
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
User Assisted Data Structure Debugging and Verication

Permalink
https://escholarship.org/uc/item/0hr4g4wb

Author
Singh, Vineet

Publication Date
2016

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0hr4g4wb
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

User Assisted Data Structure Debugging and Verification

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Vineet Singh

December 2016

Dissertation Committee:

Dr. Rajiv Gupta, Chairperson
Dr. Iulian Neamtiu
Dr. Zhijia Zhao
Dr. Vassilis Tsotras

Copyright by
Vineet Singh

2016

The Dissertation of Vineet Singh is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

This dissertation would not have been possible without all people who have supported and

inspired me during my Ph.D. study and my life.

I owe my deepest gratitude to Dr. Rajiv Gupta for his continuous support of

my research and study. His never ending enthusiasm for research, hard working nature and

insightful vision have influenced me right from the beginning. He has given my research a

direction and a push at every step. Throughout these 5 years, he has been supportive of

me in every situation, academic or otherwise. Thank you Prof Gupta!

I would also like to express my gratitude to Dr. Iulian Neamtiu. His technical

and editorial advice has been invaluable to my research. He has taught me innumerable

lessons and insights on the workings of academic research in general. I have always felt

comfortable in approaching him with silliest of my doubts. Thank you Prof Neamtiu!

I would like to thank my other dissertation committee members, Dr. Vassilis

Tsotras and Dr. Zhijia Zhao for taking their time to review this dissertation.

I gratefully acknowledge the funding received towards my PhD from National

Science Foundation grants CCF-0963996, CCF-1149632, CCF-1318103 and CCF-1524852.

I was fortunate enough to do my internship at Intel under the mentorship of Dr.

Harish Patil. I would like to sincerely thank him for making my internship a valuable

research experience.

I am thankful to all my lab-mates. You have been a family to me during my time

at UCR. Thank you Amlan Kusum, Sai Charan Koduru, Yan Wang, Keval Vora, Zach

Benavides, Tanzirul Azim, Farzad Khorasani, Bo Zhou and YongJian Hu for helping me in

iv

many ways during these years.

I would also like to thank all my teachers I have had throughout my life. I would

specially like to thank Dr. Uday P. Khedker and Dr. Amitabha Sanyal for introducing me

to the amazing field of compilers.

Last but not least, I would like to thank my family who supported me throughout

this endeavor. Mummy, Papa, Aai, Baba, Aaji and Aajoba, thanks for all your prayers and

blessings. In particular, I wish to thank my wife, Prerna, for being my best buddy and later

my life partner.

v

To my Parents for making me who I am.

To my wife, Prerna, for being my source of motivation.

vi

ABSTRACT OF THE DISSERTATION

User Assisted Data Structure Debugging and Verification

by

Vineet Singh

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2016

Dr. Rajiv Gupta, Chairperson

Data structures are critical to the correct functioning of most programs. Corruption of

runtime data structures, e.g., due to program faults, can lead to a program crash or even

worse, wrong output. Such bugs are hard to analyze using traditional debugging techniques.

Specification-based debugging techniques have been used for addressing such bugs, albeit

with limited effectiveness. Concurrent data structures make correctness verification even

harder; for example, linearizability, the standard correctness criterion for concurrent data

structure implementations, is notoriously hard to prove. Consequently, current verification

techniques can only prove linearizability for certain classes of data structures. Therefore,

there is a pressing need for data structure debugging and verification — the centerpiece of

this dissertation.

First, this dissertation presents a precise fault location framework for debugging

sequential programs. The framework combines specification-based runtime data structure

verification with automatic detection of faulty program statements that corrupted the data

structures. The framework consists of a data structure constraint specification language,

vii

a compact memory graph representation MG++, and an efficient fault location module.

Experiments show the precision of our technique: while Tarantula [50] statistical debugging

technique narrows the fault to 10 statements, our technique narrows it to about 4 state-

ments. Experiments studying the time and space efficiency for real-world programs show

that MG++ is space-efficient and the time overhead for MG++ construction is acceptable

for debugging purposes. The dissertation also presents an efficient dynamic backward slicing

algorithm to assist the user with further debugging.

Second, this dissertation introduces a generic, sound, and practical technique to

statically check the linearizability of concurrent data structure implementations. Our tech-

nique requires specifying the concurrent operations as a list of sub-operations and passing

this specification on to an automated checker that automatically verifies linearizability us-

ing relationships between individual sub-operations. We have proven the soundness of our

technique. Our approach is highly expressive – we have successfully verified the linearizabil-

ity of 12 popular concurrent data structure implementations, including algorithms that are

considered to be challenging to prove linearizable such as elimination back-off stack, lazy

linked list, and time-stamped stack. Our checker is efficient, as it verified these specifications

in less than a second.

viii

Contents

List of Figures xii

List of Tables xiv

1 Introduction 1
1.1 Locating Data Structure Faults in Sequential Programs 3
1.2 Verifying Linearizability for Concurrent Data Structures 6
1.3 Dissertation Organization . 8

2 Constraint Specification Language 9
2.1 Constraint Model and Language Syntax . 11
2.2 Structure Specification . 12
2.3 Attributes and Model Specification . 13
2.4 Constraint Specification . 14

2.4.1 Inter-node Constraints . 16
2.4.2 Intra-node Constraints . 17

2.5 Comparison with Archie [27], An Example 19
2.6 Evaluation: Size of Specification . 20
2.7 Summary . 21

3 MG++: Memory Graph Construction and Representation 22
3.1 MG++ Representation . 25

3.1.1 MG++ for Heap Data Structures . 25
3.1.2 Modeling the Memory Allocator . 29
3.1.3 MG++ Rollback and Retrieval . 32

3.2 Portable Memory Graph Construction . 35
3.2.1 Key Observations . 35
3.2.2 Construction Algorithm . 37

3.3 Implementation and Evaluation . 42
3.3.1 Cost of Constructing MG++ . 44
3.3.2 Fault Location using MG++ . 47
3.3.3 Detecting Buffer Overflow Attacks using MG++ 47

ix

3.4 Limitations . 48
3.5 Summary . 49

4 Fault Location Framework 50
4.1 Overview of Our Approach . 50

4.1.1 Specification of Consistency Constraints 52
4.1.2 Tracing Data Structure Evolution History 53
4.1.3 Fault Location . 53
4.1.4 Optimizations . 56

4.2 Fault Location Algorithm . 57
4.2.1 Identifying Corrupted Data Structures 60

4.3 Optimizations . 61
4.3.1 Incremental Constraint Checking . 61
4.3.2 Efficient Traceback . 61

4.4 Evaluating Fault Location . 62
4.4.1 Precision of Fault Location . 63
4.4.2 Overhead of Fault Location . 64

4.5 Experience with Real Programs . 65
4.6 Scalability of the Technique . 67
4.7 Summary . 68

5 Efficient Backward Slicing 70
5.1 Background and Overview . 71

5.1.1 Computing the Backward Dynamic Slice 71
5.2 Complexity Analysis for Slicing . 73
5.3 Improved Slicing Algorithm . 74
5.4 Evaluation . 75
5.5 Summary . 79

6 Linearizability Verification of Concurrent Data Structures 80
6.1 System Model and Linearizability . 81

6.1.1 Execution Model . 82
6.1.2 Histories . 83
6.1.3 Linearizability . 83

6.2 Overview and Example . 84
6.2.1 Specifying Concurrent Operations 86
6.2.2 Pairwise Ordering and Reversibility 87
6.2.3 Trace Transformation . 89

6.3 Specification Language . 89
6.3.1 Syntax . 91
6.3.2 Modeling Synchronization Primitives 92

6.4 Proving Linearizability . 94
6.5 Handling Complex Operation Interactions 100
6.6 Soundness Proof . 102
6.7 Incompleteness . 105

x

6.8 Evaluation . 106
6.8.1 Benchmarks . 106
6.8.2 Discussion . 109

6.9 Summary . 111

7 Related Work 112
7.1 Location Data Structure Faults for Scalar Data Structures 112
7.2 Memory Graphs . 114

7.2.1 Memory Graphs . 114
7.2.2 Applications of Memory Graphs . 115

7.3 Linearizability Verification . 116

8 Conclusions and Future Work 118
8.1 Contributions . 118
8.2 Future Directions . 121

Bibliography 123

xi

List of Figures

2.1 Linked list traversal. 9
2.2 Memory graph representation of runtime data structures. 11
2.3 Specification language . 15
2.4 Specification for 2-3/B-Tree . 17
2.5 Archie [27] specification for 2-3/B-Tree. 19

3.1 The compact MG++ representation. 26
3.2 Executed statements and corresponding traditional Memory Graphs. 27
3.3 MG++ capturing the actions of the memory allocator. 30
3.4 Memory graph rollback and retrieval. 33
3.5 Memory access example. 36
3.6 MG++ construction operations. 37
3.7 An illustration of MG++ construction. 41
3.8 Sample code that corrupts Glibc’s free chunks list. 47

4.1 Faulty Quad Tree implementation. 51
4.2 Consistency constraints of a Quad Tree. 52
4.3 Memory graph at different program points. 54
4.4 Fault location on Figure 4.1. 55

5.1 Dynamic backward slicing . 73
5.2 Complexity analysis for backward traversal. 74
5.3 Example code for comparison of dependency list size and filter size. 75

6.1 Atomicity and error definitions. 82
6.2 Michael and Scott non-blocking concurrent queue [73]. 85
6.3 Expressing an operation as a sequence of atomic sub-operations. 86
6.4 MS non-blocking queue [73] specification. 87
6.5 Proving the MS queue linearizable. 88
6.6 Syntax of specification language. 90
6.7 Sample CAS specification from [46]. 92
6.8 Sample Fetch-and-increment specification from [47]. 93
6.9 Pair-wise ordering. 95

xii

6.10 Pair-wise reversibility. 95
6.11 ORVYY set [78]. 101
6.12 ORVYY set [78] simplified specification. 102
6.13 Operation interactions for the ORVYY set. 103
6.14 Proving soundness of linearizability check by induction. 104

xiii

List of Tables

2.1 Standard Attributes. 13
2.2 Specification size comparison. 20

3.1 Overview of benchmarks. 43
3.2 Benchmarks’ input description. 44
3.3 Time overhead of capturing Memory Graphs. 46
3.4 Memory costs of capturing Memory Graphs. 46
3.5 Heap buffer overflow detection results. 48

4.1 Precision . 63
4.2 Overhead . 64
4.3 Real . 65
4.4 Real . 66

5.1 Comparison of slicing time for 1 million instruction per thread program
runs, PARSEC benchmarks. 77

5.2 Comparison of slicing time for 10 million instruction per thread program
runs, PARSEC benchmarks. 78

6.1 Specification details of concurrent data structure implementations. 107
6.2 Checking linearizability of different concurrent data structure implementations.110

xiv

Chapter 1

Introduction

Data structures are critical to the correct functioning of most programs. Program

faults often lead to data structure corruption. The compromised structural integrity of

runtime data structures is hard to detect unless it manifests as a program failure. Traditional

debugging techniques have limited applicabiliy in detecting such faults. Specification-based

debugging techniques are useful in detecting such faults but are limited to fault detection.

The manual localization of such faults is a difficult – tedious and time consuming.

In the case of concurrent data structures, this problem is even worse, as parallelism

complicates design, implementation, and verification. First, concurrent implementations of

abstract data structures (stacks, queues, sets, etc.) are becoming more and more complex

as implementations that increase the degree of concurrency are identified; this complexity in

turn is making correctness verification harder. Second, myriad thread interactions at run-

time seriously hinder make program understanding and debugging. To address these issues,

researchers have proposed correctness proofs for concurrent data structures. Linearizability,

1

introduced by Herlihy and Wing [47], is the standard form of correctness for concurrent

data structure implementations. Even the recent state-of-the-art techniques (e.g., [63,116])

for proving linearizability lack generality as they are limited to specific classes of concurrent

data structures — so far no technique (manual or automatic) for proving linearizability has

been proposed that is both sound and generic. Therefore, researchers often rely on custom

proofs of linearizability which is error-prone and highly time-consuming.

To address the above problems, this dissertation presents a fault location frame-

work for sequential data structure implementations and a linearizability verification tech-

nique for concurrent data structure implementations. Our techniques harness the power of

user specifications and provide the user with the following capabilities:

1. Easy to Use Input Specification Language. The fault location framework takes

data structure consistency constrains as input. To enable the user to input the data

structure consistency constraint with ease, a specification language is provided. The

user expresses the constraints in terms of relationship between allocated memory

regions and memory stores. The specification language enables the user to express a

wide range of data structure constraints with ease.

2. Precise Fault Location. The fault location framework uses the input constraint

specification to detect and locate faults that violate data structure constraints. The

input constraints enable the framework to increase the precision of fault location.

3. Runtime Efficiency. The dynamic analysis required for precise fault location is

costly, both in terms of time and memory. An efficient representation for storing data

structure evolution history has been introduced to limit our fault location framework’

2

memory usage. We have also introduced a number of optimizations (incremental

constraint matching, modification prediction) to make fault location faster.

4. Sound and Generic Linearizablity Verification Technique. The linearizability

verification technique presented in the dissertation is generic, i.e., it does not rely on

specific properties of concurrent data structure implementations and can be applied

to a wide range of implementations. We have proven the soundness of our technique.

The remainder of the chapter provides an overview of the data structure fault

location framework and the linearizability verification technique and also presents

the organization of the remainder of the thesis.

1.1 Locating Data Structure Faults in Sequential Programs

Heap-allocated data structures can be easily modeled using Memory Graphs: heap

allocations and pointers between heap elements correspond to nodes and edges. The struc-

tural definition of a data structure can then be expressed via consistency constraints that

describe the allowed relationships among the nodes of the memory graph. The data struc-

ture errors that violate these constraints can be detected and located by evaluating the

constraints. As an example, consider the widely-used memory allocator in the GNU C

library (glibc) that maintains a doubly-linked list to track free memory chunks. The struc-

tural consistency constraints of this list are often violated by bugs in client programs (e.g.,

heap overflow bugs) leading to a program crash. Examples of bugs in popular software that

do exactly the above include: Kate (KDE bug #124496), Kdelibs (KDE#116176), Kooka

3

(KDE#111609), Open office (Open office#77015), GStreamer (GNOME#343652), Doxy-

gen (GNOME#625051), Rhythmbox (GNOME#636322), Evolution (GNOME#338994,

GNOME#579145) [3, 5, 7]. Previous work in debugging data structures has been di-

rected towards automatic repair of data structures (Malik et al. [71], Juzi [35], Demsky

et al. [28, 29]) or were limited to locating the data structure fault to a region of program

execution (Gopinath et al. [42], Demsky et al. [27]).

Motivated by the above observations, this dissertation presents a system that (1)

allows the user to specify the consistency constraints for dynamic data structures as relation-

ship rules among the nodes of a memory graph, (2) automatically detects any violation of

these rules at runtime, and (3) locates the faulty code. The design of this system addresses

the following challenges:

1. The system includes an expressive and concise language to specify constraints.

2. The system supports a novel representation to store data structure state after each

mutation, i.e., the data structure evolution history. Also, mapping from dynamic

(runtime) data structures to source code is maintained.

3. Data structure invariants are routinely broken, albeit temporarily, during operations

on the data structure. For example, the structural invariant for a doubly-linked list, if

element e points to element e’ then e’ should point back to e, is violated temporarily

during the insertion of a new node in the list. Due to the presence of temporary

constraint violations, our fault location system is designed to differentiate between a

constraint violation caused by a fault and a temporary legitimate violation. Moreover,

the fault location system delivers ease of use and runtime efficiency.

4

Our fault location framework provides support for specification-based fault loca-

tion via two main constructs. First, a simple yet effective specification language for writing

consistency constraints for data structures. Second, a directive for specifying C-points, i.e.,

program points where our system will check at runtime whether the constraints are satisfied;

at such points, the data structure is supposed to be in a consistent state with respect to

the provided specification. C-points are akin to transactions hence emerge naturally, e.g.,

at the beginning and end of functions that modify the data structure. C-points allow us

to detect data structure corruption early, before it gets a chance to turn into further state

corruption or crash. In addition, if the program crashes then the crash point is used as a

C-point. Our technique can work even with a single C-point, while more C-points imply

greater precision.

The fault location framework employs a user-provided specification of the data

structure constraints to analyze a buggy execution. As the program executes, our system

traces the evolution history of the data structures. The constraints are matched over the

program data structure states at C-points. Once a constraint violation is detected, our

approach identifies the corrupted data structures and the set of inconsistencies. Then, it

traces back through the evolution history, searching for program points where inconsistencies

were introduced and collecting a list of faulty program statements.

This dissertation presents a unified memory graph representation (MG++). Given

a MG++ at an execution point, the memory graph at any prior execution point can be

extracted using the timestamps associated with nodes and edges present in the MG++

representation. The unified representation is built by incrementally incorporating changes

5

as the program executes. This makes the representation space-efficient and allows constraint

checks to be performed incrementally.

Our proposed fault location technique narrows down the faults to responsible data

structure mutating statements. We further advocate the use of Dynamic Backward Slic-

ing [56] for investigating the program fault using the fault data structure mutation. The

dynamic backward slice of a computed value is defined to include the executed statements

that played a role in the computation of the value. Dynamic backward slice is computed by

taking the transitive closure over data and control dependences starting from the computed

value and going backwards over the execution trace. For our technique, the resulting faulty

data structure mutations from the previous step form the slicing criterion. Dynamic Back-

ward slicing is a classic debugging technique but it still faces the challenge of huge time

overhead. This dissertation presents an improved dynamic backward slicing algorithm.

1.2 Verifying Linearizability for Concurrent Data Structures

Linearizability, introduced by Herlihy and Wing [47], is the standard form of cor-

rectness for concurrent data structure implementations. Linearizability means that the

entire observable effect of each operation on a concurrent data structure happens instantly,

i.e., the effect of each operation is atomic.

A concurrent data structure implementation consists of a shared state (defined by

shared variables) and methods which operate on the shared state. An execution consists of

a variable number of threads, each executing one of the defined methods. An operation is

a successful execution of a method. The definition of linearizability given by Herlihy and

6

Wing in [47] says that, for a linearizable concurrent data structure implementation, each

concurrent execution must be equivalent to some sequential execution of operations of the

abstract data structure while preserving the order of non-overlapping operation.

This dissertation presents a sound linearizability verification technique which can

be applied to a wide range of concurrent data structure implementations. In this technique

the concurrent execution of operations can be modeled as interleaved sequences of corre-

sponding atomic sub-operations. The novelty of our approach is that:

1. We can express the set of all sequences allowed by an implementation in terms

of static relationships between pairs of individual sub-operations.

2. Given the properties of sub-operation pairs, we can statically verify if all the

sequences of sub-operations allowed by the implementation can be mapped to an equivalent

non-interleaved sequence of sub-operations while maintaining the order of non-overlapping

operations, i.e., linearizability.

Our technique consists of (1) a specification language that allows concurrent data

operations to be specified simply as sequences of atomic sub-operations and (2) a static

checker that, given the relationship between the sub-operations, determines if the imple-

mentation is linearizable. If the linearizability proof fails, the static checker returns a

sequence of sub-operations that could not be linearized.

We have applied our technique to 13 popular concurrent data structure implemen-

tations and were able to verify 12 of them. As our approach is sound, the inability to verify

the remaining data structure represents a false positive. The evaluation shows that our

technique is generic, practical, and efficient.

7

1.3 Dissertation Organization

The rest of the dissertation is organized as follows. Chapter 2 presents the language

to support data structure constraint specification. Next, Chapter 3 presents, our new

memory graph representation and memory graph construction technique. The complete

process of fault location for scalar data structure is covered in Chapter 4 and Chapter 5.

Chapter 6 presents our linearizability verification technique for concurrent data structure

implementations. Chapter 7 surveys existing literature in related areas and Chapter 8

concludes the thesis with a summary of our work and presents a brief future outlook.

8

Chapter 2

Constraint Specification Language

Program data structures follow consistency constraints, i.e., data structures have

structural properties that must hold during execution. Even the simplest of data structure

have certain consistency constraints based on the implementations.

We show the importance of data structue consistency constraints using Mozilla

BugID 588187. Due to this bug, Mozilla crashes while traversing a linked list. The linked

list in the program has a simple constraint: each entry→next field must point to another

linked list node or NULL. Figure 2.1 shows an excerpt of the traversal code. If entry→next

contains a value which is neither NULL nor a heap address then the execution will enter

the loop (line 1) and crash at line 2.

1 while (entry) {
2 if (entry→Key == key) { <−−− crash here
3 return entry→Data;
4 }
5 entry = entry→Next;
6 }

Figure 2.1: Linked list traversal.

9

This chapter introduces the language support for specifying the data structure

consistency constraints. Before introducing our constraint specification language, it is im-

portant to mention the following apparent alternatives and explain why we have not used

them for our system:

Archie [27] uses constraint-based specification for data structure repair. The

specification contains a model the data structure must satisfy. When the model is violated,

Archie repairs the data structure to satisfy the model. In our system, the model of the

constraints is already fixed in terms of the memory graph. Specifying the model again puts

significant extra burden on the programmer.

Alloy [48] is a rich object modeling language for expressing high-level design

properties. In comparison, our language is centered around logical, arithmetic, layout and

graph constraints at the data structure level.

Programming languages can be used to specify constraints (e.g., repOK [67]).

The constraints written need to be checked (hence executed) along with the program and are

not useful to us as we need to match constraints during the trace back. Writing constraints

in programming languages is verbose and error-prone.

Our language is based on the same principles as the aforementioned ones but is

designed specifically for the purpose of specifying data structure constraints for debugging

— it is a domain-specific language, in other words. Taking on this specific problem makes

our language simpler. In our approach, the relevant program state at an execution point is

captured by the memory graph, and consistency constraints for a data structure are specified

in terms of relationships among nodes and edges of the memory graph. We provide the user

10

with a C-like syntax so the language is easy to use with minimum learning requirement.

In this section we first define our constraint specification language and demonstrate that

our language is both expressive and simple to use. That is, we can handle a variety data

structures with equal or less burden (in comparison to other languages) on the programmer

using our specification language.

2.1 Constraint Model and Language Syntax

The memory graph, at each point in the execution, consists of nodes corresponding

to allocated memory regions and the edges are formed by pointers between the allocated

memory regions. Each node (representing an allocation) has fields corresponding to the

fields of the data structure for which the memory was allocated. The structure of the

memory graph corresponds to the shape of the data structure; hence violations in data

structure constraints can be detected by evaluating those constraints for the memory graph.

Execution Trace Memory graph at execution point x

11.node = malloc(sizeof(snode));
12.node−>next = NULL;
13.new node=malloc(sizeof(snode));
14.new node−>next = NULL;
15.node−>next = new node;
∗∗∗ Execution Point x

new_node next

NULL

node next

Figure 2.2: Memory graph representation of runtime data structures.

Figure 2.2 gives the memory graph for a sample execution. The first column shows

a sample execution trace. The program allocates memory for structure of type snode in lines

11 and 13. The memory graph shows two nodes corresponding to the allocated memory

11

chunks. The next pointer is written to point to new node in line 15 which is represented

by an edge from node to new node in the memory graph.

Our specification language is designed to provide an easy way to express the struc-

tural form of the memory graph for a data structure. In other words, the programmer simply

expresses how the data structure can be visualized in the memory, which makes specifica-

tion writing very intuitive. Specifying data structure constraints involves three steps. The

first step is specifying the types of nodes in the memory graph. The second (optional) step

is specifying any special node attributes which may be involved in the constraints. The

third step is to specify the constraint using variables of declared types. The grammar of our

specification language consists of corresponding three components: structure, model, and

constraints (Figure 2.3).

2.2 Structure Specification

The nodes in a memory graph can correspond to an array or a structure. Structures

are defined in terms of the number of fields and edges present in the memory graph nodes.

The structure specification declares the types of the memory graph nodes present in the

specifications. The specification of the quad tree in Figure 4.2 shows that each node has 9

fields and 5 edges.

Example 1. The structure specifications of B-tree and AVL-tree are:

– struct btree{ int count; int key[2]; struct btree * child[3];}

btree FIELD 6 EDGE 3;

– struct avltree{ int val; struct avltree * right, * left;}

avltree FIELD 3 EDGE 2;

12

Table 2.1: Standard Attributes.

Attribute Type Represents

n.INDEGREE INT Indegree of the node n
n.OUTDEGREE INT Outdegree of the node n
n.EXTERNAL BOOL (n.OUTDEGREE == 0)

∨ (n.INDEGREE ==0)
n.INTERNAL BOOL (n.INDEGREE != 0)

∧ (n.OUTDEGREE != 0)
n.ISROOT BOOL (n.INDEGREE == 0)
n.ISLEAF BOOL (n.OUTDEGREE == 0)

2.3 Attributes and Model Specification

We provide several node attributes (shorthands) that simplify the task of writing

the specifications and making them concise. Table 2.1 contains the list of provided node

attributes along with their meaning. Standard attributes are valid for any type declared in

the structure specification.

When the standard attributes are not adequate, user-defined node attributes are

introduced via the model part of the specification language in Figure 2.3(b). User-defined

node attributes are specific to a node type. Specifying a custom node attribute involves

declaring the name (h) of the node attribute along with the node type it is associated

with (f). The declaration is followed by the rules for assigning the attribute value for each

node. Assignment rules (r) consist of guard (g), terminal assignment (a), and non-terminal

assignment(a). A guard is a precondition that, when true, leads to terminal assignment

otherwise non-terminal assignment is followed. Assignment statement is assignment of

an arithmetic expression to the node attribute. Note that the user-defined attributes can

only be used for acyclic data structures. Therefore, when such attributes are used, our

13

implementation performs an acyclicity check because bugs may lead to formation of cycles

in data structures that are supposed to be acyclic. The model specification allows the user

to create node attributes corresponding to real world node properties and constraints can

be specified in terms of these node properties.

Example 2. The height of an AVL-tree node is specified as:

avltree.HEIGHT; avltree X;

X.ISLEAF == true ⇒ X.HEIGHT = 0 ‖

X.HEIGHT = (X[2].HEIGHT≥X[3].HEIGHT) ?

X[2].HEIGHT+1 : X[3].HEIGHT+1;

Similarly, for a red black tree node with structure

– struct rbtree{ int color; struct avltree * right, * left;}

the black height derived from the right child is specified as:

rbtree.BHEIGHT; rbtree X;

X.ISLEAF == true ⇒ X.BHEIGHT = 0 ‖

X.BHEIGHT = (X[2].(1)!= BLACK) ?

X[2].BHEIGHT : X[2].BHEIGHT+1;

2.4 Constraint Specification

Our language allows the user to write both inter-node and intra-node constraints.

Inter-node constraints refer to constraints on relationship among memory graph nodes. This

14

Types t ::= f FIELD n EDGE n ;
| ARRAY f ;

(a) Structure Specification

User defined node
attribute m ::= name r

name ::= f . h ;
Rules r ::= d r | g => a || a ;
Assigment a ::= x.h = ve

ve ::= ve+ ve | ve− ve
| ve ∗ ve | ve/ve
| |ve| | (ve)
| (ae)?ve : ve
| av

(b) Model Specification
Intra-node
constraint c′ ::= d q , b ;

q ::= for I in n to n
b ::= x[e] op e
e ::= e+ e | e− e | e ∗ e
| e/e | (e) | |e|
| x[e] | I | n

Inter-node
constrant c ::= d c | d g => g ; | d g ;
Constraint
expression g ::= g and g | g or g

| ae | be | ce
ae ::= av op xe
xe ::= xe+ xe | xe− xe

| xe ∗ xe | xe/xe
| (xe) | |xe|
| av

be ::= bv == true
| bv == false

Edge ce ::= v → x
| v 6→ x

Path | v � x
| v 6� x

(c) Constraint Specification

Variable
declaration d ::= f x ;
Boolean
Value bv ::= v.EXTERNAL

| v.INTERNAL
| v.ISLEAF
| v.ISROOT

Arthmatic
Value av ::= v.INDEGREE

| v.OUTDEGREE
| v[n] | v.h | n

Vertex v ::= x | (x[n])
Rel. Ops. op ::= ==|6=|≤|≥|<|>
String f, h
Integer n
Variable x

Figure 2.3: Specification language

15

kind of constraints are common in pointer based data structures. Intra-node constaints refer

to relationships between fields of a memory graph node. Array-based data structures have

intra-node consistency constraints where the complete data structure is a big memory graph

node (a single memory chunk).

2.4.1 Inter-node Constraints

Inter-node constraints defined via the grammar in Figure 2.3(c) are composed of

declarations(d), guard (optional), and body(g). A guard is a precondition that must be true

in order for the constraint to be applicable. The body is composed of one or more constraint

statements joined by the boolean operator AND. Three types of constraint statements are

allowed: boolean(be), arithmetic(ae), and connection(ce). Connection statements indicate

the following: X → Y (edge allowed), X 6→ Y (edge not allowed), X � Y (path allowed),

and X 6� Y (path not allowed).

Let us consider constraint specifications for the B-tree data structure, shown in

Figure 2.4 (top). The first two constraints ensure that the structure represents a tree and

are thus the same for all trees (including Quad-tree shown earlier). Constraint 1 uses a guard

(X.ISROOT == FALSE) to identify non-root nodes and indicate that their indegree must

be 1. Constraint 2 uses a guard to indicate that if there is a path from X to Y then there

is no path from Y to X. The additional constraints in the specification of B-tree follow.

Constraint 3 and 4 restrict the outdegrees of internal nodes in B-tree while constraint 5

ensures that the number of children is 1+ number of stored keys (value stored in the first

field of the B-tree structure).

16

Example 3. The balanced height constraint for AVL-tree is expressed using the user-

declared node attribute HEIGHT below.

avltree X;

(X[2]).HEIGHT - (X[3]).HEIGHT ≤ 1 and

(X[2]).HEIGHT - (X[3]).HEIGHT ≥ -1;

The above examples illustrate that our language is powerful enough to express the

constraints embodied by commonly used data structures and at the same time it is intuitive

for the programmer to use. While we have shown only non-nested data structures, nested

structures can be handled by flattening of structure fields.

btree FIELD 6 EDGE 3;

– Data structure is a tree
1. btree X; btree Y;

X.ISROOT == FALSE ⇒ X.INDEGREE == 1;
2. btree X; btree Y;

X � Y ⇒ Y 6� X;

– Internal nodes have 2 or 3 children
3. btree X; btree Y;

X → Y ⇒ 2 ≤ X.OUTDEGREE;
4. btree X; btree Y;

X → Y ⇒ X.OUTDEGREE ≤ 3;

– Number of children is 1 + number of stored keys
5. btree X;

X.OUTDEGREE == X.[1] + 1;

Figure 2.4: Specification for 2-3/B-Tree

2.4.2 Intra-node Constraints

Intra-node constraint specifications are aimed at handling array-based implemen-

tations of data structures. Our language supports expressing relationships between array

17

elements. Intra-node constraints, defined via the grammar given in Figure 2.3(c) are com-

posed of declarations(d), range(q), and body(b). A range gives the min to max values of

node field index (I) on which the constraint will be applicable. The body of the constraint

is a relational expression in terms of the value of the field in question.

Example 4. Consider the shard graph representation [57], implemented as an array, storing

8 entries (each entry has source node, source value, edge value, and destination node). The

constraint that the source nodes should be ordered is represented as:

ARRAY shard;

shard X;

for I in 0 to 8, X[I*4 +1] < X[(I+1)*4 +1];

Note that we do not specify the types of structure fields in our specification language. The

user can specify constraint to check the type of a field specific to the implementation. The

following is an example of type checking for a linked list.

Example 5. Consider a linked list implementation using the following structure

– struct node{ int value; struct node * next;}

The next example is the specification for checking the type-safety of the next field.

node FIELD 2 EDGE 1;

node X; node Y;

X[2] 6= NULL⇒ (X[2])==Y;

The constraint statement states that if the next field of node X is not equal to NULL, if

must point to another node Y.

18

Structure Specification
Node* root;
structure Node {
int count;
int key[2];
Node * child[3];
}
Set Nodes(Node);
child0 : Nodes → Nodes;
child1 : Nodes→ Nodes;
child2 : Nodes→ Nodes;
count : Nodes→ int;

Model Specification
[forall node in Nodes], !(node.child[0]=0) ⇒ node.child[0] in Nodes;
[forall node in Nodes], !(node.child[1]=0) ⇒ node.child[1] in Nodes;
[forall node in Nodes], !(node.child[2]=0) ⇒ node.child[2] in Nodes;
[forall node in Nodes], !(node.child[0]=0) ⇒ <node, node.child[0]> in child0;
[forall node in Nodes], !(node.child[1]=0) ⇒ <node, node.child[1]> in child1;
[forall node in Nodes], !(node.child[2]=0) ⇒ <node, node.child[2]> in child2;

Constraint Specification
– Data structure is a tree
[], sizeof(Nodes) >= literal(1);
[forall node in Nodes], sizeof(node. child0) <= 1;
[forall node in Nodes], sizeof(node. child1) <= 1;
[forall node in Nodes], sizeof(node. child2) <= 1;
[forall node in Nodes],
sizeof(child0.node) + sizeof(child1.node)+ sizeof(child2.node) <= 1;
[], sizeof(child0.root) + sizeof(child1.root) + sizeof(child2.root) = 0;

– Internal nodes have 2 or 3 children
[forall node in Nodes],
2<= sizeof(node.child0) + sizeof(node.child1)+ sizeof(node.child2) and sizeof(node.child0) +
sizeof(node.child1)+ sizeof(node.child2) <=3;

– Number of children is 1 + number of stored keys
[forall node in Nodes],
sizeof(node.child0) + sizeof(node.child1)+ sizeof(node.child2) = node.count +1;

Figure 2.5: Archie [27] specification for 2-3/B-Tree.

2.5 Comparison with Archie [27], An Example

Let us compare our specification language with that of Archie [27]. Figure 2.5,

we illustrate the use of Archie for specifying a B-tree (2-3 tree). As shown, in Archie the

19

developer has to first define a model for the data structure (Structure Specification and

Model Specification in Figure 2.4). The constraints are defined in terms of this model.

Specification for B-tree (2-3 tree) in our specification language is presented in Fig-

ure 2.4. In our specification the constraints are defined directly in terms of the relationship

of memory graph nodes which is more intuitive and thus the specification is concise and

intuitive.

Table 2.2: Specification size comparison.

Data Number of Statements
Structure Ours Archie [27]

Circular Linked List 3 7
Doubly-linked List 2 8
Binary Tree 3 13
Binary Heap 4 14
B-tree 6 21
Quad Tree 4 23
AVL Tree 6 –
Red-Black Tree 9 –
Leftist Heap 5 –
Full K-ary Tree 4 4*K+7

2.6 Evaluation: Size of Specification

We compared specification in our language with that written in Archie [27] for

several data structures and summarize the results, i.e., the number of statements required

to express various data structures, in Table 2.2. The table shows the compact and expressive

nature of our specification in comparison to Archie. The ‘–’ rows indicate that Archie is not

able to express three data structures. One of the data structures that Archie cannot specify

is the AVL tree for which our specification was shown earlier. Archie cannot handle global

20

constraints, e.g., that the difference in heights between the left subtree and right subtree of

an AVL tree node should not be more than 1. Our specification allows the user to specify

global constraints via user-defined node attributes.

2.7 Summary

This chapter presented the language support for fault location framework for scalar

data strcutures. The language offers a simple and concise way of expressing data structure

consistency constraints in terms of relationship among memory graph nodes and edges. The

language provides support for both inter-node and intra-node constraints. Standard node

attributes are supported in the language to make specification concise while the user can

define custom node attributes to express complicated data structure consistency constraints.

21

Chapter 3

MG++: Memory Graph

Construction and Representation

A memory graph, where nodes represent allocated memory chunks and edges rep-

resent links between them created by memory stores, is effective in visualizing the shapes

of heap-allocated data structures constructed at runtime. Memory graphs are useful in

program understanding [74], or identifying data structures used by a program to replace

them with more efficient ones [54]. In programs with bugs, execution of faulty code often

results in anomalies that can be observed in the memory graph. Thus memory graphs

are useful for helping locate memory bugs (e.g., memory leaks and illegal memory access

patterns [14,80,88]) as well as in general-purpose debugging [112]. However, prior represen-

tations [54, 74, 87] fail to capture important information and their construction algorithms

make assumptions that limit their utility:

• Lack evolution history. Existing representations [54,74,87] are a snapshot of the heap

22

at a program point but do not capture the runtime evolution of the memory graph.

This deprives the user of critical information useful in verifying data structure prop-

erties and understanding how anomalies were introduced in the memory graph [111].

• Lack mapping to source code. Memory graphs used in prior work do not capture the

program statements whose execution constructs and modifies the memory graph. This

makes it hard for the user to relate memory graph anomalies to faulty source code

statements.

• Lack memory allocator history. Since existing memory graphs do not capture the

behavior of memory allocators, they are not effective when understanding program’s

(faulty) behavior requires examining the internal actions of the memory allocators

(e.g., updates to the internally-maintained free list). This limitation is particularly

problematic when programs use custom memory allocators.

• Allocator information requirement. Existing methods for constructing memory graphs [54,

74,87] must know what functions allocate/free memory—information from these func-

tions (e.g., starting address and size of allocated memory chunk) is required during

graph construction. The allocator-based approaches can only be applied when allo-

cator information is available.

Keeping our focus on dynamic data structures, to overcome all of the above short-

comings, this chapter presents MG++, a new representation of heap memory graphs, and

a novel approach to construct them. In addition to information traditionally captured by

memory graphs, MG++ also captures the runtime evolution history of data structures and

its mapping to the source code (Section 3.1.1). Intuitively, MG++ compactly represents

23

the memory graph at the end of the execution, as well as the graph’s evolution history; from

this history, the memory graph at any earlier program execution point can be extracted.

MG++ also captures the internal actions of the memory allocator (Section 3.1.2). This is

useful in debugging programs that internally manage the storage or where understanding

program behavior requires examining the interaction between program actions and mem-

ory allocator actions. We provide examples of real bugs where this information is critical

for understanding faulty behavior. We also found the additional information available in

MG++ representation useful for manually analyzing program data structures when coupled

with Graphviz [37] to visualize the memory graph.

Our novel technique for MG++ construction is based on binary instrumentation

and captures memory allocator behavior without requiring knowledge of the allocator func-

tion. The technique is based on the key observation that each field within an allocated

chunk of memory is accessed via an address computed as an offset from the starting address

of the allocated chunk. This enables us to construct the memory graph without assuming

that the allocator functions will supply us with the starting address and size information

for each newly-allocated chunk. Rather, we are able to construct the memory graph by

simply monitoring heap references and operations involving them. Runtime information is

analyzed to construct the graph by grouping heap references together to form nodes and

using stores in memory to create edges between graphs nodes (Section 3.2.2).

We have implemented our memory graph construction technique using the PIN

dynamic binary instrumentation framework [68] for Linux executables running on the IA-

32 architecture. We have evaluated the efficiency and effectiveness of our techniques on

24

various real-world programs; we now highlight the results. The space required for storing

the complete memory graph evolution history of a large real-world program (the CPython

interpreter) using the MG++ representation is less than 150 MB; using prior memory graph

representations would require about 100 GB (capturing snapshots after each memory graph

change). For the benchmarks evaluated, our MG++ construction approach manages to keep

the average slowdown of the execution time for instrumented code to 1.7x in comparison

to an allocator-based approach while the worst case slowdown is less than 5x. This shows

that our approach provides a practical method for constructing memory graphs in scenarios

where allocator information is not available. We illustrate the benefits of our representation

in locating faults in GNOME and Mozilla and detecting heap buffer overflows using the

RIPE test suite [110].

3.1 MG++ Representation

We first present the MG++ representation that captures the evolution of heap data

structures as well as the mapping to relevant source code. Next we present the additions to

MG++ which capture the behavior of the memory allocator functions as well as splitting

and merging of allocated memory chunks. Finally, we show how the memory graph at any

program execution point can be extracted from MG++.

3.1.1 MG++ for Heap Data Structures

A straightforward approach for tracking the evolution of heap data structures is to

capture the traditional memory graph at each program execution point where it is modified.

25

For example, Figure 3.2 shows the execution of a sequence of statements from a C program

that creates a singly-linked list by creating two nodes (statements 11 and 13) and linking

them to form the list (statement 15). The last statement (19) is faulty, mistakenly breaking

the linked list via the NULL assignment. The programmer can examine the corresponding

series of traditional memory graphs [87] and understand how the link list grows and is

finally broken by the execution of the faulty statement (19). While examining the sequence

of memory graphs allows the programmer to observe the evolution of the link list, including

its corruption, this approach is impractical due to its memory cost.

(3):13 new_node n e x t

NULL

(4):14

(1):11 node n e x t

(5):15

NULL

(2):12

NULL

(6):19

∗ ∗ ∗ Execution Point → Timestamp 6 2

Figure 3.1: The compact MG++ representation.

To efficiently capture the memory graph’s evolution we introduce a compact repre-

sentation, MG++, from which the memory graph at any execution point can be extracted.

As we can see in Figure 3.1, MG++ is compact because, by construction, MG++ eliminates

redundancy across the series of memory graphs corresponding to the six execution points

uniquely identified by timestamps 1 through 6. The additional annotations in MG++ rep-

2Throughout the paper, Execution Point → Timestamp t stands for “at execution point corresponding
to timestamp t”.

26

Execution trace Traditional Memory Graph

11.node = malloc(sizeof(snode));

∗ ∗ ∗ Execution Point → Timestamp 1

node

 sizeof(snode)

12.node−>next = NULL;

∗ ∗ ∗ Execution Point → Timestamp 2

node

 sizeof(snode)

NULL

13.new node=malloc(sizeof(snode));

∗ ∗ ∗ Execution Point → Timestamp 3

node

 sizeof(snode)

NULL

new_node

 sizeof(snode)

14.new node−>next = NULL;

∗ ∗ ∗ Execution Point → Timestamp 4

node

 sizeof(snode)

NULL

new_node

 sizeof(snode)

NULL

15.node−>next = new node;

∗ ∗ ∗ Execution Point → Timestamp 5

node

 sizeof(snode)

new_node

 sizeof(snode)

NULL

19.node−>next = NULL;

∗ ∗ ∗ Execution Point → Timestamp 6

node

 sizeof(snode)

NULL

new_node

 sizeof(snode)

NULL

Figure 3.2: Executed statements and corresponding traditional Memory Graphs.

resent timestamps for capturing the order in which nodes/edges are created/deleted and

identities of source code statements responsible for changes to the memory graph. In par-

ticular, in Figure 3.1:

• The two non-NULL nodes are labeled with (1):11 and (3):13 indicating their creation

at timestamps (1) and (3) by execution of statements 11 and 13, respectively;

• The outgoing edge from new node−>next to NULL is labeled (4):14 as it was created

at timestamp (4) by execution of statement 14; and

• Since node−>next is assigned at timestamps (2), (5), and (6) by statements 12, 15,

and 19, it has three outgoing edges labeled (2):12, (5):15, and (6):19. The lifetimes

of these edges can be inferred from the timestamps – the (solid) edge labeled with

timestamp (6) is the most recent edge; the earlier (dashed) edges exist from the time

of their creation to when the next edge is created.

27

We observe that the use of timestamps prevents redundancy across multiple mem-

ory graphs and thus makes the MG++ compact. In particular, if a node or an edge is

created at timestamp t, and it remains unchanged until the end of execution, represented

by timestamp T , then the MG++ will have a single copy of the node or edge labeled with

t implying that it has remained unchanged until T .

Given a MG++, the memory graphs corresponding to series of execution points

can be extracted and shown to the user. The user can then observe the evolution of the

dynamic data structure, identifying steps in execution at which the data structure appears

to get corrupted, and then, using the statement numbers contained in MG++, identify the

faulty code. We now provide a formal definition of MG++.

The MG++ is defined as a tuple (V,E) such that:

• V is a set of nodes such that each node vi consists of 〈(tsi) : Si;Hi〉, where Hi is a set

of heap addresses {h1
i , h

2
i , . . .} that the node represents, tsi is the timestamp at which

the node was created, and Si is the source code statement which led to creation of

the node vi. The statement is identified by its location in the source code, i.e., 〈file

name:line number〉.

hi
1 hi

2…..(tsi) : Si

• E is a set of directed edges Hi.h
k
i → Hj .h

1
j (Hi.h

k
i represents the heap address that

contains a pointer to the heap address Hj .h
1
j where Hj .h

1
j is the first heap address of

node vj); each edge has a label 〈(tsij) : Sij〉, where tsij is the timestamp at which the

edge was created and Sij is the source code statement that created the edge. There

28

can be multiple edges corresponding to the same heap address. The edge with the

highest timestamp is marked as the current edge.

…. hi
- …..(tsi) : Si

hj
1 hj

2…..(tsj) : Sj

(tsij):Sij

3.1.2 Modeling the Memory Allocator

The MG++ representation presented so far does not capture the behavior of the

memory allocator itself. Therefore it may be ineffective in cases where understanding pro-

gram behavior requires allocator information, or when the program has a custom memory

allocator for dynamic data structures. In such cases, a memory graph node can no longer

be simply defined as an allocated chunk of memory, since the allocator’s actions may split

a big memory chunk into smaller chunks (during allocation) or join two smaller chunks into

a bigger one (following a free).

To capture the history of splitting and merging of memory chunks, we introduce

two new kinds of nodes and edges, called cluster nodes and merge edges, in the MG++

representation. A cluster node marks a big consolidated memory chunk formed by joining

multiple smaller memory chunks. Representing the node as smaller nodes joined by merge

edges enables us to track the history of memory allocation and deallocation operations.

This action is captured in the memory graph by joining the two nodes using a merge edge.

For the purpose of interaction with other nodes, a cluster node is a single node although it

internally stores multiple nodes corresponding to earlier smaller chunks.

29

Execution trace

1.tmp1 = malloc(sizeof(struct snode)); ***1

2.tmp2 = malloc(sizeof(struct snode)); ***2

3.tmp3 = malloc(sizeof(struct snode)); ***3

4.tmp4 = malloc(sizeof(struct snode)); ***4

5.tmp5 = malloc(sizeof(struct snode)); ***5

..

6.tmp1−>next = tmp2; ***8

7.tmp2−>next = tmp3; ***9

8.tmp3−>next = tmp4; ***10

9.tmp4−>next = tmp5; ***11

10.tmp1−>next = tmp3; ***12

..

11. free (tmp2); ***15

..

12. free (tmp4); ***18

..

13.tmp1−>next = tmp3; ***21

..

14.tmp3−>next = NULL; ***25

15. free (tmp5); ***26

MG++ Representation

*** At Timestamp 0

Head t m p 1 Tail

**** At Timestamp 26

(1) t m p 1 n e x t (9) t m p 3 n e x t
(21)

NULL
(25)

Head (8) t m p 2 n e x t (26) : tmp4 Tail

(10) t m p 4 n e x t
(11) t m p 5 n e x t

(26)

Figure 3.3: MG++ capturing the actions of the memory allocator.

30

Figure 3.3 shows a sample execution trace of a C program that uses an allocator

based on Lea’s dlmalloc allocator [58] along with corresponding timestamps. In addition,

we also show the MG++ immediately before the execution and at the end of the execution.

Dlmalloc maintains the free memory chunks in a doubly-linked list. The oval head and

tail nodes have been shown in the figure for clarity. The MG++ at timestamp 0 shows

such a free list with a big memory chunk having starting address tmp1. Dlmalloc serves

different memory requests by splitting this big chunk into smaller chunks, and stores back

the freed memory chunks in the same doubly-linked list. When two contiguous memory

chunks are freed, we consolidate them to form a bigger memory chunk. Such a chunk is

formed in this example when adjacent memory chunks corresponding to tmp4 and tmp5

are freed (lines 12 and 15) and are consolidated via internal malloc actions. MG++ stores

this information using a cluster node – the diamond-shaped node shown in Figure 3.3. The

cluster node has timestamp 26 and points to the two smaller chunks joined by a merge edge

(edge corresponding to timestamp 26). A cluster node enables the MG++ to retrieve the

earlier heap snapshot using the timestamp information.

The formal definitions of the set of cluster nodes and merge edges follow:

• V ′ is a set of cluster nodes such that each cluster node v′i is defined as < (tsi) :

starting address;Ni > where Ni is an ordered list of nodes vi ∈ V joined together by

merge edges.

hi
1 hi…tsi hj

1 hj…tsj hl
1 hl…tsl…...

(tsij)

• A merge edge m connects two nodes vi, vj ∈ V inside a cluster node and has a label

31

< (tsij) > such that the timestamp marks the merging of the node vj in the cluster

node.

• Each node vi ∈ V carries a sourceID which marks the parent nodeID corresponding

to the node out of which the node vi is formed after a split.

The definitions of the set of nodes V and the set of edges E are similar to those in Section 3.1.

Algorithm 1 Memory graph retrieval algorithm

1: /* ni: node in MG++; nj : node in memory graph; MG++target: MG++ at target
timestamp; MGtarget: Memory Graph at target time stamp */

2: INPUT: MG++final - the MG++ at final timestamp tsfinal; target timestamp tstarget
where tstarget ≤ tsfinal

3: function Graph Retrieve()
4: Step 1: /* retrieve MG++target */
5: Remove all the nodes created after tstarget
6: Remove all the edged created after tstarget
7: Join all the nodes split after tstarget
8: Separate all the nodes merged after tstarget
9: for all Heap addresses hi in MG++target do

10: Set the outgoing edge with highest timestamp as the current Edge
11: end for
12: Step 2: /* retrieve MGtarget */
13: for all nodes ni in MG++target do
14: starting address(nj) ← Head(ni)
15: Size(nj) ← Size(addrList(ni))
16: MGtarget ←MGtarget + nj
17: end for
18: for All edges ei in MG++target do
19: add corresponding edges in MGtarget

20: end for
21: return MGtarget

22: end function

3.1.3 MG++ Rollback and Retrieval

Given the MG++ at timestamp tsfinal, the memory graph MG for any time stamp

t ≤ tsfinal can be efficiently reconstructed by selecting appropriate subsets of nodes and

32

(3):13 new_node n e x t

NULL

(4):14

(1):11 node n e x t

(5):15

NULL

(2):12

NULL

(6):19

MG++ at Execution Point → Timestamp 6

(3):13 new_node n e x t

NULL

(4):14

(1):11 node n e x t

NULL

(2):12

MG++ at Execution Point → Timestamp 4

node

 sizeof(snode)

NULL

new_node

 sizeof(snode)

NULL

MG at Execution Point → Timestamp 4

Figure 3.4: Memory graph rollback and retrieval.

edges. We can reconstruct the step-by-step evolution snapshots of the memory graph en-

abling us to navigate back and forth over the changes in memory graph during the execution.

Algorithm 1 shows how we retrieve MGtarget, the memory graph at target times-

tamp tstarget from MG++final, the MG++ corresponding to final timestamp tsfinal, such

that tstarget ≤ tsfinal. The retrieval takes place in two steps. In the first step, we retrieve

MG++target, the MG++ at the target timestamp tstarget. For this, all the nodes, edges,

33

and merge edges having timestamp greater than tstarget are removed from the graph. Also,

the addresses of any nodes that were split after the target timestamp are joined together.

Removal of nodes may result in isolated data nodes, which are removed. Edges which were

overwritten by a store executed after the target timestamp are restored as follows. For each

of the heap addresses, the edge with the highest timestamp is set as current edge. Simi-

larly, for each node, merge edge with the highest timestamp is set as current merge edge. In

the second step, MGtarget, the memory graph at the target timestamp is constructed from

MG++target. This is done by creating nodes and edges in the memory graph corresponding

to the nodes and edges in MG++. The starting address of a node is the same as the head

of the address list in the corresponding MG++ node. The size of a memory graph node is

calculated by joining the sizes of addresses in the address list of the corresponding MG++

node.

Figure 3.4 illustrates retrieval of the memory graph at time stamp 4 from a MG++

at timestamp 6. In the first step, the node timestamps are examined. Since both nodes

have timestamps less then 4, they are retained. The edges with timestamps ≥ 4, i.e., edges

with timestamps 5 and 6, are deleted. This leads to an isolated data node which is removed,

yielding the MG++ at program point corresponding to timestamp 4. The starting addresses

of the two nodes are node and new node, respectively. The sizes of these nodes are equal to

the size of snode, i.e., size of head address + size of next.

34

3.2 Portable Memory Graph Construction

We have developed a novel MG++ construction algorithm based on binary in-

strumentation. By not relying on allocator function information, we develop a portable

algorithm that can build the MG++ for programs using different memory allocators, cus-

tom allocators, and in-program memory managers. The implementation does not rely on

source code or symbol table information. To our knowledge, this is the first attempt to

capture the memory usage of a program without relying on source code or symbol table

information.

3.2.1 Key Observations

The MG++ construction is based on the following two observations.

(1) Accesses to fields within a memory node. Each address inside an allocation site

(i.e., node in the memory graph) is always derived from the starting address. The fields can

be accessed as an offset from the starting address or the field address is explicitly calculated

by adding the offset to the starting address. For example, in Figure 3.5 the starting address

of the memory allocated is stored in register eax, the node field val in instruction number 6

is accessed as eax+0, and in instruction number 9 the node field next is accessed as eax+4.

We observed this behavior in a variety of compilers: GCC, LLVM, Microsoft VC++, and

Intel’s C compiler.

Even when using registers to pass pointers to fields, or to pass the contents of

a char array from within a structure as a string, an address inside the allocated memory

chunk is accessed transitively from the starting address (address C is accessed as an offset

35

from address B, while B is accessed as an offset from starting address A). This observation

can be understood in terms of allocator behavior: the allocator returns the starting address

of an allocated memory chunk to the program and the program can access the internal

addresses of an allocated memory chunk only through the starting address of the memory

chunk. The above observation lets us join all the addresses being derived from the same

starting address into a memory graph node, i.e., nodes can be identified without knowledge

of memory allocator functions used.

���������	��
� �
�� ��� ���������	

���������	��������	��	���

���������	��
� �
�� ��� ����������������

������������
� ������
�� ��� �����������

������������
� ������
�� ��� ����������

 �����������
� �
�� ��� ����������

!�����������
� ������
�� ��� ����������

	�����������
� ������
�� ��� ��������	�

������������
� �
�� ��� ���������������

�������������
� ������
�� ��� ����������

�������������
� �
�� ��� ��������	������

���"�� �����#������ ���$�

�����%�����$�&$

'���()

#

*��

�	���"�� +�(�����%)����
�(��,�
-(����))$������

�����"��./��� +��$

�����"��./������+�0���$���

����0����+��"��$

**�

&

Figure 3.5: Memory access example.

(2) Pointers point to the head address of a memory graph node. When the internal

actions of a memory allocator are also being considered, we cannot rely only on the first

observation for constructing a memory graph node. The allocator gets the starting address

of the memory space from the system (using the brk() or mmap() system calls) and derives

all the internal addresses from this starting address. Using only the first observation we

will end up with a single node (multiple nodes in case of mmap()) for the whole program.

36

Therefore we form memory graph nodes using the observation that all pointers

point to the head address of a memory graph node. Any address being pointed to becomes

the starting address of a new memory graph node.

In prior works memory graph nodes correspond to allocated memory chunks and

the construction techniques rely on the knowledge of calls to the allocator function. More-

over, if the program uses a custom memory allocator or it manages memory internally, then

traditional memory graph representations fail to provide any useful information because

they will simply show a single memory graph node.

Operation Instruction MG++ Before MG++ After
Join Addresses
(haddr1, haddr2)

haddr1 + offset
(=haddr2)

(ts) haddr1 (ts) haddr1 haddr2

Merge Nodes
(haddr1, haddr2)

haddr1 + offset
(=haddr2)

haddr1 haddr2
(ts) :haddr1 haddr1 haddr2

(ts)

Split Node(haddr2) haddr1 ← haddr2
haddr3 .. . haddr2

. . . haddr1 .. .

haddr3 .. .

. . . haddr1 .. . haddr2 .. .

Figure 3.6: MG++ construction operations.

3.2.2 Construction Algorithm

Given a program execution trace which captures the operations on heap references

during the program execution, our algorithm builds the MG++ by grouping together heap

references to form a memory graph node. The technique for identifying heap references is de-

scribed in the implementation description (Section 4.4). Whenever a heap address-handling

instruction is encountered, it is analyzed for its effects on the graph. The timestamp at-

tached to each node and edge marks the order of their creation during the execution of the

program. For example, a node will always have a lower timestamp than an edge pointing to

37

it because the node was formed earlier in program execution and the edge was added later.

The timestamp is initialized at the start of memory graph construction and is incremented

with each change to the graph.

Note that we do not capture information about node deallocation, as the MG++ maintains

information about nodes even after their deallocation (complete evolution history) so deal-

location does not require any special treatment.

Algorithm 2 summarizes memory graph construction, changing the memory graph according

to the instructions being executed. For a heap address haddr, in Algorithm 2, node(haddr)

denotes the node corresponding to haddr. Given an instruction i, the following four cases

arise:

Case 1) If the current instruction i operates only on one heap address which has

never been encountered before the current execution point, then a new node is created (call

to Create Node, line 8). In Create Node, the address is added to the address list of the new

node. The node is also given a new timestamp which marks its creation.

Case 2) If instruction i operates on heap address + offset, the algorithm proceeds

as follows. If both the base heap address and offset heap address have not been encountered

earlier, then a new node is created and both addresses are added to the address list of the

node (omitted from the algorithm for simplicity).

– If the base heap address has been encountered earlier (i.e., it corresponds to a node) and

the offset heap address has not been encountered until that execution point, then the offset

heap address is added to the address list of the node corresponding to the base address

(Figure 3.6, row 1).

38

Algorithm 2 Memory Graph construction

1: /* haddr: heap address; node(haddr): node corresponding to haddr; data: non heap address
value */

2: INPUT: Execution Trace
3: OUTPUT: Memory Graph (MG)
4: function Graph Construction()
5: switch instruction i :
6: case i has haddr1

7: if haddr1 6∈ MG then
8: Create Node(haddr1)
9: end if

10: case i has haddr1 + offset(= haddr2)
11: if haddr2 6∈ MG then
12: Join Addresses(haddr1, haddr2)
13: else if node(haddr2) 6= node(haddr1) then
14: Merge Nodes(haddr1, haddr2)
15: end if
16: case i is haddr1 ← data
17: Create Edge(haddr1, data)

18: case i is haddr1 ← haddr2

19: if haddr2 6∈ MG then
20: Create Node(haddr2)
21: else if haddr2 is not head of node then
22: Split Node(haddr2)
23: end if
24: Create Edge(haddr1, haddr2)

25: end function

– If both the base heap address and the offset address have already been encountered before,

and correspond to different nodes, then the nodes are merged together using the merge edge

(call to Merge Nodes, line 14). This leads to the creation of a cluster node (Figure 3.6, row

2). An example of this situation is the memory allocator consolidating two adjacent free

memory chunks into one bigger chunk.

Case 3) If the instruction i is a memory write, A←B where A is a heap address and B is a

data value (e.g., tmp3−>next = NULL in Figure 3.3) then a data edge from the address is

created (call to Create Edge, line 17). The edge is assigned a new timestamp that marks

its creation.

39

Case 4) If instruction i is a memory write, A←B where both A and B are heap

addresses (e.g., tmp1−>next = tmp2 in Figure 3.3), an edge is created, from the address

written to, to the node corresponding to the address value written (call to Create Edge, line

24). If the address value written is not the starting address of a memory graph node then

the node is split such that the address value written forms the head of the newly created

node (Figure 3.6, row 3). A common example of such a situation is when the memory

allocator allocates a smaller chunk out of a bigger free memory chunk. If the address value

written is a new address, a new node is created as in step 1 (call to Create Node, line 20).

Node merging and splitting operations come into play only when the internal

actions of the memory allocator are included in the analysis. If such internal actions are

not considered in the analysis then accessing an address from a node as an offset from

the address of a different node (line 13: haddr1 + offset(= haddr2) and node(haddr2) 6=

node(haddr1)) is considered to be suspicious program behavior, e.g., a potential heap buffer

overflow.

An Example. Figure 3.7 illustrates our approach when run on the example given

in Figure 3.3. The first column shows the sample C source code statements executed at

each step during construction of a linked list. The second column shows the memory graph

formed once the source code in the same row is executed. When the execution starts on

line 1, a new heap address tmp1 is encountered because of the call to malloc. A new node is

created with initial time stamp of 1 (call to Create Node, line 8 in Algorithm 2). Executing

statements up to line 5, heap addresses tmp2, tmp3, tmp4 and tmp5 are encountered inside

malloc. All these memory addresses are derived as an offset of the initial address inside

40

1.tmp1 = malloc(sizeof(struct snode)); ∗∗∗1

(1) t m p 1

2. tmp2=malloc(sizeof(struct snode));
3. tmp3=malloc(sizeof(struct snode));
4. tmp4=malloc(sizeof(struct snode));
5. tmp5=malloc(sizeof(struct snode));

∗∗∗2
∗∗∗3
∗∗∗4
∗∗∗5

(1) t m p 1 t m p 2 t m p 3 t m p 4 t m p 5

6. tmp1−>next=tmp2; ∗∗∗8

(1) t m p 1 n e x t (8) t m p 2 t m p 3 t m p 4 t m p 5
(8)

7. tmp2−>next = tmp3;
8. tmp3−>next = tmp4;
9. tmp4−>next = tmp5;

∗∗∗9
∗∗∗10
∗∗∗11

(1) t m p 1 n e x t (8) t m p 2 n e x t
(8)

(9) t m p 3 n e x t
(9)

(10) t m p 4 n e x t
(10)

(11) t m p 5 n e x t
(11)

10. tmp1−>next = tmp3;
..
11. free (tmp2);

∗∗∗12

∗∗∗15

(1) t m p 1 n e x t (9) t m p 3 n e x t
(12)

(10) t m p 4 n e x t
(10)

(11) t m p 5 n e x t
(11)

Head (8) t m p 2 n e x t Tail

12. free (tmp4); ∗∗∗18

(1) t m p 1 n e x t (9) t m p 3 n e x t
(12)

(11) t m p 5 n e x t
(10)

Head (8) t m p 2 n e x t (10) t m p 4 n e x t Tail

13. tmp1−>next = tmp3;
..
14. tmp3−>next = NULL;
15. free (tmp5);

∗∗∗21

∗∗∗25
∗∗∗26

(1) t m p 1 n e x t (9) t m p 3 n e x t
(21)

NULL
(25)

Head (8) t m p 2 n e x t (26) : tmp4 Tail

(10) t m p 4 n e x t
(11) t m p 5 n e x t

(26)

Figure 3.7: An illustration of MG++ construction.

41

malloc so they are added inside the same MG++ node (call to Join Addresses, line 12 in

Algorithm 2). When the next field is written with value tmp2, the original node is split

into two nodes (Split Node, line 22 in Algorithm 2) to form tmp2 as the starting address

of the new node. Similarly, other nodes are created due to memory writes in the lines 7, 8

and 9. The free operation on tmp2 leads to the node’s addition to the doubly-linked list

of free chunks internally maintained by malloc. We have represented the head and tail of

the doubly linked list of free chunks with oval nodes (not present in the C code) for clarity.

Similarly, free (tmp4) adds the node to the free list. When tmp5 which is adjacent to tmp4

is free d, malloc consolidates the two chunks. A merge edge is created to join the nodes

corresponding to tmp4 and tmp5 and a cluster node is added to the MG++ (Merge Nodes,

line 14 in Algorithm 2). Note that the algorithm performs all of the above actions without

knowledge of the memory allocator.

3.3 Implementation and Evaluation

Implementation overview. Our system takes a program binary as input. The binary

is instrumented to capture the heap references and operations on them. The instrumented

program is executed to generate a trace, containing the information about the heap ref-

erences, operations on heap references and timing information. If debugging information

is present in the binary then information about mapping to source code is also generated.

The trace is analyzed off-line to generate the memory graph.

Our binary instrumentation is based on PIN-2.6 [68]. We only instrument loads,

stores and a set of heap reference-handling instructions (ADD, LEA, SUB, INC, XCHG).

42

Other instructions may have to be instrumented depending on the compiler. The instru-

mented binary is then executed, generating the execution trace. At runtime, PIN determines

the heap address range for the program by monitoring the system calls (brk() and mmap())

as well as the address space of the program, and outputs the valid heap address range and

those instructions which handle heap references. These optimizations help reduce the size

of our execution trace. The execution trace contains the timestamp information and the

statement identifier for each of the executed instructions along with the address references

involved in the instruction. An automated analysis of the execution trace constructs the

memory graph. The valid heap address range is used to identify heap references in the

trace.

Experimental setup. All measurements were performed on an Intel Core 2 6700 @

2.66GHz with 4 GB RAM, running Linux kernel version 2.6.32. The experiments indicate

that our memory graph representation and construction technique are efficient and effective

in real-world scenarios.

Table 3.1: Overview of benchmarks.

Program Description Data Structure Details

ls (GNU core utilities [4]) Array & Linked list ls -R coreutils-8.0/

Tidy (HTML check & clean [86]) Binary tree variant Version 1.46

Bison (GNU parser generator [1]) Array & Linked list Version 2.4.1

CPython [9] Linked lists & Trees Version 2.7.8

Perl [8] Arrays & Linked lists Version 5.20.0

Graph Coloring Linked list of arrays 1,589 nodes; 2,742 edges

Independent Set Linked list 2,361 nodes; 7,182 edges

Shortest Path Shard 7,115 nodes; 103,689 edges

43

Table 3.2: Benchmarks’ input description.

Program Description Input

ls (GNU core utilities [4]) coreutils-8.0 source dir

Tidy (HTML check & clean [86]) Tidy Project Page.html

Bison (GNU parser generator [1]) ANSI C grammar

CPython [9] Page rank program

Perl [8] File search program

Graph Coloring NetScience [16,76]

Independent Set YeastL (protein interaction network) [16,98]

Shortest Path Wiki-vote (Wikipedia network) [11]

Benchmarks. We measured the cost of using MG++ in terms of space and execution time

to show that our approach is practical. A summary of benchmarks used in our evaluation

is shown in Table 3.2. Our benchmarks are divided into three categories. First, widely-

used programs: the ls GNU core utility, Tidy HTML checking&cleanup, and the GNU

bison parser generator. Second, programs that perform internal memory management: the

commonly-used CPython and Perl interpreters. In the third category, we have graph

applications (graph coloring, independent set, and shortest path) with small real-world

graphs as input, which we believe reflect common debugging scenarios. The benchmarks in

the last category are read-intensive, “build-then-traverse data structure” style programs.

3.3.1 Cost of Constructing MG++

Space Required : Table 3.4’s columns 2 and 3 show the space required for MG++,

without and with allocator analysis, respectively. In order to show the space-efficient nature

of MG++, we compared the space requirement of MG++ with that of a snapshot approach

for capturing the data structure evolution history. The snapshot approach stores snapshots

of memory graphs after each change using representations similar to the ones mentioned

44

in [54, 74, 87]. The memory required to capture the sequences snapshots of memory graph

is approximated by assuming a snapshot of the average number of nodes stored upon each

change to the memory graph (Table 3.4, column 4). The size of each node is assumed to be

8 bytes (a single field). The space required by MG++, excluding (including) the allocator

ranges from 3 MB to 138 MB (7 MB to 141 MB, respectively). This is two orders of mag-

nitude less than that of capturing sequences of memory graphs using prior representations.

In fact, this data shows that capturing sequences of memory graphs is impractical, while

MG++ is highly space-efficient. The memory required for MG++ depends on the number

of objects allocated (MG++ nodes) and manipulated (leading to creation of MG++ edges).

Program Execution Time: Table 3.4’s columns 8 and 9 show the execution time

for running the instrumented code for our technique, without and with allocator analysis,

respectively. Table 3.4’s column 5 (Original) shows the cost of running the original program;

column 6 (Null PIN) shows the cost of running the program under PIN without any instru-

mentation; column 7 shows the cost of collecting trace for memory graph using allocator

information [54,74,87], i.e., only calls to allocator functions and memory writes are instru-

mented. Although program execution time increases significantly due to instrumentation,

it is a necessary cost of dynamic analysis. Column 10 shows the relative time overhead for

our approach in comparison to the allocator-based approach. The average slowdown for the

read-intensive benchmarks (graph-coloring, independent-set, shortest-path) is 3.16x while

for the other benchmarks the average slowdown is 1.18x. The slowdown is higher in case

of read-intensive programs because our MG++ construction algorithm has to monitor all

the heap reference-handling instructions, including reads. The total average slowdown is

45

Table 3.3: Time overhead of capturing Memory Graphs.

1 2 3 4 5 6 7

MG++ Construction Method
Program Program Execution Time (seconds) Slowdown
Description Instrumented (col 8/

Original Null Allocator MG++ w/o MG++ with col 7)
PIN approach allocator allocator

ls 0.02 1.25 1.97 2.14 5.41 1.08
Tidy 0.01 1.46 6.46 8.90 9.63 1.37
Bison 0.06 2.04 2.23 2.68 9.82 1.20

CPython 0.09 7.84 24.60 30.74 32.85 1.25
Perl 1.11 11.73 26.09 26.41 32.52 1.01

Graph Coloring 0.05 0.68 8.69 37.33 38.08 4.29
Independent Set 0.05 0.53 13.44 47.27 50.79 3.51
Shortest Path 0.06 0.57 8.25 13.68 45.84 1.68

Table 3.4: Memory costs of capturing Memory Graphs.

1 2 3 4

MG++ Representation
Program Space Required (MB)
Description MG++ Snapshot

without with Approach
allocator allocator

ls 3.8 6.9 ≈ 1,895
Tidy 22.4 32.1 ≈ 2,484
Bison 2.5 32.3 ≈ 283

CPython 137.8 140.5 ≈110,242
Perl 48.1 50.2 ≈ 65,652

Graph Coloring 82.3 83.5 ≈ 311
Independent Set 6.3 10.2 ≈ 451
Shortest Path 47.9 84.7 ≈ 50,827

1.7x. These results show that the MG++ construction algorithm gives a feasible method of

memory graph construction for cases where allocator information is not available. Instru-

menting the memory allocator increases the execution times by 2x to 4x in comparison to

when only application code is instrumented.

46

3.3.2 Fault Location using MG++

There are cases where the internal actions of the memory allocator are required

to be a part of analysis and therefore MG++ can enable fault location. The Glibc memory

allocator keeps track of free chunks via a doubly-linked list. Numerous real-world bugs

(GNOME BugIDs 697397, 449433, 318401; KDE BugIDs 119108, 281770, 224877, 237913)

are associated with the corruption of the free chunks list. Figure 3.8 shows a simple C

program which causes Glibc corruption (*** glibc detected *** corrupted double-linked list)

later in the program. The programmer accidentally passes the address instead of the value

of tmp→target in line 4. This overwrites the free chunks metadata, in turn corrupting

the doubly-linked list. The program will crash later in the execution when malloc tries to

access the elements of the doubly-linked list. We detect the violation of the doubly-linked

list invariant by matching the invariant if element e points to element e’ then e’ should

point back to e over MG++. Upon detecting corruption, the MG++ is rolled back and the

statement responsible for corruption is identified.

1 struct node ∗ tmp;
2 tmp = (struct node ∗)malloc(sizeof(struct node));
3 tmp→ target = malloc(value size);
4 memcpy(&tmp→ target, value, value size);

Figure 3.8: Sample code that corrupts Glibc’s free chunks list.

3.3.3 Detecting Buffer Overflow Attacks using MG++

In this experiment we tested the use of MG++ to detect heap buffer overflows on

the basis of Observation (1) in Section 3.2.1. Our assumption was that if an address of a

memory node X is being accessed as an offset from an address inside memory graph node

47

Y then it is a heap buffer overflow. We tested our technique against 12 attack benchmarks

from the RIPE buffer overflow testbed [110]. For this experiment we did not include al-

locator internals in the analysis. These benchmarks exercise various types of heap buffer

overflows including return address, function pointers, and vulnerable structs, and have been

commonly used in prior work to test the effectiveness of attack detection systems. As shown

in Table 3.5, our technique was able to detect heap buffer overflow for all vulnerabilities, ex-

cept for vulnerable structs. In the case of vulnerable structs, an attack-prone buffer resides

along with a target function pointer inside the same memory graph node. There is no buffer

overflow across memory graph nodes in this case and thus our technique fails to capture

it. Valgrind’s memcheck [75] can also detect other attacks except for vulnerable structs; it

uses a valid bit for each byte of allocated memory and reports an error in case unallocated

memory is written. Memcheck cannot be applied in the absence of allocator information

while our technique will be able to detect buffer overflow without allocator information.

Table 3.5: Heap buffer overflow detection results.

Vulnerabilities # of benchmarks Exception raised

Return Address 1 Yes
Old base Pointer 2 Yes
Function Pointers 7 Yes
Vulnerable Structs 2 No

3.4 Limitations

Our approach has two limitations.

1. Our algorithm identifies a heap address by checking if the value falls in the valid heap

address range. If a non-heap address operand with value in the valid heap address

48

range is encountered, our approach creates a one-field node in the memory graph for

it. Such a node is unnecessary and can be removed using a post-construction analysis.

2. The size of a memory node constructed by our algorithm is different from the allocated

size in cases where trailing fields of an allocated node are never read or written.

3.5 Summary

This chapter has presented a novel memory graph representation, MG++, along

with MG++’s construction algorithm. The novelty of MG++ is that it carries dynamic

data structure evolution history as well as a mapping to the source code modifying the dy-

namic data structure. The extended MG++ representation supports modelling the memory

allocator internals as well. The construction algorithm does not require modeling the mem-

ory allocator semantic for memory graph construction, which makes the approach general

and portable. The chapter has also presented the application of the construction algorithm

for detection of heap buffer overflows.

49

Chapter 4

Fault Location Framework

This chapter presents the details of our fault location framework. Data structure

fault location faces the problem of temporary legitimate violation of data structure consis-

tency constraints. Fault location is a costly operation as it involves tracing back through

the data structure evolution history to search for faulty data structure mutations. This

chapter tackles the problem of fault location and introduces optimizations to make fault

location more efficient and practical.

4.1 Overview of Our Approach

In this section we provide an overview of our approach and highlight its key features

using an example. The example is centered around quad trees, a widely-used data structure

for spatial indexing. A quad tree is a tree with internal nodes having four children and the

data stored at the leaf nodes. Thus one of the key structural consistency constraints for this

data structure is: for any internal element e, the number of children is four. In Figure 4.1

50

1 struct pt { int x, y };
2 struct qdtree {
3 int posX, posY, width, height ;
4 struct pt ∗ point ;
5 struct qdtree ∗ child [4];
6 }
7 struct qdtree ∗ root ;
8 int main() {
9 ...

10 while (fscanf (file ,”%d%d”,&x,&y)!=EOF)
11 insert (x,y, root);
12 }
13 void insert (int x, int y, struct qdtree ∗ root) {
14 ##C−POINT(qdtree)
15 if (root == NULL) {
16 root = (struct qdtree ∗)malloc(sizeof(qdtree));
17 temp = create point(x, y);
18 root→ point = temp;
19 }
20 else {
21 n = search(x, y, root);
22 if (n→ pt != NULL)
23 split (x, y, n);
24 }
25 ##C−POINT(qdtree)
26 }
27 void split (int x, int y, struct qdtree ∗ node){
28 struct qdtree ∗ temp;
29 for (i = 0; i < 4; i++) {
30 temp = (struct qdtree ∗)malloc(sizeof(qdtree));
31 set node fields (temp, i , node);
32 node→ child[i] = temp;
33 if (x==node[i]→ posX && y==node[i]→ posY) {
34 ...
35 parent node→ child[0]= NULL;
36 }
37 else {
38 move value(node, node→ child[i]);
39 assign value (x, y, node→ child[i]);
40 }
41 }
42 }

Figure 4.1: Faulty Quad Tree implementation.

51

we show example code that creates and manipulates quad trees, and contains a bug which

leads to a violation of the consistency constraint. The quad tree definition (lines 2–7)

contains nine fields: the first five fields store data about the node, while the next four fields,

child [4] , point to children in the quad tree. The main function reads coordinates (x,y)

from a file and populates the tree by calling the insert function. In insert , we first search

for an existing node that is suitable for coordinates (x,y). If the resulting node n already

has a point stored in it, then four children of n are created, one for each quadrant. The

point at node n and the newly-read point are then inserted into the quad tree rooted at n.

The statement at line 35 in function split which sets an edge to NULL is faulty.

qdtree FIELD 9 EDGE 5;
/*# total fields and # pointer fields */
qdtree X; ..(c1)
X.ISROOT == FALSE ⇒ X.INDEGREE == 1;

qdtree X; qdtree Y; ..(c2)
X � Y ⇒ Y 6� X;

qdtree X; qdtree Y; ..(c3)
X→ Y ⇒ X.OUTDEGREE == 4;

Figure 4.2: Consistency constraints of a Quad Tree.

4.1.1 Specification of Consistency Constraints

Our specification language enables the developer to express the data structure

constraints directly in terms of the relationships among heap elements.

Figure 4.2 shows the consistency constraint specification for a quad tree in our

language. The user specifies the structure of each node in the memory graph by declaring

a node type (qdtree) that contains 9 data fields and 5 pointer fields – (FIELD 9) and

52

(EDGE 5); constraints are specified next. The constraint specification involves declaring

node variables and specifying the relationships among them. For quad tree we specify three

constraints in terms of variables X and Y of node type qdtree. The constraint c1 indicates

that all nodes besides the root have an indegree of 1. The constraint c2 indicates that if

there is a path from node X to node Y, then there cannot be a path from node Y to node

X. The constraint c3 specifies that, if any node X points to another node Y (i.e., the node

X is internal) then the outdegree of X is 4. While we have chosen a simple constraint for

the purpose of understanding, our language can handle a variety of complex constraints (as

explained in Chapter 2).

4.1.2 Tracing Data Structure Evolution History

We execute the program and trace the evolution history of the program data struc-

ture using binary level dynamic instrumentation. The instrumentation is independent of

the constraints specified. We only instrument the allocation/deallocation calls and mem-

ory writes to the allocated memory. Once the program execution completes; normally or

because of a program crash, the traced information is used to construct memory graph.

4.1.3 Fault Location

We match the specified constraints over the memory graph at program points

corresponding to C-points. The memory graph must be in a consistent state with respect

to the specified constraints at these program points. Once we encounter a consistency

constraint violation, the process of fault location begins. The process of fault location

involves tracing back the program execution. We analyze the effect of each operation (on

53

Execution trace Inconsistencies Memory Graph

1 temp = (struct qdtree ∗)
2 malloc(sizeof(qdtree));
3 set node fields (temp, 1, node);
4 node−>child[1] = temp;
5 move value(node, node−>child[1]);
6 assign value (x, y, node−>child[1]);
7 i++;

∗ ∗ ∗∗ Execution Point 1

Inconsistences
@Point 1
S1 = {
〈c3, {n5→ n6}〉,
〈c3, {n5→ n7}〉
}

n 1

n 2 n 3 n 4 n 5

n 6 n 7 NULL NULL

8 temp = (struct qdtree ∗)
9 malloc(sizeof(qdtree));

10 set node fields (temp, 3, node);
11 node−>child[3] = temp;

∗ ∗ ∗∗ Execution Point 2

Inconsistencies
@Point 2
S2 = {
〈c3, {n5→ n6}〉,
〈c3, {n5→ n7}〉,
〈c3, {n5→ n8}〉
}

n 1

n 2 n 3 n 4 n 5

n 6 n 7 n 8 NULL

12 parent node−>child[0]= NULL;
13 i++;

∗ ∗ ∗∗ Execution Point 3

Inconsistencies
@Point 3
S3 = {
〈c3, {n1→ n3}〉,
〈c3, {n1→ n4}〉,
〈c3, {n1→ n5}〉,
〈c3, {n5→ n6}〉,
〈c3, {n5→ n7}〉,
〈c3, {n5→ n8}〉
}

n 1

NULL n 3 n 4 n 5

n 6 n 7 n 8 NULL

14 temp = (struct qdtree ∗)
15 malloc(sizeof(qdtree));
16 set node fields (temp, 3, node);
17 node−>child[3] = temp;
18 move value(node, node−>child[3]);
19 assign value (x, y, node−>child[3]);

∗ ∗ ∗∗ Execution Point 4 - C-POINT

Inconsistencies
@Point 4
- C-POINT
Sc = {
〈c3, {n1→ n3}〉,
〈c3, {n1→ n4}〉,
〈c3, {n1→ n5}〉
}

n 1

NULL n 3 n 4 n 5

n 6 n 7 n 8 n 9

Figure 4.3: Memory graph at different program points.

54

Execution Inconsistencies Pending Relation
Point Inconsistencies

Execution Point 4

S4 = {
e1 = 〈c3, {n1→ n3}〉,
e2 = 〈c3, {n1→ n4}〉,
e3 = 〈c3, {n1→ n5}〉 }

@4
P = {e1, e2, e3}
(Faulty
Statements)
FS = φ

Execution Point 3
O3:
n5→child[3] = n9;
Execution Point 4

S3 = {
e1 = 〈c3, {n1→ n3}〉,
e2 = 〈c3, {n1→ n4}〉,
e3 = 〈c3, {n1→ n5}〉,
e4 = 〈c3, {n5→ n6}〉,
e5 = 〈c3, {n5→ n7}〉,
e6 = 〈c3, {n5→ n8}〉 }

@3
P = {e1, e2, e3}
FS = φ

{e4, e5, e6}
o {e1, e2, e3}
= FALSE
O3 e1 = FALSE
O3 e2 = FALSE
O3 e3 = FALSE

Execution Point 2
O2:
n1→child[0] =
NULL;
Execution Point 3

S2 = {
e4 = 〈c3, {n5→ n6}〉,
e5 = 〈c3, {n5→ n7}〉,
e6 = 〈c3, {n5→ n8}〉 }

@2
P = φ
FS = {O2}

{e4, e5, e6}
o {e1, e2, e3}
= FALSE
O2 e1 = TRUE
O2 e2 = TRUE
O2 e3 = TRUE

Figure 4.4: Fault location on Figure 4.1.

the memory graph) on the inconsistencies present in the memory graph. The statements

corresponding to the operations contributing to the inconsistencies are added to list of

potentially faulty statements.

Our system performs consistency checks on the program memory graph at the

beginning and at the end of function insert (lines 17 and 28) indicated by C-points. In

Figure 4.3, the first column shows an execution trace of the code in Figure 4.1, while

the second and third columns contain the set of constraints violated at selected program

execution points and the corresponding quad tree. Note that execution point 4 is a C-point

and we find that there are multiple violations of constraint c3 from Figure 4.2 at this point.

The set of violations is represented by the set Sc and each violation is described in form

of a tuple 〈C,G〉, where G is the sub-graph over which constraint C is violated. In the

55

Figure 4.3 example, the constraint violations include: 〈c3, {n1 → n3}〉, 〈c3, {n1→ n4}〉,

and 〈c3, {n1→ n5}〉. We perform consistency checks at earlier execution points, computing

the violations into set Si where i is the execution point. The fault location algorithm finds

the operations contributing to inconsistencies in Sc by examining the Si’s.

In our example, the fault location algorithm determines that at program point 3,

the operation of setting n1→child[0] to NULL introduces all the inconsistencies present in

the set Sc. The statement corresponding to the operation is output as a faulty statement.

Our algorithm also determines that none of the inconsistencies in S2 are related to incon-

sistencies in Sc and therefore there is no need to further search for faulty statements. Note

that there are other inconsistencies present at different program points that are not related

to the inconsistencies at C-points. For example, at program point 3, the inconsistency

〈c3, {n5→ n8}〉 is temporary and ignored in the search for faulty statements.

4.1.4 Optimizations

We have optimized our fault location system in terms of both memory and time

costs. For fault location, we need the memory graph at each execution point so that the

constraint violations at each execution point can be detected. To avoid saving memory

graphs at all execution points we employ a unified memory graph representation (given

in Chapter 3) that combines memory graphs at all execution points into one and distin-

guishes subgraphs via association of timestamps with graph components (nodes and edges).

Thus, portions of the graph that do not change across many execution points are stored only

once. Given a unified memory graph representation at program point P , the memory graph

for any earlier program point can be reconstructed using the process of rollback (explained

56

in section 4.3). We employ an incremental algorithm which avoids redundant constraint

evaluations over unchanged parts of the memory graph.

4.2 Fault Location Algorithm

Our location algorithm is based on the observation that there are two kinds of

inconsistencies in the memory graph (MG): a temporary kind of inconsistencies that are

removed prior to reaching C-points, and an error kind of inconsistencies, which are present

at C-points and are caused by faulty statements. The algorithm identifies the statements

responsible for the error kind of inconsistencies. We first define the key concepts and then

present the algorithm.

Definition 1. An inconsistency e at execution point i is a tuple 〈cj , Gi〉 where cj is a

constraint that is violated when evaluated over Gi, a subgraph of the memory graph at

execution point i.

Example 6. Consider 〈c3, G4〉 at execution point 4 in Figure 4.3 where c3 is

qdtree X; qdtree Y;

X→Y ⇒ X.OUTDEGREE == 4;

and G4 is 〈{n1 → n3}〉. Then 〈c3, G4〉 is an inconsistency at execution point 4 because c3

is violated when X = n1 and Y = n3.

Note that there can be multiple inconsistencies corresponding to the same con-

straint violation as the constraint check can fail over multiple sub-graphs.

57

Consider the execution of operation O such that beforeO and afterO denote the

execution points just before and after execution of O. Next we provide the conditions under

which inconsistencies at beforeO and afterO are related (denoted by ‘o’) to each other and

the conditions under which O is considered to be a potentially faulty operation.

Definition 2. An inconsistency 〈cj , Gb〉 at execution point beforeO is said to be related to

(denoted by ‘o’) an inconsistency 〈ck, Ga〉 at execution point afterO iff the operation O has

modified the arguments to the constraint check of cj over Ga as well as the arguments to

check ck over Gb.

Example 7. In Figure 4.3, the inconsistency e1 = 〈c3, {n5 → n8}〉 at program point 2

(after) is related to e2 = 〈c3, {n5→ n6}〉 at program point 1 (before) because the operation

of setting of edge for n5 to n8 modifies n5.OUTDEGREE which is an argument to check

c3 over the subgraph for both e1 and e2. In other words, e1 o e2 is TRUE.

Definition 3. Operation O is said to have contributed to (denoted by ‘ ’) an inconsistency

〈cj , Ga〉 present at program point afterO if the arguments to the constraint check of cj over

subgraph Ga at program point beforeO are not equal to the arguments to the constraint

check of cj over subgraph Ga at program point afterO.

Example 8. The operation n1→child[0] = NULL (statement 10) in Figure 4.3, con-

tributes to the inconsistency e = 〈c3, {n1→ n3}〉 present in row 3 because it has modified

n1.OUTDEGREE which is an argument to check c3.

Our fault location algorithm is presented in Algorithm 3. It begins by initializing

the set of pending inconsistencies with inconsistencies at C-point(line 4). The system rolls

58

Algorithm 3 Fault Location

1: P : Set of pending inconsistencies;
2: Si denotes inconsistencies in MGi at execution point i;
3: Oi: Operation on MG performed at execution point i;
4: Check Constraints(MG,C): checks constraints in C for MG and returns the set of

inconsistencies found;
5: Roll Back(MGi+1): rolls back MGi+1 by one operation.
6: INPUT: Memory Graph MGc at execution point c for a C-point and constraint spec-

ification C 〈c1, ...cn〉.
7: function Fault Location()()
8: i← c; P = Check Constraints(MGc, C)
9: repeat

10: i← i− 1
11: MGi = Roll Back(MGi+1)
12: Si = Check Constraints(MGi, C)
13: for each e ∈ P do
14: if e Oi == true then
15: Output(statement(Oi))
16: for each e′ ∈ Si do
17: if (e o e′)&&(e! = e′) then
18: P = P ∪ {e′}
19: end if
20: end for
21: if !(e ∈ Si) then
22: P = P − {e}
23: end if
24: end if
25: end for
26: until P ! = {φ}
27: end function

back memory graph one operation at a time (line 7) and checks if the rolled back operation

has contributed to any of the pending inconsistencies (line 10). The statement correspond-

ing to the contributing operation is output as faulty (line 11). Inconsistencies in the new

memory graph which are related to the pending inconsistencies are added to the pending set

(line 14). Any pending inconsistencies no longer present in the memory graph are removed

from the pending set (line 18). When the set of pending inconsistencies reduces to ∅, the

algorithm stops. Note that our algorithm only considers operations contributing to incon-

59

sistencies as faulty, rather than marking every statement that modifies the inconsistency

subgraph as faulty; this helps increase precision.

Figure 4.4 illustrates the fault localization algorithm for the fault in Figure 4.1.

The set of pending inconsistencies P is initialized with inconsistencies at execution point 4

(C-point) (P = {e1, e2, e3}). The operation O3: n5→child[3] = n9 is not faulty because it

does not contribute to any of the inconsistencies in P , i.e, it does not modify arguments

to any of the inconsistencies present in P . The next operation O2 : n1→child[0] = NULL

contributes to inconsistencies {e1, e2, e3} in P and hence is a faulty statement. Thus, O2

is added to the FS set. None of the inconsistencies in S2 are related to those in P ; hence

no new inconsistencies are added to P . The inconsistencies {e1, e2, e3} are removed from

P causing it to become empty and the search for faulty statements terminates. In other

words, O2 is identified as faulty.

4.2.1 Identifying Corrupted Data Structures

Matching a constraint with the entire program memory graph will lead to false

positives due to violations of a data structure constraint when it is evaluated for other

unrelated data structures. To avoid this problem we track the identity of the data struc-

ture associated with each memory graph node during program execution. Using the data

structure identity, we only evaluate constraints relevant to the memory graph node involved

avoiding false positives. Furthermore, knowing the identity of the corrupted data structure

helps us during trace back for faults as we limit our search only to the corrupted data

structure instead of the whole program memory graph.

60

4.3 Optimizations

4.3.1 Incremental Constraint Checking

Constraint checking is a critical operation, and containing the cost of checks on

large data structures allows our approach to scale well. We reduce the cost of checking via

the use of incremental on-demand checks: we keep a mapping between constraint atoms and

dependent nodes (nodes involved in the constraint); when the memory graph is modified,

we map modified nodes to affected constraint atoms and invalidate those atoms.

4.3.2 Efficient Traceback

When tracing back for faults, performing rollback and constraint checking in a

näıve way would significantly affect scalability due to the high cost of constraint checking.

We use two techniques to make trace back efficient. First, knowing which data structure

is corrupted, we limit our constraint matching (during trace back) to the data structure

in question. Second, we use modification prediction to check if a rolled back operation

can contribute to the inconsistencies present in the pending inconsistency list. We perform

the rollback and consistency check on the memory graph only when the prediction for the

operation returns true. Modification prediction is based on spatial locality. We can predict

that an operation O operating on a sub-graph Go will not affect an inconsistency 〈c,G〉,

based on the properties of constraint c and the relationship between sub-graphs Go and G.

For example, an operation O of creating edge n1 → n2 will not affect inconsistency 〈c, n3〉,

where constraint c checks the value of a node field. We create a list of nodes (dependency

list) for each inconsistency 〈c,G〉 ∈ P (set P in the algorithm 3) based on constraint c.

61

Modifications to a node present in the dependency list can affect the inconsistency. A check

is performed if any of the inconsistent nodes for the pending inconsistency list (set P) is

modified by the operation or is dependent on any of the nodes (i.e., in its dependency list)

modified by operation O. Algorithm 3 is modified to directly roll back before an operation

only when the modification prediction returns true for the operation.

4.4 Evaluating Fault Location

Next we evaluate the precision and cost of our fault location technique. Our

implementation consists of a binary instrumenter, constraint matcher generator, memory

graph constructor and a fault locator. The binary instrumentation is based on Pin-2.6 [68]

– only allocation calls and memory writes are instrumented. To reduce the size of the

execution trace, at runtime, Pin keeps track of allocated heap addresses and outputs only

the instructions which write allocated heap addresses. The execution trace contains the

timestamp information, and the statement identifier for each allocation and memory writes.

We have used the source code location of memory allocation as a unique identifier of the

data structure type for each memory graph node as each allocation site belongs to a unique

data structure. The execution trace drives the construction of the memory graph. The

constraint matcher generator produces the constraint matcher based on the input constraint

specifications. If an error is detected during constraint matching, the fault locator searches

for the root cause and outputs a list of candidate faulty statements. Measurements were

performed on an Intel Core 2 6700 @ 2.66GHz with 4 GB RAM, running Linux kernel

version 2.6.32. All benchmarks were written in C.

62

Table 4.1: Precision of fault location.1

1 2 3 4 5

Data structure Lines Statements examined
of code Ours Dyn. Slice Tarantula

Circular linked list 160 6 7 7

Ordered list 172 2 20 7

Doubly-linked list 203 5 38 17

Quad tree 294 1 58 9

AVL tree 243 4 9 10

B tree 405 6 8 8

Red-Black tree 395 10 24 13

Leftist heap 274 1 28 11

Bipartite graph 284 2 32 8

4.4.1 Precision of Fault Location

The strength of our technique lies in its ability to carry out highly precise fault

location using a single test case during which constraints are violated – note that program

execution may or may not lead to a program crash. Table 4.2 presents the results of our

fault location technique for implementations of several data structures whose program sizes

are given in the second column. In each case, the data structure was first initialized to a

base size of 1,000 nodes. Next, 500 operations (inserts and deletes) were performed on the

data structure along with random injection of 10 faults. In each case, the injected fault

leads to violation of the data structure constraint. The program crash point was used as

C-point in cases where program crashed. The end of execution was used as C-point in cases

where program terminated normally with wrong output. Column 3 shows the number of

faulty statements our technique detected. The numbers of faulty statements range from

1 to 10 while program sizes range from 160 to 405 lines of code. This indicates that our

technique narrows down the fault to a very small code region. In all cases the fault was

captured by the identified faulty statements.

63

We also computed the dynamic slice of the faulty statement instances. The fourth

column shows the number of distinct program statements in the largest dynamic slice among

faulty instances’ slices. These numbers show that without the knowledge of data structure

constraints, the set of potentially faulty statements identified can be quite large (≥ 20 for

6 programs). The fifth column reports the number of statements that must be examined

to find the faulty statement using the ranking produced by Tarantula [50]. Tarantula is a

statistical technique that uses information from multiple runs on different inputs – we used

1 failing run and 9 successful runs in this experiment. The results show that our approach

requires fewer statements to be examined although it is based upon a single run as opposed

to Tarantula that used 10 runs.

Table 4.2: Time overhead of fault location.1

1 2 3 4 5 6

Data structure Program execution time (ms) Const. Match. Fault Loc.
Original Null Pin Instrume. time (ms) time (sec)

Circular linked list 0.5 645 664 1 0.75

Ordered list 0.9 638 677 1 0.02

Doubly-linked list 0.7 653 673 1 0.25

Quad tree 2.6 713 885 36 9.22

AVL tree 1.6 739 864 25 1.18

B tree 1.5 722 767 4 73.39

Red-Black tree 0.4 661 711 31 72.21

Leftist heap 0.4 664 720 27 2.21

Bipartite graph 8.2 659 748 2 3.32

4.4.2 Overhead of Fault Location

In Table 4.2, columns 6–10 show the overhead in terms of time and space for

using our fault location implementation. The 6th column shows the execution time of the

buggy program. The 7th and 8th columns show the execution times when the benchmarks

64

run under Pin without instrumentation (“Null Pin” column) and with instrumentation

(“Instrumented” column). Although instrumentation overhead is significant, it is acceptable

for debugging purposes. The 9th column shows that the time to perform constraint matching

(after error detection) is typically a second or less. The 10th column shows the time for

fault location—this is very efficient, 0.2–73 seconds in our tests.

4.5 Experience with Real Programs

For each application we defined consistency constraints for the main data struc-

tures. Next, we used fault injection to simulate common programming errors that lead to

data structure corruption. Then, using our technique, we identified the buggy statements

in the program. Table 4.4 shows our findings. The execution times are for the buggy

version of the programs. Column 4 gives the number of faulty statements our technique

found. Our fault location technique captured the faulty statement precisely (less than 5

statements) in all cases. In all applications, the program crash point was used as the

single, automatically-inserted C-point, hence programmer effort was limited to specifying

constraints and indicating allocation sites for the data structures.

Table 4.3: Experience with real world programs.1(Precision)

1 2 3 4

Program Lines Data Statements
of code Structure Examined

ls 3.5K Linked List 4

403.gcc 365K Splay Tree 1

464.h264ref 32K Multidimen. Array 1

Bison 17K Graph 3

1First row in Table 4.2 and Table 4.4 is column numbering.

65

Table 4.4: Experience with real world programs.1(Time overhead)

1 2 3 4 5 6

Program Program execution time (sec) Const. Match. Fault Loc.
Original Null Pin Instrume. time (sec) time (sec)

ls 0.19 1.10 1.36 0.003 0.05

403.gcc 0.04 5.83 10.76 0.028 0.23

464.h264ref 15.08 38.17 2703.69 0.008 0.29

Bison 0.18 1.48 4.99 0.426 16.48

ls. GNU ls [4] lists information about files including directories. The program source code

consists of 4,000 lines of C code. It uses a linked list internally to store information about

the remaining directories when run in recursive mode. We inserted a bug in the code where

the next pointer’s value is a non-NULL non-heap address. Due to this bug the program

crashes. The violated constraint here is that the next pointer needs to be either a heap

address or NULL. As input, we used the GNU coreutils-8.0 source code directory. Our

technique traced this fault to 4 statements.

403.gcc. A benchmark program from SPEC CINT 2006 benchmark suite [10], 403.gcc

is based on Gcc version 3.2 set to generate code for an AMD Opteron processor. The

program uses splay trees, a form of binary search trees optimized to access to recently-

accessed elements (splaying is the process of rotating the tree to put a key to the tree root).

To inject a bug, we replaced the right rotate function of the tree by left rotate

function. We used the SPEC training input for this experiment, which leads to program

crash. The violated constraint here is the binary search tree invariant: Key(root) > Key(left

child) and Key(root) < Key(right child). Our method traced the fault to 1 statement.

66

464.h264ref. This benchmark program from the SPEC CINT 2006 benchmark suite [10]

is a reference implementation of Advanced Video Coding, a video compression standard.

The benchmark uses a pointer-based implementation of a multidimensional array, with each

dimension being a level of a full and complete tree.

To inject a bug we set an internal pointer to NULL which caused a crash. The

SPEC test input was used in this experiment. The violated constraint here, based on the

OUTDEGREE attribute, is that the tree is full and complete. Our fault location method

traced the fault to 1 statement.

GNU Bison. Bison(3.0.4) [1] is a general-purpose parser generator that converts an anno-

tated context-free grammar into a parser. The application uses a graph to store the symbol

table where each node is a token or a grammar non-terminal and the node attributes are

assigned accordingly.

Our bug injection simulates a programming error where wrong attributes are as-

signed to nodes, leading to a crash. We used the C language grammar file as input. The

violated constraint here is the correctness of the node attributes. Our method traced back

the fault to 3 faulty statements.

4.6 Scalability of the Technique

There are two sources of time overhead incurred by our technique: collecting the

execution trace and trace back. We now explain why both these slowdowns are unavoidable

and we believe the overhead is acceptable. First, dynamic analysis (collecting the execution

67

trace) is inherently slow. Table 4.2 column 7 and Table 4.4 column 6 list the cost of

running application under Pin without any instrumentation which itself is a significant

slowdown. We only instrument allocation/deallocation calls and references to allocated

regions (section 4.4, paragraph 1). This limits instrumentation cost while still capturing

data structure faults.

Second, the alternative to automatically search the program execution trace is

manually narrowing down the fault by running the application multiple times. We have

introduced a number of optimizations to speed up the trace back as explained in section 4.3.

Programmers can use our tool for debugging larger programs by capturing the

execution trace for just the relevant sections of program execution hence limiting the search

space. As shown in the evaluation, our tool can handle large enough search spaces for

practical debugging purposes.

Our technique is easily applicable to parallel programs, as that would only require

modifications to the Pin-based tracing mechanism. While tracing a multi-threaded program

can potentially increase the overhead, this problem can be abated using selective record and

replay, e.g., PinPlay [79].

4.7 Summary

The chapter has presented our fault location framework. The framework provides

the user with precise and efficient fault location for bugs violating data structure consistency

constraints. We have showed optimizations of incremental constraint matching, identifying

corrupted data structure and modification prediction. These optimization make the process

68

of fault location more efficient. We have compared the precision of our fault location

framework with that of dynamic slicing and tarantula. We have explored the time overhead

for fault location and found it to be with in practical limits.

69

Chapter 5

Efficient Backward Slicing

The fault location approach presented in Chapter 4 tracks the data structure fault

back to the faulty data structure mutation. The actual source of the fault in the program

may have been an earlier data structure unrelated statement whose execution eventually

led to the faulty data structure mutation. We propose the use of dynamic backward slicing

for finding this fault statement starting from the faulty data structure mutation.

Dynamic program slicing, introduced by Korel and Laski [56], is widely used for

debugging purposes. Other applications of dynamic slicing include software testing and

software maintenance. The dynamic backward slice of a computed value is defined to

include the executed statements that played a role in the computation of the value. It is

computed by taking the transitive closure over data and control dependences starting from

the computed value and going backwards over the execution trace. In our technique, the

resulting faulty statements from the previous step, i.e., “locate the faulty mutation”, forms

the slicing criterion.

70

The problem with dynamic slicing is its high time overhead. This chapter presents

an improved dynamic backward slicing algorithm to address this problem. The improved

version compares favorably with the performance of the state of the art dynamic backward

slicing presented as a part of DrDebug [109] debugging framework.

5.1 Background and Overview

A dynamic backward slice is the set of statements that did affect a computed value

of a variable at a program point for one specific execution. Given a program execution,

the dynamic slice of a variable v at the execution point ij , is the set of statements that

contributed to the value of at that point. An execution point ij is defined by the execution

instance j of a statement i. The tuple < v, ij > is known as the slicing criterion.

5.1.1 Computing the Backward Dynamic Slice

Computing the dynamic backward slice involves two steps. First, the program is

executed to collect the execution trace. The execution trace contains the complete infor-

mation about control flow and data flow and has an entry for each executed instruction.

In case of multithreaded programs, additional preprocessing is required to create a single

global trace which combines the information about all the executed threads. In the second

step, a backwards traversal of the trace is performed to recover dependences which should

be included in the slice. The traversal starts by initializing a dependency list where each

entry in the list is a memory reference (address & size, or register). The dependency list

is initialized with the variable in the slicing criterion. The information of each instruction

71

in the trace processed in the backward order. The processing of each instruction involved

deciding if the instruction is the part of the slice and updating the dependency list. Algo-

rithm 4 gives the processing performed for each instruction. The dependency list is matched

against the memory addresses (or registers) defined by the instruction. If any of the memory

regions present in the dependency list are defined by the instruction then the instruction is

added to the slice. The dependency list is updated according to the def-use information of

the instruction. A similar dependency list is maintained for detecting control dependencies.

Each entry in the control dependency list is a global instruction id. The check is performed

if any instruction present in the control dependency list if control dependent on the current

instruction.

Algorithm 4 Backward Traversal of Execution Trace

1: Def[i]: Memory reference and registers defined in instruction i
2: Use[i]: Memory reference and registers used in instruction i
3: MemDepList: Memory Dependency List
4: ControlDepList: Control Dependency List
5:

6: function Process(instruction i)
7: for each definition d in Def [i] do
8: if d ∩ MemDepList 6= φ then
9: MemDepList = MemDepList ∩ Def [i]

10: MemDepList = MemDepList ∪ Use[i]
11: ControlDepList = ControlDepList ∪ i
12: Slice = Slice ∪ i
13: Break
14: end if
15: end for
16: end function

We illustrate the process of computing dynamic backward slices using the example

from Figure 5.1. The code snippet is shown in Figure 5.1(a). Line 8 sets field n of node to

NULL, introducing a fault in the program data structure. Figure 5.1(b) shows the def-use

72

(a) Example Code (b) Def-use trace (c) Slice for x at 8

1 a=10;
2 b=5;
3 z=a;
4 y=z+b∗3;
5 p=a+y;
6 if (p<b)
7 x=NULL;
8 node−>n=x;

1		{a}	{	}

2		{b}	{	}

3		{z}	{a}

4		{y}	{z,b}

5		{p}	{a,y}

6		{	}	{p,	b}

7		{x}	{	}

8		{n}	{x} 8		node->n=x

1 a=10

2 b=5

6		if(p<b)

4 y=z+b*3

7 x=NULL

5		p=a+y

3 z=a

b

x

CD

p

y

z
b

a

a

Figure 5.1: Dynamic backward slicing

information trace for the execution. For example, line 4 defines y by using z (defined on

line 3) and using b (defined on line 2). We compute the backward slice by doing a backward

traversal over the execution to determine which executed statements have to included in

the slice. The slice for x at line 8 is shown in Figure 5.1(c). All the executed statements

which have affected the value of x on line 8 are part of the slice.

5.2 Complexity Analysis for Slicing

The backward traversal of the trace is the most significant part of backward slicing

in terms of time cost. We are concentrating here on the complexity of the backward traversal

of the trace. Figure 5.2 gives the complexity analysis for the backward traversal of execution

trace. The cost of processing each instruction is matching each memory reference defined in

the instruction with the elements in the dependency list (line 1). The cost of the complete

backward traversal is the sum of the cost of processing individual instructions. In the worst

case, the size of the dependency list can get incremented for every precessed instruction,

73

i.e., a x = x + y type of instruction will increment the size of dependency list. In such a

case, the cost of complete traversal will be linear summation over i where i varies from 1 to

n (n is the total number of instructions in the trace). This makes the worst case complexity

O(n2). The complexity of traversal can be improved by maintaining a sorted dependency

list and preforming binary search. The modified complexity of traversal will be O(n log n).

1. Cost of processing 1 instruction =
no. of memory references in instruction *
length of dependency list

2. Cost of processing n instruction =
∑i=n

i=1 (cost of processing single instruction i)

=
∑i=n

i=1 (M* length of dependency list for i)
(M is a constant denoting average number
of memory references defined per instruc-
tion)

In worst case, each instruction can add an entry to dependency list

3. Cost of processing n instruction = M ∗
∑i=n

i=1 i
= M ∗ n(n+ 1)/2
= O(n2)

Figure 5.2: Complexity analysis for backward traversal.

5.3 Improved Slicing Algorithm

In this section we introduce an improved backward traversal which reduces the

average case complexity. We observed that during the backward traversal most of the

instructions we encounter are not a part of the slice. Based on this observation we designed

a new stage in the backward traversal where we perform a lightweight check to determine

if an instruction is part of the slice. If the instruction passes the test then we perform the

heavyweight check against the complete dependency list for the instruction.

74

The lightweight filtering stage is based on using the minimum information required

for determining if an instruction is part of the slice. In case of data dependency, the filter is

a binary search tree with memory references as node. We also coalesce contiguous memory

ranges which reduces the number of elements in the filter. Figure 5.3 shows an example

source code. If we start with the slicing criterion of z@4, by the time the backward traversal

reaches line 1, the length of dependency list will increase to a million elements while the

number of elements in the filter will remain 1.

1 x = u;
2 for(i = 0; i <= 1000000; i++)
3 y = y + a[i];
4 z = y;

Figure 5.3: Example code for comparison of dependency list size and filter size.

In case of control dependency, the filter is a hash table with instruction ids as

elements. The cost of determining if an instruction is a part of the slice due to control

dependency comes out to be constant.

Algorithm 5 gives the modified algorithm for the backward traversal of the execu-

tion trace. The filter and the dependency lists are initialized with the variable in the slicing

criterion. For each instruction, the filter test is performed. The filtering out of instruction

which are not a part of the slice reduces the cost of slicing.

5.4 Evaluation

We compared the updated backward slicing algorithm to that presented in DrDe-

bug [109]. DrDebug presents the state of the art implementation for computing dynamic

75

Algorithm 5 Updated Backward Traversal

1: Slicing Criterion: v@j
2: MemFilter ={v}
3: ControlF ilter ={j}
4:

5: function Filter(instruction i)
6: for each definition d in Def [i] do
7: if d ∩ MemFilter 6= φ then
8: Process(i)
9: Update the filters

10: Goto: END
11: end if
12: end for
13: if i ∩ ControlF ilter 6= φ then
14: Process(i)
15: Update the filters
16: end if
17: END
18: end function

backward slice. Both algorithms were implemented as a part of same framework. For evalu-

ation we use 7 PARSEC [18] benchmarks version 2.1 run of the native input. The goal of the

evaluation is to compare the performance of the two algorithm under different workloads.

The evaluations were done on a pool of machines with 16 Intel Xeon (“Sandy Bridge E”)

processors (hyper-threading OFF) and 128GB of physical memory running SUSE Linux

Enterprise Server 10.

Table 5.1 compares the two slicing algorithms for a trace formed by regions of

length 1 million instructions in the main thread. The total instructions in the trace (column

2) from all threads were 3–4 times more than the length in the main thread. The last 5

memory reads have been used as the slicing criterion for the evaluation. Column 3 presents

the slicing criterion number in reverse order i.e., criterion no. 1 is the last memory read

in the trace. Column 4 shows the time taken (in seconds) by backward slicing algorithm

76

1 2 3 4 5 6

Benchmark Instruction Criterion Slicing Time(seconds) Speed-up
Count # DrDebug Improved Slicing (4/5)

blackscholes 4117570

1 95.7 21.7 4.41
2 17.3 18.7 0.92
3 19.3 20.0 0.96
4 17.2 33.6 0.51
5 19.4 19.2 1.01

bodytrack 4439187

1 3888.5 128.8 30.19
2 3550.6 564.9 6.28
3 2412.7 184.7 13.06
4 4924.7 135.9 36.20
5 4459.5 122.0 36.55

fluidanimate 4296790

1 459.5 772.4 0.59
2 480.2 637.0 0.75
3 416.0 753.8 0.55
4 488.1 694.5 0.70
5 462.1 777.9 0.59

swaptions 4850013

1 23.3 34.1 0.68
2 92.5 17.7 5.22
3 8.6 14.8 0.58
4 1023.6 255.5 4.00
5 1542.0 291.2 5.29

vips 999998

1 109.0 5.8 18.79
2 106.1 5.1 20.80
3 124.5 5.4 23.05
4 109.0 4.7 23.19
5 106.5 5.3 20.09

dedup 26756781

1 1429.5 1966.1 0.72
2 65.3 132.7 0.49
3 67.7 120.4 0.56
4 75.6 256.0 0.29
5 49168.5 12710.4 3.86

streamcluster 3917850

1 72.3 24.5 2.95
2 66.2 41.9 1.57
3 81.7 43.1 1.89
4 64.5 32.2 2.00
5 59.6 24.0 2.48

Table 5.1: Comparison of slicing time for 1 million instruction per thread program
runs, PARSEC benchmarks.

77

1 2 3 4 5 6

Benchmark Instruction Criterion Slicing Time(seconds) Speed-up
Count # DrDebug Improved Slicing (4/5)

blackscholes 42688922

1 13940.0 3069.3 4.54
2 2365.3 1135.6 2.08
3 2196.2 1319.6 1.66
4 2494.7 1389.3 1.79
5 2441.1 1394.6 1.75

bodytrack 41400603

1 228979.8 54432.3 4.20
2 – 51883.6 –
3 – 65629.1 –
4 – 48718.9 –

fluidanimate 32613170

1 – 6886.8 –
2 – 12747.7 –
3 – 6776.6 –
4 – 8207.5 –
5 – 7009.5 –

swaptions 40719219 1 – 101.7 –

vips 10000791

1 – 5827.2 –
2 – 2273.9 –
3 – 5712.2 –
4 – 2259.4 –
5 – 6068.4 –

dedup 172615758 1 – 5250.8 –

streamcluster 40148501

1 123.6 192.2 0.64
2 8090.0 4074.7 1.98
3 8821.2 4037.4 2.18
4 8725.9 3742.7 2.33
5 8463.4 4424.9 1.91

Table 5.2: Comparison of slicing time for 10 million instruction per thread program
runs, PARSEC benchmarks.

78

present in DrDebug while column 5 shows the time taken by the improved slicing algorithm.

The last column shows the relative speedup.

The results show that the new algorithm performs significantly better in case of

longer running timings. The unoptimized algorithm performs better in case of shorter slicing

timings. The explanation for this observation is that the cost of maintaining and updating

the filter more than offsets the performance gains of using the filter in case of shorter runs.

The improved algorithm consistently performs better for longer runs. This argument is

further supported by the results in Table 5.2.

Table 5.1 compares the two slicing algorithms for a trace formed by regions of

length 1 million instructions in the main thread. The blank cells represent that the corre-

sponding algorithm was unable to complete slicing due to time or memory overrun. The

results clearly show that the improved algorithm is able to handle longer traces. The im-

proved slicing algorithm gives a speed up of 1.5x to 4.5x for 10M instruction runs.

5.5 Summary

This chapter has presented an improved backward slicing algorithm which opti-

mizes the backward execution trace traversal for better performance. The algorithm is

based on the idea of adding a relatively low-cost filtering stage to backward traversal. The

low cost filtering stage discards the instructions which are not a part of slicing without

performing the actual slicing on the instructions. We have evaluated our technique on

7 PARSEC [18] benchmarks and found that the algorithm significantly outperforms the

unoptimized version for longer program runs.

79

Chapter 6

Linearizability Verification of

Concurrent Data Structures

Linearizability [47] is the standard form of correctness for concurrent data structure

implementations. Linearizability means that the effect of each operation on the concurrent

data structure is atomic. A more technical definition of linearizability states that each

concurrent execution must be equivalent to some sequential execution of operations of the

abstract data structure while preserving the order of non-overlapping operation.

This chapter presents a technique for linearizablity verification that consists of (1)

a specification language that allows concurrent data operations to be specified simply as se-

quences of sub-operations where each sub-operation may or may not carry a precondition,

and (2) a static checker that, given the relationship between the sub-operations, deter-

mines if the implementation is linearizable. The user specifies the operations of concurrent

data structure implementation as a sequence of atomic sub-operations in our specification

language. Our static checker returns true if the implementation is linearizable.

80

6.1 System Model and Linearizability

A concurrent data structure implementation consists of a shared state (defined by

shared variables) and methods which operate on the shared state. An execution consists of

a variable number of threads, each executing one of the defined methods. An operation is

a successful execution of a method. The concept of operations is native to linearizability

of concurrent implementations. Most of the prior work on concurrent data structures with

fixed linearization points establish the linearizability of the data structure by locating the

linearization point of the operations present in the implementation. For example, Michael

and Scott [73] have proven their queue’s linearizability by locating the linearization points

of enqueue, dequeue empty, and dequeue non empty operations. Hendler et al. [46] have also

used the operations’ linearization points for proving linearizability.

Operations are sequential compositions of atomic sub-operations. Each sub-operation

(atomic) α has the form < g > t, where g is a pre-condition to the sub-operation. A sub-

operation can execute only at a state which satisfies g, while t is the set of reads and

writes which get executed when α gets executed. Sub-operations can be global or local.

A global sub-operation involves reading or writing shared variables (or references). Local

sub-operations are used just for the sake of completeness and do not play any role in proving

linearizability. Section 6.3 introduces a detailed language along with examples to help users

express concurrent data structures implementations as a sequence of sub-operations.

81

6.1.1 Execution Model

We assume a sequentially consistent memory model. The program state s is the

current valuation of the variables (both shared and local) present. The program state

changes with execution of sub-operations belonging to operation instances. Each operation

instance is a unique invocation of one of the operations defined in the specification. Each

operation instance has a unique operation instance id from the set Oid. We represent sub-

operation α(< g > t) being executed as a part of operation instance v as α[v]; g[v] and t[v]

represent the corresponding pre-condition and sub-operation body. Note that we do not

use thread id instead of operation instance id because more complicated data structures (

[46,73]) can have an operation execution distributed among multiple threads. The atomicity

and error conditions are given in Figure 6.1. We use the notation (s1, H1, α) → (s2, H2)

to indicate that sub-operation α executed at program state s1 takes the program state to

s2 while the execution history changes from H1 to H2. The definition ATOMIC states that

if the current program state s1 satisfies the sub-operation pre-condition g[v], (v ∈ Oid),

represented by s1 |= g[v], the program state is modified with transition t[v]. The execution

history H1 gets appended with sub-operation α[v]. The ERROR definition states that the

sub-operation α cannot successfully execute at a program state where the corresponding

pre-condition is not satisfied.

(s1, H1, α)→ (s2, H2)

ATOMIC

s1 |= g[v] (s1, t[v])→ s2

(s1, H, α[v])→ (s2, H.α[v])

ERROR

s1 |= ¬g[v]

(s1, H, α[v])→ (error, H)

Figure 6.1: Atomicity and error definitions.

82

6.1.2 Histories

Definition 1. A history H is a finite sequence of sub-operations where the sub-operations

corresponding to the same operation instance follow the program order.

A history H is sequential if the sub-operations from the same operation instance

occur together. A sequential history is legal if it follows the abstract data structure behavior.

A history H in which the preconditions for all the sub-operation instances present in the

history are satisfied is valid with respect to the implementation (naturally, we call “invalid”

a history that is not valid). The following Venn diagram shows the relationship between

valid, invalid and sequential histories.

������

���	
����

�����	���

���	
����

�����������	
����

Two valid execution histories are equivalent if they contain the same sub-operation

instances and the program state visible to a sub-operation instance is the same in both the

histories.

6.1.3 Linearizability

Linearizability requires every execution history to be equivalent to some legal

sequential history that preserves the order of non-overlapping operations in the original

history.

83

Many techniques are available for checking the correctness of a sequential imple-

mentation with respect to the abstract data structure (e.g., [85]). Taking advantage of this

we make the following safe assumption in our technique:

Assumption 1. Every valid sequential history with respect to the implementation is a

legal sequential history.

In other words, we assume that all sequential executions of the implementation

are correct. With this assumption, our linearizability definition is:

Definition 2. An implementation is linearizable if for any valid history there exists some

equivalent valid sequential history such that the order of non-overlapping operations in the

two histories is the same.

6.2 Overview and Example

We illustrate our technique on the MS non-blocking queue [73]: a singly linked

list-based queue with three operations, initialize , enqueue, and dequeue (Figure 6.2). Each

queue node has next and value fields. Enqueue first allocates a new node then reads the tail

pointer and sets the next pointer of the end node to point to the newly allocated node; the

final step in the process is to set the tail pointer to the new node. Any thread operating on

the list can set the trailing tail pointer. Dequeue reads head and tail pointers then checks

if both point to the same node. If head and tail point to the same node, i.e., the queue is

empty, dequeue returns false; otherwise, dequeue reads the head node’s value and updates

the head pointer.

84

1: typedef struct Node t * Node
2: struct Node t{
3: int value;
4: Node next;
5: }
6: struct Queue{
7: Node Head, Tail;
8: } * Q;

1: function initialize(Q: pointer to queue)
2: node = new node()
3: node→next = NULL
4: Q→Head = Q→Tail = node
5: end function

1: function enqueue(Q:pointer to queue,
value:int)

2: node = new node();
3: node→value = value;
4: node→next = NULL;
5: loop
6: tail = Q→Tail;
7: next = tail→next;
8: if tail == Q→Tail then
9: if next == NULL then

10: if CAS(&tail→next, next,
node) then

11: break;
12: end if
13: else
14: CAS(&Q→Tail, tail, next);
15: end if
16: end if
17: endloop
18: CAS(&Q→Tail, tail, node);
19: end function

1: function dequeue(Q:pointer to queue,
pvalue:int)

2: loop
3: head = Q→Head;
4: tail = Q→Tail;
5: next = head→next;
6: if head == Q→Head then
7: if head == tail then
8: if next == NULL then
9: return FALSE;

10: end if
11: CAS(&Q→Tail, tail, next);
12: else
13: pvalue = next→value;
14: if CAS(&Q→Head, head,

next) then
15: break;
16: end if
17: end if
18: end if
19: endloop
20: free(head)
21: return TRUE;
22: end function

Figure 6.2: Michael and Scott non-blocking concurrent queue [73].

85

1. node X = new node();
2. node tail = Q→tail;
3. node next = tail→next;
4. assume (tail == Q→tail);
5. assume (next == NULL);
6. CAS(tail→next, next, X);
7. CAS(Q→tail, tail, X);

2. node tail = Q→tail;
3. node next = tail→next;
4. assume (tail == Q→tail);
5. assume (next == NULL);
6. <tail→next == next>

tail→next = X;
7. <Q→tail == tail>

Q→tail = X;
node tail = Q→tail;
assume (tail == Q→tail);
<tail→next == NULL>

tail→next = X;
<Q→tail == tail>

Q→tail = X;

<Q→tail = tail; tail→next == NULL>
tail→next = X;

<Q→tail == tail>
Q→tail = X;

Figure 6.3: Expressing an operation as a sequence of atomic sub-operations.

6.2.1 Specifying Concurrent Operations

The user specifies the concurrent data structure’s operations as a sequence of

atomic sub-operations. Let us consider the enqueue method; the loop in the method leads

to an unbounded number of execution paths. We leverage the notion of pure loops ([40,107])

to transform the loop to its last iteration. Figure 6.3 column 1 shows one of the possible

loop free execution paths of the enqueue method. Figure 6.3 column 2 shows CAS (Com-

pare and Swap) replaced with corresponding sub-operation < g > t format. The next var

in line 5 and 6 is a local variable i.e., cannot be modified by other threads. Replacing the

value of next with NULL gives us column 3. The only possible modification to Q→tail in

the program is setting the next node in the list. The value of Q→tail does not change be-

tween 4 and 6 because that would violate the pre-condition tail→next == NULL. Adding

this pre-condition to the sub-operation gives us column 4. Previous works on atomicity

verification ([39, 40, 43, 59, 107]) have detailed discussion about program transformations

required to express operations as sequences of atomic sub-operations.

86

T1. struct node{int value, node next};
T2. struct queue{node head, node tail};
G1. queue Q ;
Enqueue (int val)
E1. node X;
E2. node Z;
E3. 1 X = malloc node; ...a
E4. 1 X.value = val; ...b
E5. 1 X.next = NULL; ...c
E6. 1 < Q.tail == Z; Z.next == NULL;>

Z.next = X; ...d
E7. * < Q.tail == Z>

Q.tail = X; ...e
Dequeue nonempty()
D1. node X;
D2. 1 < Q.head == X; Q.tail 6= X; X.next6= NULL;>

Q.head = X.next; ...f
D3. 1 free X; ...g
Dequeue empty()
DE1. node X;
DE3. 1 < Q.head == X; Q.tail == X; X.next == NULL;>

Figure 6.4: MS non-blocking queue [73] specification.

Figure 6.4 contains the MS queue specification in our language. The user spec-

ifies data structures by declaring their type name along with the fields. For example,

line T1 declares a type node which has two fields and line G1 declares a shared variable

Q of type queue. There are two different dequeue specifications, Dequeue nonempty and

Dequeue empty, which correspond to the sequence of sub-operations for dequeue on a non-

empty queue and an empty queue, respectively. Figure 6.5 shows the global sub-operations

that involve shared variables, i.e., the global sub-operations of MS queue.

6.2.2 Pairwise Ordering and Reversibility

An ordered pair of sub-operations cannot be part of a valid history if the execution

of the first sub-operation destroys the precondition for the second one. For example, sub-

operation d in Figure 6.4 line E6 cannot be followed by another instance of d because the

87

Global sub-ops for Enqueue and Dequeue

Enqueue()
1 < Q.tail == Z; Z.next == NULL;>

Z.next = X; ...d
* < Q.tail == Z;>

Q.tail = X; ...e

Dequeue nonempty()
1 < Q.head == X; Q.tail 6= X; X.next6=
NULL;>

Q.head = X.next ...f

Dequeue empty()
1 < Q.head == X; Q.tail == X; X.next ==
NULL;> ...h

Pair-wise ordering
¬d o d d o f [if(Q.head 6= Q.tail)]
¬d o e e o d [Boundary case]
¬d o h e o f [Boundary case]
¬e o e f o d [Boundary case]
¬e o h f o f [Boundary case]
¬h o e f o h [Boundary case]

f o e h o d [Boundary case]
¬h o f h o h [Boundary case]

Non-Boundary
Cases
d, f
f, e

Pair-wise
reversibility
d	 f
f 	 e

Figure 6.5: Proving the MS queue linearizable.

first instance sets the tail→next pointer to a non-null value, invalidating the precondition for

the second instance. Figure 6.5 shows all the pairs of sub-operations and their feasibility. In

our approach, a o b means sub-operation a does not destroy the precondition for b. The sub-

operation execution order in a feasible (pair-wise orderable) pair can be changed if changing

the order will not affect the value of shared or local variables. We call this reversibility,

denoted as a	 b. The properties are explained in detail in Section 6.4.

A boundary case refers to a pair of sub-operations that includes the last sub-

operation of an operation followed by the first sub-operation of an operation. Pair-wise

orderable non-boundary pairs lead to interleaving operations. Boundary pairs are always

defined as non-reversible. Pairwise reversibility for non-boundary sub-operation pairs for

MS queue is also defined in Figure 6.5.

88

6.2.3 Trace Transformation

An execution history formed by moving sub-operations using the reversibility prop-

erty is equivalent to the original history. A valid concurrent history can be mapped to a

valid sequential history using this trace transformation. The order of non-overlapping oper-

ations always remains the same during this process because the boundary pairs are defined

to be non-reversible. For example, consider a valid history for the MS queue:

..., d1, f2, f3, e1, ...

≡ ..., d1, f2, e1, f3... (using f3, e1 ≡ e1, f3)

≡ ..., d1, e1, f2, f3... (using f2, e1 ≡ e1, f2)

For a linearizable implementation, every valid concurrent history can be mapped to

an equivalent valid sequential history using trace transformation. Our linearizability checker

in Algorithm 6 answers the question: “Given an ordering and reversiblity specification, can

all the valid histories (for unbounded number of concurrent operation instances) be mapped

to an equivalent sequential history using trace transformation?”

6.3 Specification Language

We have designed a language to assist the user in expressing concurrent data

structure operations in terms of sub-operations. Note that the language is not central to

our technique — our technique will work as long as concurrent operations can be expressed

as sub-operations with ordering and reversibility properties. That said, we found that the

language made the task of expressing sub-operations and finding the pair-wise ordering and

reversibility very easy. In this section we first define the language and then demonstrate its

use for expressing common features in concurrent implementations.

89

Specification sp ::= stList g opList | g opList

Struct Decl stList ::= stList st | st
st ::= struct sname {l} ;
l ::= l, type fname | type fname

Type type ::= int | sname

Global Decl g ::= dList
Operation opList ::= opList op | op

op ::= opName opBody
opName ::= oname(dList) | oname
opBody ::= dList sList

sList ::= sList subOp | subOp

dList ::= dList decl | decl
Declaration decl ::= type var ; | type var[] ;

subOp ::= tmark subOpBody
| tmark < cList > subOpBody
| tmark < cList >

tmark ::= 1 | ∗

Pre-condition cList ::= cList condition ; | condition ;
condition ::= lhs rop rhs

subOpBody ::= subOpBody stmnt ; | stmnt ;
stmnt ::= var = malloc type | free var

| lhs = rhs
| READ lhs

LHS lhs ::= var | var . fname | var[index]
RHS rhs ::= ID | n | NULL | lhs

index ::= n | var
Operators rop ::= ==|6=|≤|≥|<|>
Integers n
Variable var
Struct Name sname
Field Name fname
Op Name oname

Figure 6.6: Syntax of specification language.

90

6.3.1 Syntax

We provide the user with a simple C-like syntax, shown in Figure 6.6. Specifi-

cations consist of an optional list of structure declarations st, global declarations g and a

list of operations op. Each global declaration consists of a variable name var and its type.

Types can be int or struct, where structs have a name sname and consist of a list of fields;

each fields has a name fname and a type.

Operations. Each operation op has a name oname, and an optional argument (type var).

Operation bodies opBody consist of local variables, dList, and sub-operations, sList.

Sub-operation. A sub-operation specification has a tmark followed by a pre-condition

and a sub-operation body. tmark marks the thread which executes the statement. A tmark

of 1 means that the thread invoking the operation instance will perform the sub-operation.

If a tmark is *, it indicates that any thread can perform the sub-operation. Specifying

tmark for each sub-operation allows specifying an operation which is distributed across

multiple threads.

– An optional precondition to the sub-operation is composed of a list of conditions, where

each condition is a relational expression involving a variable var, or field var.fname on lhs

and null, constant, variable, or field on rhs.

– A statement can be allocation or deallocation; malloc and free statements are used for

specifying local sub-operations. Other possible statement forms involve assigning values to

a variable or writing a field. READ refers to reading of a field or a variable.

– We use ID to identify the operation instance; ID is useful in modeling locks.

91

6.3.2 Modeling Synchronization Primitives

We now show how to model compare-and-swap (CAS), fetch-and-increment (F&I),

and locks, using our language.

Pseudocode

him=collision[pos];
while(!CAS(&collision[pos],him,mypid))

him=collision[pos];

Specification 1 him = collision[pos];
collision[pos] = mypid;

Figure 6.7: Sample CAS specification from [46].

Modeling Compare-and-swap. CAS can be modeled in two different ways, depending

on the implementation.

Case 1 - When the memory location being compared was read or written before

CAS statement and execution of the CAS statement is conditionally controlled by an if

statement. In this case the CAS statement can be modeled as a sub-operation with the if

condition as the precondition and the memory write as the body of the sub-operation. For

example, in Figure 6.2, the execution of the CAS statement on line 10 is dependent on the

if conditions in lines 8 and 9. The specification for the CAS statement is as follows:

1 < Q.tail == Z; Z.next == NULL;>

Z.next = X;

Case 2 - When the memory location being compared was read or written before

CAS statement and execution of CAS statement is unconditional. In this case CAS state-

ment can be modeled as a sub-operation with no precondition and two-statement body:

the first statement reads/writes the location being compared while second statement writes

92

the memory location. Figure 6.7 shows a pseudocode excerpt from the implementation

of elimination back-off stack by Hendler et al. [46]. The second row shows corresponding

sub-operation specification.

Modeling Fetch-and-Increment. F&I on a shared variable x is modeled by a sub-

operation with no precondition. The body of the sub-operation consists of two statements,

first reading shared variable x in a local variable and second incrementing x. Figure 6.8

left shows the pseudocode from the enqueue operation in Herlihy and Wing’s queue [47]

which uses fetch-and-increment. The right side shows the specification in our language —

declaration of variables back and AR and the enqueue operation.

enqueue(lv){
/*(Fetch and Increment)*/
(k, back) := (back, back
+1);
AR[k] := lv;}

int AR[];
int back;

Enqueue(int lv)
int k;

1 k = back;
back = back + 1;

1 AR[k] = lv;

Pseudocode Specification

Figure 6.8: Sample Fetch-and-increment specification from [47].

Modeling Locks. A lock can be modeled using our specification language as a shared

variable with a default value. The locking sub-operations will look like:

1 < lock == default value; >

lock = ID;

93

where operation ID refers to a unique value identifying the operation instance. Any sub-

operation performed with the lock acquired will have a precondition of the form:

< lock == ID;>

Unlocking takes the form:

1<lock == ID;>

lock = default value;

6.4 Proving Linearizability

The number of possible valid histories for an implementation is directly propor-

tional to the number of executing concurrent operation instances. The number of valid his-

tories becomes intractable with the increase in the number of concurrent operation instances

executing on the data structure. We solve the problem of intractable number of histories by

breaking the history down into basic building blocks, sub-sequences of two sub-operations.

We then argue about all the histories in terms of properties on these building blocks. We

call (a, b) a sub-operation pair, where a and b belong to different operation instances; for

brevity, we will heretofore drop the parentheses when referring to pairs. Note that a and b

can be the same sub-operation. The number of possible pairs for an implementation with

n sub-operations is n2.

We define the property of pair-wise ordering as follows:

Definition 3. Figure 6.9 shows how we determine if a sub-operation pair is orderable. The

rule states that a sub-operation pair α1, α2 is not pairwise orderable (denoted by ¬α1 o α2)

if after executing α1, the pre-condition for α2 is not met; otherwise α1 o α2.

94

∀s,∀u, v ∈ Oid, u 6= v (s,H, α1[u])→ (s2, H2) (s2, H2, α2[v])→ (error, H2)

¬α1 o α2

Figure 6.9: Pair-wise ordering.

∀s,∀u, v ∈ Oid, u 6= v
α1 o α2

(s,H, α1[u])→ (s2, H2)
(s2, H2, α2[v])→ (s3, H3)

α2 o α1

(s,H, α2[v])→ (s′2, H
′
2)

(s′2, H
′
2, α1[u])→ (s′3, H

′
3) s3 = s′3

α1 	 α2

Figure 6.10: Pair-wise reversibility.

For example, consider the sub-operation d of MS queue’s enqueue (Figure 6.5):

1 < Q.tail == Z; Z.next == NULL;>

Z.next = X;

The pre-condition states that Q→tail→next should be NULL. Now consider the pair d, d

(d1, d2 for clarity). The execution of d1 sets the value of Q→tail→next to a non-NULL

value. This invalidates the pre-condition for sub-operation instance d2. Hence d, d is not

pair-wise orderable; i.e., ¬d o d. Figure 6.10 states the rule for determining sub-operation

pair’s reversibility.

Definition 4. A sub-operation pair α1, α2 is reversible (denoted by α1 	 α2) iff

1. α1 o α2 and α2 o α1 and

2. Given a program state, the final program state is the same irrespective of the order of

execution of α1 and α2.

Note that pair reversibility is different from moverness properties (left movers and

right movers). The left and right mover properties of an atomic sub-operation are very

restrictive as the sub-operation should be commutative with respect to every sub-operation

present in the program. Reversibility on the other hand is a property on a single sub-

95

operation pair. [59] has discussed that movers fail to prove atomicity in the presence of the

ABA problem [25]; reversibility, on the other hand, enables our technique to handle the

ABA problem.

Pairs can also be conditionally orderable. For example, consider the pair d, f ,

(Figure 6.5) where sub-operation d is:

1< Q[tail] == Z; Z.next == NULL;>

Z.next = X;

and sub-operation f is:

*< Q.head == X; Q.tail 6= X; X.next6= NULL>

Q.head = X.next;

d o f only if Q.head6=Q.tail.

We consider a pair orderable, if it is orderable for any possible values of the vari-

ables involved.

The reversibility of a conditionally orderable pair is defined under the same con-

ditions for which it is orderable. For example, reversibility for pair d, f (mentioned above),

will be calculated with the premise that Q.head6=Q.tail. Reversibility of a pair is decided

conservatively. If the reverse order of execution is not equivalent to the original pair under

any possible condition (which is satisfied by the ordering condition), we deem the pair to

be non-reversible. We found that the conservative definition of reversibility is not sufficient

to handle complex interactions of operation instances. We explain in Section 6.5 how to

handle such complex cases.

96

In order to preserve the order of non-overlapping operations during trace transfor-

mation, we have used the following simple technique. A pair formed by last sub-operation of

any operation and the first sub-operation of any operation (a.k.a boundary pair) is always

set to be non-reversible. This ensures that the order of non-overlapping operations in a his-

tory will not change when moving around the sub-operations using reversibility property.

Given the pairwise ordering and pairwise reversibility of all possible pairs of sub-operations,

we can now define valid histories.

Definition 5. A valid history H (sequence of sub-operations following program order) is

defined as follows:

1. For a sub-sequence a, b of H, either a, b belong to same operation instances, or a o b and

2. For any sub-sequence a, b of H, where a and b belong to different operation instances, if

a	 b then the history formed by reversing the order of a and b in H is also a valid history.

The equivalence of histories is defined in terms of pairwise reversibility:

Definition 6. Two valid histories H and H’ are equivalent, denoted H ≡ H’, iff H’ can be

formed from H by reversing the pairs present in H using pairwise reversibility.

Using this definition of equivalence of history, we redefine our problem of checking

linearizability as follows:

Definition 7. An implementation is linearizable iff all valid histories with respect to the

implementation can be mapped to some sequential history by changing the order of pairwise

reversible sub-operations.

Note that the order of non-overlapping operations will always be preserved because

boundary pairs are not reversible.

97

Algorithm 6 Checking Linearizability

1: Input: S : Set of Operations
2: Sub(S):Set of all sub-operations
3: first(S): set of first sub-operations for each operation in S
4: I is the set of all possible prefix sequences for operations
5: next(x), x∈ I : next sub operation in the operation after x
6: x∈ I, y∈I∪Sub(S), x.y: sequence formed by concatenating y after x
7: x∈ I, y∈I∪Sub(S), xoy iff x.y is a valid history
8: x∈ I, x is a proper prefix, y∈I∪Sub(S), x	y iff x.y ≡ y.x
9: x∈ I, x is a complete operation, y∈Sub(S), y/∈first(S), x	y iff x.y ≡ y.x

10: x∈ I, x is a complete operation, y∈I, ¬x	y
11: x∈ I, x is a complete operation, y∈Sub(S), y∈first(S), ¬x	y
12: function Check Linearizability()()
13: ret = TRUE
14: for all x∈ I, x is a proper prefix do
15: ret = ret && Check(x)
16: end for
17: RETURN ret
18: }
19: end function
20: function Check(x)()
21: for all y ∈ Closure(x) do
22: if yonext(x) && ¬y	next(x) then
23: RETURN FALSE
24: end if
25: end for
26: RETURN TRUE
27: end function
28: function Closure(u)()
29: C = {φ}
30: for all w∈ I; st u o w && ¬u	 w do
31: C = C ∪ w
32: end for
33: for all z ∈ C do
34: for all w∈ I; st z o w && z 	 w do
35: C = C ∪ w
36: end for
37: end for
38: RETURN C
39: end function

98

Algorithm 6 presents our linearizability checking approach. The input to the

algorithm is the set of operations, corresponding sub-operation sequences, pair-wise ordering

as well as reversibility for each possible pair. We start by initializing set I with all prefixes

of operations (line 2). The prefix of an operation o is a partial sequence of sub-operations

starting from the first sub-operation of o following program order. The prefix set for an

operation represented by a, b, c (where a, b and c are the sub-operations) is {a, ab, abc}.

We define the ordering for a prefix pair (x, y — x and y ∈ I) simply by checking if

the concatenated sequence of x and y is a valid history with respect to the input ordering

and reversibility specifications (line 5). Reversibility for a prefix pair (x, y — x and y ∈

I) is defined by the equivalence of two histories formed by reversing the order of x and y

(line 6). The ordering and reversibility between a prefix sequence and single sub-operations

is defined in a similar manner (lines 5,6,7). Lines 8 and 9 state that two non-overlapping

operations are non-reversible.

The closure of a prefix u (Closure(u)) is the set of all prefixes v that can follow u

in a valid history (lines 25-35) and the order of execution of u and v cannot be reversed.

Complexity of calculating Clousure(u) is O(n2), where n is the total number of prefixes.

Our algorithm checks if for each proper prefix x, for each prefix y that can occur in-between

x and next(x), the prefix y can be moved before x or after next (x) in the sequence using

the trace transformation (using property of reversibility) (lines 18-24). If the check fails for

any prefix x ∈ I, the algorithm returns false otherwise it returns true.

The algorithm returning true means all possible valid histories (for the input

specification) are equivalent to some valid sequential history with the same order of non-

99

overlapping operations. This in turn implies linearizability of the implementation using

Definition 7.

In case of failure, our checker returns a valid history (sequence of sub-operations)

which cannot be mapped to a sequential history. If the check on line 19 fails for prefix

x and y ∈ Closure(x) then the failing valid history is the sequence x,...,y, next(x). The

dotted sequence is a sequence of prefixes such that for any subsequence u, v u and v are in

Closure(x), u o v and ¬u	 v.

6.5 Handling Complex Operation Interactions

We found that for complex concurrent operations, the ordering and reversibility of

sub-operation pairs varies depending on the relative values of the involved variables. There

are only finite number of ways in which two operations can interact with each other, i.e., how

values of involved variables can relate to each other. Linearizability of an implementation

can be checked by applying our technique using all possible interactions of the involved

operations. We illustrate this process using O’Hearn et al.’s Lazy set [78] (ORVYY set).

Figure 6.11 shows the pseudocode for the ORVYY set. There are three concurrent

methods contains, remove, and add. The specification for the ORVYY set, written in our

language, is in Figure 6.12. There are three operations: contains, remove, and add. The

operation contains (key not present) is equivalent to the operation contains(key present).

The operations add (key present) and remove (key not present) are trivial extensions and

have been omitted for simplicity.

100

1: type E{
2: int mark;
3: int key;
4: E next;
5: }
6: E H, T;

7:1: function ExE locate(int
k)

2: E p = H;
3: E c = p.next;
4: while(c.key < k)
5: p = c;
6: c = p.next;
7: endwhile
8: return p,c;
9: end function

1: function bool con-
tains(int k)

2: ExE p,c = locate(k);
3: bool b = (c.key == k);
4: return b;
5: end function

1: function bool remove(int
k)

2: bool restart = true, ret-
val;

3: while (restart)
4: ExE p,c = locate(k);
5: atomic{
6: if p.next == c &&

!p.mark then
7: restart = false;
8: if c.key == k then
9: c.mark = true;

10: p.next = c.next;
11: retval = true;
12: end if
13: else
14: retval = false;
15: end if
16: }
17: endwhile
18: return retval;
19: end function

1: function bool add(int k)
2: bool restart = true, ret-

val;
3: while (restart)
4: ExE p,c = locate(k);
5: atomic{
6: if p.next == c &&

!p.mark then
7: restart = false;
8: if c.key 6= k then
9: E t = alloc(E);

10: t.mark = false;
11: t.key = k;
12: t.next = c;
13: p.next = t;
14: retval = true;
15: end if
16: else
17: retval = false;
18: end if
19: }
20: endwhile
21: return retval;
22: end function

Figure 6.11: ORVYY set [78].

The interaction between operations depends on the relationships among the

shared variables involved in the operations. For example, consider the interaction of

operation add and operation contains from Figure 6.11. The add operations involves three

variables (Pa, Ca, Ta). The contains operation involves two variables (Pc, Cc). The two

operations can interact with each other in several ways. Each possible interaction is a

result of a different relation between the involved variables. The list of possible iterations

of contains and add is: 1. Pc = Pa and Cc = Ca

2. Pc = Pa and Cc = Ta

3. Pc = Ta and Cc = Ca

4. Pc, Cc and Pa, Ca, Ta are not related

101

T1. struct E{int mark, int key, E next};

contains()
C1. E P;
C2. E C;
C3. 1 READ P;
C4. 1 C = P.next;
C5. 1 READ C.key;

remove()
R1. E P;
R2. E C;
R3. 1 READ P;
R4. 1 C = P.next;
R5. 1 < P[next] == C; P.mark == 0; >

READ C.key;
C.mark = 1;
P.next = C.next;

add()
A1. E P;
A2. E C;
A3. E T;
A4. 1 READ P;
A5. 1 C = P.next;
A6. 1 < P.next == C; P.mark == 0; >

READ C.key;
T.next = C;
P.next = T;

Figure 6.12: ORVYY set [78] simplified specification.

Note that other cases are either infeasible or equivalent to one of the aforemen-

tioned cases. For example, the case where Cc = Pa is equivalent to case 4. All the inter-

actions between operations for the ORVYY set are listed in Figure 6.13. We use multiple

versions of the same operation to cover every possible combination of interactions between

operations (each version is considered as a new operation). The ordering and reversibility

properties of the pairs corresponding to each pair of operations are defined according to

the premises. The resulting ordering and reversibility definitions are fed to the checker to

verify if the implementation is linearizable.

6.6 Soundness Proof

Now we show that our linearizability check is sound. First we show that for any

input which passes the linearizability check, all valid histories with respect to the input

102

Contains()(Pc, Cc)-Remove()(Pr, Cr)
1. Pc = Pr, Cc = Cr

2. Pc = Cr

3. Pc, Cc and Pr, Cr are not related

Remove()(Pr1, Cr1)-Remove()(Pr2, Cr2)
1. Cr1 = Pr2

2. Pr1, Cr1 and Pr2, Cr2 are not related

Add()(Pa1, Ca1, Ta1)-Add()(Pa2, Ca2, Ta2)
1. Ca1 = Pa2

2. Pa1 = Pa2, Ca1 = Ta2

3. Pa1 = Ta2, Ca1 = Ca2

4. Pa1, Ca1, Ta1 and Pa2, Ca2, Ta2 are not related

Remove(Pr, Cr)-Add()(Pa, Ca, Ta)
1. Pr = Pa, Cr = Ta

2. Pr = Ta, Cr = Ca

3. Pr = Ca

4. Pr, Cr and Pa, Ca, Ta are not related

Contains()(Pc, Cc) -Add()(Pa, Ca, Ta)
1. Pc = Pa, Cc = Ca

2. Pc = Pa, Cc = Ta

3. Pc = Ta, Cc = Ca

4. Pc, Cc and Pa, Ca, Ta are not related

Figure 6.13: Operation interactions for the ORVYY set.

specification are equivalent to some valid sequential history with the same order of non-

overlapping operations. We prove this by induction over the length of valid histories, where

length of history refers to number of sub-operations in the history.

Base case: A sequence of a single sub-operation is a trivially valid sequential history.

Given: A history of length k maps to a valid sequential history with order of non-

overlapping operations preserved.

To Prove: Any valid history formed by appending a new sub-operation to the history can

also be mapped to a valid sequential history with the order of non-overlapping operations

preserved.

In Figure 6.14 we start with a history of length k + 1 formed by appending sub-operation

Sn+1 from operation instance S to a history of length k. The history of length k can be

103

1. [.........................︸ ︷︷ ︸
Valid history

of length k

]Sn+1 ≡ [....S1S2...Sn︸ ︷︷ ︸
Prefix S

......................︸ ︷︷ ︸
Valid sequence

of prefixes

]Sn+1

Replacing history of
length k by corresponding
sequential history.
S1S2...Sn denoted by Ps

2. ...PsXY................︸ ︷︷ ︸
Valid sequence

of prefixes

Sn+1 ≡XPsYSn+1 if(Ps 	X).

3.PsXYSn+1 ≡PsY X........Sn+1 if(¬Ps 	X and X 	 Y).

4.Ps............Sn+1 ≡PsZ1Z2..........ZuSn+1

where Zi ∈ Closure(Ps)
for 1 ≤ i ≤ u

5. ≡PsSn+1Z1Z2........Zu ∀Z ∈ Closure(Ps), Z o Sn+1

⇒ Z 	 Sn+1

Figure 6.14: Proving soundness of linearizability check by induction.

mapped to a valid sequential history. The valid sequential history will be a sequence of

prefixes. The prefix S1S2 . . . Sn of operation instance S denoted by Ps will be present in

the sequential history. The history formed by replacing the history of length k with its

sequential counterpart falls under one of two cases:

• Case 1: Ps is immediately followed by prefix X such that Ps 	 X. In this case, we

reverse the order of Ps and X in the history (line 2).

• Case 2: Ps is immediately followed by X such that ¬Ps 	 X and X is immediately

followed by Y such that X 	 Y . In this case, we reverse the order of X and Y in the

history (line 3).

We apply case 2 for prefixes down the sequence until no further order change is possible.

The result is a history where Ps if followed by prefixes, each of which is an element of

Closure(Ps) (line 4). Since our linearizability check guarantees that for every element Z in

Closure(Ps) which can occur before Sn+1, Z 	 Sn+1. Using this property, we reverse the

oder of Z and Sn+1. The final result will be a history where sequence PsSn+1 is followed

by a sequence of prefixes, which is a valid sequential history (line 5). The order of non-

104

overlapping operations remains same because boundary pairs are always non-reversible i.e.,

their order cannot be changed.

Using Definition 7 we can say that any implementation which holds Assumption 1

and passes the linearizability test is linearizable with respect to the abstract data structure.

6.7 Incompleteness

Our technique is not complete, i.e., an implementation which fails the linearizabil-

ity test may or may not be non-linearizable. Specifically, a linearizable implementation can

fail our linearizability test for two reasons:

1. Algorithms which do not preserve internal data structure state. There are

linearizable algorithms which do not preserve the state of internal data structures when

mapping a history to a sequential history. An example of this case is the Herlihy-Wing

queue [47]. The queue is implemented using an unbounded length array and a pointer

storing the upper end of the array. Let H ′ be the sequential history corresponding to a

concurrent history H; then the execution of H and H ′ may leave the array with elements

at different indexes.

Since our technique conserves the state of internal data structures while mapping

a history to sequential a history, it returns False for the Herlihy-Wing queue.

2. Conservative definition of history (Definition 5). A history H, as defined in

Definition 5, is the superset of all possible sets of histories allowed by an implementation.

Let S be the set of all possible histories categorized as valid according to Definition 5, for

105

a given implementation. It is theoretically possible to design an implementation for which

S will include histories which can never be executed. If the linearizability test fails for such

histories then our technique will result in a false positive. In such a case, the non-linearizable

sequence of sub-operations returned by the linearizability checker can be manually verified

to be non-executable, i.e., impossible at runtime.

6.8 Evaluation

We have applied our technique on a number of popular implementations of concur-

rent stacks, queues, and sets. Our static checker is a C++ implementation of Algorithm 6

running on an Intel(R) Xeon(R) CPU E5607 @ 2.27GHz with 16 GB RAM, Linux kernel

version 2.6.32. Table 6.2 presents our findings. For each benchmark, the table reports

operations we considered for the implementation (column 2) and the total number of sub-

operations across all operations (column 3). Column 4 gives the time taken by our static

checker took (in milliseconds). Column 5 indicates if the benchmark passed or failed the

check. We have kept the granularity of sub-operations limited to single reads, writes, and

synchronization primitives. The granularity can be easily increased for trivial cases (by

combining consecutive sub-operations).

6.8.1 Benchmarks

The MS non-blocking queue was our running example. MS two-lock queue

is the two-lock based queue from the same paper [73]. There are two methods described in

the algorithm, enqueue and dequeue. The dequeue method corresponds to two operations,

106

Data Structure Operations # Sub-ops

MS non-blocking queue [73]
Enqueue, Dequeue(empty), Dequeue(non-
empty)

4

MS two-lock queue [73]
Enqueue, Dequeue(empty), Dequeue(non-
empty)

11

DGLM non-block. queue [32]
Enqueue, Dequeue(empty), Dequeue(non-
empty)

4

Herlihy-Wing Queue [47] Enqueue, Dequeue 5

Treiber’s stack [101] Push, Pop(empty), Pop(non-empty) 5

Elimination back-off
stack [46]

Push(eliminating), Push(eliminated),
Pop(eliminating), Pop(eliminated), Push
(normal), Pop (normal)

20

Time-stamped Stack [31]
Push(normal), Push(eliminated),
Pop(eliminating), Pop (normal)

10

HHLMSS Lazy set [45]
Contains, Remove(key present), Add (key
not present)

23

VY CAS set [105]
Contains, Remove(key present), Re-
move(key not present), Add(key present),
Add(key not present)

20

VY DCAS set [105]
Contains, Remove(key present), Re-
move(key not present), Add(key present),
Add(key not present)

19

ORVYY set [78]
Contains, Remove(key present), Re-
move(key not present), Add(key present),
Add(key not present)

15

Pair snapshot [84] Read-pair, write 5

RDCSS [44] RDCSS, RDCSS Read, CAS Write 5

Table 6.1: Specification details of concurrent data structure implementations.

one for the successful dequeue and the other for the empty-queue dequeue.

DGLM non-blocking queue [32] is a modified version of the MS non-blocking

queue. The specification for the DGLM non-blocking queue varies from the MS non-blocking

queue in terms of pre-condition for the sub-operations. The sub-operation ordering and

reversibility remain the same for both the benchmarks.

Herlihy-Wing queue is an array-based queue described in the original lineariz-

ability paper [47]. The Dequeue method for an empty queue never terminates (that is why

107

we have considered only the successful dequeue operation in our check). As described in

Section 6.7, our technique fails to prove the Herlihy-Wing queue linearizable.

Treber’s stack [101] is the simplest form of a non-blocking concurrent stack

algorithm. It is a linked-list based implementation, and the operations — Push, Pop(empty),

and Pop(non-empty) — are performed using CAS.

Elimination back-off stack [46] is an elimination-based lock-free stack. Elimi-

nation refers to canceling out concurrent push and pop operations without modifying the

central data structure. The elimination process uses two auxiliary arrays. A pair of concur-

rently executing push and pop are eliminated. There is no sequential execution equivalent

for such a case. We handled this case by distributing the sub-operations between elimi-

nated and eliminating operations. This way there exists a sequential execution equivalent

of the two eliminated operations. The implementation supports push and pop methods.

The elimination parts leads to four operations: push (eliminating), push (eliminated), pop

(eliminating), and pop (eliminated).

Time-stamped stack [31] is a linked-list based stack where each thread has

its own linked list, using timestamps to avoid total ordering in concurrent stack opera-

tions; it also uses elimination to increase performance. The stack supports push and pop

methods. The implementation has four operations, push(normal), push (eliminated), pop

(eliminating), and pop (normal). We have not considered the stack empty check for this

implementation. In addition, the pop operation is limited to setting the deleted marker

which is associated with each node. Finally, we have not considered the removal of the

node from the linked list.

108

HHLMSS Lazy set [45] is a linked-list based set which uses locks. Each node has

a lock associated with it. The implementation supports three methods: contains, remove

and add. The contains method is wait-free. The operations in the implementation that we

have considered are contains, remove (key present), and add(key not present).

VY CAS set and VY DCAS set [105] are linked-list based set algorithms

which use Compare-and-swap (CAS) and Double Compare-and-swap (DCAS) primitives

for synchronization. The contains method is wait-free. The operations involved in the

implementation are contains, remove (key present), remove (key not present), add (key-

present) and add(key not present).

ORVYY set [78] is also a linked-list based set which uses a marked bit for marking

deleted nodes; it has been discussed in detail in Section 6.5.

Pair snapshot [84] reads two variables atomically in the presence of concurrent

writes.

RDCSS [44] is an atomic multiword compare-and-swap. It works in the presence

of RDCSS read and CAS based writes.

6.8.2 Discussion

The evaluation shows that our technique is applicable to a variety of data structure

implementations, regardless of which synchronization techniques they use. Our technique

is very efficient (running time is at most 29 ms) because the static checker explores a very

small search space compared to other techniques. Tools like CAVE [103] and Poling [116]

take several seconds to several hundred seconds for the benchmarks they can handle. Note

109

Data Structure Time (ms) Passes Check

MS non-blocking queue [73] 5 Yes

MS two-lock queue [73] 9 Yes

DGLM non-block. queue [32] 5 Yes

Herlihy-Wing Queue [47] 3 No

Treiber’s stack [101] 3 Yes

Elimination back-off stack [46] 14 Yes

Time-stamped Stack [31] 8 Yes

HHLMSS Lazy set [45] 29 Yes

VY CAS set [105] 23 Yes

VY DCAS set [105] 23 Yes

ORVYY set [78] 19 Yes

Pair snapshot [84] 3 Yes

RDCSS [44] 4 Yes

Table 6.2: Checking linearizability of different concurrent data structure implementations.

that we are not comparing our verification time to theirs — it would be inappropriate to do

so, as their techniques are fully automatic. The main strength of our technique is that it is

applicable to any concurrent data structure, i.e., it is generic. The Time-stamped stack has

never been handled by any linearizability verification technique. The paper presenting the

data structure provides a very customized linearizability proof for the algorithm. The main

overhead of our technique is specifying the operations in terms of sub-operations. We found

that the method of specifying operations varies with the technique used for synchronization.

The elimination technique has been used in elimination back-off stack and time-stamped

stack. Elimination leads to different versions of operations depending upon whether the

operation is being eliminated or is eliminating. The set algorithms, the time-stamped

stack, and the pair-snapshot benchmarks had complex interactions among the operations.

We handled these benchmarks by using multiple versions of some operations (as described

110

in Section 6.5). The MS non-blocking queue, the elimination back-off stack, and the RDCSS

benchmarks had operations distributed across multiple threads.

6.9 Summary

This chapter has presented our linearizability verification technique. The technique

is based on modeling a concurrent data structure operation as a sequential combination of

atomic sub-operations. The execution history is expressed in terms of static properties of

ordering and reversibility of sub-operation pairs. Our static checks verifies if based on pair

properties, all the histories allowed by an implementation can be mapped to a sequential

history. We have applied our technique to 13 popular concurrent data structures. We have

also proved the soundness of our technique. The evaluation shows that our verification

technique is applicable to a wide range of concurrent data structures.

111

Chapter 7

Related Work

This chapter summarizes research works in domains and problems addressed by

this thesis. We first summarize prior techniques used for general purpose debugging as well

as specilized debugging for data structure related bugs. Next, we address various memory

graph represetations and techniques using memory graphs. Finally, we summarize work

on verification of linearizability of concurrent data structure implementations and how our

techniques stand out.

7.1 Location Data Structure Faults for Scalar Data Struc-

tures

Fault location. Various general approaches for fault location that do not rely on data

structure information have been developed (e.g., statistical techniques [13,64,89], dynamic

slicing [56, 115], or combinations of the two [114]). Statistical techniques require running

the program on a suite of test cases. Our approach is more comparable with dynamic slicing

112

as they both perform debugging by analyzing a single program run during which a fault

is encountered. Jose and Majumdar [52] use MAX-SAT solvers while Sahoo et al. [92] use

dynamic backward slicing and filtering heuristics for software fault location. The focus of

our work is specifically on data structure errors. Taylor and Black [100] examine a number of

structural correction algorithms for list and tree data structures. Bond et al. [19] track back

undefined values and NULL pointers to their origin. In contrast, our system concentrates on

fault location for violation of high-level data structure properties. We consider the concept

of temporary violation of high-level data structure constraints. This helps us locate errors

early and trace them to faults precisely.

Specification-based error detection. A wide range of specification techniques have

been used to specify correctness properties from which monitors for runtime verification

of those properties are generated. For example, MOP [23] allows correctness properties to

be specified in LTL, MTL, FSM, or CFG; though MOP is geared more towards verifying

protocols or API sequences rather than data structures. Similarly, a specification technique

for easily handling memory bugs has also been developed [115]. Our work focuses on data

structure correctness and hence is closest to Archie [28] and Alloy [48]. Our data structure

specification language differs from languages used by Archie and Alloy: their modeling

languages let the developer specify high-level design properties in terms of a model while

our language enables developers to express high-level data structure properties in terms

of the memory graph of the program. This makes specification writing in our language

easy and concise. Berdine et al. [17] and Chang and Rival [21] have introduced predicate-

based specification languages for shape analysis. Customized versions of these languages

113

can be used for our technique. Malik et al. [71], Juzi [35] and Demsky et al. [28, 29] use

constraint-based error detection for data structure repair while Gopinath et al. [42] combine

spectra-based localization with specification matching to iteratively localize faults. Malik

et al. [70] proposed the idea of using using data structure repair for repairing faulty code.

Jung and Clark [54] applied invariant detection on memory graphs to identify the data

structures used in the program. Our system uses a similar concept of matching constraints

over program state to detect violations. Our approach goes one step further and maps the

dynamic data structures constraint violations at runtime back to the source code. Also,

we give a method for incremental matching based on the timing information which makes

it feasible for the developers to perform constraint checks more frequently. This leads to

early detection of errors. Zaeem et al. [77] use history of program execution (field reads and

writes) for data structure repair but do not capture structural information.

DITTO [96] performs incremental structure invariant checks for JAVA. It incurs

additional overhead for storing all the computations from the last check, as these com-

putations are later used for the incremental checking. Our system reuses the time stamp

information from the memory graph and stores only the timestamp of the previous check

for incremental constraint matching.

7.2 Memory Graphs

7.2.1 Memory Graphs

Prior heap analyses fall into two main categories: static and dynamic. Static

techniques include shape analysis [41, 91] and other techniques that are aimed at deriving

114

a compile-time approximation of the heap structure [72]. However, static analysis does not

give a clear picture of the runtime heap activity in a particular execution. Dynamic analysis

techniques like ours collect data from program runs and analyze it either online or offline.

Several prior dynamic techniques are aimed at visualizing and navigating a single snapshot

or a series of snapshots of the heap [14,81,99,117]. These works are orthogonal to our work

and can make use of MG++ internally for memory efficiency. DDD [113] and Zimmermann

& Zeller [117] use symbol table information for constructing memory graph while Raman

& August [87] use allocator function information for memory graph construction. Work

on visualizing memory management behavior [22, 82] has focused on analyzing memory

allocator’s behavior and performance. Unlike our work, these approaches are not aimed at

capturing the memory graph for program understanding or debugging applications. The

technique presented in [53] is specifically aimed at detecting recursive data structures and

dynamic degree invariants. Our approach captures all pointer mutations of the heap and

the resulting MG++ can be used for detecting data structures and their links. Finally,

MG++ representation is similar to that of persistent data structures [33].

7.2.2 Applications of Memory Graphs

Memory graphs are at the heart of a number of different applications aimed at

program understanding and debugging.

Memory debugging and general-purpose debugging. A number of approaches have

aimed at displaying memory uses of the program using memory graphs thereby enabling

programmers to detect memory leaks or identify memory corruption patterns [14, 80, 88].

In Zeller’s work [112], program state is captured as a memory graph and state differences

115

between passing and failing runs are used to isolate cause-effect chains for a program failure.

Program Understanding. Myers and Duke [74] extract design abstractions from

memory graphs to provide users an intuitive representation. Malik [69] analyzes spectra of

heap graphs to extract dynamic invariants.

Data Structure Extraction. Jung and Clark [54] apply invariant detection on a

memory graph to identify the data structure used by the program. Lin et al. [65] extract type

information from program binary and provide an abstract representation of the variables

used in the program. They rely on standard library function calls for the typing information.

All of the above techniques rely on memory graphs and therefore can benefit

from our improved representation as it captures program behavior with greater precision,

including the behavior of the memory allocator. Moreover, the compact nature of our

representation will allow the above techniques to scale to longer program runs.

7.3 Linearizability Verification

We presented a general and practical technique for checking the linearizability

of concurrent data structure implementations. We now discuss other techniques used for

verifying linearizability; our focus is on generic techniques that can be applied to more than

one concurrent data structure.

Model-checking linearizability [20, 106] aims at exploring all possible lineariza-

tion points and finding a counter example; this does not guarantee soundness. There are

linearization-point based proof techniques for which the linearization points are user spec-

ified or automatically inferred by the techniques. Such techniques fail to handle more

116

complicated algorithms where an operation’s linearization point depends upon other con-

currently executing operations.

Most of the techniques for proving linearizability are tied to a particular class

of concurrent data structures. There are techniques which work only for the algorithms

which have the linearization point inside the operation code [12]. Other techniques work for

external linearization points only for read only operations [30]. Reduction based technique

presented in [38] requires moverness which is too strong a criterion limiting the application

of the approach. The backward-simulation based technique in [95] claims to be applicable to

all concurrent data structure; it handles the Herlihy-Wing queue as well, which we cannot.

According to the paper the authors had to write 500 proof rules in the KIV theorem prover

just for the specific Herlihy-Wing queue. Authors have applied their technique only on the

Herlihy-Wing queue and extending the technique to other data structures is not trivial.

Liang and Feng [63] use instrumentation and rely-guarantee reasoning. The technique is

specifically built to handle concurrent data structure implementations which have helping

mechanisms and future dependent linearization points. Vafeiadis’s approach [103] works on

a number of data structures but fails in verifying complex set algorithms. Zhu et al. [116]

handle data structures implementations which follow the patterns of thread helping and

hindsight. In contrast to these techniques, our method is not dependent on any property of

the data structure implementation. Another advantage of our technique is that when the

check fails, our method provides the user with a sequence of sub-operations which cannot

be linearized.

117

Chapter 8

Conclusions and Future Work

8.1 Contributions

This dissertation contributes to enabling precise fault location for data structure

faults. It presents a data structure constraint specification language that enables the user to

specify constraints easily, thus simplifying the task of debugging data structure faults. The

fault location framework also comprises of various optimizations which reduce the runtime

overhead of fault location. A new memory graph representation is introduced to decrease

the memory used for storing the data structure evolution history of a program run. The

improved backward slicing algorithm reduces the runtime overhead of slicing enabling the

user to perform slicing for much longer program runs.

Our sound and generic technique for linearizability verification is independent of

the synchronisation technique used in the concurrent data structure. The technique only

depends on the static properties of sub-operation pairs. our technique is applicable to a

variety of data structure implementations, regardless of which synchronization techniques

118

they use. The only criterion for application of out technique is that the concurrent operation

should be expressed as a sequence atomic sub-operations.

Specifically, the key contributions of this dissertation are as follows:

Exploiting User Input to Improve Precision of Automatic Fault Location. Au-

tomatic Fault Location techniques have to explore a vast search space in order to find locate

the program faults. This not only increase the time overhead of the search but also affects

the precision of the technique. This dissertation presented our fault location framework for

data structure corruption bugs where we utilized the user specification of data structure

consistency constraints to narrow down the faulty statements precisely and efficiently. We

have provided the user with an easy-to-use constraint specification language, thus making

the technique more practical.

Increasing Efficiency of Dynamic Post-mortem Analysis. Dynamic Analysis in

general is very costly in terms of time overhead. This dissertation introduces a number

of optimizations to make dynamic post-morterm analysis more efficient and practical. In-

cremental Constraint matching introduced as a part of the fault location framework uses

information from previous constraint checks to reduce the cost of constraint matching.

Identifying corrupted data structures limits the search space making the search for faulty

program statements more efficient. We have introduced an improved version of backward

slicing which harnesses the idea to using a relatively lightweight check to discard big portion

of search space.

119

Improved Representation for Run-time Data Structures. Memory graphs have

been popular to capture the run-time data structure representation. This dissertation pre-

sented MG++, an improved memory graph representation which not only captures the

run-time data structure but also captures data structure evolution history. MG++ also

captures mapping from run-time data structure to source code. We have also presented

a way of constructing memory graphs in absence of allocator function information. This

construction method is especially useful in security applications where allocator function

information is generally not available. We have shown the application of the construction

technique in detecting heap buffer overflows.

Sound and Generic Linearizability Verification. Linearizability verification for con-

current data structures is a hard problem. It becomes harder in case of introduction of

newer synchronization techniques. There are no techniques which can be used for a newly

identified concurrent data structure implementations. Our technique for linearizability veri-

fication works for any implementation as long as the concurrent operations can be expressed

as a sequence of atomic sub-operations. This is crucial as our technique will theoretically

not only work for existing concurrent data structure implementations but also for new al-

gorithms. We have supported this claim by evaluating our technique against a number

of state of the art and complex concurrent data structure implementations such as such as

elimination back-off stack, lazy linked list, and time-stamped stack. Thus our linearizability

verification technique helps the research community come up with better concurrent data

structure implementations.

120

8.2 Future Directions

Dependence Analysis using Dynamic Slicing. With the ubiquity of multicore hard-

ware, finding parallelism in programs has become an important application. Detecting

loop-carried dependencies is an important step towards detecting the amount of parallelism

present in the program. We propose to detect loop-carried dependencies by combining Dy-

namic Control-Flow Graph(DCFG) Generation with Dynamic Forward Slicing. The role of

DCFG is to detect source level loops. Once the loops are identified, we use dynamic forward

slicing to detect loop-carried dependencies by using the first iteration of the loop as slicing

criterion. If the later iterations of the loop are found to be part of the calculated forward

slice, we report a loop-carried dependency. This work is being pursued in collaboration

with Dr. Harish Patil at Intel. A working demo of the tool was presented at PLDI 2016 as

part of the Pinplay tutorial.

Automatic Linearizability Verification with Source Code as Input. Our current

linearizability verification technique is based on user input. The user expresses the concur-

rent data structure operations as a sequence of atomic sub-operations using our specification

language. This poses the danger of user specifications being erroneous. In addition, writing

the specification requires some degree of familiarity with the concurrent data structure algo-

rithm. In future work we plan to overcome these limitations by completely automating the

verification process. The verification tool will analyze the source code and automatically

extract the sequence of sub-operations along with ordering and reversibility properties for

each sub-operation pair. The results will be fed to the static checker to automatically verify

121

linearizability.

Persistent Memory Analysis using Backward Slicing Persistent memory is an in-

termediate stage in the memory/storage hierarchy between DRAM and storage. It provides

nonvolatile, low-latency memory closer to the processor. We aim at developing a tool for

automatically determining the commit points in a program for persistent storage. The per-

sistent analysis is based on determining the data and control dependency between memory

loads. Backward slicing will be used for determining the memory load pairs with dependen-

cies. The challenges are performing the analysis at run time for long running executions.

Automatic Extraction of Constraint Specification Our current fault location frame-

work is based on getting the data structure constraints as input from the user. In future

work we plan to automatically extract the data structure constraint from a given correct

execution of the program. The modified fault location framework can facilitate software

development, e.g., regression testing.

122

Bibliography

[1] Bison-gnu parser generator. http://www.gnu.org/software/bison/.

[2] flex: The fast lexical analyzer. http://flex.sourceforge.net/.

[3] Gnome bug tracker. https://bugzilla.gnome.org/. Accessed: 03/2014.

[4] Gnu core utilities. http://www.gnu.org/software/coreutils/.

[5] Kde bug tracker. https://bugs.kde.org/. Accessed: 03/2014.

[6] Mozilla bug tracker. https://bugzilla.mozilla.org/. Accessed: 03/2014.

[7] Open office bug tracker. https://issues.apache.org/ooo/. Accessed: 03/2014.

[8] Perl programming language. http://www.perl.org/.

[9] Python interpreter. https://www.python.org/.

[10] Spec cint2006 benchmarks. https://www.spec.org/cpu2006/cint2006/.

[11] Stanford large network dataset collection. http://snap.stanford.edu/data/index.html.

[12] Parosh Aziz Abdulla, Frédéric Haziza, Lukás Hoĺık, Bengt Jonsson, and Ahmed
Rezine. An integrated specification and verification technique for highly concurrent
data structures. In Nir Piterman and Scott A. Smolka, editors, TACAS, volume 7795
of Lecture Notes in Computer Science, pages 324–338. Springer, 2013.

[13] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. An evaluation of similarity
coefficients for software fault localization. In Pacific Rim International Symposium on
Dependable Computing, pages 39–46, Washington, DC, USA, 2006. IEEE Computer
Society.

[14] Edward E. Aftandilian, Sean Kelley, Connor Gramazio, Nathan Ricci, Sara L. Su, and
Samuel Z. Guyer. Heapviz: interactive heap visualization for program understanding
and debugging. In SoftVis’10, pages 53–62, 2010.

123

https://bugzilla.gnome.org/
https://bugs.kde.org/
https://bugzilla.mozilla.org/
https://issues.apache.org/ooo/

[15] Daphna Amit, Noam Rinetzky, Thomas Reps, Mooly Sagiv, and Eran Yahav. Com-
parison under abstraction for verifying linearizability. In Werner Damm and Holger
Hermanns, editors, Computer Aided Verification, volume 4590 of Lecture Notes in
Computer Science, pages 477–490. Springer Berlin Heidelberg, 2007.

[16] Vladimir Batagelj and Andrej Mrvar. Pajek datasets. http://vlado.fmf.uni-
lj.si/pub/networks/data/, 2006.

[17] Josh Berdine, Cristiano Calcagno, Byron Cook, Dino Distefano, Peter W. O’Hearn,
Thomas Wies, and Hongseok Yang. Computer Aided Verification: 19th International
Conference, CAV 2007, Berlin, Germany, July 3-7, 2007. Proceedings, chapter Shape
Analysis for Composite Data Structures, pages 178–192. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2007.

[18] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton
University, January 2011.

[19] Michael D. Bond, Nicholas Nethercote, Stephen W. Kent, Samuel Z. Guyer, and
Kathryn S. McKinley. Tracking bad apples: Reporting the origin of null and undefined
value errors. In OOPSLA, pages 405–422, 2007.

[20] Sebastian Burckhardt, Chris Dern, Madanlal Musuvathi, and Roy Tan. Line-up:
A complete and automatic linearizability checker. In Proceedings of the 31st ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’10, pages 330–340, New York, NY, USA, 2010. ACM.

[21] Bor-Yuh Evan Chang and Xavier Rival. Relational inductive shape analysis. In
George C. Necula and Philip Wadler, editors, POPL, pages 247–260. ACM, 2008.

[22] A. M. Cheadle, A. J. Field, J. W. Ayres, N. Dunn, R. A. Hayden, and J. Nystrom-
Persson. Visualising dynamic memory allocators. In ISMM ’06, pages 115–125.

[23] F. Chen and G. Rosu. Mop: An efficient and generic runtime verification framework.
In OOPSLA, pages 569–588, 2007.

[24] Holger Cleve and Andreas Zeller. Locating causes of program failures. In ICSE, pages
342–351, 2005.

[25] I. B. M. Corporation. IBM System/370 Extended Architecture, Principles of Opera-
tion. IBM Publication No. SA22-7085, 1983.

[26] Sandeep Dasgupta and Amey Karkare. Precise shape analysis using field sensitivity.
In Proceedings of the 27th Annual ACM Symposium on Applied Computing, SAC ’12,
pages 1300–1307, 2012.

[27] Brian Demsky, Cristian Cadar, Daniel Roy, and Martin Rinard. Efficient specification-
assisted error localization. In WODA’04.

[28] Brian Demsky and Martin Rinard. Automatic detection and repair of errors in data
structures. In OOPSLA, pages 78–95, 2003.

124

[29] Brian Demsky and Martin Rinard. Data structure repair using goal-directed reason-
ing. In ICSE, pages 176–185, 2005.

[30] John Derrick, Gerhard Schellhorn, and Heike Wehrheim. Verifying linearisability with
potential linearisation points. In Michael Butler and Wolfram Schulte, editors, FM
2011: Formal Methods, volume 6664 of Lecture Notes in Computer Science, pages
323–337. Springer Berlin Heidelberg, 2011.

[31] Mike Dodds, Andreas Haas, and Christoph M. Kirsch. A scalable, correct time-
stamped stack. In Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL ’15, pages 233–246, New York,
NY, USA, 2015. ACM.

[32] Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir. Formal verifica-
tion of a practical lock-free queue algorithm. In David de Frutos-Escrig and Manuel
Núñez, editors, FORTE, volume 3235 of Lecture Notes in Computer Science, pages
97–114. Springer, 2004.

[33] James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan. Making
data structures persistent. J. Comput. Syst. Sci., 38(1):86–124, February 1989.

[34] Cezara Drăgoi, Ashutosh Gupta, and ThomasA. Henzinger. Automatic linearizability
proofs of concurrent objects with cooperating updates. In Natasha Sharygina and
Helmut Veith, editors, Computer Aided Verification, volume 8044 of Lecture Notes in
Computer Science, pages 174–190. Springer Berlin Heidelberg, 2013.

[35] Bassem Elkarablieh and Sarfraz Khurshid. Juzi: A tool for repairing complex data
structures. In Proceedings of the 30th International Conference on Software Engineer-
ing, ICSE ’08, pages 855–858, New York, NY, USA, 2008. ACM.

[36] Bassem H. Elkarablieh. Assertion-based Repair of Complex Data Structures. PhD
thesis, Austin, TX, USA, 2009. AAI3517771.

[37] John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen North, Gordon Woodhull,
Short Description, and Lucent Technologies. Graphviz — open source graph drawing
tools. In Lecture Notes in Computer Science, pages 483–484. Springer-Verlag, 2001.

[38] Tayfun Elmas, Shaz Qadeer, Ali Sezgin, Omer Subasi, and Serdar Tasiran. Simplifying
linearizability proofs with reduction and abstraction. In Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer Verlag, April 2010.

[39] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. A calculus of atomic actions. In
Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’09, pages 2–15, New York, NY, USA, 2009. ACM.

[40] Cormac Flanagan, Stephen N. Freund, and Shaz Qadeer. Exploiting purity for atom-
icity. IEEE Trans. Softw. Eng., 31(4):275–291, April 2005.

125

[41] Rakesh Ghiya and Laurie J. Hendren. Is it a tree, a dag, or a cyclic graph? a shape
analysis for heap-directed pointers in c. In Proceedings of the 23rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’96, pages 1–
15, 1996.

[42] D. Gopinath, R.N. Zaeem, and S. Khurshid. Improving the effectiveness of spectra-
based fault localization using specifications. In ASE’12.

[43] Lindsay Groves. Verifying michael and scott’s lock-free queue algorithm using trace
reduction. In Proceedings of the Fourteenth Symposium on Computing: The Aus-
tralasian Theory - Volume 77, CATS ’08, pages 133–142, Darlinghurst, Australia,
2008. Australian Computer Society, Inc.

[44] Timothy L. Harris, Keir Fraser, and Ian A. Pratt. A practical multi-word compare-
and-swap operation. In Proceedings of the 16th International Conference on Dis-
tributed Computing, DISC ’02, pages 265–279, London, UK, UK, 2002. Springer-
Verlag.

[45] Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, William N. Scherer,
and Nir Shavit. A lazy concurrent list-based set algorithm. In Proceedings of the 9th
International Conference on Principles of Distributed Systems, OPODIS’05, pages
3–16, Berlin, Heidelberg, 2006. Springer-Verlag.

[46] Danny Hendler, Nir Shavit, and Lena Yerushalmi. A scalable lock-free stack algorithm.
In Proceedings of the Sixteenth Annual ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA ’04, pages 206–215, New York, NY, USA, 2004. ACM.

[47] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition
for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, July 1990.

[48] Daniel Jackson. Alloy: A lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol., 11(2):256–290, 2002.

[49] Stephen C. Johnson. Yacc: Yet another compiler-compiler. Technical report, 1979.

[50] James A. Jones and Mary Jean Harrold. Empirical evaluation of the tarantula au-
tomatic fault-localization technique. In IEEE/ACM ASE, ASE ’05, pages 273–282,
New York.

[51] James A. Jones, Mary Jean Harrold, and John Stasko. Visualization of test informa-
tion to assist fault localization. In Proceedings of the 24th International Conference
on Software Engineering, ICSE ’02, pages 467–477, New York, NY, USA, 2002. ACM.

[52] Manu Jose and Rupak Majumdar. Cause clue clauses: Error localization using max-
imum satisfiability. PLDI’11, pages 437–446.

[53] Maria Jump and Kathryn S. McKinley. Dynamic shape analysis via degree metrics.
In Proceedings of the International Symposium on Memory Management, ISMM ’09,
pages 119–128, 2009.

126

[54] Changhee Jung and Nathan Clark. Ddt: design and evaluation of a dynamic program
analysis for optimizing data structure usage. In IEEE/ACM MICRO, pages 56–66,
2009.

[55] Alex Kogan and Erez Petrank. Wait-free queues with multiple enqueuers and de-
queuers. In Proceedings of the 16th ACM Symposium on Principles and Practice of
Parallel Programming, PPoPP ’11, pages 223–234, New York, NY, USA, 2011. ACM.

[56] B. Korel and J. Laski. Dynamic program slicing. Inf. Process. Lett., 29(3):155–163,
October 1988.

[57] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. Graphchi: Large-scale graph com-
putation on just a pc. In Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, OSDI’12, pages 31–46, Berkeley.

[58] Doug Lea. A memory allocator. http://g.oswego.edu/dl/html/malloc.html, 1987.

[59] Mohsen Lesani, Todd Millstein, and Jens Palsberg. Automatic Atomicity Verification
for Clients of Concurrent Data Structures, pages 550–567. Springer International
Publishing, Cham, 2014.

[60] M. E. Lesk and E. Schmidt. Unix vol. ii. chapter Lex - a lexical analyzer generator,
pages 375–387. W. B. Saunders Company, Philadelphia, PA, USA, 1990.

[61] Kfir Lev-Ari, Gregory Chockler, and Idit Keidar. A constructive approach for prov-
ing data structures’ linearizability. In Yoram Moses, editor, Distributed Computing,
volume 9363 of Lecture Notes in Computer Science, pages 356–370. Springer Berlin
Heidelberg, 2015.

[62] Chung-Chi J. Li, Paul P. Chen, and W. K. Fuchs. Local concurrent error detection
and correction in data structures using virtual backpointers. IEEE Trans. Comput.,
38(11):1481–1492, November 1989.

[63] Hongjin Liang and Xinyu Feng. Modular verification of linearizability with non-
fixed linearization points. In Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’13, pages 459–470, New
York, NY, USA, 2013. ACM.

[64] B. Liblit, M. Naik, A.X. Zheng, A. Aiken, and M.I. Jordan. Scalable statistical bug
location. In PLDI, 2005.

[65] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. Automatic reverse engineering of
data structures from binary execution. In NDSS, 2010.

[66] Richard J. Lipton. Reduction: A method of proving properties of parallel programs.
Commun. ACM, 18(12):717–721, December 1975.

[67] Barbara Liskov and John Guttag. Program Development in Java: Abstraction, Speci-
fication, and Object-Oriented Design. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1st edition, 2000.

127

[68] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building
customized program analysis tools with dynamic instrumentation. In PLDI, 2005.

[69] Muhammad Zubair Malik. Dynamic shape analysis of program heap using graph
spectra (nier track). In Proceedings of the 33rd International Conference on Software
Engineering, ICSE ’11, pages 952–955, 2011.

[70] Muhammad Zubair Malik, Khalid Ghori, Bassem Elkarablieh, and Sarfraz Khurshid.
A case for automated debugging using data structure repair. In ASE, pages 620–624,
2009.

[71] M.Z. Malik, J.H. Siddiqi, and S Khurshid. Constraint-based program debugging using
data structure repair. ICST, pages 190–199, 2011.

[72] Mark Marron, Deepak Kapur, and Manuel Hermenegildo. Identification of logically
related heap regions. In Proceedings of the International Symposium on Memory
Management, ISMM ’09, pages 89–98, 2009.

[73] Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-blocking and
blocking concurrent queue algorithms. In Proceedings of the Fifteenth Annual ACM
Symposium on Principles of Distributed Computing, PODC ’96, pages 267–275, New
York, NY, USA, 1996. ACM.

[74] Colin Myers and David Duke. A map of the heap: revealing design abstractions in
runtime structures. ISSV’10, pages 63–72.

[75] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight
dynamic binary instrumentation. In Proceedings of the 2007 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI ’07, pages 89–100,
2007.

[76] M. E. J. Newman. Finding community structure in networks using the eigenvectors
of matrices. pre, 74(3):036104, September 2006.

[77] Razieh Nokhbeh Zaeem, Divya Gopinath, Sarfraz Khurshid, and Kathryn S. McKin-
ley. History-aware data structure repair using sat. TACAS’12, pages 2–17.

[78] Peter W. O’Hearn, Noam Rinetzky, Martin T. Vechev, Eran Yahav, and Greta Yorsh.
Verifying linearizability with hindsight. In Proceedings of the 29th ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing, PODC ’10, pages 85–94,
New York, NY, USA, 2010. ACM.

[79] Harish Patil, Cristiano Pereira, Mack Stallcup, Gregory Lueck, and James Cownie.
Pinplay: A framework for deterministic replay and reproducible analysis of parallel
programs. In Proceedings of the 8th Annual IEEE/ACM International Symposium
on Code Generation and Optimization, CGO ’10, pages 2–11, New York, NY, USA,
2010. ACM.

128

[80] Wim De Pauw and Gary Sevitsky. Visualizing reference patterns for solving memory
leaks in java. In Proceedings of the 13th European Conference on Object-Oriented
Programming, pages 116–134. Springer-Verlag, 1999.

[81] S. Pheng and C. Verbrugge. Dynamic data structure analysis for java programs. In
Program Comprehension, 2006. ICPC 2006. 14th IEEE International Conference on,
pages 191–201, 2006.

[82] Tony Printezis and Richard Jones. Gcspy: An adaptable heap visualisation frame-
work. In Proceedings of the 17th ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications, OOPSLA ’02, pages 343–358,
2002.

[83] Brock Pytlik, Manos Renieris, Shriram Krishnamurthi, and Steven P. Reiss. Auto-
mated fault localization using potential invariants. In AADEBUG, pages 273–276,
Ghent, Belgium, September 8–10, 2003.

[84] Shaz Qadeer, Ali Sezgin, and Serdar Tasiran. Back and forth: Prophecy variables
for static verification of concurrent programs. Technical Report MSR-TR-2009-142,
October 2009.

[85] Xiaokang Qiu, Pranav Garg, Andrei Ştefănescu, and Parthasarathy Madhusudan.
Natural proofs for structure, data, and separation. In Proceedings of the 34th Confer-
ence on Programming Language Design and Implementation (PLDI’13), pages 231–
242. ACM, June 2013.

[86] Dave Raggett. Html tidy program. http://tidy.sourceforge.net/, 2009.

[87] Easwaran Raman and David I. August. Recursive data structure profiling. In MSP
Workshop, pages 5–14, 2005.

[88] Steven P. Reiss. Visualizing the java heap to detect memory problems. In Proceedings
of the IEEE International Workshop on Visualizing Software for Understanding and
Analysis, pages 73–80, 2009.

[89] M. Renieris and S. Reiss. Fault localization with nearest neighbor queries. In IEEE
ASE, pages 30–39, 2003.

[90] Shounak Roychowdhury and Sarfraz Khurshid. Software fault localization using fea-
ture selection. In International Workshop on Machine Learning Technologies in Soft-
ware Engineering, MALETS ’11, pages 11–18, 2011.

[91] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis via
3-valued logic. In Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’99, pages 105–118, 1999.

[92] Swarup Kumar Sahoo, John Criswell, Chase Geigle, and Vikram Adve. Using likely
invariants for automated software fault localization. In ASPLOS’13.

129

[93] Gerhard Schellhorn, John Derrick, and Heike Wehrheim. A sound and complete proof
technique for linearizability of concurrent data structures. ACM Trans. Comput.
Logic, 15(4):31:1–31:37, September 2014.

[94] Gerhard Schellhorn, John Derrick, and Heike Wehrheim. A sound and complete proof
technique for linearizability of concurrent data structures. ACM Trans. Comput.
Logic, 15(4):31:1–31:37, September 2014.

[95] Gerhard Schellhorn, Heike Wehrheim, and John Derrick. How to prove algorithms
linearisable. In P. Madhusudan and SanjitA. Seshia, editors, Computer Aided Verifi-
cation, volume 7358 of Lecture Notes in Computer Science, pages 243–259. Springer
Berlin Heidelberg, 2012.

[96] Ajeet Shankar and Rastislav Bod́ık. Ditto: automatic incrementalization of data
structure invariant checks (in java). In PLDI, 2007.

[97] Vineet Singh, Rajiv Gupta, and Iulian Neamtiu. Mg++: Memory graphs for analyzing
dynamic data structures. In IEEE SANER, 2015.

[98] Shiwei Sun, Lunjiang Ling, Nan Zhang, Guojie Li, and Runsheng Chen. Topological
structure analysis of the protein-protein interaction network in budding yeast. Nucleic
Acids Research, 31(9), 2003.

[99] Jaishankar Sundararaman and Godmar Back. Hdpv: Interactive, faithful, in-vivo
runtime state visualization for c/c++ and java. In Proceedings of the 4th ACM Sym-
posium on Software Visualization, pages 47–56, 2008.

[100] D.J. Taylor and J.P. Black. Principles of data structure error correction. IEEE Trans.
on Computers, C-31(7):602–608, 1982.

[101] R.Kent Treiber. Systems programming : coping with parallelism. Technical Report
RJ 5118, IBM US Research Centers (Yorktown,San Jose,Almaden, US), 1986.

[102] Joseph Tucek, Shan Lu, Chengdu Huang, Spiros Xanthos, and Yuanyuan Zhou.
Triage: Diagnosing production run failures at the user’s site. In Proceedings of Twenty-
first ACM SIGOPS Symposium on Operating Systems Principles, SOSP ’07.

[103] Viktor Vafeiadis. Modular fine-grained concurrency verification. Technical Report
UCAM-CL-TR-726, University of Cambridge, Computer Laboratory, July 2008.

[104] Viktor Vafeiadis. Automatically proving linearizability. In In CAV, 2010.

[105] Martin Vechev and Eran Yahav. Deriving linearizable fine-grained concurrent objects.
In Proceedings of the 29th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’08, pages 125–135, New York, NY, USA, 2008.
ACM.

[106] Martin Vechev, Eran Yahav, and Greta Yorsh. Experience with model checking lin-
earizability. In Proceedings of the 16th International SPIN Workshop on Model Check-
ing Software, pages 261–278, Berlin, Heidelberg, 2009. Springer-Verlag.

130

[107] Liqiang Wang and Scott D. Stoller. Static analysis of atomicity for programs with non-
blocking synchronization. In Proceedings of the Tenth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’05, pages 61–71, New
York, NY, USA, 2005. ACM.

[108] Y. Wang, I. Neamtiu, and R. Gupta. Generating sound and effective memory debug-
gers. In ISMM, 2013.

[109] Yan Wang, Harish Patil, Cristiano Pereira, Gregory Lueck, Rajiv Gupta, and Iulian
Neamtiu. Drdebug: Deterministic replay based cyclic debugging with dynamic slicing.
In Proceedings of Annual IEEE/ACM International Symposium on Code Generation
and Optimization, CGO ’14, pages 98:98–98:108, New York, NY, USA, 2014. ACM.

[110] John Wilander, Nick Nikiforakis, Yves Younan, Mariam Kamkar, and Wouter Joosen.
RIPE: Runtime intrusion prevention evaluator. In In Proceedings of the 27th Annual
Computer Security Applications Conference, ACSAC, 2011.

[111] Xiao Xiao, Jinguo Zhou, and Charles Zhang. Tracking data structures for postmortem
analysis (nier track). In Proceedings of the 33rd International Conference on Software
Engineering, ICSE ’11, pages 896–899, 2011.

[112] Andreas Zeller. Isolating cause-effect chains from computer programs. In ACM SIG-
SOFT FSE, pages 1–10, 2002.

[113] Andreas Zeller and Dorothea Lütkehaus. Ddd—a free graphical front-end for
unix debuggers. SIGPLAN Not., 31(1):22–27, January 1996.

[114] X. Zhang, N. Gupta, and R. Gupta. Pruning dynamic slices with confidence. In
PLDI, 2006.

[115] X. Zhang, H. He, N. Gupta, and R. Gupta. Experimental evaluation of using dynamic
slices for fault location. AADEBUG’05, pages 33–42.

[116] He Zhu, Gustavo Petri, and Suresh Jagannathan. Poling: Smt aided linearizability
proofs. In Daniel Kroening and Corina S. Păsăreanu, editors, Computer Aided Ver-
ification, volume 9207 of Lecture Notes in Computer Science, pages 3–19. Springer
International Publishing, 2015.

[117] Thomas Zimmermann and Andreas Zeller. Visualizing memory graphs. In Revised
Lectures on Software Visualization, International Seminar, pages 191–204, London,
UK, UK, 2002. Springer-Verlag.

131

	List of Figures
	List of Tables
	Introduction
	Locating Data Structure Faults in Sequential Programs
	Verifying Linearizability for Concurrent Data Structures
	Dissertation Organization

	Constraint Specification Language
	Constraint Model and Language Syntax
	Structure Specification
	Attributes and Model Specification
	Constraint Specification
	Inter-node Constraints
	Intra-node Constraints

	Comparison with Archie Demsky:2004, An Example
	Evaluation: Size of Specification
	Summary

	MG++: Memory Graph Construction and Representation
	MG++ Representation
	MG++ for Heap Data Structures
	Modeling the Memory Allocator
	MG++ Rollback and Retrieval

	Portable Memory Graph Construction
	Key Observations
	Construction Algorithm

	Implementation and Evaluation
	Cost of Constructing MG++
	Fault Location using MG++
	Detecting Buffer Overflow Attacks using MG++

	Limitations
	Summary

	Fault Location Framework
	Overview of Our Approach
	Specification of Consistency Constraints
	Tracing Data Structure Evolution History
	Fault Location
	Optimizations

	Fault Location Algorithm
	Identifying Corrupted Data Structures

	Optimizations
	Incremental Constraint Checking
	Efficient Traceback

	Evaluating Fault Location
	Precision of Fault Location
	Overhead of Fault Location

	Experience with Real Programs
	Scalability of the Technique
	Summary

	Efficient Backward Slicing
	Background and Overview
	Computing the Backward Dynamic Slice

	Complexity Analysis for Slicing
	Improved Slicing Algorithm
	Evaluation
	Summary

	Linearizability Verification of Concurrent Data Structures
	System Model and Linearizability
	Execution Model
	Histories
	Linearizability

	Overview and Example
	Specifying Concurrent Operations
	Pairwise Ordering and Reversibility
	Trace Transformation

	Specification Language
	Syntax
	Modeling Synchronization Primitives

	Proving Linearizability
	Handling Complex Operation Interactions
	Soundness Proof
	Incompleteness
	Evaluation
	Benchmarks
	Discussion

	Summary

	Related Work
	Location Data Structure Faults for Scalar Data Structures
	Memory Graphs
	Memory Graphs
	Applications of Memory Graphs

	Linearizability Verification

	Conclusions and Future Work
	Contributions
	Future Directions

	Bibliography

