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Abstract

As the world population ages, primary prevention of age-related cognitive decline and disability 

will become increasingly important. Prevention strategies are often developed from an 

understanding of disease pathobiology, but models of biological success may provide additional 
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useful insights. Here, we studied 224 older adults, some with superior memory performance 

(n=41), some with normal memory performance (n=109), and some with mild cognitive 

impairment (MCI) or Alzheimer’s disease (AD) (n=74) to understand metabolomic differences 

which might inform future interventions to promote cognitive health. Plasma metabolomics 

revealed significant differential abundance of 12 metabolites in those with superior memory 

relative to controls (ROC AUC = 0.89) and the inverse abundance pattern in the MCI, AD (AUC = 

1.0) and even preclinical AD groups relative to controls (AUC = 0.97). The 12 metabolites are 

components of key metabolic pathways regulating oxidative stress, inflammation, and nitric oxide 

bioavailability. These findings from opposite ends of the cognitive continuum highlight the role of 

these pathways in superior memory abilities and whose failure may contribute to age-related 

memory impairment. These pathways may be targeted to promote successful cognitive aging.

Keywords

Memory; Metabolomics; Alzheimer’s Disease; Oxidative Stress; Nitric Oxide; Arginine 
Metabolism

1. Introduction

Aging is characterized by the accumulation of life experiences that present opportunities and 

challenges for continued growth and development. Aging research has historically focused 

on what happens when we fail to negotiate these challenges and relatively less attention has 

been paid to understanding characteristics of successful aging. While there is no generally 

accepted definition of successful aging, most include some concept of freedom from 

physical and cognitive disability (Depp and Jeste, 2006) which optimize functional capacity 

and quality of life. Maintaining cognitive abilities in the face of age-related physiological 

changes represents a significant challenge especially given the diversity of individual life 

experience and complexity of brain organization which interact to produce individual 

cognitive trajectories (Albert, 1997). From the fourth decade of life onward, the most 

common cognitive trajectory is characterized by subtle decline in many abilities, most 

frequently those requiring rapid transfer of information across widespread brain networks 

(Salthouse, 2009), but this is not invariant and relative stability and improvement in complex 

cognitive abilities such as memory is occasionally encountered into old age (Rowe and 

Kahn, 1987, Gefen et al., 2014). These alternate paths may be supported by resistance to 

age-related accumulation of pathologies (Balasubramanian et al., 2012) or cognitive reserve 

(Stern, 2012) or enhanced neuroplasticity (Gutchess, 2014).

The search for lower cost, minimally invasive, high-throughput biosignatures of cognitive 

dysfunction has driven technological advances in metabolomic platforms (Li et al., 2010, 

Quinones and Kaddurah-Daouk, 2009). For example, peripheral blood metabolomic 

analyses allow qualitative and quantitative assessment of circulating small molecules 

representing central metabolic pathways (Voyle et al., 2016). Together with genomics, 

transcriptomics, and proteomics, metabolomics is helping expand our detailed appreciation 

of systems biology. The biofluid matrix (e.g., plasma or serum) being interrogated via 

metabolomics, along with the molecular separation methods used (e.g., gas versus liquid 
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chromatography) coupled with mass spectrometry for molecular identification, determines 

the specific yield of molecular species that can be used as a phenotypic readout. These data 

provide direct and/or indirect evidence for altered biochemical pathways linked to 

pathobiology (Pan et al., 2016) and brain structural (Ciavardelli et al., 2016) and functional 

(Cansev, 2016) integrity. The scope and depth of such molecular perturbations defined 

through metabolomics may ultimately empower individualized molecular phenotyping and 

our understanding of disease-specific mechanisms. Herein, we report an analysis of the 

plasma metabolome of older adults with superior memory. Through this investigation we 

sought new information about the biochemical processes that support successful cognitive 

aging trajectories and may provide insights into age-related cognitive disorders, such as 

Alzheimer’s disease (AD), where memory impairment is the cardinal feature.

2. Methods

2.1 Participants

All participants in this study were recruited from the communities of Rochester, NY or 

Irvine, CA as part of the Rochester/Orange County Aging Study (R/OCAS). Inclusion 

criteria included age over 70 years, good overall physical health, visual acuity and hearing 

sufficient for cognitive testing, and proficiency with the English language. Exclusion criteria 

included major neurological or psychiatric illness including a known diagnosis of any 

phenotype of Mild Cognitive Impairment (MCI) or AD, current or recent (<1 month) use of 

anticonvulsants, neuroleptics, highly active anti-retroviral therapy (HAART), antiemetics, 

and antipsychotics for any reason, and serious blood disorder including chronic 

abnormalities in complete blood count and anemia requiring therapy and/or transfusion. All 

R/OCAS participants gave written informed consent and all procedures in this study were 

approved by Research Studies Review Boards at the University of Rochester, University of 

California Irvine, and Georgetown University.

2.2 Cognitive assessment and classification

As part of the R/OCAS, all study participants underwent yearly cognitive testing and 

provided a yearly blood sample. Cognitive testing was performed at each yearly visit 

following the blood draw and breakfast. The cognitive battery consisted of commonly used 

measures administered in the standardized manner (Mapstone et al., 2014) (Supplemental 

Table 1). The verbal episodic memory measure was the Rey Auditory Verbal Learning Test 

(RAVLT) (Rey, 1964). We classified the subjects in this study using composite Z-scores 

based on the group characteristics adjusted for age, education, sex, and visit. Adjustment for 

visit allowed us to account for putative practice effects over the multi-year study. The five 

composite cognitive domain Z-scores included: attention (Zatt); executive (Zexe); language 

(Zlan); memory (Zmem); and visuospatial (Zvis)(Mapstone et al., 2014) (Supplemental Table 

2). To reduce the effect of cognitively impaired participants on the mean and SD, age-, 

education-, sex-, and visit-adjusted residuals from each domain Z-score model were robustly 

standardized to have median 0 and robust SD=1, where the robust SD=IQR/1.35, as 1.35 is 

the IQR (Inter-Quartile Range) of a standard normal distribution.
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A total of 525 participants were enrolled in the R/OCAS and 497 participants had complete 

blood and cognitive data. From this group of 497, we identified 41 participants (8% of the 

total sample) showing superior memory abilities using the above criteria. Superior memory 

for the supernormal (SN) group was defined as Zmem > 1.35 SD and corresponds to the 90th

%ile. To further isolate successful cognitive aging in the SN group, all other domain 

composite Z-scores were required to be > −1.35 SD or greater than the 10th%ile. After 

defining the SN participants we used frequency matching to select in a pseudo random 

manner an age-, education-, and sex-matched normal control group of 41 participants (NCs) 

for the SN group. In order to enhance the specificity of our analyses, all normal control 

participants in this study were conservatively defined with Zmem ±1 SD (15th %ile – 85th

%ile) of the cohort median rather than simply non-impaired or ≥ −1.35, and all other Z-

scores ≥ −1.35 SD (Supplemental Figure 1).

The same cognitive assessment and Z-score methods were used to define the 74 amnestic 

MCI (aMCI), AD and preclinical AD (ConverterpreAD), and their 73 matched control 

participants (NCo) detailed in our previous work(Mapstone et al., 2014). We chose to 

include the amnestic phenotype of MCI rather than include other behavioral phenotypes in 

order to conservatively restrict our analysis to a group of MCI with the highest likelihood of 

common underlying pathobiology. Thus, our combined aMCI/AD group ostensibly 

represents a relatively homogenous group of individuals with nascent AD pathobiology. We 

combined the aMCI and AD subjects into a single group for all analyses. In order to 

preserve non-overlapping normal control samples for the SN and aMCI/AD groups, five of 

the 73 NCo participants reported in the previous study(Mapstone et al., 2014) were included 

as NCs for the SN group. Thus 68 of the original 73 remained as NCo for the aMCI/AD 

group (Supplemental Figure 1). As defined, the participant groups were not significantly 

different from each other based on age, sex, and education (Table 1). There was a significant 

main effect of sex on education level when comparing the SN and aMCI/AD groups 

(MANOVA F= 4.85, p = 0.003) such that the SN males were more highly educated than the 

aMCI/AD females. As defined, the groups did differ on the cognitive Z-scores 

(Supplemental Figure 2).

2.3 Blood samples

All study participants provided a blood sample on the same day as the cognitive testing. 

Because certain chronobiological factors including circadian(Panda et al., 2002, Storch et 

al., 2002, Reddy et al., 2006), seasonal(Reinberg et al., 1988, Walker et al., 1997) and 

diurnal (Bollard et al., 2005, Walsh et al., 2006) rhythms are known to affect metabolism and 

presumably ephemeral metabolites such as lipids, our group has implemented strict 

standardization of blood collection and handling methods (Mapstone et al., 2014, Fiandaca 

et al., 2015). In this study, the blood draw was performed as close as possible to the same 

time of day and day of the year to control for circadian, seasonal, and other chronobiological 

effects on the blood metabolomics. All study participants underwent phlebotomy between 

8am and 10am, while fasting and withholding their morning medications. Blood specimens 

were collected in EDTA vacutainers and, after thorough mixing, placed on wet ice 

immediately after collection and remained on ice until the blood components were separated 

within 24 hours, in order to retard degradation of metabolites (Hammad et al., 2010). Each 

Mapstone et al. Page 4

Neurobiol Aging. Author manuscript; available in PMC 2018 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sample yielded multiple 100 uL plasma aliquots that were frozen immediately thereafter at 

−80°C until undergoing metabolomic analyses. The smaller plasma aliquots allowed 

specimen use following a single freeze-thaw cycle prior to metabolomic processing for all 

specimens.

Metabolomic analyses of the aMC/AD, ConverterpreAD, and NCO plasma samples were 

completed in September 2013 and on the SN and NCS samples in November 2014. One-way 

ANOVA on plasma sample storage length with subject group as the independent variable 

showed that the mean storage length was significantly different across groups (F=22.31, 

p<0.001). Post-hoc analysis showed that the plasma storage time of the two main groups 

under study here, the SN and NCS groups were not significantly different (SN mean storage 

= 49.7 months, NCS mean storage = 49.3 months), nor were the aMCI/AD and NCO groups 

different from each other (aMCI/AD mean storage = 38.2 months, NCO mean storage = 37.1 

months). However, the ConverterpreAD samples had been stored for significantly longer than 

all other groups (ConverterpreAD mean storage = 59.8 months) (Supplemental Table 3).

2.4 Reagents

LC/MS-grade acetonitrile (ACN), Isopropanol (IPA), water and methanol were purchased 

from Fisher Scientific (New Jersey, USA). High purity formic acid (99%) was purchased 

from Thermo-Scientific (Rockford, IL). Debrisoquine, 4-Nitrobenzoic acid (4-NBA), Pro-

Asn, Glycoursodeoxycholic acid, Malic acid were purchased from Sigma (St. Louis, MO, 

USA). All lipid standards including 14:0 LPA (lysophosphatidic acid), 17:0 Ceramide, 12:0 

LPC, 18:0 Lyso phosphatidylinositol (PI), and 22:6 phosphatidylcholine (PC) were procured 

from Avanti Polar Lipids Inc. (USA).

2.5 Targeted metabolomics using stable isotope dilution – multiple reaction monitoring- 
mass spectrometry (SID-MRM-MS)

In this study, targeted metabolomic analysis of plasma samples was performed using the 

Biocrates Absolute-IDQ P180 (BIOCRATES, Life Science AG, Innsbruck, Austria). This 

validated targeted assay allows for simultaneous detection and quantification of metabolites 

in plasma samples (10uL) in a high throughput manner. The plasma samples were processed 

as per the instructions by the manufacturer and analyzed on a triple quadrupole mass 

spectrometer (Xevo TQ-S, Waters Corporation, USA) operating in the MRM mode. The 

measurements were made in a 96 well format for a total of 82 samples, seven calibration 

standards and three quality control samples were integrated in the kit. Briefly, the flow 

injection analysis (FIA) tandem mass spectrometry (MS/MS) method was used to quantify a 

panel of 144 lipids simultaneously by MRM. The other metabolites are resolved on the 

UPLC and quantified using scheduled MRMs. The kit facilitates absolute quantitation of 21 

amino acids, hexose, carnitine, 39 acylcarnitines, 14 sphingomyelins, 87 

phosphatidylcholines and 21 biogenic amines. The abundance is calculated from an area 

under the curve (AUC) by normalizing to the respective isotope labeled internal standard and 

differential abundance between different participant groups was computed based on relative 

ratios of normalized response. The concentration is expressed as nmol/L. Human EDTA 

plasma samples spiked with metabolite standards were used as quality control samples to 

assess reproducibility of the assay. The mean coefficient of variation (CV) for the 180 
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metabolites was 0.08 and 95% of the metabolites had a CV of <0.15 and all had CVs < 0.2. 

The data were pre-processed using the MetIDQ software (BIOCRATES, Life Science AG) 

prior to statistical consideration. Raw abundance of each metabolite for each group is 

reported in the Supplemental Materials (Supplemental Table 6). Summary statistics for 

metabolites were completed using MetaboAnalyst 3.0 (Xia and Wishart, 2011, Xia et al., 

2015)

2.6 Statistical Analysis

The primary analysis focused on creating a logistic regression model from the targeted 

metabolomic data elements to classify the SN from the NCs. In addition, we wished to test 

suitability of this model derived from participants with superior memory in the aMCI/AD 

participants; a group characterized by impaired memory. We also wished to apply the 10-

lipid panel developed in our previous study (Mapstone et al., 2014) to the SN participants; a 

group without clinical evidence for neurodegenerative disease. Finally, we wished to create a 

comprehensive model based on the metabolomic features of 1) memory function from the 

SN model and 2) neurodegenerative disease from our previously published model.

The procedure for metabolite selection was similar to our previous report(Mapstone et al., 

2014). In the metabolomic discovery phase, we performed targeted analysis using the 

Biocrates Absolute IDQ p180 kit on plasma from 2/3 of the SN and NCs participants (n=26 

in each group) while the remaining 1/3 of the samples from each group were reserved for an 

internal validation phase. The abundance measurements for the metabolites were initially 

transformed using natural log transformation and normalized via quantile normalization. We 

developed group classification models using the least absolute shrinkage selection operator 

(LASSO)(Tibshirani, 1996) and emphasizing selection of annotated metabolites which 

classified the two groups (SN vs NCs) with the greatest accuracy. To evaluate the predictive 

power of the metabolite panel, we fit deLong’s test of the receiver operating characteristic 

(ROC) regularized logistic regression model based on the LASSO penalty for the discovery 

cohort (26 SN vs. 26 NCs). We first obtained the regularization path over a grid of values for 

the optimizing parameter λ through N fold cross-validation to generate stable estimates. The 

optimal value of the tuning parameter λ was then used to estimate the penalty regression 

coefficients in the model. Models were fit using the “glmnet” package in R, which uses 

cyclical coordinate descent in a path-wise fashion. All of the individual metabolites with 

nonzero coefficients were retained for subsequent analysis. Logistic regression was used to 

create a classifier model and the classification performance of the model was assessed using 

deLong’s test of area under the ROC curve (AUC), measuring the predictive accuracy 

separately for the discovery and validation stages. In order to validate the model from the 

discovery stage, we performed ROC analyses with the validation set of SN (n = 15) and their 

matched NCs (n=15) as an internal validation. Positive predictive value (PPV) and negative 

predictive value (NPV) for the optimal sensitivities and specificities were calculated using 

an estimated prevalence of 5%. We conservatively estimated this figure from our statistical 

definition of supernormal which requires memory performance above one robust standard 

deviation factoring in normal performance in other cognitive domains.
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3. Results

3.1 A panel of 12 metabolites distinguishes cognitively superior from control participants

The LASSO procedure selected twelve metabolites (Aspartate, 

Hydroxyhexadecadienylcarnitine (C16:2-OH), 3-Hydroxypalmitoleylcarnitine (C16:1-OH), 

Lyso PC a C28:1, Arginine, Valerylcarnitine (C5), Lyso PC a C17:0, Asparagine, Citrulline, 

Nitrotyrosine, PC aa C38:5, and Histamine) which met the specific criteria for the 

classification model (Table 2). One of the 12 metabolites, 16:1-OH was featured in our 

previously reported panel of ten plasma lipids(Mapstone et al., 2014). The logistic 

regression classifier model constructed with this set of metabolites produced a ROC AUC of 

1.0 [95% CI: 1.0 – 1.0] (Figure. 1A) indicating error-free classification of the SN and NCs 

groups. At the optimal threshold, sensitivity was 1.0, specificity was 1.0, positive predictive 

value (PPV) was 1.0, and negative predictive value (NPV) was 1.0 (Supplemental Table 4).

Because this procedure results in overfitting by design, we applied the model to the reserved 

validation group samples whose group membership was blinded to the statistical team. Here, 

the classifier model produced a ROC AUC of 0.89 [95% CI: 0.77 – 1.0] indicating very good 

separation of the SN and NCs (Figure. 1B). We further confirmed model fit using the 

Hosmer-Lemeshow test run at 10 folds in the discovery and validation groups separately, 

which showed good calibration (p values > 0.05). In the validation phase, sensitivity was 

0.93, specificity was 0.73, PPV was 0.92 and NPV was 0.76.

Five of the selected metabolites were not concordantly expressed in the discovery and 

validation cohorts. Given the small sample size and lack of statistical significance, we did 

not exclude the five non-concordant metabolites from our final model. In the validation 

dataset, post-hoc analyses using only the seven concordant metabolites resulted in a non-

significant decline in AUC compared to the 12-metabolite panel (deLong’s test: |Z| = 1.28, 

p=0.20) lending support to the inclusion of the non-concordant metabolites (Supplemental 

Figure 3).

3.2 Twelve metabolite panel distinguishes cognitively impaired from control participants

We then sought to determine whether the 12-metabolite panel, reflecting superior memory 

function, could also discriminate individuals with impaired cognition. We reversed the signs 

on the coefficients in our 12-metabolite classifier model and applied this to the aMCI/AD 

and NCo groups. The reversed 12 metabolite classifier model produced a ROC AUC of 1.0 

[95% CI: 1.0 – 1.0] (Fig, 1C) indicating error-free classification of the memory impaired 

aMCI/AD group from their cognitively normal controls.

3.3 Twelve metabolite panel distinguishes preclinical AD from control participants

We then sought to examine the utility of the reversed 12-metabolite classifier model in 

preclinical AD by applying it to 28 ConverterpreAD participants, who phenoconverted from 

normal cognition at entry in the study to aMCI or AD on average 2.1 years later, and their 

cognitively normal controls. The reversed 12-metabolite classifier model produced a ROC 

AUC of 0.97 [95% CI: 0.92 – 1.0] for the 28 ConverterpreAD participants compared to their 

controls (Fig. 1D). This is particularly interesting as the ConverterpreAD participants did not, 
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by definition, demonstrate memory impairment, but did so within the next several years, 

suggesting the 12 metabolites may reflect early memory-related biochemical alterations that 

precede threshold for clinical detection.

3.4 Combined 10-lipid and twelve metabolite panels accurately classifies all groups

We then explored the utility of our previously reported 10 lipid panel(Mapstone et al., 2014), 

which shares a single common metabolite (C16:1-OH) with the 12 metabolite panel, to 

distinguish the SN from the NCs group. We found only moderate evidence that the former, a 

proposed marker of early neurodegeneration, is associated with the physiology of superior 

memory ability (ROC AUC = 0.71, 95% CI: 0.59 – 0.82) (Supplemental Table 4). The 

combination of the 10 lipid panel, putatively representing early neurodegeneration, with the 

12 metabolite panel, putatively representing memory function, into a 21 metabolite panel 

(with C16:1-OH overlapped), however, accurately classified the SN and the NCs groups 

(ROC AUC = 1.0, 95%CI: 1.0 – 1.0), the aMCI/AD and NCo groups (ROC AUC = 1.0 95% 

CI = 1.0 – 1.0), and the ConverterpreAD and NCo groups (ROC AUC = 0.99, 95% CI: 0.97 – 

1.0) (Supplemental Table 4).

3.5 Twelve metabolite panel specific to memory ability

Finally, we developed a plasma 12-metabolite index, using the standardized coefficient 

(Beta) of each metabolite in the SN (n=41) vs NCs (n=41) logistic regression classifier 

model (Table 2) to weigh the natural log transformed metabolite abundance and create a 

single 12 metabolite-index for all participants in the study (SN n= 41, aMC/AD n=74, and 

combined NC n=109) (Figure. 2A). Linear regression models of the 12-metabolite index and 

the five cognitive domains (Zatt, Zexe, Zlan, Zmem, Zvis) controlling for group (SN, 

aMCI/AD, NC) showed a significant relationship between the 12-metabolite index and 

memory composite Z-scores in the aMCI/AD, NC (combined NCs and NCo), and SN groups 

(Beta = 0.09, t = 2.30, p = 0.022) when adjusting for group (Figure. 2B). Importantly, the 

12-metabolite index was not associated with other cognitive domains supporting its 

specificity to memory processes (Supplemental Table 5).

4. Discussion

Here we report a set of plasma-derived metabolites that characterize a state of successful 

cognitive aging in a limited clinical cohort. The strong association of these metabolites 

(phospholipids, acylcarnitines, amino acids, and biogenic amines) with the composite 

memory score, and the specificity for memory, support the use of this molecular-

phenotyping approach in the discovery of biologically relevant pathways associated with 

successful cognitive aging. While the precise molecular network of interaction for these 12 

metabolites remains to be elucidated, their apparent connection to superior memory 

performance is provocative (Figure 3). We found lower levels of L-arginine in our 

participants with superior memory. A recent plasma metabolomic study showed elevated L-

arginine levels in stable MCI subjects, as well as in MCI subjects who converted to AD 

when compared to controls (Graham et al., 2015). In addition, other groups have shown 

evidence of altered transcript and protein levels of arginase, together with reduced ornithine 

decarboxylase and polyamine levels in AD brain tissue, suggesting a link between arginine 
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metabolism and AD (Morrison et al., 1995, Morrison et al., 1998, Colton et al., 2006, 

Hansmannel et al., 2010). In contrast, reduction of L-arginine in our SN group, while yet to 

be fully dissected, might reflect rapid turnover of the substrate to form L-citrulline through 

either the urea cycle or the nitric oxide (NO) cycle(Liu et al., 2014). Up-regulation of the 

urea cycle decreases nitrosative stress, which is consistent with the reduced levels of 

nitrotyrosine noted in our SN group. Further, reduction of nitrotyrosine and histamine in our 

SN participants may reflect a state of lower overall oxidative stress and systemic 

inflammation (Tohgi et al., 1999, Alvarez, 2009) in this model of successful cognitive aging.

These metabolomic results reveal a unique set of potential physiological markers for a 

diverse range of memory abilities (aMCI/AD < preclinical AD < normal < SN) and 

implicate several memory-related physiological processes. The upregulation of aspartate, a 

potent N-methyl-D-aspartate receptor agonist may support synaptic plasticity and superior 

memory (Shimizu et al., 2000) characterizing SN participants. In addition, putatively 

increased bioavailability of NO in SN participants may mechanistically enhance long term 

potentiation(Schuman and Madison, 1991) and promote synaptic plasticity(Nikonenko et al., 

2013, Chakroborty et al., 2015) and cognitive reserve(Lores-Arnaiz et al., 2006). In the 

aMCI and AD participants however, dysregulation of these memory-relevant processes may 

contribute to the characteristic memory loss of these conditions. We also found evidence of 

these metabolic disruptions in the preclinical state of AD where, by definition, memory 

ability is not impaired, but the antecedent pathobiology of future memory loss may be 

present. This observation in particular suggests metabolic disruption occurs and can be 

detected early in the disease process and may be related to the emergence of tau pathology 

and neurodegeneration characterizing stage 2 preclinical AD(Sperling et al., 2011). We find 

support for this notion in the strong classification performance of the combined memory and 

neurodegeneration 21-metabolite model for both aMCI/AD and preclinical AD; a model 

which may more comprehensively reflect AD pathobiology. In the cognitively successful SN 

brain, efficient information transfer in memory and executive brain networks(LePort et al., 

2012) may reflect successful adjustments to age-related neurophysiological decline(Grady, 

2008). In contrast, the memory impairment associated with the AD brain may reflect 

inadequate or failed compensation to cumulative pathobiologic events(Mesulam, 2000).

These results may have important implications for promoting successful cognitive aging, 

which can lead to improved functional independence and quality of life for millions of older 

adults, however, there are several limitations to the inferences we can draw from this study. 

First, like other peripheral blood biomarker studies of brain-related conditions, the link 

between central and peripheral metabolomic reflections is likely to be indirect. This is less 

of a problem when investigating animal models, where central and peripheral biochemistry 

can be directly measured, or when using matrices such as human cerebrospinal fluid, which 

is in direct contact with the brain parenchyma. Although certain explanations (Fiandaca et 

al., 2015) provide plausible support for direct peripheral metabolomic manifestations 

resulting from an active central brain process, the direct proof for such postulates is 

currently lacking.

Second, as with many other investigations utilizing peripheral biosignatures of brain-related 

conditions, replication/validation of our results is required. To do so, investigators must not 
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only utilize similar study designs and analytic methods, but also investigate similar subject 

groups (demographics) and matrices (plasma, and not serum), as in our study. In addition, 

our small cohort of analyzed subjects makes generalization of our results quite challenging. 

Future analyses of larger demographically different subject cohorts are necessary to 

investigate the applicability of our results beyond our limited group. Expanded studies, using 

similar metabolomic methods and comparably defined subjects, provide opportunities for 

novel metabolomic discovery that may support, critique, or go beyond our current 

observations.

Third, we do not know the impact of plasma sample storage duration on measurement of 

these metabolites. The ConverterpreAD samples had been stored for significantly longer 

duration (approximately 23 months longer) than the other groups and we do not know for 

sure if there was any effect on sample quality and ultimately relative metabolite abundances 

due to this. Plasma sample quality very likely deteriorates over extended storage (>10 years) 

even at −80C, but recent work suggests that short storage periods of up to 2.5 years has 

negligible effects on metabolite measurements (Pinto et al., 2014). Furthermore, we believe 

that differences in sample storage duration did not significantly affect the metabolomic 

results here because the same control group (NCO) was used as comparison for both the 

aMCI/AD and ConverterpreAD groups. The NCO and aMCI/AD samples had very similar 

mean storage durations. If sample storage duration significantly influences metabolite 

abundance we would expect to have seen differences in these comparisons, but the ROC 

AUC results for both groups were nearly identical for the 12-metabolite (aMCI/AD vs NCO 

= 1.0, ConverterpreAD vs NCO = 0.97) and the 21-metabolite panels (aMCI/AD vs NCO = 

1.0, ConverterpreAD vs NCO = 0.99) suggesting that storage duration, at least the 23 month 

difference in our study, had minimal effect. Certainly, greater storage duration (e.g., 10 or 

more years) may have a much greater impact on sample quality and metabolite 

measurements.

Finally, there is a lack of consensus on how to define the construct of successful cognitive 

aging and we recognize that our operational definition focusing on the singular feature of 

memory ability may be limited. We chose superior memory as an exemplar of successful 

cognitive aging in order to 1) discretely operationalize the construct, 2) recognize the 

relative complexity of memory above other cognitive abilities (e.g., attention), and 3) to 

provide a common dimension for comparison with a more commonly used model of 

unsuccessful cognitive aging, AD where memory impairment is the cardinal feature. We do 

not believe that superior memory alone defines the entirety of successful aging and 

recognize that other attempts at operationalizing are equally valid and may provide 

additional useful insights into aging success. We also recognize that interventions designed 

to directly improve memory or mitigate memory decline may not lead to beneficial effects 

on functional capacity or quality of life in older adults. However, we anticipate that an 

improved understanding of both health- and disease-related metabolomic characteristics may 

ultimately lead to preventative strategies that not only maximize general health and 

longevity, but also reduce likelihood of age-related cognitive decline.
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Highlights

• We examined plasma metabolomics of older adults with superior memory

• 12 metabolites were differentially abundant in these subjects compared to 

controls

• These 12 metabolites were abundant in the opposite direction in Alzheimer’s 

disease

• The metabolites are involved in inflammation, oxidative stress, and NO 

availability

• Modulation of these pathways may promote successful cognitive aging 

trajectories
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Figure 1. Results of ROC analysis using the 12-metabolite panel
This figure shows plots of SN vs NCs ROC analysis using the 12-metabolite panel in 

targeted discovery (a) and validation (b) phases and application of the 12-metabolite panel to 

the external aMCI/AD (c) and ConverterpreAD (d) samples. 95% confidence intervals shaded 

in blue. Crosshair on ROC plot represents optimal ROC threshold. SN = Supernormal, NCs 

= Normal control for supernormal sample; aMCI/AD = amnestic mild cognitive impairment 

and Alzheimer’s disease; ConverterpreAD = Preclinical AD; NCo = Normal control for 

ConverterpreAD and aMCI/AD samples.
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Figure 2. 12-metabolite index and relationship with memory performance
This figure shows the derived 12-metabolite index for the three groups (SN, NC, and 

aMCI/AD) (a). Box-plot for index values between groups. Using multinomial logistic 

regression, the 12-metabolite index significantly differentiated the SN, NC, and aMCI/AD 

groups (all p < .013). The relationship between the 12-metabolite index and memory 

composite z-score is shown for each group of participants in the study (b). Zmem = Memory 

composite score; SN = Supernormal; NC = Normal control (combined NCs and NCo); 

aMCI/AD = amnestic mild cognitive impairment and Alzheimer’s disease. Note. ** p < .01; 

*** p < .001.
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Figure 3. 
Biological pathways implicated in superior memory performance. This diagram shows the 

pathways implicated by the metabolomic results of the SN vs NCs comparisons. The bold 

orange boxes show the metabolites which were significantly altered in the analysis and the 

arrows associated with the metabolite indicate the level of the metabolite in the SN group 

relative to the NCS group. For the aMCI/AD vs NCO comparison, the arrows would be 

reversed indicating the opposite relationship between the levels of each metabolite relative to 

the NCO.
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