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Abstract

It is intuitive to believe that humans take considerations of
mental effort into account when making decisions. However, it
has proved difficult to differentiate theories of mental effort in
the absence of direct measurements of this psychological con-
struct. Existing measurements of mental effort using response
times and revealed preferences have low reliability. In this pa-
per, we present a new experimental task - selecting between
visuomotor lotteries using eye-tracking for sampling lotteries
- that enables direct measurement of mental effort. Unlike re-
sponse time-based measures, effort measurements in this task
are not confounded by actual effort allocation. Unlike revealed
preference-based measures, effort measurements in this task
are acquired on a natural scale unitized by automatic visual
selection processes. We also report results from a simple ex-
periment conducted using this task, which reproduce existing
findings of costly effort-aversion, and also demonstrate adap-
tive adjustment of mental effort.
Keywords: decision making; decisions from experience; in-
formation accumulation; mental effort

Introduction
Recent experiments have clearly demonstrated that humans
find the exertion of mental effort aversive (Kool, McGuire,
Rosen, & Botvinick, 2010), reducing effort application in
cognitively demanding tasks (Gailliot et al., 2007). This aver-
sion appears to be adaptive, since humans can also increase
effort for larger rewards (Camerer & Hogarth, 1999). Such
observations are consistent with adaptive allocation of men-
tal effort, suggesting that humans allocate mental resources
sensitive to the value of consequent outcomes.

The idea that people rationally factor anticipated cognitive
effort into decisions about how to behave is extremely intu-
itive, and appealing on multiple theoretical grounds. Opti-
mizing metabolic costs, governed to some degree by men-
tal effort, is a clear target for natural selection (Christie &
Schrater, 2015). Given resource limitations, such as working
memory size, it is rational for humans to take them into ac-
count to make resource-rational decisions (Lieder & Griffiths,
2020). Well-known constraints on our capacity to undertake
tasks in parallel imply that it is rational to attempt to optimize
the costs of undertaking any single activity (Musslick & Co-
hen, 2021). It is also possible to model mental effort as the
opportunity cost of processing information relevant for decid-
ing what to do in a given situation (Shenhav et al., 2017).

However, it has proved difficult to test these theories di-
rectly, since it is difficult to measure cognitive effort directly,
a predicament that Kool and Botvinick (2018) refer to as an
’econometric problem in mental effort research’. In partic-
ular, in the absence of direct measurements of mental re-
sources being expended, it is not yet clear whether resource-

rationality assumptions are to be treated simply as modelling
devices, or as valid correlates of real psychological mecha-
nisms (Rahnev, 2020).

In earlier work, researchers have tried to measure men-
tal effort using either response times (Lieder et al., 2014),
or revealed preferences (Shenhav et al., 2017). Neurolog-
ical measures of mental effort, such as neural activity in
dACC (Cavanagh & Frank, 2014), rely upon direct behavioral
measures such as the ones described above for their validity,
and so are not considered separately here.

Lieder et al. (2014) use response times as direct measure-
ments of mental effort in developing a model of decision-
making which treats such effort as one half of a trade-off (re-
ward being the other) that resource-rational decision-makers
use as a domain-general optimality principle (Lieder & Grif-
fiths, 2020). However, response time measures are unreliable
as measures of mental effort, since high RTs may indicate
both high mental effort (someone is working hard on the task)
or low mental effort (leisurely working on the task).

Kool et al. (2010) use revealed preferences to determine
the effect of mental effort in a demand-selection task, wherein
participants select between stimuli coding for hard and easy
sequences containing multiple trials of different cognitive
tasks (with task difficulty controlled by the frequency of task-
switching) and showed that task-switching was aversive for
participants, suggesting that they are sensitive to mental ef-
fort. In another study, Westbrook, Kester, and Braver (2013)
use a continuum of difficulty in working memory tasks to op-
erationalize mental effort, eliciting ‘cost’ measurements us-
ing monetary amounts needed to shift participants’ prefer-
ences from easy to hard tasks. Revealed preferences are more
reliable, but, being ordinal estimates, are coarse in granularity
of measurement. While they can tell us whether participants
found mental effort aversive, they are unable to tell us clearly
how aversive they found it (Kool & Botvinick, 2018).

Thus, theorizing about the properties of mental effort is
currently constrained by the inability to measure mental ef-
fort. In this paper, we present a new experimental task for
measuring mental effort that avoids some of the problems that
response time and preference-based elicitations face. Specif-
ically, we design a task where observers may select to sam-
ple evidence from and then finally choosing either of two ex-
pected value-matched lotteries, with the presentation of the
and procedure for final selection using a visuomotor esti-
mation paradigm developed by Juni, Gureckis, and Maloney
(2011). Unlike conventional visuo-motor lotteries, wherein
evidence is sampled using key-presses symbolically associ-
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ated with outcomes, in our design, participants sample evi-
dence from either graphically visualized by simply looking at
it, with visual fixations mapped to sample generation using
eye-tracking. Below, we describe this method of measuring
cognitive effort, its advantages in eliminating some key con-
founds that bedevil existing mental effort estimation proce-
dures, and some preliminary results obtained using it.

Selecting between visuomotor lotteries
As we describe above, the basic building block of our ex-
perimental task is the visuomotor lottery, proposed in Juni et
al. (2011). In visuomotor lotteries, participants are required
to estimate the location of a hidden target with the help of se-
quentially sampled location hints which appeared in the prox-
imity of the target with some precision. Essentially, through
these hints, participants sample the mean location of the hid-
den target from a bi-variate Gaussian distribution centered on
the true location of the hidden circle and constructed a sam-
pling distribution. Participants can sample as many times as
they want before making a guess by pointing to a specific
location within the target area. On a successful guess, they
receive a reward. Every sampled hint reduces the reward by a
fixed amount, thus making sampling explicitly costly.

Paralleling earlier task selection paradigms used for mea-
suring mental effort (Kool et al., 2010; Westbrook et al.,
2013), we design our task to require participants to choose
between visuomotor lotteries, as illustrated in Figure 1. Par-
ticipants saw two visuomotor lotteries in parallel on the same
screen, and were free to sample from either of them before
making a consequential guess for the hidden target in either
one.

We make one lottery more difficult than the other by in-
creasing the covariance of the distribution from which hints
are sampled, thus necessitating more samples for accurate es-
timation. With lower accuracy, the probability of receiving
the payoff decreases, but this can be offset by decreasing the
cost of each sample. Thus, it is possible to design a choice be-
tween lotteries that is matched in terms of expected value, but
with different mental effort requirements for either lottery. To
ensure there is no additional cost due to of memory mainte-
nance, all sampled hints stay on screen throughout each trial.

While the number of hints sampled for a lottery is a pos-
sible proxy for how much information a participant is look-
ing for during a trial, operationalizing this variable using key
presses, as in Juni et al. (2011) suffers from similar confounds
as response times. Participants could generate fewer hints by
virtue of paying great attention to the cost structure of the
experiment, or draw many hints desultorily.

To reduce this confound in our task, hints are sampled in
our task using eye movements indicating attention to either
in the display. When a participant wants to generate a hint,
they visually focus inside the box marking the borders of the
corresponding visuomotor lottery, and retain their focus in-
side the box for a second. This design element ensures that
sample generation remains coupled with attending to the ac-

Figure 1: Illustration of the visuomotor selection task. In
each trial, participants could sample hints from either using
eye movements as many times as they wanted before making
a final guess that completed the trial.

cumulated information that is being presented on screen. By
virtue of this coupling, people cannot sample hints without
attending to the estimation task, and cannot perform the esti-
mation task without sampling hints, thereby tightly coupling
mental effort with task performance.

Designing Expectation-Matched Lotteries
As a starting point for experimenting with this task, we con-
sider the special case where participants select between lot-
teries that are matched on expected value. For such a choice,
a preference for selecting the easier would indicate a prefer-
ence for lower cognitive effort, following similar demonstra-
tions in other experimental paradigms (Kool et al., 2010).

We use the same analytic approach as (Juni et al., 2011)
to calculate the expected reward or the expected gain as a
function of number of samples (EG(n)) as follows:

EG(n) = P[hit/n](R−nC),

where R is the initial reward, C is the constant redacted
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Figure 2: Expected value of both visuomotor lotteries used
in our experiment over a range of sampling possibilities. The
optimal number of samples for both lotteries are marked with
dashed lines.

from reward with each sample and P[hit/n] or probability of
target being in the middle of n samples is:

P[hit/n] =
∫ ∫

T

φ(0,Σ)dxdy,

where T is the area of the hidden circle and φ is the prob-
ability density function of the multivariate Gaussian from
which the samples are drawn with Σ as co-variance matrix

Σ(n) =

σ2(n) 0

0 σ2(n)


The EG(n) function plotted in Figure 2, with maximum ex-

pected reward visualized at peaks, clearly indicates the opti-
mal number of samples for a specific pair of visuomotor lot-
teries we use in the experiment reported further below.

A Basic Experiment
Participants Ten university students participated in the ex-
periment for monetary compensation. The rate of compensa-
tion included a fixed base rate plus a variable performance-
dependent component. All participants reported perfect eye-
sight. Data was collected with approval from the university’s
IRB.

Apparatus The experiment was displayed on a 1920x1080
pixel screen split vertically to display two lotteries in parallel
in a dark room. A standard PC mouse was used to click and
guess the position of the target. An Eyelink 1000 eye tracker
was used to record gaze data at 1000Hz. A head mount was
used to fix the position of the head. The PsychoPy python
library was used to create the stimuli and Pylink was used to
integrate the eye tracker.

Stimuli A circle of radius 24 pixels was used as the target.
The screen was split vertically into two equal sides. Each

side displayed a bar on top, with a number on the left side of
the bar indicating how much potential reward can the partici-
pant earn with respect to the corresponding lottery, which was
80 to begin with for both the lotteries. Hints were dots of 4
pixels radius. The standard deviation used for one of the mul-
tivariate Gaussian was 40 pixels(easy lottery), and it was 60
for the other one(hard lottery). The standard deviations were
not revealed to the participants, but the lottery with the higher
SD had 4 written to the right of reward bar, which indicated
reward reduction value with each hint. Similarly 8 was the
constant reduction rate for the other reward. No reward was
received on wrong guess. Participants were allowed to draw
hints until the reward bar went to zero, in which case the trial
would terminate with zero reward. The fixation box inside
which the participants needed to foveate for a minimum of
1000ms was a rectangle with 1/4 the height and width of the
screen.

Design Each participant went through a block of validation
trials for learning to fixate on the displays to generate
samples. In these trials, they had to make 90% successful
fixations out of 30 total attempts in order to proceed to
the main experiment, as detailed below. All participants
successfully completed the validation block. They then did
10 practice trials of selecting between visuomotor lotteries
before doing 50 main ones. The left-right position of the
lotteries was randomized on each trial.

Procedure The participants were shown the instructions
and a play through of how the experiment would look like,
and calibrated the eye-tracker. They then had to go through
validation trials in which they had to get used to the fixation
process. For 30 times, a box appeared on one side of the split
screen and the participants had to bring their gaze inside that
side and fixate inside the box for 1 second in a limit of 5 sec-
onds in total. If they were successful, the box turned green,
otherwise it turned red. The box appeared in orange color to
inform the participants that they have to ’bring’ their gaze in-
side that side of the screen or in other words they needed to
look outside the area of the corresponding lottery to turn the
box black again and enabling another hint to be drawn. The
’bring the gaze inside’ step in our procedure made sure that
the fixations they make while estimating the location of the
target don’t result in drawing an indiscriminately large num-
ber of hints accidentally.

After validation, practice and main trials began, with par-
ticipants free to sample hints for either of the targets at any
time. If they drew a hint for a given target, the correspond-
ing box turned orange, indicating the need to bring their gaze
inside for drawing another hint. Participants were told to use
the left mouse button to guess the position of the circle when-
ever they wanted to. On a correct guess, the circle appeared in
green color and red otherwise. The points won for the partic-
ular trial were indicated afterwards, and the next trial began.

Before the beginning of the validation block and before
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every main trial, participants were given the option to re-
calibrate the eye-tracker. This was done so that they had an
option to take a rest by dismounting their head between any
two trials.

Results
Baseline Task Performance
As our first analysis, we check whether participants’ perfor-
mance matched baseline expectations of having been sensi-
tive to information-theoretic task characteristics. In particu-
lar, we expected participants to have a lower success rate for
the harder lottery, to have drawn more samples for the harder
lottery, and to have seen greater success in hitting the target
after having drawn more samples.

Two of these three baseline expectations hold true in our
participants. The success rate, measured by the number of
rewarded lotteries over selected lotteries, for easy lotteries
was significantly greater than for hard lotteries (two sample
t-test t(9) = 4.29, p < 0.001). Also, as shown in Figure 3,
the success rate for both lotteries increases significantly with
increasing number of samples with the slope of the best lin-
ear fit significantly positive, (p < 0.001) for both conditions
across all participants. These results suggest that participants’
responses were sensitive to the information processing de-
mands of the task. However, the number of samples drawn for
harder lotteries was not significantly different from the num-
ber of samples drawn for easier lotteries (two sample t-test
t(9) = 1.44, p = 0.16), suggesting that differences in mental
effort applied were small. We examine this discrepancy fur-
ther below.

Preference for easier
Figure 4 shows that most participants had a preference for the
easy lottery, represented by the green part of the bar. Across
all participants, this preference was significant with one sam-
ple proportion z(49) = 2.06, p = 0.039. This revealed pref-
erence, prima facie, can be interpreted as aversion to effort,
along the lines of Kool et al. (2010) and Westbrook et al.
(2013).

Effort aversion is also evident in participants’ behavior
across time in our experiment. Across all participants, the
correlation between trial number and total samples in that trial
was significantly negative, r(49) = −0.46, p < 0.001. This
negative correlation means that participants drew fewer sam-
ples on later trials. Concomitantly, success rate also signif-
icantly decreased with number of trials r(49) = −0.74, p <
0.001.

We also see a significant correlation between the number of
samples drawn and fraction of easy lotteries chosen measured
across blocks of 5 trials over the course of each participant’s
data r(99) =−0.65, p = 0.03. In other words, drawing fewer
samples weakly predisposes participants to select the easier
lottery more frequently. We next examine the pattern of sam-
pling effort seen in the task to better understand participants’
management of effort.

Mental effort in sampling lotteries
In Figure 5, red bars represent the average number of sam-
ples taken for the harder lottery and green bars show average
samples taken for the easy lottery by all participants. The
green and red vertical dotted lines show the optimal number
of samples for both lotteries respectively. We find significant
oversampling for the easy lottery (z(9) = 2.97, p = 0.002)
as seen in Juni et al. (2011), but significant under-sampling
for the harder lottery (z(9) = −2.39, p = 0.01) in compari-
son with their respective theoretical norms. Thus, we clearly
see evidence of sub-optimal effort allocation for the harder
lottery, supporting an effort-related interpretation of the re-
vealed preference result reported above.

We also note that the difference in expected gain between
the hard and the easy lotteries was significantly negative
at the time the consequential choice was made, across all
under-sampled harder lotteries (two sample t-test t(398) =
−7.4, p < 0.001). Therefore, undersampling clearly was sub-
optimal in terms of rewards, indicating that people were will-
ing to give up rewards to avoid effort.

We also tested if participants were responsive to success
and failure, by adjusting their sampling effort. For this we
measure the average change in the number of choice-samples
following a success and failure. Our findings are illustrated
in Figure 6. For the easy lottery, participants sampled 0.67
fewer samples for the same option when they experienced
success on the previous trial(z(109) = −2.29, p = 0.02) and
0.31 more same choice samples after failing on the previous
trial (z(126) = 2.02, p < 0.04). This suggests that, at least at
the cohort level, participants responded resource-rationally to
the task design for the easier lottery, calibrating effort towards
the minimum value needed to produce success. However,
such adaptive calibration did not happen in the harder lottery
(see Figure 6), where the change in same choice sampling
was not significantly different from zero for either success or
failure. Given the intrinsic difficulty of the harder lottery, and
the systematic under-sampling seen for it, it is unsurprising
that participants were not able to calibrate effort for it.

Attention and Preference
Eye-tracking studies of multi-option choice frequently use a
drift-diffusion framework for modelling the process of attend-
ing to different options and accumulating information about
the value of options by sampling(Krajbich & Rangel, 2011).
In this formalism, while it is easy to explain why people se-
lect options they attend to more, the choice of which item
people will attend to as a function of prior preferences is not
yet characterised (Tavares, Perona, & Rangel, 2017). It is
possible that reward-based attention capture causes observers
to keep bringing their attention back to the option that they
feel is more valuable.

Given the high visibility of the interaction between atten-
tion and preference afforded by our task, test the reward-
based attention capture hypothesis estimating participants’
probability of fixating on recently rewarded options.
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To this end, we fit a variation of the strategy selection
model first proposed by (Otto, Markman, Gureckis, & Love,
2010), which tries to model strategy use in repeated choice
settings like ours.

The model predicts the probability of sampling i as,

P(si, t|ci, t −1) = Prepeat +(1−Prepeat)×So f tmax(i)

,
This equation describes the probability of sampling item ’i’

more (si), when the same item ’i’ was chosen and rewarded
at time t-1(ci) as a combination of Prepeat or probability of
repeating the choice, and a Softmax function which is:

So f tmax(i, t) =
eγQi,t

eγQi,t + eγQ j,t
,

where γ is the exploitation parameter, with higher values
leading to the better quality option being chosen more fre-
quently. The quality of the option itself is defined as,

Qi,t = Qi,t−1 +α[rt −Qi,t−1],
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Figure 5: Comparison to optimal sampling

where α is the learning rate and rt is the reward received.
Quality basically summarizes which option has been histori-
cally more rewarding for a participant up to the current trial.

If the last rewarded item is not sampled more, the model
incorporates this information as,

P(a j, t|ai, t −1) = 1−P(ai, t|ai, t −1).

In case the previous choice is not rewarded the sampling
prediction is simply,

P(si, t|ci, t −1) = So f tmax(i)

,
To fit the model to data, we estimated parameters that max-

imized the likelihood for a participant,

L = ∏
trials

P

Figure 7 shows that the probability of fixating more on
the rewarding option which is significantly lower than 0.5
(one sample proportion z(49) =−6.99, p < 0.001.) at the co-
hort level, but demonstrates interesting individual differences.
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Most participants appear to switch away from the rewarding
option when deciding which one to focus on in the next trial,
with the exception of two, whose attention appears strongly
captured by the previous trial’s reward. In the absence of a
larger set of participants, the current findings suggest that,
whereas reward-based attention capture appears to not domi-
nate the decision of what to attend to next in our task, it could
explain some participants’ behavior quite well.
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Discussion
Existing methods for measuring mental effort have serious
limitations (Kool & Botvinick, 2018). While response time
measures confound the cost of effort with the actual effort
allocated (Shenhav et al., 2017), revealed preference-based
measures confound the cost of effort with peoples’ cognitive
abilities and motivation level (Kool & Botvinick, 2018).

In this paper, we have presented a visuomotor selection
task with attention-based evidence sampling, which offers
mental effort measurements while significantly reducing con-
founds affecting existing measurements of mental effort.

While response times could be greater for participants per-
forming a task desultorily, individuals must pay attention for
a specific period of time in order to obtain one sample in
our task, thus coupling overt visual attention with each ob-
served unit of effort. Unlike cognitive abilities loaded in other
mental effort paradigms, such as working memory capac-
ity (Westbrook et al., 2013), or task-switching ability (Kool et
al., 2010), the ability to focus visually for about 1000ms is not
as sensitive to individual differences (Shiffrin & Schneider,
1977), thus permitting units of mental effort in our paradigm
to be comparable within and across individuals.

Consistent with earlier findings (Kool et al., 2010; West-
brook et al., 2013; Westbrook & Braver, 2015), our exper-
imental findings showed mental effort to be aversive, with
people willing to give up larger rewards in order to sample
harder lotteries less, and preferring easier lotteries over harder
ones as a consequence. A novel finding revealed in our exper-
iment is that, at least for for easy tasks, people do adaptively
adjust the magnitude of effort they must put forth between
trials, consistent with theoretical resource-rationality expec-
tations (Lieder & Griffiths, 2020). This observation, while re-
quiring corroboration by a larger sample study, suggests that
resource-rationality assumptions may have greater ontic sig-
nificance than as pure modelling devices (Rahnev, 2020).

Undersampling of risky choices has previously
been reported in numerical risky decisions-from-
experience (Hertwig, Barron, Weber, & Erev, 2004;
Hertwig & Pleskac, 2010). We note that it is unlikely
that our participants under sampled the harder lottery for
any of the possible reasons listed by Hertwig and Pleskac
(2010). Our task had no memory demand, was not low stakes
as wrong guesses resulted in zero reward and perceived
difference in the outcomes of both the choices should not
make a difference, expected reward for harder lotteries
was consistently lower than that of easy one, at the time
decisions were made. Thus, evidence for effort conservation
in visuomotor -based decisions-from-experience offers
another possible explanation for the under-sampling seen in
numerical decisions-from-experience (Hertwig & Pleskac,
2010).

The major conceptual limitation in our task is that we do
not account for the possibility of withdrawal of covert atten-
tion from the task. That is, someone may attend to the task
overtly via eye movements while being mentally disengaged.
While this possibility does not appear phenomenologically
salient in the task in our experience with it, it is certainly the-
oretically realistic (Hunt & Kingstone, 2003). Future work
may empirically measure covert attention shifts in our task
by examining on-task microsaccades (Hafed & Clark, 2002).

Multiple experimental directions also present themselves
immediately for future investigation. For instance, com-
bining our task with the economic indifference approach of
Westbrook and Braver (2015) should help estimate effort-cost
curves using direct effort measurements. We anticipate such
efforts will lead to greater clarity about the nature of mental
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effort.

References
Camerer, C. F., & Hogarth, R. M. (1999). The effects of

financial incentives in experiments: A review and capital-
labor-production framework. Journal of risk and uncer-
tainty, 19(1), 7–42.

Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a
mechanism for cognitive control. Trends in cognitive sci-
ences, 18(8), 414–421.

Christie, S. T., & Schrater, P. (2015). Cognitive cost as dy-
namic allocation of energetic resources. Frontiers in neu-
roscience, 9, 289.

Gailliot, M. T., Baumeister, R. F., DeWall, C. N., Maner,
J. K., Plant, E. A., Tice, D. M., . . . Schmeichel, B. J.
(2007). Self-control relies on glucose as a limited energy
source: willpower is more than a metaphor. Journal of per-
sonality and social psychology, 92(2), 325.

Hafed, Z. M., & Clark, J. J. (2002). Microsaccades as an
overt measure of covert attention shifts. Vision research,
42(22), 2533–2545.

Hertwig, R., Barron, G., Weber, E. U., & Erev, I. (2004).
Decisions from experience and the effect of rare events in
risky choice. Psychological science, 15(8), 534–539.

Hertwig, R., & Pleskac, T. J. (2010). Decisions from experi-
ence: Why small samples? Cognition, 115(2), 225–237.

Hunt, A. R., & Kingstone, A. (2003). Covert and overt vol-
untary attention: linked or independent? Cognitive Brain
Research, 18(1), 102–105.

Juni, M., Gureckis, T., & Maloney, L. (2011). Don’t stop
‘til you get enough: adaptive information sampling in a vi-
suomotor estimation task. In Proceedings of the annual
meeting of the cognitive science society (Vol. 33).

Kool, W., & Botvinick, M. (2018). Mental labour. Nature
human behaviour, 2(12), 899–908.

Kool, W., McGuire, J. T., Rosen, Z. B., & Botvinick, M. M.
(2010). Decision making and the avoidance of cognitive
demand. Journal of experimental psychology: general,
139(4), 665.

Krajbich, I., & Rangel, A. (2011). Multialternative drift-
diffusion model predicts the relationship between visual

fixations and choice in value-based decisions. Proceed-
ings of the National Academy of Sciences, 108(33), 13852–
13857.

Lieder, F., & Griffiths, T. L. (2020). Resource-rational anal-
ysis: Understanding human cognition as the optimal use
of limited computational resources. Behavioral and Brain
Sciences, 43.

Lieder, F., Plunkett, D., Hamrick, J. B., Russell, S. J., Hay,
N., & Griffiths, T. (2014). Algorithm selection by ra-
tional metareasoning as a model of human strategy selec-
tion. Advances in neural information processing systems,
27, 2870–2878.

Musslick, S., & Cohen, J. D. (2021). Rationalizing con-
straints on the capacity for cognitive control. Trends in
Cognitive Sciences, 25(9), 757–775.

Otto, A. R., Markman, A. B., Gureckis, T. M., & Love, B. C.
(2010). Regulatory fit and systematic exploration in a dy-
namic decision-making environment. Journal of Exper-
imental Psychology: Learning, Memory, and Cognition,
36(3), 797.

Rahnev, D. (2020). Resource-rational analysis vs. resource-
rational humans. The Behavioral and brain sciences, 43,
e19.

Shenhav, A., Musslick, S., Lieder, F., Kool, W., Griffiths,
T. L., Cohen, J. D., & Botvinick, M. M. (2017). Toward a
rational and mechanistic account of mental effort. Annual
review of neuroscience, 40, 99–124.

Shiffrin, R. M., & Schneider, W. (1977). Controlled and auto-
matic human information processing: Ii. perceptual learn-
ing, automatic attending and a general theory. Psychologi-
cal review, 84(2), 127.

Tavares, G., Perona, P., & Rangel, A. (2017). The atten-
tional drift diffusion model of simple perceptual decision-
making. Frontiers in neuroscience, 11, 468.

Westbrook, A., & Braver, T. S. (2015). Cognitive effort: A
neuroeconomic approach. Cognitive, Affective, & Behav-
ioral Neuroscience, 15(2), 395–415.

Westbrook, A., Kester, D., & Braver, T. S. (2013). What
is the subjective cost of cognitive effort? load, trait, and
aging effects revealed by economic preference. PloS one,
8(7), e68210.

3015




