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Abstract: Nicotinamide adenine dinucleotide (NAD+) is an essential metabolite involved in various
cellular processes. The cellular NAD+ pool is maintained by three biosynthesis pathways, which
are largely conserved from bacteria to human. NAD+ metabolism is an emerging therapeutic
target for several human disorders including diabetes, cancer, and neuron degeneration. Factors
regulating NAD+ homeostasis have remained incompletely understood due to the dynamic nature
and complexity of NAD+ metabolism. Recent studies using the genetically tractable budding yeast
Saccharomyces cerevisiae have identified novel NAD+ homeostasis factors. These findings help provide
a molecular basis for how may NAD+ and NAD+ homeostasis factors contribute to the maintenance
and regulation of cellular function. Here we summarize major NAD+ biosynthesis pathways, selected
cellular processes that closely connect with and contribute to NAD+ homeostasis, and regulation
of NAD+ metabolism by nutrient-sensing signaling pathways. We also extend the discussions to
include possible implications of NAD+ homeostasis factors in human disorders. Understanding the
cross-regulation and interconnections of NAD+ precursors and associated cellular pathways will help
elucidate the mechanisms of the complex regulation of NAD+ homeostasis. These studies may also
contribute to the development of effective NAD+-based therapeutic strategies specific for different
types of NAD+ deficiency related disorders.

Keywords: NAD+ metabolism; Sir2 family; nutrient signaling

1. Introduction

NAD+, NADP+, and reduced equivalents NADH and NADPH are essential redox factors for
many cellular enzymatic reactions. NAD+ also serves as a co-substrate in protein modifications, such
as sirtuin (Sir2 family proteins)-mediated protein deacetylation and ADP-ribosylation. These modified
proteins contribute to regulating Ca2+ signaling, chromatin structure, DNA repair, circadian rhythm,
metabolic responses, and lifespan [1–5]. Several human diseases have been associated with aberrant
NAD+ metabolism, including diabetes, cancer, and neuron degeneration [2,3,5–12]. Administration
of NAD+ precursors such as nicotinamide (NAM), nicotinamide mononucleotide (NMN), nicotinic
acid riboside (NaR), and nicotinamide riboside (NR) has been shown to increase NAD+ levels and
ameliorate associated deficiencies in various model systems including human cells [3,5–11,13–16].
Nicotinic acid (NA) (niacin, vitamin B3) was first identified as a “Pellagra-preventive factor” in studies
pioneered by Goldberger and Elvehjem in the early 1900s [17–19]. Later, NA was found to be involved
in the biosynthesis of NAD+ [20,21]. Harden and Young first described the presence of NAD+ in
cell-free fermentations of yeast juices in 1906 [22,23]. Later, von Euler and Warburg isolated pure
fractions of NAD+ and NADP+, which were used to unravel the chemistry of these molecules [24–26].

Over many decades researchers have been unraveling the signaling pathways and cellular
processes that contribute to the regulation of NAD+ and NAD+ precursor homeostasis; however,
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regulation of NAD+ metabolism and molecular mechanisms underlying NAD+ precursor treatments
are still not completely understood. Studying NAD+ homeostasis is further complicated by the
dynamic flexibility of precursors cells use to generate NAD+. For example, NAM is both an NAD+

precursor and an inhibitor of NAD+-dependent enzymes such as sirtuins [27,28]. Therefore NAM can
modulate cellular function through pathways that depend on proper NAD+ homeostasis and sirtuin
activity [29,30]. The precise roles of NAD+, sirtuins, and their downstream targets in diseases remain
uncertain. Studying factors that contribute to the regulation of NAD+ homeostasis in budding yeast
Saccharomyces cerevisiae may help shed some light on the role of NAD+ in disease. NAD+ biosynthesis
is highly conserved between yeast and vertebrates. Employing the properties of yeast cells that
constantly release and retrieve small NAD+ precursors [31–33], genetic tools have been developed
to identify and study genes regulating NAD+ homeostasis. In yeast, mutants carrying single and
multiple deletions of NAD+ pathway components and special defined growth conditions that pinpoint
certain pathways are relatively easy to obtain. Several NAD+ homeostasis factors were uncovered in
recent studies using NAD+ precursor-specific genetic screens [31,34–36]. Given the interconnections
among NAD+ biosynthesis pathways and cellular processes, identification and studying additional
NAD+ homeostasis factors are required to elucidate the regulation of cellular NAD+ metabolism.

2. NAD+ Biosynthesis Pathways

NAD+ biosynthesis in yeast and humans is maintained by three pathways: de novo synthesis,
NAM/NA salvage, and NR salvage (Figure 1). The NAD+ levels maintained by these pathways
converge at several different points and consume cellular pools of ATP, phosphoribosyl pyrophosphate
(PRPP), and glutamine while adding to total pools of ribose, AMP, phosphate, formate, alanine and
glutamate. Some of these molecules contribute to other biosynthesis pathways or have signaling
functions. Therefore, the cell must maintain these metabolites and their flux in a controlled manner.
We do not fully understand all the mechanisms by which the cell can sense and tune these metabolites,
but some known NAD+ homeostasis regulatory mechanisms include transcriptional control, feedback
inhibition, nutrient sensing, and enzyme or metabolite compartmentalization [1,31,34,35,37–42].

The earliest indication of tryptophan contribution to NAD+ metabolism was in 1945 when
Elvehjem supplemented tryptophan to rats fed a low NA corn diet and showed an increased level
of NA [43]. The de novo pathway (also known as the kynurenine pathway) synthesizes NAD+ from
tryptophan (Figure 1), spends the most cell resources, and is likely the least preferred pathway.
This pathway is characterized by the synthesis of quinolinic acid (QA) from tryptophan by five
enzymatic reactions by Bna proteins (Bna2, Bna7, Bna4, Bna5, Bna1) and a spontaneous cyclization
(Figure 1) [44]. Bna6 then transfers the phosphoribose moiety of PRPP to QA, which produces nicotinic
acid mononucleotide (NaMN), a molecule that is also produced by the NA/NAM salvage pathway.
Dual specificity NaMN/NMN adenylyltransferases (Nmnats), Nma1 and Nma2 in yeast, are responsible
for the conversion of NaMN to nicotinic acid adenine dinucleotide (NaAD) by the addition of the AMP
moiety of ATP [45,46]. Amidation of NaAD to NAD+ is then carried out by the glutamine-dependent
NAD+ synthetase Qns1 [47]. Several steps in the de novo pathway require molecular oxygen as a
substrate (Bna2, Bna4 and Bna1) [44]. Therefore, cells grown under anaerobic conditions rely on the
salvage pathways for NAD+ synthesis. When NAD+ is abundant, genes of the de novo specific pathway
(BNA genes) are silenced by the sirtuin Hst1 [37]. Because Hst1 activity is dependent on NAD+, NAD+

depletion results in transcription activation of the de novo pathway. A recent study showed that
the copper-sensing transcription factor Mac1 appeared to work in concert with Hst1 to repress BNA
genes [34].

By 1958 Preiss and Handler had identified the pathway of NAD+ synthesis steps starting at NA,
and this pathway is largely referred to as the Preiss–Handler pathway [48,49]. Unlike humans, in yeast
this pathway also includes salvage of NAM and will be referred to as the NA/NAM salvage pathway
(Figure 1). The NA/NAM salvage pathway produces NAD+ from precursors NA and NAM in yeast.
Under NA abundant conditions, which describe most yeast growth media, NA/NAM salvage is the
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preferred NAD+ biosynthesis route and provides the cell with ample NAD+, high Hst1 activity and
BNA (de novo pathway) gene repression [34,37,50]. In humans, NAM is converted to NMN by NAM
phosphoribosyltransferase (Nampt) and then to NAD+ by the NR salvage branch, also first identified
by Preiss and Handler in 1956 [51]. NAM is produced from many NAD+ consuming reactions including
sirtuin mediated protein deacetylation and is also an inhibitor of these reactions [28,52–54]. Pnc1, a
nicotinamidase found in budding yeast, hydrolyzes the amide group of NAM producing NA [55].
Deletion of PNC1 increases the concentration of NAM and inhibits sirtuin activity [39,40]. Like Bna6 of
the de novo pathway, Npt1 produces NaMN by the transfer of the phosphoribose moiety of PRPP to
NA. NAD+ biosynthesis from the NA/NAM salvage and de novo pathways converges at the formation
of NaMN (Figure 1).

Figure 1. NAD+ biosynthesis pathways. In yeast cells, NAD+ can be made by salvaging precursors
such as NA, NAM and NR or by de novo synthesis from tryptophan. Yeast cells also release and
re-uptake these precursors. The de novo NAD+ synthesis (left panel) is mediated by Bna proteins
(Bna2,7,4,5,1) leading to the production of NaMN. This pathway is inactive when NAD+ is abundant.
The NA/NAM salvage pathway (center panel) also produces NaMN, which is then converted to
NaAD and NAD+ by Nma1/2 and Qns1, respectively. NR salvage (right panel) connects to the
NA/NAM salvage pathway by Urh1, Pnp1 and Meu1. NR turns into NMN by Nrk1, which is then
converted to NAD+ by Nma1, Nma2 and Pof1. This model centers on NA/NAM salvage (highlighted
with bold black arrows) because most yeast growth media contain abundant NA. Cells can also
salvage NaR by converting it to NA or NaMN. For simplicity, NaR salvaging is not shown in this
figure. Arrows with dashed lines indicate the mechanisms of these pathways remain unclear. NA,
nicotinic acid. NAM, nicotinamide. NR, nicotinamide riboside. NaR, nicotinic acid riboside. QA,
quinolinic acid. L-TRP, L-tryptophan. NFK, N-formylkynurenine. L-KYN, L-kynurenine. 3-HK,
3-hydroxykynurenine. 3-HA, 3-hydroxyanthranilic acid. NaMN, nicotinic acid mononucleotide.
NaAD, deamido-NAD+. NMN, nicotinamide mononucleotide. Abbreviations of protein names are
shown in parentheses. Bna2, tryptophan 2,3-dioxygenase. Bna7, kynurenine formamidase. Bna4,
kynurenine 3-monooxygenase. Bna5, kynureninase. Bna1, 3-hydroxyanthranilate 3,4-dioxygenase.
Bna6, quinolinic acid phosphoribosyltransferase. Nma1/2, NaMN/NMN adenylyltransferase. Qns1,
glutamine-dependent NAD+ synthetase. Npt1, nicotinic acid phosphoribosyltransferase. Pnc1,
nicotinamide deamidase. Sir2 family, NAD+-dependent protein deacetylases. Urh1, Pnp1 and Meu1,
nucleosidases. Nrk1, NR kinase. Isn1 and Sdt1, nucleotidases. Pho8 and Pho5, phosphatases. Pof1,
NMN adenylyltransferase. Tna1, NA and QA transporter. Nrt1, NR transporter.
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Kornberg and Rowen were the first to identify NR as a precursor for NAD+ biosynthesis in
1951 [56]. With the exception of a few studies [57–59], NR-mediated NAD+ biosynthesis received little
attention until 2004 when Brenner’s group reignited interest by demonstrating NR phosphorylation to
NMN by NR kinase in yeast and human [60]. As mentioned above, in humans, Nampt also converts
NAM to NMN, an enzyme not found in yeast. NR salvage can be considered the least expensive of the
three pathways and requires no PRPP (Figure 1). However, NR can also be converted to NAM. In yeast
this is accomplished by nucleosidases Urh1 and Pnp1 and redirects NR into NA/NAM salvage [16,61].
NR is phosphorylated by NR kinase, Nrk1, to produce NMN [60]. Nmnats (Nma1, Nma2 and Pof1
in yeast) are responsible for the conversion of NMN to NAD+ by the addition of the AMP moiety of
ATP [36,45,46]. In yeast, the NR salvage branch confers flexibility that the other two pathways do not,
which is in part due to compartmentalization of enzymes and precursors in this pathway. For instance,
the vacuole plays an important role in the storage of NAD+-intermediate precursors, especially NR
and NMN [35]. Fun26, an equilibrative transporter mediates transport of NR in and out of the vacuole.
Pho8, a broad specificity vacuolar acid phosphatase, mediates the conversion of NMN to NR [1,35].
In addition, cytosolic nucleotidases Sdt1 and Isn1 convert NMN to NR [62]. Moreover, yeast cells
release and re-uptake small NAD+ precursors such as NA, NAM, QA and NR (Figure 1) [31,36,63].
Specific transporters Tna1 (for NA and QA) [33,63] and Nrt1 (for NR) [64] are responsible for the
uptake of NAD+ precursors whereas the mechanisms of precursor release remain unclear. Thus, the
three branches of NAD+ biosynthesis are coordinated and provide the cell with NAD+ tuned to cellular
requirements and environmental conditions.

3. NAD+ and Its Derivatives in Redox Reactions

NAD(P)+ and NAD(P)H have long been recognized as coenzymes universally involved in
oxidation-reduction reactions [24–26]. NAD(P)+ receives two electrons in the form of a hydride ion at
position 4 of the NAM ring from a substrate reducing NAD(P)+ to NAD(P)H and release of a proton [65].
By coupling the oxidation of various molecules to the reduction of NAD(P)+, the cell temporarily stores
energy in the form of high-energy electrons in the NAM ring of NAD(P)H. The electron arrangement
of NAD(P)H is unfavorable, and the oxidation of NAD(P)H to NAD(P)+ is readily reversible. NADP+

has an additional phosphate group at the 2 position on the AMP moiety [66], which allows enzymes to
distinguish NADP+ from NAD+. The stoichiometric concentrations of reduced and oxidized NAD(P)+

affords the cell to support the flow of electrons in two different directions. In catabolic pathways, where
oxidation-reduction of NAD+ and NADH plays the dominant role, cell breakdown larger molecules
to generate smaller building blocks and energy. High-energy electrons can be temporarily stored in
the form of NADH and donated to the electron transport chain to make ATP via respiration [67,68].
NADP+ on the other hand is important for the reductive biosynthesis of molecules that help form the
cell and protection from reactive oxygen species. Kornberg first showed that NADP(H) is produced
from NAD(H) by NAD+ kinase in 1950 [69]. Yeast has two cytosolic NAD+ kinases that prefer NAD+

substrate producing NADP+ [70], and a mitochondrial NAD+ kinase that prefers NADH substrate
producing NADPH [71]. NADPH is necessary to produce triacylglycerols, phospholipids, steroids,
amino acids, and nucleotides [72]. NADPH is also required for anti-oxidative defense systems. For
instance, it is involved in the direct reduction of inactive glutathione and thioredoxin to their active
forms by glutathione and thioredoxin reductases [73–75].

4. Balancing the Redox State of NAD+ and NADH

The redox state of the cell and the systems that the cell uses to balance this state largely depends
on the growth conditions of the cell. For instance, cells grown aerobically have access to oxygen and
can balance NADH by donating the electrons to the electron transport chain. Cells grown anaerobically
only produce ATP by substrate-level phosphorylation and rely on other systems like fermentation to
balance the NAD+/NADH ratio. In addition, because different pools (cytosolic and organelle) of NAD+

and NADH exist, redox equivalents are utilized to move back and forth from various compartments of
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the cell by use of shuttle systems. Here we discuss examples of such shuttle systems in mitochondria
and peroxisomes (Figure 2), which also contribute to the maintenance of NAD+ homeostasis. In
yeast, mitochondria do not synthesize their own NAD+, and rely on NAD+ transporters (Ndt1 and
Ndt2) to maintain the NAD+ level [76]. Mitochondrial NAD+ kinases convert NAD+ to NADP+ or
NADH to NADPH [71]. The portion of NAD+ that belongs to yeast mitochondria is unclear, but
studies of other organisms suggest it can range from 20-85% of total cellular NAD+ [77]. Much less is
known about how NAD+ and other derivatives are transported or made to support peroxisome pools.
Several shuttle systems of mitochondria and peroxisomes have been identified, which include the
malate-aspartate [78–81], ethanol-acetaldehyde [82–84], and the glycerol-3-phosphate shuttles [85–90].
These shuttle systems rely on dehydrogenases to oxidize or reduce substrates with reduction or
oxidation of NAD(H). Therefore, there is no exchange in NAD+ or NADH between these pools, but
rather an exchange of dehydrogenase products, which can either accept or donate the electrons in the
adjacent pool of NAD(H). For example, respiration induced increase in NAD+/NADH ratio in the
mitochondria can be transmitted to the cytosol by the malate-aspartate shuttle (Figure 2). Similarly,
fatty acid β-oxidation induced decrease in NAD+/NADH ratio in peroxisomes can be balanced with
the cytosolic pools by such shuttle systems. One interesting aspect of peroxisomes is they also contain
nudix hydrolase Npy1 that hydrolyzes NADH to NMNH [36,91]. Its contribution to NAD+ homeostasis
is unclear, but it could play an important role in either balancing redox state or removal of NAD+

metabolites from peroxisomes. Yeast also contains cytosol facing NADH dehydrogenases, Nde1 and
Nde2, which donate electrons to the electron transport chain without transport of redox equivalents
into mitochondria [92,93].

Figure 2. Cellular processes that are closely connected with NAD+ homeostasis. Various cellular
processes together with compartmentalization of intracellular NAD+ and its derivatives contribute to
the regulation of NAD+ homeostasis. For example, NAD+ and intermediates can enter the vacuole
through vesicular tracking and are then converted to small NAD+ precursors. Small NAD+ precursors
such as NR can travel between the vacuole and cytoplasm through specific nucleoside transporters.
Small NAD+ precursors can exit cells likely by vesicular trafficking and re-enter through specific
transporters on the plasma membrane. Sirtuin mediated gene silencing in the nucleus consumes NAD+.
The nucleus and cytoplasm share the same NAD+ pool because NAD+ is anticipated to pass the nuclear
pore by simple diffusion. The mitochondrial and peroxisomal NAD+(H) redox shuttle systems do not
directly affect NAD+ metabolism, instead, they function to balance redox equivalents between the
organellar and the cytosolic pools to regulate the NAD+/NADH ratio.
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5. Cellular Processes that Consume NAD+

In addition to its redox role as described above, NAD+ is also consumed as a substrate.
Consumption of NAD+ was noted early on by Mann and Quastel in 1941, who found that the
consumption could be inhibited by NAM [94]. A year later Handler and Klein confirmed this finding
and noted NAM was liberated by the reaction [95]. We now understand NAD+ has important non-redox
roles in the modification of proteins and RNA. In yeast this is limited to deacetylation of proteins and
5’ capping of RNA [96,97]. However, in mammals this is expanded to the mono- and poly- addition of
the ADP-ribose moiety of NAD+ to proteins in a process called ADP-ribosylation and carried out by a
class of enzymes called poly ADP-ribose polymerases (PARPs). PARP activity has been linked to cell
survival and genome stability [98].

Sirtuins are a class of enzymes highly conserved from yeast to human and involved in the
deacetylation of proteins. Sirtuins transfer the acetyl group of a protein to the ADP-ribose moiety
of NAD+ producing a deacetylated protein, o-acetyl-ADP-ribose and NAM. Budding yeast has five
sirtuins (Sir2, Hst1-4) whereas humans have seven (SIRT1-7). The NAD+-dependent deacetylase
activity was first identified for yeast Sir2, which is important for the silencing of the mating type
loci, the ribosomal DNA genes and the subtelomeric regions by deacetylation of histones [99–102].
Sirtuins also have non-histone targets including metabolic enzymes and transcription factors [103,104]
and affect many cellular processes including transcription regulation, genomic stability and cellular
lifespan [103–105]. NAD+ and NAM play an important role in the regulation of sirtuin activity and
downstream events. Deficiency in NAD+ production by deletion of biosynthesis enzymes abolishes
sirtuin-mediated silencing [106,107]. Since NAM can both replenish NAD+ pool and inhibit the activity
of NAD+ consuming enzymes such as sirtuins [28,52–54], maintaining NAM homeostasis is critical for
cell function. In addition to re-entering NAD+ synthesis pathways, NAM can be cleared by methylation
by NAM methyltransferase [108–110].

In some cases, the RNA polymerase has been found to add NAD+ to the 5’ ends of RNAs through
the use of NAD+ (instead of ATP) as an initiating nucleotide. This NAD+ serves in place of a typical N7
methyl guanosine cap. This modification takes place in both eukaryotes and prokaryotes [96,111–113].
These NAD+-capped RNAs are inefficiently translated and less stable than N7 methyl guanosine
capped RNAs [113]. It is thought that NAD+ competes with ATP for incorporation into the RNA in
the first place, which raises many interesting questions on how concentrations of these metabolites
and energy metabolism affect RNAs and downstream processes like translation. Additionally, some
enzymes degrade NAD+ without modification of proteins or RNAs. In yeast, these include NUDIX
hydrolases [36,91]. For instance, the previously mentioned NUDIX hydrolase Npy1 of peroxisomes
cleaves NADH, producing NMNH and AMP. In human cells, SARM1 and CD38 cleave NAD+, and are
believed to be contributors to various metabolic disorders and diseases [114–116].

6. Regulation of NAD+ Homeostasis

Studying yeast mutants with abnormal levels of specific NAD+ precursor(s) has led to the
identification of novel NAD+ homeostasis factors [31,34–36]. These mutants were identified based
on the observations that yeast cells constantly release and reuptake small NAD+ precursors [32,33].
For example, using a NAM release-specific reporter system, the subunits of the Nt-acetyltransferase
NatB complex, Nat3 (catalytic subunit) and Mdm20 (regulatory subunit), were identified as potential
regulators of NAD+ biosynthesis [31]. NatB mediated Nt-acetylation appears to be critical for
maintaining proper Nmnat protein levels (Figure 3). In yeast, Nmnats are rate-limiting for
NAD+-biosynthesis [31,42]. They participate in all three NAD+ biosynthesis pathways and are
responsible for the conversion of NaMN to NaAD (de novo and NA/NAM salvage) and NMN to NAD+

(NR salvage) (Figure 1). Absence of Nt-acetylation led to an approximate 50% reduction in Nmnat
proteins and NAD+ levels. Nt-acetylation is primarily a co-translational protein modification, which
may alter protein folding, complex formation, localization, and degradation [117]. The precise roles of
Nt-acetylation in Nmnats protein homeostasis and NAD+ biosynthesis have yet to be determined.
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Figure 3. Regulation of NAD+ metabolism in yeast. A model depicting the regulation of NAD+

metabolism by cellular signaling pathways. NAD+ and NAD+ precursors are italicized and shown in
bold. Abbreviations of protein names are highlighted by oval shapes. Dashed lines indicate additional
evidence is required to reveal the mechanisms.

Many mutants that scored high in the NA/NAM release screen had altered mitochondrial function,
suggesting a link between mitochondrial function and the NA/NAM salvage pathway. The precise
roles of mitochondria in NAM salvage and NAD+ homeostasis remain to be studied. Dysfunctional
mitochondria need to be cleared from the cell and are targeted for degradation by bulk autophagy
or selective mitophagy, which destroys mitochondria and its components. For instance, temperature
sensitive ATP synthase mutants selectively degrade mitochondria by mitophagy at non-permissive
temperature [118]. It is possible that a fraction of NAD+ is salvaged during this process. Another
interesting finding in the NatB mutant was that increased NAM appeared to originate from vacuolar
NR. Induction of autophagy by nitrogen starvation indeed increased the NAM and NR pools [31],
which were diminished by deleting ATG14, an autophagy-specific factor [119,120]. Nitrogen starvation
conditions closely mimicked the increased intracellular pools of NAM and NR in NatB mutant
suggesting at least part of the increased NAM originates from increased autophagic degradation of
upstream metabolites like NAD+ or NMN. Major sources may also include organelles that contain
segregated pools of NAD+ or NAD+ intermediates, which are targeted by either bulk or selective
autophagy. It would be interesting to understand the contribution of autophagic targeting of NAD+

and NAD+ intermediates to NAD+ homeostasis.
In a separate study, a QA release-specific reporter system targeting the de novo branch was

employed, which identified Mac1 as a novel NAD+ homeostasis factor [34]. Mac1 is a copper-sensing
transcription factor that activates expression of copper transport genes in response to copper
deprivation [121–123]. Cells lacking MAC1 shared similar NAD+ phenotypes with the hst1∆ mutant
and deleting either MAC1 or HST1 was sufficient to abolish BNA gene repression [34]. It is suggested



Biomolecules 2020, 10, 330 8 of 19

that Mac1 proteins may work with the Hst1-containing repressor complexes (consisting of Hst1, Rfm1,
and Sum1) to repress BNA gene expression (Figure 3). Mechanisms of how Mac1 may function both as
a transcription activator (for copper transport genes) and a co-repressor (for BNA genes) remain to be
determined. When present at nutritional levels, copper binding to Mac1 results in a transcriptionally
inactive state due to an intramolecular interaction. If cells are exposed to high-copper stresses, Mac1
is quickly degraded to prevent excess copper import [124–126]. Upon copper deprivation, Mac1
proteins become stable and can activate expression of copper transport genes. Therefore, it is suggested
that under normal conditions, the transcriptionally inactive (copper-bound) form of Mac1 works
with the Hst1 complex to represses BNA genes. These studies also suggest that both high and low
copper stresses may impact de novo NAD+ biosynthesis via Mac1 and additional stress-signaling
mechanisms. Given the close connection between copper homeostasis and mitochondrial respiration as
well as the dependence of de novo NAD+ biosynthesis on O2, it might be beneficial if these processes
are co-regulated.

Several nutrient-sensing and stress signaling pathways have also been associated with NAD+

metabolism [34,127]. For example, activation of the low phosphate (Pi)-sensing PHO pathway has been
associated with increased NR salvage activity (Figure 3) [35]. Interestingly, PHO activation was also
observed in the low-NAD+ mutants, suggesting a cross-regulation between low-NAD+ and low-Pi
signaling [35]. Moreover, the Pi moiety of NAD+ derivatives is a potential resource for Pi scavenging
during Pi limitation. Interestingly, PHO activation was also observed in the hst1∆ mutant [34] and
cells with reduced amino acid sensing activity [128]. While the mechanisms remain unclear, coupling
these pathways may be metabolically advantageous under certain conditions. Additional signaling
pathways such as PKA (cyclic-AMP activated protein kinase A), Sch9 (yeast Akt), and TOR (target
of rapamycin) may also play a role in NAD+ metabolism (Figure 3) [129]. These pathways appear to
regulate stress response transcription factors, Msn2 and Msn4 [130–132], which have been shown to
increase the expression of Pnc1 [38] in response to various mild stresses (Figure 3) [39].

The release and reuptake of NAD+ metabolites also contribute to NAD+ homeostasis. Yeast cells
uptake NR, NA and QA (at low µM concentrations) via specific transporters Nrt1 (NR) and Tna1 (NA
and QA) [33,63,64]. These NAD+ precursors may also enter cells by additional mechanisms when
present at high levels. In yeast, high µM levels of NA can hinder the reuptake of released QA from the
growth media [34] because QA and NA share the same transporter Tna1. Less is known about how
NAD+ metabolites are released from yeast cells. It is suggested that both vesicular trafficking and
vacuolar storage play a role (Figure 2) [1,31,133]. Vacuolar degradation of NAD+ intermediates appears
to coincide with NAD+ salvage, and NAD+ metabolites may enter vacuole through vesicular transport
and autophagy. NAD+ metabolites are then broken down into smaller precursors for storage or reuse.
The equilibrative nucleoside transporter Fun26 (human hENT homolog) controls the balance of NR and
likely other nucleosides between the vacuole and the cytoplasm [35]. Interestingly, although a vacuolar
storage pool of NAM and NR has been observed, most excess QA is released extracellularly [33,34].
Together these studies demonstrate that compartmentalization of NAD+ metabolites also plays an
important role in the regulation of NAD+ homeostasis.

7. NAD+ and Diseases

It has become apparent that altered NAD+ metabolism is correlated with several metabolic
disorders and diseases, and therapeutic approaches by modulation of the NAD+ biosynthetic
and consuming pathways using NAD+ precursors or chemical inhibitors are being actively
explored [134–137]. Changes in NAD+ metabolism affect many cellular processes either through redox
metabolism or activities of NAD+-consuming enzymes. It is often difficult to separate which aspects of
NAD+ metabolism are important for different diseases, and it could likely be a combination of multiple
factors. In addition, the rate-limiting NAD+ biosynthesis factors may differ in different cell types or
under different environmental conditions. For example, Nampt is the rate-limiting factor for NAD+

synthesis in mammalian cells. Nampt has been implicated in several disease models in which both
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decreased and increased Nampt activities have been reported [134,138]. Nampt inhibition has been
suggested to facilitate cancer cell killing because cancer cells have a higher demand for NAD+. In
addition, because PARP mediated DNA repair requires NAD+, limiting NAD+ synthesis may also
enhance cancer cell death [139]. Supporting this, the combination of PARP inhibitors and Nampt
inhibitors was shown to induce synthetic lethality in breast cancer cells [140]. The roles of Nampt
and NAD+ metabolism in metabolic diseases such as cancers and diabetes have been extensively
discussed in several recent reviews [5,6,134,138,141–143]. Here we discuss the roles of NAD+, NAD+

biosynthesis enzymes Nmnats and NAD+-dependent sirtuins in select diseases of the nervous system.
Dementia and diagnosable pathological alterations in the nervous system, which include

demyelination and degeneration, occur in the late stages of Pellagra and possibly the first evidence
that demonstrates the importance of NAD+ in the nervous system [144]. It became clearer that NAD+

has a role in disease of the nervous system from studies looking at Wallerian degeneration, which is
characterized by the deterioration of axons upon cutting or crushing of a nerve. The discovery of
the slow Wallerian degeneration mutant mouse (Wlds) immediately linked Nmnats with disease of
the nervous system [145,146]. In Wlds mutant, Nmnat1 is fused at its N-terminus with the first 70
amino acids of UBE4B, a ubiquitin conjugation factor [147]. This change results in overexpression
and redistribution of Nmnat1 to the cytoplasmic compartment of the axon. NAD+ biosynthesis in
axon is normally supported by Nmnat2, but injury to the axon promotes the rapid degradation of
Nmnat2 [148]. The Wlds fusion likely protects these axons through the synthesis of NAD+ as studies
show it requires Nmnat1 enzymatic activity [147]. Additionally, expression of NMNAT1 and Wlds

seems to be protective in other neurodegenerative models [149–151]. Mutations in the NMNAT1 gene
are also responsible for inherited blindness of children in a disease called Leber congenital amaurosis,
characterized by early onset and rapid progression of retinal degeneration [152–155]. While Nmnats
have been implicated in various neurodegenerative diseases, the exact role they play is controversial
and seems to include NAD+ biosynthesis and protein folding chaperone activity [151,156,157].

In support of the NAD+ synthesis model, overexpression of Nampt, the rate-limiting enzyme in
human NAD+ biosynthesis, is also protective in some models. Recently SARM1, a toll-interleukin
receptor like protein, was found to be important for a conserved axon death pathway [158,159].
Dimerization of SARM1 caused NAD+ depletion and consequently cell death [160], and eventually
it was found that SARM1 cleaves NAD+ to ADP-ribose and NAM [115]. It is possible however to
block SARM1 mediated axon degeneration through synthesis of NAD+ by overexpression of Nmnats
or Nampt, or by supplementation with NR [160]. However, other pathways do not depend on the
NAD+ biosynthesis activity of Nmnats. For instance, Nmnat2 activity is dispensable for preventing
toxicity of Tau. It was shown that Nmnat2 complexes with Hsp90 to possibly promote refolding of
toxic Tau [156]. Even in yeast models of neurodegenerative diseases, yeast Nmnats Nma1 and Nma2
provide protection from misfolded proteins [157]. Overall, these studies suggest increasing expression
and slowing or prevention of degradation of Nmnats may provide a useful strategy for treating a
variety of neurological diseases.

Furthermore, depletion of NAD+ has a serious effect on NAD+ consuming enzymes such as
sirtuins, which regulate several processes including mitochondria function and capacity to combat
oxidative stress. In fact, mitochondria dysfunction and production of reactive oxygen species are
closely associated with many neurodegenerative diseases [161–168]. For example, SIRT3 is localized to
mitochondria and targets enzymes of various metabolic pathways including the TCA cycle, electron
transport chain, and ketogenesis [169–172]. Importantly, it controls the production of reactive oxygen
species by deacetylation and activation of antioxidant enzymes [173,174]. Cortical neurons in SIRT3
knockout mice are sensitive to excitatory, oxidative, and metabolic stress, and can be restored by
SIRT3 gene delivery [175]. From the same study, using a Huntington’s disease model they found
SIRT3 knockout mice quickly succumbed compared to mice with functional copies. In Alzheimer’s
disease, SIRT3 protein levels are significantly decreased and promote dysfunction of mitochondria [176].
In some cases of Amyotrophic lateral sclerosis, mutations in superoxide dismutase SOD1 promote
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mitochondria dysfunction and fragmentation, and eventually motor neuron death [177]. Using mutant
SOD1G93A it has been shown that SIRT3 expression prevents mitochondria fragmentation and cell
death [178]. In summary, various diseases of the nervous system appear to correlate with lower NAD+

levels or problems with NAD+-consuming and biosynthesis genes. Decreases in NAD+ and NAD+

homeostasis factors deregulate metabolism and sensitize the cell to reactive oxygen species. Future
attempts to study these various diseases by promoting NAD+ synthesis seem warranted. Studies in
yeast may help elucidate the interconnection between NAD+ metabolism and mitochondrial function.
For example, many yeast mutants that release high NAM also show altered mitochondrial function [31].
Studying these mutants may provide some clues for more detailed mechanisms.

8. Conclusions and Perspectives

A balanced level of NAD+ is essential for maintaining proper cellular function. The cell has
adapted many ways to regulate the biosynthesis of NAD+

, which include gene regulation, feedback
inhibition, compartmentalization of enzymes and intermediate metabolites, and coordinates this
biosynthesis via nutrient and energy sensing. While recent studies have identified novel regulators of
NAD+ homeostasis, many questions remain unanswered. For example, in yeast, NAM can replenish
NAD+ pools either by entering the NA/NAM salvage pathway or by de-repressing the de novo
pathway (Figure 1) via inhibiting the activity of the NAD+-dependent sirtuin Hst1 [34,37]. It is unclear
whether the de novo pathway in other organisms is also repressed by NAD+ and de-repressed by
NAM in a sirtuin-dependent manner. Repression of de novo activity by NAD+ has been observed in
bacteria [179,180]. However, NAM does not appear to de-repress de novo NAD+ synthesis activity
in E. coli [179]. Since sirtuins are highly conserved across species [181,182], it will be informative to
determine whether they also play a role in the regulation of de novo NAD+ biosynthesis in higher
eukaryotes. Future studies to understand the multiple roles of NAD+ intermediates, as well as novel
factors regulating NAD+ homeostasis are also highly anticipated

NAD+ metabolism is an emerging therapeutic target for several human diseases [5,7,11,14,183,184].
Supplementation of specific NAD+ precursors is often combined with genetic modifications and
inhibitors of specific NAD+ biosynthesis steps to help channel the precursors to a more efficient NAD+

synthesis route [10,184,185]. Understanding the molecular basis and interconnection of multiple
NAD+ metabolic pathways is therefore important for the development of disease-specific therapeutic
strategies. It has been shown that these strategies are more effective if associated defects in specific
NAD+ biosynthesis pathways/steps are known [10,11]. Moreover, specific NAD+ metabolites and
NAD+ biosynthesis enzymes have also been reported to have additional functions [1,129]. For example,
metabolites of the de novo pathway have been linked to several brain disorders [12,186]. Future studies
to understand the multiple roles of NAD+ intermediates, as well as novel factors regulating NAD+

homeostasis are highly anticipated.
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