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by
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Professor Bhaskar D. Rao, Chair
Professor Truong Q. Nguyen, Co-Chair

Sparsity plays an essential role in a number of modern algorithms. This thesis examines

how we can incorporate additional structural information within the sparsity profile and formulate

a richer class of learning approaches. The focus is on Bayesian techniques for promoting sparsity

and developing novel priors and inference schemes.

The thesis begins by showing how structured sparsity can be used to recover simultane-

ously block sparse signals in the presence of outliers. The approach is validated with empirical

results on synthetic data experiments as well as the multiple measurement face recognition

problem.

xiv



In the next portion of the thesis, the focus is on how structured sparsity can be used to

extend approaches for dictionary learning. Dictionary learning refers to decomposing a data

matrix into the product of a dictionary and coefficient matrix, subject to a sparsity constraint on

the coefficient matrix.

Chapter 3 studies structure in the form of non-negativity constraints on the unknowns,

which is referred to as the sparse non-negative least squares (S-NNLS) problem. It presents

a unified framework for S-NNLS based on a novel prior on the sparse codes and provides an

efficient multiplicative inference procedure. It then extends the framework to sparse non-negative

matrix factorization (S-NMF) and proves that the proposed approach is guaranteed to converge to

a set of stationary points for both the S-NNLS and a subclass of the S-NMF problems.

Finally, Chapter 4 addresses the problem of learning dictionaries for multimodal datasets.

It presents the multimodal sparse Bayesian dictionary learning (MSBDL) algorithm. The MSBDL

algorithm is able to leverage information from all available data modalities through a joint sparsity

constraint on each modality’s sparse codes without restricting the coefficients themselves to

be equal. The proposed framework offers a considerable amount of flexibility to practitioners

and addresses many of the shortcomings of existing multimodal dictionary learning approaches.

Unlike existing approaches, MSBDL allows the dictionaries for each data modality to have

different cardinality. In addition, MSBDL can be used in numerous scenarios, from small datasets

to extensive datasets with large dimensionality. MSBDL can also be used in supervised settings.
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Chapter 1

Introduction

1.1 Sparse Signal Recovery

Much of the motivation for the results in this thesis originates in the problem of sparse

signal recovery (SSR). Signal recovery refers to the problem of recovering a coefficient vector x

from an observation y generated according to the signal model

y = Dx, (1.1)

where D ∈ RN×M represents the forward model from unknowns to observations. In certain

applications, D is overdetermined, i.e. N > M, such that solving the least squares problem

argmin
x
‖y−Dx‖2

2 (1.2)

can recover x with a reasonably high fidelity. Nevertheless, in a large number of cases D is

underdetermined, i.e. N < M. For instance, in biomedical imaging, D represents the mapping

embodied by the camera system. Each row of D represents the acquisition of one measurement

of the patient. In order to limit the imaging time, one must reduce the number of measurements,

1



leading to an underdetermined D [1].

The fundamental challenge in recovering x in underdetermined problems is that there is

an infinite number of solutions to (1.1). For any x which satisfies (1.1) and xn in the null space of

D, i.e. Dxn = 0, x+ xn also satisfies (1.1). Since the null space is guaranteed to be non-empty for

underdetermined D, it is impossible to identify the true x which generated the given observations

from the other possible candidates.

In order to resolve the identifiability issues inherent in (1.1), one possibility is to restrict

the space of possible solutions. In many practical situations, including medical imaging [1],

photography [2], and face recognition [3], it is reasonable to assume that x is sparse, meaning that

x has a small number of non-zero elements. In this case, the SSR problem can be stated as

argmin
y=Dx

‖x‖0 (1.3)

where ‖·‖0 refers to the `0 pseudo-norm, which counts the number of non-zero entries. The

benefit of the SSR formulation is that the solution to (1.3) is unique under some restrictions on

D and x. The downside to (1.3) is that it is NP-hard [4]. As such, there is a wealth of research

in approximating (1.3). Greedy methods, such as orthogonal matching pursuit [5], seek to find

the support of x by beginning with an initially empty estimate of the support set and iteratively

adding a single element to the support set using a locally optimal decision rule. Other methods

seek to approximate the `0 norm in (1.3) by the `1 norm, which is both sparsity promoting and

convex, thereby making the entire optimization problem convex [6]. Although the `1 norm has

desirable optimization properties, there are many other non-convex norms which exhibit superior

SSR performance [7, 8, 9]. Interestingly, it is possible to transform the resulting non-convex

optimization problems to convex ones by bounding the non-convex norm by its linearization

around a given estimate. The resulting algorithms often take the form of weighted `1 norm [8] or

weighted `2 norm minimization problems.
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1.2 Dictionary Learning

Whereas the dictionary D is assumed to be known in the context of SSR, it is well known

that, if possible, learning D leads to superior performance in a range of tasks covering image

denoising [10], classification [11, 12, 13, 14], and audio source separation [15], among many

others. In fact, dictionary learning was first proposed as a model of the human visual system [16].

Broadly speaking, given a dataset Y =

[
y1 · · · yL

]
, the dictionary learning problem can take

the form

argmin
D,{‖xi‖0≤s}L

i=1

‖Y −DX‖2
2 (1.4)

where X =

[
x1 · · · xL

]
. The optimization in (1.4) is often performed in a block-coordinate

descent fashion, where D is updated while holding X fixed, followed by updating the sparse codes{
xi}L

i=1 while holding D fixed, with the procedure iterated until a given termination criterion is

met. In other words, the optimization strategy is summed up by iterating

Update D given X (1.5)

Update X given D. (1.6)

The motivation behind the block-coordinate descent scheme is to leverage mature existing sparse

coding algorithms for (1.6). Interestingly, the original work by Olshausen et al. [16] used a

simple gradient descent procedure for (1.5)-(1.6).

The difference among the large array of available dictionary learning algorithms is in the

method of sparsity promotion. For instance, the K-SVD algorithm seeks to solve (1.4) directly,

using a greedy sparse coding scheme for the coefficient update stage. On the other hand, the

approach by Mairal et al. [17] replaces the `0 norm by its convex `1 norm relaxation. The

resulting optimization problem then has the desirable property that both the sparse coding and
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Figure 1.1: Graphical model for dictionary learning.

dictionary update sub-problems are convex. Other approaches replace the `0 norm in (1.4) with

the `p norm, 0≤ p < 1 [18].

1.3 Bayesian Techniques

In the Bayesian framework, all of the unknowns are represented by random variables and

the task is to estimate the most likely values of those random variables given the observations by

maximizing an appropriate cost function. Let y,x, andD represent the observation vector, the

coefficient vector, and the dictionary, respectively. The assumption is that the relationship among

these random variables is given by

y =Dx+v (1.7)

where v is a random variable representing noise, i.e. v ∼ N
(
v;0,σ2I

)
. A visualization of the

dictionary learning problem is given by the graphical model in Fig. 1.1. There are no direct

connections between x andD, reflecting the assumption that x andD are a-priori independent.

Unless otherwise stated, we also assume a non-informative prior on D. The key remaining

component is to specify the prior distribution on x. As before, the goal is promote sparse

coefficient vectors. In the following, we review sparsity promoting distributions and describe

Bayesian inference techniques.
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Figure 1.2: Visualization of the pdf of super-Gaussian distributions. All pdf’s have been scaled
such that p(0) = 1 for visualization purposes.

1.3.1 Sparsity Promoting Distributions

For simplicity and ease of exposition, we assume that p(x) is separable:

p(x) =
M

∏
m=1

p(x[m]) (1.8)

where x[m] denotes the m’th entry of x. In order to promote sparsity, it is important to choose

a super-Gaussian p(x[m]). Loosely speaking, a given distribution1 is super-Gaussian if it is

more peaky around the origin than a Gaussian distribution [19]. Fig. 1.2 shows the difference

between a Gaussian probability density function (pdf) and two super-Gaussian pdf’s, including

the Laplacian and Student’s-t. Note that the pdf’s in Fig. 1.2 have been scaled for visualization

purposes. A more formal characterization of super-Gaussianity states that a scalar random variable

x is super-Gaussian if the kurtosis of x is greater than that of a Gaussian with the same variance

1In the context of assessing super-Gaussianity, we assume that the given distribution is symmetric about the
origin.
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Figure 1.3: Hierarchical graphical model for dictionary learning.

as x, where kurtosis is defined as

kurtosis =
Ex
[
(x−µx)

4
]

σ4
x

(1.9)

and µx and σx denote the mean and standard deviation of x, respectively [19]. For reference, the

kurtosis of the standard Laplacian distribution is 62.

In most instances, a super-Gaussian density can be represented as a Gaussian scale mixture

(GSM), i.e.

p(x) =
∫

∞

0
N(x;0,γ) p(γ)dγ (1.10)

where the choice of prior on γ determines the eventual form of p(x) [20]3. For example, if

γ[m]∼ pExp
(

γ[m]; τ2

2

)
, then x[m]∼ pExp (x[m];τ) where pExp (·) refers to the Exponential or,

equivalently, Laplacian pdf’s. Likewise, if γ[m]∼ pIGa
(
γ[m]; τ

2 ,
τ

2

)
, then x[m]∼ pST

(
xi[m];τ

)
,

where pIGa (·) and pST (·) refer to the Inverse-Gamma and Student’s-t pdf’s, respectively.

In order to incorporate the hierarchical representation of p(x), we modify the graphical

model in Fig. 1.1 to the one in Fig. 1.3. Although the decomposition of p(x) may appear to be

adding more complexity to the model than needed, in the following we will show that the GSM

prior enables two types of inference, with each type offering its own set of trade-offs.

2Interestingly, the kurtosis is undefined for the Student’s-t distribution with degrees of freedom less than 4, which
is the case in Fig. 1.2.

3Theorem 3 in [20] gives the exact conditions which a given distribution must satisfy in order to admit a GSM
representation. All of the super-Gaussian densities used in this thesis admit such a representation.
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1.3.2 Inference for Sparsity Promoting Priors: Type I (MAP)

Given the graphical model in Fig. 1.3, one sensible option for estimating x is to form the

maximum a-posteriori (MAP) estimator:

argmax
X ,D

p(X ,D|Y ) . (1.11)

As before, a block-coordinate descent scheme similar to (1.5)-(1.6) can be adopted, where the

dictionary update stage consists of solving

argmax
D

p(D|Y,X) = argmin
D
− log p(D|Y,X)

= argmin
D

p(Y |D,X)

= argmin
D
‖Y −DX‖2

F .

(1.12)

The coefficient update stage is given by

argmax
X

p(X |Y,D) = argmin
X
− log p(X |Y,D)

= argmin
X
− log p(Y |D,X)− log p(X)

= argmin
X

L

∑
i=1

∥∥yi−Dxi∥∥2
2−2σ

2 log p
(
xi)

(1.13)

where it is assumed that xi and x j are a-priori independent for i 6= j.

One important observation is that (1.13) looks exactly like an SSR problem where the

regularizer is determined by p(x). The equivalence between regularized SSR problems derived in

the deterministic paradigm and MAP estimates in the Bayesian paradigm is well documented,

most notably in [7]. For example, consider the choice of regularizer in [8], which leads to the
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following SSR optimization problem

argmin
x
‖y−Dx‖2

2 +λ

M

∑
m=1

log(|x[m]|+ τ) (1.14)

where λ and τ are user-specified parameters. One of the challenges with solving (1.14) is that the

first term is convex whereas the second term is concave. The approach taken in [8] is to bound

the concave term by a linear function of x[m] at a given estimate of the coefficients, xt , leading to

the convex weighted `1-norm regularized problem

argmin
x
‖y−Dx‖2

2 +λ

∥∥∥∥ x
|xt |+ τ

∥∥∥∥
1

(1.15)

where we define the division of two vectors as elementwise division. The advantage of (1.15)

over (1.14) is that (1.15) is convex and can be solved by one of many mature convex optimization

packages (i.e. [21]). By iterating between solving (1.15) and re-computing the bound of the

concave term, the objective in (1.14) is iteratively minimized. In other words, the objective in

(1.14) is non-increasing under the sequence of updates {xt}∞

t=1. Because the original problem is

non-convex, it is not possible to guarantee convergence to a global minimum of (1.14). Moreover,

it is not even clear whether the sequence {xt}∞

t=1 itself has a limit point. The only claim that is

made in [8] is that the objective function itself converges to a local minimum. The contribution

made in [7] is to show that (1.14) is equivalent to the MAP estimate of x under a Generalized

Double Pareto prior and that the iterative re-weighting strategy in [8] is equivalent to applying

the expectation-maximization (EM) algorithm [22] to (1.13) with a clever choice of nuisance

variable. The fundamental insight is to treat γ in Fig. 1.3 as the nuisance variable, leading to the

EM update rule

xt+1 = argmin
x
‖y−Dx‖2

2 +λ

m

∑
m=1

x[m]Eγ[m]|x[m]

[
γ[m]−1] . (1.16)
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In fact, we can compute Eγ[m]|x[m
[
γ[m]−1] without even forming p(γ[m]|x[m]) using a trick

from [23, 24]:

Eγ[m]|x[m]

[
γ[m]−1]= ∂ log p(x[m])

∂x[m]
. (1.17)

Note that the expression in (1.17) applies specifically to the Generalized Double Pareto prior, but

similar expressions can be derived for other sparsity promoting priors [7, 25]. The connection

of re-weighted methods to Bayesian methods in [7] lays the foundation for Chapter 3, where

we study the non-negatively constrained dictionary learning problem (i.e. non-negative matrix

factorization) and leverage the convergence properties of the EM algorithm [26] to prove that our

approaches converge to the set of stationary points of the underlying objective function.

1.3.3 Inference for Sparsity Promoting Priors: Type II (Evidence Maxi-

mization)

In the following, we begin by describing the evidence-maximization approach to SSR

and dictionary learning before giving an overview of how this strategy leads to sparse solutions

[27, 28].

In the context of SSR, the evidence-maximization framework proceeds by first forming a

maximum-likelihood estimate of γ:

γML = argmax
γ

p(y|γ) . (1.18)

This estimate is then used to approximate the true posterior p(x|y) by p(x|y;γML). For the choice

of a Gaussian data-likelihood, it turns out that the posterior p(x|y,γ) is Gaussian. As a result,

(1.18) lends itself to EM optimization with closed form update rules [27].

If we extend the SSR evidence maximization recipe to dictionary learning, the goal
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becomes to find [29]

γML,DML = argmax
γ,D

p(y|γ,D) . (1.19)

As before, (1.19) can be optimized through the use of the EM algorithm [30, 31]. One unexpected

result of the EM procedure detailed in [30, 31]4 is that both γ and D are naturally updated

simultaneously. In other words, there is no need for block-coordinate descent to solve (1.19), in

contrast with many existing dictionary learning approaches which directly solve for the MAP (or,

equivalently, regularized least squares) estimate [10, 17, 32].

In practice, it is observed that evidence-maximization inference is superior to MAP

inference for both the SSR and dictionary learning problems [27, 31, 7, 33]. At the same time,

it is not self-evident why evidence-maximization should produce sparse estimates nor why the

sparse estimates that are produced should be better than those obtained by directly maximizing

the posterior p(x|y) (or p(X ,D|Y ) for dictionary learning). Partial answers to these questions in

the context of SSR can be found in [27, 7, 34, 35], which we summarize next. Empirical evidence

for the superiority of evidence maximization in the context of dictionary learning can be found

in [30, 31]5, but there remains a theoretical gap in understanding why direct MAP estimation is

inferior in this context.

The general analysis in [34, 35] gives some intuition about why evidence-maximization

works so well, at least in the context of SSR. The central idea is that evidence-maximization natu-

rally embodies the Occam’s razor principle [36], which states that simple models are preferable to

complex ones. The question of whether or not the Occam’s razor principle is true universally is a

philosophical one, but it seems that it is very fitting to the SSR problem. Indeed, one could argue

that the Occam’s razor principle is just a high-level statement of the SSR problem: Look for the

coefficient vector with smallest number of non-zero entries that still aligns with the observations.

4The EM algorithm for dictionary learning is described in full detail in Chapter 4.
5Chapter 4 of this thesis.
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Two additional arguments for evidence-maximization can be found in [27, 7]:

• Evidence-maximization is more robust than MAP inference [7].

• Evidence-maximization offers a tractable approximation to MAP inference when direct

MAP inference is intractable (i.e. in the case where MAP inference requires solving an

NP-hard problem) [27].

The claim that evidence-maximization is more robust than MAP estimation is supported by

analysis which shows that γML can be viewed as the maximizer of the posterior mass of x over the

set of non-zero indices of γML [7]. If the posterior has multiple modes, then a MAP estimator may

give a poor estimate if the highest posterior peak occurs in an area of small posterior mass. On the

other hand, evidence maximization will only look for areas of high mass. Of course, the analysis

in [7] rests on the assumption that the set of non-zero indices of γML and x are the same, which is

difficult to guarantee in practice. Theorem 1 in [27] guarantees that the non-zero indices of γML

coincide with the non-zero indices of x if x is the sparsest solution to y = Dx, assuming that there

is no noise in the observations. The challenge is that the objective in (1.18) is non-convex, so it is

not possible to guarantee that γML would be found in practice, as opposed to one of the stationary

points of the objective. Moreover, any practical system will inherently pollute the observations y

with noise, violating the assumptions of Theorem 1 in [27].

Lastly, it is informative to consider the argument presented in [27], which proves that

(1.18) represents maximizing the evidence of a variational approximation to the actual signal

prior, which may not lend itself to direct MAP estimation. Due to the geometry of the true

prior and the properties of evidence-maximization, the estimates generated by this optimized

variational approximation tend to be sparse.
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1.4 Thesis Outline and Contributions

As is the trend in Bayesian learning literature, there is a constant battle between the

complexity of the prior and the tractability of the inference scheme. This thesis seeks to extend

the class of signal priors and Bayesian inference schemes available for researchers in both the

SSR and dictionary learning communities. The goal throughout this work is to devise models

which better fit a given generative process in the real-world and then study how Type I and Type

II inference can be performed for these novel priors.

Chapter 2 covers SSR in the context of multiple observations which are subjected to both

stationary and non-stationary noise. Our main contribution is a novel hierarchical signal model

that incorporates three key properties:

• the signal is sparse and the sparsity profile does not change with time,

• the observations are corrupted by stationary Gaussian noise, and

• the observations are corrupted by non-stationary sparse noise, whose sparsity profile

changes with time.

It turns out that this model is well-aligned with the conditions encountered in recognition problems

in videos and we show that our approach achieves considerable improvement in classification

accuracy in such scenarios.

Chapter 3 studies the problem of sparse non-negative least squares and sparse non-negative

matrix factorization, which correspond to the SSR and dictionary learning problems under the

constraint that the unknowns are non-negative. Our contributions are summarized by:

• We provide a general class of signal priors which admit a hierarchical representation. This

class of priors encompasses a number of existing priors used in the literature as well as

other, novel priors.
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• We describe a unified MAP inference framework for the proposed class of signal priors.

Specifically, inference is embodied by a set of multiplicative update rules, which is a low-

complexity, widely used optimization technique in the non-negative matrix factorization

literature.

• We prove that the proposed inference framework admits convergence guarantees.

Finally, Chapter 4 extends the evidence-maximization framework for dictionary learning to

multimodal dictionary learning. Multimodal dictionary learning refers to learning representations

for multiple datasets simultaneously, subject to the constraint that the atoms of the learned

representations are related to each other in some way. Our contributions are:

• We provide several novel signal priors which extend the class of associations that can be

learned by existing multimodal dictionary learning algorithms. The priors we propose allow

learning dictionaries whose cardinality is a function of modality, which is distinctly unique

to our work.

• We show that inference can be done at low memory and computational cost. In other words,

we make steps towards making our approach scalable to large datasets, which Bayesian

approaches often have trouble with.

• We provide an automatic hyperparameter tuning strategy, which obviates the need for

performing a search over a hyperparameter space which grows exponentially with the

number of modalities.

• We incorporate supervised learning into the proposed framework.

• We conduct a theoretical analysis of the proposed framework.
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Chapter 2

Robust Bayesian Method for Simultaneous

Block Sparse Signal Recovery with

Applications to Face Recognition

2.1 Introduction

Sparse Signal recovery (SSR) refers to algorithms which seek sparse solutions to underde-

termined systems of equations [4], which occur naturally when one seeks a representation of a

given signal under an overcomplete dictionary. Overcomplete dictionaries have gained popularity

in a wide range of applications because they are much more flexible than their undercomplete

counterparts and lead to unique solutions under certain constraints, when sparsity has been en-

forced [37]. Constraining the solution of underdetermined problems to be sparse represents prior

knowledge about the solution and makes finding it tractable. In certain applications, structured

sparsity, such as block sparsity, has been enforced on the desired coefficient vector, i.e., a small

number of blocks of the solution are non-zero [38].

SSR has become a very active research area in recent times because of its wide range
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of engineering applications. For example, in several popular computer vision problems, such

as face recognition [3], motion segmentation [39], and activity recognition [40], signals lie in

low-dimensional subspaces of a high dimensional ambient space. An important class of methods

to deal with this depends on exploiting the notion of sparsity. Following this path, Sparse

Representation based Classification (SRC) [3] was proposed and produced state of the art results

in a face recognition (FR) task.

In many applications, we often encounter outliers in measurements, which leads traditional

SSR algorithms to fail and necessitates the development of an outlier robust SSR algorithm. The

need for outlier resistant SSR algorithms motivates our present work, in which we develop a

robust SSR algorithm and extend it to recover simultaneously block sparse signals. To show

the efficacy of our approach, we focus on FR, which refers to identifying a subject’s face given

a labeled database of faces. The pioneering work of Wright et al. [3] on SRC showed that a

face classifier can be devised by using the downsampled images from the training database as a

dictionary and considering the sparse representation of a given image under that dictionary as the

”identity” of the person. In this scenario, it is intuitive to assume that the dictionary is broken up

into blocks corresponding to each specific person and constraining the encoding of the image to

be block-sparse leads to performance gains [41].

One significant challenge in the FR problem is dealing with occlusions. Occlusions are

outliers within the SRC model because the model assumes that the dictionary spans the space of

all possible observations. A popular way to incorporate robustness to outliers into the SSR model

is to assume that the outliers themselves have a sparse representation [3], which has been shown

to yield improved resilience to various forms of face occlusion and corruption [3, 42, 43, 41, 44].

In certain cases, such as when the entire face is occluded or lighting conditions are extremely

poor, FR within the SRC framework can yield unsatisfactory results because it is difficult to solve

the single measurement vector (SMV) SSR problem. When possible, it is advantageous to acquire

multiple measurements of the same source and instead solve the multiple measurement vector
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(MMV) problem. The MMV problem assumes that the support of the non-zero coefficients that

encode each measurement does not change, while the actual values of the coefficients can vary. It

is well known that the MMV problem yields much better recovery results than the SMV problem

[45].

In this work, we extend the SRC framework to the MMV case and consider performing

FR when multiple images of the same subject, corrupted by non-stationary occlusions, are

presented to the classifier. Our work is motivated, in part, by the person re-identification problem

[46, 47, 48]. Srikrishna et al. [48] addressed the re-identification problem by applying SSR to

each individual image of the subject and aggregating the results to form a global classifier. As

such, [48] did not address the MMV nature of the problem. The main motivation behind our work

is to enforce the prior knowledge that the input images correspond to the same person within the

SSR process, while still maintaining resilience to time-varying occlusions.

Our SSR framework builds upon the hierarchical Bayesian framework discussed in

[49, 50, 51], known as Sparse Bayesian Learning (SBL). This choice is motivated by the superior

recovery results obtained for the standard SSR problem [50, 7] and the Bayesian framework

is convenient for extensions to problems with structure [52]. In this work, we extend the SBL

framework to the MMV block-sparse case and explicitly model time-varying occlusions, referring

to our method as robust SBL (Ro-SBL).

2.1.1 Contributions

• We introduce a novel hierarchical Bayesian Robust SSR algorithm, Ro-SBL, for solving

the MMV block-sparse problem with time-varying outliers. This work has connections to

[44], where a Robust Block Sparse Bayesian Learning (BSBL) method was proposed. In

contrast with our work, BSBL only considered the SMV problem and did not harness the

ability of the SBL framework to capture non-stationary outliers.
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• We validate our proposed method with synthetic data results and also apply our method

to a robust simultaneous FR task. Unlike [48], our proposed approach exploits the prior

knowledge that the input images correspond to the same person within the SSR process.

2.2 Ro-SBL for Simultaneous Block Sparse Recovery

The signal model for simultaneous block sparse recovery is given by

Y = DX+E+V (2.1)

where, Y ∈ RN×L is the matrix of L measurements, D ∈ RN×M is the dictionary, V ∈ RN×L is

the independent and identically distributed Gaussian noise term with mean zero and variance σ2,

X ∈RM×L is the encoding of the measurements under D, andE ∈RN×L is the matrix containing

the outliers in the measurements.

The key assumption in the MMV problem is that, if a given column of D is activated

(i.e. its corresponding coefficient in X is non-zero) for one of the measurements, then it will be

activated for all of the measurements [45]. This means that the same set of basis vectors have

been used to generate all of the measurements, which is reflected in the encoding matrix X in the

form of joint sparsity, i.e. {xi}L
i=1 share the same support, where xi is the i’th column of X [45].

Within a Bayesian framework, the joint sparsity assumption translates to placing a prior on the

rows of X . In the context of our work, we build upon the extension of the SBL framework to the

MMV problem in [50] and adopt a hierarchical prior, namely a Gaussian Scale Mixture (GSM),

over the rows ofX:

p(X [m, :]|γ[m]) = N
(
(X [m, :])T ;0,γ[m]I

)
(2.2)

where, X [m, :] denotes the m’th row of X and γ[m] is the unknown variance hyperparameter.

In addition, we also consider block sparsity in each xi, where the block structure is shared
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among all of the encoding vectors. Assuming that the support of xi is separated into disjoint sets

T k,1≤ k≤ K, which are known a-priori and shared across all i, p(X) is amended to reflect that

each of the rows in a given group T k share the same γ[k] [52]:

p(X) =
K

∏
k=1

∏
m∈T k

p(X [m, :]|γ[k]) (2.3)

Although the joint block sparsity constraint is a valid one for the encoding matrixX , it

does not hold for the outlier matrixE since the outliers could be non-stationary, i.e., time varying.

Therefore, we will treat each ei independently and not constrain the outliers to share the same

support across all measurements. As such, we adopt a sparsity enforcing GSM prior on ei, which

induces the following prior on E:

p(E|∆) =
N,L

∏
n=1,i=1

p
(
ei[n]|δi[n]

)
=

N,L

∏
n=1,i=1

N
(
ei[n];0,δi[n]

)
(2.4)

where ∆ =

[
δi · · · ∆L

]
. This set of assumptions is unique to this work and is motivated by the

FR task.

2.2.1 Incorporating Robustness to Outliers

For an SMV problem, [44][53] showed that sparse (under the standard basis) outliers can

be incorporated into the well known SBL framework by introducing a simple modification to the

dictionary D. In the present work, we extend this idea to the MMV case, which results in the

following modification to the signal model in (2.1):

Y =

[
D I

]
︸ ︷︷ ︸
Ã

X
E


︸ ︷︷ ︸
X̃

+V . (2.5)
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Note that (2.5) and (2.1) are equivalent, but, as will be shown next, the signal model in (2.5) lends

itself much more nicely to a closed form inference procedure.

2.2.2 Ro-SBL Inference Procedure

The goal of the inference procedure is to estimate the θ = {γ,∆}. As in [49][50], we

adopt an Expectation Maximization (EM) procedure where we treat X̃ as the hidden data. In

the E-step, we seek the expectation of the complete data
{
Y ,X̃,γ,∆

}
log likelihood under the

posterior p
(
X̃ |Y,θt ,σ2), where θt denotes the estimate of θ at iteration t. Because

{
x̃i}L

i=1 are

conditionally independent given Y , γ, and ∆, the E-step reduces to

Q(θ,θt) =
L

∑
i=1

Ex̃i|yi,θt
[
log p

(
yi, x̃i,θ

)]
. (2.6)

The posterior needed to compute (2.6) is given by

p
(
x̃i|yi,θ

)
= N

(
x̃i;µi,Σi) (2.7)

Σ
i = Φ

i−Φ
iD̃T (

σ
2I+ D̃Φ

iD̃T)−1
D̃Φ

i (2.8)

µi = σ
−2

Σ
iD̃T yi (2.9)

where Φi is a diagonal matrix with

Φ
i[m,m] =


γi[k] if m ∈T k

δi[m−M] else.
(2.10)

Unlike [50], where the covariance of the posterior is shared for all i, the covariance is a function

of i here because each x̃i consists of xi, whose support does not vary with i, and ei, whose support

does vary.
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In the M-step, Q(θ,θt) is maximized with respect to θ, leading to the update rules:

γ[k] =
L

∑
i=1

∑
m∈T k

Σi[m,m]+
(
µi[m]

)2

|T k|L
(2.11)

δ
i[n] = Σ

i[n+M,n+M]+
(
µi[n+M]

)2
, 1≤ n≤ N (2.12)

σ
2 =

L

∑
i=1

∥∥yi
∥∥2−2

(
yi)T D̃µi + tr

(
D̃T D̃

(
Σi +µi (µi)T

))
Ln

(2.13)

where tr(·) refers to the trace operator.

Upon convergence, the EM algorithm produces an estimate of θ, denoted by θ̂. Given θ̂,

X and E can be estimated using the maximum a-posteriori (MAP) estimator:

x̂i

êi

= argmax
x̃i

p
(
x̃i|yi, θ̂

)
. (2.14)

Since the posterior is Gaussian, the mean and mode are identical, such that the optimizer of (2.14)

is given by (2.9).

2.3 Results

2.3.1 Synthetic Data Results

To validate the proposed method, we conducted SSR experiments on synthetic data. To

generate the synthetic data, we begin by randomly selecting s sets from {T k}K
k=1 and generate xi

such that the non-zero elements are indexed by one of the selected sets. We use equally sized

blocks of length 8. The non-zero elements of xi are drawn from the N(0,1) distribution. We

generate D ∈ R80×160 by drawing its elements from the N(0,1) distribution and normalizing the

columns to have unit `2 norm. Finally, we use the robust modeling strategy and replace D by
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D̃ =

[
D I

]
. In order to simulate a noisy SSR scenario, we generate vi by drawing its elements

from the N(0,1) distribution and ei by drawing its elements form the Student-t distribution with

one degree of freedom. Finally, we generate observations yi according to (2.1) after scaling vi

and ei to achieve a specified Signal-to-Gaussian noise ratio (SGNR) and Signal-to-Outlier noise

ratio (SONR).

Let X̂ denote the approximation to X generated by the SSR algorithm. We measure the

quality of the recovery using the relative `2 error:

∥∥X− X̂
∥∥2

F

‖X‖2
F

(2.15)

We performed the synthetic data experiment 500 times and report the average performance results.

We compare the performance of the proposed method to several standard SSR algorithms.

As a baseline, we use the `1 SSR approach and the block sparse extension of the `1 approach, the

`2− `1 block SSR algorithm (also known as Group LASSO [54]), which seeks

argmin
x
‖y−Dx‖2

2 +λ

K

∑
k=1

∥∥∥x[T k]
∥∥∥

2
. (2.16)

Note that (2.16) reduces to the `1 SSR objective function when each element of x is a separate

group. We use the SLEP [55] software package to solve the `1 and `2− `1 problems. For

comparison purposes we naively extend the `1 and `2− `1 approaches to the MMV case by

solving each MMV problem as L independent SMV problems.

We also compare our approach with Block-SBL (BSBL) [52, 44], which is a hierarchical

Bayesian framework for solving the SMV block-sparse recovery problem. We naively extend

BSBL to the MMV case by assuming that the outliers have stationary support, denoting the

resulting algorithm as M-BSBL. In the context of the signal model in (2.1), M-BSBL corresponds

to assuming row sparsity on E.
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Table 2.1: Face classification accuracy results for L = 1 and L = 5 for various occlusion rates

10% 20% 30% 40% 50%
L = 1 L = 5 L = 1 L = 5 L = 1 L = 5 L = 1 L = 5 L = 1 L = 5

SRC [3] 89.72 100 83.61 100 71.29 97.81 54.24 92.54 35.97 67.98
P̀ 2−`1 [41] 91.60 100 84.50 100 69.90 96.93 54.08 93.42 39.07 72.37

M-BSBL [44] — 100 — 100 — 99.12 — 94.30 — 76.75
Ro-SBL (proposed) 91.92 100 91.11 100 83.52 100 65.58 100 41.44 91.22

Simulation results for a 5 measurement SSR problem with 40 dB SGNR and 5 dB

SONR are shown in Fig. 2.1a. M-BSBL and Ro-SBL drastically outperform the `1 and `2− `1

SSR approaches, which shows that hierarchical Bayesian approaches outperform deterministic

methods even in the challenging SSR setup considered. In addition, since the Bayesian approaches

explicitly model the MMV nature of the problem, this result shows that significant improvements

can be achieved by incorporating the prior knowledge that the support of xi does not change with

i in the SSR algorithm. We observe a 25%−51% improvement in relative `2 error from Ro-SBL

compared to M-BSBL for s≤ 6. This suggests that Ro-SBL is better able to capture outliers due

to its superior model.

For illustrative purposes, we conducted the same synthetic data experiment, with the

exception that the outliers were constrained to be the same for all i. The results are shown in

Fig. 2.1b. As expected, the performance gains of the hierarchical Bayesian approaches over the

deterministic approaches carries over into the stationary outlier scenario. It is important to note

that M-BSBL slightly outperforms Ro-SBL because, in this case, the M-BSBL signal model is

better fitted to estimate the outliers since M-BSBL assumes that the outliers are stationary and

enjoys the advantages of MMV modeling, even for outliers.

2.3.2 FR Results

In this section, we present results demonstrating the efficacy of the proposed method in

a FR task. We use the Extended Yale B Database [56], which consists of 2441 images of 38
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(a) Time-Varying outliers (b) Stationary outliers

Figure 2.1: Comparison of SSR algorithms on synthetic data

SSR Reconstruction

SSR Reconstruction

Figure 2.2: Example of face reconstruction using Ro-SBL. The red bar denotes coefficients
corresponding to the true subject class.
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subjects under various illumination conditions. Each 192×168 image is a frontal perspective of

the subject’s face and has been cropped such that only the face can be seen. We randomly split the

database into training and test sets. Following the SRC framework, we downsample the images in

the training set by 1
12 , vectorize the result, and concatenate the vectors to form the dictionary D:

D =

[
D[:,T 1] D[:,T 2] · · · D[:,T 38]

]

where D[:,T k] consists of training images from the k’th subject. Note that this automatically

introduces a block structure in D. As before, we replace D by D̃.

In the testing phase, we seek to identify a given subject from L images of that subject’s

face. To simulate time-varying occlusions, we occlude each image by one of 10 animal images,

choosing the location of the occluding image randomly. Given L observations, we use one of the

SSR algorithms to estimate X̂ and Ê. Similar to the person re-identification classifier presented in

[48], we label the test images using

k∗ = argmin
k

L

∑
i=1

∥∥∥yi−D
(

φ
k� x̂i

)
− êi

∥∥∥2

2

where φk[m] = 1 ∀m ∈T k and φk[T k′] = 0 ∀k′ 6= k.

For each test subject, around 30 test images were available and the classification experi-

ment was run
⌊30

L

⌋
times. We report averaged classification results in Table 2.1 for two cases:

L = 1, i.e. an SMV FR problem considered in [42, 3, 41], and L = 5, i.e. an MMV problem

considered in person re-identification [48]. Note that our proposed algorithm becomes equivalent

to M-BSBL for L = 1, hence we do not report M-BSBL results for this case in Table 2.1. It is

evident from the results that, for every algorithm, the L = 5 case leads to much better classification

accuracy compared to L = 1, which corroborates the well known result that MMV modeling is

superior to SMV in harsh conditions.

In all cases, Ro-SBL performs better than all other competing algorithms. For low
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occlusion rates (10%), all of the competing algorithms perform comparably, despite the fact that

only Ro-SBL explicitly models non-stationary occlusions. This result can be explained by the fact

that 10% occlusion represents a minor fraction of the overall image area and a significant amount

of facial features remain un-occluded. On the other hand, Ro-SBL drastically outperforms the

other algorithms at high occlusion rates (50%) with L = 5, which can be attributed to the fact that

a large portion of the facial features in each image are occluded and the SSR algorithm is forced

to use all 5 measurements to jointly recover X̂ . Since Ro-SBL models outliers more accurately

than the other SSR methods, it is better able to approximate the identity of the occluded subject.

Finally, as a visual example of how the proposed method performs face classification, we

show that the occlusion can be removed from the test image by considering Dxi as the estimate of

the original, un-occluded test image. The face reconstruction result is shown in Fig. 2.2 (results

are generated using L = 5 and a downsampling factor of 1
6 was used for visualization purposes),

which shows that the proposed method removes much of the occluding image and provides a

relatively good reconstruction of the original face. Moreover, the coefficient plots show that the

dominant coefficients all reside in the block corresponding to the test subject’s index in D.

2.4 Conclusion

In this chapter, we have proposed a novel robust sparse recovery algorithm based on the

well known SBL framework to recover simultaneous block sparse signals in presence of time

varying outliers. Along with validating our method on synthetic data, we show the efficacy of our

approach in simultaneous FR in the presence of time varying outliers.

Chapter 2, in full, is a reprint of material published in the article Igor Fedorov, Ritwik

Giri, Bhaskar D. Rao, and Truong Q. Nguyen, “Robust Bayesian Method for Simultaneous Block

Sparse Signal Recovery with Applications to Face Recognition,” IEEE International Conference

on Image Processing, 2016. I was the primary author and B. D. Rao supervised the research.
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Chapter 3

A Unified Framework for Sparse

Non-Negative Least Squares using

Multiplicative Updates and the

Non-Negative Matrix Factorization

Problem

3.1 Introduction

Least squares problems occur naturally in numerous research and application settings. At

a high level, given an observation y ∈RN of x ∈RM through a linear system D ∈RN×M, the least

squares problem refers to

argmin
x
‖y−Dx‖2

2 . (3.1)
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Quite often, prior information about x is known. For instance, x may be known to be non-negative.

Non-negative data occurs naturally in many applications, including text mining [57], image

processing [58], speech enhancement [59], and spectral decomposition [60][61]. In this case,

(3.1) is modified to

argmin
x≥0

‖y−Dx‖2
2 (3.2)

where x≥ 0 refers to the elements of x being constrained to be non-negative and (3.2) is referred

to as the non-negative least squares (NNLS) problem. A solution to (3.2) can be obtained using

the well-known active set Lawson-Hanson algorithm [62] or one of its many variants [63]. In this

work, we are interested in a specific flavor of NNLS problems where M >N. Under this constraint,

the linear system in (3.2) is underdetermined and admits an infinite number of solutions. To

constrain the set of possible solutions, a sparsity constraint on x can be added, leading to a sparse

NNLS (S-NNLS) formulation:

argmin
x≥0,‖x‖0≤s

‖y−Dx‖2
2 (3.3)

where ‖·‖0 refers to the `0 pseudo-norm, which counts the number of non-zero entries. Solving

(3.3) directly is difficult because the `0 pseudo-norm is non-convex. In fact, solving (3.3) requires

a combinatorial search and has been shown to be NP-hard [4]. Therefore, greedy methods have

been adopted to approximate the solution [4, 64]. One effective approach, called reverse sparse

NNLS (rsNNLS) [65], first finds an x such that ‖y−Dx‖2
2≤ ε using the active-set Lawson-Hanson

algorithm and then prunes x with a greedy procedure until ‖x‖0 ≤ s, all while maintaining x≥ 0.

Other approaches include various relaxations of the `0 pseudo-norm in (3.3) using the `1 norm

[66] or a combination of the `1 and `2 norms [67], leading to easier optimization problems.

The purpose of this work is to address the S-NNLS problem in a setting often encountered

by practitioners, i.e. when several S-NNLS problems must be solved simultaneously. We are
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primarily motivated by the problem of sparse non-negative matrix factorization (S-NMF). NMF

falls under the category of dictionary learning algorithms. Dictionary learning is a common

ingredient in many signal processing and machine learning algorithms [11, 68, 69, 18]. In NMF,

the data, the dictionary, and the encoding of the data under the dictionary are all restricted to

be non-negative. Constraining the encoding of the data to be non-negative leads to the intuitive

interpretation of the data being decomposed into an additive combination of dictionary atoms

[70, 71, 72]. More formally, let Y ∈ RN×L
+ be a matrix representing the given data, where each

column of Y , yi ∈ RN
+,1 ≤ i ≤ L, is a data vector. The goal of NMF is to decompose Y into

two matrices D ∈ RN×M
+ and X ∈ RM×L

+ . When M < N, NMF is often stated in terms of the

optimization problem

argmin
θ≥0

‖Y −DX‖2
F (3.4)

where θ = {D,X}, D is called the dictionary, X is the encoding of the data under the dictionary,

and θ ≥ 0 is short-hand for the elements of D and X being constrained to be non-negative.

Optimizing (3.4) is difficult because it is not convex in θ [73]. Instead of performing joint

optimization, a block coordinate descent method [74] is usually adopted where the algorithm

alternates between holding D fixed while optimizing X and vice versa [70, 72, 73, 75, 76]:

Update D given X (3.5)

Update X given D. (3.6)

Note that (3.5) and (3.6) are a collection of N and L NNLS problems, respectively, which

motivates the present work. The block coordinate descent method is advantageous because (3.5)

and (3.6) are convex optimization problems for the objective function in (3.4), so that any number

of techniques can be employed within each block. One of the most widely used optimization

techniques, called the multiplicative update rules (MUR’s), performs (3.5)-(3.6) using simple
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element-wise operations on D and X [70, 72]:

Dt+1 = Dt� Y XT

DtXXT (3.7)

X t+1 = X t� DTY
DT DX t (3.8)

where � denotes element-wise multiplication, A/B denotes element-wise division of matrices A

and B, and t denotes the iteration index. The MUR’s shown in (3.7)-(3.8) are guaranteed to not

increase the objective function in (3.4) [70, 72] and, due to their simplicity, are widely used in the

NMF community [77, 78, 79]. The popularity of NMF MUR’s persists despite the fact that there

is no guarantee that the sequence {Dt ,X t}∞

t=0 generated by (3.7)-(3.8) will converge to a local

minimum [80] or even a stationary point [73, 80] of (3.4).

Unlike traditional NMF methods [70, 72], this work considers the scenario where D is

overcomplete, i.e. M� N. Overcomplete dictionaries have much more flexibility to represent

diverse signals [37] and, importantly, lead to effective sparse and low dimensional representations

of the data [71, 37]. As in NNLS, the concept of sparsity has an important role in NMF because

when X is overcomplete, (3.4) is not well-posed without some additional regularization. Sparsity

constraints limit the set of possible solutions of (3.4) and, in some cases, lead to guarantees of

uniqueness [81]. The S-NMF problem can be stated as the solution to

argmin
θ≥0,‖X‖0≤s

‖Y −DX‖2
F (3.9)

where ‖X‖0 ≤ s is shorthand for
{∥∥xi

∥∥
0 ≤ s

}L
i=1. One classical approach to S-NMF relaxes the

`0 constraint and appends a convex, sparsity promoting `1 penalty to the objective function [66]:

argmin
θ≥0

‖Y −DX‖2
F +λ‖X‖1 (3.10)

where ‖X‖1 is shorthand for ∑
L
i=1
∥∥xi
∥∥

1. As shown in [66], (3.10) can be iteratively minimized
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through a sequence of multiplicative updates where the update of D is given by (3.7) and the

update of X is given by

X t+1 = X t� DTY
DT DX t +λ

. (3.11)

We also consider an extension of S-NMF where a sparsity constraint is placed on D [67]

argmin
θ≥0,‖X‖0≤sX ,‖D‖0≤sD

‖Y −DX‖2
F (3.12)

which encourages basis vectors that explain localized features of the data [67]. We refer to (3.12)

as S-NMF-D.

The motivation of this work is to develop a maximum a-posteriori (MAP) estimation

framework to address the S-NNLS and S-NMF problems. We build upon the seminal work

in [49] on Sparse Bayesian Learning (SBL). The SBL framework places a sparsity-promoting

prior on the data [27] and has been shown to give rise to many models used in the compressed

sensing literature [82]. It will be shown that the proposed framework provides a general class of

algorithms that can be tailored to the specific needs of the user. Moreover, inference can be done

through a simple MUR for the general model considered and the resulting S-NNLS algorithms

admit convergence guarantees.

The key contribution of this work is to detail a unifying framework that encompasses a

large number of existing S-NNLS and S-NMF approaches. Therefore, due to the very nature of

the framework, many of the algorithms presented in this work are not new. Nevertheless, there

is value in the knowledge that many of the algorithms employed by researchers in the S-NNLS

and S-NMF fields are actually members of the proposed family of algorithms. In addition,

the proposed framework makes the process of formulating novel task-specific algorithms easy.

Finally, the theoretical analysis of the proposed framework applies to any member of the family of

proposed algorithms. Such an analysis has value to both existing S-NNLS and S-NMF approaches

30



like [83, 84], which do not perform such an analysis, as well as to any future approaches which

fall under the umbrella of the proposed framework. It should be noted that several authors have

proposed novel sets of MUR’s with provable convergence guarantees for the NMF problem in

(3.4) [85] and S-NMF problem in (3.10) [86]. In contrast to [86], the proposed framework does

not use the `1 regularization function to solve (3.9). In addition, since the proposed framework

encompasses the update rules used in existing works, the analysis presented here applies to works

from existing literature, including [83, 84].

3.1.1 Contributions of the Paper

• A general class of rectified sparsity promoting priors is presented and it is shown that the

computational burden of the resulting inference procedure is handled by a class of simple,

low-complexity MUR’s.

• A monotonicity guarantee for the proposed class of MUR’s is provided, justifying their use

in S-NNLS and S-NMF algorithms.

• A convergence guarantee for the proposed class of S-NNLS and S-NMF-D algorithms is

provided.

3.1.2 Notation

Bold symbols are used to denote random variables and plain font to denote a particular

realization of a random variable. MATLAB notation is used to denote the (i, j)’th element of the

matrix X as xi[m] and the i’th column of X as xi. We use X t to denote the matrix X at iteration t

of a given algorithm and (X)z to denote the matrix X with each element raised to the power z.
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Table 3.1: Distributions used throughout this work, where exp(a) = ea.

Distribution pdf

Rectified Gaussian pRG (x;γ) =

√
2
πγ

exp
(
−x2

2γ

)
u(x)

Exponential pExp (x;γ) = γexp(−γx)u(x)
Inverse Gamma pIGa (x;a,b) = ba

Γ(a)x
−a−1 exp

(
−b

x

)
u(x)

Gamma pGa (x;a,b) = 1
Γ(a)ba xa−1 exp(−xb)u(x)

Rectified Student’s-t pRST (x;τ) =
2Γ( τ+1

2 )√
τπΓ( τ

2)

(
1+ x2

τ

)− (τ+1)
2

u(x)

Rectified Generalized Double Pareto pRGDP (x;a,b,τ) = 2η

(
1+ xb

τab

)−(τ+ 1
b)

u(x)

3.2 Sparse Non-Negative Least Squares Framework Specifi-

cation

The S-NNLS signal model is given by

Y =DX+V (3.13)

where the columns of V , the noise matrix, follow a N(0,σ2I) distribution. To complete the model,

a prior on the columns ofX , which are assumed to be independent and identically distributed,

must be specified. This work considers separable priors of the form

p
(
xi)= M

∏
m=1

p
(
xi[m]

)
(3.14)

where p
(
xi[m]

)
has a scale mixture representation [87, 88]:

p
(
xi[m]

)
=

∫
∞

0
p
(
xi[m]|γi[m]

)
p
(
γ

i[m]
)

dγ
i[m]. (3.15)

Separable priors are considered because, in the absence of prior knowledge, it is reasonable to

assume independence amongst the coefficients of X . The case where dependencies amongst
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the coefficients exist is considered in Section 3.5. The proposed framework extends the work

on power exponential scale mixtures [7, 89] to rectified priors and uses the Rectified Power

Exponential (RPE) distribution for the conditional density of xi[m] given γi[m]:

pRPE
(
xi[m]|γi[m];z

)
=

ze
−
(

xi[m]

γi[m]

)z

γi[m]Γ
(1

z

) u
(
xi[m]

)
where u(·) is the unit-step function, 0 < z≤ 2, and Γ(a) =

∫
∞

0 ta−1e−tdt. The RPE distribution

is chosen for its flexibility. In this context, (3.15) is referred to as a rectified power exponential

scale mixture (RPESM).

The advantage of the scale mixture prior is that it introduces a Markovian structure of the

form

γi→ xi→ yi (3.16)

and inference can be done in either the x or γi domains. This work focuses on doing MAP

inference in the x domain, which is also known as Type 1 inference, whereas inference in the γ

domain is referred to as Type 2. The scale mixture representation is flexible enough to represent

most heavy-tailed densities [24, 20, 90, 23, 22], which are known to be the best sparsity promoting

priors [49, 50]. One reason for the use of heavy-tailed priors is that they are able to model both

the sparsity and large non-zero entries of x.

The RPE encompasses many rectified distributions of interest. For instance, the RPE

reduces to a Rectified Gaussian by setting z = 2, which is a popular prior for modeling non-

negative data [91, 88] and results in a Rectified Gaussian Scale Mixture in (3.15). Setting z = 1

corresponds to an Exponential distribution and leads to an Exponential Scale Mixture in (3.15)

[92]. Table 3.2 shows that many rectified sparse priors of interest can be represented as a RPESM.

Distributions of interest are summarized in Table 3.1.
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Table 3.2: RPESM representation of rectified sparse priors.

z p
(
γi[m]

)
p
(
xi[m]

)
2 pExp

(
γi[m]; τ2

2

)
pExp

(
xi[m];τ

)
2 pIGa

(
γi[m]; τ

2 ,
τ

2

)
pRST

(
xi[m];τ

)
1 pGa

(
γi[m];τ,τ

)
pRGDP

(
xi[m];1,1,τ

)
3.3 Unified MAP Inference Procedure

In the MAP framework, X is directly estimated from Y by minimizing

L(X) =− log

(
L

∏
i=1

p
(
xi|yi)) . (3.17)

We have made the dependence of the negative log-likelihood on X and D implicit for brevity.

Minimizing (3.17) in closed form is intractable for most priors, so the proposed framework

resorts to an Expectation-Maximization (EM) approach [22]. In the E-step, the expectation of the

negative complete data log-likelihood with respect to the distribution of γ, conditioned on the

remaining variables, is formed:

Q
(
X , X̄ t)=̇‖Y −DX‖2

F +λ

(
L,M

∑
i=1,m=1

(
xi[m]

)z
〈

1
(γi[m])z

〉
− logu

(
xi[m]

))
(3.18)

where 〈·〉 refers to the expectation with respect to the density p
(
γi[m]|x̄i[m]

)
, t refers to the

iteration index, X̄ t denotes the estimate of X at the t’th EM iteration, and =̇ refers to dropping

terms that do not influence the M-step and scaling by λ = 2σ2. The last term in (3.18) acts as a

barrier function against negative values of X . The function Q(X , X̄ t) is separable in the columns

of X . In an abuse of notation, we use Q
(
xi, x̄i,t) to refer to the dependency of Q(X , X̄ t) on xi.

In order to compute the expectation in (3.18), a similar method to the one used in

[7, 24] is employed, with some minor adjustments due to non-negativity constraints. Let

p
(
xi[m]

)
= pR (xi[m]

)
u
(
xi[m]

)
, where pR (xi[m]

)
is the portion of p

(
xi[m]

)
that does not in-
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clude the rectification term, and let pR (xi[m]
)

be differentiable on [0,∞). Then,

〈
1

(γi[m])z

〉
=−

∂ log pR (x̄i,t [m]
)

∂x̄i,t [m]

1

z(x̄i,t [m])z−1 . (3.19)

Turning to the M-step, the proposed approach employs the Generalized EM (GEM) M-step [22]:

Choose X̄ t+1 such that Q(X̄ t+1, X̄ t)≤ Q(X̄ t , X̄ t). (GEM M-step)

In particular, Q(X , X̄ t) is minimized through an iterative gradient descent procedure. As with

any gradient descent approach, selection of the learning rate is critical in order to ensure that

the objective function is decreased and the problem constraints are met. Following [72, 70],

the learning rate is selected such that the gradient descent update is guaranteed to generate

non-negative updates and can be implemented as a low-complexity MUR, given by

X s+1 = X s� DTY

DT DX s +λΩt� (X s)z−1 (3.20)

Ω
t [m, i] =− 1

(x̄i,t [m])z−1

∂ log pR (x̄i,t [m]
)

∂x̄i,t [m]
(3.21)

where s denotes the gradient descent iteration index (not to be confused with the EM iteration

index t). The resulting S-NNLS algorithm is summarized in Algorithm 1, where ζ denotes the

specific MUR used to update X , which is (3.20) in this case.

3.3.1 Extension to S-NMF

We now turn to the extension of our framework to the S-NMF problem. As before, the

signal model in (3.13) is used as well as the RPESM prior on X . To estimate D and X , the
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Algorithm 1 S-NNLS Algorithm

Require: Y,D, X̄0,λ,ζ,S, t∞

Initialize t = 0,Z = {(m, i)}M,L
m=1,i=1

while Z 6= /0 do
Form Ωt and initialize X1 = X̄ t ,J = Z
for s = 1 to S do

Generate xi,s+1[m] using update rule ζ for (m, i) ∈J
Set xi,s+1[m] = xi,s[m] for any (m, i) /∈J
J ←J \

{
(m, i) : xi,s+1[m] = 0 or xi,s+1[m] = xi,s[m]

}
end for
Set X̄ t+1 = XS+1 and Z ←Z \

{
(m, i) : x̄i,t+1[m] = xi,t [m] or x̄i,t+1 = 0

}
t← t +1
if t = t∞ then

Break
end if

end while
Return X̄ t

proposed framework seeks to find

argmin
θ

LNMF(θ), LNMF(θ) =− log p(D,X |Y ) (3.22)

where θ = {D,X}. The random variables D and X are assumed independent and a non-

informative prior over the positive orthant is placed on D for S-NMF. For S-NMF-D, a separable

prior from the RPESM family is assumed forD. In order to solve (3.22), the block-coordinate

descent optimization approach in (3.5)-(3.6) is employed. For each one of (3.5) and (3.6), the

GEM procedure described above is used.

The complete S-NMF/S-NMF-D algorithm is given in Algorithm 2. Due to the sym-

metry between (3.5) and (3.6) and to avoid unnecessary repetition, heavy use of Algorithm 1

in Algorithm 2 is made. Note that ζX = (3.20), ζD = (3.8) for S-NMF, and ζD = (3.20) for

S-NMF-D.
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Algorithm 2 S-NMF/S-NMF-D Algorithm

Require: Y,λ,S,ζD,ζX , t∞

Initialize di,0[n] = 1,xi,0[m] = 1 ∀n,m, t = 0,
while t 6= t∞ and

(
X̄ t+1 6= X̄ t or D̄t+1 6= D̄t) do

D̄t+1 =
(

Algorithm1(Y T ,(X̄ t)
T
,(D̄t)

T
,λ,ζD,S,1)

)T

X̄ t+1 = Algorithm1(Y, D̄t+1, X̄ t ,λ,ζX ,S,1)
t← t +1

end while

3.4 Examples of S-NNLS and S-NMF Algorithms

In the following, evidence of the utility of the proposed framework is provided by detailing

several specific algorithms which naturally arise from (3.20) with different choices of prior. It will

be shown that the algorithms described in this section are equivalent to well-known S-NNLS and

S-NMF algorithms, but derived in a completely novel way using the RPESM prior. The S-NMF-D

algorithms described are, to the best of our knowledge, novel. In Section 3.5, it will be shown

that the proposed framework can be easily used to define novel algorithms where block-sparsity

is enforced.

3.4.1 Reweighted l2

Consider the prior xi[m]∼ pRST
(
xi[m];τ

)
. Given this prior, (3.20) becomes

X s+1 = X s� DTY

DT DX s + 2λ(τ+1)X s

τ+(X̄ t)2

. (3.23)

Given this choice of prior on xi[m] and a non-informative prior on wi[n], it can be shown that

LNMF(θ) reduces to

‖Y −DX‖2
F + λ̃

M,L

∑
m=1,i=1

log
((

xi[m]
)2

+ τ

)
(3.24)
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over X ∈ RM×L
+ and D ∈ RN×M

+ (i.e. the logu(·) terms have been omitted for brevity), where

λ̃ = 2σ2 (τ+1). The sparsity-promoting regularization term in (3.24) was first studied in [9]

in the context of vector sparse coding (i.e. without non-negativity constraints). Majorizing the

sparsity promoting term in (3.24), it can be shown that (3.24) is upper-bounded by

‖Y −DX‖2
2 + λ̃

∥∥∥∥ X
Et

∥∥∥∥2

F
(3.25)

where ei,t [m] = x̄i,t [m]+ τ. Note that this objective function was also used in [93], although it

was optimized using a heuristic approach based on the Moore-Penrose pseudoinverse operator.

Letting

R = X/Et (3.26)

and λ̃→ 0, (3.25) becomes

∥∥Y −D
(
Et�R

)∥∥2
2 (3.27)

which is exactly the objective function that is iteratively minimized in the NUIRLS algorithm

[84] if we let τ→ 0. Although [84] gives a MUR for minimizing (3.27), the MUR can only be

applied for each column of X individually. It is not clear why the authors of [84] did not give a

matrix based update rule for minimizing (3.27), which can be written as

Rs+1 = Rs� DTY
DT D(Et�Rs)

.

This MUR is identical to (3.23) in the setting λ,τ→ 0. Although [84] makes the claim that

NUIRLS converges to a local minimum of (3.27), this claim is not proved. Moreover, nothing

is said regarding convergence with respect to the actual objective function being minimized
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(i.e. (3.24) as opposed to the majorizing function in (3.27)). As the analysis in Section 3.6 will

reveal, using the update rule in (3.23) within Algorithm 1, the iterates are guaranteed to converge

to a stationary point of (3.24). We make no claims regarding convergence with respect to the

majorizing function in (3.25) or (3.27).

3.4.2 Reweighted `1

Assuming xi[m]∼ pRGDP
(
xi[m];1,1,τ

)
, (3.20) reduces to

X s+1 = X s� DTY

DT DX s + λ(τ+1)
τ+X̄ t

. (3.28)

Plugging the RGDP prior into (3.22) and assuming a non-informative prior on wi[n] leads to the

Lagrangian of the objective function considered in [8] for unconstrained vector sparse coding

(after omitting the barrier function terms):

‖Y −DX‖2
F + λ̃

M,L

∑
m=1,i=1

log
(
xi[m]+ τ

)
. (3.29)

Interestingly, this objective function is a special case of the block sparse objective considered

in [83] (where the Itakura-Saito reconstruction loss is used instead of the Frobenius norm loss)

if each xi[m] is considered a separate block. The authors of [83] did not offer a convergence

analysis of their algorithm, in contrast with the present work. To the best of our knowledge, the

reweighted `1 formulation has not been considered in the S-NNLS literature.

3.4.3 Reweighted `2 and Reweighted `1 for S-NMF-D

Using the reweighted `2 or reweighted `1 formulations to promote sparsity in D is straight-

forward in the proposed framework and involves setting ζD to (3.23) or (3.28), respectively, in

Algorithm 2.
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3.5 Extension to Block Sparsity

As a natural extension of the proposed framework, we now consider the block sparse

S-NNLS problem. This section will focus on the S-NNLS context only because the extension to

S-NMF is straightforward. Block sparsity arises naturally in many contexts, including speech

processing [77, 94], image denoising [95], and system identification [96]. The central idea behind

block-sparsity is that D is assumed to be divided into disjoint blocks and each yi is assumed to be

a linear combination of the elements of a small number of blocks. This constraint can be easily

accommodated by changing the prior on xi to a block rectified power exponential scale mixture:

p
(
xi)= K

∏
k=1

∫
∞

0
∏

m∈T k

p
(
xi[m]|γi[k]

)
p
(
γ

i[k]
)

dγ
i[k]︸ ︷︷ ︸

p(xi[T k])

(3.30)

(3.31)

where

∪K
k=1T

k = [M] and T k∩T k′ = /0 ∀k′ 6= k (3.32)

and xi [T k] is a vector consisting of the elements of xi whose indices are members of T k. To

find the MAP estimate of X given Y , the same GEM procedure as before is employed, with the

exception that the computation of the weights in (3.18) is modified to:

〈
1

(γi[k])z

〉
=−

∂ log pR (x̄i [T k])
∂x̄i[m]

1

z(x̄i[m])z−1
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where m ∈T k. It can be shown that the MUR for minimizing Q(X , X̄ t) in (3.20) can be modified

to account for the block prior in (3.30) to

X s+1 = X s� DTY

DT DX s +λΦt� (X s)z−1 (3.33)

φ
i,t [m] =− 1

(x̄i,t [m])z−1

∂ log pR (x̄i,t [T k])
∂x̄i,t [m]

for any m ∈ T k. (3.34)

Next, we show examples of block S-NNLS algorithms that arise from our framework.

3.5.1 Example: Reweighted `2 Block S-NNLS

Consider the block-sparse prior in (3.30), where p
(
xi[m]|γi[k]

)
, m ∈ T k, is a RPE with

z = 2 and γi[k] ∼ pIGa
(
γi[k];τ/2,τ/2

)
. The resulting density p

(
xi) is a block RST (BRST)

distribution:

p
(
xi)=

 K

∏
k=1

2Γ
(

τ+1
2

)
√

πτΓ
(

τ

2

) (1+

∥∥xi [T k]∥∥2
2

τ

)− (τ+1)
2

 M

∏
m=1

u
(
xi[m]

)
.

The MUR for minimizing Q(X , X̄ t) under the BRST prior is given by:

X s+1 = X s� DTY

DT DX s + 2λ(τ+1)X s

τ+St

(3.35)

where si,t [m] =
∥∥x̄i,t [T k]∥∥2

2 for all m ∈T k.

3.5.2 Example: Reweighted `1 Block S-NNLS

Consider the block-sparse prior in (3.30), where p
(
xi[m]|γi[k]

)
, m ∈ T k, is a RPE with

z = 1 and γi[k] ∼ pGa
(
γi[k];τ,τ

)
. The resulting density p

(
xi) is a block rectified generalized
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double pareto (BRGDP) distribution:

p
(
xi)=

 K

∏
k=1

2η

(
1+

∥∥xi [T k]∥∥
1

τ

)−(τ+1)
 M

∏
m=1

u
(
xi[m]

)
.

The MUR for minimizing Q(X , X̄ t) under the BRGDP prior is given by:

X s+1 = X s� DTY

DT DX s + λ(τ+1)
τ+V t

(3.36)

where vi,t [m] =
∥∥x̄i,t [T k]∥∥

1 for all m ∈ T k.

3.5.3 Relation To Existing Block Sparse Approaches

Block sparse coding algorithms are generally characterized by their block-sparsity mea-

sure. The analog of the `0 sparsity measure for block-sparsity is the `2− `0 measure

K

∑
k=1

1‖xi[T k]‖2>0, (3.37)

which simply counts the number of blocks with non-zero energy. This sparsity measure has

been studied in the past and block versions of the popular MP and OMP algorithms have been

extended to Block-MP (BMP) and Block-OMP (BOMP) [38]. Extending BOMP to non-negative

BOMP (NNBOMP) is straightforward, but details are omitted due to space considerations. One

commonly used block sparsity measure in the NMF literature is the log−`1 measure [83]:

K

∑
k=1

log
(∥∥∥xi

[
T k
]∥∥∥

1
+ τ

)
. (3.38)

This sparsity measure arises naturally in the proposed S-NNLS framework when the BRGDP

prior is plugged into (3.17). We are not aware of any existing algorithms which use the sparsity
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measure induced by the BRST prior:

K

∑
k=1

log
(∥∥∥xi

[
T k
]∥∥∥2

2
+ τ

)
. (3.39)

3.6 Analysis

In this section, important properties of the proposed framework are analyzed. First, the

properties of the framework as it applies to S-NNLS are studied. Then, the proposed framework

is studied in the context of S-NMF and S-NMF-D.

3.6.1 Analysis in the S-NNLS Setting

We begin by confirming that (GEM M-step) does not have a trivial solution at xi[m] = ∞

for any (m, i) because

〈(
γ

i[m]
)−z
〉
≥ 0, (3.40)

since it is an expectation of a non-negative random variable. In the following discussion, it will

be useful to work with distributions whose functional dependence on xi[m] has a power function

form:

f
(
xi[m],z,τ,α

)
=
(

τ+
(
xi[m]

)z
)−α

(3.41)

where τ,α > 0 and 0 < z≤ 2. Note that the priors considered in this work have a power function

form.
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Monotonicity of Q(X , X̄ t) under (3.20)

The following theorem states one of the main contributions of this work, validating the

use of (3.20) in (GEM M-step).

Theorem 1. Let z ∈ {1,2} and the functional dependence of pR (xi[m]
)

on xi[m] have a power

function form. Consider using the update rule stated in (3.20) to update xi,s[m] for all (m, i) ∈

J = {(m, i) : xi,s[m] > 0}. Then, the update rule in (3.20) is well defined and Q(X s+1, X̄ t) ≤

Q(X s, X̄ t).

Proof. Proof provided in 3.9.1. �

Theorem 1 also applies to the block-sparse MUR in (3.33).

Local Minima of L(X)

Before proceeding to the analysis of the convergence of Algorithm 1, it is important to

consider the question as to whether the local minima of L(X) are desirable solutions from the

standpoint of being sparse.

Theorem 2. Let X∗ be a local minimum of (3.17) and let the functional dependence of pR (xi[m]
)

on xi[m] have a power function form. In addition, let one of the following conditions be satisfied:

1) z≤ 1 or 2) z > 1 and τ→ 0. Then,
∥∥xi,∗∥∥

0 ≤ N.

Proof. Proof provided in 3.9.2. �

Convergence of Algorithm 1

First, an important property of the cost function in (3.17) can be established.

Theorem 3. The function − log p
(
xi[m]

)
is coercive for any member of the RPESM family.

Proof. The proof is provided in 3.9.3. �
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Theorem 3 can then be used to establish the following corollary.

Corollary 1. Assume the signal model in (3.13) and let p
(
xi[m]

)
be a member of the RPESM

family. Then, the cost function L(X) in (3.17) is coercive.

Proof. This follows from the fact that ‖Y −DX‖2
F ≥ 0 and the fact that− log p

(
xi[m]

)
is coercive

due to Theorem 3. �

The coercive property of the cost function in (3.17) allows us to establish the following

result concerning Algorithm 1.

Corollary 2. Let z ∈ {1,2} and the functional dependence of pR (xi[m]
)

on xi[m] have a power

function form. Then, the sequence {X̄ t}∞
t=1 produced by Algorithm 1 with S, the number of inner

loop iterations, set to 1 admits at least one limit point.

Proof. The proof is provided in 3.9.4. �

We are now in a position to state one of the main contributions of this paper regarding the

convergence of Algorithm 1 to the set of stationary points of (3.17). A stationary point is defined

to be any point satisfying the Karush-Kuhn-Tucker (KKT) conditions for a given optimization

problem [97].

Theorem 4. Let z ∈ {1,2}, ζ = (3.20), t∞ = ∞, S = 1, the functional dependence of pR (xi[m]
)

on xi[m] have a power function form, the columns of D and Y have bounded norm, and D

be full rank. In addition, let one of the following conditions be satisfied: (1) z = 1 and τ ≤

λ/maxm,i
(
DTY

)
[m, i] or (2) z = 2 and τ→ 0. Then the sequence {X̄ t}∞

t=1 produced by Algorithm

1 is guaranteed to converge to the set of stationary points of L(X). Moreover, {L(X̄ t)}∞
t=1

converges monotonically to L(X̄∗), for stationary point X̄∗.

Proof. The proof is provided in 3.9.5. �
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x̄i,t

− log p
(
xi|yi)

Q
(
xi, x̄i,t)

G
(
xi,xi,s)

Figure 3.1: Visualization of Algorithm 1

The reason that S = 1 is specified in Theorem 4 is that it allows for providing convergence

guarantees for Algorithm 1 without needing any convergence properties of the sequence generated

by (3.20). Theorem 4 also applies to Algorithm 1 when the block-sparse MUR in (3.33) is used.

To see the intuition behind the proof of Theorem 4 (given in 3.9.5), consider the visualization

of Algorithm 1 shown in Fig. 3.1. The proposed framework seeks a minimum of − log p
(
xi|yi),

for all i, through an iterative optimization procedure. At each iteration, − log p
(
xi|yi) is bounded

by the auxiliary function Q
(
xi, x̄i,t) [97][22]. This auxiliary function is then bounded by another

auxiliary function, G
(
xi,xi,s), defined in (3.44). Therefore, the proof proceeds by giving condi-

tions under which (GEM M-step) is guaranteed to reach a stationary point of − log p
(
xi|yi) by

repeated minimization of Q
(
xi, x̄i,t) and then finding conditions under which Q

(
xi, x̄i,t) can be

minimized by minimization of G
(
xi,xi,s) through the use of (3.20).

3.6.2 Analysis in S-NMF and S-NMF-D Settings

We now extend the results of Section 3.6.1 to the case where D is unknown and is

estimated using Algorithm 2. For clarity, let (zD,τD) and (zX ,τX) refer to the distributional

parameters of the priors overD andX , respectively. As before, τD,τX > 0 and 0 < zD,zX ≤ 2.

First, it is confirmed that Algorithm 2 exhibits the same desirable optimization properties as the
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NMF MUR’s (3.7)-(3.8).

Corollary 3. Let zD,zX ∈ {1,2} and the functional dependence of pR (xi[m]
)

on xi[m] have a

power function form. If performing S-NMF-D, let the functional dependence of pR (di[n]
)

on

di[n] have a power function form. Consider using Algorithm 2 to generate {D̄t , X̄ t}∞

t=0. Then, the

update rules used in Algorithm 2 are well defined and LNMF (D̄t+1, X̄ t+1)≤ LNMF (D̄t , X̄ t).

Proof. The proof is shown in 3.9.6. �

Therefore, the proposed S-NMF framework maintains the monotonicity property of the

original NMF MUR’s, with the added benefit of promoting sparsity in X (and D, in the case of

S-NMF-D).

Unfortunately, it is not clear how to obtain a result like Theorem 4 for Algorithm 2 in the

S-NMF setting. The reason that such a result cannot be shown is because it is not clear that if

a limit point, (D̄∞, X̄∞), of Algorithm 2 exists, that this point is a stationary point of LNMF(·, ·).

Specifically, if there exists (n, i) such that D̄∞[n, i] = 0, the KKT condition−(Y−D̄∞X̄∞)(X̄∞)
T ≥

0 cannot be readily verified. This deficiency is unrelated to the size of D and X and is, in fact,

the reason that convergence guarantees for the original update rules in (3.7)-(3.8) do not exist.

Interestingly, if Algorithm 2 is considered in S-NMF-D mode, this difficulty is alleviated.

Corollary 4. Let zD,zX ∈ {1,2}, S = 1, and the functional dependence of pR (xi[m]
)

on xi[m]

and of pR (di[n]
)

on di[n] have power function forms. Then, the sequence {X̄ t , D̄t}∞
t=1 produced

by Algorithm 2 admits at least one limit point.

Proof. The objective function is now coercive with respect to D and X as a result of the ap-

plication of Theorem 3 to − log pR (xi[m]
)

and − log pR (di[n]
)
. Since {LNMF(D̄t , X̄ t)}∞

t=1 is a

non-increasing sequence, the proof for Corollary 2 in 3.9.4 can be applied to obtain the stated

result. �
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Corollary 5. Let {D̄t , X̄ t}∞
t=1 be a sequence generated by Algorithm 2 with ζD = (3.20). Let

zX ,zD ∈ {1,2}, the functional dependence of pR (xi[m]
)

on xi[m] have a power function form,

the functional dependence of pR (di[n]
)

on di[n] have a power function form, the columns and

rows of Y have bounded norm, the columns of D̄∞ have bounded norm, the rows of X̄∞ have

bounded norm, and D̄∞ and X̄∞ be full rank. Let one of the following conditions be satisfied:

(1x) zX = 1 and τX ≤ λ/maxm,i

(
(D̄∞)

T Y
)
[m, i] or (2x) zX = 2 and τX → 0. In addition, let one

of the following conditions be satisfied: (1d) zD = 1 and τD ≤ λ/maxm,i
(
X̄∞Y T) [m, i] or (2d)

zD = 2 and τD→ 0. Then, {D̄t , X̄ t}∞
t=1 is guaranteed to converge to set of stationary points of

LNMF(·, ·).

Proof. The proof is provided in 3.9.7. �

3.7 Experimental Results

In the following, experimental results for the class of proposed algorithms are presented.

The experiments performed were designed to highlight the main properties of the proposed

approaches. First, the accuracy of the proposed S-NNLS algorithms on synthetic data is studied.

Then, experimental validation for claims made in Section 3.6 regarding the properties of the

proposed approaches is provided. Finally, the proposed framework is shown in action on real-

world data by learning a basis for a database of face images.

3.7.1 S-NNLS Results on Synthetic Data

In order to compare the described methods, a sparse recovery experiment was undertaken.

First, a dictionary D ∈R100×M
+ is generated, where each element of M is drawn from the RG(0,1)

distribution. The columns of M are then normalized to have unit `2 norm. The matrix X ∈RM×100
+

is then generated by randomly selecting s coefficients of xi to be non-zero and drawing the non-

zero values from a RG(0,1) distribution. The columns of X are normalized to have unit `2 norm.
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Figure 3.2: S-NNLS results on synthetic data. The legends for (c) and (d) have been omitted,
but are identical to the legends in (a) and (b).
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We then feed Y = DX and D to the S-NNLS algorithm and approximate xi with x̂i. Note that

this is a noiseless experiment. The distortion of the approximation is measured using the relative

Frobenius norm error,

∥∥X− X̂
∥∥

F
‖X‖F

. (3.42)

A total of 50 trials are run and averaged results are reported.

We use Algorithm 1 to generate recovery results for the proposed framework, with the

number of inner-loop iterations, S, of Algorithm 1 set to 2000 and the outer EM loop modified to

run a maximum of 50 iterations. For reweighted `2 S-NNLS, the same annealing strategy for τ as

reported in [9] is employed, where τ is initialized to 1 and decreased by a factor of 10 (up to a

pre-specified number of times) when the relative `2 difference between x̄i,t+1 and x̄i,t is below
√

τ/100 for each i. Note that this strategy does not influence the convergence properties described

in Section 3.6 for the reweighted `2 approach since τ can be viewed as fixed after a certain number

of iterations. For reweighted `1 S-NNLS, we use τ = 0.1. The regularization parameter λ is

selected using cross-validation by running the S-NNLS algorithms on data generated using the

same procedure as the test data.

We compare our results with rsNNLS [65], the SUnSAL algorithm for solving (3.10) [98],

the non-negative ISTA (NN-ISTA) algorithm1 for solving (3.10) [99], NUIRLS, and `1 S-NNLS

[67] (i.e (3.11)). Since rsNNLS requires k as an input, we incorporate knowledge of k into the

tested algorithms in order to have a fair comparison. This is done by first thresholding x̂i by

zeroing out all of the elements except the largest k and then executing (3.8) until convergence.

The S-NNLS results are shown in Fig. 3.2. Fig. 3.2a shows the recovery results for

M = 400 as a function of the sparsity level s. All of the tested algorithms perform almost equally

well up to s = 30, but the reweighted approaches dramatically outperform the competing methods

1We modify the soft-thresholding operator to max
(
0, |xi|−β

)
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Figure 3.3: Evolution of L(X) for the reweighted `1 formulation in Section 3.4.2 using Algo-
rithm 1 and a baseline approach employing the NN-ISTA algorithm.

for s = 40 and s = 50. Fig. 3.2b shows the recovery results for s = 50 as a function of M. All of

the tested algorithms perform relatively well for M = 200, but the reweighted approaches separate

themselves for M = 400 and M = 800. Fig. 3.2c and 3.2d show the average computational time

for the algorithms tested as a function of sparsity level and dictionary size, respectively.

Two additional observations from the results in Fig. 3.2a can be made. First, the

reweighted approaches perform slightly worse for sparsity levels s≤ 20. We believe that this is

a result of suboptimal parameter selection for the reweighted algorithms and using a finer grid

during cross-validation would improve the result. This claim is supported by the observation that

NUIRLS performs at least as well or better than the reweighted approaches for s≤ 20 and, as

argued in Section 3.4.1, NUIRLS is equivalent to reweighted `2 S-NNLS in the limit λ,τ→ 0.

The second observation is that the reweighted `2 approach consistently outperforms NUIRLS at

high values of k. This suggests that the strategy of allowing λ > 0 and annealing τ, instead of

setting it to 0 as in NUIRLS [84], is much more robust.

In addition to displaying superior S-NNLS performance, the proposed class of MUR’s

also exhibits fast convergence. Fig. 3.3 compares the evolution of the objective function L(X)
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Figure 3.4: Block sparse recovery results

under the RGDP signal prior (i.e. the reweighted `1 formulation of Section 3.4.2) for Algorithm

1, with S = 1, with a baseline approach. The baseline employs the NN-ISTA algorithm to solve

the reweighted `1 optimization problem which results from bounding the regularization term

by a linear function of xi[m] (similar to (3.25), but with ‖X/Et‖2
F replaced by ‖X/Et‖1). The

experimental results show that the MUR in (3.28) achieves much faster convergence as well as a

lower objective function value compared to the baseline.

3.7.2 Block S-NNLS Results on Synthetic Data

In this experiment, we first generate D ∈R80×160
+ by drawing its elements from a RG(0,1)

distribution. We generate the columns of X ∈ R160×100
+ by partitioning each column into blocks

of size 8 and randomly selecting s blocks to be non-zero. The non-zero blocks are filled with

elements drawn from a RG(0,1) distribution. We then attempt to recover X from Y = DX . The

relative Frobenius norm error is used as the distortion metric and results averaged over 50 trials

are reported.

The results are shown in Fig. 3.4. We compare the greedy NN-BOMP algorithm with the

reweighted approaches. The reweighted approaches consistently outperform the `0 based method,
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(c) M = 800

Figure 3.5: Average sorted coefficient value for S-NNLS with D = R100×M
+ . The value at index

m represents the average value of the m’th largest coefficient in x̂i, averaged over all i.

showing good recovery performance even when the number of non-zero elements of each column

of X is equal to the dimensionality of the column.

3.7.3 A Numerical Study of the Properties of the Proposed Methods

In this section, we seek to provide experimental verification for the claims made in the

Section 3.6. First, the sparsity of the solutions obtained for the synthetic data experiments

described in Section 3.7.1 is studied. Fig. 3.5 shows the magnitude of the m’th largest coefficient

in x̂i for various sizes of D, averaged over all 50 trials, all i, and all sparsity levels tested. The

statement in Theorem 2 claims that the local minima of the objective function being optimized

are sparse (i.e. that the number of nonzero entries is at most N = 100). In general, the proposed

methods cannot be guaranteed to converge to a local minimum as opposed to a saddle point, so it

cannot be expected that every solution produced by Algorithm 1 is sparse. Nevertheless, Fig. 3.5

shows that for M = 200 and M = 400, both reweighted approaches consistently find solutions

with sparsity levels much smaller than 100. For M = 800, the reweighted `2 approach still finds

solutions with sparsity smaller than 100, but the reweighted `1 method deviates slightly from the

general trend.

Next, we test the claim made in Theorem 4 that the proposed approaches reach a stationary

point of the objective function by monitoring the KKT residual norm of the scaled objective func-
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Table 3.3: Normalized KKT residual for S-NNLS algorithms on synthetic data. For all experi-
ments, N = 100 and s = 10.

M 200 400 800
Reweighted `2 10−9.3 10−9.4 10−9.6

Reweighted `1 10−9.9 10−10.1 10−10.4

Table 3.4: Normalized KKT residual for S-NMF-D algorithms on CSBL face dataset.

D X
Reweighted `2 10−3.9 10−5.3

Reweighted `1 10−5 10−7.3

tion. Note that, as in 3.9.5, the − logu
(
xi[m]

)
terms are omitted from L(X) and the minimization

of L(X) is treated as a constrained optimization problem when deriving KKT conditions. For

instance, for reweighted `1 S-NNLS, the KKT conditions can be stated as

min
(

X ,DT DX−DTY +λ
τ+1
τ+X

)
= 0 (3.43)

and the norm of the left-hand side, averaged over all of the elements of X , can be viewed as a

measure of how close a given X is to being stationary [80]. Table 3.3 shows the average KKT

residual norm of the scaled objective function for the reweighted approaches for various problem

sizes. The reported values are very small and provide experimental support for Theorem 4.

3.7.4 Learning a Basis for Face Images

In this experiment, we use the proposed S-NMF and S-NMF-D frameworks to learn a

basis for the CBCL face image dataset 2 [67, 85]. Each dataset image is a 19× 19 grayscale

image. We used M = 3N and learned D by running S-NMF with reweighted-`1 regularization on

X and S-NMF-D with reweighted-`1 regularization on D and X . We used τD,τX = 0.1 and ran

all algorithms to convergence. Due to a scaling indeterminacy, D is normalized to have unit `2

2Available at http://cbcl.mit.edu/cbcl/software-datasets/FaceData.html

54



(a) (b) (c)

(d) (e) (f)

Figure 3.6: Visualization of random subset of learned atoms of D for CBCL dataset. 3.6a-
3.6c: S-NMF with reweighted `1 regularization on X , λ = 1e−3,1e−2,1e−1, respectively.
3.6d-3.6f: S-NMF-D with reweighted `1 regularization on X and D, λ = 1e−3,1e−2,1e−1,
respectively.
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column norm at each iteration. A random subset of the learned basis vectors for each method with

various levels of regularization is shown in Fig. 3.6. The results show the flexibility offered by

the proposed framework. Fig. 3.6a-3.6c show that decreasing λ encourages S-NMF to learn high

level features, whereas high values of λ force basis vectors to resemble images from the dataset.

Fig. 3.6d-3.6f show a similar trend for S-NMF-D, although introducing a sparsity promoting

prior on D tends to discourage basis vectors from resembling dataset images. It is difficult to

verify Theorem 5 experimentally because D must be normalized at each iteration to prevent

scaling instabilities and there is no guarantee that a given stationary point D∗ has unit column

norms. Nevertheless, the normalized KKT residual for the tested S-NMF-D algorithms with D

normalization at each iteration on the CSBL face dataset is reported in Table 3.4.

3.7.5 Computational Issues

One of the advantages of using the proposed MUR’s is that inference can be performed

on the entire matrix simultaneously in each block of the block-coordinate descent procedure

with relatively simple matrix operations. In fact, the computational complexity of the MUR’s

in (3.23), (3.28), (3.35), and (3.36) is equivalent to that of the original NMF MUR given in (3.8)

(which is O(NLr) where r ≤min(N,L) [85]). In other words, the proposed framework allows for

performing S-NNLS and S-NMF without introducing computational complexity issues. Another

benefit of this framework is that the operations required are simple matrix-based computations

which lend themselves to a graphics processing unit (GPU) implementation. For example, a

9-fold speed-up is achieved in computing 500 iterations of (3.20) on a GPU compared to a CPU.

3.8 Conclusion

We presented a unified framework for S-NNLS and S-NMF algorithms. We introduced

the RPESM as a sparsity promoting prior for non-negative data and provided details for a general
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class of S-NNLS algorithms arising from this prior. We showed that low-complexity MUR’s can

be used to carry out the inference, which are validated by a monotonicity guarantee. In addition,

it was shown that the class of algorithms presented is guaranteed to converge to a set of stationary

points, and that the local minima of the objective function are sparse. This framework was then

extended to a block coordinate descent technique for S-NMF and S-NMF-D. It was shown that

the proposed class of S-NMF-D algorithms is guaranteed to converge to a set of stationary points.

3.9 Appendix

3.9.1 Proof of Theorem 1

Due to the assumption on the form of pR (xi[m]
)
, the functional dependence of

〈(
γi[m]

)−z
〉

,

and hence Ωt [m, i], on x̄i,t [m] has the form
(
τ+
(
x̄i,t [m]

)z)−1 up to a scaling constant, which is

well-defined for all τ > 0 and x̄i,t [m] ∈ [0,∞). As a result, (3.20) is well defined for all (m, i) such

that xi,s[m]> 0.

To show that Q(X , X̄ t) is non-increasing under MUR (3.20), a proof which follows closely

to [66, 70] is presented. We omit the − logu
(
xi[m]

)
term in Q(X , X̄ t) in our analysis because

it has no contribution to Q(X , X̄ t) if X ≥ 0 and the update rules are guaranteed to keep xi[m]

non-negative.

First, note that Q(X , X̄ t) is separable in the columns of X , xi, so we focus on minimizing

Q(X , X̄ t) for each xi separately. For the purposes of this proof, let y and x represent columns of Y

and X , respectively, and let Q(x) denote the dependence of Q(X , X̄ t) on one of the columns of X ,

with the dependency on X̄ t being implicit. Then,

Q(x) = ‖y−Dx‖2
2 +λ

M

∑
m=1

q[m] (x[m])z
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where q represents the non-negative weights in (3.18). Let G(x,xs) be

G(h,hs) = Q(xs)+(x− xs)TOQ(xs)+
(x− xs)T K(xs)(x− xs)

2
(3.44)

where K(xs) = diag
((

DT Dxs +λzq� (xs)z−1
)
/xs
)

. For reference,

OQ(xs) = DT dxs−DT y+λzq� (xs)z−1 (3.45)

O2Q(xs) = DT D+λz(z−1)diag
(

q� (xs)z−2
)
. (3.46)

It will now be shown that G(x,xs) is an auxiliary function for Q(x). Trivially, G(x,x) = Q(x).

To show that G(x,xs) is an upper-bound for Q(x), we begin by using the fact that Q(x) is a

polynomial of order 2 to rewrite Q(x) as

Q(x) = Q(xs)+(x− xs)TOQ(xs)+0.5(x− xs)TO2Q(xs)(x− xs). (3.47)

It then follows that G(x,xs) is an auxiliary function for Q(x) if and only if the matrix

A = K(xs)−O2Q(xs) (3.48)

is positive semi-definite (PSD). The matrix X can be decomposed as

A = A1 +A2, (3.49)

where

A1 = diag
(

DT Dxs

xs

)
−DT D (3.50)

A2 = λz(2− z)diag
(

q� (xs)z−2
)
. (3.51)
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The matrix A1 was shown to be PSD in [70]. The matrix A2 is a diagonal matrix with the (m,m)’th

entry being λz(2− z)q[m] (hs[m])z−2. Since q[m] (hs[m])z−2 ≥ 0 and z≤ 2, A2 has non-negative

entries on its diagonal and, consequently, is PSD. Since the sum of PSD matrices is PSD, it

follows that A is PSD and G(x,xs) is an auxiliary function for Q(x). Since G(x,xs) as an auxiliary

function for Q(x), Q(x) is non-increasing under the update rule [70]

xs+1 = argmin
x

G(x,xs) . (3.52)

The optimization problem in (3.52) can be solved in closed form, leading to the MUR shown

in (3.20). The multiplicative nature of the update rule in (3.20) guarantees that the sequence

{X s}∞
s=1 is non-negative.

3.9.2 Proof of Theorem 2

This proof is an extension of (Theorem 1 [100]) and (Theorem 8 [101]). Since L(X) is

separable in the columns of X , consider the dependence of L(X) on a single column of X , denoted

by L(x). The function L(x) can be written as

‖y−Dx‖2
2−2σ

2
M

∑
m=1

log p(x[m]) . (3.53)

Let x∗ be a local minimum of L(x). We observe that x∗ must be non-negative. Note that

− log p(x[m])→ ∞ when x[m]< 0 since p(x[m]) = 0 over the negative orthant. As such, if one

of the elements of x∗ is negative, x∗ must be a global maximum of L(x). Using the assumption on

the form of pR (x[m]), (3.53) becomes

‖y−Dx‖2
2 +

M

∑
m=1

2σ
2 (α log(τ+(x[m])z)− logu(x[m]))+ c (3.54)
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where constants which do not depend on h are denoted by c. By the preceding argument,

logu(x[m]∗) = 0, so the logu(x[m]∗) term makes no contribution to L(x∗). The vector x∗ must be

a local minimum of the constrained optimization problem

min
y=Dx+v∗

M

∑
m=1

log(τ+(x[m])z)︸ ︷︷ ︸
φ(x)

(3.55)

where v∗ = y−Dx∗ and φ(·) is the diversity measure induced by the prior on X . It can be

shown that φ(·) is concave under the conditions of Theorem 2. Therefore, under the conditions of

Theorem 2, the optimization problem (3.55) satisfies the conditions of (Theorem 8 [101]). It then

follows that the local minima of (3.55) are basic feasible solutions, i.e they satisfy y = Dx+ v∗

and ‖x‖0 ≤ N. Since x∗ is one of the local minima of (3.55), ‖x∗‖0 ≤ N.

3.9.3 Proof of Theorem 3

It is sufficient to show that

lim
xi[m]→∞

p
(
xi[m]

)
= 0. (3.56)

Consider the form of p
(
xi[m]

)
when it is a member of the RPESM family:

p
(
xi[m]

)
=

∫
∞

0
p
(
xi[m]|γi[m]

)
p
(
γ

i[m]
)

dγ
i[m] (3.57)

where xi[m]|γi[m]∼ pRPE (xi[m]|γi[m];z
)
. Note that

∣∣pRPE (xi[m]|γi[m]
)

p
(
γ

i[m]
)∣∣≤ ∣∣pRPE (0|γi[m];z

)
p
(
γ

i[m]
)∣∣ .
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Coupled with the fact that p
(
xi[m]|γi[m]

)
is continuous over the positive orthant, the dominated

convergence theorem can be applied to switch the limit with the integral in (3.57):

lim
xi[m]→∞

∫
∞

0
p
(
xi[m]|γi[m]

)
p
(
γ

i[m]
)

dγ
i[m] =

∫
∞

0
lim

xi[m]→∞

p
(
xi[m]|γi[m]

)
p
(
γ

i[m]
)

dγ
i[m] (3.58)

= 0. (3.59)

3.9.4 Proof of Corollary 2

This proof follows closely to the first part of the proof of (Theorem 1, [86]). Let

S0 = {X ∈ RM×L
+ |L(X)≤ L(X̄0)}. (3.60)

Lemma 1 established that L(X) is coercive. In addition, L(X) is a continuous function of X

over the positive orthant. Therefore, S0 is a compact set (Theorem 1.2, [102]). The sequence

{L(X̄ t)}∞
t=1 is non-increasing as a result of Theorem 1, such that {X̄ t}∞

t=1 ∈S0. Since S0 is

compact, {X̄ t}∞
t=1 admits at least one limit point.

3.9.5 Proof of Theorem 4

From Lemma 2, the sequence {X̄ t}∞
t=1 admits at least one limit point. What remains is to

show that every limit point is a stationary point of (3.17). The sufficient conditions for the limit

points to be stationary are (Theorem 1, [26])

1. Q(X , X̄ t) is continuous in both X and X̄ t ,
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2. At each iteration t, one of the following is true

Q
(
xi,t+1, x̄i,t)< Q

(
x̄i,t , x̄i,t) (3.61)

x̄i,t+1 = argmin
xi≥03

Q
(
xi, x̄i,t) . (3.62)

The function Q(X , X̄ t) is continuous in X , trivially, and in X̄ t if the functional dependence of

pR (x̄i,t [m]
)

on x̄i,t [m] has the form (3.41).

In order to show that the descent condition is satisfied, we begin by noting that Q
(
xi, x̄i,t)

is strictly convex with respect to xi if the conditions of Theorem 4 are satisfied. This can be seen

by examining the expression for the Hessian of Q
(
xi, x̄i,t) in (3.46). If D is full rank, then DT D is

positive definite. In addition, the matrix

λz(z−1)diag
(

Ω
t [:, i]�

(
xi,s)z−2

)
(3.63)

is PSD because z≥ 1. Therefore, the Hessian of Q
(
xi, x̄i,t) is positive definite if the conditions of

Theorem 4 are satisfied.

Since S = 1, x̄i,t+1 is generated by (3.20) with X s replaced by X̄ t . This update has two

possibilities:

1. x̄i,t+1 6= x̄i,t , or

2. x̄i,t+1 = x̄i,t .

If condition (1) is true, then (3.61) is satisfied because of the strict convexity of Q
(
xi, x̄i,t) and

the monotonicity guarantee of Theorem 1.

It will now be shown that if condition (2) is true, then x̄i,t+1 must satisfy (3.62). Since

Q
(
xi, x̄i,t) is convex, any x̄i,t+1 which satisfies the Karush-Kuhn-Tucker (KKT) conditions associ-

3As in the proof of Theorem (1), we omit the − logu
(
xi[m]

)
term from Q

(
xi, x̄i,t

)
and explicitly enforce the

non-negativity constraint on xi.
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ated with (3.62) must be a solution to (3.62) [97]. The KKT conditions associated with (3.62) are

given by [85]:

xi[m]≥ 0 (3.64)(
OQ
(
xi, x̄i,t)) [m]≥ 0 (3.65)

xi[m]
(
OQ
(
xi, x̄i,t)) [m] = 0 (3.66)

for all m. The expression for OQ
(
xi, x̄i,t) is given in (3.45). For any m such that x̄i,t+1[m] > 0,(

DT X
)
[m, i] =

(
DT DX̄ t+1) [m, i]+λΩt [m, i]

(
X̄ t+1
(i, j)

)z−1
because X̄ t+1 was generated by (3.20).

This implies that

(
OQ
(
xi, x̄i,t)∣∣∣∣

xi=x̄i,t+1

)
[m] = 0

for all m such that x̄i,t+1[m]> 0. Therefore, all of the KKT conditions are satisfied.

For any i such that x̄i,t+1[m] = 0, (3.64) and (3.66) are trivially satisfied. To see that (3.65)

is satisfied, first consider the scenario where z = 1. In this case,

lim
x̄i,t+1[m]→0

(
OQ
(
xi, x̄i,t)∣∣∣∣

xi=x̄i,t+1

)
[m]

=1 lim
x̄i,t+1[m]→0

(
DT Dx̄t+1) [m]+

λ
(
x̄i,t+1[m]

)0

τ+(x̄i,t+1[m])
1 −
(
DT X

)
[m]

= c+
λ

τ
−
(
DT x

)
[m]≥2 0

where c≥ 0, (1) follows from the assumption on pR (xi[m]
)

having a power exponential form, and

(2) follows from the assumptions that the elements of DT x are bounded and τ≤ λ/maxm,i
(
DT X

)
[m, i].
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When z = 2,

lim
x̄i,t+1[m]→0

lim
τ→0

(
OQ
(
xi, x̄i,t)∣∣∣∣

xi=x̄i,t+1

)
i

=1 lim
x̄i,t+1[m]→0

(
DT Dx̄t+1) [m]+

2λ

x̄i,t+1[m]
−
(
DT x

)
[m]

≥2 0

where (1) follows from the assumption on pR (xi[m]
)

having a power exponential form and (2)

follows from the assumption that the elements of DT X are bounded. Therefore, (3.65) is satisfied

for all m such that x̄i,t+1[m] = 0. To conclude, if x̄i,t+1 satisfies x̄i,t+1 = x̄i,t , then it satisfies the

KKT conditions and must be solution of (3.62).

3.9.6 Proof of Corollary 3

In the S-NMF setting (ζD = (3.8), ζX = (3.20)), this result follows from the application

of (Theorem 1 [70]) to the D update stage of Algorithm 2 and the application of Theorem 1 to the

X update stage of Algorithm 2. In the S-NMF-D setting (ζD = (3.20), ζX = (3.20)), the result

follows from the application of Theorem 1 to each step of Algorithm 2. In both cases,

LNMF(D̄t , X̄ t)≥ LNMF(D̄t+1, X̄ t)≥ LNMF(D̄t+1, X̄ t+1).

3.9.7 Proof of Corollary 5

The existence of a limit point (D̄∞, X̄∞) is guaranteed by Corollary 4. It is sufficient to

show that LNMF(·, ·) is stationary with respect to D̄∞ and X̄∞ individually. The result follows by

application of Theorem 4 to D̄∞ and X̄∞.

Chapter 3, in full, is a reprint of material published in the article Igor Fedorov, Alican

Nalci, Ritwik Giri, Bhaskar D. Rao, Truong Q. Nguyen, and Harinath Garudadri, “A Unified
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Framework for Sparse Non-Negative Least Squares using Multiplicative Updates and the Non-

Negative Matrix Factorization Problem,” Signal Processing, 2018. I was the primary author and

B. D. Rao supervised the research.
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Chapter 4

Multimodal Sparse Bayesian Dictionary

Learning

4.1 Introduction

Due to improvements in sensor technology, acquiring vast amounts of data has become

relatively easy. Given the ability to harvest data, the task becomes how to extract relevant

information from the data. The data is often multimodal, which introduces novel challenges in

learning from it. Multimodal dictionary learning has become a popular tool for fusing multimodal

information [103, 104, 105, 106, 30].

Let L and J denote the number of data points for each modality and number of modalities,

respectively. Let Y j =

[
y1

j · · · yL
j

]
∈ RN j×L denote the data matrix for modality j, where yi

j

denotes the i’th data point for modality j. We use uppercase symbols to denote matrices and

lowercase symbols to denote the corresponding matrix columns. The multimodal dictionary

learning problem consists of estimating dictionaries D j ∈ RN j×M j given data Yj such that Yj ≈

D jX j ∀ j. We focus on overcomplete dictionaries because they are more flexible in the range

of signals they can represent [37]. Since yi
j admits an infinite number of representations under
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overcomplete D j, we seek sparse xi
j [10].

Without any further constraints, the multimodal dictionary learning problem can be viewed

as J independent unimodal problems. To fully capture the multimodal nature of the problem,

the learning process must be adapted to encode the prior knowledge that each set of points

yi =
{

yi
j

}J

j=1
is generated by a common source which is measured J different ways, where

[J] = {1, · · · ,J}. For any variable x, x denotes
{

x j
}J

j=1. For instance, in [107], low and high

resolution image patches are modeled as yi
1 and yi

2, respectively, and the association between

yi
1 and yi

2 is enforced by the constraint xi
1 = xi

2. The resulting multimodal dictionary learning

problem, referred to here as `1DL, is to solve [17]

argmin
D̃,X

∥∥Ỹ − D̃X
∥∥2

F +λ‖X‖1 (4.1)

Ỹ =

[
Y T

1 · · · Y T
J

]T

, D̃ =

[
DT

1 · · · DT
J

]T

,

where ‖·‖F is the Frobenius norm, ‖X‖1 = ∑i∈[L]
∥∥xi
∥∥

1, and the `1-norm is used as a convex

proxy to the `0 sparsity measure. In a classification framework, (4.1) can be viewed as learning a

multimodal feature extractor, where the optimizer is the multimodal representation of yi that is

fed into a classifier [103, 108, 104]. There are 4 significant deficiencies associated with using

`1DL for multimodal dictionary learning:

D1 While using the same sparse code for each modality establishes an explicit relationship

between the dictionaries for each modality, the same coefficient values may not be able to

represent different modalities well.

D2 Some data modalities are often less noisy than others and the algorithm should be able

to leverage the clean modalities to learn on the noisy ones. Since (4.1) constrains λ to be

the same for all modalities, it is unclear how the learning algorithm can incorporate prior

knowledge about the noise level of each modality.

67



D3 The formulation in (4.1) constrains M j = M ∀ j, for some M. Since dimensionality can vary

across modalities, it is desirable to allow M j to vary.

D4 The choice of λ is central to the success of approaches like (4.1). If λ is chosen too high,

the reconstruction term is ignored completely, leading to poor dictionary quality. If λ is

chosen too low, the sparsity promoting term is effectively eliminated from the objective

function. Extensive work has been done to approach this hyperparameter selection problem

from various angles. Two popular approaches include treating the hyperparameter selection

problem as an optimization problem of its own [109, 110] and grid search, with the latter

being the prevailing strategy in the dictionary learning community [17, 13]. In either

case, optimization of λ involves evaluating (4.1) at various choices of λ, which can be

computationally intensive and lead to suboptimal results in practice.

Next, we review relevant works from the dictionary learning literature, highlighting each

method’s benefits and drawbacks in light of D1-D4. In past work, M j = M ∀ j, thus exhibiting

D3. One of the seminal unimodal dictionary learning algorithms is K-SVD, which optimizes[10]

argmin
D, {‖xi‖0≤s}L

i=1

‖Y −DX‖2
F , (4.2)

where s denotes the desired sparsity level and modality subscripts have been omitted for brevity.

The K-SVD algorithm proceeds in a block-coordinate descent fashion, where D is optimized while

holding X fixed and vice-versa. The update of X involves a greedy `0 pseudo-norm minimization

procedure [5]. In a multimodal setting, K-SVD can be naively adapted, where Y is replaced by Ỹ

and D by D̃ in (4.2), as in (4.1).

One recent approach, referred to here as Joint `0 Dictionary Learning (J`0DL), builds
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upon K-SVD for the multimodal dictionary learning problem and proposes to solve [106]

argmin{
{χi

j=χi}J
j=1

,|χi|≤s
}L

i=1

J

∑
j=1

λ j
∥∥Yj−D jX j

∥∥2
F (4.3)

where χi
j denotes the support of xi

j. The J`0DL algorithm tackles D1-D2 by establishing a

correspondence between the supports of the sparse codes for each modality and by allowing

modality specific regularization parameters, which allow for encoding prior information about

the noise level of yi
j. On the other hand, J`0DL does not address D3 and presents even more

of a challenge than `1DL with respect to D4 since the size of the grid search needed to find λ

grows exponentially with J. Another major drawback of J`0DL is that, since (4.3) has an `0 type

constraint, solving it requires a greedy algorithm which can produce poor solutions, especially if

some modalities are much noisier than others [111].

The multimodal version of (4.1), referred to here as Joint `1 DL (J`1DL), seeks [32]

argmin
D,X

1
2 ∑

i∈[L], j∈[J]

∥∥yi
j−D jxi

j
∥∥2

2 +λ ∑
i∈[L]

∥∥Π
i∥∥

12 (4.4)

where Πi =

[
xi

1 · · · xi
J

]
,
∥∥Πi
∥∥

12 = ∑m∈[M]

∥∥Πi[m, :]
∥∥

2 , and Πi[m, :] denotes the m’th row of

Πi. The `12-norm in (4.4) promotes row sparsity in Πi, which promotes xi that share the same

support. Like all of the previous approaches, J`1DL adopts a block-coordinate descent approach

to solving (4.4), where an alternating direction method of multipliers algorithm is used to compute

the sparse code update stage [112]. While J`1DL makes progress toward addressing D1, it does

so at the cost of sacrificing the hard constraint that xi share the same support. The authors of [32]

attempt to address D2 by relaxing the constraint on the support of xi even more, but we will not

study this approach here because it moves even further from the theme of this work. In addition,

J`1DL does not address D3-D4.

One desirable property of dictionary learning approaches is that they be scalable with
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respect to the size of the dictionary as well as the dataset. When L becomes large, the algorithm

must be able to learn in a stochastic manner, where only a subset of the data samples need to

be processed at each iteration. Stochastic learning strategies have been studied in the context of

`1DL [17, 12] and J`1DL [32], but not for K-SVD or J`0DL. Likewise, the algorithm should be

able to accommodate large N j.

When the dictionary learning algorithm is to be used as a building block in a classification

framework, class information can be incorporated within the learning process. In a supervised

setting, the input to the algorithm is {Y ,H}, where H =

[
h1 · · · hL

]
∈BC×L is the binary class

label matrix for the dataset and C is the number of classes. Each hi is the label for the i’th data

point in a one-of-C format. This type of dictionary learning is referred to as task-driven [32, 12],

label consistent [13], or discriminative [14] and the goal is to learn a dictionary D j such that xi
j is

indicative of the class label. For instance, discriminative K-SVD (D-KSVD) optimizes [14]

argmin
D,W,{‖xi‖0≤s}L

i=1

‖Y −DX‖2
F +λsu ‖H−WX‖2

F (4.5)

where W can be viewed as a linear classifier for xi.

Task-driven `1DL (TD-`1DL) optimizes [12]

argmin
D,W

Ex [lsu(h,W,x∗(y,D)]+ν‖W‖2
F (4.6)

where Ex[·] denotes the expectation with respect to p(x), lsu(·) denotes the supervised loss

function1, x∗(y,D) denotes the solution of (4.1) with the dictionary fixed to D, and the last term

provides regularization on W to avoid over-fitting.

1Examples of supervised losses include the squared loss in (4.5), logistic loss, and hinge loss [12].
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Task-driven J`1DL (TD-J`1DL) optimizes [32]

argmin
D,W

Ex

[
∑
j∈[J]

lsu(h j,Wj,x∗j(y j,D j)

]
+ν ∑

j∈[J]

∥∥Wj
∥∥2

F

where x∗j(y j,D j) denotes the j’th modality sparse code in the optimizer of (4.4) with fixed

dictionaries.

4.1.1 Contributions

We present the multimodal sparse Bayesian dictionary learning algorithm (MSBDL).

MSBDL is based on a hierarchical sparse Bayesian model, which was introduced in the context

of Sparse Bayesian Learning (SBL) [29, 49, 27] as well as dictionary learning [29], and has since

been extended to various structured learning problems [33, 25, 88]. We presented initial work

on this approach in [30], where we made some progress towards tackling D1-D2. Here, we go

beyond our preliminary work in a number of significant ways. We address D1-D2 to a fuller

extent by offering scalable and task-driven variants of MSBDL. More importantly, we tackle

D3-D4, where our solution to D4 is crucial to the ability of MSBDL to address D1 and resolves a

major hyperparameter tuning issue in [30]. By resolving D3, the present work represents a large

class of algorithms that contains [30] as a special case. In summary:

1. We extend MSBDL to address D3. To the best of our knowledge, MSBDL is the first

dictionary learning algorithm capable of learning differently sized dictionaries.

2. We extend MSBDL to the task-driven learning scenario.

3. We present scalable versions of MSBDL.

4. We optimize algorithm hyperparameters during learning, obviating the need for grid search,

and conduct a theoretical analysis of the approach.

71



γ[m]

x1[m] y1 D1

x2[m] y2 D2

m ∈ [M]

Figure 4.1: Graphical model for two modality MSBDL.

5. We show that multimodal dictionary learning offers provable advantages over unimodal

dictionary learning.

4.2 Proposed Approach

The graphical model for MSBDL is shown in Fig. 4.1. The signal model is given by

y j = D jx j + v j, v j ∼ N
(
0,σ2

j I
)

(4.7)

where N(·) denotes a Gaussian distribution and the noise variance is allowed to vary among

modalities. In order to promote sparse xi
j, we assume a Gaussian Scale Mixture (GSM) prior

on each element of x j [49, 27, 50, 113]. The GSM prior is a popular class of distributions

whose members include many sparsity promoting priors, such as the Laplacian and Student’s-t

[49, 27, 50, 113, 24, 7]. The remaining task is to specify the conditional density of x j given γ.

One option is to use what we refer to as the one-to-one prior [30]:

p
(
x j|γ
)
= ∏

m∈[M]

p
(
x j[m]|γ[m]

)
= ∏

m∈[M]

N(0,γ[m]) (4.8)

where x j[m] denotes the m’th element of x j and the choice of p(γ[m]) determines the marginal

density of x j[m]. We assume a non-informative prior on γ j[m] [49]. As will be shown in Section
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4.2.2, the conditional distribution in (4.8) represents a Bayesian realization of the constraint that

x share the same support. The prior in (4.8) still constrains M j = M ∀ j, but this restriction will

be lifted in Section 4.5. When J = 1, this model is identical to the one used in [29].

4.2.1 Inference Procedure

We adopt an empirical Bayesian inference strategy to estimate θ =
{
D,
{

γi}L
i=1

}
by

optimizing [35]

argmax
θ

log p(Y |θ) = argmax
θ

∑
j∈[J]

log p
(
Y j|θ

)
(4.9)

p(Y |θ) = ∏
i∈[L], j∈[J]

p
(
yi

j|θ
)
, p
(
yi

j|θ
)
= N(0,Σi

y) (4.10)

Σ
i
y, j = σ

2
j I+D jΓ

iDT
j , Γ

i = diag(γi). (4.11)

We use Expectation-Maximization (EM) to maximize (4.9), where {X,Y ,θ} andX are treated as

the complete and nuisance data, respectively [22]. At iteration t, the E-step computes Q(θ,θt) =〈
log p

(
Y ,X,D,

{
γi}L

i=1

)〉
, where 〈·〉 denotes the expectation with respect to p(X|Y ,θt), and

θt denotes the estimate of θ at iteration t. Due to the conditional independence properties of the

model, the posterior factors over i and

p
(
xi

j|yi
j,θ
)
= N

(
µi

j,Σ
i
x, j
)

(4.12)

Σ
i
x, j =

(
σ
−2
j DT

j D j +
(
Γ

i)−1
)−1

(4.13)

µi
j = σ

−2
j Σ

i
x, jD

T
j yi

j. (4.14)
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In the M-step, Q(θ,θt) is maximized with respect to θ. In general, the M-step depends on the

choice of p(x|γ). For the choice in (4.8), the M-step becomes

(
γ

i[m]
)t+1

= J−1
J

∑
j=1

Σ
i
x, j[m,m]+

(
µi

j[m]
)2

(4.15)

Dt+1
j = Y jUT

j

(
U jUT

j + ∑
i∈[L]

Σ
i
x, j

)−1

(4.16)

U j =

[
µ1

j · · · µL
j

]
. (4.17)

4.2.2 How does MSBDL solve deficiency D1?

One consequence of the GSM prior is that many of the elements of γi converge to 0 during

inference [27]. When γi[m] = 0, p
(

xi
j[m]|yi

j,γ
i
)

reduces to δ
(
x j[m]

)
for all j, where δ(·) denotes

the Dirac-delta function [27]. Since the only role of x in the inference procedure is in the E-step,

where we take the expectation of the complete data log-likelihood with respect to p
(

xi
j|yi

j,γ
i
)

, the

effect of having p
(

xi
j[m]|yi

j,γ
i
)
= δ

(
xi

j[m]
)

is that the E-step reduces to evaluating the complete

data log-likelihood at xi
j[m] = 0,∀ j. Therefore, upon convergence, the proposed approach exhibits

the property that xi share the same support.

4.2.3 Connection to J`1DL

Suppose that the conditional distribution in (4.8) is used with γ[m] ∼ Ga(J/2,1) ∀m,

where Ga(·) refers to the Gamma distribution. It can be shown that [114]

p
(
xi
)
= c ∏

m∈[M]

K0

(∥∥∥∥[xi
1[m] · · · xi

J[m]

]∥∥∥∥
2

)
,

where c is a normalization constant and K0(·) denotes the modified Bessel function of the second

kind and order 0. For large x, K0(x)≈ πexp(−x)/
√

2πx [115]. In the following, we replace K0(x)
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by its approximation for purposes of exposition. Under the constraint σ j = 0.5λ ∀ j, the MAP

estimate of {D,X} is given by

argmin
D,X

∑
i∈[L], j∈[J]

∥∥yi
j−D jxi

j
∥∥2

2 +λ ∑
i∈[L]

∥∥Π
i∥∥

12+

0.5λ ∑
i∈[L],m∈[M]

log
∥∥Π

i[m, :]
∥∥

2 .

(4.18)

This analysis exposes a number of similarities between MSBDL and J`1DL. If we ignore the last

term in (4.18), J`1DL becomes the MAP estimator of {D,X} under the one-to-one prior in (4.8).

If we keep the last term in (4.18), the effect is to add a Generalized Double Pareto prior on the `2

norm of the rows of Πi [7, 116].

At the same time, there are significant differences between MSBDL and J`1DL. The

J`1DL objective function assumes σ j is constant across modalities, which can lead to a strong

mismatch between data and model when the dataset consists of sources with disparate noise

levels. In contrast to J`1DL, MSBDL enjoys the benefits of evidence maximization [117, 35, 7],

which naturally embodies ”Occam’s razor” by penalizing unnecessarily complex models and

searches for areas of large posterior mass, which are more informative than the mode when the

posterior is not well-behaved.

4.3 Complete Algorithm

So far, it has been assumed that σ is known. Although it is possible to include σ in θ and

estimate it within the evidence maximization framework in (4.9), we experimental observe that σ

decays very quickly and the algorithm tends to get stuck in poor stationary points. An alternative

approach is described next. Consider the MAP estimate of x j given y j,D j:

argmin
x j

∥∥y j−D jx j
∥∥2

2−2σ
2
j log p

(
x j
)
. (4.19)
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The estimator in (4.19) shows that σ j can be thought of as a regularization parameter which

controls the trade-off between sparsity and reconstruction error. As such, we propose to anneal

σ j. The motivation for annealing σ j is that the quality of D j increases with t, so giving too much

weight to the reconstruction error term early on can force EM to converge to a poor stationary

point.

Let σ0
j > σ∞ ≥ 0,ασ < 1, σ̃

t+1
j = max(σ∞,ασσt

j). The proposed annealing strategy can

then be stated as

σ
t+1
j =


σ̃

t+1
j if log p

(
Y j|θt+1, σ̃t+1

j

)
> log p

(
Yj|θt+1,σt

j

)
σt

j else.
(4.20)

Although it may seem that we have replaced the task of selecting σ with that of selecting{
σ0,ασ,σ

∞
}

, we claim that the latter is easy to select and provide both theoretical (Section

4.7) and experimental (Section 4.8) validation for this claim. The main benefit of the proposed

approach is that it essentially traverses a continuous space of candidate σ without explicitly

performing a grid search, which would be intractable as J grows. The parameter σ∞ can be set

arbitrarily small and σ0 can be set arbitrarily large. The only recommendation we make is to set

σ0
j > σ0

j′ if modality j is a-priori believed to be more noisy than modality j′.

Section 4.7 studies the motivation for and properties of the annealing strategy in greater

detail. In practice, the computation of p
(

Y j|θt+1, σ̃t+1
j

)
is costly because it requires the computa-

tion of the sufficient statistics in (4.11) for all L data points and J modalities. Instead, we replace

the condition in (4.20) by checking whether decreasing σ j should increase p
(
Y j|θt+1,σt). This

check is performed by checking the sign of the first derivative of p
(
Y j|θt+1,σt), replacing (4.20)
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Require: Y ,σ0,σ∞,ασ

1: while σ not converged do
2: whileD not converged do
3: for i ∈ [L] do
4: Update Σi

x,µ
i,γi using (4.13), (4.14), and (4.15)

5: end for
6:

{
Update D j using (4.16) if σ j not converged

}J
j=1

7: end while
8:

{
Update σ j using (4.21) if σ j not converged

}J
j=1

9: end while

Figure 4.2: MSBDL algorithm for the one-to-one prior in (4.8).

with

σ
t+1
j =


σ̃

t+1
j if ∂ log p

(
Y j|θt+1,σt

j

)
/∂σt

j < 0

σt
j else.

(4.21)

It can be shown that (4.21) can be computed essentially for free by leveraging the sufficient

statistics computed in the θ update step2. The complete MSBDL algorithm is summarized in Fig.

4.2. In practice, each D j is normalized to unit `2 column norm at each iteration to prevent scaling

instabilities.

4.3.1 Dictionary Cleaning

We adopt the methodology in [10] and “clean” each D j every T iterations. Cleaning

D j means removing atoms which are aligned with one or more other atoms and replacing the

removed atom with the element of Yj which has the poorest reconstruction under D j. A given

atom is also replaced if it does not contribute to explaining Yj, as measured by the energy of the

corresponding row of U j.

2See Supplemental Material.
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4.4 Scalable Learning

When L is large, it is impractical to update the sufficient statistics for all data points at

each EM iteration. To draw a parallel with stochastic gradient descent (SGD), when the objective

function is a sum of functions of individual data points, one can traverse the gradient with respect

to a randomly chosen data point at each iteration instead of computing the gradient with respect to

every sample in the dataset. In the dictionary learning community, SGD is often the optimization

algorithm of choice because the objective function is separable over each data point [17, 12, 32].

In addition, as N j grows, the computation of the sufficient statistics in (4.13)-(4.14) can become

intractable. In the following, we propose to address these issues using a variety of modifications

of the MSBDL algorithm from Section 4.2. The proposed methods also apply to priors other than

the one in (4.8) 3.

4.4.1 Scalability with respect to the size of the dataset

In the following, we present two alternatives to the EM MSBDL algorithm to achieve

scalability with respect to L. The first proposed approach, referred to here as Batch EM, computes

sufficient statistics only for a randomly chosen subset φ= {i1, · · · , iL0} at each EM iteration, where

L0 denotes the batch size. The M-step consists of updating {γi}i∈φ using (4.15) and updating D j

using (4.16), with the exception that only the sufficient statistics from i ∈ φ are employed.

Another stochastic inference alternative is called Incremental EM, which is reviewed in

the Appendix [118]. In the context of MSBDL, Incremental EM is tantamount to an inference

procedure which, at each iteration, randomly selects a subset φ of points and updates the sufficient

statistics in (4.13)-(4.14) for i ∈ φ. During the M-step, the hyperparameters {γi}i∈φ are updated.

The dictionaries D j are updated using (4.16), where the update rule depends on sufficient statistics

computed for all L data points, only a subset of which have been updated during the given iteration.

3See Section 4.5

78



Table 4.1: CC, MC, L0, and dNe denote worst case computational complexity, worst case
memory complexity, batch size, and a quantity which is upperbounded by N, respectively.

EM Type µ/Σx CC MC
MSBDL Exact Exact LN3 LM2

MSBDL-1 Incremental Exact L0N3 LM2

MSBDL-2 Incremental Approximate L0N2dNe LM
MSBDL-3 Batch Exact L0N3 L0M2

MSBDL-4 Batch Approximate L0N2dNe L0M

L0N2dNe L0N3

L0M

LM

L0M2

LM2

MSBDL-2

MSBDL-1

MSBDL-4

MSBDL-3

CC

M
C

Figure 4.3: Visualization of worst-case computational and memory complexity per modality
and EM iteration of the proposed approaches.

The taxonomy of MSBDL algorithms is visualized in Fig. 4.3.

4.4.2 Scalability with respect to the size of the dictionary

In order to avoid the inversion of the N j×N j matrix4 required to compute (4.13), we use

the conjugate gradient algorithm to compute µi
j and approximate Σi

x, j by

Σ
i
x, j ≈

(
diag

(
σ
−2DT

j D j +
(
Γ

i)−1
))−1

(4.22)

where, in this case, diag(·) denotes setting the off-diagonal elements of the input to 0 [119, 120].

4Due to the matrix inversion lemma, (4.13) can be computed using Γi−ΓiDT
j

(
σ2

j I+D jΓ
iDT

j

)−1
D jΓ

i.
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x1[k]

x2[m]

m ∈T k

γB[k]

(a)

x1[k]

x2[m]

γ1[m]

γ2[m]

m ∈T k

(b)

Figure 4.4: Prototype branches for the atom-to-subspace (4.4a) and hierarchical sparsity (4.4b)
models.

Table 4.1 shows a taxonomy of MSBDL algorithms considered using exact or incremen-

tal EM and exact or approximate computation of (4.13)-(4.14), along with the corresponding

worst case computational and memory complexity per EM iteration. The Appendix provides a

visualization of the difference between the proposed algorithms.

4.5 Modeling More Complex Relationships

The drawback of the one-to-one prior in (4.8) is that it constrains M j = M ∀ j. In the

following, we propose two models which allow for M j to be modality-dependent. For ease of

exposition, we set J = 2, but the models we describe can be readily expanded to J > 2. We

propose to organize x into a tree with K disjoint branches. We adopt the convention that the

elements of x1 and x2 form the roots and leaves of the tree, respectively5. The root of the k’th

branch is x1[k] and the leaves are indexed by T k ⊆ [M2]. The defining property of the models we

propose is the relationship between the sparsity pattern of the root and leaf levels.

4.5.1 Atom-to-subspace sparsity

The one-to-one prior in (4.8) can be viewed as linking the one-dimensional subspaces

spanned by dm
1 and dm

2 for m ∈ [M]. Whenever dm
1 is used to represent y1, dm

2 is used to represent

5We adopt this convention without loss of generality since the modalities can be re-labeled arbitrarily.
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y2, and vice-versa. The extension to the multi-dimensional subspace case stipulates that if dk
1 is

used to represent y1, then
{

dm
2
}

m∈T k is used to represent y2, and vice-versa. This model does not

constrain |T k| to be the same for all k, such that M2 can be chosen independently of M1.

Let γB ∈ RK
+, in contrast to Section 4.2 where γ ∈ RM

+ . We encode the atom-to-subspace

sparsity prior by assigning a single hyperparameter γB[k] to each branch k. The distribution

p(x|γB) is then given by

∏
k∈[K]

N(x1[k];0,γB[k]) ∏
m∈T k

N(x2[m];0,γB[k]) . (4.23)

The marginal prior on x under γB[k]∼ IGa
(

τ

2 ,
τ

2

)
takes the form:

p(x) = ∏
k∈[K]

ST


∥∥∥∥∥∥∥
 x1[k]

x2
[
T k]


∥∥∥∥∥∥∥

2

2

;τ

 (4.24)

where x2
[
T k] is shorthand for the the elements of x2 indexed by T k and ST (·) denotes the

Student’s-t distribution.

Fig. 4.4a shows a prototype branch under the atom-to-subspace prior. Inference for the

prior in (4.23) proceeds in much the same way as in Section 4.2.1. The form of the marginal

likelihood in (4.10) and posterior in (4.12) remain the same, with the exception that Σi
y, j and Σi

x, j

are re-defined to be

Σ
i
y, j = σ

2
j I+D jΓ

i
jD

T
j (4.25)

Σ
i
x, j =

(
σ
−2
j DT

j D j +
(
Γ

i
j
)−1
)−1

,Γi
1 = diag(γi

B),

where Γi
2 is a diagonal matrix whose [m,m]’th entry is γi

B[k] for m ∈ T k. The update of γi
B is
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given by

Σi
x,1[m,m]+

(
µi

1[m]
)2

+∑m∈T k Σi
x,2[m,m]+

(
µi

2[m]
)2

1+ |T k|
,

while the update of D j remains identical to (4.16). There are many ways to extend the atom-

to-subspace prior for J > 2, depending on the specific application. One possibility is to simply

append more branches to the root at x1[k] corresponding to coefficients from modalities j > 2.

One problem is that, for |T k|> 1, the atoms of D2 indexed by T k are not identifiable.

The reason for the identifiability issue is that D2 appears in the objective function in (4.10) only

through the D2Γ2DT
2 term in (4.25), which can be written as

D2Γ2DT
2 = ∑

k∈[K]

γB[k] ∑
m∈T k

dm
2 (dm

2 )
T . (4.26)

Therefore, any D
′
2 which satisfies ∑m∈T k d′m2

(
d′m2
)T

= ∑m∈T k dm
2
(
dm

2
)T for all k achieves the

same objective function value as D2. Since the objective function is agnostic to the individual

atoms of D2, the performance of this model is severely upper-bounded in terms of the ability to re-

cover D2. In the following, we propose an alternative model which circumvents the identifiability

problem.

4.5.2 Hierarchical Sparsity

In this section, we propose a model which allows the root of each branch to control the

sparsity of the leaves, but not vice-versa. Specifically, we stipulate that if x1[k] = 0, then x2[m] =

0 ∀m ∈T k. Hierarchical sparsity was first studied in [121, 122, 123] and later incorporated into

a unimodal dictionary learning framework in [124]. Later, Bayesian hierarchical sparse signal

recovery techniques were developed, which form the basis for the following derivation [125, 126].

From an optimization point of view, hierarchical sparsity can be promoted through a
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composite regularizer [123]. In this case, the regularizer could6 take the form

∑
k∈[K],m∈T k

∥∥∥∥[x1[k] x2 [m]

]∥∥∥∥
2
+ |x2[m]|. (4.27)

As described in [123], the key to designing a composite regularizer for a given root-leaf pair is to

measure the group norm of the pair along with the energy of the leaf alone. The combination of

the group and individual norms serve two purposes which, jointly, promote hierarchical sparsity

[123]:

1. it is possible that x2[m] = 0,m ∈T k, without requiring x1[k] = 0, and

2. the infinitesimal penalty on x1[k] deviating from 0 tends to 0 for |x2[m]|> 0,m ∈ T k.

In a Bayesian setting, we can mimic the effect of the regularizer in (4.27) through an

appropriately defined prior on x. Let

x̃ j = S jx j, S1 ∈ BM2×M1, S2 =

[
I I

]T

∈ B2M2×M1 (4.28)

where S1 is a binary matrix such that S1[m,k] = 1 if and only if m ∈ T k. Let R j be a diagonal

matrix such that ST
j S jR j = I7 and define x̂ j = S jR jx j. Let γ j ∈ RM2 ∀ j and

p(x|γ) = N(x̂1;0,Γ1)N(x̂2;0,Γ2) , (4.29)

where Γ1 = diag(γ1) and Γ2 = diag

([
γT

1 γT
2

]T
)

. Marginalizing over γj for γ j[m]∼ IGa
(

τ

2 ,
τ

2

)
,

6The exact form of the regularizer depends on how the energy in a given group is measured.
7A diagonal R j is guaranteed to exist because ST

j S j is itself a diagonal matrix.
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the prior on x turns out to be

p(x) = ∏
k∈[K],m∈T k

ST


∥∥∥∥∥∥∥
 x1[k]

x2 [m]


∥∥∥∥∥∥∥

2

2

;τ

ST
(
x2[m]2;τ

)
. (4.30)

A prototype branch for the hierarchical sparsity prior is shown in Fig. 4.4b. To see how

this model leads to hierarchical sparsity, observe that

p(x1[k]|γ) = N(0,γ1[k])

p(x2[m]|γ) = N

(
0,
(

γ
−1
1 [k]+ γ

−1
2 [m]

)−1
) (4.31)

for m ∈T k. If we infer that γ1[k] = 0, then the prior on both x1[k] and x2[m],∀m ∈T k, reduces

to a dirac-delta function, i.e. if the root is zero, then the leaves must also be zero. On the other

hand, if γ2[m] is inferred to be 0, only the prior on γ2[m] is affected, i.e. leaf sparsity does not

imply root sparsity.

Inference for the tree-structured model proceeds in a similar fashion to that shown in

Section 4.2.1, with a few variations. The goal is to optimize (4.9) through the EM algorithm. The

difference here is that we use
{
X̂,Y ,θ

}
and X̂ as the complete and nuisance data, respectively.

In order to carry out inference, we must first find the posterior density p
(
X̂|Y ,θ

)
. It is helpful

to first derive the signal model in terms of x̂ [125]:

p
(
y j|D j, x̂ j,σ j

)
= N

(
A jST

j x̂ j,σ
2
j I
)
. (4.32)
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Using (4.32), it can be shown that

p
(
x̂i

j|yi
j,θ
)
= N

(
µi

x̂, j,Σ
i
x̂, j
)

(4.33)

Σ
i
x̂, j =

(
σ
−2
j S jDT

j D jST
j +
(
Γ

i
j
)−1
)−1

(4.34)

µi
x̂, j = σ

−2
j Σ

i
x̂, jD jST

j y j. (4.35)

The likelihood function itself is different from (4.10)-(4.11) and is given by p
(

yi
j|θ
)
=N

(
0,Σi

ŷ, j

)
,

where Σi
ŷ, j = σ2

j I+D jST
j Γi

jS jDT
j . The EM update rules are given by

(
γ

i
j[m]
)t+1

=


0.5∑

2
j′=1 Σi

x̂, j′[m,m]+
(

µi
x̂, j′[m]

)2
if m≤M2

Σi
x̂, j[m,m]+

(
µi

x̂, j[m]
)2

else.
(4.36)

(
D j
)t+1

= YjUT
j S j

(
ST

j

(
U jUT

j + ∑
i∈[L]

Σ
i
x̂, j

)
S j

)−1

. (4.37)

Extending the hierarchical sparsity prior for J > 2 is straightforward and depends on the specific

application being considered. It is possible to simply append more leaves to each root x1[k]

corresponding to coefficients from modality j > 2. Another possibility is to treat each x2[m] as

itself a root with leaves from x3, assigning a hyperparameter to each x2-x3 root-leaf pair as well

as to each x3 leaf, and repeating the process until all modalities are incorporated into the tree.

4.5.3 Avoiding Poor Stationary Points

For both the atom-to-subspace and hierarchical sparsity models, we experimentally ob-

serve that MSBDL tends to get stuck in undesirable stationary points. In the following, we

describe the behavior of MSBDL in these situations and offer a solution. Suppose that data

is generated according to the atom-to-subspace model, where D j denotes the true dictionary

for modality j. In this scenario, we experimentally observe that MSBDL performs well when
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Require: D,U,{T k}k∈[K],Mp,S,ε

1: Let z[m] =
∥∥(STU

)
[m, :]

∥∥2
2 ∀m and

v[k] = argmax
m1,m2∈T k s.t. m1 6=m2

|(dm1)T dm2 |
‖dm1‖2‖dm2‖2

2: while ∃k s.t. v[k]> ε and |T k|> 1 and Mp > 0 do
3: k = argmaxk v[k]
4: Find m = argminm∈T k z[m]
5: Remove column m from D and T k

6: Mp←Mp−1
7: end while
8: while Mp > 0 do
9: Find m = argminm∈T k s.t. |T k|>1 z[m]

10: Remove column m from D and T k

11: Mp←Mp−1
12: end while

Figure 4.5: Pruning algorithm for the learning strategy in Section 4.5.3. Mp denotes the number
of columns to be pruned, S is given by the identity matrix for the atom-to-subspace model and by
S2 in (4.28) for the hierarchical sparsity model, and U denotes the matrix of first order sufficient
statistics.

|T k| = c ∀k. On the other hand, if |T k| varies as a function of k, MSBDL tends to get stuck

in poor stationary points, where the quality of a stationary point is (loosely) defined next. Let

|T k|= 1 for all k except k′, for which |T k′|= 2, i.e. M2 = M1 +1. In this case, MSBDL is able

to recover D1, but recovers only the atoms of D2 which are indexed by T k ∀k 6= k′.

To avoid poor stationary points, we adopt the following strategy. If the tree describing the

assignment of columns of D2 to those of D1 is unbalanced, i.e. |T k| varies with k, then we first

balance the tree by adding additional leaves8. Let M̂2 be the number of leaves in the balanced tree.

We run MSBDL until convergence to generate D̂. Finally, we prune away M̂2−M2 columns of

D̂2 using the algorithm in Fig. 4.5.

8A balanced tree is one which has the same number of leaves for each subtree, or |T k|= c.
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x1[m] y1 D1

hγ[m]

y2 D2x2[m]

W1

W2

m ∈ [M]

Figure 4.6: Graphical model for two modality TD-MSBDL.

4.6 Task Driven MSBDL (TD-MSBDL)

In the following, we describe a task-driven extension of the MSBDL algorithm. For

purposes of exposition, we assume the one-to-one prior in (4.8), but the approach applies

equally to the priors discussed in Section 4.5, as discussed in Section 4.8. To incorporate

task-driven learning, we modify the MSBDL graphical model to the one shown in Fig. 4.6.

We set p
(
h|x j,Wj

)
= N

(
Wjx j,β

2
j I
)

, where β j is the class label noise standard deviation for

modality j. The class label noise standard deviation is modality dependent, affording the model

an extra level of flexibility compared to [32, 13, 12]. The choice of the Gaussian distribution for

the conditional density of h, as opposed to a multinomial or softmax, stems from the fact that

the posterior p
(
x j|y j,h,D j,Wj

)
needed to perform EM remains computable in closed form, i.e.

p
(

xi
j|yi

j,h
i,D j,Wj

)
= N

(
Σ

T D,i
x, j ,µT D,i

j

)
where

Σ
T D,i
x, j =

(
σ
−2
j DT

j D j +β
−2
j W T

j Wj +
(
Γ

i)−1
)−1

(4.38)

µT D,i
j = Σ

T D,i
x, j

(
σ
−2
j DT

j yi
j +β

−2
j W T

j hi
)

(4.39)
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4.6.1 Inference Procedure

We employ EM to optimize

argmax
θT D

log p
(
Y ,H|θT D) (4.40)

where θT D = {θ,W }. It can be shown that p
(
y j,h|x j,θ

T D)= N

([
yT

j hT

]T

;0,ΣT D
y, j

)
where

Σ
T D
y, j =

σ2
j I+D jΓDT

j 0

0 β jI+WjΓW T
j

 . (4.41)

The update rules forD and
{

γi}L
i=1

9 remain identical to (4.15) and (4.16), respectively, with the

exception that the modified posterior statistics shown in (4.38)-(4.39) are used. The update of Wj

is given by

W t+1
j = H

(
UT D

j
)T
(

UT D
j
(
UT D

j
)T

+ ∑
i∈[L]

Σ
T D,i
x, j

)−1

(4.42)

UT D
j =

[
µT D,1

j · · · µT D,L
j

]
. (4.43)

We also find it useful to add regularization in the form of ν∑ j∈[J] ‖Wj‖2
F , leading to the update

rule

W t+1
j =

[
H
(

UT D
j

)T
0

]([
UT D

j

(
UT D

j

)T
+∑i∈[L]Σ

T D,i
x, j

√
νI

])−1

. (4.44)

TD-MSBDL has the same worst-case computational complexity as MSBDL with the benefit of

supervised learning.

9Assuming that the prior in (4.8) is used.
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4.6.2 Complete Algorithm

Supervised learning algorithms are ultimately measured by their performance on test data.

While a given algorithm may perform well on training data, it may generalize poorly to test data10.

To maintain the generalization properties of the model, it is common to split the training data into

a training set {Y ,H} and validation set
{
Y V ,HV}, where the number of training points L does

not necessarily have to equal the number of validation points LV . The validation set is then used

during the training process as an indicator of generalization, as summarized by the following rule

of thumb: Continue optimizing θT D until performance on the validation set stops improving. In

the context of TD-MSBDL, the concept of generalization has a natural Bayesian definition: The

parameter set
{

θT D,β
}

which achieves optimal generalization solves

argmax
θT D∈H ,β

∏
j∈[J]

p
(
HV |θT D,β j

)
, (4.45)

where H denotes the set of solutions to (4.40). Note that p
(
HV |θT D,β j

)
= p

(
HV |Wj,β j

)
, which

is intractable to compute since it requires integrating p
(
hV,i|Wj,γ

V,i,β
)
= N

(
0,β jI+WjΓ

V,iW T
j

)
over γV,i, where ΓV,i = diag(γV,i). As such, we approximate p

(
HV |Wj,β j

)
by p

(
HV |Wj,γ

∗,V,i,β j
)
,

where γ∗,V,i is the output of MSBDL with fixed D j for input data yV,i
j , leading to the tractable

optimization problem

argmax
θT D∈H ,β

∏
j∈[J]

p
(

HV |Wj,
{

γ
∗,V,i}

i∈[LV ]
,β j

)
. (4.46)

What remains is to select β. As β j decreases, TD-MSBDL fits the parameters θT D to the training

data to a larger degree, i.e. the optimizers of (4.40) achieve increasing objective function values.

Since direct optimization of (4.46) over β presents the same challenges as the optimization of

σ, we propose an annealing strategy which proposes progressively smaller values of β j until the

10In the supervised learning community, lack of generalization to test data is commonly referred to as over-fitting
the training data.
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objective in (4.46) stops improving:

β
t+1
j =


β̃

t+1
j if log p

(
HV |Wj,

{
γ∗,V,i

}
i∈[LV ]

, β̃t+1
j

)
> log p

(
HV |Wj,

{
γ∗,V,i

}
i∈[LV ]

,βt
j

)
βt

j else

(4.47)

where β0
j > β∞ ≥ 0,αβ < 1, β̃t+1

j = max(β∞,αββt
j), and we make the same recommendations for

setting β0 and β∞ as σ0 and σ∞ in Section 4.3. Computing (4.47) is computationally intensive

because it requires running MSBDL, so we only update log p
(

HV |Wj,
{

γ∗,V,i
}

i∈[LV ]
,βt

j

)
every

TV iterations. The complete TD-MSBDL algorithm is shown in Fig. 4.7. Given test data Y test
j , we

first run MSBDL with D j fixed and treat µtest,i
j as an estimate of xtest,i

j . The data is then classified

according to argmaxc∈[C]

(
Wjµ

test,i
j

)
[c], where ec refers to the c’th standard basis vector [32].

4.7 Analysis

We begin by analyzing the convergence properties of MSBDL. Note that MSBDL is

essentially a block-coordinate descent algorithm with blocks θ and σ. Therefore, we first analyze

the θ update block, then the σ update block, and finally the complete algorithm. Unless otherwise

specified, we assume a non-informative prior on γ and the one-to-one prior11. While MSBDL

relies heavily on EM, it is not strictly an EM algorithm because of the σ annealing procedure. It

will be shown that MSBDL still admits a convergence guarantee and an argument will be presented

for why annealing σ produces favorable results in practice. Although we focus specifically on

MSBDL, the results can be readily extended to TD-MSBDL, with details omitted for brevity.

Proofs for all results are shown in the Appendix.

11Extension of Theorems 6-10 to the atom-to-subspace and hierarchical priors is straightforward, but omitted for
brevity.
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Require: Y ,Y V ,σ0,β0,σ∞,β∞,H,HV ,ασ,αβ,TV

1: while β not converged do
2: whileD andW not converged do
3: for i ∈ [L] do
4: Update ΣT D,i

x using (4.38)
5: Update µT D,i using (4.39)
6: Update γi using (4.15)
7: end for
8:

{
Update D j using (4.16) if σ j not converged

}J
j=1

9:
{

Update Wj using (4.44) if β j not converged
}J

j=1
10: end while
11:

{
Update σ j using (4.21) if σ j not converged

}J
j=1

12: if modulo(t,TV ) = 0 then
13: for j ∈ [J] do
14: if β j not converged then
15: {γ∗,V,i}i∈LV = MSBDL

(
YV

j ,σ
0
j ,σ j,σ

∞,ασ

)
16: Update β j using (4.47)
17: end if
18: end for
19: end if
20: end while

Figure 4.7: Complete TD-MSBDL algorithm for the prior in (4.8).
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We first prove that the set of iterates {θt}∞

t=1 produced by the inner loop of MSBDL

converge to the set of stationary points of the log-likelihood with respect to θ. This is established

by proving that the objective function is coercive (Theorem 5), which means that {θt}∞

t=1 admits

at least one limit point (Corollary 6), and then proving that limit points are stationary (Theorem

6).

Theorem 5. Let
{

σ j > 0
}J

j=1, let there be at least one j∗ for each m such that
∥∥∥dm

j∗

∥∥∥
2
> 0, and

let ∃i such that γi[m] > 0 for any choice of m. Then, − log p(Y |θ,σ) is a coercive function of

{θ,σ}.

Corollary 6. Let the conditions of Theorem 5 be satisfied. Then, the sequence {θt}∞

t=1 produced

by the inner loop of the MSBDL algorithm admits at least one limit point.

Theorem 6. Let the conditions of Corollary 6 be satisfied, Dt
j be full rank for all t and j, σ be

fixed, and generate {θt}∞
t=1 using the inner loop of MSBDL. Then, {θt}∞

t=1 converges to the set of

stationary points of log p(Y |θ,σ). Moreover, {log p(Y |θ,σ)}∞

t=1 converges monotonically to

log p(Y |θ∗,σ), for stationary point θ∗.

The requirement that Dt
j be full rank is easily satisfied in practice as long as L > N j. Note

that the SBL algorithm in [27] is a special case of MSBDL for fixedD and J = 1. To the best of

our knowledge, Theorem 6 represents the first result in the literature guaranteeing the convergence

of SBL. A similar result to Theorem 6 can be given in the stochastic EM regime.

Theorem 7. Let σ be fixed, U t
j be full rank for all t, j, and generate {θt}∞

t=1 using the inner

loop of MSBDL, only updating the sufficient statistics for a batch of points at each iteration (i.e.

incremental EM). Then, the limit points of {θt}∞
t=1 are stationary points of log p(Y |θ,σ).

If we consider the entire MSBDL algorithm, i.e. including the update of σ, we can still

show that MSBDL is convergent.

Corollary 7. Let the conditions of Theorems 5 and 6 be satisfied. Then, the sequence
{

θt ,σt
}∞

t=1

produced by the MSBDL algorithm admits at least one limit point.
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Although the preceding results establish that MSBDL has favorable convergence proper-

ties, the question still remains as to why we choose to anneal σ j. At a high level, it can be argued

that setting σ j to a large value initially and then gradually decreasing it prevents MSBDL from

getting stuck in poor stationary points with respect to θ at the beginning of the learning process.

To motivate this intuition, consider the log likelihood function in (4.9), which decomposes into a

sum of J modality-specific log-likelihoods. The curvature of the log-likelihood for modality j

depends directly on σ j. Setting a high σ j corresponds to choosing a relatively flat log likelihood

surface, which, from an intuitive point of view, has less stationary points. This intuition can be

formalized in the scenario where D j is constrained in a special way.

Theorem 8. Let σ1
j > σ2

j ,Ψ j =

{
D j : D j =

[
Ď j I

]}
, and

Ωσ j, j =
{

Σy, j : Σy, j = σ
2
j I+D jΓD j

T ,D j ∈Ψ j
}
. (4.48)

Then, Ω
σ1

j , j
⊆Ω

σ2
j , j

.

Theorem 8 suggests that as σ j gets smaller, the space over which the log-likelihood in

(4.9) is optimized grows. As the optimization space grows, the number of stationary points grows

as well12. As a result, it may be advantageous to slowly anneal σ j in order to allow MSBDL to

learn D j without getting stuck in a poor stationary point.

If we constrain the space over which D j is optimized to Ψ j, as in Theorem 8, then we can

establish a number of interesting convergence results.

Theorem 9. Let ασ be arbitrarily close to 1, σ∞ = 0, σ0
j ≥ argmaxσ j

maxθ log p
(
Y j|θ,σ j

)
, D j ∈

Ψ j, θt = argmaxθ log p
(

Yj|θ,σt−1
j

)
, and consider updating σ j using (4.20). Then, σt

j = σ
t−1
j

implies σt
j = argmaxσ j

log p
(
Yj|θt ,σ j

)
.

Theorem 9 states that, under certain conditions, annealing terminates for a given modality

12This holds only for the constrained scenario in Theorem 8.
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j at a global maximum of the log-likelihood with respect to σ j for fixed θt . The conditions of

Theorem 9 ensure that (4.20) only terminates at stationary points of the log-likelihood.

Theorem 10. Let the conditions of Theorems 6 and 9 and Corollary 7 be satisfied. Then,

the sequence
{

θt ,σt
}∞

t=1 produced by MSBDL converges to the set of stationary points of

log p(Y |θ,σ).

Convergence results like Theorem 10 cannot be established for K-SVD and J`0DL because

they rely on greedy search techniques. In addition, no convergence results are presented in [32]

for J`1DL.

Finally, we consider what guarantees can be given for dictionary recovery in the noiseless

setting, i.e. Yj = D jX j ∀ j. We assume M j = M ∀ j and that xi share a common sparsity profile

for all i. We do not claim that the following result applies to more general cases when M j 6= M ∀ j

or different priors. The question we seek to answer is: Under what conditions is the factorization

Y j = D jX j unique? Due to the nature of dictionary learning, uniqueness can only be considered

up to permutation and scale. Two dictionaries D1 and D2 are considered equivalent if D1 = D2Z,

where Z is a permutation and scaling matrix. Guarantees of uniqueness in the unimodal setting

were first studied in [127]. The results relied on several assumptions about the data generation

process.

Assumption 1. Let s = ‖xi
j‖0 ∀i, j, and s < spark(D j)

2 , where spark(D j) is the minimum number

of columns of D j which are linearly dependent [128]. Each xi
j has exactly s non-zeros.

Assumption 2. Yj contains at least s+1 different points generated from every combination of s

atoms of D j.

Assumption 3. The rank of every group of s+1 points generated by the same s atoms of D j is

exactly s. The rank of every group of s+1 points generated by different atoms of D j is exactly

s+1.
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Lemma 1 (Theorem 3, [127]). Let Assumptions 1-3 be true. Then, Yj admits a unique factor-

ization D jX j. The minimum number of samples required to guarantee uniqueness is given by

(s+1)
(M

s

)
.

Treating the multimodal dictionary learning problem as J independent unimodal dictionary

learning problems, the following result follows from Lemma 1.

Corollary 8. Let Assumptions 1-3 be true for all j. Then, Yj admits a unique factorization

D jX j for all j. The minimum number of samples required to guarantee uniqueness is given by

J(s+1)
(M

s

)
.

As the experiments in Section 4.8 will show, there are benefits to jointly learning multi-

modal dictionaries. It is therefore interesting to inquire whether or not there are provable benefits

to the multimodal dictionary learning problem, at least from the perspective of the uniqueness

of factorizations. To formalize this intuition, consider the scenario where some data points i

do not have data available for all modalities. Let the Boolean matrix P ∈ BJ×L be defined such

that P[ j, i] is 1 if data for modality j is available for instance i and 0 else. The conditions on

the amount of data needed to guarantee unique recovery of D by Corollary 8 can be restated

as L = (s+1)
(M

s

)
and P[ j, i] = 1 ∀ j, i. The natural question to ask next is: Can uniqueness of

factorization be guaranteed if P[ j, i] = 0 for some ( j, i)?

Theorem 11. Let xi share a common sparsity profile for all i and Assumptions 1-2 be true for all

j. Let Assumption 3 be true for a single j∗. Let Gk
j =
{

i : P[ j, i] = 1 and yi
j ∈ span

(
D j[:,ϒk]

)}
where ϒk is the k’th subset of size s of [M]. Let |Gk

j ∩Gk
j∗| ≥ s for all j 6= j∗ and k. Then, the

factorization Yj = D jX j is unique for all j. The minimum total number of data points required to

guarantee uniqueness is given by J
(
s+ 1

J

)(M
s

)
.

Theorem 11 establishes that the number of samples required to guarantee a unique solution

to the multimodal dictionary learning problem is strictly less than in Corollary 8.
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4.8 Results

4.8.1 Synthetic Data Dictionary Learning

To validate how well MSBDL is able to learn unimodal and multimodal dictionaries, we

conducted a series of experiments on synthetic data. We adopt the setup from [129] and generate

ground-truth dictionaries D j ∈ R20×50 by sampling each element from a N(0,1) distribution and

scaling the resulting matrices to have unit `2 column norm. We then generate xi
j by randomly

selecting s = 5 indices and generating the non-zero entries by drawing samples from a N(0,1)

distribution. The supports of xi are constrained to be the same, while the coefficients are not.

The elements of vi
j are generated by drawing samples from a N(0,1) distribution and scaling the

resulting vector in order to achieve a specified Signal-to-Noise Ratio (SNR). We use L = 1000

and simulate both bimodal and trimodal datasets. The bimodal dataset consists of 30dB ( j = 1)

and 10dB ( j = 2) SNR modalities. The trimodal dataset consists of 30 dB ( j = 1), 20 dB ( j = 2),

and 10 dB ( j = 3) SNR modalities. We use the empirical probability of recovering D as the

measure of success, which is given by

1
M j

∑
m∈[M j]

1
[
ι
(
dm

j , D̂ j
)
> 0.99

]
(4.49)

ι
(
dm

j , D̂ j
)
= max

1≤m′≤M j

∣∣∣∣(dm
j

)T
d̂m′

j

∣∣∣∣∥∥∥dm
j

∥∥∥
2

∥∥∥dm′
j

∥∥∥
2

, (4.50)

where D̂ j denotes the output of the dictionary learning algorithm and 1 [·] denotes the indicator

function. The experiment is performed 50 times and averaged results are reported. We compare

MSBDL with `1DL13, K-SVD14, J`0DL, and J`1DL. While code for J`1DL was publicly available,

it could not be run on any of our Windows or Linux machines, so we used our own implementation.

13http://spams-devel.gforge.inria.fr/downloads.html
14http://www.cs.technion.ac.il/˜ronrubin/software.html
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Figure 4.8: Bimodal (4.8a) and trimodal (4.8b) synthetic data results with one standard deviation
error bars.

Code for J`0DL was not publicly available, so we used our own implementation. For all algorithms,

the batch size was set to L.

For the bimodal setting, the parameters σ0
1 and σ0

2 were set to 1 and 10, respectively. For

the trimodal setting, the parameters σ0
1,σ

0
2, and σ0

3 were set to 1,1.5, and 2, respectively. In both

cases, we set ασ = 0.995 and σ∞ = 1e−3, where this choice of σ∞ corresponds to the lowest

candidate λ in the cross-validation procedure for competing algorithms. It was experimentally

determined that MSBDL is relatively insensitive to the choice of σ0
j as long as σ0

1 < σ0
2 < σ0

3, thus

obviating the need to cross-validate these parameters. The regularization parameters λ in (4.1)

and λ in (4.3) were selected by a grid search over {1e− 3,1e− 2,1e− 1,1} and both K-SVD

and J0DL were given the true s. The parameter λ1 was set to 1 for J`0DL across all experiments

because the objective function in (4.3) depends only on the relative weighting of modalities. All

algorithms were run until convergence.

The bimodal and trimodal dictionary recovery results are shown in Fig.’s 4.8a and 4.8b,

respectively. For unimodal data, all of the algorithms recover the true dictionary almost perfectly

when the SNR = 30 dB, with the exception of J0DL and K-SVD. All of the tested algorithms

perform relatively well for data with 20 dB SNR and poorly on data with 10 dB SNR, although
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Figure 4.9: Bimodal synthetic data results using stochastic learning for 30 dB (Fig. 4.9a) and
10 dB (Fig. 4.9b) datasets.

MSBDL outperforms the other tested method in these scenarios. In the multimodal scenario,

the proposed method clearly distinguishes itself from the other methods tested. For trimodal

data, not only does MSBDL achieve 100% accuracy on the 30 dB data dictionary, but it achieves

accuracies of 100% and 99.2% on the 20 dB and 10 dB data dictionaries, respectively. MSBDL

outperforms the next best method by 17.2% on the 10 dB data recovery task15. J`0DL was able

to capture some of the multimodal information in learning the 10 dB data dictionary, but the 10

dB data dictionary accuracy only reaches 81.9%. J`1DL performs even worse in recovering the

10 dB data dictionary, achieving 0% accuracy. Similar trends can be seen in the bimodal results.

Next, we evaluate the performance of the MSBDL algorithms in Table 4.1. We repeat the

bimodal experiment and compare the proposed methods with J`1DL, which is the only competing

multimodal dictionary learning algorithm that has a stochastic version. The dictionary recovery

results are shown in Fig. 4.9. The results show that J`1DL is not able to recover any part of either

the 30 dB nor 10 dB dataset dictionaries. In terms of the asymptotic performance as the batch size

approaches L, MSBDL-1 exhibits negligible bias on both datasets, whereas the other MSBDL

flavors incur a small bias, especially on the 10 dB dataset. On the other hand, it is interesting that

15Throughout this work, we report the improvement to the probability of success or the classification rate in
absolute terms.
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MSBDL-2 dramatically outperforms MSBDL-1 for batch sizes less than 300, which is unexpected

since MSBDL-2 performs approximate sufficient statistic computations. The poor performance of

MSBDL-3 and MSBDL-4 suggests that these algorithms should be considered only in extremely

memory constrained scenarios. Finally, we report on the performance of the proposed annealing

strategy for σ j. For the bimodal dataset, one expects to σ1 to converge to a smaller value than

σ2. Fig. 4.11 shows a histogram of the values to which σ converge to. The results align with

expectations and lend experimental validation for the annealing strategy. We observe the same

trend for MSBDL-1 with L0 < L.

To validate the performance of MSBDL using the atom-to-subspace model, we run a

number of synthetic data experiments. In all cases, we use J = 2 and L = 1000. We use MSBDL-1

with L0 = 500 to highlight that the algorithm works in incremental EM mode. We simulate 4

scenarios, summarized in Table 4.2. For each scenario, we first generate the elements of the

ground-truth dictionaryD by sampling from a N(0,1) distribution and normalizing the resulting

dictionaries to have unit `2 column norm. We then set T k = {k,k+M1} if k+M1 ≤M2 and

k otherwise. This choice of
{
T k}

k∈[K]
represents the most uniform assignment of columns of

D2 to columns of D1. We then generate xi
1 by randomly selecting s = 5 indices and generating

the non-zero entries by drawing samples from a N(0,1) distribution. We use
{
T k}

k∈[K]
to

find the support of xi
2 and generate the non-zero entries by drawing from a N(0,1) distribution.

In order to assess the performance of the learning algorithm, we must first define the concept

of distance between multi-dimensional subspaces. We follow [130] and compute the distance

between D2[:,T k] and D̂2 using

ι

(
D2[:,T k], D̂2

)
= max

1≤k′≤K

√
|V T

1 V2V T
2 V1|,

where we use D2[:,T k] to denote the columns of D2 indexed by T k, and V1,V2 denote orthonor-

mal bases for D2[:,T k] and D̂2[:,T k′ ], respectively. We then define the distance between D2 and
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D̂2 using the two quantities

ϑ1
(
D2, D̂2

)
= c1 ∑

k∈{k:|T k|=1}
1

[
ι

(
D2[:,T k], D̂2

)
> 0.99

]
ϑ2
(
D2, D̂2

)
= c2 ∑

k∈{k:|T k|>1}
1

[
ι

(
D2[:,T k], D̂2

)
> 0.99

]

where c1 = |{k : |T k|= 1}|−1 and c2 = |{k : |T k|> 1}|−1. We use MSBDL-1 to learn D̂, with

accuracy results reported in Table 4.2. Histograms of results are provided in the Appendix for a

higher resolution perspective into the performance of the proposed approach. Note that Table

4.2 reports the accuracy of MSBDL-1 in recovering both the atoms and subspaces of D2. Test

case A simulates the scenario where both modalities have a high SNR and M2 = 2M1. In other

words, test case A tests if MSBDL-1 is able to learn in the atom-to-subspace model, without the

complications that arise from added noise. The results show that MSBDL-1 effectively learns

both the atoms of D1 and the subspaces comprising D2. Test case B simulates the scenario

where |T k| = 1 for some k but not for others. In effect, test case B tests the pruning strategy

described in Section 4.5.3 and summarized in Fig. 4.5. The results show that the pruning strategy

is effective and allows MSBDL-1 to learn both the atoms of D1 and the atoms and subspaces

comprising D2. Test case C is identical to test case B, but with noise added to modality 2. The

results show that MSBDL-1 still effectively recovers D1, but there is a drop in performance with

respect to recovering the atoms of D2 and a significant drop in recovering the subspaces of D2.

The histogram in Fig. 4.10a shows that the distribution of
{

ι(D2[: T k], D̂2)
}

k∈K is concentrated

near 1 for test case C, suggesting that an alignment threshold of 0.99 is simply too strict in this

case. Finally, test case D demonstrates that MSBDL-1 exhibits robust performance when the

modality comprising the roots of the tree is noisy. To provide experimental evidence for the fact

that the atom-to-subspace model is agnostic to the atoms of D2, as discussed in Section 4.5.1, we

show the ability of MSBDL-1 to recover the atoms of D2 for test case A in Fig. 4.12. The results

show that MSBDL-1 is not able to recover the atoms of D2.
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Figure 4.10: Histograms of ι
(
D2[:,T k], D̂2

)
for test case C in Table 4.2 (4.10a) and

ι
(
D2[:,m], D̂2

)
for test case C in Table 4.3 (4.10b).
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dB modalities.
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∀m for test case A.

Next, we present experimental results for dictionary learning under the hierarchical model,

using the same setup as for the atom-to-subspace model. We simulate 4 scenarios, summarized in

Table 4.3. To evaluate the performance of the proposed approach, we measure how well it is able

to recover the atoms of D1 and D2, where we distinguish between the atoms of D2 corresponding

to |T k|= 1 and |T k|> 1 using

ρ1
(
D2, D̂2

)
= c3 ∑

k∈{k:|T k|=1}
1

[
ι

(
D2[:,T k], D̂2

)
> 0.99

]
ρ2
(
D2, D̂2

)
= c4 ∑

k∈{k:|T k|=1},m∈T k

1
[
ι
(
D2[:,m], D̂2

)
> 0.99

]

where c3 = |{k : |T k|= 1}|−1 and c4 = |{k : |T k|> 1}|−1. The recovery results are reported in

Table 4.3. Histograms of the results are provided in the Appendix. Test case A demonstrates that

MSBDL-1 is able to learn the atoms of D1 and D2 in the low noise scenario for M2 = 2M1. Test

case B shows that MSBDL-1 is able to learn the atoms of D1 and D2 for M1 < M2 < 2M1, i.e.

highlighting that the pruning strategy in Fig. 4.5 is effective for the hierarchical sparsity model.

Test case C adds a considerable amount of noise to the modality occupying the leaves of the

tree. Although the recovery results in Table 4.3 suggest that MSBDL-1 does not perform well in
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Table 4.2: Recovery results using atom-to-subspace model.

d1,M1 d2,M2 SNR1 SNR2 ϑ1(D1, D̂1) ϑ1(D2, D̂2) ϑ2(D2, D̂2)
A 20,50 40,100 30 30 99.8 — 92
B 20,50 30,60 30 30 99.5 100 97
C 20,50 30,60 30 10 99.9 68.05 3.6
D 20,50 30,60 10 30 73.64 97.7 75.4

Table 4.3: Recovery results using hierarchical model.

d1,M1 d2,M2 SNR1 SNR2 ρ1
(
D1, D̂1

)
ρ1
(
D2, D̂2

)
ρ2
(
D2, D̂2

)
A 20,50 40,100 30 30 99.3 — 96.6
B 20,50 30,60 30 30 100 94.7 82.7
C 20,50 30,60 30 10 100 22.1 3.3
D 20,50 30,60 10 30 5.2 93.1 61.1

recovering D2 in this scenario, the histogram in Fig. 4.10b shows robust performance. Finally,

test case D shows the scenario where a large amount of noise is added to the modality occupying

the roots of each subtree.

4.8.2 Photo Tweet Dataset Classification

We validate the performance of TD-MSBDL on the Photo Tweet dataset [131]. The Photo

Tweet dataset consists of 603 tweets covering 21 topics. Each tweet contains text and an image

with an associated binary label indicating its sentiment. The dataset consists of 5 partitions. We

use these partitions to perform 5 rounds of leave-one-out cross-validation, where, during each

round, we use one partition as the test set, one as the validation set, and the remaining partitions

as the training set. For each round, we process the images by first extracting a bag of SURF

features [132] from the training set using the MATLAB computer vision system toolbox. We

then encode the training, validation, and test sets using the learned bag of features, yielding a

500-dimensional representation for each image [133]. Finally, we compute the mean of each

dimension across the training set, center the training, validation, and test sets using the computed
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Table 4.4: Photo tweet dataset classification accuracy (%).

Feature Type TD-MSBDL-2 TD-J`1DL TD-`1DL D-KSVD
Images 65.6 59.2 61.1 63.9

Text 76 73.7 74.1 69.4

means, and perform 10 component PCA to generate a 10-dimensional image representation. We

process the text data by first building a 2688 dimensional bag of words from the training set using

the scikit-learn Python library. We then encode the training, validation, and test sets using the

learned bag of words, normalizing the resulting representations by the number of words in the

tweet. We then center the data and perform 10 component PCA to yield a 10-dimensional text

representation.

We run TD-MSBDL using incremental EM and approximate posterior sufficient statistic

computations, referring to the resulting algorithm as TD-MSBDL-2 in accordance with the

taxonomy in Table 4.1. Our convention is to refer to the text and image data as modalities 1 and 2

respectively. We use M j = 40∀ j, L0 = 200, σ0
1 = 0.01, σ0

1 = 0.2, β0
j = 100∀ j, σ∞ = 1e−4,ασ =

0.995, β∞ = 1e−2,αβ = 0.995, and TV = 500. We compare TD-MSBDL with several unimodal

and multimodal approaches. We use TD-`1DL and D-KSVD to learn classifiers for images and

text using unimodal data. For TD-`1DL we use the validation set to optimize for λ over the set

{1e−3,1e−2,1e−1,1}. We also compare with TD-J`1DL trained on the multimodal data, using

the the same validation approach as for TD-`1DL. In all cases, we run training for a maximum of

15e3 iterations.

The classification results are shown in Table 4.4. Comparing TD-MSBDL with the

unimodal methods (i.e. TD-`1DL and D-KSVD), the results show that TD-MSBDL achieves

higher performance for both feature types. Moreover, it is interesting that TD-J`1DL performs

worse than TD-`1DL, suggesting that it is not capable of capturing the multimodal relationships

which TD-MSBDL benefits from.

Finally, we show the efficacy of the priors in Section 4.5 in classifying the Photo Tweet
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Table 4.5: Photo tweet dataset classification accuracy (%) using TD learning and priors from
Section 4.5. Our convention is to designate text as modality 1 and images as modality 2.

TD-MSBDL-2 TD-MSBDL-1 TD-MSBDL-1
Prior One-to-one (4.8) Hierarchical (4.29) Atom-to-subspace (4.23)

d1×M1/d2×M2 10×40/10×40 10×40/20×80 10×40/20×80
Images 65.6 69.2 69.5

Text 76 74.6 74.3

dataset. The goal is to show that, by allowing the number of atoms of the image and text

dictionaries to be different, the atom-to-subspace and hierarchical sparsity priors lead to su-

perior classification performance. We begin by extracting features from the text and image

data as before, with the exception that we use 20 PCA components to represent images. We

then set M1, the text data dictionary size, to 40 and M2, the image dictionary size, to 80,

corresponding to an oversampling factor M j/N j of 4 for both modalities. We run the TD-

MSBDL algorithm with the atom-to-subspace and hierarchical sparsity priors. For the atom-

to-subspace prior, the only required modification is to change the update rule of γi to (4.15)16.

For the hierarchical sparsity prior, the γi, D j, and Wj update rules are modified to (4.36), (4.37),

and
(
Wj
)t+1

= H
(

UT D
j

)T
S j

(
ST

j

(
UT D

j

(
UT D

j

)T
+∑i∈[L]Σ

T D,i
x̂, j

)
S j

)−1

, respectively. Because

there are significant dependencies among the elements in x j a-priori, we use exact sufficient

statistic computation, referring to the resulting algorithm as TD-MSBDL-1. The classification

results are presented in Table 4.5, where the TD-MSBDL-2 results with one-to-one prior from

Section 4.8.2 are shown for reference. The results show a significant improvement in image

classification. Although text classification deteriorates slightly, the text classification rate for both

atom-to-subspace and hierarchical priors is still higher than the competing methods in Table 4.4.

16We also found it necessary to introduce a post-processing step to the output of the TD-MSBDL algorithm with
the atom-to-subspace prior. We output the W t

j which corresponds to the maximum measured classification accuracy
on the validation set during training.

105



4.9 Conclusion

We have detailed a sparse multimodal dictionary learning algorithm. Our approach

incorporates the main features of existing methods, which establish a correspondence between the

elements of the dictionaries for each modality, while addressing the major drawbacks of previous

algorithms. Our method enjoys the theoretical guarantees and superior performance associated

with the sparse Bayesian learning framework.

4.10 Appendix

4.10.1 Incremental EM

One stochastic inference alternative is called Incremental EM, which we review next for

the case of J = 1, omitting modality subscripts for brevity [118]. Let F(p̃,θ)=Ep̃ [log p(X ,Y,θ)]+

H(p̃), where H(p̃) is the entropy of p̃(·). It can be shown that p(X |Y,θ) is the unique maximizer

of F(p̃,θ), given θ. It can also be shown that F(p̃,θ) = log p(Y |θ) for p̃(X) = p(X |Y,θ). It then

follows that the E and M steps of EM can be re-stated in the following form:

p̃t+1 = argmax
p̃

F(p̃,θt) (4.51)

θ
t+1 = argmax

θ

F(p̃t+1,θ). (4.52)

When the posterior factors over the data points in the dataset, it is reasonable to consider only

distributions of the form p̃(X) = ∏i∈[L] p̃i(xi) in (4.51). Although the factorization constraint

may seem restrictive, it should be noted that the maximizer of F(p̃,θ) must also factor 17 [118].

It then follows that F(p̃,θt) = ∑i∈[L]F i(p̃i,θt). This leads to a class of algorithms which perform

17In other words, if {p∗,θ∗} is the maximizer of F(·, ·), then p∗ factors.
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the E-step in an incremental fashion by modifying (4.51) to

(
p̃i)t+1

=


argmax p̃i

F i(p̃i,θt) if i ∈ φ(
p̃i)t else.

(4.53)

4.10.2 Computation of (4.21)

It can be shown that ∂ log p
(

Yj|θt ,σt
j

)
/∂σt

j is given by

− ∑
i∈[L]

(
yi

j
)T

V i
j
(
Λ

i
j
)−2 (

V i
j
)T

yi
j + ∑

n∈[N j]

(
Λ j[n,n]+σ

2
j
)−1

where V i
jΛ

i
j

(
V i

j

)T
is the eigen-decomposition of Σi

y, j and
(

Λi
j

)−2
represents a diagonal matrix

whose [n,n]’th entry is
(

Λi
j[n,n]

)−2
.

4.10.3 Additional Results for Synthetic Data Experiments

Fig. 4.13 shows histograms of results for the synthetic data experiments in Section 4.8

under the atom-to-subspace prior. Fig. 4.14 shows histograms of results for the synthetic data

experiments in Section 4.8 under the hierarchical sparsity prior.

4.10.4 Proof of Theorem 5

By definition, the log-likelihood function is coercive if

lim
‖{θ,σ}‖→∞

− log p(Y |θ,σ) = ∞ (4.54)
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Figure 4.13: Histograms of recovery results for atom-to-subspace model and test cases in
Table 4.2. (Fig.’s 4.13a, 4.13c, 4.13f, 4.13i): ι

(
D1[:,m], D̂1

)
∀m for cases A-D. (Fig.’s 4.13d,

4.13g, 4.13j): ι
(
D2[:,k], D̂2

)
, |T k| = 1 for cases B-D. (Fig.’s 4.13b, 4.13e, 4.13h, 4.13k):

ι
(
D2[:,k], D̂2

)
, |T k|> 1 for cases A-D.
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Figure 4.14: Histograms of recovery results for hierarchical model and test cases in Table 4.3.
(Fig. 4.14a, 4.14c, 4.14f, 4.14i): ι

(
D1[:,m], D̂1

)
∀m for cases A-D. (Fig. 4.14d, 4.14g, 4.14j):

ι
(
D2[:,k], D̂2

)
, |T k|= 1 for cases B-D. (Fig. 4.14b, 4.14e, 4.14h, 4.14k): ι

(
D2[:,m], D̂2

)
∀m ∈

T k : |T k|> 1 for cases A-D.
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where we define the norm of {θ,σ} to be

‖{θ,σ}‖=
√

∑
m∈[M], j∈[J]

∥∥∥dm
j

∥∥∥2

2
+ ∑

i∈[L]
‖γi‖2

2 + ∑
j∈[J]

σ2
j . (4.55)

The negative log-likelihood can be written as

− log p(Y |θ,σ)=̇ ∑
i∈[L], j∈[J]

(
yi

j
)T (

Σ
i
y, j
)−1

yi
j + log

∣∣Σi
y, j
∣∣ (4.56)

where =̇ refers to dropping terms which do not depend on θ or σ.

Next, we establish several results about Σi
y, j, which is defined in (4.11). Let

(
Γi)0.5 be

a diagonal matrix whose [m,m]’th entry is given by
(
γi[m]

)0.5. Then, D jΓ
iDT

j is the Gramian

matrix of
(
Γi)0.5 DT

j . Since Gramian matrices are positive semi-definite (PSD), D jΓDT
j must

be PSD. Since σ2
j I is PSD, Σi

y, j is PSD. Finally, since Σi
y, j is PSD, then

(
Σi

y, j

)−1
is also PSD.

Therefore,

(
yi

j
)T (

Σ
i
y, j
)−1

yi
j ≥ 0 (4.57)

in general.

Turning to the second term in (4.56), we can re-write it as

log |Σi
y, j|= ∑

n∈[N j]

log
(
σ

2
j +λ

i
j[n]
)

(4.58)

where λi
j[n]≥ 0 denotes the n’th eigenvalue of D jΓ

iDT
j . Combining (4.60) with (4.56), we have

that

− log p(Y |θ,σ)≥ ∑
j∈[J],i∈[L],n∈[N j]

log
(
σ

2
j +λ

i
j[n]
)
. (4.59)
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Note that σ2
j + λi

j[n] > 0 for all j, i,n, such that the right hand side of (4.59) tends to ∞ if

σ2
j∗+λi∗

j∗[n
∗] tends to ∞ for some j∗, i∗,n∗.

In order for ‖{θ,σ}‖→ ∞, one or more of the terms under the square root in (4.55) must

also approach infinity. Starting with σ, we observe that in order for ∑ j∈[J]σ
2
j → ∞, there must be

at least one j∗ such that σ j∗ → ∞. Since λi
j[n]≥ 0 for all j, i,n, at least one of the terms in the

right hand side of (4.59) must tend to ∞, leading to the result

lim
∑ j∈[J] σ

2
j→∞

− log p(Y |θ,σ) = ∞.

Turning to γ, we observe that in order for ∑i∈[L]
∥∥γi
∥∥2

2→ ∞, there must exist at least one

i∗ and m∗ such that γi∗[m∗]→ ∞. We also know that

∑
j∈[J],n∈[N j]

λ
i
j[n] = ∑

j∈[J]
trace

(
D jΓ

iDT
j
)

(4.60)

= ∑
j∈[J],n∈[N j],m∈[M]

γ
i[m]

(
dm

j [n]
)2 (4.61)

= ∑
j∈[J],m∈[M]

γ
i[m]

∥∥dm
j
∥∥2

2 (4.62)

≥ γ
i∗ [m∗]

∥∥∥dm∗
j∗

∥∥∥2

2
(4.63)

=a
∞. (4.64)

where step (a) follows from the assumption that for each m, there exists a j∗ such that
∥∥∥dm

j∗

∥∥∥2

2
> 0.

Since N j,J are finite, (4.64) implies that there must exist j′,n∗ such that λi
j′[n
∗]→ ∞. In addition,

since σ2
j > 0 for all j, λi

j′[n
∗]→ ∞ implies that at least one of the terms in the right hand side of

(4.59) tends to ∞, leading to the result

lim
∑i∈[L]‖γi‖2

2→∞

− log p(Y |θ,σ) = ∞
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Finally, in order for ∑ j∈[J],m∈[M]

∥∥∥dm
j

∥∥∥2

2
→ ∞, there must exist at least one j∗ and m∗

such that
∥∥∥dm∗

j∗

∥∥∥2

2
→ ∞. We can apply the same argument as in (4.60)-(4.64) to conclude that∥∥∥dm∗

j∗

∥∥∥2

2
→ ∞ implies that there exists j′,n∗ such that λi

j′[n
∗]→ ∞, where in this case step (a) in

(4.64) follows from the assumption that at least one of
{

γi[m]
}

i∈[L] is non-zero for all m. As a

result, we have:

lim
∑ j∈[J],m∈[M]‖dm

j ‖
2
2
→∞

− log p(Y |θ,σ) = ∞.

4.10.5 Proof of Corollary 6

This proof follows closely to the first part of the proof of (Theorem 1, [86]). Let

S0 =
{

θ :− log p(Y |θ,σ)≤− log p
(
Y |θ0,σ

)}
, (4.65)

where θ0 denotes the initial value of θ. Theorem 5 established that − log p(Y |θ,σ) is coercive.

In addition, assume, for now, that − log p(Y |θ,σ) is a continuous function of θ. Under these

conditions, S0 is a compact set (Theorem 1.2, [102]). In addition, we have that

− log p
(
Y |θt+1,σ

)
≤− log p

(
Y |θt ,σ

)
because θ is updated using EM, which guarantees monotonicity of the log-likelihood [26].

Therefore, the sequence {− log p(Y |θt ,σ)}∞

t=1 is a monotonically decreasing sequence. This

monotonicity property guarantees that {θt}∞
t=1 ⊆S0. Since S0 is compact, {θt}∞

t=1 admits at

least one limit point.

What remains is to show that − log p(Y |θ,σ) is continuous. The continuity of the

negative log-likelihood follows directly from the fact that both the determinant and matrix inverse
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functions are continuous18.

4.10.6 Proof of Theorem 6

From Corollary 6, we know that {θt}∞

t=1 admits a limit point. What remains to be shown

is that all limit points are stationary and that {log p(Y |θ,σ)}∞

t=1 converges monotonically to

log p(Y |θ∗,σ) for stationary point θ∗. These follow directly from [Theorem 2, [26]] if it can be

shown that Q(θ,θt) is continuous in both θ and θt , where Q(θ,θt) is given by

Q
(
θ,θt)= 〈log p

(
Y ,X,D,

{
γ

i}L
i=1

)〉
(4.66)

= ∑
j∈[J]

〈
log p

(
Yj|X j,D j

)
+ log p

(
X j|
{

γ
i}L

i=1

)〉
(4.67)

= ∑
j∈[J]

Q j
(
θ,θt) . (4.68)

We will proceed by showing that Q j (θ,θ
t) is continuous in both θ and θt for all j.

First, consider the dependence of Q j (θ,θ
t) on γi[m], which is given by

− logγi[m]

2
−

(
Σi

x, j[m,m]+
(
µ j

i[m]
)2

2γi[m]

)
(4.69)

where Σi
x, j and µ j

i are given by (4.13) and (4.14), respectively, and depend on θt . It suffices

to show that (4.69) is continuous on the open interval (0,∞]. Since both log(·) and (·)−1 are

continuous functions on the interval (0,∞], it follows that (4.69) is continuous in γi[m]. The

dependence of Q j (θ,θ
t) on D j is given by

∑
i∈[L]

(
yi

j
)T

D jµ j
i−

tr
(
(DT

j D j

(
Σi

x, j +µ j
i
(

µi
j

)T
))

2
(4.70)

18See [Theorem 5.19 [134]] and [Theorem 5.20 [134]] for continuity of the matrix determinant and inverse
functions, respectively.
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which is continuous in D j. Next, we turn to the task of showing that Q j (θ,θ
t) is continuous in θt ,

which reduces to showing that Σi
x, j is continuous in both Dt

j and γt . Let B be the matrix being

inverted in (4.13):

B = σ
2
j I+Dt

jΓ
t,i (Dt

j
)T

. (4.71)

The task then reduces to showing that (B)−1 is continuous in Dt
j and γt,i. We first show that (B)−1

exists. Using the assumption that Dt
j is full rank, B is full rank over γ ∈ (0,∞]M since

rank(B)≥ rank
(

Dt
jΓ

t,i (Dt
j
)T
)

(4.72)

= rank

(
Dt

j
(
Γ

t,i) 1
2

(
Dt

j
(
Γ

t,i) 1
2

)T
)

(4.73)

= rank
(

Dt
j
(
Γ

t,i) 1
2

)
(4.74)

= N j (4.75)

where
(
Γt,i) 1

2 is a diagonal matrix with the m’th diagonal entry given by
√

γt,i[m]. Therefore, B

is full rank and admits an inverse.

Since B is continuous in Dt
j and γt , what remains to be shown is that (B)−1 is continuous

in B, which has previously been shown in [135]. Therefore, Q j (θ,θ
t) is continuous in θt .

4.10.7 Proof of Theorem 7

The guarantee given in Theorem 7 follows directly from [Proposition 6, [136]] if we

can show that Q(θ,θt) has a unique maximizer with respect to θ. Consider the optimization of

Q(θ,θt) with respect toD. This optimization problem can be rewritten as

argmax
D

∑
j∈[J]

∑
i∈[L]
−
(
yi

j
)T

D jµi
j +D j

(
Σ

i
x, j +µi

j
(
µi

j
)T
)
. (4.76)
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Since the terms being summed over j in (4.76) are independent of each other, (4.76) is equivalent

to solving

argmax
D j

∑
i∈[L]
−
(
yi

j
)T

D jµi
j +D j

(
Σ

i
x, j +µi

j
(
µi

j
)T
)

(4.77)

for all j.

Since (4.77) is an unconstrained optimization problem, its maxima must occur at points

where the gradient of the objective function vanishes. Taking the gradient of the objective function

in (4.77) with respect to D j and setting the result to zero, we get

D j

(
U jUT

j + ∑
i∈[L]

Σ
i
x, j

)
︸ ︷︷ ︸

B

= YjU t
j (4.78)

If B is invertible, all of the stationary points of the objective function in (4.77) have the form

Y jU j (B)
−1. Since Y j,U j are fixed and (B)−1 is unique given U j and

{
Σi

x, j

}L

i=1
, we conclude that

the objective function in (4.77) has exactly one, unique stationary point. In order to show that B is

invertible, we observe that Σi
x, j is positive semi-definite for all i and U j is full rank by assumption.

Since the sum of a positive semi-definite and positive definite matrix is positive definite, it follows

that B is invertible.

We now turn to the optimization of Q(θ,θt) with respect to γi[m] (since Q(θ,θt) is

separable in the elements of γi). This optimization problem can be rewritten as

argmax
γi[m]≥0

∑
j∈[J]
− logγi[m]

2
−

(
Σi

x, j[m,m]+
(
µ j

i[m]
)2

2γi[m]

)

= argmin
γi[m]≥0

logγ
i[m]+

ρ

γi[m]
(4.79)
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where

ρ =
1
J ∑

j∈[J]
Σ

i
x, j[m,m]+

(
µ j

i[m]
)2

(4.80)

Note that we explicitly state the constraint on γi[m] in (4.79). For ρ = 0, (4.79) reduces to

argmin
γi[m]≥0

logγ
i[m] = 0. (4.81)

For ρ > 0, we can show that logγi[m]+ ρ

γi[m]
≥ logρ+1:

logρ+1− logγ
i[m]− ρ

γi[m]
= log

ρ

γi[m]
+1− ρ

γi[m]

≤a ρ

γi[m]
−1+1− ρ

γi[m]

= 0

↓

logρ+1≤ logγ
i[m]+

ρ

γi[m]

where step (a) follows from the identity logx ≤ x− 1 for x > 0 [137]. Equality in step (a) is

achieved only for γi[m] = ρ. To see this, we observe that logx is a strictly concave function that

is tangent to the function x−1 at x = 1. The strict concavity of logx implies that it can only be

tangent to the function x−1 at a single point. Therefore, the objective in (4.79) is lowerbounded

by logρ+1, with the lowerbound achieved at γi[m] = ρ. Putting this result together with the case

when ρ = 0, we see that (4.79) admits a single, unique optimizer given by ρ in (4.80).
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4.10.8 Proof of Corollary 7

This proof follows closely to the first part of the proof of (Theorem 1, [86]). Let

S0 =
{
{θ,σ} :− log p(Y |θ,σ)≤− log p

(
Y |θ0,σ0

)}
, (4.82)

where θ0 and σ0 denote the initial values of θ and σ, respectively. Theorem 5 established that

− log p(Y |θ,σ) is coercive. In addition, assume, for now, that − log p(Y |θ,σ) is a continuous

function of {θ,σ}. Under these conditions, S0 is a compact set (Theorem 1.2, [102]). In addition,

we have that

− log p
(
Y |θt+1,σt)≤− log p

(
Y |θt ,σt)

because θ is updated using EM, which guarantees monotonicity of the log-likelihood [26].

Likewise, we have that

− log p
(
Y |θt+1,σt+1)≤− log p

(
Y |θt+1,σt)

by construction of the update rule in (4.20). Therefore, the sequence
{
− log p

(
Y |θt ,σt

)}∞

t=1 is

a monotonically decreasing sequence, i.e.

− log p
(
Y |θt+1,σt+1)≤− log p

(
Y |θt ,σt) . (4.83)

This monotonicity property guarantees that {θt ,σt}∞
t=1 ⊆S0. Since S0 is compact, {θt ,σt}∞

t=1

admits at least one limit point.

What remains is to show that − log p(Y |θ,σ) is continuous. The continuity of the

negative log-likelihood follows directly from the fact that both the determinant and matrix inverse
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functions are continuous19.

4.10.9 Proof of Theorem 8

We will show that any point in Ω
σ1

j , j
must be in Ω

σ2
j
. Let the operator Θl : RM×M →

RM−N j×M−N j be defined such that Θl(Γ) extracts the top left M−N j×M−N j submatrix of

Γ. Let the operator Θh : RM×M→ RN j×N j be defined such that Θh(Γ) extracts the bottom right

N×N submatrix of Γ. Using these operators, we can express any element of Ωσ j, j as

Σy j =
(
σ

2I+Θh(Γ)
)
+ Ď jΘl(Γ)ĎT

j . (4.84)

Let Σ1
y, j(D

1
j ,γ

1) ∈Ω
σ1

j , j
, where Σy, j(·, ·) denotes the dependence of Σy, j on D j and γ. We can then

show that Σ1
y, j(D

1
j ,γ

1) = Σ2
y, j(D

2
j ,γ

2) ∈Ω2 for

γ
2[m] =


γ1[m] if m≤M−N j

γ1[m]+
(

σ1
j

)2
−
(

σ2
j

)2
else

and Ď2
j = Ď1

j . Such a choice of Σ2
y, j(D

2
j ,γ

2) is always possible because σ1
j > σ2

j . The converse is

not true for arbitrary choices of D1
j and γ1, leading to the relation Ω

σ1
j
⊆Ω

σ2
j
.

4.10.10 Proof of Theorem 9

We begin by studying the shape of

log p
(
Yj|θt ,σ j

)
. (4.85)

19See [Theorem 5.19 [134]] and [Theorem 5.20 [134]] for continuity of the matrix determinant and inverse
functions, respectively.
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The log-likelihood in (4.85) depends on σ j through the covariance matrices
{

Σi
y, j

}L

i=1
shown

in (4.11). If we parametrize p
(

yi
j;Σi

y, j

)
by the precision matrix Λi

j =
(

Σi
y, j

)−1
, then it can be

shown that log p
(

yi
j;Λi

j

)
is a strictly concave function of Λi

j. Since the log-likelihood of Yj is

a sum of such functions, log p
(

Yj|
{

Λi
j

}L

i=1

)
is itself a strictly concave function. Therefore,

log p
(

Yj|{Λi
j}i∈[L]

)
admits a single local maximum

{
Λ

i,∗
j

}L

i=1
, which is also its global maximum.

Since the mapping from Λi
j to Σi

y, j is one-to-one, we conclude that log p
(

Yj|
{

Σi
y, j

}L

i=1

)
also

admits a single local maximum, which is also a global maximum. In other words, the function

log p
(

Yj|
{

Σi
y, j

}L

i=1

)
is a strictly quasiconcave function [97]. Consider maximizing the log-

likelihood over the convex set Σi
y, j ∈ {σ2I+D jΓ

iDT
j : σ j > 0}. Quasiconcave functions admit a

single local maximum, which is also the global maximum, over convex sets [97]. We conclude

that log p
(

Yj|
{

Σi
y, j

}L

i=1

)
admits a single maximum with respect to σ j.

Suppose that the condition

σ
t
j = σ

t−1
j (4.86)

is satisfied at iteration t (and not before), meaning that

log p
(

Yj|θt ,ασ
t−1
j

)
< log p

(
Y j|θt ,σt−1

j

)
. (4.87)

Because ασ can be arbitrarily close to 1 (4.87) implies that there exists a neighborhood

[
σ

t−1
j − ε1,σ

t−1
j

]
, ε1 > 0,

over which (4.85) is increasing. We now claim that there must also exist a neighborhood[
σ

t−1
j ,σt−1

j + ε2

]
,ε2 > 0, for which (4.85) is decreasing. Suppose that the converse is true and

119



that there exists a σ∗j such that

log p
(

Yj|θt ,σt−1
j

)
< log p

(
Y j|θt ,σ∗j

)
,σ∗j > σ

t−1
j . (4.88)

Remember that θt =
{{

γt,i}L
i=1 ,D

t
}

where Dt
j ∈Ψ j. The inequality in (4.88) means that there

exists θ∗ =
{{

γ∗,i
}L

i=1 ,D
t
}

with

γ
∗,i[m] =


γt,i[m] if m≤M−N j

γt,i[m]+
(

σ∗j

)2
−
(

σ
t−1
j

)2
else

. (4.89)

such that

log p
(

Y j|θt ,σt−1
j

)
< log p

(
Yj|θ∗,σt−1

j

)
. (4.90)

But (4.90) must be a contradiction since we have assumed that

θ
t = argmax

θ

log p
(

Y j|θ,σt−1
j

)
. (4.91)

The condition that σ0
j ≥ argmaxσ j

maxθ log p
(
Yj|θ,σ j

)
ensures that the preceding argument holds

at iteration t = 1.

To conclude, we have shown that if (4.86) is satisfied, σ
t−1
j is a local maximum. Since we

have already shown that the objective in (4.85) only admits a single maximum, this completes the

proof.

4.10.11 Proof of Theorem 10

Since Corollary 7 established that {θt ,σt}∞
t=1 admits at least one limit point, what remains

is to show that all limit points are stationary. Let {θ∗,σ∗} denote any limit point of {θt ,σt}∞
t=1.
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For any σ, we know that a limit point θ̄ is stationary from Theorem 6. Therefore, θ̄ = θ∗ must be

a stationary point.

For any θ, we know that a limit point σ̄ must be the global maximizer of the log-likelihood

from Theorem 9. Since a global maximizer must be stationary, we conclude that σ̄ must be

stationary. Therefore, σ̄ = σ∗ must be a stationary point.

4.10.12 Proof of Thm. 11

This proof is an extension of the proof shown in [127]. Under the assumptions of Theorem

11, we can focus exclusively on recoveringD because, given {Y ,D}, the sparse codesX are

unique [128]. To prove thatD is unique, we will show howD can be recovered by construction.

The construction of D̂ proceeds in three steps:

1. Divide the columns of Yj into R =
(M

s

)
sets {G1

j , · · · ,GR
j } for all j, where

Gk
j =
{

i : yi
j ∈ span

(
D j[:,ϒk]

)}

and ϒk denotes the k’th subset of size s of [M].

2. Detect pairs (Gk1
j ,G

k2
j ) such that |Gk1

j ∩Gk2
j |= 1 for all j.

3. For each j, find the atom common to ϒk1 and ϒk2 . This atom is necessarily one of the atoms

of D j [127]. Repeat for all pairs (k1,k2).

We begin by describing how the data is clustered. Starting with modality j∗, we begin

by testing every group of s+1 data points from Yj∗ . The rank of this group of points will be s if

and only if the points lie in the subspace spanned by a set of s columns from D j∗ [127]. Once{
Gk

j∗

}R

k=1
has been established, the remaining points in Yj∗ which have not been assigned to

a set are combined with one of the groups Gk
j∗ based on the fact that the rank of the subspace

spanned by the columns indexed by Gk
j∗ and an additional column, yi

j, from Yj∗ is s if an only
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if yi
j ∈ span

(
D j[:,ϒk]

)
. Finally, due to the nature of the data generation process, we know that

Gk
j = {i : P[ j, i] = 1 and i ∈ Gk

j∗},∀ j. Note that the construction of Gk
j∗ requires s+1 data points

from modality j∗, but we get Gk
j directly from Gk

j∗ .

Next, we describe the process by which we detect pairs (Gk1
j ,G

k2
j ) such that |ϒk1∩ϒk2|= 1.

This can be done for each modality j independently. Namely, for each pair (Gk1
j ,G

k2
j ), we test

the rank of the subspace spanned by the columns of Yj indexed by Gk1
j ∪Gk2

j . The rank of this

subspace will be 2s−1 if and only if the intersection of span(Gk1
j ) and span(Gk2

j ) has dimension

1. This process is guaranteed to produce every atom of D j at least once [127].

Finally, we describe how to form D̂ j. Given a pair (Gk1
j ,G

k2
j ) such that |ϒk1 ∩ϒk2|= 1, we

extract any s points from Gk1
j and any s points from Gk2

j and concatenate them into two matrices

Bk1 and Bk2 , respectively. There exist vectors v1 and v2 such that both Bk1v1 and Bk2v2 are parallel

to the atom of D j of interest. We can now set up a system of equations given by

[
Bk1 −Bk2

]
︸ ︷︷ ︸

B

v1

v2


︸ ︷︷ ︸

v

= 0 (4.92)

and find v, which is guaranteed to exist since rank(B) = 2s−1 from the detection step. We can

then extract v1 from v and find one of the columns of D j (up to scaling) using Bk1v1. This process

can be repeated to find all M atoms of D j (up to scale) [127].

The major difference between the proof given here and the one in [127] for the unimodal

dictionary learning problem is that we require s+1 data points per every s dimensional subspace

for one of the modalities and only s data points per subspace for the rest of the modalities. The

reason that we can use less samples stems from the special structure of the multimodal data

generation process. In the end, we require s+1 data points from modality j∗ to complete the data

clustering step and s data points from each of the J−1 data modalities to complete the extraction

step.
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Chapter 4, in full, is a reprint of material in Igor Fedorov and Bhaskar D. Rao, “Multimodal

Sparse Bayesian Dictionary Learning,” submitted to the IEEE Transactions on Signal Processing.

I was the primary author and B. D. Rao supervised the research.
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Chapter 5

Conclusion and Future Work

This thesis has presented three algorithms which employ scale mixtures to achieve

structured sparse learning. In the following, we review the main contributions delineated in

this thesis and suggest avenues for future work.

1. Chapter 2 presented a novel approach for modeling signals exhibiting a stationary sparsity

profile but corrupted by both stationary and non-stationary noise. We showed how scale

mixture priors can be used to model both the signal and noise and reported signal recovery

results that lend evidence to the superiority of our proposed approach in comparison with

existing methods. We applied our algorithm to the task of face recognition in the context

of a multiple observation system where each observation is heavily occluded. The results

show that our algorithm achieves a significant classification accuracy gain over existing

algorithms from the literature.

• Future work in this line of research could focus on various applications of the model

and inference scheme we proposed. We have conducted preliminary work in applying

our algorithm to person re-identification, especially in the context of airport camera

systems [138].
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2. Chapter 3 focused on the problem of non-negative least squares and non-negative matrix

factorization. We developed a broad, novel class of priors to model sparse, non-negative

signals. We then defined a unified MAP inference framework and equipped it with efficient,

provably convergent multiplicative update rules. The significance of this work is two-fold.

First, we showed that our framework encompasses a large class of possible algorithms,

some of which exist in the literature already. Our approach makes it easy to formulate

novel approaches by simpling choosing a prior from the rectified power exponential scale

mixture family. Second, we showed that our framework provably converges to the set of

stationary points.

• We believe there are at least two significant avenues of future research that could

stem from this work. First, it is still unclear which priors from the proposed family of

signal priors are better in various application areas. Second, we did not address the

fundamental question of how well the proposed approaches are able to recover the

dictionary which generated the data and what modifications need to be made to yield

improved dictionary recovery performance.

3. Chapter 4 presented our work on multimodal dictionary learning. We presented an algorithm

called MSBDL, which improves upon existing methods in a number of ways. First,

MSBDL is unique in that it is capable of modeling dictionaries of varying cardinality

across modalities. Second, we equipped MSBDL with an automatic hyperparameter tuning

strategy, making it easy for practitioners to deploy MSBDL on novel datasets without the

hassle of a large hyperparameter search. Third, we devised scalable inference strategies

which make MSBDL applicable in the context of large datasets. Fourth, we extended

MSBDL to cover supervised datasets and showed that it is capable of learning classifiers

for multiple datasets simultaneously. We then studied the properties of MSBDL through the

lenses of theory and experimentation. Our analysis revealed that MSBDL is a convergent
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algorithm and can be proven to converge to a stationary point under certain assumptions. We

showed that the success of our hyperparameter tuning strategy can partially be explained by

the fact that it successively increases the size of the search space, in some sense eliminating

the possibility of getting stuck in poor local optima. We also presented an argument in favor

of multimodal dictionary in general, showing that the minimum number of samples needed

to guarantee dictionary recovery is strictly smaller when learning dictionaries jointly as

opposed to independently. Our experimental results showed that MSBDL dramatically

outperforms competing algorithms in dictionary recovery, it retains its favorable dictionary

recovery qualities even when scalable inference is performed, and it is able to capture

complex relationships in both synthetic and real-world data.

• We believe that there are at least two significant future research directions that can

build on the MSBDL algorithm described in Chapter 4. The first issue is that the

linear forward model (i.e. that y j is a linear function of x j) is rather restrictive.

Ultimately, we hope that our work on linear models can be used to guide researchers

in extending MSBDL to more complex models, such as neural networks. The cost of

a richer forward model is that closed-form inference is no longer possible and one

must resort to approximate inference, such as variational inference (VI) [139]. Of

course, VI itself can be restrictive in that it constrains the family of approximating

distributions, but recent work has shown that this class of approximating distributions

can be significantly extended [140, 141]. The second issue with MSBDL is that,

although we have made progress toward addressing the scalability of MSBDL, there

is much room for even higher reduction of computational and memory complexity.

VI can be exploited for this purpose as well, where recent work on amortized [142],

semi-amortized [143], and stochastic VI has shown that VI can be a highly efficient

and robust density estimator.
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