combination of different models 

within one time series [21][27][34]. For example, [27] proposes a mixed model wherein 

the polynomial degree of each interval in one time series can vary. The polynomial 

degree can be zero, one, two or higher. The goal of [27] is to minimize the Euclidean 

error between the model and the original data for a given number of segments. However, 

note that [27] requires the user to state the desired dimensionality, something we 

obviously wish to avoid. Minimizing the Euclidean error between the model and the 

original data is a useful objective function for some tasks, but it is not necessarily the 

same as discovering the intrinsic dimensionality, which is our stated goal. In the 

following, we show that our proposed algorithm returns the intrinsic model by 

minimizing the reduced description length using MDL. Moreover, our algorithm is 

essentially parameter-free. 

We propose a mixed model framework using MDL that optimizes a mixture of 

constant, linear and quadratic representations for different local regions of a single time 

series. In this case, the operator space of the segmentation algorithm (Table 6) becomes 

larger. Table 5 shows a high-level view of the algorithm. Lines 1 to 4 are similar to the 

algorithm for APCA and PLA. The function in line 5 is the return for the d segments 

with the hypothesis H, the model cost and the starting point of each segment. Table 6 

illustrates how the bottom-up mixed polynomial degree algorithm works in detail. Each 

segment is represented by a different polynomial degree to minimize the reduced 

description length. The model costs for constant, linear and quadratic representations are 

log2c bits, 2*log2c bits and 3*log2c bits, respectively. For example, if c is 256, the 
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model costs for the above three representations are 8 bits, 16 bits and 24 bits, respectively. 

In line 7, In addition to the total model cost of all of the segments, the model cost of the 

whole time series needs to use extra bits to store the starting point of each segment. 

Observe that the model cost for a segment is independent of the length of the segment. 

More specifically, the model cost for each segment is only determined by the polynomial 

degree of the representation and the cardinality c. 

Table 5 : Our algorithm specific to the mixed polynomial degree model 

________________________________________________________________________________________ 

Algorithm: Intrinsic Model Discovery for the mixed polynomial degree 

representations 

Input:  TS (time series) 

Output: intrinsic_card; intrinsic_dim 

________________________________________________________________________________________ 

1. T = Discretization (TS) 

2. bsf = ∞ 

3. for   c = 2:256 

4.    for d = 2 to m/2 

5.       segment_info= bottom_up_mixed(T,c,d)     // See Table 6 

6.       H = sum(segment_info.H) 

7.       model_cost = sum(segment_info.model_cost) + (d-1)*log2m 

8.       total_cost = model_cost +DL(T|H) 

9.      if (bsf > total_cost) 

10.         bsf = total_cost 

11.         intrinsic_card = c 

12.         intrinsic_dim  = d 

13.      end if 

14.   end for 

15. end for 

________________________________________________________________________________________ 

Table 6 shows the bottom-up mixed polynomial degree model algorithm. By 

choosing the minimum description costs as the objection function, the algorithm shown 
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in Table 6 is a generalization of the bottom-up algorithm for generating the Piecewise 

Linear Approximation (PLA) introduced in [21]. There are two main differences between 

our bottom-up mixed model algorithm and the bottom-up algorithm described in [21]. 

The first is a minor pragmatic point: instead of using two points in the finest possible 

approximation, the algorithm shown in Table 6 uses three points. This is because when 

the polynomial degree of the representation is two, the number of points by using this 

approximation must be at least three. Second, instead of using Euclidean distance as the 

objective function, the algorithm in Table 6 uses MDL cost. The algorithm calculates the 

MDL costs for three degrees of polynomial degree representations for a segment. The 

polynomial degrees are zero, one and two, respectively. Next, it chooses the one that can 

minimize the cost (the description length). The algorithm begins by creating the finest 

possible approximation of the input time series. So for a length of n time series, there are 

n/3 segments after this step, as shown in Table 6, line 2 to line 4. Then the cost of 

merging each pair of adjacent segments is calculated, as shown in line 5 to line 7. To 

minimize the merging cost for the two input segments, this calculate_MDL_cost 

function calculates the MDL costs for three kinds of polynomial degree representations, 

and then chooses the minimum one as the merging cost (line 6). After this step, the 

algorithm iteratively merges the lowest cost pair until a stopping criterion is met. In this 

scenario, the stopping criterion is the input number of segments. This means that the 

algorithm will not terminate as long as the current number of segments is larger than the 

input number of segments.  
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It is important to note that, similar to the algorithm [21], our algorithm is greedy in 

the sense that once two regions have been joined together in a single segment, they will 

remain together in that segment (which may get larger as it is iteratively joined with other 

segments). There are only join operators; there are no split operators. However, if a 

region in our algorithm is initially assigned to a polynomial of a particular degree, this 

does not mean it cannot later be subsumed into a larger segment of a different degree. In 

other words, a tiny region that locally may consider itself, say, linear has the ability to 

later become part of a constant or quadratic segment as it obtains a more “global” view. 

Table 6 : Bottom-up mixed polynomial degree model algorithm 

______________________________________________________________________________________ 

Algorithm: Bottom-up algorithm for mixed polynomial degree model 

Input:  TS (time series), c, d 

Output: Seg_TS 

________________________________________________________________________________________ 

1. T = Discretization (TS) 

2. for i = 1:3:length(T) 

3.   Seg_TS = concat(Seg_TS, T([i:i+2])) 

4. end 

5. for  i = 1: length(Seg_TS) – 1  

 //Find the merging cost of each pair of segments     

6.    merge_cost(i) = calculate_MDL_cost(merge(Seg_TS(i), Seg_TS(i+1)),c); 

7. end 

8. while length(segment) > d 
9.    ind = min(merge_cost)                   // Find cheapest pair to merge 

10. Seg_TS(i) = merge(Seg_TS(ind), Seg_TS(ind+1)))   // Merge them 

11. delete(Seg_TS(ind+1))                           // Update records 

12. merge_cost(i)= calculate_MDL_cost(Seg_TS(i),  Seg_TS(i+1)),c) 

13. merge_cost(i-1)=calculate_MDL_cost(merge(Seg_TS(i-1), Seg_TS(i)),c) 

14. end 

_______________________________________________________________________________________ 
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2.4 Experimental Evaluation 

To ensure that our experiments are easily reproducible, we have set up a website 

which contains all data and code, together with the raw spreadsheets of the results [61]. 

In addition, this website contains additional experiments that are omitted here for brevity. 

2.4.1. A Detailed Example on a Famous Problem 

We start with a simple sanity check on the classic problem specifying the correct time 

series model, cardinality and dimensionality, given an observation of a corrupted version 

of it. While this problem has received significant attention in the literature [8][44][46], 

our MDL method has two significant advantages over existing works. First, there are no 

explicit parameter to set, whereas most other methods require several parameters to be set. 

Second, MDL helps to specify the model, cardinality and dimensionality, whereas other 

methods typically only consider the model and/or dimensionality. 

To eliminate the possibility of data bias [22] we consider a ten-year-old instantiation 

[46] of a classic benchmark problem [8]. In Figure 12, we show the classic Donoho-

Johnstone block benchmark. The underlying model used to produce it consists of twelve 

piecewise constant sections with Gaussian noise added.  

 

Figure 12 : A version of the Donoho-Johnstone block benchmark created ten years ago and 

downloaded from [46] 

Donoho-Johnstone Benchmark
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The task is challenging because some of the piecewise constant sections are very 

short and thus easily dismissed during a model search. Dozens of algorithms have been 

tested on this time series (indeed, on this exact instance of data) in the last decade: which 

should we compare to? Most of these methods have several parameters, in some cases as 

many as six [10][11]. We argue that comparisons to such methods are inappropriate, 

since our explicit aim is to introduce a parameter-free method. The most cited parameter-

free method addressing this problem is the L-Method [44]. In essence, the L-Method is a 

“knee-finding” algorithm. It attempts to explain the residual error vs. size-of-model curve 

using all possible pairs of two regression lines. Figure 13.top shows one such pair of 

lines, from one to ten and from eleven to the end. The location that produces the 

minimum sum of the residual errors of these two curves, R, is offered as the optimal 

model. As we can see in Figure 13.bottom, this occurs at location ten, a reasonable 

estimate of the true value of twelve. 

We also tested several other methods, including a recently-proposed Bayesian 

Information Criterion-based method that we found predicted a too coarse four-segment 

model [59]. No other parameter-free or parameter-lite method we found produced 

intuitive (much less correct) results. We therefore omit further comparisons in this paper 

(however, many additional experiments are available at [61]). 
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Figure 13 : The knee-finding L-Method. top) A residual error vs. size-of-model curve (blue/bold) 

is modeled by all possible pairs of regression lines (red/light). Here, just one possibility is shown. 

bottom) The location that minimizes the summed residual error of the two regression lines is given 

as the optimal “knee” 

We solve this problem with our MDL approach. Figure 14 shows that of the 64 

different piecewise constant models it evaluated, MDL selected the twelve-segment 

model, which is the correct answer. 

 

Figure 14 : The description length of the Donoho-Johnstone block benchmark time series is 

minimized at a dimensionality corresponding to twelve piecewise constant segments, which is the 

correct answer [46] 

The figure above uses a cardinality of 256, but the same answer is returned for (at 

least) every cardinality from 8 to 256. 

Beyond outperforming other techniques at the task of finding the correct 

dimensionality of a model, MDL can also find the intrinsic cardinality of a dataset, 

something for which methods [44][59] are not even defined. In we have repeated the 
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previous experiment, but this time fixing the dimensionality to twelve as suggested above, 

and testing all possible cardinality values from 2 to 256. 

 

Figure 15 : The description length of the Donoho-Johnstone block benchmark time series is 

minimized with a cardinality of ten, which is the true cardinality [46] 

Here MDL indicates a cardinality of ten, which is the correct answer [46]. We also 

re-implemented the most referenced recent paper on time series discretization [11]. The 

algorithm is stochastic, and requires the setting of five parameters. In one hundred runs 

over multiple parameters we found it consistently underestimated the cardinality of the 

data (the mean cardinality was 7.2). 

Before leaving this example, we show one further significant advantage of MDL over 

existing techniques. Both [44][59] try to find the optimal dimensionality, assuming the 

underlying model is known. However, in many circumstances we may not know the 

underlying model. As we show in Figure 16, with MDL we can relax even this 

assumption. If our MDL scoring scheme is allowed to choose over the cross product of 

model = {APCA, PLA, DFT}, dimensionality = {1 to 512} and cardinality = {2 to 256}, 

it correctly chooses the right model, dimensionality and cardinality. 
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Figure 16: The description length of the Donoho-Johnstone block benchmark time series is 

minimized with a piecewise constant model (APCA), not a piecewise linear model (PLA) or 

Fourier representation (DFT) 

2.4.2. An Example Application in Physiology 

The Muscle dataset studied by Mörchen and Ultsch [32] describes the muscle 

activation of a professional inline speed skater. The authors calculated the muscle 

activation from the original EMG (electromyography) measurements by taking the 

logarithm of the energy derived from a wavelet analysis. Figure 17.top shows an excerpt. 

At first glance it seems to have two states, which correspond to our (perhaps) naive 

intuitions about skating and muscle physiology.  

 

Figure 17 : top) An excerpt from the Muscle dataset. bottom) A zoomed-in section of the Muscle 

dataset which had its model, dimensionality and cardinality set by MDL 

We test this binary assumption by using MDL to find the model, dimensionality and 

cardinality. The results for the model and dimensionality are objectively correct, as we 
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might have expected given the results in the previous section, but the results for 

cardinality, shown in Figure 18.left, are worth examining.  

Our MDL method suggests a cardinality of three. Glancing back at Figure 17.bottom 

shows why. At the end of the stroke there is an additional level corresponding to an 

additional push-off by the athlete. This feature was noted by physiologists who worked 

with Mörchen and Ultsch [32]. However, their algorithm weakly predicts a value of four7. 

Here, once again we find the MDL can outperform this latter approach, even though [32] 

acknowledges that their reported result is the best obtained after some parameter tuning 

using additional data from the same domain.  

 

Figure 18: left) The description length of the muscle activation time series is minimized with a 

cardinality of three, which is the correct answer. right) The Persist algorithm, using the code from 

[32], predicts a value of four 

2.4.3. An Example Application in Astronomy 

In this section (and the one following) we consider the possible utility of MDL 

scoring as an anomaly detector. Building an anomaly detector using MDL is very simple. 

We can simply record the best model, dimensionality and/or cardinality predicted for the 

training data, and then test on future observations that have significantly different learned 

parameters. We can illustrate this idea with an example in astronomy. We begin by 
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noting that we are merely demonstrating an additional possible application of our ideas. 

We are only showing that we can reproduce the utility of existing works. However note 

that our technique is at least as fast as existing methods [40][41]., and does not require 

any training data or parameter tuning, an important advantage for exploratory data 

mining.  

Globally there are hundreds of telescopes covering the sky and constantly recording 

massive amounts of astronomical data [40]. Moreover, there is a worldwide effort to 

digitize tens of millions of observations recorded on formats ranging from paper/pencil to 

punch cards over the last hundred years. Having humans manually inspect all such 

observations is clearly impossible [30]. Therefore, outlier detection can be useful to catch 

anomalous data, which may indicate an exciting new discovery or just a pedestrian error. 

We took a collection of 1,000 hand-annotated RRL variable stars [40] [41], and measured 

the mean and standard deviation of the DFT dimensionality, which turned out to be 22.52 

and 2.12, respectively. As shown in Figure 19.top, the distribution is Gaussian.   

We then took a test set of 8,124 objects, known to contain at least one anomaly, and 

measured the intrinsic DFT dimensionality of all of its members, and discovered that one 

had a value of 31. As shown in Figure 19.bottom, the offending curve looks different 

from the other data, and is labeled RRL_OGLE053803.42-695656.4.I.folded ANOM. This 

curve is a previously known anomaly. In this case, we are simply able to reproduce the 

anomaly finding ability of previous work [40][41]. However, we achieved this result 

without extensive parameter tuning, and we can do so very efficiently.    
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Figure 19: top) The distribution of intrinsic dimensionalities of star light curves, estimated over 

5,327 human-annotated examples. bottom) Three typical examples of the class RRL, and a high 

intrinsic dimensionality example, labeled as an outlier by [40] 

2.4.4. An Example Application in Cardiology 

In this section we show how MDL can be used to mine ECG data. Our intention is not 

to produce a definitive method for this domain, but simply to demonstrate the utility and 

generality of MDL. We conducted an experiment that is similar in spirit to the previous 

section. We learned the mean and standard deviation of the DFT dimensionality on 200 

normal heartbeats, finding them to be 20.82 and 1.70, respectively. As shown in Figure 

20.top, the distribution is clearly Gaussian  

 

Figure 20: top) The distribution of intrinsic dimensionalities of individual heartbeats, estimated 

over the 200 normal examples in record 108 of the MIT BIH Arrhythmia Database (bottom) 
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. We used these learned values to monitor the rest of the data, flagging any heartbeats 

that had a dimensionality that was more than three standard deviations from the mean. 

Figure 20.bottom shows a heartbeat that was flagged by this technique. 

Once again, here we are simply reproducing a result that could be produced by other 

methods [58]. However, we reiterate that we are doing so without any parameter tuning. 

Moreover, it is interesting to note when our algorithm does not flag innocuous data (i.e., 

produces false positives). Consider the two adjacent heartbeats labeled A and B in Figure 

20.bottom. It happens that the completely normal heartbeat B has significantly more noise 

than heartbeat A. Such non-stationary noise presents great difficulties for distance-based 

and density-based outlier detection methods [58], but MDL is essentially invariant to it. 

Likewise, the significant wandering baseline (not illustrated) in parts of this dataset has 

no medical significance and is ignored by MDL, but it is the bane of many EEG anomaly 

detection methods [4]. 

2.4.5.  An Example Application in Geosciences  

Global-scale Earth observation satellites such as the Defense Meteorological Satellite 

Program (DMSP) Special Sensor Microwave/Imager (SSM/I) have provided temporally 

detailed information about the Earth’s surface since 1978, and the National Snow and Ice 

Data Center (NSIDC) in Boulder, Colorado makes this data available in real time. Such 

archives are a critical resource for scientists studying climate change [37]. In Figure 21, 

we show a brightness temperature time series from a region in Antarctica, using SSM/I 

daily observations over the 2001-2002 austral summer. 
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We used MDL to search this archive for low complexity annual data, reasoning that 

low complexity data might be amenable to explanation. Because there is no natural 

starting point for a year, for each time series we tested every possible day as the starting 

point. The simplest time series we discovered required a piecewise constant 

dimensionality of two with a cardinality of two, suggesting that a very simple process 

created the data. Furthermore, the model discovered (piecewise constant) is somewhat 

surprising, since virtually all climate data is sinusoidal, reflecting annual periodicity; thus, 

we were intrigued to find an explanation for the data. 

 

Figure 21: left) A time series of temperatures in a region of Antarctica. right) Of the hundreds of 

millions of such time series archived at NSIDC, this time series (and a few thousand more) is 

unusual in that it has a very low complexity, being best modeled with just two linear segments    

After consulting some polar climate experts, the following explanation emerges. For 

most of the year the location in question is covered in snow. The introduction of a small 

amount of liquid water will significantly change the reflective properties of the ground 

cover, allowing the absorption of more heat from the sun, thus producing more liquid 

water in a rapid positive feedback cycle. This explains why the data does not have a 

sinusoidal shape or a gradual (say, linear) rise, but a fast phase change, from a mean of 

about 155 Kelvin to a ninety-day summer of about 260 Kelvin.  
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2.4.6. An Example Application in Hydrology and Environmental Science 

In this section we show two applications of our algorithm in hydrological and 

environmental domains.  

The first application is the hydrology data studied by [19] describing the annual 

discharge rate of the Senegal River. This data was measured at Bakel station from the 

year 1903 to 1988 [19], as shown in Figure 22.  

 

Figure 22: A time series showing the annual discharge rate of Senegal River from the year 1903 to 

1988 

The authors of [19] reported the optimal segmentation occurs when the number of 

segments is five using a Hidden Markov Model (HMM)-based segmentation algorithm, 

as shown in Figure 23.top.  

 

Figure 23: top) The blue/light line is Senegal River data. The black/bold line is the segmentation 

result found in Section 5.1 of [19]. bottom) We obtained the red/bold line by hard coding the 

number of segments to five using the MDL algorithm 
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As illustrated in Figure 23.bottom, we get a similar plot by hard coding the number of 

segments to five, using the MDL-based Adaptive Piecewise Constant Approximation 

algorithm shown in Table 2. However, as shown in Figure 24, our MDL algorithm 

actually predicts two as its intrinsic dimensionality of data in Figure 22. Note that there is 

no ground truth for this problem 8 . Nevertheless, for the Donoho-Johnstone block 

benchmark dataset that has ground truth in Section 2.4.1, we have correctly predicted its 

intrinsic dimensionality, and we would argue that the two-segment solution shown in 

Figure 24 is at least subjectively as plausible as the five segment solution. 

 

Figure 24: Our MDL algorithm predicts that the intrinsic dimensionality of the annual discharge 

rate of the Senegal River is two. The approximation is shown in red/bold 

Below we consider an application of our algorithm in a similar domain in 

environmental data. The data we consider is the time series of the annual global 

temperature change from the year 1700 to 1981 [19], as shown in Figure 25. 

 

Figure 25: A time series showing the annual global temperature change from the year 1700 to 

1981 

                                                           
8
 In [19] authors claimed that to obtain the optimal segmentation, the number of segments should be five. This claim is 

very subjective, simply because this “optimal” segmentation is with respect to the total deviation from segment 

means. Moreover, there is no hydrological interpretation of the five segments with regard to the real data.  
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In [19] the authors suggest that the optimal segmentation occurs when the number of 

segments is four, as shown in Figure 26.top.  

 

Figure 26: top) The blue/light line is the annual global temperature change. The black/bold line is 

the segmentation result found in Section 5.2 of [19]. bottom) We obtained a similar but slightly 

different model, as shown in the red/bold line, by hard coding the number of segments to four 

using the MDL algorithm 

As illustrated in Figure 26.bottom, using the algorithm in Table 2, we obtain a very 

similar plot by hard coding the number of segments to four. As before there is no external 

ground truth explanation as to why the optimal segmentation of this global annual mean 

temperature time series should be four. However, as shown in Figure 27, our MDL 

algorithm predicts that the intrinsic dimensionality of the global temperature change data 

is two.  

 

Figure 27: Our MDL algorithm obtains two as the intrinsic dimensionality of the time series for 

the global annual mean temperature 

Here, there is at least some tentative evidence to support our two segment model. 
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to 1942 [25][48]. Moreover, there were no significant temperature changes after 1700 

other than during this rapid warming period. 

2.4.7. An Example Application in Biophysics 

In [2], the authors also proposed an HMM-based approach (distinct from, but similar 

in spirit to that described in [19] and discussed in the previous section) to segment the 

time series from single-molecule Förster resonance energy transfer (smFRET) 

experiments.  Figure 28 shows a time series from the smFRET experiment [2][54].  

 

Figure 28: A representative smFRET trace from [2][54] 

The authors in [2] noted that there are biophysical reasons to think that the data is 

intrinsically piecewise constant, but the number of states is unknown. Their method 

suggests that there are three states in the above time series, as shown in Figure 29.top). 

We obtain the same results, as our algorithm finds that the intrinsic cardinality for the 

data in Figure 28 is also three using the algorithm in Table 2.  Figure 29. bottom) 

illustrates our approach. However, there are several parameters in the HMM-based 

approach used by [2]. Moreover, their approach iteratively finds the number of states 

with the maximum likelihood, which results in a very slow algorithm. In contrast, our 

algorithm is parameter-free and significantly faster. Note that we do not even have to 

have the assumption (made by [2]) that the data is piecewise constant. The mixed 
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polynomial algorithm introduced in Section 2.3.6 considered and discounted a linear, 

quadratic or mixed polynomial model to produce the model shown in Figure 29.bottom).      

 

Figure 29: top) The time series in blue from Figure 28 is predicted to have three states [2][54]. The 

approximation is shown in black/bold.  bottom) Our algorithm also finds three as the intrinsic 

cardinality. Piecewise constant approximation is shown in red/bold 

2.4.8. An Example Application in Prognostics 

In this section, we demonstrate our framework’s ability to aid in clustering problems. 

Recently, the field of prognostics for engineering systems has attracted a huge 

amount of attention due to its ability to provide an early warning for system failures, 

forecast maintenance as needed, and estimate the remaining useful life of a system 

[12][39][49][56][57]. Data-driven prognostics are more useful than model-driven 

prognostics, since a model-driven prognostic requires incorporating a physical 

understanding of the systems [12]. This is especially true when we have access to large 

amounts of data, a situation that is becoming more and more common.   

There may be thousands of sensors in a single engineering system. Consider, for 

example, a typical oil-drilling platform that can have 20,000 to 40,000 sensors on board 

[16]. All of these sensors stream data about the health of the system [16]. Among the 

huge number of variables, there are some variables called operational sensors that have a 

0 50 100 150 200 250

0.2

0.6

1

- 0.2
F

R
E

T

Time step

0 50 100 150 200 250

0.2

0.6

1

- 0.2

F
R

E
T

Time step



 

54 

 

substantial effect on system performance. In order to do a prognostic analysis, first the 

operational variables should be filtered from the non-operational variables that are just 

responding to the operational ones [56]. 

We analyzed the Prognostics and Health Management Challenge (PHM08) dataset 

which contains data from 233 different engines [38][39]. Each engine has data from 

around 900 engine cycles for one aircraft. Each engine cycle represents one aircraft flying 

from one destination to another. Figure 30 implies that the data from the operational 

variable and the non-operational variable are visually very similar.  

 

Figure 30: top) An example of an operational variable in the PHM08 dataset. bottom) An example 

of a non-operational variable in the PHM08 dataset 

The defined task here is to cluster the operational variables and non-operational 

variables into two groups. For ease of exposition, we only consider one variable in each 

group. Nevertheless, our framework can be easily extended to multivariate problems. We 

calculate the intrinsic cardinality and the reduced description length for one operational 

variable and one non-operational variable from all of the 233 engines. One marker in 

Figure 31 represents one variable from one engine.  
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Although data from the two kinds of variables look very similar (Figure 30), our 

results in Figure 31 show that there is a significant difference between them: the 

operational variables lie in the lower left corner of Figure 31 with low cardinalities and 

small reduced description lengths. In contrast, the non-operational variables lie in the 

upper right corner of Figure 31 with high cardinalities and large reduced description 

lengths. This implies that the data from the operational variables is relatively ‘simple’ 

compared to the data from the non-operational variables, since the intrinsic cardinalities 

and reduced description lengths of the data from the operational variables are relatively 

small. This result was confirmed by a Prognostics expert: the hypothesis for filtering out 

the operational variables is that data from operational variables tends to have simpler 

behavior, since there are only several crucial states for the engines [14][38][39][56][57]. 

Note that in our experiment we did not need to tune any parameters, while most of the 

related literature for this dataset use multi-layer perceptron neural networks [14][56][57], 

which have the overhead of parameter tuning and are prone to overfitting. 

 

Figure 31: The blue/cross markers represent operational variables. The red/circle markers 

represent non-operational variables. The variables from 233 engines are analyzed in the plot 
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2.4.9. Testing the Mixed Polynomial Degree Model 

In Section 2.3.6 we introduced an algorithm for finding mixed polynomial degree 

models for a time series. In this section, we demonstrate the application of our proposed 

algorithm to the synthetic time series shown in Figure 33. As shown in Figure 32, we 

calculated its intrinsic dimensionality using the algorithms in Table 5 and Table 6. The 

minimum cost occurs when the dimensionality is eight. 

 

Figure 32: The description length of the synthetic time series shown in Figure 11 minimizes when 

the dimensionality is eight, which is the intrinsic dimensionality 

Figure 33 shows the data and its intrinsic mixed polynomial degree representations. 

In Figure 33 bottom), we observed that there are four constant segments, two linear 

segments and two quadratic segments, which correctly reflects how we constructed this 

toy data. 

   

Figure 33: top) A toy time series shown in Figure 11 has constant, linear and quadratic segments. 

bottom) data in top) is represented by a mixed polynomial degree model. The segments are 

brushed with different colors according to the polynomial degree of the representations. Red 
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indicates a constant representation. Black indicates a linear representation and green indicates a 

quadratic representation 

2.4.10. An Example Application in Aeronautics 

Having demonstrated the mixed polynomial degree model on a toy problem, we are 

now ready to consider a real-world dataset. The Space Shuttle dataset contains time series 

produced by the inertial navigation system error correction system, as shown in Figure 34. 

 

Figure 34: top) One snippet of a space shuttle time series that clearly has more than one state. 

bottom) Another space shuttle time series that has more than one state 

Using only one approximation to represent the time series like the ones in Figure 34 

does not achieve a natural segmentation, since the data itself is intrinsically composed of 

more than one state. We applied the mixed polynomial degree algorithm in Table 5 and 

Table 6 to the data shown in Figure 34. The algorithm returns different polynomial 

degrees for different segments, as demonstrated in Figure 35.  
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Figure 35: The data shown in Figure 34 after we applied our mixed polynomial degree 

segmentation. The segments are brushed with different colors according to the polynomial degree 

of the representations. Red indicates a constant representation. Black indicates a linear 

representation and green indicates a quadratic representation 

We observe that there are three different states in both of the two time series shown in 

Figure 34. An understanding of the processes that produced this data seems to support 

this result [23]. 

2.4.11. Quantifiable Experiments 

We conclude this section with a set of quantifiable experiments that explicitly allow 

us to demonstrate the robustness of our algorithm to various factors that can cause it to 

fail. In every case, we push our algorithm passed its failure point, and by archiving all 

data [61] we establish baselines for researchers to improve on our results. We are 

particularly interested in measuring our algorithms sensitivity to: 

Noise: The results shown in Sections 2.4.1 and 2.4.2 suggest that our framework is at 

least somewhat robust to noise, but it is natural to ask at what point it breaks down, and 

how gracefully it degrades.  
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Sampling Rate: For many applications the ubiquity of cheap sensors and memory 

means that the data is sampled at a rate higher than any practical application needs. For 

example, in the last decade most ECG data has gone from being sampled at 256Hz to 

sampling rates of up to 10KHz, even though there is little evidence that this aids analysis 

in any way. Nevertheless, there are clearly situations in which the data may be sampled at 

a lower rate than the ideal, and again we should consider how gracefully our method 

degrades.  

Model Assumptions: While we have attempted to have our algorithm as free of 

assumptions/parameters as possible, we still must specify the model class(es) to search 

over, i.e. DFT, APCA, and PLA. Clearly even if we had noise-free data, the data may not 

be exactly a “platonic idea” created from pure components of our chosen model. Thus we 

must ask ourselves how much our model assumptions can be violated before our 

algorithm degrades. 

To test these issues we created modifications of the Donoho-Johnstone block 

benchmark [46]. Our version is essentially identical to the version shown in Figure 12, 

except it initially has no noise. We call this initial prototype signal P. After adding 

various distortions/modifications to the data, we can measure the success of our 

algorithm in three ways: 

The Root-Mean-Square-Error (RMSE). This is the average of the sum of squared 

differences between P and the predicted output of our algorithm. This is essentially the 

mean of square lengths of the gray hatch lines shown in Figure 7. While zero clearly 

indicates a perfect recreation of the data, the absolute value of RMSE otherwise has little 
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intuitive value. However the rate at which it changes due to a distortion is of interest here. 

This measure is shown with blue lines in Figure 36. 

Correct Cardinality Prediction: This is a binary outcome, either our algorithm 

predicted the correct cardinality or it did not. This is shown with black lines in Figure 36.  

Correct Dimensionality Prediction: This is also a binary outcome, either our 

algorithm predicted the correct dimensionality or it did not. Note that we only count a 

correct prediction of dimensionality if every segment endpoint is within three data points 

of the true location. This measure is shown with red lines in Figure 36. 

As shown in Figure 36 our strategy is to begin with an easy case for our algorithm 

and progressively add more distortion until both the cardinality and dimensionality 

predictions fail. Concretely: 

In Figure 36.top we start with the initial prototype signal P which has no noise, and 

we add noise until the signal-to-noise (SNR) ratio is -4.0. The SNR is calculated 

according to the standard equation in [45]. As we can see, the cardinality prediction fails 

at a SNR of about -1.7, and the dimensionality prediction shortly thereafter. 

In Figure 36.middle we start with the initial prototype signal P with an SNR of -0.22, 

which is the published DJB data with the medium-noise setting [46]. We progressively 

resample the data from 2048 datapoints (the original data) down to just 82 datapoints. 

Both the cardinality and dimensionality predictions fail as we move from 300 to 320 

datapoints. 

In Figure 36.bottom we again start with the initial prototype signal P with an SNR of -

0.22, this time we gradually add a global linear trend from zero to 0.45, as measured by 
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the gradient of the data. Both the dimensionality and cardinality predictions fail as the 

gradient is increase pasted 0.3.  

 

 

Figure 36: The robustness of our algorithm to various distortions added to the DJB data. In (a).left 

we show the DJB data with no noise, and in (a).right we plot the RMSE between (a).left and the 

corrupted versions. In (b).left we start with the same data shown in Figure 12. (the noise level in 

(b).left is also marked in pointed out in (a).right). In (b).right, we show the RMSE between (b).left 

and the downsampled versions of the data. In (c).left we again start with the data used in Figure 12, 

and in (c).right we plot the RMSE between (c).left and the linear trend added versions 

 The results in Figure 36 suggest our algorithm is quiet robust to these various 

distortions. To give the reader a better appreciation of when our algorithm fails, in Figure 
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37 we show the most corrupted version of the signals for which our algorithm correctly 

predicted either the cardinality or the dimensionality. 

 

Figure 37: The three most corrupted versions of the Donoho-Johnstone block for which our 

framework makes a correct prediction of either the cardinality or the dimensionality. (a) The 

nosiest example, (b) the example with the lowest sampling rate, (c) the example with the greatest 

linear trend added 

It is important to reiterate that the experiment that added a linear trend to the data but 

only considered a constant model was deliberately testing the mismatch between 

assumptions and reality. In particular if we repeat the technique shown in Figure 16, of 

testing over all models spaces in {DFT, APCA, PLA}, our algorithm does correctly 

predict the data in Figure 37(c) as consisting of piecewise linear segments, and still 

correctly predicts the cardinality and the dimensionality. 

2.5 Time and Space Complexity  

The space complexity of our algorithm is linear in the size of the original data. The 

time complexity of the algorithms that use APCA and PLA as the representation in Table 
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2 and Table 3 is O (m
2
) and the time complexity of the algorithm using DFT as the 

approximation in Table 4 is O (mlogm). Although we have two for-loops in the above 

three tables, the for-loops just add constant factors; they do not increase the degree of the 

polynomial to the time complexity. This is because outer for-loop is the range of 

cardinalities c from 2 to 256 and the inner for-loop is the range of the dimensionalities d 

from 2 to 64.  

Our framework achieves the time complexity of O (m
2
). Note that the data in Section 

2.4.5 were obtained over a year and the datasets in Section 2.4.6 were obtained over more 

than 80 years. Thus compared to how long it takes to collect the data, our algorithm’s 

execution time (a few seconds) is inconsequential for most applications. 

Nevertheless, we can use the following two methods to speed up the search by pruning 

the search space of combinations of every c and d that are very unlikely to be fruitful. 

First, there are nested for-loops in Table 2, 3 and 4. It appears that we have to 

calculate the MDL cost for every combination of each c and d, thus the results will form a 

2D matrix. However, instead of finding the MDL cost from the every combination of 

each c and d, we can just calculate the MDL cost in a very small subset of the matrix, in 

particular, just one row and one column. This works as follows, for a given time series, 

we first calculate its intrinsic dimensionality given a fixed cardinality of 256. Secondly, 

with the intrinsic dimensionality in hand, we scan a range of cardinality from 2 to 256 to 

find out the intrinsic cardinality. We illustrate the intuition as to why searching only one 

row and one column of the matrix are generally sufficient for finding the intrinsic 

cardinality and dimensionality. Consider the Donoho-Johnstone Benchmark (DJB) data 
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as an example in Figure 38, there is no need to search over the whole matrix, because 

changing the cardinality from 512 to 4 does not produce different predicted 

dimensionalities. 

 

Figure 38: A comparison of the effect from differing cardinalities on our framework’s ability to 

discover the correct intrinsic dimensionality of DJB data. For any cardinality from 512 to 4, the 

discovered intrinsic dimensionality does not change. Only when the cardinality is set to a 

pathologically low three or two (bottom right) does the cardinality value affect the predicted 

dimensionality 

In order to calculate the intrinsic dimensionality for DJB, we first fix the cardinality 

at 256, then find the MDL cost with dimensionality from range 2 to 64 (the inner for-loop 

in Table 2). In this example, the time complexity for finding the intrinsic dimensionality 

is O (m
2
). After we discover the intrinsic dimensionality is 12, we hardcode the 

dimensionality at 12, then calculate the MDL cost with cardinality ranging from 2 to 256. 

Thus, the time complexity for finding the intrinsic cardinality is O (m
2
). Using with this 

method, there is no need to calculate the MDL cost for every combination of c and d. 
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Second, we further can optimize the algorithm by caching the results from the 

PLA/APCA/DFT approximations. We can do the DFT/PLA/APCA decomposition once 

at the finest granularity, and cache the results, leaving only a loop that performs efficient 

calculations on integers with Huffman coding. After this optimization, the time taken for 

our algorithms is O (m
2
) without any constant factors for using PLA and APCA 

approximation. Figure 39 demonstrates the comparison of running time using APCA and 

our MDL framework. As Figure 39 shows, after caching the results for PLA, the 

overhead ratio for calculating the MDL costs is relatively small and decreases for larger 

dataset. This is because the overhead is dominated by the Huffman coding, whose time 

complexity is only O (mlogm).  

 

Figure 39: The running time comparison between our MDL based approach (red/fine) and the 

APCA (blue/bold) approximation for Donoho-Johnstone benchmark dataset. The x axis is the 

length of different instantiations of the DJB data  

2.6 Discussion and Related Work 

We took the opportunity to show an initial draft of this manuscript to many respected 

researchers in this area, and this paper greatly benefits from their input. However, many 

researchers passionately argued often mutually exclusive points related to MDL that we 
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felt were orthogonal to our work and irrelevant distractions from our claims. We will 

briefly address these points here.  

The first issue is who should be credited with the invention of the basic idea we are 

exploiting, that the shortest overall two-part message is most likely the correct 

explanation for the data. Experts in complexity theory advocate passionately for Andrey 

Kolmogorov, Chris Wallace, Ray Solomonoff, Jorma Rissanen or Gregory Chaitin, etc. 

Obviously, our work is not weighing in on such a discussion, and we refer to [26] as a 

good neutral starting point for historical context. We stand on the shoulders of all such 

giants.  

One researcher felt that MDL models could only be evaluated in terms of the 

prediction of future events, not on post-hoc explanations of the models discovered (as we 

did in Figure 17, for example).  However, we have carried out prediction experiments. 

For example, in the introduction we used our MDL technique to predict which of 

approximately 700 combinations of settings of the cardinality/dimensionality/number of 

exemplars would produce the most accurate classifier under the given constraints. Clearly 

the 90.75% accuracy we achieved significantly outperforms the default settings that gave 

only 58.70%. However, a brute force search shows that our predicted model produced the 

best result (three similar settings of the parameters tied with the 90.75% accuracy). 

Likewise, the experiment shown in Figure 20 can be cast in a prediction framework: 

“predict which of these heartbeats a cardiologist is most likely to state is abnormal.” To 

summarize, we do not feel that the prediction/explanation dichotomy is of particular 

relevance here.   



 

67 

 

There are many works that use MDL in the context of real-valued time series. 

However, our parameter-free method is novel. For example, [10] uses MDL to help guide 

a PLA segmentation of time series; however, the method also uses both hybrid neural 

networks and hidden Markov models, requiring at least six parameters to be set (and a 

significant amount of computational overhead). Similarly, [31] use MDL in the context of 

neural networks, inheriting the utility of MDL but also inheriting the difficulty of 

learning the topology and parameters of a neural network. 

Likewise, the authors of [5] use MDL to “find breaks” (i.e., segments) in a time 

series, but their formulation uses a genetic algorithm which requires a large 

computational overhead and the careful setting of seven parameters. Finally, there are 

now several research efforts that use MDL for time series [51][53] that were inspired by 

the original conference version of this work [15].     

There are also examples of research efforts using MDL to help cluster or carry out 

motif discovery in time series; however, to the best of our knowledge, this is the first 

work to show a completely parameter-free method for the discovery of the 

cardinality/dimensionality/model of a time series. 

2.7  Conclusions 

We have shown that a simple, yet powerful methodology based on MDL can robustly 

identify the intrinsic model, cardinality and dimensionality of time series data in a wide 

variety of domains. Our method has significant advantages over existing methods in that 

it is more general and is essentially parameter-free. We have further shown applications 
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of our ideas to resource-limited classification and anomaly detection. We have given 

away all of our (admittedly very simple) code and datasets so that others can confirm and 

build on our results from [61].  

A reader may assert that our claim to be parameter-free is unwarranted because: we 

“choose” to use a binary computer instead of say a ternary computer9, we use Huffman 

coding, not Shannon–Fano coding and we hard code the maximum cardinality of time 

series to 256. However, a pragmatic data miner will still see our work as being a way to 

explore time series data, free from the need to have to adjust parameters. In that sense our 

work is truly parameter-free. 

In addition to the above, we need to acknowledge other shortcomings and limitations 

of our work. Our ideas, while built upon the solid theoretical foundation of MLD, are 

heuristic, we have not proved any properties of our algorithms. Moreover, our method is 

essentially a scoring function; as such it will inherit any limitations of the search function 

used (cf. Table 3). For example while there is an optimal algorithm for finding the 

cheapest (in the sense of lowest root-mean-squared error) PLA of a time series given any 

desired d, this algorithm is too slow for most practical purposes and thus we (and 

virtually all the rest of the community) must content ourselves with an approximate PLA 

construction algorithm [21].     

 

 

 

                                                           
9 Of course, no commercial ternary computers exist, however they are at least a logical possibility.    
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Chapter 3:   

Time Series Classification under More 

Realistic Assumptions 

Most literature on time series classification assumes that the beginning and ending 

points of the pattern of interest can be correctly identified, both during the training phase 

and later deployment. In this work, we argue that this assumption is unjustified, and this 

has in many cases led to unwarranted optimism about the performance of the proposed 

algorithms. As we shall show, the task of correctly extracting individual gait cycles, 

heartbeats, gestures, behaviors, etc., is generally much more difficult than the task of 

actually classifying those patterns. We propose to mitigate this problem by introducing an 

alignment-free time series classification framework. The framework requires only very 

weakly annotated data, such as “in this ten minutes of data, we see mostly normal 

heartbeats...,” and by generalizing the classic machine learning idea of data editing to 

streaming/continuous data, allows us to build robust, fast and accurate classifiers. 

We demonstrate on several diverse real-world problems that beyond removing 

unwarranted assumptions and requiring essentially no human intervention, our 

framework is both significantly faster and significantly more accurate than current state-

of-the-art approaches. 

This chapter is organized as follows: In Section 3.1, we introduce definitions and 

notation used in this chapter. Note that although some of the terms (i.e. time series) have 
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already been defined in Chapter 2: in order to make each chapter self-contained, we still 

redefine the term in each chapter. In Section 3.2.1, we show how classification is 

achieved with our data dictionary model. In Section 3.2.2, we illustrate how to actually 

learn the data dictionary by utilizing data editing techniques [94][101][107][110]. 

Section 3.2.3 demonstrates how our framework learns the threshold distances. We 

demonstrate the algorithm to remove the forth assumption by using the algorithm 

introduced in Section 3.2.4. In Section 3.3, we present a detailed empirical evaluation of 

our ideas. We discuss related work in Section 3.3.5. Finally, in Section 3.4, we offer 

conclusions and directions for future work. 

3.1 Definitions and Notation 

We begin with the definition of time series: 

Definition 6: Time Series: T = t1,… tm  is an ordered set   of m real-valued variables. 

We are only interested in local properties of a time series, thus we confine our interest 

to subsequences: 

Definition 7 :  Subsequence: Given a time series T of length m, a subsequence Sk of 

T is a sampling of length n ≤ m of contiguous position from T with starting position 

at k, Sk = tk,…tk+n-1 for  1 ≤ k ≤ m-n+1. 

The extraction of subsequences from a time series can be achieved by use of a sliding 

window: 

Definition 8 :  Sliding Window: Given a time series T of length m, and a user-

defined subsequence length of n, all possible subsequences can be extracted by 
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sliding a window of size n across T and extracting each subsequence, Sk. For a time 

series T with length m, the number of all possible subsequences of length n is m-

n+1. 

For concreteness, we take the step of explicitly defining training data, as our 

definition of training data explicitly removes the assumptions inherent in most works 

[72][79][84][88][96][104][108].  

Definition 9 :  Training Data: A Training Data C is a collection of the weakly-

labeled time series annotated by behavior/state or some other mapping to the 

ground truth.   

By weakly-labeled we simply mean that each long data sequence has a single global 

label and not lots of local labeled pointers to every beginning and ending of individual 

patterns, e.g., individual gestures. There are two important properties of such data that we 

must consider: 

Weakly-labeled training data may contain extraneous/irrelevant sections. For 

example, after a subject reaches down to turn on an ankle sensor to record her gait, there 

may be a few seconds before she actually begins to walk [104]. Moreover, during the 

recording session, the subject may pause to shop, or jump to avoid a puddle. It seems 

very unlikely that such recordings could avoid having such spurious data. Note that this 

claim is not mere speculation; we observed this phenomenon in the first few seconds of 

the BIDMC Congestive Heart Failure dataset [68] as shown in Figure 40, and similar 

phenomena occur in all the datasets we examined. 
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Weakly-labeled training data will almost certainly contain significant redundancies. 

While we want lots of data in order to learn the inherent variability of the concept we 

wish to learn, significant redundancy will make our classification algorithms slow when 

deployed. Consider Figure 40 once more. Once we have a single normal heartbeat, say 

pattern A, then there is little utility in adding any of the 14 or so other very similar 

patterns, including pattern B. However, to robustly learn this concept (beats belonging to 

Record-08), we must add either example of the Premature Ventricular Contraction 

(PVC).  

 

Figure 40: A snippet of BIDMC Congestive Heart Failure Database ECG - Record-08 [68]. (a) is 

weakly-labeled data,  which exhibits both extraneous data, a section of recording when the 

machine was not plugged in, and redundant data (only one pair of redundancies are shown in bold 

(red/green). (b) A minimally redundant set of representative heartbeats (a data dictionary) could 

be used as training data 

Rather than these large weakly-labeled training datasets, we desire a smaller “smart” 

training data subset that does not contain spurious data, while maintaining coverage of 

the target concept by having one (ideally, exactly one) instance of each of the many ways 

the targeted behavior is manifest. For example, from the training data shown in Figure 

40, we want just one PVC example and just one example of a normal heartbeat (perhaps 

either A or B). However, we do not want to require costly human effort to obtain this. 

While the time series shown in Figure 40 would be fairly easy to edit by hand, it is only 

0.16% of the full ECG dataset we consider in Section 3.3.2. Therefore, our objective is to 
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build this idealized subset of the training data automatically. We begin by defining it 

more concretely as a data dictionary. 

Definition 10 : A Data Dictionary D is a (potentially very small) “smart” subset of 

the training data. We allow an input parameter x, where x is the percentage of the 

training data C used in data dictionary D. The range of x is (0,100%], and a 

dictionary with the percentage x of the original data is denoted as Dx.  

As the Data Dictionary is at the heart of our contribution, we will take the time to 

discuss it in detail. 

3.1.1.  A Discussion of Data Dictionaries 

As defined above, there are a huge number of possible data dictionaries for any 

percentage x, as any random subset of C satisfies the definition. However, we obviously 

wish to create one with some desirable properties.  

Clearly, the classification error rate obtained from using just D should be no worse 

than that obtained from using all the training data. We do not wish to sacrifice accuracy. 

As we shall show, this is a surprisingly easy objective to achieve. In fact, as we shall 

show later, the classification error rate using a judiciously chosen D is generally 

significantly lower than using all of C. This is because the data dictionary contains less 

spurious and therefore, potentially misleadingdata. 

Another desirable property of D is that it be a very small percentage of the training 

data. This is to allow real-time deployment of the classifier, especially on resource 

limited devices (embedded devices, smartphones, etc. [67][75]). This requirement may be 

seen as conflicting with the above classification error rate requirement; however, again 
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we will show that in most real-world problems we can judiciously throw away more than 

95% of C to obtain a D5% that is at least as accurate as using all the data in C. 

Note that the number of subsequences within each class in D may be different. That is 

to say, our algorithm for building D is not round-robin; rather the algorithm adaptively 

adds more subsequences to cover the more “complicated” classes of D. For example, the 

ECG data from Record-08 shown in Figure 40 is relatively simple. In contrast, the ECG 

of Record-03 shown in Figure 41 has a more complicated trace, and at least four kinds of 

beats (normal, S, PVC and Q). Therefore, we might expect the number of subsequences 

for Record-03 in D to be greater than that for Record-08, something that is empirically 

borne out in our experiments (Section 3.3). 

 

Figure 41: A snippet of BIDMC Congestive Heart Failure Database ECG: Record-03 [68]. Note 

that this section of ECG data exhibits more variability than the data in Figure 40. 

Finally, there is the question of what value we should set x to. In fact, we can largely 

bypass this issue by providing an algorithm that produces a “spectrum” of data 

dictionaries in the range of x = (0,100%], together with an estimate of their error rate on 

unseen data. The user can examine this error rate vs. value-of-x curve to make the 

necessary trade-offs. Note that these data dictionaries are “nested”, that is to say, for any 

value of x we have Dx  Dx+ɛ. Thus, we can consider our data dictionary creation 

algorithm an anyspace algorithm [110].   
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Given the above considerations, how can we build the best data dictionary? As we 

will later show, we can heuristically search the space of data dictionaries using the simple 

algorithm in Section 3.2.2. 

3.1.2. An Additional Insight on Data Redundancy  

Based on our experience with real-world time series problems, we noted the 

following: in many cases, D contains many patterns that appear to be simply (linearly) 

rescaled versions of each other. For clarity, we illustrate our point with a synthetic 

example in Figure 42; however, we will later show some real examples.  

This situation is a consequence of our requirement that data dictionary D has the most 

representative subsequences of training data C. For example, if one class contains 

examples of walk, we hope to have at least one representative of each type of walk—

perhaps one example of a leisurely-amble, one example of a normal-paced-

walk, one example of a brisk-walk, etc. It is important to note that in this example, 

the three walking styles are not simply linearly rescaled versions of each other. They 

have different foot strike patterns, and thus produce different prototypical time series 

templates [69][92]. Nevertheless, within each sub-class of walk，there may also be a 

need to allow some linear rescaling of the time series. Using the Euclidean distance our 

search algorithm can achieve this by attempting to ensure that the data dictionary 

contains each gait pattern over a range of speeds. This is what our toy example in Figure 

42 illustrates.  
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Figure 42: left) A toy example data dictionary which was condensed from a large dataset. These 

seven subsequences in data dictionary A span the concept space of the bulls/bears problem. right) 

Note that if we had a distance measure that was invariant to linear scaling, we could further reduce 

data dictionary A to data dictionary B 

For example, when reducing a dataset of daily human activities, we may have to 

extract examples of a brisk- walk at 6.0km/h, 6.1km/h, 6.2km/h, etc. However, by 

generalizing from the Euclidean distance to the Uniform Scaling distance [87], we allow 

our algorithm to keep just one example of the walk, and still achieve coverage of the 

target concept by using a flexible measure instead of lots of data. The Uniform Scaling 

distance is a simple generalization of the Euclidean distance that allows limited 

invariance of the length of the patterns being matched [87]. The maximum amount of 

linear scaling allowed is a user-defined parameter [87]. As we later show, allowing just a 

small amount of scaling, say 25%, can greatly improve accuracy. 

To see this in a real dataset, consider Figure 43.left, which shows one of fifteen 

classes that was processed into a data dictionary in an experiment we performed in 

Section 3.3.2. At first glance, the two patterns seem redundant
10

, violating one of the 

requirements stated above. 

                                                           
10

 Note the fact that the two patterns are out of phase does not make them non-redundant, as at query time only queries half their length are used, and they are 

sliding across the entire length of the patterns. Details in Section 3.3.2. 
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Figure 43: left) A data dictionary learned from a 15-class ECG classification problem (just class 

01 is shown here). At first glance, the two exemplars seem redundant apart from their (irrelevant) 

phases. right) By using the Euclidean distance between the two patterns we can see that the 

misalignment of the beats would cause a large error. The problem solved by using the Uniform 

Scaling distance [87] 

Instead of having two similar but different scaled patterns, just a single pattern is kept 

using the Uniform Scaling distance. We have found that using the Uniform Scaling 

distance allows us to have a significantly smaller data dictionary. In Figure 43, we could 

delete either one of the two patterns and cover the space of possible heartbeats from 

Record-01. For example, in Figure 42, we could further delete patterns I, II and IV and 

still cover the space of possible “bulls”. 

However, beyond reducing the size of data dictionaries (thus speeding up 

classification), there is an additional advantage of using Uniform Scaling; it allows us to 

achieve a lower error rate. How is this possible? It is possible because we can generalize 

to patterns not seen in the training data. 

Imagine the training data does contain some examples of gaits at speeds from 6.1 to 

6.5km/h. As noted above, if the data dictionary has enough examples to cover this range 

of speeds, we should expect to do well. However, suppose the unseen data contains some 

walking at 6.7km/h. This is only slightly faster than we have seen in the training data, but 

the Euclidean distance is very sensitive to such changes [87]. Using the Uniform Scaling 

distance allows us to generalize our labeled example at 6.5km/h to the brisker 6.7km/h 
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instance. This idea is more than speculation. As we show in Section 3.3, using the 

Uniform Scaling distance does produce a significantly lower error rate. 

3.1.3.  On the Need for a Threshold 

As noted above, the training set may have extraneous data. Likewise, in most realistic 

deployment scenarios, we expect some (often most) of the data to be classified as the 

other class. In these cases, we wish our algorithm to label the objects as such. To 

achieve this, the data dictionary must have a distance threshold r beyond which we reject 

the query as unclassifiable (i.e., the other class). As we will show, we can learn this 

threshold as we build the dictionary. 

3.2 Algorithms 

In order to best explain our framework, we first assume a data dictionary with the 

appropriate threshold has already been created and begin by explaining how our 

classification model works. Later, in Section 3.2.2, we revisit the more difficult task of 

learning the data dictionary. 

3.2.1.  Classification Using A Data Dictionary 

Our classification model requires just a data dictionary with its accompanying 

threshold distance, r. 

For an incoming object to be classified q, we classify it with the data dictionary using 

the classic nearest neighbor algorithm [107]. In Table 7, we show how to determine the 

class membership of this query, including the possibility that this query does not belong 
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to any class in this data dictionary. For our purposes, there are exactly two possibilities of 

interest:  

If the query’s nearest neighbor distance is larger than the threshold distance, we say 

this query does not belong to any class in this data dictionary (line 12).  

If the query’s nearest neighbor distance is smaller than the threshold distance, then it 

is assigned to the same class as its nearest neighbor (line 14). 

The algorithm begins by initializing the bsf distance to infinity and the predicted 

class_label to NaN in lines 1 and 2. From lines 3 to 9, we find the nearest neighbor 

of the query q in data dictionary D. The subroutine NN_search (shown in Table 8) 

returns the nearest neighbor distance of q within a time series. If the nearest neighbor 

distance within a time series in line 4 is smaller than the bsf, then in lines 6 and 7 we 

update the bsf and the class_label.  

Table 7:  Classification Algorithm using Data Dictionary 

Input: 

 

 

 

Output: 

D, a data dictionary that has N classes; The 

total number of time series in D is k  

r, a threshold distance of D 

q, a query 

The class membership of q, including  the 

possibility of a special class ‘other’ 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

bsf = ∞;  //initialize the best-so-far distance 

class_label = NaN; 

for i = 1 to k 

    dist = NN_search(q, D(i)); 

    if dist < bsf 

   bsf = dist; 

   class_label = class of D(i); 

endif 

endfor  

NN_dist = bsf;  

if  NN_dist  > r 

  return q belongs to ‘other’ class; 

elseif NN_dist <= r  

  return q belongs to ‘class_label’
th
 class; 

endif 
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From lines 11 to 15, we compare the nearest neighbor distance to the threshold 

distance r. If the nearest neighbor distance is smaller than r, then this query belongs to 

the same class as its nearest neighbor. Otherwise, this query does not belong to any class 

within this data dictionary and is thus classified as the other class. 

As we show in Table 7 line 4, the function NN_search is slightly different from the 

classic nearest neighbor search algorithm [84]. NN_search returns not only the nearest 

neighbor distance of a query, but also a distance vector that contains distances between 

the query and all the possible subsequences in a time series. This distance vector is not 

exploited at classification time, but as we show in Section 3.2.2, it is exploited when 

building the data dictionary. For concreteness, we briefly discuss the NN_search 

function in Table 8 below. 

Table 8: Nearest Neighbor Search within a Time Series 

Input: 

Output: 

 

q, a query                T, a time series  

dist_vector,a vector that contains distances 

between q and all possible subsequences in T 

NN_dist, the nearest neighbor distance 

1 

2 

3 

4 

5 

        6 

        7 

        8 

w = set of all possible subsequences in T; 

dist_vector = zeros(1,|w|); 

for i = 1 to |w| 

 dist_vector(i) = distance(q,w(i)); 

endfor 

NN_dist = minimum(dist_vector); 

return dist_vector ; 

return NN_dist ; 

In line 1, using a sliding window (cf. Definition 8), we extract all the subsequences of 

the same length as the query. From lines 3 to 5, the distances between q and all the 

possible subsequences are calculated. We calculate the nearest neighbor distance in line 

6. Note that in line 4, the distance could be Euclidean distance [84], or Uniform Scaling 

distance [87], etc. We will revisit this choice in Section 3.3. 
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In addition to finding the nearest neighbor, this function also returns a distance 

vector. This additional information is exploited by the dictionary building algorithm 

discussed later in Section 3.2.2. Figure 44.bottom shows an example of such a distance 

vector.  

Having demonstrated how the classification model works in conjunction with the data 

dictionary, we are in position to illustrate how to build the data dictionary, which is a 

more difficult task. 

 

Figure 44: top) A snippet of BIDMC Congestive Heart Failure Database ECG data: Record-08 

[68]. bottom) the distance vector of an incoming query. The nearest neighbor and its distance of q 

is colored in red/bold 

3.2.2.  Building the Data Dictionary 

As discussed in Section 3.1, we want to build the data dictionary automatically. Using 

human effort to manually edit the training data into a data dictionary is clearly not a 

realistic solution: as it is not scalable to large datasets and invites human bias into the 

process.  

Before introducing our dictionary-building algorithm, we will show a worked 

example on a toy dataset in the discrete domain. We use a small discrete domain example 

simply because is it easy to write intuitively; our real goal remains large real-valued time 

series data.    
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A.  The intuition behind data dictionary building 

Suppose we have a training dataset that contains two classes, C1 and C2: 

       C1 = { dpacekfjklwalkflwalkklpacedalyutekwalksfj} 

      C2 = { jhjhleapashljumpokdjklleaphfleapfjjumpacgd}   

In this toy example, the data is weakly-labeled. The colored/ bolded text is for the 

reader’s introspection only; it is not available to the algorithm. Here the reader can see 

that in C1, there appears to be two ways a shorter subsequence query might belong to this 

class; if it contains the word pace or walk. This is similar to the situation shown in Figure 

40 where a query will be classified to the class of Record-08 if it contains pattern A or 

pattern PVC.  

We want to know whether any incoming queries belong to either class in this training 

data or not. In our proposed framework, we search just the data dictionary. 

Recall that one of the desired properties of the data dictionary is that it contains a 

minimally redundant set of patterns that is representative of the training data. In this 

example for C1, these are clearly the substrings pace and walk. Likewise for C2, leap and 

jump seem to completely define the class. Thus, the data dictionary D should be the 

following: 

        D = C1:{ pace ; walk  };  C2: { leap ;  jump}, r = 1 

Consider now two incoming queries ieap and kklp. The former is a noisy version of a 

pattern found in our dictionary, but as it is within our rejection threshold of (hamming) 

distance r of 1, it is correctly labeled as C2. In contrast, kklp has a distance of 3 to its 

nearest neighbor in D, so it is correctly rejected. 
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Note that had we attempted to classify against the raw data rather than the dictionary, 

the query kklp would have been classified as C1 (it appears in the middle 

of ..lwalkklpaced.). This misclassification is clearly contrived, but it does happen 

frequently in the real data. Consider the flat section of time series at the beginning of 

Figure 41. As noted above, it is extraneous data, due to a temporary disconnection of the 

sensor. However, many other patients’ ECG traces also have these flat sections, but 

clearly that does not mean we should classify them as belonging to patient Record-08.    

In our example, we have considered two separate queries; however, a closer analogue 

of our real-valued problem is to imagine an endless stream that needs to be classified: 

    .. ttgpacedgrteweerjumpwalkflqrafertwqhafhfahfahfbseew.. 

Up to this point we have not explained how we built our toy dictionary. The answer is 

simply to use the results of leaving-one-out classification to score candidate substrings. 

For example, by using leaving-one-out to classify the first substring of length 4 in C1 dpac, 

it is incorrectly classified as C2 (it matches the middle of ..umpacgd.. with a distance of 1). 

In contrast, when we attempt to classify the second substring of length 4 in C1, pace, we 

find it is correctly classified. By collecting statistics about which substrings are often 

used for correct predictions, but rarely used for wrong predictions, we find that the four 

substrings shown in our data dictionary emerge as the obvious choices. This basic idea is 

known as data editing [94][97][107]. In the next section, we formalize this idea, and 

generalize it to real-valued data streams.  
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B.  Building the data dictionary 

The high-level intuition behind building the data dictionary is to use a ranking 

function to score every subsequence in C. These “scores” rate the subsequences by their 

expected utility for classification of future unseen data. We use these scores to guide a 

greedy search algorithm, which iteratively selects the best subsequence and places it in D. 

How do we know this utility? We simply estimate it by cross validation, e.g. looking at 

the classification error rate and some additional information as explained below.   

As previously hinted, our algorithm iteratively adds subsequences to the data 

dictionary. Each iteration has three steps. In Step 1, the algorithm scores the 

subsequences in C. In Step 2, the highest scoring subsequence is extracted and placed in 

D. Finally, in Step 3, we identify all the queries that cannot be correctly classified by the 

current D. These incorrectly classified items are passed back to Step 1 to re-score the 

subsequences in C. 

There is an important caveat. Once we have removed the best subsequence in Step 2, 

the scores of all the other subsequences may change in the next iteration. To return to our 

running example in Figure 40, either subsequence A and B would rank highly. However 

once we have placed one, say A, in D, there is little utility in adding B, since having A in 

D is sufficient to correctly classify similar patterns in Step 3. Thus we expect the scores 

of B will be low in the next iteration, given that the correctly classified queries by the 

current D will not be used to re-score C in the next iteration. 

The process iterates until we run out of subsequences to add to D or the unlikely 

event of perfect training error rate having been achieved. In the dozens of problems we 
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have considered, the training error rate plateaus well before 10% of the training data has 

been added to the data dictionary.   

Below we consider each step in detail. 

Step 1 : In order to rank every point in the time series, we use the leaving-one-out 

classification algorithm
11

. However, we do not want to use just the classification error 

rate to score the subsequences. Imagine we have two subsequences S1 and S2, either of 

which is found to correctly predict 70% of the queries tested with them. Either appears to 

be a good candidate to add to D. However, suppose that in addition to being close enough 

to many objects with the same class label (friends), allowing its 30% error rate, further 

suppose that S1 is also very close to many objects with different class labels (enemies). If 

S2 keeps a larger distance from its enemy class objects, it is a much better choice for 

inclusion in D. 

This idea, that instead of using just the error rate of classification, you must also 

consider the relative distance to “friends” and “enemies” has been investigated 

extensively in the field of data editing [97][107].  

Given a query length l, we randomly choose a query q from the training data C
12

. In 

Table 9, lines 2 and 3, we first split the training data into two parts, Part A (friends only) 

and Part B (enemies only). Using the NN_search algorithm in Table 8, we find nearest 

neighbor friend in Part A (lines 5 to 13) and nearest neighbor enemy (lines 14 to 22) in 

Part B.  

                                                           
11 Where tractably is an issue, we may sample a subset of the queries. 

12 We defer the discussion on how to choose a query length to Section 3.4. 
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In lines 23 to 27, the nearest neighbor friend distance and the nearest neighbor enemy 

distance are compared. If the nearest neighbor friend distance is smaller than the nearest 

neighbor enemy distance, we discover all the distances of the query q in Part A that are 

also smaller than the nearest neighbor enemy distance. Such subsequences are likely true 

positives. That is to say, our confidence that these subsequences can produce correct 

classifications of unseen data has increased.   

Table 9: Classification of Training Data 

Input: 

Output: 

C, the training data 

likely true/false positive subsequences 

   1 

   2 

 

   3 

   4 

   5 

   6 

   7 

   8       

   9 

   10 

   11  

   12 

   13 

   14 

   15 

   16 

   17 

   18 

   19 

   20 

   21 

   22 

   23 

   24 

   25 

   26 

   27 

q = a randomly selected subsequence in C; 

A = friends ;   

//all the time series in C that have the same class as q, q is removed from A;  

B = enemies ; // all the time series in C that have different class from q; 
dists_A = [];  dists_B = [];  

bsf = ∞;       //initialize the best-so-far distance 

for i = 1 to |A| 

[dist_vector, NN_dist] = NN_search(q, A(i)); 

if NN_dist < bsf  

   bsf = NN_dist; 

endif 

dists_A = [dists_A ; dist_vector]; 

endfor 

NN_friend_dist = bsf;  // nearest neighbor distance in same class 

bsf = ∞;               //initialize the best-so-far distance 

for j = 1 to |B| 

[dist_vector, NN_dist] = NN_search(q, B(j)); 

  if NN_dist < bsf  

     bsf = NN_dist; 

  endif 

  dists_B = [dists_B ; dist_vector]; 

endfor 

NN_enemy_dist = bsf; // nearest neighbor distance in different class 
if NN_friend_dist < NN_enemy_dist    

likely_true_positives = find(dists_A < NN_enemy_dist) 

elseif NN_friend_dist >= NN_enemy_dist 

likely_false_positives = find(dists_B < NN_friend_dist) 

endif 

Similarly, if the nearest neighbor friend distance is larger than the nearest neighbor 

enemy distance, we find all the distances of the query q in Part B that are also smaller 

than the nearest neighbor friend distance. We call the corresponding subsequences likely 

false positives. 
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Given the likely true/false positives found in Table 9, we are now in a position to 

discuss how to rank them. 

By utilizing the simple rank function introduced in [107], we generalize an algorithm 

that gives positive score to likely true positives and negative score to the likely false 

positives. 

 

Note that subsequences that are not used to classify any queries (correctly or not) get 

a zero score. Using a large number of queries, we compute a score vector for every time 

series in C. We denote rank(S) as the score for a subsequence S in the time series.  

In the next step, we demonstrate how to extract the current best subsequence using 

the score vectors.  

Step 2: We extract the highest scoring subsequence and place it in D. We 

demonstrate this step by using the example in Figure 45. Suppose in one of the iterations 

in Step 1, the starting point of the red/bold heartbeat has the highest score. We therefore 

need to extract this heartbeat. Because the Euclidean distance is very sensitive to even 

slight misalignments, and our scoring function is somewhat “blurred” as to its exact 

location in the x-axis. Extracting exactly the subsequence with query length l would be 

very brittle. Therefore, we “pad” the chosen subsequence some time series from the left 

and to the right, in particular with the l/2 data points to either side. 

1,

( ) 2 / ( _ _ 1), (1)

0,
k

likely true positives

rank S num of class likely false positives

other




  

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Figure 45: top) A snippet of BIDMC Congestive Heart Failure Database ECG data: Record-08 

[68]. bottom) the extracted subsequence has twice the query length  

Note that there is a slight difference between the first iteration and the subsequent 

iterations. Before the first iteration, D is empty. After the first iteration, D should contain 

exactly one subsequence from each class. This is the smallest D logically possible. 

Therefore, instead of splitting C to the friends part and the enemies part, the algorithm 

finds the most representative subsequence in each class in Step 1, and then adds them 

into D in Step 2.  

After the first iteration, we extract only the one subsequence that holds the highest 

score in C and add it into D. Thus, the class sizes in D can be skewed, as the algorithm 

adds more exemplars to the more diverse/complicated classes. While we are iteratively 

building D, the size of C becomes smaller, as the extracted subsequence is removed from 

C.  

Step 3: The algorithm examines the quality of the current D by doing classification 

using all the queries. The queries that are correctly classified by the current D will not be 

used to re-score C in the next iteration Step 1, since the current D is sufficient to correctly 

classify them. Only the misclassified queries will proceed back to Step 1 to re-score C. In 

Step 3, we redo classification experiments on D using all the queries, since the correctly 

classified queries in Dx may become misclassified in Dx+ɛ.   

ll/2 l/2

the point that has the highest score

the extracted subsequence
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After building a data dictionary for a training data, our last obligation is to learn the 

distance threshold.  

3.2.3.  Learning the Threshold Distance 

After the data dictionary is built, we learn a threshold to allow us to reject future 

queries, which do not belong to any of our learned classes. We begin by recording a 

histogram of the nearest neighbor distances of testing queries that are correctly classified 

using D, as shown in Figure 46. Next, we compute a similar histogram for the nearest 

neighbor distances of queries, which should not have a valid and meaningful match 

within D (i.e., the other class). Where can we get such queries? In the example shown 

in Figure 46, we simply used gesture data as the other class, knowing gestures should 

not match a set of heartbeats. Note that it is occasionally possible that a gesture will 

match a heartbeat by coincidence; but our approach is robust to such spurious matches so 

long as they are relatively rare. If external datasets are in short supply, we can also simply 

permute subsequences of D to produce the other class, for example flipping heartbeats 

upside-down and backwards.   

Given the two histograms, we choose the location that gives the equal-error-rate as 

the threshold (about 7.1 in Section 3.3.1).However, based on their tolerance to false 

negatives, users may choose a more liberal or conservative decision boundary. 
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Figure 46: The green/left histogram contains the nearest neighbor distances of correctly classified 

queries for the ECG data used in Section 3.3.2. The red/right histogram shows nearest neighbor 

distances for queries from the other class 

3.2.4.  Anytime Classification using Complexity As An Index 

A.  Anytime classification 

 Anytime classification algorithm is the algorithm that sacrifices the quality of 

experimental results for faster running time [77][105][112]. The algorithm becomes 

interruptible after a short time of initialization. Figure 47 demonstrates the tradeoff 

between the quality of experimental result and the computation time. 

 

Figure 47: Anytime algorithms are interruptible after initialization. This plot shows the result 

quality increases with computation time 

Anytime classification algorithm can mitigate the assumption that the arriving time of 

queries is known ahead of time, since the computation can be interrupted any time after a 

short time of initialization. Table 10 demonstrates how the anytime classification 

framework works. The algorithm begins by initializing the bsf distance to infinity and the 
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predicted class_label to NaN in lines 1 and 2. In line 3, we extracted all the possible 

subsequences in the training data in a specific order. Note that the order of all the 

subsequences can be defined by different methods. For example, in Table 8 line 1, all 

possible subsequences are extracted in a left-to-right order using a sliding window. Thus 

the search process in Table 8 is sequential search. In contrast, in Section B. , we propose 

to index all the possible subsequences using complexity of each subsequence. We show 

our proposed indexing method in Table 11. From line 4, we start to calculate the distance 

between q and each subsequence. If the distance is smaller than the bsf in line 6 is smaller 

than the bsf, then in lines 7 and 8 we update the bsf and the class_label. From line 10 and 

line 12, if the stopFlag is true, then the computation will be stopped and return the current 

class_label associated with the bsf distance. 

Table 10: Anytime Nearest Neighbor Classification Algorithm 

Input: 

 

 

 

Output: 

T, the training data  

q, a query 

stopFlag = 0, the value of stopFlag can be changed 

during the computation process; 

The class membership of q; 

   1 

   2 

   3 

   4 

   5 

   6 

   7 

   8       

   9 

   10 

   11  

   12 

   13 

bsf ← ∞; // initialize the best-so-far distance 
class_label ← NaN; 

subs ← some_order_of_all_possible_subsequences(T); 

for i ← 1 to |subs| 

dist ← distance(q,subs(i)); 

if dist < bsf 

   bsf = dist; 

   class_label = subs(i).class; 

end 

    if stopFlag == 1  

  return class_label; 

end 

end 

B.  Using complexity as an index 

We propose to use complexity as an index to speed up the search within the data 

dictionary. Every subsequence is indexed according to its complexity. The complexity of 
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a time series can be calculated by different methods, such as Kolmogorov complexity 

[89], variants of entropy [62][64],etc. There are several desirable properties of a 

complexity measure [66], such as,   

 Low time and space complexity; 

 Few parameters, ideally none; 

 Intuitive and interpretable; 

Given the above consideration, we propose to use one complexity measure shown in 

equation (2), which has O (1) space and O (n) time complexity. More importantly, this 

complexity measure has a natural interpretation with zero parameter.  

1
2

2
1

1

( ) ( ) (2)
n

i i

i

CE q q q






   

We are not claiming this is the optimal indexing approach for speed up. We want to 

show an existence proof of an indexing technique that can mitigate the assumption (4).  

Table 11 demonstrates the indexing algorithm. In line 1, we calculate the complexity of 

the incoming query. We extract all the possible subsequences in line 2 using a sliding 

window. The sliding window length is the same length as the query. This extraction is the 

same as the one in line 1 in Table 8. From line 3 to line 6, we calculate the absolute 

difference of the complexity between the query and each subsequence. Last we sort all 

the complexity differences with an ascending order in line 7. After the sorting, the 

subsequence, which is closer to the query in terms of complexity, will have a higher rank. 

In another word, in Table 10 line 3, the subsequence that has a similar complexity as the 
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query does, will have a higher priority for calculating its distance between the incoming 

query. 

Table 11: using Complexity as an Index 

 
Input: 

 

Output: 

T, training data 

q, an incoming query 

indexing_Order,The indexing using complexity for all the 

subsequences in T  

   1 

   2 

   3 

   4 

   5 

   6 

   7 

   

CE_q ← CE(q); // equation (2) 

|subs|← all_possible_subsequence(T); 

for i ← 1 to |subs| 

CE_subs(i) ← CE(subs(i)); 

diff_CE(i) ←  abs|CE_subs(i) – CE_q|; 

end 

indexing_Order = ascend_sort(diff_CE); 

 

 

3.2.5.   Uniform Scaling Technique 

Finally, we can trivially replace the Euclidean distance with Uniform Scaling
13

 

distance in the above data dictionary building and threshold learning process [87]. We 

choose the maximum scaling factor based on the variability of time series in the domain 

at hand, see discussion in Section 3.3. A naive implementation of Uniform Scaling would 

be slow, but [87] shows that it can be computed in essentially the same time as Euclidean 

distance. 

3.3 Experimental Evaluation 

We begin by discussing our experimental philosophy. To ensure that our experiments 

are easily reproducible, we have built a website, which contains all the datasets and code 

[114]. In addition, this website contains additional experiments, which are omitted here 

                                                           
13

 The reader may ask why not Dynamic Time Warping? Empirically, we tried it and it does not help. Moreover, we should not expect it to 

help this problem [114]. 
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for brevity. Our experimental results support our claim that using only the data dictionary 

is more accurate and faster than using all the available training data.  

We compare our algorithm with several widely used rival approaches. The most 

widely used rival approach extracts feature vectors from the data and reports the best 

result among multiple models [67][98][104]. In addition, we compare with the obvious 

strawman of using all the training data, which is just a special case of our framework, in 

which all the training data is used (i.e. D100%).  

To support our claim that the real-world streaming data is not as clean as the 

contrived datasets used in most literature, we report the percentage of the rejected queries 

produced by the learned threshold and show some examples
14

.   

We report the error rate using both Euclidean distance and Uniform Scaling distance 

to support our claim that the latter can be very useful for time series classification 

problems. 

While we are ultimately interested in the testing error rate, we also report the training 

error rate, as this can be used to predict the best size of the data dictionary for a given 

problem. However, for completeness, we build and test the data dictionary Dx for every 

value of x, from the smallest logically possible size to whatever value minimizes the 

holdout error rate (this is generally much less than x = 10%).  

The reader may object that error rate is not the correct measure here. Imagine that our 

rejection threshold is so high that we reject 999 of 1,000 queries, and just happen to get 

one classified object correct. In this case, reporting a 0% error rate would be dubious at 

                                                           
14 Due to space limitations, we only show the rejected queries in the first case study. See [114] for examples of rejected 

queries from the other case studies.  
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best. This is of course what precision/recall and similar measurements are designed to be 

robust to. However, in all our case studies, our rejection rate is much less than 10%, so 

reporting just the error rate is reasonable, and allows us to present more visually intuitive 

figures. Moreover, we will show experiments where we consider the correctness of 

rejections made by our algorithm. 

Finally, we defer experiments that consider the scalability of dictionary building to 

[114], noting in passing that this is done offline, and that in any case we can do this faster 

than real-time. In other words, we can learn the dictionary for an hour heartbeats in much 

less than one hour.  

3.3.1.  An Example Application in Physiology 

We consider a physical activity dataset containing eight subjects performing activities 

such as: normal-walking, walking-very-slow, descending-stairs, 

cycling, and inactivity (an umbrella term for lying-in-bed/sitting-still/standing-

still), etc [95]. Approximately eight hours of data at 110Hz was collected from wearable 

sensors on the subjects’ wrist, chest, and shoes.  

For simplicity of exposition, we consider only a single time series, recording the roll-

axis from the sensor placed in the subjects’ shoe. However, our algorithm trivially 

extends to multi-dimensional data (examples appear at [114]). Note that although our 

algorithm only uses a single axis from the sensor, we demonstrate that our results are 

significantly better than rival algorithms that use all three-axis data (roll, pitch and yaw) 

from the same sensor [104]. 
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We randomly choose 60% of the data as training data, and treat the rest as testing data. 

In Figure 48, we show the training/testing error rates as our algorithm grows D from the 

smallest logically possible size (about 0.39% of all the training data) to the point where it 

is clear that our algorithm can no longer improve. Although our algorithm bottoms out 

earlier in the plot, we wish to demonstrate that the output is very smooth over a wide 

range of values. 

We compare with the widely-used rival approach [67][104], which extracts signal 

features from the sliding windows. For fairness to this method, we used their suggested 

window size [104], and tested all of the following classifiers: K-nearest neighbors (K=5), 

SVM, Naïve Bayes, boosted decision trees and C4.5 decision tree [67][98][104]. The best 

classification result is 0.364 achieved by the C4.5 decision tree.  

For the commonly used strawman of using all the training data, the testing error rate 

is 0.221. However, our framework equals this testing error rate using only 1.6% (i.e. 

D1.6%) of the training data and obtains the significantly lower error rate of 0.152 at D8.3%. 

Moreover, given that we are using only about one-twelfth the data, we are able to classify 

the data about twelve times faster.  

Our algorithm is clearly highly competitive, but does it owe its performance to choice 

of which subsequences are placed in D by our algorithm? To test this, we built another D 

by randomly extracting subsequences from C. As Figure 48 also shows, our systematic 

method for ranking subsequences is significantly better than random selection.  
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Figure 48: The classification error rates for D from D0.39% to D14.2% for the physical activity dataset 

[95] 

A final observation about these results is that the training error rate is a very good 

predictor of the test error rate. As Figure 48 shows, the training error is only slightly 

optimistic.    

We are now ready to test our claim that Uniform Scaling (c.f. Section 3.1.2) can help 

in datasets containing signals acquired from human behavior/physiology. We repeated 

the experiments above under the exact same conditions, except we replaced Euclidean 

distance with Uniform Scaling distance in both the training and testing phases.   

Based on studies of variability for human locomotion [62][69][92], we chose a 

maximum scaling factor of 15%; that is to say, queries are tested at every scale from 85% 

to 115% of their original length. Uniform Scaling obtains a 0.085 testing error rate at 

D8.1%, significantly better than Euclidean distance, as shown in Figure 49. 
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Figure 49: The pink/green(bold) curves are train/test error rates obtained when we replaced 

Euclidean distance with Uniform Scaling distance 

We learned a threshold distance of 14.5 for D
15

. With this threshold, our algorithm 

rejects 9.5% of the testing queries. In Figure 50, we see that the vast majority of rejected 

queries do belong to the other class and are thus correctly rejected.  

 

Figure 50: Two examples of rejected queries. Both queries contain significant amount of noise  

We do not present formal numerical results for the rejected queries, as the weakly-

annotated format of the original data does not provide the label of the objects with 

certainty. 

This dataset draws from sporting activities. We also consider a similar but 

independent dataset [67], which considers more quotidian activities such as tooth-

brushing etc. We achieve near identical improvements on this dataset, thus we 

relegate a discussion of it to [114].    

                                                           
15

Experimental results show that the threshold distances for D built with Euclidean distance and Uniform Scaling distance are almost 

identical. Therefore, we only report one threshold distance. 
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3.3.2.  An Example Application in Cardiology  

We apply our framework to a large ECG dataset: the BIDMC Congestive Heart 

Failure Database [68]. The dataset includes ECG recordings from fifteen subjects with 

severe congestive heart failure. The individual recordings are each about 20 hours in 

duration, sampled at 250 Hz.  

Ultimately, the medical community wants to classify patient-independent types of 

heartbeats. However, in this experiment, we classify individuals’ heartbeats. This is 

simply because we are able to obtain huge amounts of labeled data this way. Note that as 

hinted at in Figure 41, the data is complex and noisy. Moreover, a single (unhealthy) 

individual may have many different types of beats. Cardiologist Helga Van Herle from 

USC informs us this is a perfect proxy problem. 

We use a randomly selected 150 minutes of data for training, and 450 minutes of data 

for testing.  

In Figure 51, we show the training/testing error rates as our algorithm grows the data 

dictionary from the smallest possible size (D0.28%) to the point where it is clear that our 

algorithm can no longer improve.  

Note that the testing error rate is 0.102 using the strawman of using all the training 

data, which is significantly better than the default error rate 0.933. However, our 

framework duplicates this error rate using only 2.1% (i.e. D2.1%) of the training data, and 

obtains the much lower error rate of 0.076 at D4.5%. From Figure 51 we again see that our 

method for building dictionaries is much better than random selection. 
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Figure 51: The classification error rates for D from D0.28% to D5.82% for BIDMC Congestive Heart 

Failure Database [68] 

We again test the Uniform Scaling distance instead of Euclidean distance in both the 

training/testing phases. Based on studies of variability for human heartbeats [68][73] and 

advice from a cardiologist, we chose a maximum scaling factor of 25%. In Figure 52, 

Uniform Scaling obtains a 0.035 testing error rate at D4.6%, significantly better than using 

the Euclidean distance. 

As illustrated in Figure 46, the threshold distance for D is 7.1. With this threshold, the 

algorithm rejects 4.8% of the testing queries. Once again, these rejections (which can be 

seen at [114]) all seem like reasonable rejections due to loss of signal or extraordinary 

amounts of noise/machine artifacts. 

  

Figure 52: The pink/green(bold) curves are train/test error rates obtained when we replaced 

Euclidean distance with Uniform Scaling distance  
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3.3.3.  An Example Application in Daily Acitivies      

Finally, we apply our framework to a widely studied benchmark dataset that contains 

20 subjects performing approximately 30 hours of daily activities [67], such as: 

running, stretching, scrubbing, vacuuming, riding-escalator, 

brushing-teeth, walking, bicycling, etc. The data was sampled at 70 Hz. We 

randomly chose 50% of the data as training data, and treated the rest as testing data.  

In Figure 53, we show the training/testing error rates as our algorithm grows the data 

dictionary from the smallest size (D0.17%) to the point where it is clear that our algorithm 

no longer improves. The use-all-the-training-data strawman [67][98][104], has a testing 

error rate of 0.237; however, we duplicate this error rate at D1.1% and obtain the 

significantly lower error rate of  0.152 at D3.8%.   

We also compare with the widely used rival approach discussed in Section 3.3.1 

[67][104]. The best result is error rate of 0.314 achieved by C4.5 decision tree [114]. 

 

Figure 53: The classification error rates for D from D0.17% to D5.32% for [67] 

In Figure 54, we show that using Uniform Scaling distance again beats Euclidean 

distance, obtaining a mere 0.091 testing error rate at D4.6%. The threshold learned for D is 

13.5, which rejects 6.3% of the testing queries [114]. 
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Figure 54: The blue/brown(bold) curves are train/test error rates obtained when we replaced 

Euclidean distance with Uniform Scaling distance. Note the other curves are taken from Figure 53 

for comparison purposes 

3.3.4.   Speed Up The Search Using Complexity As Index 

To evaluate the performance of our proposed indexing method, we simulate the 

classification of queries with varying arrival rates k. For the purpose of generality over 

all datasets, the arrival rates is modeled in equation (3) as a function of the number of all 

the subsequences |subs| in the data dictionary [105]. This is because using the 

concrete numerical values (e.g. the frequency of the data generated at 250Hz) may not 

always be meaningful or applicable, due to the wide variability in dataset characteristics: 

number of available exemplars, number of classes, etc.  

ArrivalTime(k) = |subs|*k,  0.1≤ k ≤ 1   (3) 

For k = 1, the arrival rate of the streaming queries is exactly the time needed to 

calculate all the data dictionary, which is the same amount of time for the sequential 

search in Table 8. For k = 0.1, the arrival time of the streaming queries is only one-tenth 

the time of calculating the entire data dictionary.  
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Figure 55: Classification accuracy of complexity as an index in the anytime classifier on constant 

query streams with different arrival rates for datasets in Section 3.3.1 to 3.3.3. 

3.3.5. Related Work 

There is significant literature on time series classification [67][71][75][93][103][106] 

both in the data mining community and beyond. However, almost all of these works 

make the three assumptions we relaxed in this work, and are thus orthogonal to the 

contributions here. Our algorithm can be seen as building a data dictionary of primitives 

for the very long streaming/continuous time series [99][100]. Other works have also done 
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this, such as [100], but they use significant amount of human effort to hand-edit the time 

series into patterns. In contrast, we build dictionaries automatically, with no human 

intervention.   

In the following, we show the widely existence of the unrealistic assumptions in 

literature.  

Many publications assume a large number of perfectly aligned atomic patterns are 

available. Our proposed concepts of weakly-labeled data and the data dictionary do not 

require the well-processed patterns. However, some researchers either derive non-trivial 

algorithms to extract such patterns from the original raw data or interpose the data 

generation process to produce such patterns. For example, [79] notes, “…it is desirable to 

identify the boundaries of single gait cycles, or steps, and process them individually...” 

However, the task of segmenting the data can be more difficult than classifying them. In 

[79], the authors also admit that, “Finding gait cycle boundaries requires identification of 

landmark features in the waveforms that occur each cycle. Natural gait variation and 

differences between normal and pathological gait make this task non-trivial.”   

The widely existed missing data phenomenon further increase the difficulty to the 

extraction of perfectly aligned atomic patterns. Our proposed weakly-labeled data can 

significantly mitigate this problem. However, researchers often “clean” datasets before 

publicly release them [82]. This is a noble idea, but one that perhaps shields the 

community from the realities of real-world deployment. Indeed, authors have been 

critiqued for releasing less ideal data. For example, authors in [88] criticize the UC-
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Berkeley WARD dataset [111] by noting “part of the sensed data is missed due to battery 

failure”.   

There are many examples of human intervention of the data generation procedure to 

produce the perfectly aligned data. For example, [113] has a very rigid data generation 

process, by noting that “When the subject was asked to perform a trial of one specific 

activity, an observer standing nearby marked the starting and ending points of the period 

of the activity performed. ” In addition, the subject was asked to repeat each activity 

multiple times. However, in the real-world scenario, the human does not perform the 

daily activities in this way.  

Another widely existed unrealistic assumption is that the patterns to be classified are 

all of equal length [79][84][88][96][104]. The most famous and widely used time series 

benchmark is the UCR archive [84] . All the forty-seven datasets are well preprocessed 

and are of equal length. However, in reality, patterns can be of different lengths. For 

example, the human heart rate can be different. People can walk at different speed, etc. 

Authors in [88] observed, “It is clearly visible that despite the normalization steps taken, 

there is still considerable variation within the same gesture type from the same person.”  

The assumption that exists in almost all the time series classification literature is that 

they assume every item to be classified belongs to exactly one of the well-defined classes 

[76][84][96][103]. Here we use a simple example to demonstrate the widely existence of 

this assumption. For example, in [96], authors report the classification result of seven 

daily activities, lie, row, bike, sit/stand, run, nordic-walk, walk. 

However, in reality, there are much more human activates than the mentioned above. For 
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example, hand-shake, push-the-door, etc. If the query with a concept other 

than the seven concepts, their classifier will still mistakenly report a class label. In our 

proposed framework, we use a rejection threshold to prevent this problem. 

3.4 Conclusion and Future Work 

We introduced a novel framework that requires only very weakly-labeled data and 

removes the unjustified assumptions made in virtually all time series classification 

research. We demonstrated over several large, real-world datasets that our method is 

significantly more accurate than several common strawman algorithms. Moreover, with 

less than one tenth of the original data kept in D, we are at least ten times faster at 

classification time.  

Our algorithm has just one parameter, the length of queries. In our activity datasets, 

we simply used the original authors values [67][95], and for ECGs we used a 

cardiologist’s suggestion. By changing these suggested values we empirically found that 

we are not sensitive to this parameter. Nevertheless in future work, we plan to learn it 

from the data. 
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Chapter 4:   

Classification of Multi-Dimensional 

Streaming Time Series by Weighting 

Each Classifier’s Track Record 

Although there is extensive research on time series classification, the problem of 

multi-dimensional time series classification is still understudied. In this chapter we 

demonstrate a proposed framework with classification of multi-dimensional time series 

data. This chapter is organized as follows. We first introduce the notations and intuition 

behind our framework in Section 4.1. We will defer the discussion of related work in 

Section 4.2, when the reader’s intuition for the domain has been developed. Section 4.3 

explains how our novel voting framework works. In Section 4.4, we provide an extensive 

evaluation of our ideas with several real-world datasets from diverse domains. Finally, 

we offer conclusions and directions for future work in Section 4.5. 

4.1 Notation and Background 

In this section, we describe the definitions and intuition of our framework. We begin 

with the basic definitions. 

4.1.1. Basic Time Series Definitions 

We begin with the definition of a time series: 
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Definition 11: A time series T = {t1,t2,...,tn} is a continuous sequence of n real-

valued numbers. 

The recent ubiquity of inexpensive sensors, for example, in smartphones or medical 

devices, has led to greater interest in multi-dimensional time series [142][151][156]. We 

define multi-dimensional time series (MDT) as follows: 

Definition 12: A multi-dimensional time series MDT = {T1; T2;…Tm}consists of m 

time series Ti, which are synchronously recorded streams.  

For convenience in this work, we refer to each dimension in MDT as a stream or a 

sensor, where there is no ambiguity. 

There is near unanimous consensus that the nearest neighbor (NN) classifier is the 

best option for time series data [123][129][132]. Thus, this is our classifier of choice. In 

order to use the nearest neighbor classifier in classification of MDT, we must slightly 

generalize from ubiquitous single time version [123][129][132]. We define the nearest 

neighbor classifier in the classification of MDT as follows: 

Definition 13: The nearest neighbor classifier for an MDT is an algorithm that for 

each dimension qi in an incoming MDT query q = {q1;q2;…qm} finds its 

nearest neighbor only in  the corresponding dimension Ti  from the MDT training 

data {T1; T2;…Tm}. The class label of q is determined by a combination of the 

nearest neighbor results for qi. 

Hereafter, when we refer to a classifier, we mean a single nearest neighbor classifier 

operating on a single dimension in MDT. 
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As shown in Figure 56, the query qi from a given dimension only finds its nearest 

neighbor in the respective dimension Ti in training data; the query qi does not find its 

nearest neighbor in any other dimension Tj.  

 

Figure 56: The red dot/blue triangle represent sensors mounted in wrist/shoe, respectively. left) A 

two dimensional time series (T1 , T2), T1 from a sensor on the wrist and T2 from a sensor on the 

shoe. right) A query q with two dimensions (q1 and q2), will find their nearest neighbors in T1 and 

T2 , respectively. 

4.1.2. Supporting Confidence-Based Classification 

As noted above, rather than using an approach that uses the ALL, BEST, or SUB 

streams of an MDT, we propose to evaluate and exploit the expertise of each data stream. 

In other words, for each time series stream in MDT, we have an individual nearest 

neighbor classifier, and a (dynamically determined) combination of classifier’s 

predictions is used as the overall class prediction. 

At query time, each classifier tells us not only what it predicts for the class label, but 

also how confident it is in its prediction. Our central claim in this work is that by 

judiciously considering these confidence-annotated predictions, we can outperform all the 

obvious rival methods. While similar ideas (weighted voting [121][127][131][160], 

Bayesian classification [121]) exist in the literature for general classification (cf. Section 

4.2), the application and adaption to the unique structure of time series data we present in 

this work is novel. 

training data testing data

T1 from wrist

T2 from shoe

q1

q2
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Our technique opens several questions, the most immediate of which is how to learn 

each classifiers’ expertise?  

The expertise of each classifier could be labeled by domain experts. For example, a 

clinician may know that an ECG from electrodes placed on the right of the sternum (S5) 

are generally better for recognizing atrial flutter, whereas data from the patient’s back 

(V7, V8, V9) tends to be better for detecting myocardial infraction [120][126]. However, 

experts are expensive. Thus, we will create a framework that automatically learns the 

expertise of each classifier directly from the training data. As our framework requires that 

each classifier must report a score indicating how confident it is for its predicted class 

label, we define confidence score as follows: 

Definition 14: A confidence score C with range [0, 1] is a self-reported confidence 

of a classifier on its prediction result. Numbers closer to 1 indicate higher 

confidence in prediction.  

Before we demonstrate how we learn and use the confidence scores in Section 4.3, we 

show an intuitive example to demonstrate that the expertise of classifiers does vary. In 

Figure 57, we show the confidence score of classifiers learned for various human 

activities (more details in Section 4.4) in a heavily cited benchmark dataset for human 

activity recognition [140].  
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Figure 57: The performance of four classifiers (a), (b), (c), and (d) on four activities. In each 

classifier, the height of the bar is the confidence score for each activity. 

Note that classifier (b) which tracks a sensor on the wrist has high confidence in the 

upper body activities ironing and rope-jumping 16 , but has relatively low 

confidence in ascending-stairs and running, which are clearly lower body 

activities. Conversely, classifiers (c) and (d), which are embedded in the participant’s 

shoes, have the opposite expertise. 

If there are p concepts to be learned, then we must learn a confidence score vector 

C_vector = [C1,C2,…Cp] for each stream in MDT. Each element Ci represents how 

confident the classifier is when predicting the i
th

 class label.  

Accordingly, for an MDT comprised of m streams, our framework learns a confidence 

score matrix C_matrix = {C_vector1; C_vector2; …C_vectorm} with row number m and 

column number p for the m classifiers. This, in essence, is what Figure 57 illustrates.  

                                                           
16

 We classify rope-jumping as upper body because the participant may have variable footwork, skipping on left, right or both 

legs; however their wrist action has very low variability.   
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4.1.3. Supporting Distance-Based Classification 

The confidence scores in Figure 57 are learned offline in training phase. However, as 

noted in the introduction, we have an additional observation we plan to exploit, and this 

observation requires adjustment of confidence in the testing (or deployment) stage. Our 

observation is that an individual stream classifier should not be confident predicting any 

class if the object being classified is significantly different than the exemplars 

encountered during training. This problem was hinted at in Figure 1 and was observed in 

nearly all of the case studies in Section 4.4. A common trivial reason for this occurring is 

that a battery dies on one sensor, and thus the time series to be classified is just a constant 

line. This effect is very commonly seen in medicine when one lead is unplugged or falls 

off the patient. Moreover, the sensor failure problem has been frequently observed in the 

literature. For example, a recent paper states: “…part of the sensed data is missed due to 

battery failure…” [159].  

Furthermore, there are other possible reasons why the testing data might differ from 

the training data. If one of the concepts we learned with high confidence is 

ascending-stairs, we may find the new behaviors to be classified range from near 

identical time series patterns to more and more distorted patterns. This is because we may 

encounter data from a user that is tired, or wearing new shoes, or carrying heavy 

groceries, or encountering fresh snow etc.  In these cases, even if the time series is still 

closer to ascending-stairs than any other class, the relevant classifier should 

signal a more tentative class prediction.  
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In Figure 58, we show a concrete example to demonstrate the importance of 

integrating the nearest neighbor distance with the confidence score. This is real-world 

data which we have slightly contrived for clarity. For simplicity, assume that there is an 

MDT with two dimensions. Further assume that at query time there is an incoming query 

q with two dimensions (q1 and q2). We want to determine the class membership of q 

using the confidence score approach.  

Consider a case when we discover that among a dozen possible classes, q1 and q2 

report that their nearest neighbors are different, say running and rope-jumping, 

respectively. (If they had agreed on a class label, then our prediction would have just 

been the agreed upon that label.) Given our observation about the confidence scores, we 

can break the tied vote by trusting the more confident classifier, which in this case was 

running with a confidence score 0.82. 

However, as shown in Figure 58, this may not be the optimal decision. While q1 is a 

little closer to running than q2 is to rope-jumping, neither is particularly similar to 

its class prototypes.  We simply do not have much experience with such objects. 

Nevertheless, if we take into account the learned distributions of nearest neighbor 

distances for the two classifiers, we find that the probability of being a true positive for 

q2 is much higher than q1.  In Section 4.3.3, we formalize this visual intuition of how we 

adjust the prior knowledge – the confidence score − to a posterior probability by 

integrating the nearest neighbor distance as the new evidence. We discover that the 

prediction rope-jumping from the second classifier has a higher confidence score 

after this adjustment, which is the correct answer in this example. 
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Figure 58: The distributions of nearest neighbor distances for true positives (green/left) and false 

positives (red/right) in the classification of activity running using data from wrist (top) and activity 

rope-jumping using data from shoe (bottom).  

Note that the above observation only makes an overall difference in accuracy if there 

is variability in the distributions observed in each class. Empirically, we find that this is 

almost always the case for real-world problems.  Some classes are intrinsically simple; 

for example there is only so much variability possible in say, running. However, some 

behaviors such as ironing are much more amiable to individual idiosyncrasies. 

Moreover, variability in equipment or clothing being ironed will also tend to produce 

distributions with greater means and larger standard deviations.  

In summary, simply voting with the confidence score learned in the training phase 

may be sub-optimal, unless the testing data is exactly like the training data, an unlikely 

eventuality.   

To take into account the above observation, we define the adjusted confidence score 

as follows: 
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Definition 15: The adjusted Confidence score (adC) with range [0, 1] is a score 

that subsumes the confidence score (c.f. Definition 16) by incorporating 

information about the distance between testing objects and the training objects as 

measured at query time. 

In Section 4.3.3, we show how we adjust the confidence score in a principled way by 

combining the nearest neighbor distance at query time using Bayes theorem [121]. If the 

query is not similar to any class that the classifier learned, the adC for predicting the label 

of this query should be very low.  

We use ACV as the abbreviation for our algorithm Adjusted Confidence Vote, which 

incorporates these observations. 

As we have shown in Figure 58, the nearest neighbor distance distributions of true 

positives and false positives for each class play an important role in adjusting the 

confidence score at query time. We define distributions of nearest neighbor distances as: 

Definition 17: The distributions of nearest neighbor distances (DN) are two 

distributions; one is the distribution for nearest neighbor distances of the true 

positives and another one is for the false positives. For each concept that a classifier 

learns during the training phase has two such distributions. 

In Definition 18, we showed that our algorithm learns C in the training phase by 

evaluating the classification performances for each classifier. During this process, we 

also store the distributions of nearest neighbor distances. For each classifier, we have a 

vector of distributions DN_vector = [DN1,DN2,…DNp] with length p.  



 

116 

 

4.1.4. Allowing Real World Deployment 

Recently, it has been noted that much of the literature on time series classification 

implicitly or explicitly makes unjustified assumptions that limit the applicability of the 

proposed algorithms to real-world scenarios [129][130]. These assumptions are: 

Large amounts of perfectly aligned atomic patterns can be obtained [122][129][132]. 

That is to say, the algorithms assume they will only be given whole and complete 

heartbeats/gait cycles/atomic behaviors, with no extra spurious leading or trailing data. 

The patterns are all of equal length [130][132][147][152]. For example, in the world’s 

largest collection of time series datasets, the UCR classification archive, all forty-five 

time series datasets contain only equal-length data [132].  

All patterns presented to the classifier will belong to one of two or more well-defined 

classes, that is to say, there is no possibility for the classifier to label an object as 

unknown [123][132].    

These unrealistic assumptions are violated by most real-world datasets. In particular 

at least one assumption is violated by all five datasets we consider in Section 4.4. Thus, 

while we know a lot about the ability of various classification paradigms on the datasets 

found in the UCR archive [132], based on the hundred-plus research efforts that report 

results on it [152], we know a lot less about how well these ideas will perform in a real-

world deployment.   

Thus, while it is not strictly necessary to demonstrate our novel observations, in this 

work we will follow the lead of [129] and introduce our framework in a way that does not 
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make such unwarranted assumptions about the data. The next two definitions are required 

to remove these assumptions.  

We define the weakly-labeled training data as follows: 

Definition 19: weakly-labeled training data (WT) is a collection of the weakly-

labeled time series annotated by behavior/state or some other mapping to the 

ground truth. 

This is best understood by contrast to strongly-labeled training data (i.e. all of the 

UCR datasets [132]). Strongly-labeled data presents objects with explicitly labeled 

sections. For example, in the Kitchen Activity Dataset we consider in Section 4.4.5, 

someone has taken the effort to annotate the precise moment that the various atomic food 

preparation activities begin and end. In contrast, in WT data, we are given data labeled 

like this: “in these two minutes of data there are some examples of chopping.” This is 

clearly a more realistic and scalable way to annotate data and our efforts are made with 

these more assumptions in mind.   

There are two important properties of WT that we must consider and which are 

illustrated in Figure 59.a. 

First, WT will generally contain extraneous/irrelevant sections. For example, when 

recoding ECG data, a section of recoding is clearly extraneous when the machine was not 

plugged in, as shown by the “flatline” in Figure 59.a. Similar phenomena occur in all the 

datasets we examined. Second, WT will almost certainly contain significant 

redundancies. Consider Figure 59.a again. Once we have a single normal heartbeat, say 

pattern N1 (Normal beat), then there is little utility in adding additional examples of the 
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same type of ECG in the training data. Rather, what we should add into the training data 

are representative examples of other types of heartbeats, in this case, one example of the 

pattern S (Supraventricular Ectopic Atrial) and one example of the pattern V1 or V2 

(Premature Ventricular Contraction). 

 

Figure 59: A snippet of BIDMC Congestive Heart Failure Database ECG, Record-03. (a) WT, 

which exhibits both extraneous and redundant data. There are two types of anomalous heartbeats 

(V, S) and normal beat (N) in WT. (b) A minimally redundant set of representative heartbeats (a 

data dictionary) could be used as training data. 

Rather than having the redundant data in WT, we desire a smaller but smarter training 

subset that does not have the spurious data, while still covering the target concepts. For 

example, Figure 59.b consists of just one example of N, V and S. We define the 

minimally redundant training subset as a data dictionary: 

 Definition 20: A data dictionary D is a (potentially very small) “smart” subset of 

WT, while covering all the p concepts in WT. 

Note that in our simple example in Figure 59.b, it happens to be the case that one 

example from each of {N, S, V} suffices to cover the concept space. This does not have 

to be the case; for example, the class V could be polymorphic and we may need to have 

multiple examples of it in order to represent its variability.  
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While D could be manually built by domain experts, again we note that human 

domain expertise is expensive. The framework in [129] demonstrates how to build D 

automatically using a simple data editing technique, which removes data redundancy 

while retaining just enough examples of the concept to cover the space of its 

“variability.”  

There are two important properties of D. First, the classification accuracy obtained 

from using just D is generally much higher than that obtained from using all WT [129]. 

This may be a little surprising, as we generally think more is better when it comes to 

data. Recall that D is designed so that it does not contain spurious data. If we have 

voluminous spurious data, then there is a high probability that some of it will be close to 

an exemplar from a different class, reducing classification accuracy. 

The second important property of D is its size. In most real-world settings, D is a very 

small fraction of WT, perhaps only one-hundredth its size. This allows real-time 

deployment on resource limited devices (embedded devices, smartphones, etc. [119]).  

For an MDT with m dimensions, our framework must learn m data dictionaries for the 

respective dimension. 

4.2 Related Work 

Since the adjusted confidence score is at the heart of our contribution, we will take 

the time to discuss its relationship with the related work.  
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4.2.1. Relationship to Ensemble Methods  

We are finally in a position to clarify the relationship between our algorithm ACV and 

the ensemble methods that it superficially resembles, for example, Boosting or Bagging 

[117][127][131][145][160].  

In brief, our approach is different from such ensemble methods in the sense that we 

do not generate redundant classifiers that later combine for prediction [160].   

 The common approach in the first step of Boosting and Bagging is that they both 

generate multiple base classifiers in order to produce diverse “views” of the data [160]. 

However, we do not generate classifiers. Instead, we perform the classic nearest neighbor 

classifier on each single data stream as an individual classifier. For example, the most 

famous algorithm in Boosting is AdaBoost [160]. In order to focus more on the training 

examples that are “difficult” to classify, AdaBoost iteratively generates different 

classifiers to focus on the training examples that are incorrectly classified. However, our 

ACV framework does not generate classifiers to adapt the data. 

The last step of ensemble methods performs a combination of the votes from the base 

classifiers [160]. Our contribution of the novel voting scheme using adC was informed by 

this combination step. In particular, using just C is similar to the weight in weight voting. 

(There is still a difference between using just C and the weight in weighted voting, which 

we clarify in 4.2.2). However, we augment weighted voting by adjusting the weight with 

the similarity measure at query time.  



 

121 

 

In Section 4.4, we show using several large datasets from diverse domains that ACV 

framework beat the most popular voting methods: majority weight and weighted voting 

[160]. 

4.2.2. The Adjusted Confidence vs. the Weight in Weighted Voting  

In general, our voting framework is similar to weighted voting 

[121][127][131][144][160]. Since adC is an augmentation of C, we first clarify the 

difference between C (Definition 14) and the “weight” in weighted voting.  

In weighted voting, the key decision is how to choose the weight [160]. To obtain the 

best performance, the general intuition is that the weights should be chosen in proportion 

to the performance of individual classifiers [160]. Our confidence score C has a similar 

intuition in the sense that both of them are chosen based on the performance of the 

classifiers in the training phase. However, unlike the weights in weighted voting, which 

are chosen based on the overall performance of the classifier, C is calculated based on the 

performance of the classifier for each individual class in the classifier.  

In other words, for all the classes considered by a classifier, there is a corresponding 

C for each class. As shown in Section 4.1.2, instead of having a single weight for each 

classifier as the weighted voting does, we have a C_vector = [C1,C2,…Cp] for each 

classifier. 

As adC is an augmentation of C, it can also be seen as an extension of the strategy of 

the weighted voting algorithm [121][127][131][160]. The modification lies in the fact 

that adC is the posterior probability by combining the new evidence (nearest neighbor 

distance at query time) and a prior knowledge (the confidence score) using Bayes 
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theorem [124]. In contrast, the weighted voting only uses prior knowledge, in particular 

the past performance of the classifiers [160].  

As we will show in Table 12, our framework takes the predicted label with the 

highest posteriori probability, the highest sum of adC. The optimality of using the 

maximum posteriori estimation together with Naïve Bayes over other approaches has 

already been proven [115][124][158]. These optimality results require that we treat the 

multiple data streams as independent of each other. This may be an unrealistic 

assumption, but it has been shown that Naïve Bayes is surprisingly robust to violations of 

this assumption   [124][158]. The experimental results in Section 4.4 will show that our 

ACV approach is more accurate and robust than all the rival methods. 

4.3 Algorithms 

In order to best explain our framework, we first explain how our classification model 

works given that the confidence scores of an MDT C_matrix, the distributions of nearest 

neighbor distances DN_matrix, and the data dictionaries D_matrix for WT have already 

been created. Later, in Section 4.3.2 and 4.3.3, we revisit the task of learning them. 

4.3.1. Classification of Multi-Dimensional Time Series using the Adjusted 

Confidence Scores  

For an incoming m-dimensional unlabeled object q, we classify each dimension with 

the corresponding classifier in D_matrix using the classic one nearest neighbor algorithm 

[132]. For each class pj, we sum the adC of each classifier that assigned class pj to query 

q. The class with the highest sum is returned as the class prediction for q.  



 

123 

 

In Table 12, we explain the algorithm in more detail. We begin in line 1 by 

initializing all of the m adC from the m classifiers to zeros. In line 3, we calculate the 

nearest neighbor for each dimension of q with the corresponding classifier in D_matrix. 

To be clear, each dimension is considered completely independently of all others.  

The function One_NN_search is simply the classic one nearest neighbor 

algorithm discussed in Definition 13 [132]. We omit details of the function 

One_NN_search, as it is well known [123][151]. Note that while the distance measure 

used in line 3 could be any measure [123], we only consider the Euclidean distance，as it 

has been shown to be an extremely competitive measure [129][132][154]. In line 4, the 

algorithm computes the adjusted confidence score calculated by equation (1) in Section 

4.3.3.  

Table 12: Adjusted Confidence Classification Algorithm 

Input 

 

 

C_matrix, a confidence score matrix that contains p columns 
and m rows(from m classifiers)  

DN_matrix, distributions of nearest neighbor distances 
D_matrix, a matrix that has m data dictionaries 
q, a query with m dimensions 

Output The class membership of q 

score, the total confidence for the prediction 

1 
2 
3 
 
4 
5 
6 

adC_vector ← zeros(1,m);  
for i ← 1 to m 
[NN_labels(i),NN_dist] ← One_NN_search(q{i},D_matrix{i}); 

              // NN_labels is a vector with m elements for the m classifiers 
 adC_vector(m) ← calculate_adC(NN_labels(i),NN_dist); 
endfor 
[class_label,score]← 
class_with_highest_sum(adC_vector,NN_labels); 

 

Note that if we only use the confidence score retrieved from C_matrix without any 

adjustment, ACV degenerates to the weighted voting algorithm scheme [160]. (Although 

to our knowledge, this has never been done for time series before.) However, as we 



 

124 

 

argued in Section 4.1, we need to augment this confidence score with the observed 

nearest neighbor distances. 

We take the class label that has the highest sum of adjusted confidence scores.  

Having demonstrated how the classification model works in conjunction with 

C_matrix and DN_matrix, we are now in a position to illustrate how to learn them. 

4.3.2. Learning the Confidence Score  

We learn the confidence scores by evaluating the classification performance for each 

classifier during the training phase. As a byproduct of this, we also obtain DN for every 

class in all the classifiers, which we use to calculate the probability of being a true 

positive given the nearest neighbor distance at query time. To be concrete, for each class, 

we use the precision [150] of the classification as the confidence score.  

In Table 13, we show how we learn C_matrix and DN_matrix. Note that we randomly 

split the weakly-labeled training data into two parts. We learn the data dictionaries from 

one fold using the framework in [129] and treat another fold as holdout data.   

We first randomly sample a large number of queries from the holdout data in line 1. 

From lines 2 to 10, we calculate the C_vector and DN_vector for each classifier. In line 3, 

we calculate the classification result for queries in the i
th

 classifier. Then the algorithm 

retrieves the DN (i.e. NN_true and NN_false) from NN_dists in lines 5 to 6. Line 7 

shows that the algorithm adds DN to DN_matrix. In line 8 the algorithm calculates the 

precision for the classification result as the confidence score for the j
th

 class in the i
th 

classifier. 
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Table 13: Learning the Confidence Score 

Input 
 
  D_matrix, The number of classes in each D is p;   
  Holdout_WT, holdout data in the WT 

Output 
  C_matrix, confidence score matrix contains m confidence vectors 
            for the m classifiers; 
  DN_matrix, the distributions NN distances 

1 

 

2 

3 

 

4 

5 

6 

 

7 

8 

9 

10 

qs ←  a large number of multi-dimensional queries randomly sampled 

from Holdout_WT 
for i ← 1 to m 

  [NN_labels,NN_dists]← One_NN_search(qs(i),MD(i)); 

        // perform classification for the ith classifier 
  for j ← 1 to p 

    NN_true ← NN_dists for true positives in j
th 
class 

NN_false ← NN_dists for false positives in j
th 

class    
  // DN is NN_true and NN_false 

    DN_matrix(i,j) ← [NN_true,NN_false]; 

    C_matrix(i,j)← calculate_precision(NN_true,NN_false) 
  endfor 

endfor 

In the next section, we illustrate how we adjust the confidence score at query time by 

combining the nearest neighbor distance and the confidence score in a principled manner. 

4.3.3. Learning the Adjusted Confidence Score  

The adjusted confidence score is the confidence score augmented by integrating the 

nearest neighbor distance at query time. 

The Bayes theorem is the optimal model to learn the adjusted confidence score [124]. 

This is because the adjusted confidence score is the posterior probability by combining 

the new evidence (nearest neighbor distance at query time) and the prior knowledge (the 

confidence score). We denote the following:  

                       pl : predicted nearest neighbor label 

                       tl:   true label 

                     dist: the nearest neighbor distance calculated at query time 

The adjusted confidence score is calculated as follows: 
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( | )P pl tl dist   
( | ) ( )

( )

P dist pl tl P pl tl

P dist

  
 

( | ) ( )

( | ) ( ) ( | ) ( )

P dist pl tl P pl tl

P dist pl tl P pl tl P dist pl tl P pl tl

  


      
   (1) 

In the above equation, ( )P pl tl is the confidence score that we have learned using 

algorithm in Table 13. We can easily calculate ( | )P dist pl tl  given DN and the dist 

with density estimation.   

4.4 Experiments 

We begin by stating our experimental philosophy. To ensure that our experiments are 

easily reproducible, we have built a website which contains all the datasets and code 

[161]. In addition, this webpage contains further experiments which are omitted here for 

brevity.  

Before listing the seven straw men that we compare to, we note that in addition we 

have compared our approach with many other widely-used rival classification 

frameworks, in particular SVM, boosted decision trees and the C4.5 decision tree 

[140][157][160]. The best result among these is achieved by C4.5 decision tree; however 

it is still not competitive with results produced by our algorithm ACV. Thus for clarity 

and brevity we relegate these results to our website [161]. We do not claim this as a novel 

finding, the superiority of nearest neighbor methods over eager leaning methods for time 

series has been noted by many others [123][152]. 

We test on five datasets (plus another three we relegated to [161]), which we believe 

is the largest set of MDT datasets ever considered in a single work. In particular, more 
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than 90% of the papers on this problem test on exactly one dataset [128][130][140][149] 

[156][159].   

For the purpose of comparison, we list the seven straw men we use. Note that each 

straw man has been used in at least one recent paper. We begin by explaining ALL, 

BEST, and SUB in more detail.  

For ALL, we calculate the sum of the distance
17

 between query q with m dimensions 

and the m classifiers and then find the one with the minimum distance as the nearest 

neighbor of q.  

For BEST, at query time, we use only the one classifier that has the best performance 

in the training phase [149].  

For SUB, in the training phase, we perform a heuristic greedy search over all the 

classifiers until the accuracy starts to decrease [128][133][146][155].  

In addition to ALL, BEST, and SUB, there are four other obvious rival approaches in 

the literature that we need to compare: 

Minimum Distance Vote: choose the class label of the classifier that reported the 

minimum distance among the nearest distances from all the classifiers [151].  

Majority Vote: choose the most commonly predicted class label [160]. (Technically, 

this is a “plurality” and not a “majority,” but we will use the common term). 

Random Vote: at classification time, randomly choose a classifier and take its class 

prediction [160]. 

                                                           
17 We considered other variants, including summing the squared distances, etc. Our chosen variant was empirically the 

best method that used all dimensions.    
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Weighted Vote: choose the class label with the highest sum of the weights from the 

classifiers that agreed on that class label. The weight is learned purely based on the past 

performance of the classifiers on the training data [160].  

4.4.1. Physical Activity Data 

We consider a physical activity dataset containing 36 axis synchronous measurements 

from three Inertial Measurement Units (IMUs) located on the wrist, chest and ankle. This 

dataset has eight subjects performing activities such as: ironing, rope-jumping, 

running, folding laundry, ascending-stairs, etc [140]. Approximately 

eight hours of data at 110Hz was collected. 

We performed the following experimental procedure. We randomly chose 40% of the 

dataset as training data, and treat the rest as testing data. A data dictionary matrix 

D_matrix that contains less than ten percent of all the training data is learned using the 

framework in [129].  

Note that in all of our case studies, our experiment are subject independent 

evaluation, which is considered much harder than subject dependent evaluation [136] 

[140][149]. 

As shown in Table 14, our ACV approach achieved a classification error rate of 0.05. 

In contrast, the original authors of the data reported an overall classification error rate at 

0.10 [140][149]. While these two results are not exactly commensurate, the evaluation 

procedure in [140][149] would be expected to produce higher accuracy based on their 

split sizes. Their method extracts signal features from sliding windows and reports the 
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best result after testing the feature vectors with all the popular classification algorithms 

using Weka [149]. 

Table 14: Classification Results on the Physical Activity Data for ACV and Seven Straw Men 

Algorithms Accuracy:  

Original Data 

Accuracy:  

Occluded Data 

ALL [119][133] 0.19 0.16 

BEST [136][140] 0.72 0.63 

SUB [2][133][146] 0.78 0.64 

Minimum NN 

dists[151] 

0.59 0.58 

Random[160] 0.51 0.47 

Majority Vote  [160] 0.84 0.76 

Weighted Vote [160] 0.89 0.77 

Adjusted Confidence 

Vote 

0.95 0.94 

  Moreover, Table 14 shows that the ACV method beats all seven straw men by a 

significant margin. 

Recall that the strongest motivation for our ideas is to produce a framework that is 

robust for missing (or “occluded”) data. Our claim is that such missing data is very 

common, but researchers often “clean” datasets before publicly releasing them. This is a 

noble idea, but one that perhaps shields the community from the realities of real-world 

deployments. Indeed, authors have been critiqued for releasing less than idealized data; 

For example, authors in [159] criticize the UC-Berkeley WARD Dataset [156] by 

noting“part of the sensed data is missed due to battery failure”. 

While we have seen multiple real examples of occluded data, to allow systematic 

testing we must synthetically occlude data. Let us revisit this widely studied dataset [140] 

as an example (Later datasets had a similar treatment.) There are 36 data streams, 

arranged in 12 triplets. For example, there are x, y, z axes for the acceleration data, and 

roll, pitch, and yaw for gyroscope data. We perform our occlusion experiments by 
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simulating sensor failure of one triplet at a time. For each of the three streams, in a 

randomly chosen triple, we toss a fair coin to decide if we should replace it with either a 

straight line or a sine wave. We report the average performance by testing all the 12 

cases. In Table 14, rightmost column, we show the classification result for these data 

occlusion experiments.  

As we can observe, ACV also achieves the highest accuracy for occluded data. 

Among the seven straw men, the Majority Vote and Weighted Vote methods return 

competitive results in using original data. However, when it comes to data with 

occlusion, the performance of these two algorithms drops precipitously. This is because 

data in the testing phase is different from data used in the training phase. While only one 

tenth of the data is different (by definition), this is enough to make a drastic difference in 

their performance.  

In contrast, our ACV approach is relatively robust for data with occlusion, since ACV 

carefully factors in the nearest neighbor distances in the testing phase. 

Given the relatively poor performance of the five straw men on both the original and 

occluded data (shown in gray in Table 14), we omitted the results for these approaches in 

the rest of this work.  Instead, we put the results of a complete comparison on the 

supporting webpage [161]. 

4.4.2. Avian Audio Data 

Audio classification typically begins by extracting acoustic features such as Mel-

Frequency Cepstral Coefficients (MFCCs) from audio signals [118][138]. MFCCs 
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represent the speech amplitude spectrum in a compact form by transforming the audio 

data into thirteen coefficients18.  

In most algorithms that use the MFCCs for speech recognition, researchers either use 

one coefficient or use all the coefficients [118][138][153]. As noted above, it is our claim 

that both these choices may result in poor performance. To see this, we consider two 

species, East Brazilian Pygmy Owl (Glaucidium minutissimum) and Common Potoo 

(Nyctibius griseus) as examples. As shown in Figure 60, it is clear that for the Owl, the 

patterns (green/bold) exhibited in the third and fourth coefficients (red) are much clearer 

than the ones in the second and fifth coefficients. While for Potoo, the patterns in the 

third and fourth coefficients seem random.  

 

Figure 60. left) A snippet of sound spectrum and MFCCs from 2 to 5 for the East Brazilian Pygmy 

Owl. right) A snippet of sound spectrum and MFCCs from 2 to 5 for the Common Potoo. 

Clearly, it is not a trivial task to automatically identify which coefficients are most 

useful for which species, even for experienced avian bio-acousticians. Moreover, even 

within a single species, the bird calls in the testing phase may be subtly different from in 

                                                           
18

 Usually the top thirteen coefficients are used for audio analysis. The first coefficient is a normalized energy parameter, which is not 

used for speech recognition [138]. 

coef : 2

coef : 3

coef : 4

coef : 5

East Brazilian Pygmy Owl Common Potoo



 

132 

 

the training phase, as the inevitable background noise may affect different coefficients in 

different ways. 

Thus, we see this domain as an ideal candidate for our ideas and treat the twelve 

coefficients as an MDT. 

Xeno-canto is a large data pool of bird sound files with the aim of sharing bird 

sounds. Avian audio files are uploaded by volunteers from all over the world [153]. We 

randomly chose four hours of audio data from four species of birds to perform a 

classification experiment. The four species are East Brazilian Pygmy Owl, Common 

Potoo, Dusky Capped Flycatcher (Myiarchus tuberculifer), and Acadian Flycatcher 

(Empidonax virescens). We have placed the original audio files and the extracted MFCCs 

time series on the supporting webpage [161].  

In the bird sound datasets, we do not need to explicitly perform experiment with 

occlusion because of the natural variability of the bird sounds, recorded—in some 

cases—years and hundreds of miles apart [153].  

Our dataset consists of approximately eighteen hundred bird calls. We randomly 

chose 40% of the data as training data and treated the rest as testing data. The 

classification accuracy using our ACV approach is 0.87, while for Majority Vote and 

Weighted Vote, the classification accuracy is 0.66 and 0.79, respectively. 

4.4.3. Recognition of Cricket Umpire Signals 

Cricket is a very popular game in British Commonwealth countries. An umpire 

signals different events in the game to a distant scorer/book-keeper. The signals are 

communicated with motions of the hands. For example, No Ball is signaled by 
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touching each shoulder with the opposite hand. A complete list of signals can be found in 

[137].  

The dataset in [134] consists of four umpires performing twelve signals. There are 

four umpires performing each signal ten times. The data with frequency 184Hz was 

collected by placing two accelerometers on the wrists of the umpires. Each accelerometer 

has three synchronous measures for three axes (x, y and z). Thus, we have a six 

dimension MDT from the two accelerometers. Figure 61 shows the data for two example 

signals, Six and Leg Bye. To signal Six, the umpire raises both hands above his 

head. Leg Bye is signaled with a hand touching the umpire’s raised knee three times. 

 

 

Figure 61: x, y, z acceleration data from right hand (brown) and left hand (blue) for two signals 

Six and Leg Bye.  

We randomly chose 40% of the data as the training data and treated the rest as testing 

data. The classification results are shown in Table 15. As noted in Section 4.4.1, since the 

Majority Vote and Weighted Vote methods return the most competitive results among the 

seven straw men, we only list the results using these two straw men due to space 

limitations. However, we reiterate that we have put the full result on the supporting 

webpage [161]. 
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To produce real-world occluded data, we had two experienced officials perform the 

twelve cricket signals under the same experimental conditions as in [134]. By contriving 

a battery failure, we arranged that one subject had a sensor failure on the left hand and the 

other subject had a sensor failure on the right hand. We added this data to the original 

data in [134]. 

As we can see in the result for occluded data in the rightmost column of Table 15, our 

ACV approach is significantly more robust to sensor failure than Majority Vote or 

Weighted Vote. Moreover, for original data [134], ACV once again achieves the highest 

accuracy. 

Table 15: Classification Results on the Cricket Data 

Algorithms Accuracy  

Original Data 

Accuracy  

Occluded Data 

Majority Vote  [160] 0.88 0.71 

Weighted Vote [160] 0.92 0.78 

Adjusted Confidence 

Vote 

0.96 0.93 

4.4.4. Gesture Recognition 

Almost all modern smartphones are equipped with multiple sensors (i.e. acceleration 

sensors, gyroscopes, etc.). This has inspired dozens of research efforts on creating gesture 

recognizers for mobile devices [136].  

The dataset provided in [136] is rapidly becoming a benchmark in this domain. The 

data was created by fifteen subjects wearing iPhones on their wrists to create six hand 

gestures as shown in Figure 62. Each participant provided each gesture fifteen times. 

There are six dimensions comprised of 3-axis acceleration data and 3-axis gyroscope data 

recorded at a frequency of 80Hz.  
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Figure 62. Visualization of the six gesture classes. This figure from [136] is used with permission. 

We randomly chose 40% of the data as the training data and treated the rest as the 

testing data. Using the same method discussed in Section 4.4.1, we randomly choose half 

of the testing subjects for the occluded data experiment. The comparison in Table 16 

shows that our ACV approach obtains the highest accuracy in both cases of using the 

original data and data with occlusion.  

Table 16: Classification Results on the Gesture Data 

Algorithms Accuracy  

Original Data 

Accuracy  

Occluded Data 

Majority Vote  [160] 0.86 0.67 

Weighted Vote [160] 0.89 0.74 

Adjusted Confidence 

Vote 

0.97 0.93 

4.4.5. Kitchen Activity Data 

A recent European effort in assisting elderly people to live more independently [148] 

has investigated technology to support activities in the kitchen, including automatic 

guidance while cooking and cleaning. Sensors embedded into kitchen utensils provide 

continuous data streams while being used. This provides an ideal test bed to demonstrate 

our framework. The first major dataset released [125][148] has four Wii-remote 

instrumented utensils to collect acceleration data, as shown in Figure 63. Twenty subjects 

performed seven hours of a recipe for a mixed salad preparation [125]. There are eleven 

(a)  Left-Right (b)  Circle c)  Left-Right-Arc

(d)  Infinity (e)  Triangle (f)  Hand Rotation
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classes, including peeling, slicing, scraping, chopping, etc. The data was 

recorded at a frequency of 40Hz.  

 

Figure 63. a) Modified Wii Remotes embedded in specially designed utensils. b) A subject is 

preparing salad. This figure is used with permission from [148]. 

Since in this dataset there are only three axes, we cannot use the same method with 

occluded data. Instead, we perform our occlusion experiments by simulating sensor 

failure of one axis at a time. By randomly choosing 40% data as training data and the rest 

as testing, we obtain the classification result as shown in Table 17. Once again, our ACV 

approach obtains the highest accuracy in both cases. 

Table 17: Classification Results on the Kitchen Data 

Algorithms Accuracy  

Original Data 

Accuracy  

Occluded Data 

Majority Vote  [160] 0.74 0.54 

Weighted Vote [160] 0.84 0.76 

Adjusted Confidence 

Vote 

0.92 0.88 

4.4.6. Robustness to Irrelevant Features  

To demonstrate the robustness of our approach, we repeated the experiments above 

with an interesting modification. We added time series with no relation to the class into 

the data. 

Let us consider the cricket dataset as an example. Originally, the dataset is an MDT 

with six dimensions. However, we added another six dimensions of random walk data to 

(a) (b)
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the original data. To be clear, none of the explicit algorithms “know” which, if any, 

dimensions are irrelevant. 

We repeated the experiment shown in Table 15 with the modified dataset. Both the 

Majority Vote and Weighted Vote are quite brittle to the additional irrelevant data, as 

their classification accuracies drop steeply to 0.69 and 0.78, respectively. However, our 

ACV approach obtains an accuracy of 0.95, barely affected by the irrelevant features. This 

is very important advantage when exploiting new domains in which we may have poor 

intuitions as to which features are useful. 

4.5 Conclusion 

Building on the general techniques of weighted voting [121][160] and Bayesian 

classification [121], and extending the techniques of “realistic assumptions” dictionary-

based classification [129], we have introduced a novel voting framework for accurate 

classification of multi-dimensional time series. We demonstrated on several large, real-

world datasets from diverse domains that our approach is significantly more accurate and 

robust than rival approaches. In particular, we have shown that our framework is very 

robust to missing data and irrelevant, a problem that frequently occurs in the real world 

[156]. Finally, we have given away all code and data to allow others to confirm, extend 

and use our work [161]. 
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Chapter 5:   

Conclusion 

Time Series data is growing fast, especially in this ‘Big Data’ era. Although there is 

extensive research on time series data mining, in this dissertation we argue that most of 

the work is not as useful, since the datasets that they are dealing with and the way that 

they solved the problems are more like ‘toy examples’ compared to the much more 

complicate situation in the real-world scenario. We have observed the following two 

problems that widely exist in most of data mining research. First, parameters will hurt the 

potential of spreading the ideas in the research community. In a lot of works, there are 

usually several parameters to tune in the proposed method. We claim that the parameter 

turning can kill the usefulness of an algorithm and reduce the number of citations. 

Second, the prevalently existed assumptions about the data further limit their application 

to solve the real-world problem. We strive to mitigate the above two problems.  

In this context, the contributions of this dissertation are as follows. 

 We demonstrate a parameter free framework using MDL to discover the intrinsic 

features of the data. With the intrinsic cardinality and dimensionality of the time 

series, we can further understand the underlying meaning of the data, before 

consulting the domain experts. In addition, the intrinsic features can be used as 

dimensionality reduction and have huge applications in the various lower 

bounding techniques.  
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 We show a time series classification framework that has none of the prevalent 

assumptions. We propose to use the data editing technique to automatically build 

a data dictionary. In addition, our classification framework has the capability to 

say ‘I do not know’ at a certain point when classifying the incoming queries that 

does not belong to any concept in the training data. Our results show that a small 

fraction of all the data can achieve even better classification results than using all 

the data. 

 We illustrate the limitations of the current multi-dimensional classification 

framework. Using ALL, SUB, BEST of the data cannot generate the optimal 

results. We propose a dynamically weighted multi-dimensional classification 

framework, which can smartly choose the weight of each data dimension. The 

results over extensive datasets from various domains show that our framework is 

more accurate and robust to the occluded data. 
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