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Abstract

Human adults can figure out what happened by combining ev-
idence from different sensory modalities, such as vision and
sound. How does the ability to integrate multi-modal informa-
tion develop in early childhood? Inspired by prior computa-
tional work and behavioral studies with adults, we examined
3- to 8-year-old children’s ability to reason about the phys-
ical trajectory of a ball that was dropped into an occluded
Plinko box. Children had to infer in which one of three holes
the ball was dropped based on visual information (i.e., where
the ball landed) and auditory information (i.e., the sounds of
the ball colliding with parts of the box). We compare chil-
dren’s responses to the predictions of four computational mod-
els. The results suggest that although even the youngest chil-
dren make systematic judgments rather than randomly guess-
ing, children’s ability to integrate visual and auditory evidence
continues to develop into late childhood.
Keywords: mental simulation, intuitive physics, vision, audi-
tion, cross-modal integration, heuristics

Introduction
Humans are good at figuring out what happened. From some
rocks on the ground, a geologist infers when the Ice Age be-
gan, and from a bullet hole in the wall, a forensic scientist
figures out who committed the crime. Remarkably, the abil-
ity to reconstruct “what happened” is not limited to those with
expert knowledge. Without degrees in geology or forensic
science, people routinely use sparse evidence to draw rich
inferences about the past. For example, adult participants
can infer what path someone took based on the location of
cookie crumbs on the floor (Lopez-Brau et al., 2020), or infer
whether there is an object or an agent behind a curtain based
on the pattern of sounds that were generated (Schachner &
Kim, 2018; Kim & Schachner, 2021). The scope of such in-
ferences extends beyond the physical world: from the sur-
prised look on a friend’s face, we can infer that something
unexpected must have happened (Wu et al., 2021), and when
one person gets blamed more than another, we get a sense for
what each person must have done (Davis et al., 2021).

Recent computational work has examined how adult partic-
ipants use their intuitive understanding of the physical world
to infer what happened in the past (Smith & Vul, 2014; Ger-
stenberg, Siegel, & Tenenbaum, 2021), explain what hap-
pened in the present (Gerstenberg, Goodman, et al., 2021),
predict what happens next (Smith & Vul, 2012; Battaglia et
al., 2013), or plan to take actions that bring about desired out-
comes (Allen et al., 2020). This work assumes that people’s

mental model of the physical world is similar to the kinds of
physics engines that are used to generate physically realistic
interactions in modern computer games (Ullman et al., 2017;
Gerstenberg & Tenenbaum, 2017, but see Ludwin-Peery et
al., 2021).

Critically, reconstructing the past often involves an inte-
gration of different cues that can span multiple modalities.
Consider, for instance, the Plinko box at the top of Figure 1.
Although you could guess in which hole the ball was dropped
just based on where it landed in the sand, you could make a
better guess if you had also heard the sounds it made when
it was dropped. Gerstenberg, Siegel, & Tenenbaum (2021)
tested adult participants’ inferences in this task. In the ‘vi-
sion’ condition, participants only got to see the final location
of the ball. In the ‘vision & sound’ condition, the box was
first covered up and participants heard what sounds the ball
made as it was dropped. The cover was then removed so that
participants saw where the ball landed, and they were asked
to figure out from which hole the ball was dropped. Adults
were more accurate at figuring out in which hole the ball was
dropped when they had access to both visual and auditory in-
formation rather than visual information only (Figure 1 bot-
tom).

Despite recent advances in understanding the cognitive
processes that support such integration of multiple sensory
cues, little is known so far about how these inferences develop
in early childhood. Recent proposals suggest that adults’
ability to simulate physical events may be rooted in early-
emerging knowledge about the physical world (Lake et al.,
2017). Decades of developmental research have found that
even infants have an intuitive, theory-like understanding of
the physical world that may provide the foundations for these
inferences (Spelke et al., 1992; Ullman & Tenenbaum, 2020).
From this perspective, one might predict that the ability to
integrate different cues to reason about physical events may
also emerge relatively early in life.

However, existing work suggests that young children strug-
gle with integrating multiple sources of information until late
childhood. For instance, one study has examined children’s
ability to integrate visual and haptic information by having
them discriminate the size and orientation of physical blocks
(Gori et al., 2008). While 8- to 10-year-olds readily inte-
grated the evidence in a statistically optimal fashion, weight-
ing each modality appropriately based on its reliability, chil-
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Figure 1: Illustration of the simulation model. To infer in
which hole the ball was dropped, the model simulates where
the ball would end up for each hole, and what sounds it would
make along the way. The densities in the middle row summa-
rize the outcomes of many simulation runs; the paths indicate
the ground truth. The plots show adult participants’ infer-
ences (bars) and the model’s posterior belief (points) based
on visual information only (left) versus both visual and au-
ditory information (right). On this trial, the ball was in fact
dropped in the middle hole (hole 2).

dren younger than 8 years of age struggled to do so. Their
responses were dominated either by vision or touch regard-
less of reliability. Yet, this study focused on online integra-
tion of visual and haptic information for making fine-grained
perceptual distinctions (e.g., which object is taller?), rather
than examining children’s ability to reason about unobserved
events.

More recent work provides some insights into young chil-
dren’s ability to reason about physical states of the world
based on sensory information. For instance, 4- to 8-year-olds
can use sound to discriminate between multiple hypotheses,
and the duration of their exploration (i.e., shaking the box to
figure out how many objects are inside) reflects the difficulty
of teasing apart different hypotheses (Siegel et al., 2021). By
6 years of age, children can readily infer whether the water
was hot or cold from the sound of the water being poured
into a glass (Agrawal et al., 2020). These studies focused on
whether children can use information from a single sensory
modality (e.g., sounds), leaving open the question of how
they might integrate multiple cues from different modalities.

In this paper, we adapt the Plinko task to study how chil-
dren develop the ability to draw inferences about what hap-
pened based on visual and auditory information. This task
offers a simple and intuitive way to assess causal inferences
while allowing researchers to flexibly manipulate what sen-
sory information is available. It also allows us to compare
children’s responses to the predictions of different computa-
tional models that can help us better understand what cog-

nitive processes may be involved in multi-modal inference.
Given that prior work has found early competence in drawing
inferences from sensory information in preschool-aged chil-
dren (Siegel et al., 2021; Hood, 1995) as well as difficulties in
later childhood in multisensory integration (Gori et al., 2008),
we targeted a relatively wide age range – from age 3 to 8 –
to capture potential developmental change. We expected that
while younger participants might understand the task and re-
spond systematically, children may not yet be capable of run-
ning mental simulations that integrate vision and sound until
early school-aged years.

Models
We consider four different computational models that make
different assumptions about the underlying cognitive pro-
cesses by which children reach their judgment. We illustrate
the predictions of each model based on the example shown in
Figure 1. The predictions of each model across the nine test
trials in the experiment reported below are shown in Figure 2.

Guessing model The simplest possibility is that children
might randomly choose one of the three holes. The guessing
model implements this prediction by assigning an equal prob-
ability to each of the three holes. Such responses may suggest
that children did not understand the setup or the task.

Matching model A second possibility is that children
might use a matching strategy, and be more likely to choose
a hole that is closest in spatial proximity to where the ball
landed (ignoring the obstacles in the box). This model is in-
spired by prior research on the ‘gravity bias’ which demon-
strated children’s tendency to assume that objects fall straight
down. Children show this bias even when an object is
dropped into a curved tube that makes it such that the ob-
ject ends up in a bucket that’s not underneath where it was
dropped (Hood, 1995).

The matching model assigns a probability to each hole
based on the horizontal distance between the center of the
hole and where the ball ended up. The closer the ball is to
the center of a hole (along the x-axis), the more probability
the model assigns to that hole. The model turns the distance
between hole and ball into a likelihood via a Gaussian loss
function centered at the location of the ball. We fitted the
standard deviation in the loss function to maximize the like-
lihood of the data. The matching model can be thought of
as a graded version of the gravity bias. A child who makes
responses that are best explained by this model might have
understood the goal of the task, but may have ignored the ob-
stacles in the box as well as the sounds that the ball made. In
Figure 1, the matching model predicts that it was most likely
that the ball was dropped in hole 3.

Simulation model (vision) Another possibility is that chil-
dren solve the task by running mental simulations that take
into account only the visual information. Gerstenberg, Siegel,
& Tenenbaum (2021) developed a computational model of
the Plinko task that is illustrated in Figure 1. Their model
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Figure 2: Model predictions across the nine test trials. The boxes at the top show the ball’s trajectory for each hole. The red
balls indicate where the ball was actually dropped and where it landed. Bar plots under each box show model predictions. The
‘guessing’ model predicts all holes are equally probable in all trials. The ‘matching’ model assigns probability for each hole
given the horizontal distance between the hole and the ball’s final location. The ‘simulation (vision)’ model infers in which
hole the ball was dropped by running simulations that take into account the final position of the ball. The ‘simulation (vision
& sound)’ model also considers the sounds that the ball made when it was dropped. For example, in trial 2, the ‘simulation
(vision & sound)’ believes that the ball was dropped in hole 1, whereas the other models are less certain about what happened.

runs physical simulations of what would happen if the ball
was dropped into the different holes (Figure 1, middle row)
while accounting for the uncertainty in how exactly the ball
is dropped (“drop noise”) and how it might collide with an
obstacle (“collision noise”). In one of their experiments,
Gerstenberg, Siegel, & Tenenbaum (2021) tested this model
against participants’ predictions of where the ball would land
if it was dropped in the different holes. They found that
participants systematically underestimated how far the ball
would go after it collided with an obstacle, and the model
captured this by assuming a biased collision noise. The den-
sity distributions in the middle row of Figure 1 summarize
where the model believes the ball would end up if it was
dropped into the different holes. As the density for hole 1
(in blue) shows, the simulation model underestimates how
far the ball would go (as indicated by the dotted path that
shows the ground truth). In some of the simulated runs, the
ball ends up on the left side of the triangle, while in others
it ends up on the right side. Based on the simulated trajecto-
ries, the model then computes the likelihood of the observed
data (i.e. the x-position of where the ball landed in the ac-
tual situation) conditioned on each hole by considering how
close the ball in each simulated run ended up to where it ac-
tually landed. By combining this likelihood with a uniform
prior over the different holes, the model computes a poste-
rior belief about where the ball was dropped. In Figure 1, the
simulation model with only visual information assigns most
probability to hole 3 (bottom left plot).

Simulation model (vision & sound) Finally, we consider
the possibility that children are integrating both visual and au-
ditory information in their inferences. Gerstenberg, Siegel, &
Tenenbaum’s (2021) model encodes the auditory information
as a vector that contains the time points at which collisions
happened. For example, consider that in the actual situation,
the ball collided with an obstacle at t = 50, and then landed
in the sand at t = 78. The model then compares what this

vector looks like in each simulated run, with what happened
in the actual situation. When the model considers hole 1 in
Figure 1, the simulated drops end up generating three sounds
(a first collision with the pentagon in the top left, another col-
lision with the triangle, and then the sound of the ball land-
ing in the sand). To compute the likelihood of the auditory
data, the model considers how close the sounds of a simulated
run match the sounds that were actually heard (the likelihood
function includes a penalty when the number of sounds in the
simulation doesn’t match the number of sounds that actually
happened). The model then computes a posterior over the dif-
ferent holes based on a likelihood function that is sensitive to
both the visual and auditory evidence. In Figure 1, the sim-
ulation model that considers both visual and auditory infor-
mation infers that the ball must have been dropped in hole 2
(bottom right plot). Even though the ball ended up right un-
derneath hole 3, the fact that there was a collision sound with
an obstacle rules out the possibility that it was dropped from
that hole.

Experiment
In our experiment, we study children’s ability to make infer-
ences from visual and auditory evidence across a number of
different Plinko boxes just like the one in Figure 1. The ex-
periment was pre-registered via the OSF (https://osf.io/
rjwqa). You can access all the materials, data, and analysis
here: https://github.com/cicl-stanford/whats-that
-sound

Methods
Participants We recruited 64 participants between 3 to
8 years of age (Meanage = 5.56; the number of chil-
dren in each age group ranged from N = 10 to N =
12) via online advertisements on Facebook and https://
childrenhelpingscience.com. The demographics of our
sample were as follows: gender: 32 female, 31 male, 1 pre-
ferred not to answer; race: 34 White, 11 Asian, 3 Hispanic or
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Figure 3: The sequence of events on a test trial. a) Participants saw an open Plinko box (location of obstacles were visible) as
Elmo appeared in the middle of the box holding a ball. b) The box was then covered to occlude its contents. c) A curtain was
drawn to cover Elmo, and participants heard the sounds of the ball as Elmo dropped it into one of the holes. A ‘beep’ sound
was played when Elmo released the ball. A collision sound (‘boom’) was played whenever the ball hit an obstacle. A ‘chick’
sound was played when the ball landed in the sand. In this case, Elmo dropped the ball in hole 2. d) The final location of the
ball was revealed and participants were asked: “In which hole did Elmo drop the ball?”

Latino, 2 Black or African American, 6 Asian and White, 4
Hispanic/Latino and White, 1 Hispanic/Latino and Pacific Is-
lander, 1 Asian and Hispanic/Latino, 2 participants preferred
not to answer. Participants received a $5 gift card as com-
pensation. Twelve additional participants were excluded for
failing comprehension check questions (4), environmental in-
terference (1), technical difficulties (4), or opting out (2).

Materials The physical simulations of the Plinko box were
created using PyMunk and rendered in 3D with Unity. The
sounds were pre-recorded collision sounds that were played
at the time at which the collisions happened in the physi-
cal simulation. Animations of Elmo interacting with the box
were added using Apple Keynote.

Design Participants viewed 9 test trials that were presented
in three pseudo-random orders (see Figure 2). The trials var-
ied in the positioning of the obstacles in the box, in which
hole Elmo dropped the ball, the number of obstacle collisions
(between 0 and 3), and how far the ball lands from the hole
in which it was dropped. We selected these trials because the
different models make different predictions, thereby allowing
us to make inferences about what model is most consistent
with individual participants’ responses across the trials.

Procedure The experiment was conducted online via Zoom
using https://slides.com/ for stimulus presentation. The
study progressed through a familiarization phase, a compre-
hension check phase, and then a test phase.

In the familiarization phase, children first saw Elmo drop-
ping the ball once from each of the three holes in an uncov-
ered box. They saw physically realistic animations of the
ball’s movements in the box, and also heard the sounds that
the ball made as it collided with the obstacles and landed in
the sand. This was to ensure that children understood the rel-
evant physical properties of the task. The experimenter then
drew children’s attention to the different holes (by referring to
each hole using the color cues) and the obstacles in the box.
The experimenter said that Elmo had many similar boxes that

have obstacles in different locations, and that are played with
in the same way. Then a second box appeared, with obstacles
in different locations, and the experimenter brought children’s
attention to the sounds. After Elmo dropped the ball in each
hole, the experimenter highlighted the different sounds the
ball made: ‘beep’ (when the ball was released), ‘boom’ (when
the ball hit the obstacles or the walls) and ‘chick’ (when the
ball landed in the sand). Each drop was looped three times to
ensure that children heard the sounds.

In the comprehension check phase, children watched three
more animations of Elmo dropping the ball. In each anima-
tion, children were able to see in which hole Elmo dropped
the ball. After dropping the ball, Elmo disappeared behind
the box. In the first animation, the box was uncovered (like in
Figure 3a). In the other two animations, the box was covered
(like in Figure 3b) so that children could not see the obstacles
or the trajectory of the ball as it fell through the box, but could
still hear the sounds it made. The cover was then removed so
that children saw the final position of the ball (like in Fig-
ure 3d). After each animation, children were asked the test
question: “In which hole did Elmo drop the ball?”. Children
responded by saying “blue”, “yellow”, or “green”.

The test phase was similar to the comprehension check
phase, with one critical difference: a curtain appeared be-
fore Elmo dropped the ball, meaning that participants were
unable to see in which hole Elmo dropped the ball. Figure 3
illustrates the sequence of events on each test trial.

Results

We will first discuss how children’s accuracy in the task de-
velops with age, and then compare children’s responses to the
predictions of our different models.

Accuracy Figure 4 shows participants’ accuracy in the task
as a function of age. Overall accuracy increased with age (β
= 0.22, 95% credible interval [0.11, 0.33]). However, only 8
year old children’s accuracy was reliably above chance (59%
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Figure 4: Average accuracy as a function of age. For adults,
the results are shown separately for participants who only had
visual evidence, or who had both visual and auditory evi-
dence. Note: Error bars show 95% bootstrapped confidence
intervals for each age group.

[44%, 73%]). It’s worth noting though that even adult perfor-
mance in this task was not at ceiling. As Figure 4 shows, the
accuracy of adult participants who only received visual in-
formation (i.e. who only saw the final location of the ball
but didn’t hear the sounds it made when it was dropped)
was not above chance. Adult participants who had access
to both the visual and auditory information achieved an accu-
racy of around 70%. Even if children were integrating the vi-
sual and auditory information by using mental simulation, we
would still expect them to get certain trials wrong. Simulating
doesn’t necessarily mean getting it right in this task. This is
because, as mentioned above, even adult participants tended
to underestimate in their simulations, how far the ball would
go after it collided with an obstacle. For example, in Figure 2
trial 8, the ball was actually dropped in hole 3. However, the
‘simulation (vision & sound)’ model assigns the highest prob-
ability to hole 1. Because people underestimate how far the
ball goes after the collision, hole 1 is a better explanation than
hole 3 (and the fact that the sound of the ball colliding with
an obstacle happens a little later for hole 1 than for hole 3 is
not sufficient to counteract the visual evidence that strongly
favors hole 1).

Model comparison To gain more insight into what strate-
gies children were using to solve the task, we compared chil-
dren’s responses to the predictions of our computational mod-
els. Figure 5a shows for each participant how well each
model captured their responses. To compute the posterior dis-
tribution over models, we assumed a uniform prior over the
different models, and then computed the likelihood of a par-
ticipant’s responses across the nine trials under each model.
Figure 5b shows the posteriors averaged for each age group.
Qualitatively, the results show that random guessing was not
the predominant response even in the youngest group of chil-
dren (e.g., only 20% in 3-year-olds); rather, their strategy was
more consistent with matching (60%). Additionally, while
children’s responses were increasingly consistent with the
predictions of the mental simulation models, especially be-
tween 6 to 8 years of age, the ability to consider both visual
and auditory evidence was clear only in 8-year-olds (47%).

Figure 5b also shows adults’ inferences across these nine
trials. Adults’ responses in the vision condition – where they
only received visual evidence – were best explained by the
‘simulation (vision)’ model and the ‘matching’ model. In the
‘vision & sound’ condition, where adults heard the sounds
that the ball made as it was dropped before they saw its final
location, their responses were best explained by the ‘simula-
tion (vision & sound)’ model.

General Discussion
The current work examined whether children can infer what
happened by integrating visual and auditory evidence, and
how this ability develops in early childhood. We modified
the Plinko task (Gerstenberg, Siegel, & Tenenbaum, 2021)
to compare 3- to 8-year-olds’ behavioral judgments against
the predictions of four computational models. The results re-
vealed a clear developmental trend: between preschool and
early school-age years, children’s accuracy in the task in-
creased with age.

Critically, comparing children’s responses against compu-
tational models revealed more than just an increase in ac-
curacy. Even though children were performing roughly “at
chance” until age 7, our analysis shows that almost none of
the children were randomly guessing. Instead, younger chil-
dren showed a reliable tendency to choose the hole that was
closest to where the ball ended up. This matching strategy
is consistent with prior work on the gravity bias, suggesting
that young children tend to believe that a dropped object ends
up straight underneath where it was dropped (Hood, 1995;
Tecwyn & Buchsbaum, 2018). There were a number of chil-
dren (including some 3-year-olds) whose responses were con-
sistent with mental simulation based on visual information.
By age 8, the majority of children’s responses were consistent
with having relied on mental simulation, with a large propor-
tion seemingly having considered both visual and auditory
evidence to infer what happened.

In our task, the majority of younger children, before age
6 to 7, relied on a matching strategy, suggesting that they did
not reliably engage in simulation to make accurate inferences,
and even when they did, failed to integrate vision and sound.
This stands in stark contrast to the performance of adult par-
ticipants who had access to both visual and auditory informa-
tion, and whose judgments were most consistent with having
relied on mental simulation. Given the early-emerging under-
standing of the physical world (Spelke et al., 1992; Ullman &
Tenenbaum, 2020), what makes this task so challenging for
children?

First, young children’s knowledge of real-world physics
may not yet be robust or precise enough to run accurate men-
tal simulations. The Plinko task involves a ball that trav-
els downward, making it particularly challenging for chil-
dren who may be susceptible to gravity bias. This property
of our task may have masked younger children’s capacity to
run mental simulations. Prior work has shown that the grav-
ity bias disappears when children see videos in which objects
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(b) Model fits by age group

Figure 5: Posterior distribution over the different models for a) individual participants (with participant index on the x-axis),
and b) across age groups (including model fits for adult participants who either only had visual evidence, or both visual and
auditory evidence). Participant 1’s responses, for example, were most consistent with ‘guessing’ (65%), and with ‘matching’
(33%). This child chose the following holes in the nine trials shown in Figure 2: [2, 3, 1, 2, 3, 1, 2, 2, 2]. Participant 31’s
responses were most consistent with ‘simulation (vision & sound)’ (99%). This child chose the following holes: [1, 1, 3, 3, 3,
2, 2, 3, 2]. Across age groups, 3- to 5-year-olds’ responses were most consistent with ‘matching’ (58% on average), whereas
6- to 8-year-olds’ responses were increasingly consistent with relying on simulation (55% on average). 8-year-olds’ responses
were most consistent with having relied on simulation that considers both visual and auditory evidence (47%).

move from the bottom to the top (Hood, 1998), or when chil-
dren are asked to think about objects moving on a horizontal
plane (Hood et al., 2000). Indeed, recent work suggests that
even younger children (i.e., 6- to 8-year-olds) may engage in
counterfactual simulation to reason about physical events in
scenarios that do not involve gravity (Kominsky et al., 2021).
A simplified version of our task that minimizes the gravity
bias may reveal that even younger children have the ability to
infer what happened through mental simulation.

Second, children’s ability to integrate visual and audi-
tory information might still be developing during this period.
Given prior work showing that 8- to 10-year-olds have dif-
ficulty integrating visual and haptic information (Gori et al.,
2008), it is not surprising that children in our study had trou-
ble to integrate visual and auditory information before age 7
or 8. While it is difficult to directly compare children’s per-
formances across these tasks, the results suggest that multi-
modal integration may be challenging for younger children.
In the Plinko task, visual information is available at the time
of judgment but auditory information is not; children in our
task had to encode and remember the number, type, and tim-
ing of the sounds to figure out what happened. Developing
ways to reduce such extraneous demands might be useful for
studying children’s ability to integrate information from mul-
tiple sensory modalities.

Children’s responses in our oldest age group (8-year-olds)
were more consistent with having relied on a mental simu-
lation that considers both vision and sound than with any of
the other models we considered. The extent to which people
actually engage in physical reasoning via mental simulation
remains an active topic of research. Some argue against this
account, suggesting that humans not only employ heuristics
to perform complex physical tasks but also exhibit system-

atic biases in their intuitive physical reasoning (Davis & Mar-
cus, 2016; Ludwin-Peery et al., 2020). Although some ef-
fort has been made to accommodate these biases into rational
probabilistic Bayesian reasoning models (Zhu et al., 2020),
the concerns still persist (Ludwin-Peery et al., 2021). The
current work contributes to this debate by exploring the de-
velopment of these abilities, finding suggestive evidence that
children, by 7 to 8 years of age, are capable of engaging in
simulation of physical events in ways that integrate multiple
channels of sensory information. Additional methods, such
as eye-tracking, could shed more light on the role that mental
simulation plays in causal inference.

While our model comparison approach provides deeper in-
sights into how children may be performing the task, this ap-
proach also has some limitations. For example, the current
results merely indicate how well different models are doing
relative to one another, leaving open the possibility that some
children solved the task by relying on a strategy that we didn’t
consider here. Furthermore, although the four different mod-
els represent different strategies for solving the task, the mod-
els themselves do not explain what cognitive capacities might
develop with age to give rise to this developmental change.

In sum, the human ability to engage in mental simulation
has been a longstanding topic of research in cognitive science.
The current work suggests that even young children’s reason-
ing about past events may show signatures of simulation that
consider not only visual but also auditory information, and
that such tendency increases throughout early childhood. Al-
though children’s responses may often reflect mistakes and
appear to be “at chance”, combining computational and de-
velopmental approaches can help us look underneath the veil
of chance-level performance and provide novel insights into
children’s ability to reason about what happened and how.
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