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Genetic drivers of heterogeneity in type 2 
diabetes pathophysiology

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse 
pathophysiological processes1,2 and molecular mechanisms that are often specific  
to cell type3,4. Here, to characterize the genetic contribution to these processes  
across ancestry groups, we aggregate genome-wide association study data from 
2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of 
T2D. We identify 1,289 independent association signals at genome-wide significance 
(P < 5 × 10−8) that map to 611 loci, of which 145 loci are, to our knowledge, previously 
unreported. We define eight non-overlapping clusters of T2D signals that are 
characterized by distinct profiles of cardiometabolic trait associations. These clusters 
are differentially enriched for cell-type-specific regions of open chromatin, including 
pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build 
cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse 
ancestry, including 30,288 cases of T2D, and test their association with T2D-related 
vascular outcomes. Cluster-specific partitioned polygenic scores are associated  
with coronary artery disease, peripheral artery disease and end-stage diabetic 
nephropathy across ancestry groups, highlighting the importance of obesity-related 
processes in the development of vascular outcomes. Our findings show the value of 
integrating multi-ancestry genome-wide association study data with single-cell 
epigenomics to disentangle the aetiological heterogeneity that drives the 
development and progression of T2D. This might offer a route to optimize global 
access to genetically informed diabetes care.

Diabetes mellitus is a huge public-health burden, with an estimated 
prevalence of 537 million adults worldwide in 2021, of whom more 
than 90% are affected by T2D6. The biological processes through which 
T2D develops are diverse and include impaired insulin secretion and 
insulin resistance. This aetiological heterogeneity leads to substan-
tial variability in patient phenotypes, including age of disease onset, 
manifestation of disease complications and response to management 
strategies1,2. Although environment and lifestyle are well-established 
risk factors for T2D, heritability has been estimated to be 69% amongst 
individuals of 35–60 years of age7. Previous genome-wide association 
studies (GWASs) of T2D have identified more than 500 risk loci8,9, which 
showed variable patterns of association with clinical features mediated 
by effector genes acting through distinct molecular mechanisms that 
are often cell-type specific3,4. Through the newly established Type 2 
Diabetes Global Genomics Initiative, we present findings from a very 
large meta-analysis of T2D GWAS data, comprising more than 2.5 mil-
lion individuals of diverse ancestry—an increase of nearly threefold in 
the effective sample size compared with previous efforts8,9. We take 
advantage of the power afforded by this increased sample size and 
combine the GWAS data with emerging single-cell functional genomics 
data derived from disease-relevant tissues to uncover the aetiological 
heterogeneity of T2D. Furthermore, we construct partitioned polygenic 
scores (PSs)5 across multiple ancestry groups, and assess their asso-
ciation with T2D-related macrovascular outcomes and progression to 
microvascular complications.

 
Study overview
We assembled GWAS data, including 428,452 cases of T2D and 2,107,149 
controls (Supplementary Fig. 1 and Supplementary Tables 1 and 2). We 
organized these GWASs into six subsets of genetically similar studies, 
which we refer to as ‘ancestry groups’ (Extended Data Fig. 1). Specifi-
cally, we considered: a European ancestry group (EUR, 60.3% of the 
effective sample size); an East Asian ancestry group (EAS, 19.8%); an 
admixed African American group with ancestry predominantly from 
West Africa and Europe (AFA, 10.5%); an admixed Hispanic group with 
ancestry predominantly from the Americas, West Africa and Europe 
(HIS, 5.9%); a South Asian ancestry group (SAS, 3.3%); and a South Afri-
can ancestry group (SAF, 0.2%). Association analyses accounted for 
study-level population structure and relatedness, and adjusted for age 
and sex, where appropriate, and additional study-specific covariates 
(Supplementary Table 3 and Methods).

Discovery of T2D loci
We aggregated association summary statistics across GWASs through 
multi-ancestry meta-regression, implemented in MR-MEGA (ref. 10), 
which allows for allelic effect heterogeneity that is correlated with 
ancestry. We included three axes of genetic variation as covariates 
in the meta-regression model that separated GWASs from different 
ancestry groups (Extended Data Fig. 1 and Methods), which resulted in 
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lower genomic control inflation than did a fixed-effects meta-analysis 
(λGC = 1.120 and λGC = 1.396, respectively).

The DIAMANTE Consortium previously advocated the use of a 
multi-ancestry genome-wide significance threshold (P < 5 × 10−9) to 
define loci, which takes account of the weaker linkage disequilib-
rium (LD) between single-nucleotide variants (SNVs) expected after 
multi-ancestry meta-analysis9. To gain insight into true positive signals 
meeting conventional genome-wide significance (P < 5 × 10−8) that 
would be overlooked at this more stringent threshold, we considered 
loci reported by the DIAMANTE Consortium, which contributed 39.5% 
of the effective sample size of the current study. Of 39 loci with asso-
ciation signals meeting 5 × 10−9 ≤ P < 5 × 10−8 in the DIAMANTE Con-
sortium analysis, 36 (92.3%) attained multi-ancestry genome-wide 
significance with the larger sample size available to us in the current 
study (Supplementary Text). We therefore focused our downstream 
analyses on SNVs that met the conventional genome-wide significance  
threshold.

We identified a total of 1,289 distinct T2D association signals 
(P < 5 × 10−8) that were represented by independent (r2 < 0.05) 
index SNVs (Supplementary Fig.  2, Supplementary Table  4 and 
Methods). The 1,289 association signals mapped to 611 loci, of 
which 145 (23.7%) loci have not to our knowledge been previously 
reported in GWASs of T2D. At association signals that mapped to 
loci not previously reported for T2D, index SNVs were predomi-
nantly common (minor allele frequency (MAF) higher than 5% in 
at least one ancestry group) with odds ratios (ORs) lower than 1.05  
(Supplementary Fig. 3).

 
Mechanistic clusters of T2D index SNVs
To understand the genetic contribution to phenotypic heterogeneity 
in T2D, we classified the 1,289 index SNVs according to their profile of 
associations (aligned to the T2D risk allele) with 37 cardiometabolic 
phenotypes. These included glycaemic traits, anthropometric meas-
ures, body fat and adipose tissue volume, blood pressure, levels of 
circulating plasma lipids, and biomarkers of liver function and lipid 
metabolism11–19 (Supplementary Table 5). We applied an unsupervised 
‘hard clustering’ approach with imputation of missing phenotype asso-
ciations, which identified eight non-overlapping but exhaustive subsets 
of index SNVs with similar cardiometabolic profiles (Fig. 1, Table 1, 
Extended Data Fig. 2, Supplementary Fig. 4, Supplementary Tables 6 
and 7 and Methods).

We observed that the cardiometabolic features and loci of five of 
our identified clusters overlapped with those reported in previous 
efforts3,4,20,21, representing beta-cell dysfunction with a positive or 
negative association with proinsulin (PI), and insulin resistance medi-
ated through obesity, lipodystrophy, and liver and lipid metabolism 
(Supplementary Table 8). T2D risk alleles at index SNVs in the two 
beta-cell-dysfunction clusters are associated with increased fasting glu-
cose, two-hour glucose and glycated haemoglobin, and with decreased 
fasting insulin. Index SNVs in both clusters are also associated with 
PI, but with opposite directions of effect for the T2D risk allele. The 
clusters reflecting mechanisms of insulin resistance mediated through 
obesity, lipodystrophy, and liver and lipid metabolism include index 
SNVs that are associated with anthropometric measures and levels of 
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Fig. 1 | Heat map of associations of 37 cardiometabolic phenotypes with  
8 mechanistic clusters of index SNVs for T2D association signals. Each 
column corresponds to a cluster. Each row corresponds to a cardiometabolic 

phenotype. The ‘temperature’ of each cell represents the z-score (aligned to 
the T2D risk allele) of association of the phenotype with index SNVs assigned to 
the cluster. *Phenotype is adjusted for body mass index.
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circulating plasma lipids. T2D risk alleles at index SNVs in the obesity 
cluster are associated with increased body mass index (BMI), waist–hip 
ratio (WHR), body fat percentage and basal metabolic rate, and with 
decreased high-density lipoprotein (HDL) cholesterol. The lipodys-
trophy cluster comprises index SNVs for which T2D risk alleles are 
associated with increased fasting insulin, WHR, blood pressure and 
triglycerides, and with decreased body fat percentage, gluteofemoral 
adipose tissue (GFAT) volume and HDL cholesterol. T2D risk alleles 
at index SNVs assigned to the liver and lipid metabolism cluster are 
associated with increased liver fat and liver-related biomarkers, and 
with decreased low-density lipoprotein (LDL) cholesterol and total 
cholesterol.

By increasing the number of index SNVs in the clustering by nearly 
fourfold relative to previous efforts, we provide a more granular view 
of the biological processes through which T2D associations affect 
disease, and highlight three previously unreported clusters of signals 
with cardiometabolic profiles that are representative of metabolic 
syndrome, body fat and residual glycaemic effects. We observed sig-
nificantly weaker allelic effects on T2D in these three clusters than in 
those previously reported (mean OR of 1.028 versus 1.033, P = 2.2 × 10−7), 
but there was no noticeable difference in disparity around the centroid 
between clusters (Extended Data Fig. 3, Supplementary Table 9 and 
Supplementary Fig. 5). T2D risk alleles at index SNVs assigned to the 
metabolic syndrome cluster are associated with increased fasting glu-
cose, WHR, triglycerides and blood pressure, and with decreased HDL 
cholesterol, which together are used to define metabolic syndrome. 
T2D risk alleles in this cluster are also associated with increased fast-
ing insulin, with accumulations of unhealthy fat depots (increased 
visceral adipose tissue (VAT) volume and liver fat) and with decreased 
GFAT volume. Previous investigations have shown that individuals with 
metabolic syndrome are at increased risk of T2D22, although Mende-
lian randomization studies indicate that a causal effect is driven by 
increased waist circumference and increased fasting glucose23. T2D 
risk alleles at index SNVs assigned to the body fat cluster are associ-
ated with increased abdominal subcutaneous adipose tissue volume, 
VAT volume and body fat percentage. Although the body fat cluster 
profile of associations with cardiometabolic phenotypes shares these 
features in common with obesity-mediated insulin resistance, index 
SNVs in the body fat cluster are not strongly associated with BMI, lipid 

levels or basal metabolic rate. Previous investigations have highlighted 
that body fat percentage is predictive of abnormal blood glucose in 
individuals with a healthy BMI24. Finally, T2D risk alleles at index SNVs 
assigned to the residual glycaemic cluster are most strongly associated 
with increased fasting glucose and glycated haemoglobin, but, unlike 
the two beta-cell-dysfunction clusters, are not associated with PI or 
decreased fasting insulin.

Clustering provides a framework to better understand the diverse 
physiological processes through which T2D develops and the shared 
biological pathways that drive genetic correlations with other 
insulin-resistance-related disorders, including gestational diabetes 
mellitus (GDM) and polycystic ovary syndrome (PCOS). T2D risk alleles 
at index SNVs showed a gradient of effects on insulin-related endophe-
notypes across clusters (Supplementary Text, Extended Data Fig. 4 
and Supplementary Tables 10 and 11), representing a cline from insulin 
production and processing in the two beta-cell-dysfunction clusters 
through to insulin resistance that was most extreme in the lipodystro-
phy cluster. Index SNVs in the beta cell +PI cluster showed the strongest 
associations with GDM, whereas those in the obesity cluster were most 
strongly associated with PCOS (Supplementary Text, Extended Data 
Fig. 5 and Supplementary Table 12).

Regulatory processes underlying clusters
To gain insight into tissue-specific regulatory processes underpinning 
mechanistic clusters, we integrated T2D association signals with assay 
for transposase-accessible chromatin using sequencing (ATAC-seq) 
peaks from single-cell atlases of chromatin accessibility (CATLAS and 
DESCARTES) for 222 cell types derived from 30 human adult and 15 
human fetal tissues25,26 and an additional 106 cell types from the human 
brain27 (Fig. 2, Supplementary Tables 13 and 14 and Methods).

We observed significant enrichment for regions of open chromatin 
in fetal islets and adult neuroendocrine cells in pancreatic islets (alpha, 
beta, gamma and delta) in the beta cell +PI, beta cell −PI and residual 
glycaemic clusters. In addition, the residual glycaemic cluster was 
enriched in fetal and adult pancreatic ductal cells, whereas the beta 
cell −PI cluster was enriched in adult enterochromaffin cells—a type of 
enteroendocrine cell that has an essential role in regulating intestinal 
motility and secretion in the gastrointestinal tract28. Enterochromaffin 

Table 1 | Cardiometabolic profile, example loci and physiological effect of index SNVs at T2D association signals allocated to 
eight mechanistic clusters

Mechanistic cluster Cardiometabolic profile Number of T2D 
associations

Example loci Physiological effect

Insulin secretion Insulin sensitivity

Beta cell +PI +FG*, +2hG*, +HbA1c, +PI* 91 TCF7L2, KCNQ1, CDKAL1, CDKN2A–
CDKN2B, SLC30A8

− +

Beta cell −PI +FG*, +2hG*, +HbA1c, −PI* 89 CDC123–CAMK1D, HNF1B, KCNJ11–
ABCC8, HNF4A, HNF1A

− +

Residual glycaemic +FG*, +HbA1c 389 GCC1–PAX4–LEP, ANKRD55, GCKR, 
UBE2E2

− −

Body fat +Body fat, +ASAT* 273 ZMIZ1, HMGA2, CTBP1 + −

Metabolic syndrome +FG*, +FI*, +WHR, +VAT*, −GFAT*, 
+TG, −HDL, +BP

166 IGF2BP2, CCND2, HHEX–IDE, JAZF1, 
GPSM1

+ −

Obesity +BMI, +WHR, +body fat, +BMR, 
+TG, −HDL

233 FTO, MC4R, MACF1, TMEM18 + −

Lipodystrophy +FI*, +WHR, −body fat, −GFAT*, 
+TG, −HDL, +BP

45 IRS1, GRB14–COBLL1, PPARG + −

Liver and lipid metabolism −LDL, −TC, +liver fat, +liver 
biomarkers

3 TOMM40–APOE–GIPR, TM6SF2, 
PNPLA3

− −

+/−: T2D risk alleles associated with increased or decreased phenotype values. 
ASAT, abdominal subcutaneous adipose tissue volume; BMI, body mass index; BMR, basal metabolic rate; BP, blood pressure; FG, fasting glucose; FI, fasting insulin; GFAT, gluteofemoral 
adipose tissue volume; HbA1c, glycated haemoglobin; HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol; PI, proinsulin; TC, total cholesterol; TG, triglycerides; 
VAT, visceral adipose tissue volume; WHR, waist–hip ratio; 2hG, two-hour glucose. 
*Adjusted for BMI.
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cells are a major target for glucagon-like peptide 1 (GLP-1) and highly 
express the GLP-1 receptor, agonists of which are widely used as medi-
cations for T2D29 (Supplementary Text).

The obesity cluster was also significantly enriched for regions of 
open chromatin in adult pancreatic islets, although not as strongly as 
were the beta-cell-dysfunction clusters. Enrichment was observed only 
for alpha, gamma and delta cells, suggesting that there are alternative 
pathways through which islets affect the development of T2D, other 
than through the secretion of insulin from beta cells. The obesity cluster 
was further enriched in fetal adrenal gland cells (chromaffin cells and 
adrenal neurons), fetal heart cells (ventricular cardiomyocytes) and 
fetal kidney cells (metanephric cells). Previous studies have reported 
an enrichment of BMI loci or heritability for epigenomic annotations 
in pancreatic islets and adrenal gland30,31, consistent with our findings. 
In the human brain, the obesity cluster was significantly enriched for 
regions of open chromatin in cell types including intratelencephalic (IT) 
projecting neurons, somatostatin-positive (SST+) GABAergic inhibitory 
neurons and D1 medium spiny neurons. SST+ GABAergic neurons exist in 
the hypothalamus and regulate food intake32. D1 medium spiny neurons 
are a type of GABAergic neuron in the human striatum that expresses 
D1-type dopamine receptors; these neurons have been implicated in 
food motivation and the development of diet-induced obesity in mice33.

The remaining four clusters (lipodystrophy; metabolic syndrome; 
body fat; and liver and lipid metabolism) were not significantly enriched 
for regions of open chromatin in pancreatic islets. The lipodystrophy 
cluster was enriched only in adult adipocytes, which confirms previ-
ous reports in bulk adipose tissue4,20. Consistent with these results, 
association signals for WHR, triglycerides and HDL cholesterol, which 
are strongly affected by index SNVs in the lipodystrophy cluster, have 
been shown to be enriched in candidate cis-regulatory elements in 
adipocytes26. The metabolic syndrome cluster was enriched in cells that 
reside in the walls of blood vessels (adult pericytes and fetal endothelial 
cells), fetal kidney cells (mesangial cells) and fetal fibroblasts. Associa-
tion signals for systolic and diastolic blood pressure, a key component 
of metabolic syndrome, have been shown to be enriched in candidate 
cis-regulatory elements in these cell types26. Endothelial dysfunction 
is not only a consequence of insulin resistance, but also impairs insulin 

signalling to further reduce insulin sensitivity, thereby providing a 
pathophysiological mechanism that links the metabolic and cardio-
vascular components of metabolic syndrome34. In human brain, the 
metabolic syndrome cluster was significantly enriched for regions 
of open chromatin in cell types including IT projecting neurons and 
SST+ GABAergic inhibitory neurons. IT projecting neurons are a type 
of glutamatergic excitatory pyramidal neuron in the cerebral cortex, 
and metabolic syndrome was previously associated with pyramidal 
neurons and GABAergic neurons in cell-type specificity analyses in 
a GWAS that examined genetic factors in metabolic syndrome35. We 
observed no significant enrichments in the body fat cluster or in the 
liver and lipid metabolism cluster.

Ancestry-correlated heterogeneity
Previous multi-ancestry GWASs have shown widespread heterogeneity 
in allelic effects at T2D association signals across ancestry groups9,36. We 
took advantage of the meta-regression model to partition heterogene-
ity into an ancestry-correlated component explained by three axes of 
genetic variation, and a residual component reflecting differences in 
environmental exposures (that are not correlated with ancestry) and/
or study design (Supplementary Table 15). We observed 127 (9.9%) 
independent T2D association signals with significant evidence for 
ancestry-correlated heterogeneity (PHET < 3.9 × 10−5, Bonferroni correc-
tion for 1,289 signals). We would expect less than one signal to meet 
this threshold of significance, highlighting that ancestry-correlated 
heterogeneity is strongly enriched at T2D associations (one-sided 
binomial test P < 2.2 × 10−16). By contrast, we observed significant evi-
dence of residual heterogeneity at only four (0.3%) association signals 
(one-sided binomial test P = 0.031). These results therefore suggest that 
differences in allelic effects at index SNVs are more strongly correlated 
with genetic ancestry than other factors that vary between GWASs.

We next sought to better understand the impact of genetic diversity 
on differences in allelic effects between GWASs at the 127 association 
signals with significant evidence of ancestry-correlated heterogene-
ity (Methods). For 118 (92.9%) signals, allelic effect sizes were most 
strongly associated with the first two axes of genetic variation, which 

B
et

a 
ce

ll 
+

P
I

B
et

a 
ce

ll 
–P

I

R
es

id
ua

l g
ly

ca
em

ic

B
od

y 
fa

t

M
et

ab
ol

ic
 s

yn
d

ro
m

e

O
b

es
ity

Li
p

od
ys

tr
op

hy

Fetal islet

Alpha 1

Alpha 2

Beta 1

Beta 2

Delta gamma

Fetal ductal

Ductal

Enterochromaf�n

Fetal �bro general 2

Fetal chromaf�n

Fetal adrenal neuron

Fetal ventricular cardiomyocyte

Fetal metanephric

Fetal mesangial 1

Fetal endothelial general 1

Pericyte general 1

Pericyte general 3

Pericyte muscularis

Adipocyte

C
el

l t
yp

e
* * *
* * * *
* *
* * *
* * *
* * * *

*
*

*
*

*
*
*
*

*
*
*
*
*

*

a

B
et

a 
ce

ll 
+

P
I

B
et

a 
ce

ll 
–P

I

R
es

id
ua

l g
ly

ca
em

ic

B
od

y 
fa

t

M
et

ab
ol

ic
 s

yn
d

ro
m

e

O
b

es
ity

Li
p

od
ys

tr
op

hy

D1 medium spiny neurons from putamen
GABAergic neurons from Inferior colliculus and nearby nuclei (2)
Inhibitory neurons from basal forebrain and extended amygdala

IT projecting neurons from primary visual cortex (2)
IT projecting neurons, cortical layer 2/3 (3)
IT projecting neurons, cortical layer 2/3 (4)
IT projecting neurons, cortical layer 2/3 (6)

IT projecting neurons, cortical layer 3/4-like
IT projecting neurons, cortical layer 4/5-like (1)

IT projecting neurons, cortical layer 5 (1)
IT projecting neurons, cortical layer 5 (2)
IT projecting neurons, cortical layer 5 (3)

IT projecting neurons, cortical layer 6 (1-1)
IT projecting neurons, cortical layer 6 (2-1)
IT projecting neurons, cortical layer 6B (2)
L6 corticothalamic projection neurons (1)

Near-projecting neurons (3)
Non-telencephalon astrocytes (3)

Oligodendrocytes (2)
Oligodendrocytes (3)

Oligodendrocyte precursor cells
PVALB+ GABAergic neurons (1)

PVALB+ chandelier cells
SNCG+ GABAergic neurons (1)

SST+ GABAergic neurons (1)
SST+ GABAergic neurons (4)

SST+ GABAergic neurons with CHODL+

Telencephalon astrocytes (1)
Telencephalon astrocytes (2)
Telencephalon astrocytes (3)

*
*
*
*

*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*

*
*

*
*

*
*
*
*

*
*

b

0

0.5

1.0

1.5

2.0

2.5

Fig. 2 | Heat map of cluster-specific enrichments of T2D associations for 
cell-type-specific regions of open chromatin derived from single-cell 
ATAC-seq peaks in adult and fetal tissue. a, Cell types (222 types) from 30 
human adult tissues and 15 human fetal tissues. b, Cell types (106 types) from 
the human brain. In each panel, columns represent mechanistic clusters. Each 
row represents a cell type that was significantly enriched (Bonferroni 

correction for the number of cell types) for T2D associations in at least one 
cluster (indicated by an asterisk). The ‘temperature’ of each cell defines the 
magnitude of the log fold enrichment. The liver and lipid metabolism cluster is 
not presented because it includes only three T2D association signals and the 
model parameter estimates were unstable.
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reflect differences between AFA/EUR and EAS GWASs (AFA–EAS axis), 
and between AFA/EAS and EUR GWASs (AFA–EUR axis), respectively 
(Supplementary Text, Extended Data Figs. 1 and 6 and Supplementary 
Table 16).

We observed significant differences in mean z-scores for association 
between clusters for both the AFA–EAS axis (P = 4.1 × 10−6) and the AFA–
EUR axis (P = 1.5 × 10−6). Index SNVs in the two beta-cell-dysfunction 
clusters were most positively associated with the AFR–EAS axis, indicat-
ing allelic effects on T2D that were greater in EAS GWASs than in AFA 
and EUR GWASs (Extended Data Fig. 7 and Supplementary Table 17). 
By contrast, index SNVs in the lipodystrophy and obesity clusters were 
most positively associated with the AFA–EUR axis, indicating allelic 
effects on T2D that were greater in EUR GWASs than in EAS and AFA 
GWASs. These results indicate that ancestry-correlated heterogeneity 
varies between mechanistic clusters, with allelic effects greatest for 
EAS GWASs at association signals assigned to clusters acting through 
beta-cell dysfunction and greatest for EUR GWASs at those assigned 
to clusters operating through insulin resistance.

Ancestry-correlated heterogeneity in allelic effects between GWASs is 
not driven by differences in allele frequency between ancestry groups, 
but can occur because of interaction between index SNVs and envi-
ronmental and lifestyle factors, if not accounted for in the associa-
tion analysis37. We observed substantial variation in the distribution of 
study-level mean BMI in T2D cases and controls across ancestry groups 
(Supplementary Fig. 6). Such variation could affect ancestry-correlated 
heterogeneity because, when cases and controls are selected from 
the extremes of the BMI distribution, the magnitude of allelic effect 
estimates at T2D signals acting through beta-cell dysfunction can 
be inflated38. We therefore extended the MR-MEGA meta-regression 
model to allow for allelic effect heterogeneity at index SNVs due to 
mean BMI in T2D cases and controls, in addition to axes of genetic 
variation (Methods).

After adjustment for study-level mean BMI in cases of T2D and in 
controls, only 24 association signals retained significant evidence 
of ancestry-correlated heterogeneity (P < 3.9 × 10−5), compared with 
127 signals without adjustment (Supplementary Text and Supple-
mentary Table 18). After adjustment for BMI, significant differences 
in mean z-scores for association between clusters for the AFA–EUR 
axis were maintained (P = 3.2 × 10−5 versus P = 1.5 × 10−6 without 

adjustment), whereas those for the AFA–EAS axis were not (P = 0.18 
versus P = 4.1 × 10−6 without adjustment). Furthermore, after adjust-
ment for BMI, the two beta-cell-dysfunction clusters were no longer 
strongly positively associated with the AFA–EAS axis (Extended Data 
Fig. 7 and Supplementary Table 19). Together, these results suggest 
that heterogeneity in allelic effects between EAS GWASs and EUR/AFA 
GWASs, which occur most often at association signals assigned to the 
beta-cell-dysfunction clusters, can be mostly accounted for by differ-
ences in the distributions of mean BMI in T2D cases and in controls 
between these ancestry groups.

Associations of partitioned PS with outcomes
The major complications in individuals with T2D are macrovascular 
outcomes including coronary artery disease (CAD), ischaemic stroke 
and peripheral artery disease, and microvascular outcomes, including 
end-stage diabetic nephropathy (ESDN) and proliferative diabetic 
retinopathy. We tested for association of a cluster-specific partitioned 
PS with these vascular outcomes in up to 279,552 individuals (including 
30,288 cases of T2D) across five ancestry groups (AFA, EAS, EUR, HIS 
and SAS) from the All of Us Research Program, Biobank Japan and the 
Genes & Health study (Methods). These individuals were not included in 
the multi-ancestry meta-analysis, thus avoiding potential inflated type I 
error rates owing to overlap between the discovery and the testing data-
sets. To maximize sample size, we tested macrovascular outcomes in all 
individuals, adjusted for T2D status, and microvascular complications 
only in individuals with T2D (Methods and Supplementary Table 20). 
To assess the additional information afforded by the partitioned PS 
over an overall T2D PS, agnostic to cluster membership, we tested for 
association of each cluster-specific component of the partitioned PS 
after adjustment for the overall PS. Figure 3 provides an overview of 
the associations of each cluster-specific component of the partitioned 
PS with the five vascular outcomes across ancestry groups.

We observed a significant association (P < 0.0063, Bonferroni cor-
rection for eight clusters) of two components of the partitioned PS with 
CAD: a negative association with the beta cell +PI cluster (OR = 0.96 
per standard deviation of the PS, P = 1.3 × 10−6) and a positive associa-
tion with the obesity cluster (OR = 1.04, P = 0.00019). There was no 
evidence of heterogeneity in the effects of these two clusters on CAD 
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Fig. 3 | Associations of cluster-specific components of the partitioned PS 
with five T2D-related vascular outcomes in up to 279,552 individuals from 
multiple ancestry groups. Summaries of the associations of each cluster- 
specific component of the partitioned PS with CAD, ischaemic stroke (IS), 
peripheral artery disease (PAD), ESDN and proliferative diabetic retinopathy 
(PDR). The height of each bar corresponds to the log-odds ratio (beta) per 

standard deviation of the PS, and the grey bar shows the 95% confidence 
interval. Analyses of T2D-related macrovascular complications (CAD, PAD and 
IS) were undertaken in all individuals, with adjustment for T2D status. Analyses 
of microvascular complications were undertaken in individuals with T2D only. 
*P < 0.05, nominal association; **P < 0.0063, Bonferroni correction for eight 
clusters. Exact P values are provided in Supplementary Table 21.
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across ancestry groups (Supplementary Fig. 7 and Supplementary 
Table 21). Notably, after adjustment for a CAD PS derived from a pre-
viously published multi-ancestry meta-analysis of CAD GWASs39, the 
positive CAD association with both components of the partitioned 
PS remained significant (Extended Data Fig. 8 and Supplementary 
Table 22): beta cell +PI cluster (OR = 0.96, P = 4.4 × 10−5) and obesity 
cluster (OR = 1.04, P = 0.00065). We also observed a significant posi-
tive association of the obesity cluster from the partitioned PS with 
peripheral artery disease (OR = 1.05, P = 0.00045), with no evidence 
of heterogeneity in effects across ancestry groups (Supplementary 
Fig. 8 and Supplementary Table 21). Across all three macrovascular 
outcomes, there was a general trend of negative association with the 
beta cell +PI cluster and positive association with the obesity clus-
ter, although no cluster-specific components of the partitioned PS 
attained significance for ischaemic stroke (Supplementary Fig. 9 and 
Supplementary Table 21). There was no strong association of the overall 
T2D PS with CAD (P = 0.17), ischaemic stroke (P = 0.022) or peripheral 
artery disease (P = 0.77) after meta-analysis across ancestry groups. 
Together, these results highlight the advantages of the partitioned PS 
over an overall T2D PS for detecting associations with macrovascular 
outcomes, and provide insight into the biological processes that lead 
to their development.

We observed significant associations of two components of the par-
titioned PS with ESDN: a negative association with the beta cell +PI 
cluster (OR = 0.83, P = 0.00024) and a positive association with the 
obesity cluster (OR = 1.19, P = 0.00050). There was no evidence of het-
erogeneity in the effects of these two clusters across ancestry groups, 
(Supplementary Fig. 10 and Supplementary Table 21), and the overall PS 
was not strongly associated with ESDN (P = 0.048). By contrast, none of 
the cluster-specific components of the partitioned PS were associated 
with proliferative diabetic retinopathy. However, there was a strong 
positive association of the overall PS with this microvascular outcome 
(OR = 1.32, P = 1.1 × 10−9), with no evidence of heterogeneity in effects 
across ancestry groups (Supplementary Fig. 11 and Supplementary 
Table 21). Together, these results suggest that ESDN is associated with 
obesity and beta-cell dysfunction with opposite directions of effect, 
and confirm previous reports that proliferative diabetic retinopathy 
is driven by hyperglycaemia40 and therefore strongly associated with 
the overall burden of T2D risk variants.

Finally, we tested for associations of the cluster-specific components 
of the partitioned PS and the overall T2D PS with age of onset of T2D 
(Extended Data Fig. 9 and Methods). The overall PS was strongly associ-
ated with an earlier age of onset (1.15 years per standard deviation of 
the PS, P = 5.1 × 10−8), although the effects were highly heterogeneous 
across ancestry groups (Supplementary Fig. 12 and Supplementary 
Table 23). However, even after adjustment for the overall PS, the obesity 
cluster was significantly associated with an earlier age of onset (0.38 
years, P = 1.4 × 10−7), with no evidence of heterogeneity across ancestry 
groups. These findings highlight the importance of obesity-related 
processes for the onset of T2D, in addition to the development of vas-
cular complications.

Associations with vascular outcomes in clinical trials
To gain insight into the associations of the obesity and beta cell +PI 
clusters with a broader range of vascular outcomes, we assessed the 
performance of the partitioned PS (after adjustment for the overall 
PS) in prospective GWASs in up to 29,827 EUR individuals with T2D 
from six clinical trials from the Thrombolysis in Myocardial Infarc-
tion (TIMI) Study Group (Methods and Supplementary Table 24). We 
observed the strongest associations of cluster-specific components of 
the partitioned PS with risk of hospitalization for heart failure: positive 
with the obesity cluster (hazard ratio (HR) = 1.15 per standard devia-
tion of the PS, P = 4.8 × 10−6) and negative with the beta cell +PI clus-
ter (HR = 0.90, P = 0.00092). Amongst macrovascular outcomes, the 

beta cell +PI cluster was also negatively associated with cardiovascular 
death (HR = 0.90, P = 0.0020), major cardiovascular events (HR = 0.94, 
P = 0.0050) and myocardial infarction (HR = 0.94, P = 0.027). For micro-
vascular outcomes, the two clusters showed associations with oppo-
site directions of effect for albuminuria: obesity cluster (HR = 1.06, 
P = 0.012) and beta cell +PI cluster (HR = 0.95, P = 0.047). Across all 
outcomes, there was a general trend of positive association with the 
obesity cluster and negative association with the beta cell +PI cluster 
(Extended Data Fig. 10), consistent with the associations observed 
from our analyses of retrospective GWASs across ancestry groups.

Discussion
To better understand the aetiological heterogeneity of T2D across 
diverse populations, we assembled a large collection of T2D GWASs 
for six ancestry groups through the Type 2 Diabetes Global Genom-
ics Initiative. By increasing the effective sample size by almost three-
fold compared with previous efforts, we identified a total of 611 loci 
attaining the conventional threshold of genome-wide significance 
(P < 5 × 10−8), 145 (23.7%) of which have not to our knowledge been 
previously reported. This conventional threshold is equivalent to a 
Bonferroni correction for the effective number of independent SNVs 
in EUR reference data41. Using empirical data from the 1000 Genomes 
Project, the DIAMANTE Consortium and others have advocated more 
stringent thresholds for multi-ancestry meta-analysis because the 
structure of LD is broken down across ancestry groups and the effec-
tive number of independent SNVs is increased9,42. In fact, our analyses 
suggest that loci meeting conventional genome-wide significance are 
unlikely to be false positive association signals, but instead are driven 
by index SNVs that have modest effects that require larger sample sizes 
to meet more stringent thresholds. We therefore recommend the use 
of this conventional threshold but advocate careful review of reported 
signals to ensure that associations are not driven by single studies or 
poorly imputed variants to protect against false positives.

Multi-ancestry meta-regression maximizes power to detect associa-
tions that are shared across ancestry groups by allowing for heterogene-
ity in allelic effects at index SNVs. MR-MEGA is not restricted to broad 
continental ancestry labels that can be used to reinforce the concept 
of fundamental genetic differences between groups43, but instead rep-
resents ancestry as continuous axes of genetic variation, which better 
reflect the continuum of human genetic diversity and demographic 
history44. Still, it is important to emphasize that our meta-analysis 
does not fully capture global genetic diversity, in particular under-
represented populations across Africa, South and Central America, 
the Middle East and Oceania. For example, 98.2% of the total effective 
sample size of individuals with the highest proportion of ancestry 
from Africa are African Americans. The ancestry of these individuals 
represents a cline of admixture that is predominantly from West Africa 
and is therefore not representative of other regions in Africa, where 
the level of genetic variation is equivalent to the differences observed 
between other continental groups43. Bolstering GWAS collections in 
these underrepresented populations remains an urgent priority for 
the human genetics research community and highlights the need for 
careful interpretation of results that does not generalize findings across 
ancestry groups that are sensitive to biased representation.

Within the landscape of the genetic architecture of T2D, we identified 
eight clusters of index SNVs with distinct profiles of associations with 37 
cardiometabolic phenotypes, which defined pathophysiology-relevant 
groupings. The addition of previously unreported T2D signals identi-
fied through the multi-ancestry meta-analysis helped define three 
clusters that were not detected in previous clustering efforts3,4,20,21, with 
cardiometabolic profiles that are consistent with residual glycaemic 
effects, accumulations of body fat and metabolic syndrome. These 
previous efforts have implemented ‘soft clustering’ approaches, such 
as Bayesian non-negative matrix factorization, that generate weights 
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for cluster membership for each index SNV4. The assignment of index 
SNVs to clusters is then determined given a threshold weight for clus-
ter membership, allowing for the possibility that a T2D association 
signal affects disease through multiple pathophysiological pathways. 
However, depending on the threshold for cluster membership, some 
index SNVs will be unassigned. Bayesian non-negative matrix factoriza-
tion also considers positive and negative associations with the same 
phenotype as independent variables, and most clustering methods 
cannot directly accommodate missing phenotype associations. To 
address these potential limitations, we implemented methodology 
that jointly conducts k-means clustering of index SNVs with powerful 
iterative multiple imputation of missing phenotype associations. In this 
‘hard clustering’ approach, each index SNV is assigned to exactly one 
cluster. This has the potential disadvantage, therefore, that index SNVs 
with outlying or intermediate profiles of trait associations are ‘forced’ 
into a cluster that does not fit well. However, the previously unreported 
clusters that we identified in our hard clustering were not noticeably 
more disparate than the clusters reported previously, suggesting that 
we have not introduced substantial noise by forcing all SNVs into exactly 
one cluster. Ultimately, the choice of clustering approach may depend 
on the objectives of any downstream investigations.

Our analyses highlighted a significant excess of T2D association 
signals with ancestry-correlated heterogeneity, which is driven mainly 
by differences in allelic effects between AFA, EAS and EUR GWASs. The 
two beta-cell-dysfunction clusters are most strongly associated with the 
AFA–EAS axis, in which effects are typically larger in EAS GWASs than 
in those for other ancestry groups. These two clusters are also most 
strongly associated with reduced insulin secretion and lower insulin 
resistance. By contrast, the lipodystrophy and obesity clusters, which 
are characterized by reduced insulin sensitivity and higher insulin 
resistance, are most strongly associated with the AFA–EUR axis, in 
which effects are typically larger in EUR than in other ancestry groups. 
These observations are consistent with studies reporting differences 
in the pathogenesis of T2D between ancestry groups, whereby T2D is 
initiated mainly through increased insulin resistance in EUR individu-
als, but is characterized by reduced insulin secretion with lower insulin 
resistance in EAS individuals45,46. We have shown that most signals with 
ancestry-correlated heterogeneity can be explained by differences 
in the distribution of BMI in T2D cases and controls between ances-
try groups. Furthermore, after adjustment for study-level mean BMI, 
we observe no difference in allelic effects between clusters along the 
AFA–EAS axis. This is consistent with previous studies that reported 
that body composition is the main determinant of variation in T2D 
pathogenesis between EAS and EUR individuals, because insulin sen-
sitivity and beta-cell response are similar in the two ancestry groups 
after accounting for differences in BMI45,47.

We reveal—across multiple ancestry groups—significant associa-
tions of vascular outcomes with cluster-specific components of the 
partitioned PS after adjustment for the overall PS, which suggests 
that disease trajectories are associated with genetic burden in certain 
biological pathways that are consistent across diverse populations. 
Although the effect sizes of the cluster-specific components of the par-
titioned PS were small, they motivate future work to strengthen these 
effects through the identification of further T2D associations in larger 
sample sizes. Through integration with single-cell chromatin accessibil-
ity data across diverse cell types, they also enhance understanding of 
key biological processes driving heterogeneity in the clinical features of 
T2D phenotypes. For example, the obesity-cluster-specific component 
of the PS was positively associated with CAD and ESDN, and included 
index SNVs that were enriched for regions of open chromatin in fetal 
ventricular cardiomyocytes, fetal adrenal neuron, adult chromaffin 
cells in the adrenal gland and fetal metanephric cells. These findings 
are in line with the reported enrichments of CAD association signals 
for transcriptomic and epigenomic annotations in bulk tissues includ-
ing the aorta and arteries, the heart and the adrenal gland39,48,49, and of 

renal function association signals in kidney-tissue-specific regulatory 
annotations50. Together, these findings provide a clear link to shared 
biological mechanisms that drive the development of T2D and other 
vascular diseases.

In conclusion, our findings show the value of integrating multi- 
ancestry GWASs of T2D and cardiometabolic traits with single-cell 
epigenomics across diverse tissues to disentangle the aetiological 
heterogeneity driving the development and progression of T2D across 
population groups. Improved understanding of the varied pathophysi-
ological processes that link T2D to vascular outcomes could offer a 
route to genetically informed diabetes care and global opportunities 
for the clinical translation of findings from T2D GWASs.
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Article
Methods

Study-level analyses
Within each study, we assigned individuals to ancestry groups using 
self-report and genetic background (Supplementary Tables 1 and 2). 
Any individuals not assigned to an ancestry group were excluded as 
population outliers. Within each ancestry group-specific GWAS, we con-
ducted quality control of genotype data and imputed up to reference 
panels from the Trans-Omics for Precision Medicine Program51, Haplo-
type Reference Consortium52, 1000 Genomes Project (phase 1, March 
2012 release; phase 3, October 2014 release)53,54, or population-specific 
whole-genome sequencing55–61 (Supplementary Table 3). Studies 
imputed to reference panels mapped to GRCh38 (hg38) were lifted 
back to hg19 using the UCSC LiftOver tool (https://genome.ucsc.edu/
cgi-bin/hgLiftOver). We excluded SNVs with poor imputation quality 
and/or minor allele count (MAC) < 5 (Supplementary Table 3).

Within each ancestry group-specific GWAS, we tested for association 
of each SNV with T2D through generalized linear (mixed) modelling, 
under an additive dosage of the minor allele, with adjustment for age 
and sex (where appropriate), and additional study-specific covariates 
(Supplementary Table 3). We used different strategies to account for 
population stratification and/or kinship: (i) exclude closely related 
individuals and adjust for principal components derived from a genetic 
relatedness matrix (GRM) as additional covariates; or (ii) incorporate 
a random effect for the GRM (Supplementary Table 3). Allelic effects 
and corresponding standard errors that were estimated from a linear 
mixed model were converted to the log-odds scale62. We corrected 
study-level association summary statistics for residual structure by 
the LD-score regression intercept63 (Supplementary Table 3) using 
an LD reference that we derived from ancestry-matched haplotypes  
from continental groups in the 1000 Genomes Project (phase 3, October 
2014 release)54. We matched AFA GWASs to the ‘African’ continental 
group and HIS GWASs to the ‘American’ continental group.

Multi-ancestry meta-analyses
We analysed autosomal bi-allelic SNVs that overlap reference pan-
els from the 1000 Genomes Project (phase 3, October 2014 release)54 
and the Haplotype Reference Consortium52. We considered SNVs with 
MAF > 0.5% in at least one of the five continental groups in the 1000 
Genomes Project (phase 3, October 2014 release)54. We excluded SNVs 
that differed in allele frequency by more than 20% when comparing 
reference panels in the same subsets of haplotypes.

We used meta-regression, implemented in MR-MEGA10, to aggre-
gate association summary statistics across GWASs. MR-MEGA models 
allelic effect heterogeneity that is correlated with genetic ancestry by 
including axes of genetic variation as covariates in the meta-regression 
model to capture diversity between GWASs. We used SNVs reported 
in all studies to construct a distance matrix of differences in mean 
effect allele frequency between each pair of GWASs. We implemented 
multi-dimensional scaling of the distance matrix to obtain three prin-
cipal components that represent axes of genetic variation to separate 
GWASs across ancestry groups (Extended Data Fig. 1).

For each SNV, we aggregated inverse-variance weighted allelic effects 
across GWASs through linear regression, including three axes of genetic 
variation as covariates. We tested for: (i) association with T2D allowing 
for ancestry-correlated allelic effect heterogeneity between GWASs; 
(ii) ancestry-correlated allelic effect heterogeneity between GWASs 
(defined by the axes of genetic variation); and (iii) residual allelic 
effect heterogeneity between GWASs. MR-MEGA is a meta-regression 
approach, and therefore does not produce an allelic effect estimate 
because this is allowed to vary with the axes of genetic variation. Con-
sequently, we also aggregated association summary statistics across 
GWASs through fixed-effects meta-analysis (inverse-variance weight-
ing of allelic effects) using METAL64. To assess the extent of residual 
structure between GWASs, we calculated the genomic control inflation 

factor65 for the multi-ancestry meta-regression and the fixed-effects 
meta-analysis. We considered only those SNVs reported in at least five 
GWASs for downstream interrogation.

Defining T2D signals and loci
We identified all SNVs attaining genome-wide significance (P < 5 × 10−8) 
for association with T2D from the multi-ancestry meta-regression. 
Clumps were formed around index variants, which were selected using 
a greedy algorithm in PLINK v.1.9 (ref. 66), after ranking SNVs by ascend-
ing P value. SNVs less than 5 Mb from an index SNV were assigned to the 
clump if r2 > 0.05 in at least one of the five continental groups from the 
1000 Genomes Project (phase 3, October 2014 release)54. Index SNVs 
separated by less than 1 Mb were assigned to the same locus. Each locus 
was then defined as mapping 500 kb up- and downstream of index SNVs 
contained within it. We considered the locus to have been previously 
reported if it contained variants discovered in published large-scale 
T2D GWASs at genome-wide significance.

Ancestry-group-specific meta-analyses
We aggregated association summary statistics across GWASs 
from the same ancestry group through fixed-effects meta-analysis 
(inverse-variance weighting of allelic effects) using METAL64. We 
estimated the mean effect allele frequency across GWASs from each 
ancestry group, weighted by the effective sample size of the study. 
We generated forest plots of association summary statistics of index 
SNVs across ancestry groups using the R package meta (https://
cran.r-project.org/package=meta/).

Defining clusters of T2D index SNVs with distinct 
cardiometabolic profiles
We considered cardiometabolic-related quantitative phenotypes that 
are used to define T2D status and/or are associated with risk of T2D or 
complications. We excluded phenotypes for which GWAS summary 
statistics were available only after imputation to reference panels from 
the International HapMap Project67 because they did not provide suf-
ficient coverage of SNVs included in the multi-ancestry meta-analysis. 
We considered the largest available GWAS meta-analysis 
(ancestry-specific or multi-ancestry) that provided the following asso-
ciation summary statistics for each SNV: effect allele, other allele, allelic 
effect and corresponding standard error (Supplementary Table 5). We 
re-aligned the effect estimate to the T2D risk allele from the fixed-effects 
multi-ancestry meta-analysis, denoted βij for the jth index SNV and the 
ith phenotype. We then calculated a sample size corrected z-score, 
given by Z β N s= /( )ij ij i ij , where sij is the standard error of the effect 
estimate of the jth index SNV and the ith phenotype, and Ni is the max-
imum sample size reported for the ith phenotype. Where association 
summary statistics were not reported, the z-score was set as ‘missing’.

We conducted k-means clustering of index SNVs with imputa-
tion of missing z-scores using the R package ClustImpute (https://
cran.r-project.org/package=ClustImpute). For a pre-defined number 
of clusters, ClustImpute replaces missing z-scores at random from the 
marginal distribution for the phenotype in the first iteration and per-
forms k-means clustering. In subsequent iterations, missing z-scores 
are updated, conditional on the current cluster assignment, so that 
correlations between phenotypes are considered. At each iteration, 
penalizing weights are imposed on imputed values and successively 
decreased (to zero) as the missing data imputation improves. Finally, we 
determined the ‘optimal’ number of clusters according to the majority 
rule across 27 indices of cluster performance68, implemented in the R 
package NbClust (https://cran.r-project.org/package=NbClust).

We tested for association of the ith phenotype with index SNVs across 
clusters in a linear regression model, given by ∑E Z γ C( ) =ij k ik jk, where 
Cjk is an indicator variable that takes the value 1 if the jth index SNV was 
assigned to the kth cluster and 0 otherwise. The strength or direction 
of the association of each phenotype with each cluster was then 
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presented in a heat map, in which the ‘temperature’ was defined by the 
direction of the regression coefficient γik and the corresponding −log10 
P value. Regression models were fitted using the glm function in R.

We extracted cardiometabolic phenotype z-scores from the final 
imputed dataset from ClustImpute. We calculated the Euclidean  
distance between the jth SNV and kth cluster centroid as

∑δ Z μ= ( − ) ,jk i ij ik
2

where Zij and μik are the z-score of the jth SNV and the location of the 
kth cluster centroid for the ith cardiometabolic phenotype. To assess 
cluster disparity, we also performed principal components analy-
sis of cardiometabolic phenotype z-scores from the final imputed 
dataset using the R package factoextra (https://cran.r-project.org/
package=factoextra).

Cluster-specific associations of index SNVs with T2D
We tested for association of T2D with index SNVs across clusters in a 
linear regression model, given by ∑E β γ C( ) =j k k jk, where Cjk is an indi-
cator variable that takes the value 1 if the jth index SNV was assigned 
to the kth cluster and 0 otherwise, and weighted by the inverse of the 
variance of the allelic effect. We tested for heterogeneity in cluster 
effects on T2D by comparing the deviance of this model with that of 
E β γ( ) =j 0

, again weighted by the inverse of the variance of the allelic 
effect. To compare associations between previously reported clusters 
and previously unreported clusters, we replaced Cjk with an indicator 
variable that takes the value 1 if the jth index SNV was assigned to a 
previously reported cluster and 0 otherwise. Regression models were 
fitted using the glm function in R.

Enrichment of T2D associations for cell-type-specific regions of 
open chromatin within clusters
For each T2D association signal, we defined ‘null’ SNVs that mapped 
within 50 kb of the index SNV and were not in LD (r2 > 0.05) with the 
index SNV in any of the five continental groups from the 1000 Genomes 
Project (phase 3, October 2014 release)54. We defined an indicator 
variable, Yj, taking the value 1 if the jth SNV is an index SNV and 0 if the 
jth SNV is a null SNV. We mapped index SNVs and null SNVs to genic 
regions defined by the Ensembl Project (release 104)69, including 
protein-coding exons, and 3′ UTRs and 5′ UTRs. We defined indicator 
variables, G j

EXON, G j
3UTR and G j

5UTR, which each take the value 1 if the jth 
SNV mapped to the respective genic annotation and 0 otherwise. We 
also mapped index SNVs and null SNVs to ATAC-seq peaks from 
single-cell atlases of chromatin accessibility (CATLAS and DESCARTES) 
for: 222 cell types derived from 30 human adult and 15 human fetal 
tissues25,26; and 106 cell types derived from human brain27. We defined 
an indicator variable, Xij, that takes the value 1 if the jth SNV mapped 
to an ATAC-seq peak for the ith cell type and 0 otherwise.

Within each cluster, we modelled enrichment of T2D associations for 
ATAC-seq peaks in the ith cell type, after accounting for genic annota-
tions, in a Firth bias-reduced logistic regression, given by

f Y α α G α G α G θ X( ) = + + + + ,j j j j i ij
−1

0 EXON
EXON

3UTR
3UTR

5UTR
5UTR

where f is the logit link function. In this expression, α0 is an intercept, 
αEXON, α3UTR and α5UTR are log fold enrichments of genic annotations, and 
θi is the log fold enrichment of ATAC-seq peaks in the ith cell type. We 
conducted a test of enrichment of the ith cell type by comparing the 
deviances of models in which θi = 0 and θi is unconstrained. We identi-
fied cell types with significant evidence of enrichment (P < 0.00023, 
Bonferroni correction for 222 cell types in adult and fetal tissues; 
P < 0.00047, Bonferroni correction for 106 cell types in the brain). All 
models were fitted using the R package logistf (https://cran.r-project.
org/package=logistf).

Contribution of each axis of genetic variation to 
ancestry-correlated heterogeneity
For each index SNV, we calculated a z-score (beta/SE) for associa-
tion with each axis of variation by aligning the effect from the meta- 
regression model to the T2D risk allele. For each index SNV, we identified 
the axis of genetic variation with the strongest association (greatest 
magnitude z-score).

Differences in ancestry-correlated heterogeneity between 
mechanistic clusters
We tested for differences in z-scores (beta/SE) for association of index 
SNVs in each cluster with the ith axis of genetic variation by comparing 
two linear models by ANOVA: (i) f Z τ( ) =ij i

−1
0 ; and (ii) ∑f Z τ C( ) =ij k ki jk

−1 . 
In these expressions: f is the identity link function; Zij is the z-score for 
the jth index SNV; Cjk is an indicator variable that takes the value 1 if the 
jth index SNV was assigned to the kth cluster and 0 otherwise; and τ0i 
and τki are regression coefficients. Regression models were fitted using 
the glm function in R.

Effect of BMI on ancestry-correlated and residual heterogeneity 
in allelic effects between GWASs
For each index SNV, we aggregated inverse-variance weighted allelic 
effects across GWASs by linear regression, implemented in MR-MEGA10, 
including as covariates: (i) three axes of genetic variation; (ii) mean 
BMI in controls; and (iii) mean BMI in T2D cases. After adjustment for 
BMI, we tested for: (i) ancestry-correlated allelic effect heterogeneity 
between GWASs; and (ii) residual allelic effect heterogeneity between 
GWASs. After adjustment, as outlined above, we re-assessed: (i) the 
contribution of each axis of genetic variation to ancestry-correlated 
heterogeneity; and (ii) the difference in ancestry-correlated heteroge-
neity between mechanistic clusters.

Cluster-specific partitioned PS analyses of vascular outcomes 
and age of T2D onset
We tested for association of cluster-specific components of the parti-
tioned PS and an overall PS with T2D-related macrovascular outcomes 
(CAD, ischaemic stroke and peripheral artery disease), microvascular 
complications (ESDN and proliferative diabetic retinopathy) and age of 
T2D onset in participants from the All of Us Research Program (AoURP; 
AFA, EUR and HIS ancestry groups), Biobank Japan (BBJ; EAS ancestry 
group), and Genes & Health (G&H; SAS ancestry group). Cohort descrip-
tions and details of sequencing and genotyping, quality control and 
phenotype derivation are provided in the Supplementary Methods.

We conducted analyses separately for each ancestry group in AoURP, 
BBJ and G&H. For each ancestry, we performed analyses for macrovas-
cular outcomes using all individuals, irrespective of T2D status, and 
for microvascular complications in individuals with T2D only. For each 
analysis, we calculated the overall PS and cluster-specific partitioned PS 
for each individual, with each index SNV weighted by the allelic log-OR 
from the ancestry-specific meta-analyses. We did not include index 
SNVs with MAF < 1% in the PS. We also excluded index SNVs with poor 
imputation quality (r2 < 0.7) in BBJ and G&H, and those with extreme 
deviation from Hardy–Weinberg equilibrium (P < 10−6) in AoURP. We 
standardized the overall PS and each cluster-specific component of 
the partitioned PS to have mean zero and unit variance. We tested for 
association with each vascular outcome through generalized linear 
regression and with age of T2D onset through linear regression. For 
each outcome, we considered a model including the overall PS and 
then each cluster-specific component the partitioned PS adjusted 
for the overall PS. All association analyses were conducted using the 
glm function in R.

We adjusted association analyses with vascular outcomes for age, 
sex and the first 20 principal components. In BBJ, we also adjusted 
for recruitment phase and status of the registered common diseases 
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(other than T2D) to account for ascertainment. We further adjusted 
analyses of macrovascular outcomes for T2D status. We also further 
adjusted analyses of microvascular complications for duration of T2D. 
In AoURP, we defined age as age at last hospital visit. In BBJ, we defined 
age as age at first record. In G&H, we defined age as age at diagnosis 
for T2D cases and age at last follow-up for controls. For CAD, we also 
conducted sensitivity analyses by including, as an additional covari-
ate, a CAD PS from the largest published multi-ancestry CAD GWAS39. 
The PS was constructed from index SNVs for 241 conditionally inde-
pendent CAD associations, weighted by the multi-ancestry allelic 
log-OR (ancestry-specific effects were not available), and standard-
ized to have mean zero and unit variance. We adjusted association 
analyses with age of T2D onset for sex and the first 20 principal com-
ponents. In BBJ, we also adjusted for recruitment phase and status 
of the registered common diseases (other than T2D) to account for  
ascertainment.

For each outcome, we aggregated association summary statistics 
from each cluster-specific component of the partitioned PS and the 
overall PS across ancestries through random-effects meta-analyses. 
All meta-analyses were conducted using the R package meta (https://
cran.r-project.org/package=meta).

Cluster-specific partitioned PS analyses of clinical outcomes
We tested for association of cardiovascular and kidney-related clinical 
outcomes in EUR individuals with T2D in prospective GWASs from six 
clinical trials from the Thrombolysis in Myocardial Infarction (TIMI) 
Study Group (https://timi.org/). Trial descriptions and details of geno-
typing and quality control are provided in the Supplementary Methods.

Within each trial, we calculated the overall PS and cluster-specific 
components of the partitioned PS for each individual, with each index 
SNV weighted by the allelic log-OR from the European ancestry-specific 
meta-analysis. We standardized the overall PS and each cluster-specific 
component of the partitioned PS to have mean zero and unit variance. 
Data from the six trials were subsequently pooled, and we considered 
the following clinical outcomes in patients with T2D only: myocardial 
infarction, ischaemic stroke, cardiovascular death, hospitalization for 
heart failure, atrial fibrillation, acute limb ischaemia, peripheral revas-
cularization, end-stage renal disease or renal death and albuminuria. 
We tested for association of each cluster-specific component of the 
partitioned PS with each clinical outcome under a Cox proportional 
hazards model, including age, sex, the first ten principal components 
and the overall PS as covariates. All association analyses were conducted 
using the coxph function with Efron ties handling from the R package 
survival (https://cran.r-project.org/package=survival).

Ethics statement
Study-level ethics statements are provided in the Supplementary Note.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Genome-wide association summary statistics from the multi-ancestry 
meta-analysis and ancestry-specific meta-analyses reported in this 
study are available through the DIAGRAM Consortium website  
(http://www.diagram-consortium.org/downloads.html).

Code availability
Analyses were conducted using publicly available software: the UCSC 
LiftOver tool (https://genome.ucsc.edu/cgi-bin/hgLiftOver), MR-MEGA 
v.0.2 (https://genomics.ut.ee/en/tools), METAL v.2011-03-25 (https://
genome.sph.umich.edu/wiki/METAL), PLINK v.1.9 (https://www.

cog-genomics.org/plink/1.9/), Beagle 4.1 (https://faculty.washington.
edu/browning/beagle/b4_1.html), SNPTEST v.2.5.6 (https://www.well.
ox.ac.uk/~gav/snptest/), GWAMA v.2.2.2 (https://genomics.ut.ee/en/
tools), EIGENSOFT v.7.2.1 (https://www.hsph.harvard.edu/alkes-price/
software/), PLINK v.2.0 (https://www.cog-genomics.org/plink/2.0/), 
SHAPEIT4 (https://odelaneau.github.io/shapeit4/), Minimac4 (https://
genome.sph.umich.edu/wiki/Minimac4), KING v.2.3 (https://www.
kingrelatedness.com/) and EAGLE v.2.4 (https://alkesgroup.broadin-
stitute.org/Eagle/#Xeagle2). Analyses were also conducted using the 
following R packages: meta (https://cran.r-project.org/package=meta), 
ClustImpute (https://cran.r-project.org/package=ClustImpute), 
NbClust (https://cran.r-project.org/package=NbClust), factoextra 
(https://cran.r-project.org/package=factoextra) and logistf (https://
cran.r-project.org/package=logistf).
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Extended Data Fig. 1 | Axes of genetic variation separating GWASs of  
T2D across ancestry groups. We used SNVs that were reported in all studies  
to construct a distance matrix of mean effect allele frequency differences 
between each pair of GWASs. We implemented multi-dimensional scaling of 
the distance matrix to principal components that represent axes of genetic 
variation. The first three axes of genetic variation (PC1, PC2 and PC3) from 

multi-dimensional scaling of the Euclidean distance matrix between populations 
are sufficient to separate GWASs from six ancestry groups: African American 
(AFA), East Asian (EAS), European (EUR), Hispanic (HIS), South African (SAF), 
and South Asian (SAS). Variance explained by each axis: PC1 90.7%; PC2 6.5%; 
PC3 1.0%.



Extended Data Fig. 2 | Cluster-specific associations of index SNVs with 
defining cardiometabolic phenotypes. Each bar presents the −log10 P value 
for association, with effect direction aligned to the T2D risk allele. FG: fasting 

glucose. FI: fasting insulin. PI: proinsulin. BMI: body mass index. WHR:  
waist–hip ratio. LDL: low-density lipoprotein cholesterol. HDL: high-density 
lipoprotein cholesterol. TG: triglycerides. *Trait adjusted for BMI.
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Extended Data Fig. 3 | Cluster-specific associations of index SNVs with T2D. 
The height of each bar corresponds to the log-odds ratio (beta), and the grey 
bar shows the 95% confidence interval. *P < 0.05, nominal association. 
**P < 0.0063, Bonferroni correction for eight clusters. Exact P values are 
presented in Supplementary Table 9.



Extended Data Fig. 4 | Cluster-specific associations of T2D risk alleles at 
index SNVs with insulin-related endophenotypes. Measures of insulin 
secretion and insulin sensitivity were derived from hyperinsulinaemic- 
euglycaemic clamp assessments and oral glucose tolerance tests in up to  
1,316 Mexican American participants without diabetes. Homeostatic model 

assessment measures of beta-cell function (HOMA-B) and insulin resistance 
(HOMA-IR) were obtained from 36,466 non-diabetic individuals of European 
ancestry. Each point corresponds to the cluster-specific mean z-score for each 
trait, and grey bars represent 95% confidence intervals. The liver and lipid 
metabolism cluster has been removed for ease of presentation.
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Extended Data Fig. 5 | Cluster-specific associations of T2D risk alleles at 
index SNVs with insulin-resistance-related disorders. Association with 
gestational diabetes mellitus (GDM) was assessed in 5,485 cases and 347,856 
female controls of diverse ancestry. Association with polycystic ovary 
syndrome (PCOS) was assessed in 10,074 cases and 103,164 female controls of 

European ancestry. The height of each bar corresponds to the mean z-score, 
and the grey bar shows the 95% confidence interval. The liver and lipid 
metabolism cluster has been removed for ease of presentation. *P < 0.05, 
nominal association. **P < 0.0063, Bonferroni correction for eight clusters. 
Exact P values are presented in Supplementary Table 12.



Extended Data Fig. 6 | Ancestry-correlated heterogeneity is driven by 
differences in allelic effect sizes between AFA, EAS and EUR ancestry 
groups. In the scatter plot, index SNVs with significant evidence (PHET < 3.9 × 10−5, 
Bonferroni correction for 1,289 signals) for ancestry-correlated heterogeneity 
are plotted according to their association (z-score) with the first two axes of 
genetic variation. The first axis represents differences in allelic effect sizes 
between AFA/EUR GWASs and EAS GWASs (AFA–EAS axis), whilst the second 
axis represents differences in effect size between AFA/EAS GWASs and EUR 

GWASs (AFA–EUR axis). The forest plots present examples of ancestry-correlated 
heterogeneity at index SNVs. In each forest plot, the allelic log-odds ratio (OR) 
from each ancestry group-specific fixed-effects meta-analysis is given by the 
black tick mark, the 95% confidence interval is given by the horizontal line,  
and the weight (inverse-variance) of each ancestry group by the grey box.  
AFA: African American ancestry group. EAS: East Asian ancestry group. EUR: 
European ancestry group. HIS: Hispanic ancestry group. SAF: South African 
ancestry group. SAS: South Asian ancestry group.
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Extended Data Fig. 7 | Cluster-specific associations of index SNVs with the 
first two axes of genetic variation in T2D cases and controls. a, Unadjusted 
for BMI. b, Adjusted for study-level mean BMI. Each point corresponds to a 
cluster, plotted according to the mean z-score for association with the first two 

axes of genetic variation (PC1 and PC2) on the x axis and y axis, respectively. 
Grey bars correspond to 95% confidence intervals. The liver and lipid 
metabolism cluster has been removed for ease of presentation.



Extended Data Fig. 8 | Associations of cluster-specific components of  
the partitioned PS with CAD in up to 279,552 individuals across diverse 
ancestry groups. The panel summarizes the associations of each cluster-specific 
component of the partitioned PS with CAD, with and without adjustment for a 
previously published multi-ancestry CAD PS. The height of each bar corresponds 

to the log-OR (beta) per standard deviation of the PS, and the grey bar shows 
the 95% confidence interval. Analyses were undertaken in all individuals, with 
adjustment for T2D status. *P < 0.05, nominal association. **P < 0.0063, 
Bonferroni correction for eight clusters. Exact P values are presented in 
Supplementary Tables 21 and 22.
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Extended Data Fig. 9 | Associations of cluster-specific components of the 
partitioned PS with T2D age of onset in up to 30,288 individuals across 
diverse ancestry groups. The panel summarizes the associations of each 
cluster-specific component of the partitioned PS with age of onset. The height 
of each bar corresponds to years (beta) per standard deviation of the PS, and 
the grey bar shows the 95% confidence interval. A negative effect corresponds 
to earlier age of onset. *P < 0.05, nominal association. **P < 0.0063, Bonferroni 
correction for eight clusters. Exact P values are presented in Supplementary 
Table 23.



Extended Data Fig. 10 | Associations of the beta cell +PI and obesity 
cluster-specific components of the partitioned PS with vascular outcomes 
in up to 29,827 EUR individuals with T2D from six clinical trials from the 
TIMI Study Group. Major cardiovascular event is defined as myocardial 
infarction, ischaemic stroke, or cardiovascular death. Major limb event is 

defined as acute limb ischaemia or peripheral revascularization. The height  
of each bar corresponds to the log-hazard ratio per standard deviation of the 
PS, and the grey bar shows the 95% confidence interval. *P < 0.05, nominal 
association. **P < 0.0063, Bonferroni correction for eight clusters. Exact  
P values are presented in Supplementary Table 24.
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Sample size Our discovery GWAS meta-analysis and polygenic score test GWAS brought together the largest sample size of type 2 diabetes cases and 
(population) controls that was available to the Type 2 Diabetes Global Genomics Initiative.  
 
Discovery GWAS meta-analysis. With our sample size of 428,452 T2D cases and 2,107,149 controls, at a genome-wide significance threshold 
(p<5x10-8), under an additive genetic model of homogeneous effects across ancestry groups, we had ≥80% power to detect association of 
SNVs with MAF ≥5% and OR ≥1.035 or MAF ≥0.5% and OR ≥1.107. 
 
Polygenic score test GWAS. We aggregated 30,288 T2D cases and 249,264 controls from the All of Us Research Program, Biobank Japan, and 
Genes & Health, who were not included as part of the discovery meta-analysis. We also consider 29,827 individuals with T2D from six clinical 
trials from the Thrombolysis in Myocardial Infarction (TIMI) Study Group. 

Data exclusions Within each contributing study, individuals were excluded on the basis of well-established individual and variant quality control (QC) 
procedures to remove poor quality genotypes, samples and SNVs. These QC procedures are described in Supplementary Table 3 for each 
study.

Replication We did not conduct a formal replication analysis since we had already brought together all GWAS data available to the Type 2 Diabetes Global 
Genomics Initiative. The polygenic score test GWAS were not used to replicate association signals from the discovery meta-analysis because 
sample overlap can lead to increased false positive error rates in polygenic score analyses. All reported association signals from the discovery 
meta-analysis were checked to confirm that effects were not driven by false positives in single studies.

Randomization Randomization was not performed. Within each study, covariates were adjusted for to account for potential confounding. Covariate 
adjustments are reported in Supplementary Table 3.

Blinding Group allocation was not relevant to this study, so blinding was not necessary.
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