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Abstract

From Voronoi Cells to Algebraic Statistics

by

Yulia Alexandr

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Bernd Sturmfels, Co-chair

Professor Serkan Hoşten, Co-chair

Algebraic statistics is a relatively young field, which explores how algebra and statistics
interact, thus fostering a meaningful dialogue between theory and applications. Many sta-
tistical models are naturally made up of distributions whose coordinates satisfy polynomial
equations. Viewing these models as algebraic varieties, we may use tools from algebraic ge-
ometry to gain additional insight into their properties. Alternatively, we may revisit familiar
algebraic and geometric objects in the setting of probability distributions.

In the first part of this thesis, I develop the theory of logarithmic Voronoi cells. These are
convex sets used to divide experimental data based on which point in the model each sam-
ple most likely came from. For finite models, linear models, toric models, and models of
maximum likelihood degree one, I prove that these sets are polytopes and characterize them
combinatorially. I then use their structure to maximize information divergence to linear and
toric models. For the latter family, I present a new algorithm for computing maximizers us-
ing vertices of logarithmic Voronoi polytopes. For non-polytopal logarithmic Voronoi cells,
I develop a method to compute them via the framework of numerical algebraic geometry.

The second and third parts of this dissertation focus on conditional independence. In the
second part, I study context-specific independence and introduce the family of decomposable
CSmodels. I prove that these models mirror many of the algebraic and combinatorial proper-
ties that characterize decomposable graphical models, and hence they are good candidates for
decomposable models in the context-specific setting. I give the strongest possible algebraic
characterization of decomposable CSmodels by describing their prime ideals. In the third
part, I focus on nonparametric algebraic statistics. I study dimensions, defining polynomi-
als, and degrees of the moment varieties of conditionally independent mixture distributions
on Rn. The last chapter features both symbolic and numerical computational methods.



i

To my family



ii

Contents

Contents ii

List of Figures iv

1 Introduction 1
1.1 Discrete models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Continuous models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3 Statement of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 30

I Logarithmic Voronoi cells 32

2 Discrete setting 33
2.1 When are logarithmic Voronoi cells polytopes? . . . . . . . . . . . . . . . 33
2.2 The chaotic universe model . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3 Numerical algebraic geometry . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Linear models 52
3.1 Combinatorial types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 On the boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3 Information divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 Partial linear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Toric models 67
4.1 Critical points of information divergence . . . . . . . . . . . . . . . . . . 69
4.2 The chamber complex and the algorithm . . . . . . . . . . . . . . . . . . 72
4.3 Reducible models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4 Models of ML degree one . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Gaussian setting 101
5.1 Linear concentration models . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2 Directed graphical models . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3 Covariance models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



iii

II Context-specific models 117

6 Decomposable context-specific models 118
6.1 Introduction to CStrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.2 Decomposable CSmodels in three variables . . . . . . . . . . . . . . . . . 127
6.3 Combinatorial properties of balanced CStrees . . . . . . . . . . . . . . . 130
6.4 Algebraic characterization . . . . . . . . . . . . . . . . . . . . . . . . . . 136

III Nonparametric algebraic statistics 142

7 Moment varieties for mixtures of products 143
7.1 Familiar varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.2 Finiteness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.3 Toric combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.4 Secant varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Bibliography 160



iv

List of Figures

1.1 Probability simplices we can visualize. . . . . . . . . . . . . . . . . . . . . . 2
1.2 From left to right: the Hardy-Weinberg curve, the twisted cubic curve, and

the independence model of two binary random variables. . . . . . . . . . . . 3
1.3 Logarithmic Voronoi cells of the twisted cubic. . . . . . . . . . . . . . . . . . 13
1.4 Nodal cubic in R2 (left) and the bivariate correlation model in PD3 (right). . 22
1.5 The unrestricted correlation model for m = 3. . . . . . . . . . . . . . . . . . 24
1.6 Logarithmic Voronoi cells (in pink) of the model in Example 1.2.8 plotted on

the (x1, x2)-plane and (y1, y2)-plane, respectively. . . . . . . . . . . . . . . . 28

2.1 Logarithmic Voronoi cell (green) inside its log-normal polytope (pink) for a
given point (yellow) in the model from Example 2.3.3. . . . . . . . . . . . . 34

2.2 One-dimensional log-normal polytopes at various points . . . . . . . . . . . . 36
2.3 Nonlinear boundary arising from two disjoint linear models . . . . . . . . . . 39
2.4 The fibres and image of the moment map for the Segre of Example 2.1.5 . . 40
2.5 Logarithmic Voronoi cells (rhombic dodecahedra) of interior points for n = 4,

d = 9 (on the left) and d = 10 (on the right). . . . . . . . . . . . . . . . . . . 41

3.1 Partition of the tetrahedron ∆3 into triangles (left) and quadrilaterals (right). 52
3.2 Sampled points on the linear model corresponding to B = [1 − 5 2 2] and

triangular logarithmic Voronoi cells. . . . . . . . . . . . . . . . . . . . . . . . 56
3.3 Linear model given by B = [−2,−1, 1, 2]T . . . . . . . . . . . . . . . . . . . . 63
3.4 Polytopes Qp and Qp for a point on a facet of a 2-dimensional model in ∆3. 65
3.5 Logarithmic Voronoi cells at sampled points on the model defined as the con-

vex hull of three points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 The chamber complex of a pentagon. . . . . . . . . . . . . . . . . . . . . . . 74
4.2 Chamber complex of the 2× 3 independence model (left and middle) and the

middle chamber (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3 Twisted Veronese models V2,3 and V3,2, respectvely. . . . . . . . . . . . . . . 92
4.4 Chamber complex of the box model B(1)

3,3,2. . . . . . . . . . . . . . . . . . . . 96
4.5 The chamber complex and two logarithmic Voronoi polytopes that yield max-

imum divergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



v

5.1 Pillow-shaped logarithmic Voronoi spectrahedra . . . . . . . . . . . . . . . . 104
5.2 The logarithmic Voronoi cell at Σ′ of 1→ 2→ 4← 3. . . . . . . . . . . . . . 108
5.3 The logarithmic Voronoi cell at Σ1/2 for the bivariate correlation model. . . . 114

6.1 A CStree for p = 3 and its minimal context DAGs. . . . . . . . . . . . . . . . . 122
6.2 All CStrees with p = 3, which do not represent a DAG. . . . . . . . . . . . . . . 128
6.3 A balanced CStree with a non-perfect minimal context. . . . . . . . . . . . . . . 130
6.4 The context subtree of the tree in Figure 6.5 for the context X3 = 0, and its minimal

context DAGs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.5 Balanced CStree on five binary random variables whose empty context DAG is not

perfect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



vi

Acknowledgments

I am immensely grateful to my advisors, Bernd Sturmfels and Serkan Hoşten, whose exper-
tise and guidance have been instrumental in shaping my academic journey, and whose belief
in my abilities has driven me forward. Bernd, thank you for your boundless encouragement,
inspirational energy, and hands-on mentorship. I feel very lucky to be a part of your won-
derful academic family. Serkan, thank you for your infinite patience, contagious enthusiasm,
and invaluable advice. Working with you has been a source of motivation and wisdom.

Thank you to my collaborators: Eliana Duarte, Alexander Heaton, Serkan Hoşten, Joe Kileel,
Bernd Sturmfels, Sascha Timme, and Julian Vill. I had a lot of fun doing math together,
and I learned so much from each of you. Thank you, Vadim Gorin and Nikhil Srivastava,
for taking the time to be on my dissertation committee. Thank you, Vera Serganova, for the
interesting classes you taught during my time at Berkeley. Thank you to Vicky, Jon, Clay,
Christian, and Saskia for all your help with the tricky administrative tasks. Thank you to
all the algebraic statistics folks, whose contributions have motivated and influenced my own
work. I am proud to be a member of such a warm and welcoming mathematical community.

Thank you to my dear friends, who made my PhD journey so memorable. Yelena, thank you
for always being there for me, for the adventures we shared all over the world, for the many
vegan meals and true-crime episodes we enjoyed, and for the countless hours we spent talking,
crying, and laughing together. You are the best friend, (academic) sister, and roommate I
could ever hope for. Thank you, Adam, for always understanding me, for your infectious
sense of humor, and for the many healing, deep, and silly conversations we have had over
Boichik bagels. Thank you, AJ, for your ability to turn the most routine errands into exciting
adventures, for our regular peaceful walks and tofu soup dinners. Thank you, Roshni, for
being the best climbing partner, and for our much-needed late-night milkshake escapades
followed by bad TV. Thank you, Yana, for making our Oakland apartment feel like home,
for our open-minded conversations and the variety of teas we enjoyed during our three years
of living together. Thank you, Maksym, for being a fun office mate and supportive friend.
Thank you, Misha, for sharing many joyful moments with me in Middletown, San-Francisco,
Oakland, Hawai’i, and Dublin. Thank you, Cameron, for helping me believe anything was
possible. Thank you, Rikhav, Alisar, Ruwan, Alex, Pi, and Krishnan, for being fantastic
friends, and for the memories we created together. Thank you to my academic siblings:
Chiara, Claudia, and Yassine for helping me navigate this unique experience.

Thank you, Eric, for always supporting my dreams, your unshakeable belief in me during
times of doubt, and for the many adventures we have shared and those on the horizon.
Thank you, Andrew-the-cat, for your emotional support and abuse. Finally, an immense
thank you to my parents and my family for your continuous encouragement and the shared
amusement at the idea of me becoming a doctor.



1

Chapter 1

Introduction

In this chapter, we introduce and motivate the main themes in this dissertation. We describe
what a statistical model is to algebraic statisticians and what questions they are interested
in studying. In particular, we define the maximum likelihood estimation problem, which in-
spires the study of logarithmic Voronoi cells (Part I). We also describe the concept of condi-
tional independence, which plays a major role in the study of discrete context-specific models
(Part II) and of the moment varieties in the continuous nonparametric setting (Part III).
Section 1.3 summarizes all contributions in this dissertation and acknowledges joint work.

1.1 Discrete models
In this section, we focus on discrete statistical models. We define a probability simplex and
an algebraic statistical model, and give motivating examples. We then describe the maximum
likelihood estimation problem for such models and define logarithmic Voronoi cells. Finally,
we focus on conditional independence and the corresponding algebraic equations that arise
in the discrete setting.

Variety of distributions

Discrete statistical models arise when we work with random variables that have finite state
spaces. Such models live inside the probability simplex, defined as

∆n−1 = {(p1, p2, . . . , pn) ∈ Rn
≥0 : p1 + p2 + · · ·+ pn = 1}.

Here, n is the total number of possible outcomes, while pi is the probability of observing
state i for all i ∈ [n]. The probability simplex ∆n−1 is a polytope of dimension n− 1 in Rn.
We may visualize ∆n−1 for n = 1, 2, 3, 4 inside the hyperplane p1 + p2 + . . . + pn = 1, as in
Figure 1.1. In this thesis, we will often work with the open probability simplex ∆◦

n−1, where
we assume that pi > 0 for all i ∈ [n].
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Figure 1.1: Probability simplices we can visualize.

A statistical model is defined to be any subset of the probability simplex. Most of the
models we will consider in this thesis will be naturally made up of distributions whose
coordinates satisfy polynomial equations. Hence, we will be working with algebraic statistical
models [114], given as the intersection of ∆n−1 with an algebraic variety or as the image of
a rational map φ. In the latter case, we say that a model admits a parametric description
and we may write M = φ(Θ) ⊆ ∆n−1 for some parameter space Θ. Important examples of
parametric models include linear and toric models, discussed in detail in later chapters. The
Zariski closure of a model M ∈ ∆n ⊆ Cn is the smallest complex variety containing M.
The dimension of an algebraic statistical modelM is the dimension of the intersection of its
Zariski closure with the hyperplane defining the simplex p1+p2+ · · ·+pn = 1. The process of
recovering the ideal of the Zariski closure of the image of φ from the parametric description is
called implicitization [87, Chapter 4]. This problem can be computationally challenging for
large models, as the standard approach relies on Gröbner basis computations [87, Chapter 1].
We demonstrate the extent of this difficulty for mixture models in Chapter 7. For some
classes of models, the defining equations can be obtained by observing special combinatorial
properties of their parametrization. In Chapter 6, we characterize the ideals of decomposable
context-specific models by utilizing the structure of their graphical representation.

Remark 1.1.1. Note that even though we defined a discrete statistical model as a subset
of the probability simplex, we will often identify our models with the underlying complex
varieties. In other words, we will often work with the Zariski closure of a statistical model
in the complex space. This will be particularly useful in Definition 1.1.8 and when we treat
exponential families in Chapter 4.

A natural example of a parametric statistical model arises when we consider an experiment
given by a coin flip.

Example 1.1.2 (Coin flips). Suppose we have a biased coin that lands tails up with proba-
bility t. When we flip it two times and record the number of heads, there are three possible
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outcomes: 0 head, 1 heads, and 2 heads. Our modelM is a curve in ∆2, parametrized by

φ : (0, 1)→ ∆2 : t 7→ p(t) = (t2, 2t(1− t), (1− t)2) ∈M.

Statisticians know it as the Hardy-Weinberg curve. To obtain the implicit equations, we need
to compute the elimination ideal in Macaulay2 [60] by running the commands below.

R=QQ[t,s,p1,p2,p3];
I=ideal(p1-t^2, p2-2*t*s, p3-s^2);
J=eliminate(I,{t,s})

This returns the principal ideal generated by the quadric p22−p1p3. It defines a hypersurface
in R3, which intersected with the simplex gives us the modelM. If we were to flip the same
coin three times instead of two, we would obtain the model known as the twisted cubic curve
inside ∆3, which we will revisit several times in this dissertation. Both of the models are
plotted in Figure 1.2 (left and middle, respectively).

Figure 1.2: From left to right: the Hardy-Weinberg curve, the twisted cubic curve, and the
independence model of two binary random variables.

Another example we consider is the independence model of two random variables, where the
statistical independence relation translates into the algebraic rank condition on the matrix
of joint probabilities.

Example 1.1.3 (Independence model). Let X and Y be two random variables with the
state spaces [r1] and [r2], respectively. The probability that X takes some value i ∈ [r1],
while Y takes some value j ∈ [r2] at the same time is the joint probability

pij := P(X = i, Y = j).
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The collection of all joint probabilities for some general random variables X and Y can be
represented as the set of all r1×r2 real matrices (pij) whose entries are nonnegative and sum
to one. Equivalently, these can be identified with the probability simplex ∆r1r2−1. Note that
from the joint probabilities, we can always recover the probability of an individual random
variable taking a certain value. The probabilities

pi+ := P(X = i) =

r2∑
j=1

pij and p+j := P(Y = j) =

r1∑
i=1

pij

are known as the marginal probabilities. Two variables X and Y are said to be independent,
denoted by X ⊥⊥ Y , if the joint probabilities factor as products of marginal probabilities, i.e.
we have pij = pi+p+j for every (i, j) ∈ [r1]× [r2]. An independence model MX⊥⊥Y ⊆ ∆r1r2−1

is the set of all probability distributions that admit such a factorization. That is,MX⊥⊥Y is
parametrized as

φ : ∆r1−1 ×∆r2−1 → ∆r1r2−1 : ((s1, . . . , sr1), (t1, . . . , tr2)) 7→ (pij = sitj : (i, j) ∈ [r1]× [r2]).

Proposition 1.1.4. [47, Proposition 1.1.2.] The random variables X and Y are independent
if and only if the matrix of their joint probabilities p = (pij) has rank 1.

Proof. Suppose X and Y are independent, so every entry of p can be re-written as pij =
pi+p+j. This means that p = vwT is the outer product of two vectors v = (pi+) ∈ Rr1 and
w = (p+j) ∈ Rr2 . Therefore, it has rank 1. Conversely, if p has rank 1 and has nonnegative
entries, we may write p = vwT for some v ∈ Rr1

≥0 and w ∈ Rr2
≥0. Then pij = viwj, so we have

pi+ = viw+ and p+j = v+wj where v+ and w+ are sums of the entries in v and w, respectively.
Since (pij) is a probability distribution, all the entries in p sum to one. It follows that:

pij = viwj = vi(1)wj = vi(p++)wj = vi(v+w+)wj = (viw+)(v+wj) = pi+p+j,

as desired.

Hence, the implicit description of the model MX⊥⊥Y is given by the ideal whose generators
are the 2-minors of the matrix p. In Chapter 6, we revisit similar equations for conditionally
independent random variables in the context-specific case. When both X and Y are binary
random variables, we have X ⊥⊥ Y whenever the determinant p11p22−p12p21 vanishes. Hence,
MX⊥⊥Y is a surface in the tetrahedron ∆3, illustrated in Figure 1.2 on the right.

For models of three or more random variables, the independence relation similarly translates
to the algebraic condition that the tensor of joint probabilities has rank 1. We return to the
model of three independent random variables in Example 1.1.7.

Mixture models. Another important example of statistical models we will encounter in
this thesis are mixture models. Such models are a subclass of hidden variable models, which
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arise in the presence of data that we would like to measure but are not able to do so directly.
These hidden variables, however, may have an impact on the quantities we do observe and
how these quantities interact.

Formally, let M ⊂ ∆n−1 be a discrete statistical model. Let X be a random variable
modeled by M and let H be a hidden random variable with the state space [k]. Suppose
that P(H = i) = πi and P(X = j |H = i) = pij for some π = (π1, . . . , πk) ∈ ∆k−1 and some
pi = (pi1, . . . , p

i
n) ∈ M. Since H is a hidden variable we cannot measure, we are interested

in the distribution of X only. Note that

P(X = j) =
k∑

i=1

P(X = j and H = i) =
k∑

i=1

P(X = j |H = i)P(H = i) =
k∑

i=1

πip
i
j,

so X has a distribution given by the convex combination π1p1 + · · ·+ πkp
k of distributions

inM. This motivates the definition of the kth mixture model ofM⊂ ∆n−1 as

Mixtk(M) = {π1p1 + · · ·+ πkp
k : π ∈ ∆k−1,p

1, . . . ,pk ∈M}.

Algebraically, such models are related to secant varieties, upon taking Zariski closure. A kth
secant variety [114, Chapter 14] of some variety V , denoted by σk(V ) is the Zariski closure
of all points that lie on affine linear planes that are spanned by k points in V . Namely, it is

σk(V ) := {α1v1 + · · ·+ αkvk :
∑

αi = 1 and vi ∈ V for all i}.

One may also generalize the definition of a mixture model above by relaxing the requirement
that all the distributions p1, . . . ,pk belong to the same underlying modelM. Such mixture
models are algebraically related to more general join varieties.

Bob’s coin flips we will see in Example 2.3.3 give rise to a mixture model, since the outcome
of the first flip is not recorded, yet may impact the overall result of the experiment. Mix-
tures of products of continuous random variables are studied extensively in Chapter 7. The
next example illustrates the non-trivial geometric aspects that arise in the study of mixture
models, even when the underlying model is the independence model. A matrix is said to
be nonnegative if all of its entries are nonnegative. The nonnegative rank of a nonnegative
matrix M is the minimal number r of nonnegative rank one matrices that sum to M .

Example 1.1.5 (Mixtures of independence models). Consider the third mixture of the
independence model of two variables Mixt3(MX⊥⊥Y ) where X and Y take values in [r1]
and [r2], respectively. In Example 1.1.3, we saw that the ideal of the independence model
MX⊥⊥Y consists of probability matrices p ∈ ∆r1r2−1 that have rank 1. The set of all convex
combinations of three rank one r1 × r2 probability matrices is precisely the set of r1 × r2
probability matrices of nonnegative rank at most 3. This set is our model Mixt3(MX⊥⊥Y )
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by definition. The third secant variety of the Zariski closure of our model, denoted by
σ3(MX⊥⊥Y ), consists of all r1 × r2 matrices whose rank is at most 3. However, the matrix

1

8


1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1


has rank 3 and nonnegative rank 4, see [117]. Hence Mixt3(MX⊥⊥Y ) ̸= σ3(MX⊥⊥Y )∩∆r1r2−1.
But since the rank of a matrix is always bounded above by its nonnegative rank, we have
the “⊆” containment. In particular, this means that the mixture model Mixt3(MX⊥⊥Y ) has
a nontrivial boundary [114, Example 14.1.6].

Maximum likelihood estimation

Example 1.1.6 (Finite model). You and your friends are at an algebraic statistics conference
in Hawai’i. Close to the venue, there are five stands that sell ice cream cones of n = 3
flavors: chocolate, strawberry, and vanilla. Each of the stands has some distribution of
flavors (p1, p2, p3) ∈ ∆2. Hence, our statistical model consists of five such points in the
simplex ∆2, perhaps

M = {(0.5, 0.25, 0.25), (0.7, 0.1, 0.2), (0.15, 0.35, 0.6), (0.3, 0.4, 0.3), (0.1, 0.1, 0.9)}.

A friend approaches you with N = 10 cones that she claims to have picked randomly at one
of the stands. You both look at the cones and observe the following data:

Counting the number of cones of each flavor, one may choose to represent the data above
mathematically as the vector u = (2, 5, 3) ∈ N3. As statisticians, one question we may ask
is which one of the five stands did the ten cones most likely come from? To answer this, we
would need to maximize the likelihood function

Lu(p) =
10!

2! 5! 3!
p21 p

5
2 p

3
3

over the five distributions in our model. Comparing the values of Lu(p) at the five points in
M, we find that our 10 cones most likely came from the third stand, with the distribution
of flavors (0.15, 0.35, 0.6).

Moving beyond the triangle of ice cream flavors, let us fix a discrete statistical model M ∈
∆n−1. Suppose that we observe some data vector u ∈ Nn of sample size N = u1 + · · · + un
and we wish to find out which point q best explains this particular data under the assumed
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statistical model M. Note first that, dividing by the total number of observations N , we
may assume that u is a distribution in ∆n−1. Then, our task is to maximize the likelihood
function Lu(p) =

∏n
i=1 p

ui
i over all points p ∈M. Note that we may ignore the multinomial

coefficient we saw in the previous example, since it does not impact which distribution
maximizes the function. For the same reason, it is convenient to take the logarithm of the
objective function. This leads us to introduce the log-likelihood function given by u as

ℓu(p) = u1 log p1 + u2 log p2 + · · ·+ un log pn.

The maximum likelihood estimation problem is the following optimization problem:

Maximize ℓu(p) subject to p ∈M.

Any global maximizer of ℓu(p) overM is called a maximum likelihood estimate (MLE) of u.

Maximum likelihood estimation is a powerful statistical method of estimating parameters,
given some observed data. It is widely used for statistical inference in data analysis.

Likelihood equations. For parametric statistical models, finding MLE can be done by
solving a simultaneous system of algebraic equations, known as likelihood equations. LetM
be a d-dimensional statistical model with a parametrization

φ : Θ→ ∆n−1 : θ = (θ1, θ2, . . . , θd) 7→ (g1(θ), g2(θ), . . . , gn(θ)), (1.1)

where each gi is a rational function in θ. We may express the likelihood function as a function
of θ, namely ℓu(θ) =

∑n
i=1 ui log gi(θ). In order to find all critical points of the function, we

set all partial derivatives to zero. This way, we obtain a system of d equations of the form
n∑

i=1

ui
gi(θ)

· ∂gi(θ)
∂θj

= 0 for j = 1, . . . , d. (1.2)

called the likelihood equations ofM.

Example 1.1.7. Consider the independence modelMX⊥⊥Y⊥⊥Z of three binary random vari-
ables X, Y , and Z. This is a parametric model given by the map

φ : ∆1 ×∆1 ×∆1 → ∆7 : (α, β, γ) 7→
(
gijk(α, β, γ) = αiβjγk : i, j, k = 1, 2

)
.

Suppose we collected data, which we summarized in a tensor of counts u ∈ N2×2×2. The
log-likelihood function in this case becomes

ℓu(α, β, γ) =
∑

i,j,k=1,2

uijk log(αiβjγk)

=
∑

i,j,k=1,2

uijk logαi +
∑

i,j,k=1,2

uijk log βj +
∑

i,j,k=1,2

uijk log γk

=
∑
i=1,2

ui++ logαi +
∑
j=1,2

u+j+ log βj +
∑
k=1,2

u++k log γk.
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where ui++ =
∑

j,k=1,2 uijk is the marginal probability with respect to X, and the other
marginal probabilities are defined similarly. Since α2 = 1−α1, β2 = 1−β1, and γ2 = 1− γ1,
the likelihood equations are

u1++

α1

− u2++

1− α1

= 0,
u+1+

β1
− u+2+

1− β1
= 0,

u++1

γ1
− u++2

1− γ1
= 0.

Clearing the denominators, we find the following unique solution,

α̂1 =
u1++

u+++

, β̂1 =
u+1+

u+++

, γ̂1 =
u++1

u+++

.

Plugging these parameters in φ, we obtain the MLE of u.

Note that in the above example, we were able to write the MLE of a general data u as a
rational function in the coordinates of u. This is not a coincidence, and can be explained
by the fact that independence models have maximum likelihood degree one. The formal
definition is as follows.

Definition 1.1.8. The maximum likelihood degree (ML degree) of an algebraic statistical
model M is the number of complex critical points of ℓu on the Zariski closure of M for
generic data u ∈ ∆n−1.

For a parametric statistical model, the ML degree is the number of complex solutions to the
likelihood equations for generic data. It was proven in [48, 66] that a statistical model has
ML degree one if and only if it has a rational maximum likelihood estimator. Generalizing
Example 1.1.7, we may conclude that independence models have ML degree one. In fact,
independence models are a subfamily of decomposable hierarchical log-linear models that
are known to have ML degree one [114, Chapter 2]. We study these models (as well as more
general reducible models) in Section 4.3.

Example 1.1.9. Consider the curve in ∆3 parametrized as

φ : t 7→ s(1, t, t2, t3),

where s = 1
1+t+t2+t3

. This curve is also sometimes referred to as the twisted cubic curve.
Note that the coefficients in this parametrization are different from our twisted cubic in
Example 1.1.2, which affects the ML degree. Indeed, given u ∈ ∆3, the log-likelihood
function becomes:

ℓu(t) = u1 log(s) + u2 log(st) + u3 log(st
2) + u4 log(st

3)

= (u1 + u2 + u3 + u4) log s+ (u2 + 2u3 + 3u4) log t.
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Hence, the likelihood equation is

∂ℓu
∂t

=
u2 + 2u3 + 3u4

t
− 1 + 2t+ 3t2

1 + t+ t2 + t3
= 0.

Clearing denominators, we obtain the polynomial

3(1− u4)t3 + 2(1− u3)t2 + (1− u2)t− (u2 + 2u3 + 3u4) = 0

of degree 3 in t. Hence the ML degree of this model is 3.

The ML degree measures the algebraic complexity of maximum likelihood estimation for a
given model. For some real-world data, it means choosing the best estimators from poten-
tially many critical points. For statistical models with complicated geometry, it can be a
challenging task. In particular, while clearing denominators was easy in Examples 1.1.7 and
1.1.9 due to the rational functions gi being special, in general it can be very complicated. If
the polynomials gi in the parametrization (1.1) are generic, then after clearing denominators
in the likelihood equations (1.2), we get the system

n∑
i=1

uig1 . . . gi−1gi+1 . . . gn
∂gi
∂θj

= 0 for j = 1, . . . , d.

If θ is a parameter such that gi(θ) = gk(θ) for some k ∈ [n], then θ is a solution to the above
system, but not a solution to the system of original likelihood equations. Such extraneous
solutions arise, for example, in random censoring; see [47, Example 2.1.3].

Implicit models. Whenever we only have the implicit equations of the model, the likeli-
hood equations are no longer defined. However, we may still perform maximum likelihood
estimation by constructing the likelihood ideal, which we discuss next [26, Chapter 11],
[114, Chapter 7]. For this, we will be working with a model defined by a projective va-
riety V ⊆ Pn−1. Suppose that the defining ideal IV = ⟨f1, . . . , fk⟩ of our model M is
generated by k homogeneous polynomials and also consider the inhomogeneous polynomial
f0 = p1+ · · ·+pn−1 defining the simplex. Let c = codim(V ) as a projective variety in Pn−1.

Maximum likelihood estimation is an optimization problem, so we may use the method of
Lagrange multipliers to solve it. Let J = (∂fi/∂pj) denote the (k+1)× n Jacobian matrix.
Fixing data u ∈ ∆n−1, construct the augmented Jacobian from J by prepending the row
∇ℓu = (u1/p1, . . . , un/pn). Next, clear denominators in this new matrix, which amounts to
multiplying the ith column by pi, and denote the resulting matrix by AJ . If the gradient of
the objective function were to lie in the normal space of the model, the matrix AJ would
have rank at most c+ 1. This leads us to define the ideal

JV = ⟨(c+ 2)× (c+ 2) minors of AJ ⟩+ IV + ⟨f0⟩.
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However, we must remove the extraneous solutions coming from the singular locus of V and
from the points in the hyperplane arrangement H = {p ∈ Pn−1 : p1 · · · pn(p1+ · · ·+pn) = 0},
where the log-likelihood function is undefined. Let

Q = ⟨(c+ 1)× (c+ 1) minors of J ⟩ · p1 · · · pn(p1 + · · ·+ pn).

The likelihood ideal L is obtained by saturating JV by Q, i.e.

L = JV : Q∞.

The degree of the likelihood ideal for a generic u is the ML degree of the model. The solutions
of L are the complex critical points of the maximum likelihood estimation.

Example 1.1.10. Let’s pretend that the parametrization of the curve in Example 1.1.9 is
not known, but instead we know the defining equations of this model, which are

IV = ⟨p23 − p2p4, p2p3 − p1p4, p22 − p1p3⟩.

Upon clearing the denominators, the augmented Jacobian takes the form

AJ =


u1 u2 u3 u4
p1 p2 p3 p4
0 −p2p4 2p23 −p2p4

−p1p4 p2p3 p2p3 −p1p4
−p1p3 2p22 −p1p3 0

 .

Let u = (13/57, 4/11, 3/13, 1447/8151). We may compute the likelihood ideal in Macaulay2
with respect to u using the following code.

needsPackage "EigenSolver";
R=QQ[p1,p2,p3,p4];
u1=13/57; u2=4/11; u3=3/13; u4=1-u1-u2-u3;
I=ideal(p3^2-p2*p4,p2*p3-p1*p4,p2^2-p1*p3);
M=matrix {{u1, u2, u3, u4}, {p1, p2, p3, p4}, {0, -p2*p4, 2*p3^2, -p2*p4},

{-p1*p4, p2*p3, p2*p3, -p1*p4}, {-p1*p3, 2*p2^2, -p1*p3, 0}};
N=submatrix(M,{1,2,3,4},{0,1,2,3});
Q=minors(3,N)*(p1*p2*p3*p4)*(p1+p2+p3+p4);
J=minors(4,M)+I+ideal(p1+p2+p3+p4-1);
L=saturate(J,Q);

degree L
zeroDimSolve L
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We find that L is a zero-dimensional ideal of degree 3 (the ML degree of the model). It has
only one solution in the simplex (.131028, .190386, .276633, .401953), which is the MLE of u.
The other two solutions are complex.

The fact that the example above had a unique critical point on the model is not a surprise.
This is a property of toric models in general. For such models, it is much more efficient
to use Birch’s theorem to find the maximum likelihood estimate, which takes advantage of
the convexity of the log-likelihood function. We state and use this important theorem in
Chapters 2 and 4, where toric models are discussed in detail.

Kullback-Leibler divergence. So far, we have been maximizing the log-likelihood function
to determine a point on the model that best explains our data. However, we could be
minimizing the Kullback-Leibler divergence instead. For any two distributions u and w in
∆n−1, the Kullback-Leibler (KL) divergence, also known as information divergence, from u
to w is defined as D(u||w) =

∑n
i=1 ui log(ui/wi). We use the convention that 0 log 0 =

0 log(0/0) = 0 and D(p ∥ q) = +∞ if supp(p) ̸⊆ supp(q). This function is non-negative
and is zero if and only if u = w [26, Chapter 11]. The maximum likelihood estimation may
be equivalently phrased in terms of information divergence, as opposed to the log-likelihood
function.

Proposition 1.1.11. The maximum likelihood estimation with respect to fixed data u over
a modelM is equivalent to

Minimize D(u||p) subject to p ∈M.

Proof. Re-write the KL divergence as

D(u||p) =
n∑

i=1

ui log ui −
n∑

i=1

ui log pi =
n∑

i=1

ui log ui − ℓu(p).

For fixed data u, the term
∑n

i=1 ui log ui is constant, hence minimizing KL divergence is
equivalent to minimizing −ℓu(p), which is equivalent to maximizing ℓu(p).

We call the minimizer of the KL divergence, DM(u) := minp∈M D(u ∥ p), the information
divergence (or just divergence) from u to M. In Section 3.3 and Chapter 4, we study
D(M) = maxp∈∆n−1 DM(p) and the points which achieve D(M) when M is a linear or a
discrete exponential (toric) model. In other words, we consider the problem of maximizing
KL divergence from a point u to its MLE over a linear or a toric modelM. This problem is
of interest to information geometers and finds applications in bio-neural networks.

In what follows, it is also useful to define the relation known as the likelihood correspondence
[67, Definition 1.5]. Namely, forM⊂ ∆n−1, we define the relation Φ ⊂ ∆n−1 ×M by

(u, p) ∈ Φ ⇐⇒ p ∈ argmaxq∈M {ℓu(q) : q ∈M} .
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If (u, p) ∈ Φ, then we write Φ(u) = p. We write ∆M
n−1 for the set of u ∈ ∆n−1 such that Φ(u)

exists. Describing the set ∆M
n−1 and how it extends to the boundary of ∆n−1 is an active

area of research, especially with respect to zeros in the data [52, 61]. MLE existence is also
connected to polystable and stable orbits in invariant theory [11]. For the important family
of log-linear (toric) models, studied in Chapters 2 and 4 of the current thesis, [51] shows
that positive data u ∈ ∆n−1 guarantees existence, and in general the MLE exists exactly
when the observed margins belong to the relative interior of a certain polytope. See also
[114, Theorem 8.2.1].

Finally, we note that for models with more complicated geometry, Φ(u) cannot always be
computed by finding critical points of ℓu restricted to manifold points of M. Chapter 2 of
this dissertation provides the first step of computing logarithmic Voronoi cells for models
where critical points of ℓu succeed in finding the MLE, as well as some interesting finite
models. More complicated examples include models of nonnegative rank r matrices [77].

What is a logarithmic Voronoi cell?

For any subset X ⊂ Rn, the Voronoi cell of a point p ∈ X consists of all points of Rn which
are closer to p than to any other point of X in the Euclidean metric. Voronoi cells find use in
many fields of science where analyzing spatially distributed data is of interest. In the first part
of this thesis, we discuss the analogous logarithmic Voronoi cells which find applications in
statistics. Informally, logarithmic Voronoi cells are used to divide experimental data based
on which point in the statistical model each sample most likely came from. Information
geometry [17] considers maximum likelihood estimation in the context of the Kullback-Leibler
divergence of probability distributions, sending data to the nearest point with respect to a
Riemannian metric on ∆n−1. Algebraic statistics [47] considers the case where M can be
described as either the image or kernel of algebraic maps. Recent work in metric algebraic
geometry [26, 39, 45, 62] concerns the properties of real algebraic varieties that depend on a
distance metric. Logarithmic Voronoi cells are natural objects of interest in all three subjects.

Let us informally showcase the mathematical objects defined later in this section for the
twisted cubic curve, first introduced in Section 1.1.

Example 1.1.12. Consider flipping a biased coin three times. There are four possible
outcomes, 3 heads (hhh), 2 heads (hht,hth,thh), 1 head (htt,tht,tth), and 0 heads (ttt). This
is the twisted cubic we encountered in Example 1.1.2, which has the parametrization

t 7→ p(t) =
(
t3, 3t2(1− t), 3t(1− t)2, (1− t)3

)
∈M.

For this model’s many lives, see [79]. We compute and plot logarithmic Voronoi cells
logVorM(p(t)) for sampled parameter values

t ∈
{

1

25
,
2

25
, . . . ,

24

25

}
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which live inside the simplex ∆3 ⊂ R4, and whose orthogonal projections into 3-space are
shown in Figure 1.3. In this case, the logarithmic Voronoi cells are polytopes, and we get both
triangles and quadrilaterals, depending on the point p(t) ∈M. The fact that these polytopes
are equal to the logarithmic Voronoi cells will follow from Theorem 2.1.10 in Section 2.1.
The △/□/△ combinatorial type change is explained by the chamber complex of the model,
discussed in detail in Section 4.2. Chapters 2 and 4 will describe how to compute these
polytopes for any parameter value t.

Figure 1.3: Logarithmic Voronoi cells of the twisted cubic.

In general, let M ⊂ ∆n−1 be a discrete statistical model, as in Section 1.1 and let p ∈ M
be a distribution in the model. The logarithmic Voronoi cell at p is

logVorM(p) := {u ∈ ∆n−1 : Φ(u) = p} .

Whenever p ∈ M ⊂ Rn admits a tangent space at the point p, we denote by NpM its
orthogonal complement with respect to the Euclidean inner product on Rn. Similarly, we
are also interested in the log-normal space at the point p ∈M, defined by

logNpM := {u ∈ Rn : ∇ℓu(p) ∈ NpM} .

Here, ∇ℓu(p) is the vector whose entries are given by the partial derivatives of ℓu with respect
to each of the variables p1, . . . , pn. We are interested in the log-normal space since, in many
cases, it will contain the logarithmic Voronoi cell. In Section 2.1 we will see several different
situations where the logarithmic Voronoi cell is equal to the intersection of the log-normal
space with the probability simplex.

Lemma 1.1.13. The log-normal space logNpM is a linear subspace of Rn.

Proof. The normal space NpM is a linear subspace. Arrange a basis of the normal space as
the rows of a matrix. Adjoin another row with entries ui/pi, the partial derivatives of ℓu(p)
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with respect to each pi. The maximal minors of the resulting matrix are linear equations
in the variables ui and therefore cut out a linear space of such u ∈ Rn. This space is the
log-normal space at p.

By Lemma 1.1.13, the intersection of the log-normal space at a point p ∈ M with the
probability simplex ∆n−1 is a polytope logPoly(p), which we call its log-normal polytope.
In Section 2.1, we will investigate when a logarithmic Voronoi cell equals its log-normal
polytope. The former is always contained in the latter.

Conditional independence

In this section, we introduce conditional independence for discrete random variables and
describe the algebraic conditions that arise in this case. We define conditional independence
ideals and briefly discuss their algebraic properties. We then focus on graphical models by
introducing Markov properties for directed acyclic graphs and explaining how they relate to
distributions in the corresponding model. We also explain how directed graphical models are
parametrized via the recursive factorization property and what is known about their ideals,
thus motivating the technical algebraic discussion in Section 6.4.

The independence assumption is often too strong in practice. Sometimes random variables
are not entirely independent, like in Example 1.1.3, but are unrelated given the knowledge
of the values of some other random variables.

Example 1.1.14. One amusing classical example from [89] inquires whether watching soccer
causes hair loss. Consider the random variableX1 that measures the length of a person’s hair.
We assume X1 is discrete and has four states: bald, short, medium, and long. Also consider
the ternary random variable X2, which measures how often a person watches soccer. The
three states of X2 are: never, sometimes, and often. While hair length and soccer watching
habits seem unrelated, they are not independent! If we were to sample 300 people, then
record their hair length and how often they watch soccer, we would find that people with
shorter hair tend to watch soccer more often. Indeed, there is a third random variable G
involved, namely gender. If we were to restrict our survey to only individuals of a particular
gender, we would see that it is reasonable to assume the independence of X1 and X2. We
say that X1 and X2 are conditionally independent given G, denoted by X1 ⊥⊥ X2 |G. If the
random variable G is not observed (hidden), we obtain a mixture model from Section 1.1.

In general, we start with m discrete random variables X1, . . . , Xm. We assume for all i ∈ [m],
the random variable Xi is di-ary, taking values in the set [di]. We then consider the random
vector X = (X1, . . . , Xm) with the state space R =

∏m
i=1[di]. For any subset A ⊂ [m], we

may define XA = (Xi : i ∈ A) and RA :=
∏

a∈A[da]. As before, for any i ∈ R, we let
pi = P(X = i). Moreover, similarly to Example 1.1.3, we let piA+ = P(XA = iA). For any
pairwise disjoint subsets A,B,C ⊂ [m], we will use the convention that the string of indices
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i ∈ R is grouped into the string (iA, iB, iC , j[m]\A∪B∪C). We say that the random vector XA

is conditionally independent of XB given XC whenever piAiBiC = piA+iC+p+iBiC+. We denote
it by XA ⊥⊥ XB |XC , and often abbreviate it as A ⊥⊥ B |C. Such relations between sets of
random variables are called conditional independence (CI) statements.

The following four important axioms follow from the definition of conditional independence
[114, Proposition 4.1.4]. They state that if A,B,C,D ⊂ [m] are pairwise disjoint then:

1. XA ⊥⊥ XB |XC =⇒ XB ⊥⊥ XA |XC (symmetry);

2. XA ⊥⊥ XB∪D |XC =⇒ XB ⊥⊥ XA |XC (decomposition);

3. XA ⊥⊥ XB∪D |XC =⇒ XA ⊥⊥ XB |XC∪D (weak union);

4. XA ⊥⊥ XB |XC∪D and XA ⊥⊥ XD |XC =⇒ XA ⊥⊥ XB∪D |XC (contraction).

For positive distributions only, an additional intersection axiom holds [114, Proposition 4.1.5]:

XA ⊥⊥ XB |XC∪D and XA ⊥⊥ XC |XB∪D =⇒ XA ⊥⊥ XB∪C |XD.

In Chapter 6, we will study even more refined independence relations, which depend on the
specific values of the random variables in the conditioning set. For those context-specific in-
dependence relations, two more axioms will be important: absorption and specialization [50].

Conditional independence relations, just like independence relations in Proposition 1.1.4,
can be described by algebraic equations.

Proposition 1.1.15. [114, Proposition 4.1.6] Let A,B,C ⊂ [m] be pairwise disjoint. Then
XA ⊥⊥ XB |XC if and only if

piAiBiC+ · pjAjBiC+ − piAjBiC+ · pjAiBiC+ = 0 (1.3)

for all iA, jA ∈ RA, iB, jB ∈ RB and iC ∈ RC .

Proof. Note that marginalization with respect to A∪B ∪C is present both in the definition
of conditional independence and in the binomials (1.3) so we may assume A ∪ B ∪ C =
[m]. Moreover, since the value iC of XC is fixed, we may also assume that C is empty.
Aggregating the states indexed by A and also the states indexed by B, we may further work
with the independence statement X1 ⊥⊥ X2. By Proposition 1.1.4, this statement holds if
and only if the matrix of joint probabilities of X1 and X2 has rank one. After accounting
for marginalization, conditioning, and state aggregation, the 2× 2 minors of this matrix are
precisely the equations in (1.3), and the claim follows.
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The conditional independence ideal IA⊥⊥B|C is the ideal generated by all quadrics in (1.3).
This is the ideal of all 2 × 2 minors of |RC | matrices of size |RA| × |RB|. This ideal is
always prime. A conditional independence model is a family of distributions that satisfy
a collection of CI statements C = {A1 ⊥⊥ B1|C1, A2 ⊥⊥ B2|C2, . . .}, where Ak, Bk, Ck are
pairwise disjoint for each k. The conditional independence ideal of the collection C is IC =
IA1⊥⊥B1|C1 + IA2⊥⊥B2|C2 + . . .. These ideals IC can be used to study implications between CI
statements in C, via primary decomposition [47, Chapter 3].

Example 1.1.16. Consider the model given by two CI relations between three random
variables

C = {X1 ⊥⊥ X3, X1 ⊥⊥ X3 |X2}.

These are the same CI statements that will define the Gaussian model in Example 1.2.8.
For now, however, we will assume that all three variables are binary taking values in {1, 2}.
Using Proposition 1.1.15, we get

IC = IX1⊥⊥X3 + IX1⊥⊥X3 |X2

= ⟨(p111 + p121)(p212 + p222)− (p112 + p122)(p211 + p221),

p111p212 − p112p211, p121p222 − p122p221⟩.

Computing the primary decomposition of IC, we find that it is given as an intersection of two
prime ideals. Upon further inspection, we recognize the two prime components as conditional
independence ideals I1⊥⊥{2,3} and I{1,2}⊥⊥3, i.e.

IC = I1⊥⊥{2,3} ∩ I{1,2}⊥⊥3.

This, in turn, implies V(IC) = V(I1⊥⊥{2,3}) ∪ V(I{1,2}⊥⊥3) on the level of varieties. Therefore,
we conclude that X1 ⊥⊥ X3 and X1 ⊥⊥ X3 |X2 together imply that either X1 ⊥⊥ X{2,3} or
X{1,2} ⊥⊥ X3.

In general, however, the primary decomposition of IC is not guaranteed to contain compo-
nents that are conditional independence ideals. Sometimes, these components will define
varieties on the boundary of the simplex. Moreover, the components in the decomposition
need not be prime ideals, only primary. This often makes it challenging to interpret and
extract information about CI statement implications. See [47, 114] for more examples.

Graphical models. Chapter 6 of this dissertation will be concerned with a special class
of conditional independence models, called graphical models. These models are defined
by conditional independence constraints according to the non-adjacencies of a graph G.
These constraints are known as Markov properties of G. One reason for studying graphical
representations is that the associated statistical models often have a natural parametrization,
induced by the combinatorial structure of the underlying graph. Moreover, since such models
are parametrized, the corresponding varieties are irreducible and their ideals are prime.
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Understanding how these prime ideals relate to the Markov properties of the graph helps us
characterize discrete graphical models both combinatorially and algebraically.

While undirected graphical models are an important subclass of hierarchical log-linear mod-
els, studied in Section 4.3, we will not explicitly focus on their ideals in this dissertation.
However, the combinatorics and algebra of graphical models corresponding to directed acyclic
graphs (DAGs) plays a big role in the analysis of decomposable context-specific models in
Section 6.1. Next, we introduce these models and state their main properties.

Let G = (V,E) be a directed graph with no directed cycles. Such a graph is called a directed
acyclic graph, abbreviated by DAG. Consider a random vector X = (Xv)v∈V that is indexed
by the nodes of the graph. For any vertex v ∈ V , let pa(v) denote the set of parents of v,
i.e. all the vertices w ∈ V such that (w, v) ∈ E. Let an(v) denote the ancestors of v, i.e. all
w ∈ v such that there is a directed path from w to v in E. Similarly, let de(v) denote the
descendants of v, i.e. all w ∈ V such that there is a directed path from v to w in E. Finally,
the non-descendants of v are nd(v) = V \ ({v} ∪ de(v)).

The local Markov property of G is the collection of CI statements

local(G) = {Xv ⊥⊥ Xnd(v) |Xpa(v) : v ∈ V }.

These statements reflect the expected independence structure if the edges of the DAG repre-
sent parent-child or cause-effect relationships. However, they may imply other CI statements.
Hence, to study more general implications of these local constraints, we must introduce the
global Markov property, defined via the technical notion of d-separation in a DAG.

Let π = (v0, . . . , vk) be an undirected path of edges in G. For some i ∈ [k − 1], we say vi is
a collider if the edges incident to it on the path π are of the form vi−1 → vi ← vi+1. The
induced directed subpath is called a v-structure. We say that two vertices v and w of a DAG
G are d-connected given C ⊂ V \ {v, w} if there is an undirected path π from v to w such
that the following two conditions are satisfied:

1. all colliders of π are in an(u) for some u ∈ C;

2. no non-collider on π is in C.

For pairwise disjoint A,B,C ⊂ V with A and B nonempty, we say that C d-separates A
and B if no pair of vertices a ∈ A and b ∈ B are d-connected given C. The global Markov
property of the DAG G is the collection

global(G) = {XA ⊥⊥ XB |XC : C d-separates A and B}.

For example, in the DAG X1 → X2 → X3, we see that X2 d-separates X1 and X3. On the
other hand, in the v-structure X1 → X2 ← X3, the empty set separates X1 and X3.
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The global Markov property of G often includes more statements than the local one. In
general, we have the relationship Ilocal(G) ⊆ Iglobal(G) for ideals and the reverse containment
for varieties. However, on the level of probability distributions, the two Markov properties
are equivalent.

We say that a joint distribution obeys a Markov property if it exhibits the conditional
independence statements in the list of the associated CI constraints.

Theorem 1.1.17. [114, Theorem 13.1.11] A joint distribution of the random vector X obeys
the directed local Markov property for the directed acyclic graph G if and only if it obeys
the directed global Markov property for G.

Therefore, one could define a statistical model associated to a DAG G to be the set of all
probability distributions that obey local(G) or global(G). However, we may parametrize the
model M(G) as follows. Let f ∈ ∆|R|−1 be a distribution, and let f(iA | iB) = P(XA =
iA |XB = iB) denote conditional probabilities. We say that f is Markov to G if it satisfies
the following recursive factorization property for all i ∈ R:

pi = f(i) =
∏
v∈V

f(iv|ipa(v)). (1.4)

The DAG model M(G) is the set of all the distributions in ∆◦
|R|−1 that factorize as the prod-

uct of conditionals in (1.4). Models associated to DAGs are also called Bayesian networks.
Such parametrized models are given by irreducible varieties and prime ideals. Finding gen-
erators of the defining prime ideal PG is the strongest possible characterization of a model.
The ideal PG can also be described as the kernel of a map φ that sends the coordinates pi in
the distribution f to their parametrization in (1.4). We discuss this map in detail for stage
tree models in Chapter 6.

Example 1.1.18. Consider the simple DAG G = X1 → X2 where both X1 and X2 are
binary random variables. The factorization property states that the distributions p =
(p11, p12, p21, p22) in this model satisfies pi1i2 = f(i1i2) = f(i1)f(i2|i1). Letting si = P(X1 = i)
and tjk = P(X2 = k |X1 = j), we see that M(G) is given as the image of the following ra-
tional map

∆1 ×∆1 ×∆1 → ∆3 : ((s1, s2), (t11, t12), (t21, t22)) 7→ (s1t11, s1t12, s2t21, s2t22).

It is easily checked that the map is surjective, so M(G) = ∆3. On the other hand, if we
take the graph H = X1 X2 with no edges, then the parametrization (1.4) shows that

pi1i2 = f(i1i2) = f(i1)f(i2) = pi1+p+i2 .

Hence,M(H) is the familiar independence model from Example 1.1.3.
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In this section we introduced three ideals: Ilocal(G), Iglobal(G), and PG, and it is natural to
inquire how they are related. In general, the prime ideal PG need not be equal to Ilocal(G)

or Iglobal(G). However, it always appears as a minimal prime in the primary decompositions
of both Ilocal(G) and Iglobal(G) [53, Theorem 8]. Section 6.4 dives deeper into the relation-
ship between these ideals for decomposable context-specific models. It also highlights the
importance of the ideal corresponding to all saturated conditional independence statements.

Example 1.1.19. [47, Example 3.3.11] Consider the DAG

G =

X1

X2 X3

X4

where all four variables are binary. The local Markov property of G consists of two CI
statements

local(G) = {X1 ⊥⊥ X4 |X{2,3}, X2 ⊥⊥ X3 |X1}.

In this case, the ideal Ilocal(G) is itself prime of dimension 9 and the variety V(Ilocal(G)) is
irreducible with no components on the boundary of the simplex. In this case, both ideals
are equal:

Ilocal(G) = Iglobal(G) = ⟨(p1111 + p1112)(p1221 + p1222)− (p1121 + p1122)(p1211 + p1212),

(p2111 + p2112)(p2221 + p2222)− (p2121 + p2122)(p2211 + p2212),

p1111p2112 − p1112p2111, p1121p2122 − p1122p2121,
p1211p2212 − p1212p2211, p1221p2222 − p1222p2221⟩.

The recursive parametrization property induces a map ψ that sends each coordinate pijkl to
its parametrization. For example, ψ(p1212) = a(1 − b1)c1(1 − d21) where a = P(X1 = 1),
b1 = P(X2 = 1 |X1 = 1), c1 = P(X3 = 1 |X1 = 1), and d21 = P(X3 = 1 |X2 = 2, X3 = 1),
and so on. Computing the kernel of ψ in R[pijkℓ : i, j, k, ℓ ∈ {1, 2}], we find that

PG = kerψ = Ilocal(G) + ⟨
∑
i,j,k,ℓ

pijkℓ − 1⟩

describes all algebraic relations among coordinates of the probability distributions inM(G).
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1.2 Continuous models
This section follows a similar structure as Section 1.1, except we focus on continuous distri-
butions. We define Gaussian models, both generally and inside the positive definite cone. We
then describe the maximum likelihood estimation problem for such models and define loga-
rithmic Voronoi cells. Finally, we focus on conditional independence and the corresponding
algebraic equations that arise in the continuous setting.

Whenever a random variable follows a distribution that has a density function, it is called
continuous. In Part III of this thesis, we will focus on general continuous random variable on
R, with no assumptions on the distribution. In this sense, our setup will be nonparametric,
and we will give all relevant definitions and motivations in Chapter 7. However, multivariate
normal (Gaussian) distributions are more well-studied in algebraic statistics. Hence, this
section will focus on the central concepts we will need to study logarithmic Voronoi cells for
Gaussian models in Chapter 5. Our exposition in this chapter follows [5, 47, 114].

Gaussian models

The motivation for studying Gaussian models comes from several fields of science. For ex-
ample, Gaussian mixture models find use in phylogenetics, while Gaussian graphical models
are used in computational biology and economics, where leveraging their geometric structure
aids parameter estimation. Furthermore, Gaussian distributions exhibit maximum entropy
among all real-valued distributions with a specified mean and covariance. Consequently, the
Gaussianity assumption places the fewest structural constraints beyond those given by the
first and second moments [119].

Let X = (X1, . . . , Xm) be an m-dimensional Gaussian random vector, which has the density
function

pµ,Σ(x) =
1

(2π)m/2(detΣ)1/2
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
, x ∈ Rm

with respect to two parameters: the mean vector µ ∈ Rm and the covariance matrix Σ ∈
PDm. Here, PDm is the cone of real symmetric positive definite m × m matrices. Here,
the mean vector µ determines the center of the distribution, while the covariance matrix
Σ determines the distribution’s spread. Such X is said to be distributed according to the
Gaussian distribution, denoted by N (µ,Σ). When m = 1, we recover the familiar normal
random variable, geometrically represented by the famous bell curve.

For Θ ⊆ Rm × PDm, the statistical model

PΘ = {N (µ,Σ) : θ = (µ,Σ) ∈ Θ}

is called a Gaussian model. Since the parameter space Θ completely determines the model,
we will use Θ and PΘ interchangeably. The special model that fills the whole ambient space
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is called the saturated Gaussian model Θ = Rm × PDm. General Gaussian models can
have a complicated geometry, and the maximum likelihood estimation for them (defined in
the next section) can be quite challenging. Moreover, note that every Gaussian model
Θ ⊆ Rm × PDm has two components: the Euclidean component contained in Rm and
the component contained in the positive definite cone PDm. Specializing to each of these
components, we will instead consider simpler Gaussian models of the forms Θ = Θ1 × {Im}
and Θ = Rm × Θ2, where Im denotes the m × m identity matrix. Chapter 5 is primarily
devoted to the Gaussian models of the second kind.

Example 1.2.1 (Nodal cubic). Consider the Gaussian model Θ = Θ1 × {I2}, where Θ1 =
{(t2 − 1, t(t2 − 1)) ∈ R2 : t ∈ R}. Then Θ is the nodal cubic curve in R2, plotted on the left
in Figure 1.4. It has a singularity at t = ±1. We will see in the next section that maximum
likelihood estimation on such models is equivalent to solving a least-squares problem.

Example 1.2.2 (Bivariate correlation). Now consider a Gaussian model Θ = Rm×Θ2 where

Θ2 =

{
Σx :=

(
1 x
x 1

)
: x ∈ (−1, 1)

}
⊆ PD2 .

This model is the bivariate correlation model. It is a one-dimensional model inside the
three-dimensional positive definite cone

PD2 =

{(
y x
x z

)
∈ R2×2 : y > 0 and yz − x2 > 0

}
.

It is plotted on the right of Figure 1.4, using Mathematica [68]. Maximum likelihood es-
timation for Θ was studied in [12]. Despite the simplicity of the above description, it is a
nontrivial task. Section 5.3 of this thesis is devoted to completely characterizing logarithmic
Voronoi cells of the bivariate correlation model.

Maximum likelihood estimation

Let Θ ⊆ Rm × PDm be a Gaussian model. Suppose we sampled some data and recorded it
in n vectorsX(1), . . . , X(n) ∈ Rm. We then define the sample mean and the sample covariance
matrix as

X̄ =
1

n

n∑
i=1

X(i) and S =
1

n

n∑
i=1

(X(i) − X̄)(X(i) − X̄)T ,

respectively. We will identify each sample X(1), . . . , X(n) with the tuple (X̄, S) and con-
sider any two samples whose sample mean and sample covariance are equal to be the same.
Throughout this section, we fix a positive integer n, which denotes the sample size. Given our
n sampled data vectors, the log-likelihood function, up to an additive constant, is defined as

ℓn(µ,Σ) = −
n

2
log detΣ− n

2
tr
(
SΣ−1

)
− n

2
(X̄ − µ)TΣ−1(X̄ − µ). (1.5)
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Figure 1.4: Nodal cubic in R2 (left) and the bivariate correlation model in PD3 (right).

For a fixed model Θ, the sample mean X̄, and the sample covariance S, the maximum
likelihood estimation is defined similarly to the discrete case:

Maximize ℓn(µ,Σ) subject to (µ,Σ) ∈ Θ.

Any global maximizer θ̂ = (µ̂, Σ̂) of ℓn(µ,Σ) over Θ is a maximum likelihood estimate (MLE)
of (X̄, S). When Θ = Rm×PDm is a saturated model, every sample (X̄, S) lies on the model
and is its own MLE. For the models of the form Θ = Θ1×{Im} ⊆ Rm×PDm, the maximum
likelihood estimation turns into a least-squares problem.

Proposition 1.2.3. [47, Proposition 2.1.10] Let Θ = Θ1×{Im} be a Gaussian model. Then
the maximum likelihood estimate of the mean parameter X̄ ∈ Rm is the point µ̂ ∈ Θ1 that
is closest to a sample X̄ in the Euclidean metric.

Proof. When Σ = Im, the log-likelihood function becomes

ℓn(µ) = −
n

2
tr(S)− n

2
(X̄ − µ)T (X̄ − µ) = −n

2
tr(S)− ∥X̄ − µ∥2

where ∥.∥ denotes the L2-norm. Hence, maximizing ℓn(µ) over Θ is equivalent to minimizing
the Euclidean distance from X̄ to Θ1 in Rm.

Example 1.2.4 (Nodal cubic continued). Consider the nodal cubic from Example 1.2.1.
Let X̄ = (x1, x2) ∈ R2 be a general point. To compute the maximum likelihood estimate of
X̄, we maximize

ℓ(t) = ∥(x1, x2)− ((t2 − 1), t(t2 − 1))∥2 = (x2 − t3 + t)2 + (x1 − t2 + 1)2.
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over the model. Differentiating with respect to t and setting to 0, we get the irreducible
equation

3t5 − 2t3 − 3t2x2 − 2tx1 − t+ x2 = 0.

The solutions to this equations are the critical points of the maximum likelihood estimation
problem. Hence the maximum likelihood degree of this model is 5, and it is equal to the
Euclidean distance degree [45]. Evaluating ℓ(t) at all real solutions for a given X̄, we find
a parameter t̂ giving the maximum value. Then the point ((t̂2 − 1), t̂(t̂2 − 1)) ∈ Θ1 is the
MLE of X̄. Note that since the singularities of the curve at t = ±1 are not solutions to the
critical equation above for general data, the presence of singularities did not affect our ML
degree computations. However, the ML degree may drop for models with singularities of a
different nature. One such example is the cuspidal cubic; see [114, Example 7.1.7].

In practice, when we work with Gaussian models, we often set the mean to be either zero
or the sample mean. Hence, most of the Gaussian models in this thesis will have parameter
spaces of the form Θ = Rm × Θ2, where Θ2 ⊆ PDm. Hence, we may identify a Gaussian
model Θ with a subset of the positive definite cone PDm. Moreover, we will only work with
algebraic Gaussian models, i.e. those models that can be written as Θ = V ∩ PDm for some
variety V ⊆ C(

m+1
2 ) in the entries of Σ = (σij) ∈ PDm.

Given a sample covariance matrix S and setting µ = X̂, the log-likelihood function in (1.5)
simplifies to

ℓn(Σ, S) = −
n

2
log detΣ− n

2
tr(SΣ−1). (1.6)

The maximum likelihood degree of a Gaussian model Θ ⊆ PDm is the number of nonsingular
complex critical points of ℓn(Σ, S) for generic S on the Zariski closure of Θ in the space of
complex symmetric m×m matrices.

Example 1.2.5 (The samosa). Consider the Gaussian model

Θ =

Σ ∈ PD3 : Σ =

1 x z
x 1 y
z y 1

 ,

known as the unrestricted correlation model with m = 3, further discussed in Example 5.3.4.
It is often referred to as the elliptope or samosa, due to its geometric resemblance to the
Indian pastry; see Figure 1.5. Note that this Gaussian model is parametric, since every
matrix Σ ∈ Θ is defined by three parameters: x, y, and z. Given a generic sample covariance
matrix S, we may find its MLE Σ similarly to the discrete case, by constructing the likelihood
equations. With respect to the first parameter x, we get the first likelihood equation:

∂

∂x
(− log detΣ− tr(SΣ−1)) = −

∂
∂x

detΣ

detΣ
− ∂

∂x
tr(SΣ−1) = 0.
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Figure 1.5: The unrestricted correlation model for m = 3.

Clearing the denominators, the equation becomes ∂
∂x

detΣ+detΣ ∂
∂x

tr(SΣ−1) = 0. However,
we are not done clearing denominators. The inverse matrix Σ−1 contains rational entries.
Hence we re-write Σ−1 = 1

detΣ
M where

M =

 −y2 + 1 yz − x xy − z
yz − x −z2 + 1 xz − y
xy − z xz − y −x2 + 1


is the adjugate matrix. Then the likelihood equation becomes

∂

∂x
detΣ + detΣ

∂

∂x
tr

(
SM

detΣ

)
=

∂

∂x
detΣ +

∂

∂x
tr(SM)− tr(SM)

detΣ

∂

∂x
detΣ = 0.

Clearing the denominators again, we get the critical equation

∂

∂x
detΣ(detΣ− tr(SM)) + detΣ

∂

∂x
tr(SM) = 0. (1.7)

Repeating the above steps for y and z, we get two more critical equations of the form (1.7),
which we want to solve. Thus, we form the ideal I generated by these three equations.
However, since we multiplied by det(Σ) while clearing denominators, we must saturate I
by ⟨det(Σ)⟩ to remove extraneous solutions. The resulting ideal is the likelihood ideal with
respect to the covariance matrix S. We compute it using the following Macaulay2 code.

loadPackage "EigenSolver";
R = QQ[x,y,z];
Sigma = matrix{{1,x,z}, {x,1,y}, {z,y,1}};
detSigma = det(Sigma);
A = random(ZZ^3, ZZ^3);
S = A*transpose(A); --generates a random positive definite matrix
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M = matrix{{1-y^2, -(x-y*z), x*y-z},
{-(x-y*z), 1-z^2, -(y-x*z)},
{x*y-z, -(y-x*z), 1-x^2}};

trSM = trace(S*M);
I = ideal((detSigma-trSM)*diff(x,detSigma)+detSigma*diff(x,trSM),

(detSigma-trSM)*diff(y,detSigma)+detSigma*diff(y,trSM),
(detSigma-trSM)*diff(z,detSigma)+detSigma*diff(z,trSM));

L = saturate(I,detSigma);
degree L
zeroDimSolve L

For a random covariance matrix S, the likelihood ideal L is zero-dimensional of degree 15.
Therefore, the ML degree of the elliptope is 15. One of the positive definite solutions of L
that maximizes ℓn(S,Σ) will yield the MLE of S.

A general ML degree formula for unrestricted correlation models is not known. Furthermore,
ML degrees are not known for the unrestricted correlation models when m ≥ 7. The ML
degrees for m = 4, 5, 6 are 109, 1077, and 13695, respectively; these were computed in [12].

Logarithmic Voronoi cells

We now introduce logarithmic Voronoi cells for Gaussian models. We also prove several basic
facts about the logarithmic Voronoi cells for the saturated model and Gaussian models of
the form Θ = Θ1×{Im}. For the models of the type Θ = Rm×Θ2, we define the log-normal
spectrahedron and motivate the in-depth study of their logarithmic Voronoi cells in Chapter
5 with the analysis of a conditional independence model.

For a point θ = (µ,Σ) on a Gaussian model Θ ⊆ Rm × PDm, we define its logarithmic
Voronoi cell log VorΘ(µ,Σ) to be the set of all X(1), · · · , X(n) ∈ Rm with sample mean X̄
and sample covariance S such that the log-likelihood function ℓn with respect to this sample
is maximized at θ. In this thesis, we will study logarithmic Voronoi cells only at nonsingular
points of Gaussian models.

Proposition 1.2.6. [5] Let Θ = Rm×PDm be the saturated Gaussian model. For any point
in this model, its logarithmic Voronoi cell is the point itself.

Proof. For any given sample (X̄, S), its maximum likelihood estimate (µ̂, Σ̂) is the point
(X̄, S) itself [47, Section 2.1]. Therefore, for any given point (µ,Σ) ∈ Θ, its logarithmic
Voronoi cell is log VorΘ(µ,Σ) = {(µ,Σ)}, as desired.

Recall that for any U ⊆ Rm and p ∈ U , the Euclidean Voronoi cell at p is the set of all
points in Rm that are closer to p than any other point in U with respect to the Euclidean
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metric. Euclidean Voronoi cells of varieties were studied in [32] and are a topic in metric
algebraic geometry [26, 39, 45, 121]. In general, logarithmic Voronoi cells are not equal to
Euclidean Voronoi cells. However, it turns out they are the same for the next model.

Proposition 1.2.7. [5] Consider the Gaussian model with parameter space Θ = Θ1×{Idm}
for some Θ1 ⊆ Rm. For any point in this model, its logarithmic Voronoi cell is equal to its
Euclidean Voronoi cell.

Proof. We may identify the parameter space Θ with the subset of real vectors Θ1 ⊆ Rm.
For any sample X(1), · · · , X(n) with sample mean X̄, the maximum likelihood estimate is
the point in the model µ̂ ∈ Θ1 that is closest to X̄ in the Euclidean metric, by Proposition
1.2.3. So, for any point µ ∈ Θ1 in the model, the logarithmic Voronoi cell at µ is the set of
all sample means X̄ ∈ Rm that are closer to µ than any other point in Rm. This is precisely
the Euclidean Voronoi cell at µ.

Besides the above relatively simple cases, logarithmic Voronoi cells of Gaussian models are
fairly complex convex sets. In the rest of the thesis we will consider Gaussian models given
by parameter spaces of the form Θ = Rm × Θ2 where Θ2 ⊆ PDm, which can be identified
with subsets of PDm. Hence, for any point Σ ∈ Θ, its logarithmic Voronoi cell log VorΘ(Σ) is
the set of all matrices S ∈ PDm such that Σ is a maximizer of ℓn(Σ, S), viewed as a function
of Σ.

Before exploring logarithmic Voronoi cells for such models further, we demonstrate the main
themes in the following example.

Example 1.2.8 (Conditional independence model). Consider the model Θ that is given as
the intersection of the algebraic variety

{Σ = (σij) : σ13 = 0, σ12σ23 − σ22σ13 = 0} = {Σ = (σij) : σ13 = 0, σ12σ23 = 0}

with the cone PD3 of positive definite symmetric 3 × 3 matrices. This is the conditional
independence model given by X1 ⊥⊥ X3 and X1 ⊥⊥ X3 |X2, and it is the union of two linear
planes of dimension four. We may write

Θ =


t1 0 0

0 t2 t3
0 t3 t4

 ≻ 0 : ti ∈ R

 ∪

s1 s2 0
s2 s3 0
0 0 s4

 ≻ 0 : si ∈ R

 .

Let Θ1 and Θ2 denote the two components above, respectively. Given a matrix Σ ∈ Θ,
the set of sample covariance matrices S ∈ PD3 that have Σ as their maximum likelihood
estimate form the logarithmic Voronoi cell at Σ. The set of all matrices S ∈ PD3 that have
Σ as a critical point while optimizing the log-likelihood function with respect to S over Θ
is the log-normal spectrahedron at Σ. The log-normal spectrahedron at a general matrix
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Σ ∈ Θ1 \Θ2 is two-dimensional, parametrized as
t1 x1 x2
x1 t2 t3
x2 t3 t4

 ≻ 0 : x1, x2 ∈ R

 .

This spectrahedron is a semi-algebraic set, defined by the two inequalities

−x21 + t1t2 > 0 and − t2x22 + 2t3x1x2 − t4x21 − t1t23 + t1t2t4 > 0.

Since Σ is assumed to be positive definite, for any choice of ti, the log-normal spectrahedron
at Σ is an ellipse. By symmetry the same is true of any Σ ∈ Θ2 \ Θ1. For a point Σ =
diag(σ1, σ2, σ3) ∈ Θ1 ∩Θ2, the log-normal spectrahedron is three-dimensional, given as(x, y, z) ∈ R3 :

σ1 x y
x σ2 0
y 0 σ3

 ≻ 0 and

σ1 0 y
0 σ2 z
y z σ3

 ≻ 0

 .

The maximum likelihood degree of Θ is two with one critical point in each linear component.
Namely, for a general matrix S = (sij) ∈ PD3, the two critical points on the model are
Σ1 ∈ Θ1, given by t1 = s11, t2 = s22, t3 = s23, t4 = s33, and Σ2 ∈ Θ2, given by s1 = s11, s2 =
s12, s3 = s22, s4 = s33. Now consider a general matrix Σ ∈ Θ1 \Θ2. The logarithmic Voronoi
cell at Σ is a subset of its log-normal ellipse, and it can be written asS =

t1 x1 x2
x1 t2 t3
x2 t3 t4

 ≻ 0 : ℓn(Σ, S) ≥ ℓn(Σ
′, S)

 (1.8)

where ℓn is the log-likelihood function and Σ′ =

t1 x1 0
x1 t2 0
0 0 t4

. Writing out the inequality

in (1.8), we find that it is equivalent to

−t3
√
t1/t4 ≤ x1 ≤ t3

√
t1/t4. (1.9)

Thus, the logarithmic Voronoi cell at Σ ∈ Θ1 \Θ2 is the log-normal ellipse at Σ intersected
with the strip defined by (1.9). In particular, it is a semi-algebraic set. We plot the loga-
rithmic Voronoi cell for t1 = 1, t2 = 2, t3 = 1, t4 = 3 in Figure 1.6 (on the left). Similarly,
one checks that the logarithmic Voronoi cell at Σ ∈ Θ2 \Θ1 is the semi-algebraic setS =

s1 s2 y1
s2 s3 y2
y1 y2 s4

 ≻ 0 : −s2
√
s4/s1 < y2 < s2

√
s4/s1

 .

We plot the logarithmic Voronoi cell for s1 = 2, s2 = 1, s3 = 3, s4 = 4 in Figure 1.6 (on
the right). Thus, the logarithmic Voronoi cell at a general point of Θ is not equal to its
log-normal ellipse.
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Figure 1.6: Logarithmic Voronoi cells (in pink) of the model in Example 1.2.8 plotted on the
(x1, x2)-plane and (y1, y2)-plane, respectively.

Despite strict containment of the logarithmic Voronoi cells in log-normal spectrahedra, the
former is still a semi-algebraic set. This phenomenon is surprising, since the inequality
in (1.8) that defines the logarithmic Voronoi cell together with the positive definiteness
condition involves the log-likelihood function, which is not a polynomial function. Also note
that at the singular points Σ ∈ Θ1 ∩ Θ2 the logarithmic Voronoi cells equal the log-normal
spectrahedra which are three-dimensional.

We can now generalize the concepts introduced in the previous example. For a point Σ ∈ Θ,
we define the log-normal matrix space at Σ, denoted by NΣΘ, to be the set of all symmetric
m×mmatrices S such that Σ appears as a critical point when optimizing ℓn(Σ, S). This is the
set of all points such that the gradient ∇ℓn(Σ, S) with respect to Σ lies in the normal space
of the model Θ at Σ. This condition is linear in S, so the log-normal matrix space is an affine
linear space. Intersecting it with PDm, we obtain a spectrahedron KΘ(Σ) = PDm ∩ NΣΘ,
which we call the log-normal spectrahedron at Σ. We immediately obtain the following.

Proposition 1.2.9. Each logarithmic Voronoi cell log VorΘ(Σ) is contained in the log-normal
spectrahedron KΘ(Σ). In particular,

log VorΘΣ = {S ∈ KΘΣ : ℓn(Σ, S) ≥ ℓn(Σ
′, S) for all critical points Σ′}.

The reverse containment does not hold in general, as we have seen in Example 1.2.8. This
is typical, and we will see more instances of this phenomenon. Most of Chapter 5 is devoted
to comparing and contrasting log-normal spectrahedra and logarithmic Voronoi cells for
different Gaussian models.
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We end this section with the table, which juxtaposes the analogous concepts defined so far
in the discrete vs. Gaussian case.

discrete Gaussian
ambient space probability simplex ∆n−1 positive definite cone PDm

model M⊆ ∆n−1 Θ ⊆ PDm

log-likelihood function
∑n

i=1 ui log pi − log detΣ− tr(SΣ−1)
log-normal linear space space logNpM matrix space NΣΘ
log-normal convex set polytope logPoly(p) spectrahedron KΘ(Σ)

Conditional independence

In this section, we introduce conditional independence for Gaussian random variables and
describe the arising algebraic conditions on the entries of covariance matrices.

Conditional independence for Gaussian models is defined similarly to the discrete case. We
again start with a multivariate normal random vector X = (X1, X2, . . . , Xm) ∼ N (µ,Σ)
with the Gaussian density function f . As before, for any subset A ⊂ [m], we may define the
subvector XA = (Xa : a ∈ A) and the marginal density function fA(xA) with respect to A
by integrating f(x) over the coordinate subspace defined by [m]\A. The conditional density
fA|B(xA|xB) is defined as

fA|B(xA|xB) =
fA∪B(xA∪B)

fB(xB)
.

We say that XA is conditionally independent of XB given XC for pairwise disjoint A,B,C ⊂
[m] whenever

fA∪B|C(xA∪B|xC) = fA|C(xA|C)fB|C(xB|C)

for all xA, xB, and xC such that fC(xC) > 0. The following proposition translates the notion
of conditional independence into the language of algebra.

Proposition 1.2.10. [47, Proposition 3.1.13] The conditional independence statement
XA ⊥⊥ XB |XC holds for a multivariate normal random vector X ∼ N (µ,Σ) if and only if
the submatrix ΣA∪C,B∪C , induced by the rows indexed by A ∪ C and columns indexed by
B ∪ C, has rank |C|.

Example 1.2.11. In Example 1.2.8, the two CI statements X1 ⊥⊥ X3 and X1 ⊥⊥ X3 |X2

translate into the condition that two minors of the covariance matrix vanish:

Σ =

σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33

.
These are precisely the defining equations of the model: σ13 = 0 and σ12σ23 − σ12σ13 = 0.
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1.3 Statement of contributions
In Chapter 2: Discrete setting, we study logarithmic Voronoi cells for discrete statistical
models. In particular, we investigate sufficient criteria for models to have polytopes for loga-
rithmic Voronoi cells. We prove that finite models, linear models, toric models, and models of
ML degree one always satisfy this property. We completely characterize logarithmic Voronoi
polytopes for the finite model of all distributions of a fixed sample size combinatorially. For
the models whose logarithmic Voronoi cells are more complicated convex sets, we develop a
method to reliably compute them via the framework of numerical algebraic geometry. This
chapter is based on joint work with Alexander Heaton, published in Algebraic Statistics [3].
The code for this chapter is available at Mathrepo1, a repository of the Max Planck Institute
for Mathematics in the Sciences in Leipzig, dedicated to mathematical research data [34].

In Chapter 3: Linear models, we completely describe the combinatorics of logarithmic
Voronoi polytopes for linear models, both at the interior points and on the boundary of
the simplex. We then use logarithmic Voronoi cells to study the problem of maximizing
information divergence from linear models. Finally, we investigate the combinatorics of log-
arithmic Voronoi polytopes for partial linear models, where the points on the boundary of
the model are especially of interest. This chapter is largely based on a solo paper, to appear
in Algebraic Statistics [1].

In Chapter 4: Toric models, we study the question of maximizing divergence from toric
models from a new perspective using logarithmic Voronoi polytopes. We present an algorithm
that combines the combinatorics of the chamber complex with numerical algebraic geometry.
We pay special attention to reducible models and models of maximum likelihood degree one.
This chapter, as well as Section 3.3 in Chapter 3, are based on joint work with Serkan
Hoşten, submitted for publication and available as a preprint [6]. The code for this chapter
is available on Github2.

In Chapter 5: Gaussian setting, we extend the theory of logarithmic Voronoi cells from
Chapter 2 to Gaussian models. We show that logarithmic Voronoi cells are equal to log-
normal spectrahedra for models of ML degree one and linear concentration models. We
also study covariance models, for which logarithmic Voronoi cells are, in general, strictly
contained in log-normal spectrahedra. We give an explicit semi-algebraic description of
logarithmic Voronoi cells for the bivariate correlation model. Finally, we state a conjecture
that logarithmic Voronoi cells for unrestricted correlation models, such as the elliptope in
Example 1.2.5, are not semi-algebraic. This chapter is based on joint work with Serkan
Hoşten, published in Journal of Symbolic Computation [5]. The code is available on Github3.

1https://mathrepo.mis.mpg.de/logarithmicVoronoi
2https://github.com/yuliaalexandr/maximizing-divergence
3https://github.com/yuliaalexandr/gaussian-log-voronoi

https://mathrepo.mis.mpg.de/logarithmicVoronoi
https://github.com/yuliaalexandr/maximizing-divergence
https://github.com/yuliaalexandr/gaussian-log-voronoi
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In Chapter 6: Decomposable context-specific models, we study how algebra can be used to
model causality and capture finer forms of independence, such as context-specific indepen-
dence. We describe the construction of decomposable context-specific models from the sub-
class of staged tree models known as CStree models. We study algebraic and combinatorial
properties and characterizations of such models, including context-specific independence re-
lations, graphical representations, and their prime ideals. This chapter is based on joint work
with Eliana Duarte and Julian Vill, submitted for publication and available as a preprint [2].

In Chapter 7: Moment varieties for mixtures of products, we study moment varieties of
conditionally independent mixture distributions on Rn and their images under certain coor-
dinate projections. These are the secant varieties of toric varieties that express independence
in terms of univariate moments. We prove several results about dimensions, degrees, and
defining polynomials of these varieties. We also investigate finiteness properties of their
defining ideals. This work includes several computational results, featuring both symbolic
and numerical methods. This chapter is based on joint work with Joe Kileel and Bernd
Sturmfels, published in the proceedings of the ACM International Symposium on Symbolic
and Algebraic Computation [7]. The code is available on Mathrepo4.

4https://mathrepo.mis.mpg.de/MomentVarietiesForMixturesOfProducts

https://mathrepo.mis.mpg.de/MomentVarietiesForMixturesOfProducts
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Part I

Logarithmic Voronoi cells
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Chapter 2

Discrete setting

This chapter takes the first step of characterizing and computing logarithmic Voronoi cells,
defined in Section 1.1 in the discrete setting. First, we show that logarithmic Voronoi cells are
always convex sets. However, for certain families of models, such as finite, linear, toric, and
models of ML degree one, they are polytopes. We describe logarithmic Voronoi polytopes
for the finite model consisting of all empirical distributions of a fixed sample size. These
polytopes are dual to the logarithmic root polytopes of Lie type A, and we characterize
their faces. Finally, we present a computation of non-polytopal logarithmic Voronoi cells of
a mixture model using numerical algebraic geometry. This chapter is based on [3].

2.1 When are logarithmic Voronoi cells polytopes?
In this section we prove several basic results about logarithmic Voronoi cells. The main focus
is to explore criteria which ensure that the logarithmic Voronoi cells are polytopes, rather
than more general convex sets, as in Proposition 2.1.3 below.

Proposition 2.1.1. Let M be any finite statistical model. Then the logarithmic Voronoi
cells logVorM(p) are polytopes for each p ∈M.

Proof. Fix p ∈ M. The set of all points u ∈ ∆n−1 such that ℓu(p) ≥ ℓu(q) for all q ∈ M is
the logarithmic Voronoi cell at p. For any q ∈M, ℓu(p) ≥ ℓu(q) becomes the condition that

n∑
i=1

ui log

(
pi
qi

)
≥ 0.

But this is linear in u and so defines a closed halfspace. Since there are finitely many points
in M, we see that the logarithmic Voronoi cell is an intersection of finitely many closed
halfspaces (including those defining ∆n−1). Therefore it is a polytope.
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For infinite models, the logarithmic Voronoi cells are, in general, not polytopes. However, if
the model is smooth at p, the logarithmic Voronoi cell will be contained in the log-normal
polytope. Figure 2.1 shows a logarithmic Voronoi cell for p ∈ M ⊂ ∆5 ⊂ R6 which is not
a polytope, but is contained in a polytope. In this case, logPoly(p) = logNpM ∩ ∆5 is
a hexagon. Since the log-normal space is 2-dimensional, by choosing an orthonormal basis
agreeing with this subspace we can visualize the logarithmic Voronoi cell, despite it living
in R6. We discuss this example in detail in Section 2.3. For more on finite models, see
Section 2.2.

Figure 2.1: Logarithmic Voronoi cell (green) inside its log-normal polytope (pink) for a given
point (yellow) in the model from Example 2.3.3.

Lemma 2.1.2. Let Φ(u) = p for some p ∈ M ⊂ ∆n−1 such that U ∩M is a manifold for
some p-neighborhood U in Rn. Then u lies in the logarithmic normal space logNpM and

logVorM(p) ⊂ logPolyM(p).

Proof. Note that ℓu(x) =
∑
ui log(xi) is a smooth function on any neighborhood of p ∈ M

contained in ∆n−1. Consider the gradient ∇ℓu(p). Note that Rn = TpM⊕ NpM and if
∇ℓu(p) had any nonzero tangential component then there would exist some q ∈M such that
ℓu(q) > ℓu(p), contradicting the fact that Φ(u) = p.

Proposition 2.1.3. Logarithmic Voronoi cells are convex sets.
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Proof. As in the proof of Proposition 2.1.1, the logarithmic Voronoi cell at p is defined by the
inequalities

∑
i∈[n] ui log(pi/qi) ≥ 0 for every q ∈M, each linear in u. Hence, the logarithmic

Voronoi cell at p is an intersection of (possibly infinitely many) closed half-spaces, and the
result follows.

Recall from Section 1.1 that for an algebraic statistical model M, the ML degree is the
number of complex critical points of ℓu on the Zariski closure ofM for generic data u ∈ ∆n−1

[114, p. 140]. The following theorem concerns algebraic models with ML degree 1. These
were characterized in [66] and studied further in [48]. They include, for example, Bayesian
networks, decomposable graphical models studied in Chapter 4, and CStree models studied
in Chapter 6.

Recall that ∆M
n−1 denotes the set of u ∈ ∆n−1 such that Φ(u) exists.

Theorem 2.1.4. LetM be any algebraic model with ML degree 1 which is smooth on ∆n−1.
Then the logarithmic Voronoi cell at every p ∈M equals its log-normal polytope on ∆M

n−1.

Proof. We will show that logVorM(p) = logNpM∩∆M
n−1. Let u ∈ ∆n−1 be an element of

logVorM(p). Then Φ(u) = p and sinceM is smooth, u ∈ logNpM∩∆M
n−1 by Lemma 2.1.2.

For the reverse direction, let u ∈ logNpM∩∆M
n−1. Recall that Φ(u) is the argmax of ℓu(q)

over all points q ∈M. Since Φ(u) exists andM is smooth, this argmax must be among the
critical points of ℓu restricted to M, which include p. But since the ML degree is 1, there
is only one complex critical point, and hence Φ(u) = p. Therefore u is in the logarithmic
Voronoi cell at p, and the result follows.

Example 2.1.5. ConsiderM = V (f) for f : C4 → C2 given by the polynomial system

f(x) =

[
x1x4 − x2x3

x1 + x2 + x3 + x4 − 1

]
: C4 → C2

A parametrization of this model is given by

(t1, t2) 7→ (t1t2, t1(1− t2), (1− t1)t2, (1− t1)(1− t2)) .

This is the independence model from Example 1.1.3 on two binary random variables, and
also the Segre embedding of P1 × P1. The points of this 2-dimensional model live in the
3-dimensional hyperplane

∑
xi = 1 inside R4, so we can choose a basis agreeing with this

hyperplane to plot them.

For each x ∈ M, we construct an (m + 1) × n matrix A(x) by augmenting the row ∇ℓu to
the Jacobian matrix df :

A(x) =

 x4 −x3 −x2 x1
1 1 1 1

u1/x1 u2/x2 u3/x3 u4/x4

 .
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Since our model has codimension two, the 3-minors of A(x) give linear equations describing
the log-normal space.

u2 − u3 − u1x2

x1
+ u1x3

x1
+ u2x4

x2
− u3x4

x3
= 0

u1 − u4 − u2x1

x2
+ u1x3

x1
− u4x3

x4
+ u2x4

x2
= 0

u1 − u4 + u1x2

x1
− u3x1

x3
− u4x2

x4
+ u3x4

x3
= 0

u2 − u3 + u2x1

x2
− u3x1

x3
− u4x2

x4
+ u4x3

x4
= 0.

Restricting this space to its intersection with the simplex u1+u2+u3+u4−1 = 0 to compute
the log-normal polytope, we find that the polytopes are line segments. We plot them for
various points on the model in Figure 2.2. Since M has ML degree 1, Theorem 2.1.4 tells
us that log-Voronoi cells equal log-normal polytopes, so they are also line segments.

Figure 2.2: One-dimensional log-normal polytopes at various points

Example 2.1.6 below shows that the ML degree 1 condition in Theorem 2.1.4 is sufficient, but
not necessary, for the equality of logarithmic Voronoi cells with the interior of their log-normal
polytopes. Consider the independence model of two identically distributed binary random
variables. The natural parametrization in a statistical context leads to the Hardy-Weinberg
curve defined by x22 − 4x1x3, which has ML degree 1 [67]. A similar-looking model, which
has been called the cousin of the Hardy-Weinberg curve [63], is defined by the polynomial
f = x22 − x1x3. It turns out that the ML degree of this model is 2 [63, p. 394]. It was
demonstrated in [63] that ML degree is extremely sensitive to scaling of the coordinates, so
the difference between the ML degrees of the Hardy-Weinberg curve and its cousin is not
surprising. The effect of scaling on the ML degree of toric varieties has been studied in [8].

Example 2.1.6. The algebraic model defined by the polynomial f = x22 − x1x3 has ML
degree 2, yet the logarithmic Voronoi cells are equal to their log-normal polytopes.

Although this follows from the later Theorem 2.1.10, we will first prove it more explicitly.
Calculate the Jacobian matrix of Lemma 1.1.13 by taking the gradients of f = x22−x1x3 and
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g = x1 + x2 + x3 − 1, augmenting this matrix with an additional row of the ui/xi. Consider
the equation of the plane given by the determinant of this matrix. Note that M is a curve
in ∆2, so the log-normal space at each point is defined by the vanishing of the determinant
at that point. This plane has normal vector given by 2x1x

2
2 − x21x3 + x1x2x3 + x1x

2
3

−2x1x22 − 2x1x2x3 − 2x22x3
x21x3 + x1x2x3 + 2x22x3 − x1x23


where (x1, x2, x3) is any point in the common zero set of f and g. Consider the cross-product
of this vector with the all ones vector, which will give us the direction vector of the log-normal
polytope at (x1, x2, x3). Computing and simplifying each coordinate in the quotient ring

Q[x1, x2, x3] /⟨x1 + x2 + x3 − 1,−x22 + x1x3⟩,

we find that this cross product is given by −(x2 + x3 − 1)x3
2 (x2 + x3 − 1)x3
−(x2 + x3 − 1)x3

 = x1x3

 1
−2
1

 .

This means that regardless of the point on the curve, the log-normal polytopes will be line
segments whose direction vector is (−1, 2,−1). We claim that for any distinct p, q ∈M the
corresponding line segments are disjoint. Consider the tangent space at some point x in the
intersection of ∆2 and the common zero set of f and g. Applying Gaussian elimination to
the 2× 3 Jacobian matrix, it can be shown that if 2x2 + x3 ̸= 0 then all tangent vectors are
multiples of (

x3 − x1
2x2 + x3

− 1,
x1 − x3
2x2 + x3

, 1

)
, (2.1)

while if 2x2 + x3 = 0 then all tangent vectors are multiples of (−1, 1, 0). In neither case is
it possible that a tangent vector is parallel to (1,−2, 1). For (−1, 1, 0) this is obvious, but
for (2.1), a contradiction can be derived by showing that if the vector is parallel to (1,−2, 1)
the first and the last coordinates in (2.1) are equal, forcing x1 + 4x2 + x3 = 0. But on
∆2 all coordinates are positive. Thus no line parallel to (1,−2, 1) meets the model in two
distinct points. We conclude the log-normal polytopes are disjoint, and the result follows
from Lemma 2.1.7 below.

Lemma 2.1.7. Let M be any smooth model in ∆n−1. If all log-normal polytopes for
each point p ∈ M are disjoint, then the logarithmic Voronoi cells equal log-normal poly-
topes on ∆M

n−1.

Proof. We will show that logVorM(p) = logNpM ∩ ∆M
n−1. The ⊂ direction follows from

Lemma 2.1.2. For the reverse direction, let u ∈ logNpM∩ ∆M
n−1. Recall that Φ(u) is the
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argmax of ℓu(q) over all points q ∈ M. Since Φ(u) exists and M is smooth, this argmax
must be among the critical points of ℓu restricted to M, which include p. If Φ(u) were not
equal to p then u would be in the intersection of ∆n−1 with the log-normal space to the point
Φ(u) ∈ M. But the log-normal polytopes were assumed to be disjoint by the hypothesis.
Therefore Φ(u) = p, which means that u ∈ logVorM(p), and the result follows.

Let f1(θ), · · · , fr(θ) be nonzero linear polynomials in θ such that
∑r

i=1 fi(θ) = 1. Let Θ
be the set such that fi(θ) > 0 for all θ ∈ Θ and suppose that dimΘ = d. The model
M = f(Θ) ⊆ ∆r−1 is called a discrete linear model [114, p.152]. Linear models appear in
[94, Section 1.2]. An example is DiaNA’s model in Example 1.1 of [94].

Theorem 2.1.8. LetM be a linear model. Then the logarithmic Voronoi cells are equal to
their log-normal polytopes.

Proof. We will show that logVorM(p) = logNpM ∩ ∆n−1. The ⊂ direction follows from
Lemma 2.1.2 since an affine linear subspace intersected with ∆n−1 is smooth. For the reverse
direction, let u ∈ logNpM∩∆n−1. We must show Φ(u) = p. Since ℓu is strictly concave on
∆n−1, it is strictly concave when restricted to any convex subset, such as the affine-linear
subspace M. Therefore there is only one critical point. Since M is smooth, u must be in
the log-normal space of Φ(u), and so Φ(u) must be p.

Example 2.1.9. From the above results, one might hope that finite unions of linear models
would admit logarithmic Voronoi cells which are polytopes. However, this is not the case.
The log-normal spaces from two disjoint linear models can meet in such a way that the
boundary created on a logarithmic Voronoi cell is nonlinear. For an explicit example with
two linear models,M :=M1 ∪M2 ⊂ ∆3 ⊂ R4, see Figure 2.3. Here

M1 = {(1− s)p1 + sp2 : s ∈ [0, 1] ⊂ R} ,
M2 = {(1− t)q1 + tq2 : t ∈ [0, 1] ⊂ R} ,
p1 = (1/5, 1/5, 3/5, 0),

p2 = (1/7, 3/7, 0, 3/7),

q1 = (1/13, 9/13, 3/13, 0),

q2 = (4/13, 4/13, 0, 5/13).

We sampled 3000 points from the log-normal polytope at a given point

p = (19/105, 29/105, 2/5, 1/7) ∈M1

and colored them blue or red depending on if their MLE was p or if their MLE was located
onM2. Therefore, the blue convex set is the logarithmic Voronoi cell at p ∈M.1.

1Computations for this example can be found at https://mathrepo.mis.mpg.de/logarithmicVoronoi

https://mathrepo.mis.mpg.de/logarithmicVoronoi
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Figure 2.3: Nonlinear boundary arising from two disjoint linear models

Next we consider log-linear, or toric, models. These include many important families of
statistical models, such as undirected graphical models [55], independence models [114], and
others. For an m × n integer matrix A with 1 ∈ rowspan(A), the corresponding log-linear
model MA is defined to be the set of all points p ∈ ∆n−1 such that log(p) ∈ rowspan(A)
[114, p. 122].

Theorem 2.1.10. Let A ∈ Zm×n be an integer matrix such that 1 ∈ rowspan A. LetM be
the associated log-linear (toric) model. Then for any point p ∈M, the log-Voronoi cell at p
is equal to the log-normal polytope at p.

Proof. We will show that logVorM(p) = logNpM∩∆n−1. The forward direction follows from
Lemma 2.1.2, since these models are smooth off the coordinate hyperplanes (see [114, p.150]
and [8]). For the reverse direction, let u ∈ logNpM. Although the log-likelihood function
can have many complex critical points, it is strictly concave on log-linear models M for
positive u, in particular for u ∈ ∆n−1. This means that there is exactly one critical point in
the positive orthant, and it is the unique solution p ∈M to the linear system Ap = Au. [47,
Prop. 2.1.5]. This is known as Birch’s Theorem. It follows that Φ(u) = p, as desired.

As a corollary, the polytopes shown in Figure 1.3 and Figure 2.2 are logarithmic Voronoi cells.
Following [87], define the map sending a point in projective space to a convex combination
of the columns ai of A, so that the image is a polytope, namely

ϕA : Pn−1
C → Rm

z 7→ 1∑n
i=1 |zi|

n∑
i=1

|zi|ai.
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This restricts to what [87, p.120] calls the algebraic moment map ϕA|MA
= µA :MA → Rm,

whereMA is the projective toric variety associated to A. The maximum likelihood estimator,
then, is the map µ−1

A ◦ ϕA restricted to ∆n−1, identified as a subset of Pn−1
C by extending

scalars and using the quotient map defining projective space. The fact [87, Corollary 8.24]
that there is a unique preimage, allowing the definition of µ−1

A , played a crucial role in
Theorem 2.1.10. Thus we have the following

Corollary 2.1.11. For toric models, logarithmic Voronoi cells are the preimages ϕ−1
A (µA(p))

intersected with ∆n−1. Thus, ϕA|∆n−1 is a map whose image is a polytope and whose fibres
are also polytopes.

For the Segre embedding of Example 2.1.5, the image is a square and the fibres are line
segments, depicted in Figure 2.4, which adjoins our Figure 2.2 with [87, Figure 2, p.121].
For more on the algebraic moment map, see [107].

Figure 2.4: The fibres and image of the moment map for the Segre of Example 2.1.5

2.2 The chaotic universe model
Consider running experiments with sample size d and choosing the model defined by

M :=
Zn ∩ d ·∆n−1

d
.

Philosophically, M is the chaotic universe model. Adopting this model is to abandon the
idea that experiments tell us about some simpler underlying truth, since the experimental
data will always lie exactly on the model. In this section we investigate the Euclidean and
logarithmic Voronoi cells for p ∈Mn,d. Our motivation to study this model is historical, since
Georgy Voronoi was interested in lattices and the partitions of Euclidean space they induce
from the closest-point map. These became Voronoi cells. It led us to study the logarithmic
Voronoi cells coming from maximum likelihood estimation for a lattice intersected with the
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probability simplex. In doing so, we found interesting connections with root polytopes of
type A and were able to generalize [31, Theorem 1] to our context, finding a complete
combinatorial description of the face structure of the logarithmic Voronoi cells forMn,d. We
give more historical context in the end of the section.

For convenience we work with the scaled set d ·∆n−1 since all polytopes considered will be
combinatorially equivalent to those we could define in ∆n−1. Then we define Mn,d as the
N :=

(
n+d−1

d

)
nonnegative integer vectors summing to d. Thus (p1, p2, . . . , pn) = p ∈ Mn,d

has all coordinates pi ∈ N. These vectors can be used to create a projective toric variety, the
dth Veronese embedding of Pn−1 into PN−1 [87, Chapter 8], but instead we treat them as the
model itself. By Proposition 2.1.1, the logarithmic Voronoi cells for p ∈Mn,d are polytopes.
For any p ∈Mn,d such that all coordinates pi > 1, we will provide a full characterization of
the faces of the corresponding logarithmic root polytopes in Theorem 2.2.2. Theorem 2.2.4
shows that these logarithmic root polytopes are dual to the logarithmic Voronoi cells. These
are the main results of the section. Again using orthogonal projection from R4, Figure 2.5
shows all the logarithmic Voronoi cells for interior points ofM4,9 andM4,10.

Figure 2.5: Logarithmic Voronoi cells (rhombic dodecahedra) of interior points for n = 4,
d = 9 (on the left) and d = 10 (on the right).

The Euclidean Voronoi cells for p ∈ Mn,d are the duals of root polytopes of type An−1, i.e.
the facets are defined by inequalities whose normal vectors are {ei − ej : i ̸= j}. Root
polytope often refers to the convex hull of the origin and the positive roots {ei− ej : i < j}.
These were studied in [56] in terms of their relationship to certain hypergeometric functions.
However, we define root polytopes to be the convex hull of all roots, as studied in [31]. We
also note that these polytopes are Young orbit polytopes for the partition (n− 1, 1) and find
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application in combinatorial optimization [93].

Denote the (n − 1)-dimensional root polytope by Pn ⊂ Rn, so that the Euclidean Voronoi
cells of p ∈ Mn,d are the dual P ∗

n . The volume of Pn is equal to n
(n−1)!

Cn−1, where Cn−1 is
a Catalan number. Every nontrivial face of Pn is a Cartesian product of two simplices, and
corresponds to a pair of nonempty, disjoint subsets I, J ⊂ [n]. Every m-dimensional face
of Pn is the convex hull of the vectors {ei − ej : i ∈ I, j ∈ J} with |I| + |J | = m + 2, so
there is a bijection between nontrivial faces and the set of ordered partitions of subsets of [n]
with two blocks [31, Theorem 1]. This result is related to the face description of Πn−1, the
permutahedron, since Pn is a generalized permutahedron and can be obtained by collapsing
certain faces of Πn−1.

In the logarithmic setting, analogous polytopes logPn(p) exist, playing the same role as the
root polytopes in the Euclidean case. However, their details are more complicated. The
correct modifications motivate the following definition.

Definition 2.2.1. The logarithmic root polytope for p ∈ Mn,d is defined as the convex hull
of the 2

(
n
2

)
vertices vij for i ̸= j ∈ [n] given by the formulas

vij :=
1

bjpj − aipi

[
aiei − bjej −

(ai − bj)
n

1

]
where

ai := log(pi+1
pi

) bj := log(
pj

pj−1
)

and where 1 :=
∑

k∈[n] ek. Note that ai, bj > 0 are always positive real numbers and all
vectors vij are orthogonal to 1. We denote the polytope by logPn(p).

The statement and proof of the following Theorem 2.2.2 was inspired by and closely follows
[31, Theorem 1]. However, significant details needed to be modified. For example, the linear
functional

g = (1, 0,−1, 1,−1, 0,−1)

is replaced by
−a1a4b3b5p1 − a1a4b3b7p1 − a1a4b5b7p1 − a1b3b5b7p1 + a4b3b5b7p3 + a4b3b5b7p4 + a4b3b5b7p5 + a4b3b5b7p7

0
a1a4b5b7p1 − a1a4b3b5p3 − a1a4b3b7p3 − a1b3b5b7p3 − a4b3b5b7p3 + a1a4b5b7p4 + a1a4b5b7p5 + a1a4b5b7p7
a1b3b5b7p1 + a1b3b5b7p3 − a1a4b3b5p4 − a1a4b3b7p4 − a1a4b5b7p4 − a4b3b5b7p4 + a1b3b5b7p5 + a1b3b5b7p7
a1a4b3b7p1 + a1a4b3b7p3 + a1a4b3b7p4 − a1a4b3b5p5 − a1a4b5b7p5 − a1b3b5b7p5 − a4b3b5b7p5 + a1a4b3b7p7

0
a1a4b3b5p1 + a1a4b3b5p3 + a1a4b3b5p4 + a1a4b3b5p5 − a1a4b3b7p7 − a1a4b5b7p7 − a1b3b5b7p7 − a4b3b5b7p7

 .
This linear functional plays the same role for the logarithmic root polytope at (p1, . . . , p7) ∈
M7,d as g plays for the usual root polytope in the proof of [31, Theorem 1].
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Theorem 2.2.2. For m ∈ {0, 1, . . . , n − 2}, every m-dimensional face of the logarithmic
root polytope for p ∈ Mn,d is given by the convex hull of the vertices vij for i ∈ I, j ∈ J ,
where I, J are disjoint nonempty subsets of [n] such that |I| + |J | = m + 2. Thus there is
a bijection between nontrivial faces and the set of ordered partitions of subsets of [n] with
two blocks, where the dimension of the face corresponding to (I, J) is |I|+ |J | − 2.

Proof. Each face of a polytope can be described as the subset of the polytope maximizing a
linear functional. Recall that we have fixed some p ∈Mn,d with all pk > 1 and that

ai := log(pi+1
pi

) and bj := log(
pj

pj−1
).

In our formula (2.2) we use a shorthand for writing square-free monomials in the a1, a2, . . . , an
and the b1, b2, . . . , bn. For example if I = {1, 2, 4} then aI = a1a2a4, while if J = {3, 5} then
bJ = b3b5. For a pair of disjoint nonempty subsets I, J of [n] we define the linear functional
gIJ = (g1, g2, . . . , gn) ∈ (Rn)∗ by the formulas

If ℓ ∈ I, gℓ =
∑

i∈I\ℓ a
I\{ℓ,i}bJ(aipi − aℓpℓ) +

∑
j∈J a

I\ℓbJ\j(bjpj − aℓpℓ)
If ℓ ∈ J, gℓ =

∑
i∈I a

I\ibJ\ℓ(aipi − bℓpℓ) +
∑

j∈J\ℓ a
IbJ\{ℓ,j}(bjpj − bℓpℓ)

Else, gℓ = 0.

(2.2)

Then the convex hull of the vectors {vij : i ∈ I, j ∈ J} is the face maximizing gIJ . To see
this, first note that gIJ · 1 = 0. Because of this fact we can ignore the component of vij in
the 1 direction. Recall that

vij :=
1

bjpj − aipi

[
aiei − bjej −

(ai − bj)
n

1

]
,

so that to evaluate gIJ on vij it is enough to evaluate on

1

bjpj − aipi
[aiei − bjej] .

Recalling that the ai and bj are always positive and that the pk > 1, it can be seen that
gIJ takes equal value on every vertex vrs for r ∈ I, s ∈ J , and strictly less on every other
vertex. We omit the details of the admittedly lengthy calculation, but note that the common
maximum value attained on all vertices vrs for r ∈ I, s ∈ J , is equal to∑

i∈I

aI\ibJ +
∑
j∈J

aIbJ\j.

Conversely, given an arbitrary linear functional f = (f1, f2, . . . , fn) determining a nontrivial
face F , collect the indices where its components are nonnegative in a set I and the indices
where its components are negative in a set J . Then (I, J) is a partition of [n] and we refer
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to the same formulas (2.2) as above in order to define the sets (I ′, J ′) as follows. If I ̸= ∅
and J ̸= ∅ then let

I ′ := {i : fi/gi = max(fℓ/gℓ : ℓ ∈ I)}
J ′ := {j : fj/gj = max(fℓ/gℓ : ℓ ∈ J)}.

If I = ∅ then let

I ′ := {i : fi/gi = min(fℓ/gℓ : ℓ ∈ J)}
J ′ := {j : fj/gj = max(fℓ/gℓ : ℓ ∈ J)},

while if J = ∅ then let

I ′ := {i : fi/gi = max(fℓ/gℓ : ℓ ∈ I)}
J ′ := {j : fj/gj = min(fℓ/gℓ : ℓ ∈ I)}.

Note that the face F is the convex hull of the vectors {vij : i ∈ I ′, j ∈ J ′} and hence (I ′, J ′) are
determined independently of the choice of linear functional which maximizes the given face.

Now we show that the dimension of the face corresponding to disjoint nonempty sets I, J of
[n] is |I|+ |J | − 2. Let I = {i1, . . . , i|I|} and J = {j1, . . . , j|J |}. Then

X = {vi1,jℓ : ℓ = 1, . . . , |J |} ∪ {viℓ,j1 : ℓ = 2, . . . , |I|}

is a maximal linearly independent subset of |I| + |J | − 1 of the vectors vij, i ∈ I, j ∈ J . In
addition, for any i ∈ I, j ∈ J either vij ∈ X or we can write it as an affine combination
(coefficients sum to 1) of vectors in X, namely

vi,j =

(
bj1pj1 − aipi
bjpj − aipi

)
vi,j1 −

(
bj1pj1 − ai1pi1
bjpj − aipi

)
vi1,j1 +

(
bjpj − ai1pi1
bjpj − aipi

)
vi1,j.

Hence, X is an affine basis of the face corresponding to I, J , whose dimension is |X| − 1,
which is |I|+ |J | − 2 as desired. This completes the proof.

Example 2.2.3. Let n = 6, I = {1, 4}, J = {2, 3, 5} and p = (2, 15, 3, 5, 9, 6). We imple-
mented the formulas (2.2) in floating point arithmetic (due to the logarithms) and obtain
(shown to only three digits)

gIJ = (0.00415,−0.00200,−0.00398, 0.00474,−0.00291,−0.000).
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We can evaluate this linear functional on the vertices vij for i ̸= j where i, j ∈ [6] and obtain
the following values, which attain their maximum on v12, v13, v15, v42, v43, v45, as expected.

0.008135843945 v(1, 2) = (1.56,−0.559,−0.251,−0.251,−0.251,−0.251)
0.008135843948 v(1, 3) = (1.00, 0.000,−1.00, 0.000, 0.000, 0.000)
0.002052114856 v(1, 4) = (1.23,−0.0997,−0.0997,−0.832,−0.0997,−0.0997)
0.008135843948 v(1, 5) = (1.43,−0.192,−0.192,−0.192,−0.665,−0.192)
0.005950315119 v(1, 6) = (1.30,−0.132,−0.132,−0.132,−0.132,−0.776)

−0.007192386292 v(2, 1) = (−1.41, 0.405, 0.250, 0.250, 0.250, 0.250)
0.005982647332 v(2, 3) = (0.229, 0.488,−1.40, 0.229, 0.229, 0.229)

−0.008044880930 v(2, 4) = (0.179, 0.615, 0.179,−1.33, 0.179, 0.179)
0.002322216671 v(2, 5) = (0.0963, 0.796, 0.0963, 0.0963,−1.18, 0.0963)

−0.001027169161 v(2, 6) = (0.156, 0.669, 0.156, 0.156, 0.156,−1.29)
−0.007691322875 v(3, 1) = (−1.20, 0.129, 0.679, 0.129, 0.129, 0.129)
−0.005863205380 v(3, 2) = (−0.213,−0.615, 1.47,−0.213,−0.213,−0.213)
−0.008723741580 v(3, 4) = (−0.0426,−0.0426, 1.10,−0.926,−0.0426,−0.0426)
−0.004075725208 v(3, 5) = (−0.144,−0.144, 1.32,−0.144,−0.742,−0.144)
−0.004962538041 v(3, 6) = (−0.0762,−0.0762, 1.17,−0.0762,−0.0762,−0.867)
−0.004242519680 v(4, 1) = (−1.28, 0.179, 0.179, 0.563, 0.179, 0.179)
0.008135843941 v(4, 2) = (−0.153,−0.713,−0.153, 1.33,−0.153,−0.153)
0.008135843947 v(4, 3) = (0.122, 0.122,−1.21, 0.720, 0.122, 0.122)
0.008135843947 v(4, 5) = (−0.0723,−0.0723,−0.0723, 1.15,−0.865,−0.0723)
0.004743470845 v(4, 6) = (0.000, 0.000, 0.000, 1.00, 0.000,−1.00)

−0.007271750954 v(5, 1) = (−1.36, 0.224, 0.224, 0.224, 0.464, 0.224)
−0.001944541355 v(5, 2) = (−0.0700,−0.866,−0.0700,−0.0700, 1.15,−0.0700)
0.004878535171 v(5, 3) = (0.186, 0.186,−1.32, 0.186, 0.579, 0.186)

−0.008151512920 v(5, 4) = (0.117, 0.117, 0.117,−1.21, 0.745, 0.117)
−0.002105123850 v(5, 6) = (0.0880, 0.0880, 0.0880, 0.0880, 0.811,−1.16)
−0.006239195419 v(6, 1) = (−1.31, 0.195, 0.195, 0.195, 0.195, 0.528)
0.001256424608 v(6, 2) = (−0.129,−0.756,−0.129,−0.129,−0.129, 1.27)
0.005540018448 v(6, 3) = (0.144, 0.144,−1.25, 0.144, 0.144, 0.672)

−0.005547164875 v(6, 4) = (0.0602, 0.0602, 0.0602,−1.11, 0.0602, 0.867)
0.002536892813 v(6, 5) = (−0.0448,−0.0448,−0.0448,−0.0448,−0.915, 1.09)

Theorem 2.2.4. The logarithmic Voronoi cells for p ∈ Mn,d with all pi > 1 are the dual
polytopes (logPn(p))

∗ of the logarithmic root polytopes logPn(p).

Proof. Given a point p ∈Mn,d, the logarithmic Voronoi cell can be defined as the intersection
of d ·∆n−1 with all the halfspaces Hq(u) ≥ 0 for all points q ∈Mn,d with q ̸= p, where

Hq(u) :=
∑
i∈[n]

ui log

(
pi
qi

)
.

We say that this system of inequalities is sufficient to define the logarithmic Voronoi cell.
However, not all of these inequalities are necessary. Lemma 2.2.5 shows that a certain set
of 2

(
n
2

)
inequalities is sufficient for all n ∈ Z≥2. These are the inequalities Hq(u) ≥ 0 for

q = p+ ei− ej for i ̸= j. We avoid logarithms of zero since pk > 1 and we are away from the
simplex boundary. In other words, we get one inequality from every point q reachable from
p by moving along a root of type An−1.

These Hq(u) ≥ 0 inequalities are linear, with constant term zero. However, projecting the
normal vectors of these hyperplanes along the all ones vector 1 and viewing p as the origin
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of a new coordinate system, we obtain inequalities with nonzero constant terms. These
inequalities describe the same logarithmic Voronoi polytope on the hyperplane

∑
k uk = d.

Dividing each inequality by the constant terms we obtain a system of inequalities which is
of the form Au ≤ 1, following the notation of [126], where the rows of A are exactly the
vectors vij. By [126, Theorem 2.11], the dual polytope is given by the convex hull of these
vij.

Lemma 2.2.5. Let p ∈ Mn,d with every entry pi > 1. A sufficient system of inequalities
defining the logarithmic Voronoi cell is given by the 2

(
n
2

)
halfspaces u ∈ Rn such that

Hδ(u) ≥ 0 for δ ∈ R := {ei − ej : i ̸= j, i, j ∈ [n]} and the affine plane
∑
ui = d, where

Hδ(u) :=
∑
i∈[n]

ui log

(
pi

pi + δi

)
.

Proof. We prove that the 2
(
n
2

)
inequalities Hδ(u) ≥ 0 for δ ∈ R are sufficient. Fix p ∈ M

with all pi > 1. Let u ∈ Rn such that Hδ(u) ≥ 0 for all δ ∈ R. Fix some q = p+ δ+ δ′ where
δ, δ′ ∈ R, and assume that δ + δ′ /∈ R. We wish to show Hq(u) =

∑
i ui log

pi
qi
≥ 0. Consider

several cases. First, if δ = δ′ = ej − ek, it suffices to show that

uj log
pj

pj + 2
+ uk log

pk
pk − 2

≥ 0.

We claim that

uj log
pj

pj + 2
+ uk log

pk
pk − 2

≥ 2uj log
pj

pj + 1
+ 2uk log

pk
pk − 1

, (2.3)

which would be sufficient, since the right-hand side of the above equation is ≥ 0 by assump-
tion. We show that

uj log
pj

pj + 2
≥ 2uj log

pj
pj + 1

and uk log
pk

pk − 2
≥ 2uk log

pk
pk − 1

. (2.4)

Observe:

uj log
pj

pj + 2
≥ 2uj log

pj
pj + 1

⇐⇒ p2j + 2pj + 1 ≥ p2j + 2pj,

uk log
pk

pk − 2
≥ 2uk log

pk
pk − 1

⇐⇒ p2k − 2pk + 1 ≥ p2k − 2pk.

Thus (2.4) holds, and we conclude that (2.3) is true in this case, as desired. If δ ̸= δ′, but
they share both indices, then p = q, and we’re done. If they do not share any indices, then
we have that Hq(u) = Hδ(u) + Hδ′(u) ≥ 0 by assumption. Suppose δ ̸= δ′, and δ and δ′

share one index, j. If δ = ei − ej and δ′ = ej − ek for i ̸= j ̸= k, then δ + δ′ = ei − ek, a
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contradiction to the assumption δ + δ′ /∈ R. Similarly when δ = ej − ei and δ′ = ek − ej.
Suppose then that δ = ei − ej and δ′ = ei − ek. We wish to show that

ui log
pi

pi + 2
+ uj log

pj
pj − 1

+ uk log
pk

pk − 1
≥ 0.

Note then that

ui log
pi

pi + 2
≥ 2ui log

pi
pi + 1

⇐⇒ p2i + 2pi + 1 ≥ p2i + 2pi,

and the last inequality always holds for positive pi, so the lemma is true for this case. The
case when δ = ej − ei and δ′ = ek− ei is proved similarly. Since Hq(u) ≥ 0 in all of the cases
we considered, and the cases are exhaustive, we conclude that the lemma holds.

A family of polytopes. Using the face characterization of Theorem 2.2.2, we may compute
the f -vectors of the logarithmic Voronoi cells for any n. We can also numerically calculate
the f -vector for the logarithmic Voronoi cell at any specific point p ∈Mn,d with pi > 1,∀i by
explicitly constructing the polytope using inequalities. Of course, both of these calculations
match. Below we list the f -vectors (which we computed in both ways) for small values
n ∈ {2, 3, 4, 5, 6, 7} to give the reader a sense for their behavior. The logarithmic Voronoi
cells for every Mn,d are combinatorially isomorphic to the dual of the corresponding root
polytope, exactly as in the Euclidean case.

n = 2 (1, 2, 1)
n = 3 (1, 6, 6, 1)
n = 4 (1, 14, 24, 12, 1)
n = 5 (1, 30, 70, 60, 20, 1)
n = 6 (1, 62, 180, 210, 120, 30, 1)
n = 7 (1, 126, 434, 630, 490, 210, 42, 1)

Therefore we have a family of Euclidean Voronoi polytopes that tile Rn−1 and a family of
logarithmic Voronoi polytopes that tile the open simplex ∆n−1. This family begins

n− 1 = 1 n− 1 = 2 n− 1 = 3 · · ·
line segment hexagon rhombic dodecahedron · · ·

Root polytopes of type A have connections to tropical geometry. The rhombic dodecahedron
is a polytrope which has been called the 3-pyrope because of the mineral Mg3Al2(SiO4)3
whose pure crystal can take the same shape. For more on root polytopes, tropical geometry,
and polytropes, see [72].

Historical comments. Georgy Voronoi devoted many years of his life to studying prop-
erties of 3-dimensional parallelohedra, convex polyhedra that tessellate 3-dimensional Eu-
clidean space. His paper on the subject called Recherches sur les parallélloèdres primitifs
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[120] was a result of his twelve-year work. In a cover letter to the manuscript, he wrote: “I
noticed already long ago that the task of dividing the n-dimensional analytical space into
convex congruent polyhedra is closely related to the arithmetic theory of positive quadratic
forms” [116]. Indeed, Voronoi was interested in studying cells of lattices in Zn with the aim
of applying them to the theory of quadratic forms. This motivated us to study a lattice
intersected with the probability simplex, the topic of our current section. Today, Voronoi
decomposition finds applications to the analysis of spatially distributed data in many fields
of science, including mathematics, physics, biology, archaeology, and even cinematography.
In [124], the author uses Voronoi cells to optimize search paths in an attempt to improve
the final 6-minute scene of Andrei Tarkovsky’s Offret (the Sacrifice). Voronoi diagrams are
so versatile they even found their way into baking: Ukrainian pastry chef Dinara Kasko uses
Voronoi diagrams to 3D-print silicone molds which she then uses to make cakes [74].

2.3 Numerical algebraic geometry
In case the logarithmic Voronoi cell is not a polytope, techniques from numerical nonlinear
algebra can still be used to compute it effectively. In this section we demonstrate these
methods. In particular, we explain how to set up the randomization that must be used in
case the algebraic variety is defined by more polynomials than its codimension. The relevant
equation (2.5) is explained below, and then used in Theorem 2.3.1. Numerical algebraic
geometry [20, 106] can be used to efficiently find all isolated solutions of a square system of
polynomial equations (square means equal number of equations and variables). The system
of equations used in Theorem 2.3.1 formulates our problem specifically to take advantage of
these tools.

Let f be the 1×m row vector whose entries are the polynomials f1, . . . , fm in the variables
x1, . . . , xn. We assume that the first polynomial defines the simplex, i.e. f1 =

∑n
i=1 xi − 1.

Let the algebraic set defined by f1, . . . , fm have codimension c. Let df denote the m × n
Jacobian matrix whose rows are the gradients of f1, . . . , fm. Let A be a c×m matrix whose
entries are chosen randomly from independent normal distributions. Let B be a similarly
chosen random (m− c)× (n+ c) matrix. Let [λ− 1] be the row vector of length c+1 whose
first c entries are variables λ1, . . . , λc and whose last entry is −1 and let In+c be the identity
matrix of size n + c. We are interested in the following vector equation whose components
give n+ c polynomial equations in n+ c unknowns:[

[λ− 1]

[
A · df
∇ℓu

]
f

]
︸ ︷︷ ︸

1×(n+m)

[
In+c

B

]
= [0 · · · 0]︸ ︷︷ ︸

1×(n+c)

. (2.5)

Theorem 2.3.1. Let M be the intersection of ∆n−1 and an irreducible algebraic model
given by the polynomial map f : Rn → Rm. Let u ∈ ∆n−1 be fixed and generic. With
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probability 1, all points p ∈M such that u ∈ logNpM are among the finitely many isolated
solutions to the square system of equations given in (2.5).

Proof. As a consequence of [67, Theorem 1.6], if u ∈ ∆n−1 is generic, then with probability
1 there will be finitely many critical points of ℓu restricted toM. If the algebraic set defined
by f has codimension c then the dimension of the rowspace of df will be equal to c and the
rows will span NxM for any generic x ∈ M [104, p.93]. With probability 1, multiplying
by the random matrix A will result in a c × n matrix of full row rank, whose rows also
span NxM. Appending the row ∇ℓu and multiplying the resulting matrix by the row vector
[λ− 1] produces n polynomials which evaluate to zero whenever ∇ℓu is in the normal space
NxM. Appending the polynomials f1, . . . , fm gives a 1× (n+m) row vector of polynomials
evaluating to zero whenever x ∈ M and ∇ℓu lies in the normal space NxM. However, this
system of equations is overdetermined. Applying Bertini’s theorem [20, Theorem 9.3] or
[106, Theorem A.8.7] we can take random linear combinations of these polynomials using
In+c and B, and with probability 1, the isolated solutions of the resulting square system
of polynomials will contain all isolated solutions of the original system of equations. The
result follows.

Remark 2.3.2. If we are interested in computing the logarithmic Voronoi cell at a specific
point p ∈M, then we can generate a generic point u0 ∈ logNpM by taking a random linear
combination of the gradients of f1, . . . , fm. Using this point u0 we can formulate our system
of equations (2.5), one of whose solutions we already know, namely p. Using monodromy, we
can quickly find many other solutions p′ by perturbing our parametrized system of equations
through a loop in parameter space. For more details, see [4]. This is especially useful in the
case where the ML degree is known a priori, since we can stop our monodromy search after
finding ML degree many solutions. This process yields an optimal start system for homotopy
continuation, allowing us to almost immediately compute solutions for other data points since
we need only follow the ML degree-many solution paths via homotopy continuation.

In the next example, we utilize the formulation in Theorem 2.3.1 to numerically compute
a logarithmic Voronoi cell in a larger example of statistical interest. Namely, we consider a
mixture of two binomial distributions, also known as a secant variety.

Example 2.3.3. Bob has three biased coins, one in each pocket, and one in his hand. He
flips the coin in his hand, and depending on the outcome, chooses either the coin in his left
or right pocket, which he then flips 5 times, recording the total number of heads in the last
5 flips. To estimate the biases of Bob’s coins, Alice treats this situation as a 3-dimensional
statistical model M ⊂ ∆5 ⊂ R6. Using implicitization [87, Section 4.2], Alice derives the
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following algebraic equations describingM:

f(x) =


20x1x3x5 − 10x1x

2
4 − 8x22x5 + 4x2x3x4 − x33

100x1x3x6 − 20x1x4x5 − 40x22x6 + 4x2x3x5 + 2x2x
2
4 − x23x4

100x1x4x6 − 40x1x
2
5 − 20x2x3x6 + 4x2x4x5 + 2x23x5 − x3x24

20x2x4x6 − 8x2x
2
5 − 10x23x6 + 4x3x4x5 − x34

x1 + x2 + x3 + x4 + x5 + x6 − 1

 .
For a concrete example, consider the point which arises by setting the biases of the coins to
b1 =

7
11
, b2 =

3
5
, b3 =

3
7
. Explicitly this point p ∈M is

p =
( 518

9375
,
124

625
,
192

625
,
168

625
,
86

625
,
307

9375

)
.

The log-normal space logNpM is 3-dimensional, becoming a 2-dimensional polytope when
intersected with ∆5 ⊂ R6. This intersection is the log-normal polytope, in this case, a
hexagon. In fact, this hexagon is the (2-dimensional) convex hull of the following six vertices:(

0,
651

1625
, 0,

30569

58500
,

43

2250
,
3377

58500

)
(
0,

124

375
,
88

375
,
77

375
,
86

375
, 0

)
(

8288

76875
, 0,

3176

5125
, 0,

1376

5125
,

307

76875

)
(

259

1875
, 0,

52

125
,
91

250
, 0,

307

3750

)
(

518

76875
,
1984

5125
, 0,

2779

5125
, 0,

4912

76875

)
(

2849

29250
,

31

1125
,
8734

14625
, 0,

903

3250
, 0

)
.

By choosing an orthonormal basis agreeing with logNpM we can plot this hexagon, though
it lives in R6. Figure 2.1 shows the log-normal polytope and our numerical approximation
of the logarithmic Voronoi cell (which is not a polytope) surrounding the point p. By
rejection sampling, we computed 60000 points u1, u2, . . . , u60000 ∈ logNpM∩ ∆n−1 in the
log-normal polytope. By a result in [63], we know that the ML degree of this model is
39. Using the formulation presented in Theorem 2.3.1, we successfully computed all 39
complex critical points for each ℓui

, i ∈ {1, 2, . . . , 60000} restricted to M. We easily find
each Φ(ui) by comparing the 39 values, choosing the maximum. If p = Φ(ui) then ui ∈
logVorM(p) and we color that point green in Figure 2.1, while if p ̸= Φ(ui) we color the point
pink. The repeated computations of each set of 39 critical points were accomplished using
the software HomotopyContinuation.jl [27], which can efficiently compute the isolated
solutions to systems of polynomial equations using homotopy continuation [20, 106]. A full
description of the Julia code needed to compute this example can be found online at [4].
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Conclusion. In this chapter, we proved that for finite models, linear models, toric models,
and models of ML degree one, logarithmic Voronoi cells are equal to log-normal polytopes.
We also characterized the combinatorial types of these polytopes for the finite chaotic uni-
verse model. For logarithmic Voronoi cells that are not polytopes, we described an approach
to reliably compute them numerically via homotopy continuation and monodromy. The next
two chapters dive deeper into the combinatorics of logarithmic Voronoi polytopes of linear
and toric models, respectively. In particular, we will study how the combinatorial type of
these polytopes changes as we vary points on the model, and how this helps us maximize
information divergence, introduced in Section 1.1.
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Chapter 3

Linear models

In this chapter we study partitions of the probability simplex ∆n−1 into combinatorially
equivalent polytopes. These partitions are induced by linear statistical models. In Figure 3.1,
such models are given by the dotted line segments. Specifically, we focus on the combinatorics
of logarithmic Voronoi cells of linear models, which are polytopes by Theorem 2.1.8. First,
we describe the vertices of these polytopes in terms of certain co-circuits. We then show that
logarithmic Voronoi polytopes at all points on a linear model have the same combinatorial
type. We also study these polytopes at the points on the boundary of a linear model. In
particular, we give a condition for them to have the same combinatorial type as those at the
interior points. Finally, we focus on logarithmic Voronoi cells of partial linear models, where
the points on the boundary of the model are especially of interest. This chapter is based on
[1] and [6].

Figure 3.1: Partition of the tetrahedron ∆3 into triangles (left) and quadrilaterals (right).
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Let us now recall the formal definition of a linear model from Section 2.1.

Definition 3.0.1. Let f1, . . . , fn be linear polynomials in θ = (θ1, . . . , θd) with
∑n

i=1 fi(θ) =
1. Let Θ ⊆ Rd be the d-dimensional parameter space where fi(θ) > 0 for all θ ∈ Θ and
i = 1, . . . , n. The image of the map

f : Θ→ ∆n−1 : θ 7→ (f1(θ), . . . , fn(θ))

is called a discrete linear model [94, Section 1.2],[114, Section 7.2].

Hence, a linear model is a polytope, obtained by intersecting an affine linear space with a
probability simplex. Assume this affine linear space contains a point all of whose coordinates
are positive. The dimension of a linear model is the dimension of the corresponding linear
space. Given a point u ∈ ∆n−1, the log-likelihood function ℓu is strictly concave on the
simplex and hence on any convex subset of the simplex, such as a linear model. Hence,
the MLE will always exist and be unique for every u ∈ ∆◦

n−1 and their logarithmic Voronoi
polytopes partition the probability simplex.

Fix a linear model M as in the definition. Recall from Chapter 2 that for linear models,
logarithmic Voronoi cells are polytopes. Hence, we will refer to their logarithmic Voronoi
cells as logarithmic Voronoi polytopes. For any point p ∈ M, we denote the logarithmic
Voronoi polytope at p by log VorM(p). We call a point p = (p1, · · · , pn) ∈ M interior if
pi > 0 for all i ∈ [n]. Our hypotheses in Definition 3.0.1 imply that any linear model can be
written as

M = {c−Bx : x ∈ Θ}
where B is a n× d matrix, each of whose columns sums to 0, and c ∈ Rn is a vector, whose
coordinates sum to 1.

3.1 Combinatorial types
In this section, we give an explicit combinatorial description of logarithmic Voronoi polytopes
at interior points on the linear model M. We find that these polytopes have the same
combinatorial type. The next proposition gives a formula for the vertices of those polytopes.
Slightly abusing the notation in [126, Chapter 6], we define a cocircuit of the matrix B to
be any vector v ∈ Rn of minimal support such that vB = 0.

Proposition 3.1.1. For any interior point p ∈ M, the vertices of log VorM(p) are of the
form v · diag(p) where v is any positive cocircuit of B such that

∑n
i=1 vipi = 1.

Proof. The log-likelihood function of a point u ∈ ∆n−1 is

ℓu(x) =
n∑

i=1

ui log(ci − bi · x)
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where b1, . . . , bn are the rows of B. The likelihood equations [47, Chapter 2] have the form

u1
p1
· b1j + · · ·+

un
pn
· bnj = 0 for each j ∈ [d].

Since the log-likelihood function ℓu is strictly concave, it has a unique critical point on the
model. Thus, the points in the logarithmic Voronoi polytope at p are the distributions u on
which likelihood equations vanish. Equivalently, log VorM(p) is the set of all distributions
that satisfy the linear equations (u1/p1, u2/p2, . . . , un/pn) ·B = 0. Hence, we may write:

log VorM(p) = {u ∈ ∆n−1 : u · diag(p)−1B = 0}

=

{
r · diag(p) ∈ Rn : rB = 0, r ≥ 0,

n∑
i=1

ripi = 1

}
.

Now consider an n × (d + 1) matrix M obtained from B by adjoining (p1, . . . , pn)
T as the

first column. Then the logarithmic Voronoi polytope at p can be identified with the feasible
region of a linear program, namely rTM = (1, 0, . . . , 0), r ≥ 0. From the simplex method
[23, Chapter 3], we know that the vertices of such polytope are the basic feasible solutions,
i.e. minimal support vectors in the region. Those basic solutions are precisely the positive
cocircuits v of B for which

∑n
i=1 vipi = 1. Since p is interior, v ·diag(p) has the same support

as v. Thus the vertices of the logarithmic Voronoi polytope at p are precisely the points
v · diag(p) where v is a positive cocircuit of B for which

∑n
i=1 vipi = 1.

Now we shall describe logarithmic Voronoi cells at interior points combinatorially. We use
the formalism of Gale diagrams, as described in [126, Chapter 6]. For two polytopes P1, P2,
we will write P1 ∼ P2 to mean that P1 and P2 are combinatorially equivalent. We will denote
the polar dual of a polytope P by P∆.

Given our linear modelM = {c−Bx : x ∈ Θ}, note that the configuration b1, . . . , bn of row
vectors of B is totally cyclic, i.e.

∑n
i=1 bi = 0, since each column of B sums to 0. Hence,

B is a Gale transform of some affine configuration of n vectors {v1, . . . , vn} in Rn−d−1 [126,
Section 6.4]. Since a Gale transform uniquely determines the configuration up to an affine
transformation, we may assume that 0 ∈ conv{v1, . . . , vn}. Note that this configuration is
not necessarily in convex position; however, its dual is a polytope. This polytope will have
the same combinatorial type as the logarithmic Voronoi cells at interior points of M, as
shown in the next theorem.

Theorem 3.1.2. For any interior point p of the linear model M, the logarithmic Voronoi
polytope at p is combinatorially equivalent to the dual of the polytope obtained by taking
the convex hull of a vector configuration with Gale diagram B.

Proof. As discussed above, let {v1, . . . , vn} be a vector configuration whose Gale diagram is
B. Let P = conv{v1, . . . , vn} and assume 0 ∈ P . We wish to show that log VorM(p) ∼ P∆.
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Define

Q :=

{
r ∈ Rn : rB = 0, r ≥ 0,

n∑
i=1

ri = 1

}
.

Then log VorM(p) ∼ Q, since multiplication by diag(p) is an affine transformation and does
not change the combinatorial type of log VorM(p). It then suffices to show Q ∼ P∆. Let V
be the matrix whose column vectors are v1, . . . , vn, and let

A =

[
1 1 · · · 1
v1 v2 · · · vn

]
.

We may assume that the rows of A are linearly independent. Since the Gale diagram of BT

is AT , we know that kerBT = imAT .

We will show Q ∼ P∆. Observe

Q =

{
r ∈ Rn : rB = 0, r ≥ 0,

n∑
i=1

ri = 1

}
=

{
xA ∈ Rn : xA ≥ 0,

n∑
i=1

(xA)i = 1

}

∼

{
x ∈ Rn−d : xA ≥ 0,

n∑
i=1

(xA)i = 1

}
.

The last equivalence follows from the fact that the rows of AT are linearly independent.
Therefore, the cone over Q is C(Q) =

{
x ∈ Rn−d : xA ≥ 0

}
.

For the dual of the polytope P , we may write:

P∆ = {z ∈ Rn−d−1 : V T z ≤ 1} = {z ∈ Rn−d−1 : (1,−z)A ≥ 0}
∼ {x ∈ Rn−d : x1 = 1, xA ≥ 0}.

Hence the cone over P∆ is also
{
x ∈ Rn−d : xA ≥ 0

}
. Note that this is a pointed cone at

the origin, and both polytopes Q and P∆ are obtained by intersecting this cone with a
hyperplane that doesn’t contain the origin. Hence, all the extreme rays are intersected by
both hyperplanes. It follows that Q and P∆ have the same combinatorial type by [126,
Proposition 2.4]. Therefore, log VorM(p) is indeed combinatorially equivalent to P∆.

The next theorem immediately follows from Theorem 3.1.2.

Theorem 3.1.3. The Logarithmic Voronoi polytopes at all interior points in a linear model
have the same combinatorial type.

Example 3.1.4. The points {v1, . . . , vn} in the previous statement need not be in convex
position, but the dual of their configuration is. For example, consider a 1-dimensional linear
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model inside the 3-simplex, given by c = (1/4, 1/4, 1/4, 1/4)T and B = [1 − 5 2 2]T . The
parameter space is the interval Θ = [−1/20, 1/8] ⊆ R and the model is parametrized

Θ→ ∆3, x 7→ (−x+ 1/4, 5x+ 1/4,−2x+ 1/4,−2x+ 1/4).

The 4× 1 matrix B is a Gale transform of the non-convex configuration {(−1,−1), (1, 1),
(3, 0), (0, 3)}. Its convex hull is the triangle conv{(−1,−1), (3, 0), (0, 3)}, a self-dual polytope.
The logarithmic Voronoi polytope at any interior point p = c − Bx is also a triangle, with
the vertices

1

7
(0, 40x+ 2, 0, −40x+ 5),

1

7
(0, 40x+ 2, −40x+ 5, 0),

1

6
(−20x+ 5, 20x+ 1, 0, 0).

for the corresponding parameter x ∈ (−1/20, 1/8). This is demonstrated in Figure 3.2.

Figure 3.2: Sampled points on the linear model corresponding to B = [1 − 5 2 2] and
triangular logarithmic Voronoi cells.

If we take B to be the matrix [1 5 −3 −3]T , which is a Gale diagram of a convex 4-gon, the
logarithmic Voronoi polytopes at the interior points on this model would be quadrilaterals in
∆3. So, (a dual of) any 2-dimensional convex polytope on 4 vertices is a logarithmic Voronoi
polytope for some 1-dimensional model in ∆3. In fact, this holds in general.

Proposition 3.1.5. Every (n− d− 1)-dimensional polytope with at most n facets appears
as a logarithmic Voronoi polytope of a d-dimensional linear model inside ∆n−1.

Proof. Let P be a polytope of dimension n− d− 1 with at most n facets. By Prop. 6.3 in
[95], any polytope in Rn−d−1 with n facets is combinatorially equivalent to an intersection of
∆n−1 with an affine space of co-dimension d. The same is true for a (n− d− 1)-dimensional
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polytope with less than n facets, as we could first intersect ∆n−1 with an affine hyperplane
to obtain ∆n−2, and apply induction. That is, we may write our polytope P as

P =

{
x ∈ Rn :Mx = b,

n∑
i=1

xi = 1, x ≥ 0

}
whereM = (mij) ∈ Rd×n and b ∈ Rd. Changing coordinates on Rn, such that xn = 1, we may
re-write our polytope as P = {x ∈ Rn : Nx = 0, xn = 1, x ≥ 0}. Here, N is the d× n matrix
obtained from M by subtracting (min, . . . ,min, bi) from the ith row. The cone of P is then
C(P ) = {x ∈ Rn : Nx = 0, x ≥ 0}. Let x′ = (x′1, . . . , x

′
n) ∈ C(P ). Scaling the ith column

of N by x′i, we get a new matrix N ′. Then the cone C ′(P ) = {x ∈ Rn : N ′x = 0, x ≥ 0}
contains the all-ones vector. This guarantees that each row of N ′ sums to 0, and letting
B := (N ′)T , we see that the cone C ′(P ) is equal to the cone of the logarithmic Voronoi
polytope at an interior point of a model associated to B. As B is an n × d matrix, this
model is d-dimensional in ∆n−1. Thus, P is combinatorially equivalent to a logarithmic
Voronoi polytope, as desired.

3.2 On the boundary
In this section we study logarithmic Voronoi polytopes at the points of a linear model that
lie on the boundary of the simplex, where the log-likelihood function is undefined. The next
example demonstrates that the combinatorial type of logarithmic Voronoi polytopes at the
points on the boundary of ∆n−1 will depend on the positioning of the linear model inside
the simplex. Namely, if the intersection of the affine linear space defining the model with
∆n−1 is not general, logarithmic Voronoi polytopes at the boundary points will degenerate.

The definition of the log-likelihood function can be extended to the boundary of the simplex
by considering each boundary component of the model as a linear model inside a smaller
simplex. Namely, letM be a d-dimensional linear model inside ∆n−1, and let f be a face of
M that lies on the boundary of ∆n−1. Then the relative interior of f lies in the interior of
some ∆k−1, which is on the boundary of ∆n−1. We may then treat f as its own linear model
inside ∆k−1, and the log-likelihood function is defined for all interior points of f .

Example 3.2.1. Consider a polytope, combinatorially isomorphic to the 3-dimensional cube.
According to Proposition 3.1.5, this polytope appears as a logarithmic Voronoi cell at an
interior point on some 2-dimensional linear model in ∆5. One such modelM is given by

B =

[
−10 −2 −4 6 6 4
3 2 1 −1 −2 −3

]T
and c = (1/12, 1/3, 1/6, 1/12, 1/6, 1/6).

It is a triangle with the vertices (1/168,−1/21), (1/24, 1/6), and (−1/24,−1/9). The loga-
rithmic Voronoi polytopes at the interior points ofM are combinatorially equivalent to the
3-dimensional cube. The vertices are
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( 0, 0, 16x− 4y + 2/3, −8x+ 4/3y + 1/9, −8x+ 8/3y + 2/9, 0 )
( 0, 0, 84/5x− 21/5y + 7/10,−72/5x+ 12/5y + 1/5, 0, −12/5x+ 9/5y + 1/10 )
( 0, 4/3x− 4/3y + 2/9, 32/3x− 8/3y + 4/9, 0, −12x+ 4y + 1/3, 0 )
( 0, 4x− 4y + 2/3, 2x− 1/2y + 1/12, 0, 0, −6x+ 9/2y + 1/4 )
( 40/17x− 12/17y + 1/51, 72/17x− 72/17y + 12/17, 0, 0, 0, −112/17x+ 84/17y + 14/51 )
( 30x− 9y + 1/4, 0, 0, −6x+ y + 1/12, −24x+ 8y + 2/3, 0 )
( 240/11x− 72/11y + 2/11, 12/11x− 12/11y + 2/11, 0, 0, −252/11x+ 84/11y + 7/11, 0 )
( 35x− 21/2y + 7/24, 0, 0, −27x+ 9/2y + 3/8, 0, −8x+ 6y + 1/3 )

for the parameters (x, y). Given a point in M on the boundary of ∆5, parametrized by
(x̂, ŷ), the vertices of its logarithmic Voronoi polytope are obtained by plugging (x̂, ŷ) into
the equations above. One checks that at all the points on the boundary ofM, the logarithmic
Voronoi polytopes are also combinatorially equivalent to the 3-dimensional cube.

On the other hand, consider the model given by

B =

[
−10 −3 −20 6 6 21

1 3 2 −1 −3 −2

]T
and c = (1/6, 1/12, 1/3, 1/6, 1/12, 1/6).

It is a quadrilateral in ∆5 with the vertices parametrized by (1/153,−1/68), (2/171, 3/76),
(−5/324, 1/81), and (−7/288,−11/144). The logarithmic Voronoi polytopes at the interior
points are also combinatorially equivalent to the 3-dimensional cube. However, at the vertex
parametrized by (−5/324, 1/81), the logarithmic Voronoi polytope is no longer a cube: it
degenerates to a 2-dimensional quadrilateral. This is explained by the fact that the vertex
lies on a 2-dimensional face of the simplex (as opposed to a 3-dimensional face).

In general, whenever each vertex of a d-dimensional linear model lies on a (n − d − 1)-
dimensional face of ∆n−1, the combinatorial type of the logarithmic Voronoi cell at a bound-
ary point is the same as at the interior points. Before proving this result, we first fix some
notation.

Notation: LetM = {c−Bx : x ∈ Θ} and let z be a cocircuit of B with support S such that∑n
i=1 zifi(x) = 1, where f : Θ→ Rn is a parametrization ofM. Let Vz(x) : Θ→ Rn be the

vertex of the logarithmic Voronoi polytope determined by z, as a function of x ∈ Θ. That
is, Vz(x) =

(
z1(c1− ⟨b1, x⟩), . . . , zn(cn− ⟨bn, x⟩)

)
∈ ∆n−1. If w = f(x̂) ∈M is a point on the

boundary of the simplex, then the vertices of the logarithmic Voronoi polytope at w are given
as limits of the vertices Vz(y(i)) where {f(y(i))} is a sequence of interior points converging to
w. Let M be the n× (d+1) matrix obtained by concatenating ci to the ith row of B, for all
i ∈ [n]. If U and V are two sets of the same cardinality in [n] and [d + 1], respectively, we
denote by MU,V the submatrix of M , whose rows are indexed by U and whose columns are
indexed by V . We define BU,V similarly. Assume, without loss of generality, that the last k
columns of MS,[d+1] are linearly independent. We have the following technical lemma.

Lemma 3.2.2. Let v = f(x̂) be a vertex of M with support I and let z be a cocircuit of
B. The ith coordinate of Vz(x̂) is zero if and only if detM([n]\I)∪{i},[d+1] = 0.
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Proof. Since M is d-dimensional, each vertex of the model is determined by the vanishing
of precisely d coordinates, i.e. ci = ⟨bi, x̂⟩ ∀i ∈ [n] \ I and ci > ⟨bi, x̂⟩ ∀i ∈ I. Without
loss of generality, assume I = {d + 1, . . . , n}, so v is determined by the vanishing of the
first d coordinates. Then x̂ = (x̂1, . . . , x̂d) is a solution to the linear system B[d],[d]x =
(c1, . . . , cd). We may assume detB[d],[d] ̸= 0. By Cramer’s rule, we may then write x̂i =

(−1)d−i detM[d],[d+1]\{i}
detB[d],[d]

for all i ∈ [d]. Let S denote the support of the cocircuit z and suppose
|S| = k. Let z′ be the projection of z onto its support. Since z is a cocircuit of B such
that

∑n
i=1 zi(ci − ⟨bi, x⟩) = 1, it satisfies the equation c1z1 + . . . + cnzn = 1. Thus, z′ is a

solution to the system yMS,[d+1] = (0, . . . , 0, 1) ∈ Rd. If d+ 1 ≥ k, then d+ 1− k equations
in this system must be redundant. From our assumption, the first d + 1 − k equations are
redundant, so removing them, we get a k × k linear system with a unique solution. Using
Cramer’s rule again, we find that for any i ∈ S, zi = (−1)k+i′ detBS\{i},[d]\[d+1−k]

detMS,[d+1]\[d+1−k]
, where i′ is

the index of zi in z′. If i /∈ S, the ith coordinate of Vz(x̂) is 0. If i ∈ S, we have the ith
coordinate of Vz(x̂) is given by

detBS\{i},[d]\[d+1−k]

detMS,[d+1]\[d+1−k]B[d],[d]

[
ci detB[d],[d] −

(
(−1)d−1bi1 detM[d],[d+1]\{1} + . . .+ bid detM[d],[d+1]\{d}

)]
.

Note the expression in square brackets is (−1)k+i′ detM[d]∪{i},[d+1], so the ith coordinate of
Vz(x̂) vanishes if and only if detM[d]∪{i},[d+1] = 0. The case d + 1 < k is not possible, as it
would imply the existence of a cocircuit whose support is strictly contained in S.

Theorem 3.2.3. LetM be a d-dimensional linear model obtained by intersecting the affine
linear space L with ∆n−1. Let w ∈ M be a point on the boundary of the simplex. If
L intersects ∆n−1 transversally, then the logarithmic Voronoi polytope at w has the same
combinatorial type as those at the interior points ofM.

Proof. It suffices to show that the combinatorial type of the logarithmic Voronoi polytopes
at the vertices of the model is the same as at the interior points. Let v = f(x̂) be a vertex
of M and without loss of generality assume that it has support {d + 1, . . . , n}. By Lemma
3.2.2, if i ∈ S∩{d+1, . . . , n}, the logarithmic Voronoi vertex Vz(x̂) degenerates to the vertex
with 0 in the ith coordinate if and only if detM[d]∪{i},[d+1] = 0. This condition translates to
v lying on a face of ∆n−1 of dimension less than n − d − 1, namely the one spanning the
affine space {x ∈ Rn : xj = 0 for all j ∈ [d] ∪ {i}}. This means that the affine space L does
not intersect ∆n−1 transversally, a contradiction. Thus, the logarithmic Voronoi polytope at
any vertex ofM has the same combinatorial type as at the interior points.

The next example gives a concrete formula for the vertices of logarithmic Voronoi polytopes
when the linear model is one-dimensional. The compact description follows from the fact
that cocircuits are easy to compute in this case. A one-dimensional model will intersect the
simplex transversally if and only if the 1× n matrix B has no repeated entries.

Example 3.2.4 (d = 1). LetM = {c−Bx : x ∈ Θ} be a 1-dimensional linear model inside
the simplex ∆n−1. Let B = [b1, . . . , bm, bm+1, . . . bn]

T , and without loss of generality assume
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bi > 0 for i = 1, . . . ,m and bi < 0 for i = m + 1, . . . , n. Then Θ ⊆ R is a closed interval
[xℓ, xr], where xℓ = cℓ/bℓ for some ℓ > m and xr = cr/br for some r ≤ m. Rotating the
simplex, if necessary, we may ensure that r = 1. Note that any positive cocircuit z of B
has support {i, j} of size two, where bi > 0 and bj < 0. So, we find the logarithmic Voronoi
polytope at xr is the polytope at the boundary of ∆n−1 with the vertices

{ej : bj < 0} ∪

{
(ci − bi(c1/b1))bj

bjci − bicj
ei −

(cj − bj(c1/b1))bi
bjci − bicj

ej :
i ̸=1,
bi>0,
bj<0

}
.

The logarithmic Voronoi polytope at xℓ is described similarly. Figure 3.1 plots logarithmic
Voronoi polytopes at sampled points on 1-dimensional linear models in general position given
by c = (1/4, 1/4, 1/4, 1/4), B = [1,−5, 3, 1]T and B = [−2,−1, 1, 2]T , respectively.

Example 3.2.5 (Moduli spaces). The moduli space Mg,m is the space of genus g curves
with m marked points. The moduli space M0,m is the space of m marked points in P1 and
can be viewed as a linear statistical model of dimension m − 3 inside the simplex ∆n−1,
where n = m(m− 3)/2. The connection between particle physics and algebraic statistics via
moduli spaces has been studied in [110]. The modelM0,6 is a 3-dimensional linear model (a
tetrahedron) inside the 8-dimensional simplex. It is parametrized by

(x, y, z) 7→
(
5x

9
,
y

3
,
z

9
,
y − x
9

,
z − x
9

,
y − z
9

,
1− x
3

,
1− y
3

,
1− z
3

,

)
.

Logarithmic Voronoi polytopes at the interior points on this model are 5-dimensional with
the f -vectors (7, 19, 26, 19, 7).

The affine space defining this model does not intersect the simplex transversally; furthermore,
none of the four vertices lie on the interior of a 5-dimensional face of ∆8. Two of the vertices
lie on 4-dimensional faces of ∆8 and the other two vertices lie on 2-dimensional faces of ∆8.
The logarithmic Voronoi polytopes at these vertices degenerate into 4-dimensional and 2-
dimensional polytopes, respectively. These polytopes are the entire faces of ∆8 that contain
the corresponding vertices in their relative interior.

3.3 Information divergence
In this section, we study the problem of maximizing information divergence, defined in
Section 1.1, from a linear model M. This problem of studying the maximum and the
maximizers of the divergence function was first posed by Ay [16], but only for exponential
families (toric models). This section investigates the same problem for linear models. Our
motivation comes from potential applications in bio-neural networks, where we are interested
in maximizing the mutual information between the input and output of each layer.
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Let M be a d-dimensional linear model in ∆n−1 given by an n × d matrix B and a vector
c ∈ ∆n−1 as before. That is,M is the image of the linear map

f : Θ→ ∆n−1 : (x1, . . . , xd) 7→ (c1 − ⟨b1, x⟩, . . . , cn − ⟨bn, x⟩).

We want to find
D(M) = max

p∈∆n−1

DM(p)

and its maximizers, where DM(p) = minq∈M D(p∥q) and D(p∥q) =
∑n

i=1 pi log (pi/qi) .

Proposition 3.3.1. LetM⊂ ∆n−1 be a linear model and let q ∈ M. Then the maximum
of DM(u) restricted to the logarithmic Voronoi polytope log VorM(q) is achieved at a vertex
of this polytope. The maximizers are a subset of the vertices in log VorM(q).

Proof. Note that D(u∥q) is strictly convex in u over ∆n−1; see for instance [100, Proposition
2.14 (iii)]. The result follows since log VorM(q) is a convex polytope.

We wish to find D(M) and the points p ∈ ∆n−1 at which the information divergence DM(p)
from the linear model is maximized. By Proposition 3.3.1,

D(M) = max
q∈M

max
p∈log VorM(q)

D(p∥q).

Hence, the maximum is achieved at some of the vertices of the logarithmic Voronoi cell
log VorM(q) at q. The vertices of log VorM(q) at q = f(x) are given by the co-circuits of B
and can be expressed as functions in q (or the parameters x). Here, by a co-circuit of B we
mean a nonzero z ∈ Rn of minimal support so that zTB = 0. Each co-circuit z of B such
that ⟨z, q⟩ =

∑n
i=1 ziqi = 1 defines a vertex Vz(q) = (z1q1, . . . , znqn) of log VorM(q). Note

that the choice of the co-circuit representative does not depend on the point q, i.e. we may
always choose the representative z such that ⟨z, q⟩ = 1 for all q ∈M simultaneously. Indeed,
let y be some co-circuit of B. We wish to find k ∈ R such that z = ky has the property
⟨z, q⟩ = 1 for all q ∈M. Since q = c−Bx for some x ∈ Θ, we have that

1 = ⟨z, q⟩ = k⟨y, c−Bx⟩ = k⟨y, c⟩.

Hence, z = ky where k = 1/⟨y, c⟩ is the desired co-circuit representative. For every such
co-circuit we wish to maximize the information divergence over all q ∈M. We then compare
the maximum divergences over all such co-circuits to find the global maximum.

Lemma 3.3.2. Let M be a linear model defined by the matrix B and the vector c. For a
fixed co-circuit z of B, the information divergence D(Vz(q)∥q) is linear in q ∈M.

Proof. Note that for a fixed co-circuit z of B, we get:

D(Vz(q)∥q) =
n∑

i=1

(ziqi) log(ziqi/qi) =
n∑

i=1

(zi log(zi))qi.
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Therefore, zi log(zi) is a constant for each i, and so the divergence function is indeed linear
in the coordinates of q.

Hence, for each co-circuit z, we are maximizing a linear function over the polytopeM. We
summarize this in the following result.

Theorem 3.3.3. The maximum divergence of a linear model M is always achieved at a
vertex of the logarithmic Voronoi polytope log VorM(q) where q itself is a vertex ofM.

Remark 3.3.4. A particular kind of discrete exponential family that is also a linear model
is a partition model. The information divergence from partition models have been studied
in [85]. A result similar to Theorem 3.3.3 is Proposition 2 in this reference.

Theorem 3.3.3 can be used to obtain compact formulas for maximum divergence for special
families of linear models, such as the one below.

Corollary 3.3.5. Let M be a one-dimensional linear model in ∆3 given by the matrix
B = [−a,−b, b, a]T , a, b > 0 and c = (1

4
, 1
4
, 1
4
, 1
4
). Then D(M) = log

(
4max{a,b}

a+b

)
, maximized

at two vertices of ∆3.

Proof. Without loss of generality, assume that a > b. Then the model is parametrized as
f : x 7→ (ax + 1/4, bx + 1/4,−bx + 1/4,−ax + 1/4). The two vertices of the model are
v1 = f(− 1

4a
) and v2 = f( 1

4a
). Each logarithmic Voronoi polytope is a quadrangle, so the

matrix B has four co-circuits which parameterize the four vertices of this polytope at a
general point q = f(x) :

V1(x) = (0, 2bx+ 1/2,−2bx+ 1/2, 0)

V2(x) = (0, (4abx+ a)/(a+ b), 0, (b− 4abx)/(a+ b))

V3(x) = (2ax+ 1/2, 0, 0,−2ax+ 1/2)

V4(x) = ((4abx+ b)/(a+ b), 0, (a− 4abx)/(a+ b), 0).

Note that D(V1(x)||f(x)) = D(V3(x)||f(x)) = log(2) for all x ∈
[
− 1

4a
, 1
4a

]
. On the other

hand,

D

(
V2

(
− 1

4a

)
∥v1
)

=
(a− b) log

(
4 a
a+b

)
+ 2 b log

(
4 b
a+b

)
a+ b

< log

(
4 a

a+ b

)
= D

(
V2

(
1

4a

)
∥v2
)

D

(
V4

(
− 1

4a

)
∥v1
)

= log

(
4 a

a+ b

)
>

(a− b) log
(

4 a
a+b

)
+ 2 b log

(
4 b
a+b

)
a+ b

= D

(
V4

(
1

4a

)
∥v2
)

so the maximum divergence log
(

4 a
a+b

)
is achieved at the two vertices V2

(
1
4a

)
= (0, 1, 0, 0) and

V4
(
− 1

4a

)
= (0, 0, 1, 0). The proof for b > a is identical.
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Example 3.3.6. Consider the 1-dimensional linear model M inside ∆3 given by B =
[−2,−1, 1, 2]T and c = (1/4, 1/4, 1/4, 1/4). It is a line segment in ∆3 with the vertices
v1 = f(−1/8) = (0, 1/8, 3/8, 1/2) and v2 = f(1/8) = (1/2, 3/8, 1/8, 0). The global max-
imum divergence log(8/3) is achieved at V4(−1/8) = (0, 0, 1, 0) and V2(1/8) = (0, 1, 0, 0).
This is illustrated in Figure 3.3.

Figure 3.3: Linear model given by B = [−2,−1, 1, 2]T .

3.4 Partial linear models
A partial linear model of dimension d is a statistical model given by a d-dimensional polytope
inside the probability simplex ∆n−1, such that not all facets of the polytope lie on the
boundary of the simplex.

Let M be a partial linear model of dimension d inside ∆n−1. The intersection of the affine
span of the polytope M with the simplex ∆n−1 is a d-dimensional linear model M′. We
say M′ extends M. As before, M′ = {c − Bx : x ∈ Θ′} for some appropriate c, B, and
parameter space Θ′ ⊆ Rd. SinceM′ extendsM, it follows that we may also write

M = {c−Bx : x ∈ Θ}

for some Θ ⊆ Θ′. Note that both Θ and Θ′ are polytopes.

Theorem 3.4.1. Let M be a partial linear model of dimension d with extension M′. If p
is a point in the relative interior ofM, then log VorM(p) = log VorM′(p).

Proof. We show these sets are contained in each other. First, let u ∈ log VorM′(p). Then
ℓu(x) is maximized at p in M′. Since M ⊆ M′, and p ∈ M as well, it follows that ℓu(x)
will also be maximized at p inM. Thus, u ∈ log VorM(p).
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Now, let u ∈ log VorM(p). If u /∈ log VorM′(p), then over M′, ℓu(x) is maximized at some
other point q ∈ M′ \ M. Then the line segment [p, q] must intersect the boundary of the
model M. Note that any point on [p, q] can be written as ax = (1 − x)p + xq for some
x ∈ [0, 1]. Recall that the log-likelihood function ℓu is strictly concave on the simplex and
hence on any convex subset of the simplex, such as our modelM′. So, for any x ∈ (0, 1), we
have

ℓu(ax) = ℓu((1− x)p+ xq) > (1− x)ℓu(p) + xℓu(q) > ℓu(p),

where the last inequality follows from the assumptions ℓu(q) > ℓu(p) and x > 0. But since p
is in the relative interior of the polytopeM, this implies that there is another interior point
r on the line segment [p, q] such that ℓu(r) > ℓu(p). This is a contradiction to u’s inclusion
in log VorM(p). Therefore, u ∈ log VorM′(p), as desired.

The theorem above tells us that the logarithmic Voronoi polytopes at points in the interior of
the polytopeM are the same as those in the full linear extensionM′. The points u ∈ ∆n−1

that are not in log VorM(p) for any p in the interior of M will be mapped to the points on
the boundary ofM via the MLE map. Note that for each point q on the boundary ofM, we
still have log VorM′(q) ⊆ log VorM(q). However, in general, this containment will be strict.

Given a facet F ofM, let p be a point in the relative interior of F (i.e. p does not lie on any
lower-dimensional face). Treating F as its own partial linear model with extension F ′ inside
∆n−1, we know that log VorF (p) = log VorF ′(p) is an (n−d)-dimensional polytope. Moreover,
it is clear that log VorM′(p) ⊆ log VorF (p). Observe that log VorM′(p) has dimension n−d−1
and the boundary of this polytope is included in the boundary of log VorF (p), since these
logarithmic Voronoi polytopes are the intersections of affine linear spaces with the simplex.
Hence, log VorM′(p) divides the polytope log VorF (p) into two (n−d)-dimensional polytopes.
Since p is on the boundary of the polytope M, one of those polytopes will intersect the
relative interior ofM.

Notation: Denote the two polytopes defined above by Qp and Qp. Assume Qp is the
polytope that intersects the relative interior ofM.

Theorem 3.4.2. Let p be a point in the relative interior of some facet F ofM. Let Qp be
as above. Then Qp = logVorM(p).

Proof. Let u ∈ log VorM(p). Since F ⊆M and p is in the interior of F , we have

u ∈ log VorM(p) ⊆ log VorF ′(p) = log VorF (p) = Qp ∪Qp.

If u /∈ Qp, then u ∈ Qp \ Qp. In particular, u /∈ log VorM′(p). But since log VorM′(p) ⊆
log VorM(p) and log VorM(p) is convex, we also have conv{u, log VorM′(p)} ⊆ log VorM(p).
But then by construction of Qp, the convex hull above will contain an interior point in M.
This is a contradiction, as logarithmic Voronoi polytopes at distinct points on the model
cannot intersect; thus u ∈ Qp.
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Figure 3.4: Polytopes Qp and Qp for a point on a facet of a 2-dimensional model in ∆3.

For the other direction, note that the polytope Qp has two types of points: the points in the
polytope log VorM′(p) and the points not in log VorM′(p). Since log VorM′(p) ⊆ log VorM(p),
it suffices to show that w ∈ log VorM(p) for each point w ∈ Qp of the second type. We show
that w ∈ log VorM(p). Note that we may assume that w in in the interior of ∆n−1, since
taking the closure would preserve the containment. Note that ℓw(x) is a strictly concave
function on the simplex, so its super-level sets

Cα = {x ∈ ∆n−1 : ℓw(x) ≥ α}

are convex (n − 1)-dimensional sets. Since the maximum of ℓw(x) on F ′ is achieved at p,
we know that it is given by ℓw(p) = max{α : Cα ∩ F ̸= ∅}. Note that F ′ divides the linear
extensionM′ into two polytopes, S1 and S2, where S1 is the polytope containing the model
M. If w /∈ log VorM(p), then ΦM(w) = q ̸= p, where q /∈ F . So, q ∈ S1 lies on some other
facet ofM. Moreover, m /∈ F ′, since p is the maximizer over F ′ and ℓw(m) > ℓw(p).
Case 1: Suppose m ∈ S1. Note that R =

⋃
r∈F ′ log VorM′(r) is an (n − 2)-dimensional

hypersurface inside ∆n−1, obtained by intersecting a ruled hypersurface in Rn with the
simplex. Thus, R subdivides the simplex into two full-dimensional parts. By construction,
w and m are on different sides of R. Since logarithmic Voronoi cells are convex sets, the line
[w,m] ⊆ log VorM′(m), and this line intersects R. This is a contradiction, since logarithmic
Voronoi cells at two distinct points on the same model cannot intersect.
Case 2: If m ∈ S2, then since ℓw(m) > ℓw(p) and ℓw(q) > ℓw(p), there exists some α such
that Cα ⊊ Cℓw(p) and such that Cα contains q and m, but does not contain p. Since super-
level sets are convex, the line segment [q,m] between q and m is contained in Cα. But since
q ∈ S1 and m ∈ S2, the line [q,m] intersects F ′ in some point s ̸= p. But then ℓw(s) > ℓw(p),
a contradiction.
We conclude that w ∈ log VorM(p). Since logarithmic Voronoi cells are closed sets, the
closure of all such points w is also contained in log VorM(p), and the conclusion follows.
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Now suppose F is a face ofM of dimension d−k for some k ≥ 2. Then F is the intersection
of at least k faces of dimension d−k+1. Denote those faces by {G1, . . . , Gm}, where m ≥ k.
For each i ∈ [m], log VorG′

i
(p) subdivides log VorF ′(p) into two polytopes. Exactly one of

these polytopes will intersect the face Gi at an interior point; call such polytope Qi. Call
the other polytope Qi. We present the following conjecture.

Conjecture 3.4.3. Let p be a point in the relative interior of the face F of M. Then⋂
i∈[m]Qi = logVorM(p). In particular, if M is in general position, dim logVorM(p) =

(n− 1)− dimF .

Example 3.4.4. Let d = 2, n = 4, and consider the model M defined as the convex hull
of
(
1
5
, 1
5
, 1
5
, 2
5

)
,
(
1
5
, 1
5
, 2
5
, 1
5

)
, and

(
1
4
, 1
4
, 1
4
, 1
4

)
. Below we plot the logarithmic Voronoi cells at

interior points, edges, and vertices consecutively.

Figure 3.5: Logarithmic Voronoi cells at sampled points on the model defined as the convex
hull of three points.

Conclusion. In this chapter, we proved that logarithmic Voronoi cells at the interior point
of a linear model have the same combinatorial type. We also showed that the logarithmic
Voronoi polytopes at the boundary points have the same combinatorial type as those at the
interior points, as long as the linear model intersects the simplex transversally. Finally, we
generalized this analysis to partial linear models, where the points on the boundary of the
model are especially of interest. The next chapter studies how the combinatorial type of
logarithmic Voronoi polytopes changes over a toric model.
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Chapter 4

Toric models

In this chapter, we study the problem of maximizing information divergence to toric models.
Recall that this means finding

D(M) = max
p∈∆n−1

DM(p)

and its maximizers, where M is a toric model, DM(p) = minq∈M D(p∥q), and D(p∥q) =∑n
i=1 pi log (pi/qi). Recall that in Section 3.3, we paid close attention to the vertices of

logarithmic Voronoi polytopes of linear models, and that having polytopes of just one com-
binatorial type was crucial in our analysis. This phenomenon will carry over to the toric
case, except we will need to account for the fact that the logarithmic Voronoi polytopes
have more than one (but finitely many) combinatorial types. In Section 4.1, we will review
results that will be useful in locating vertices of logarithmic Voronoi polytopes of the same
combinatorial type that potentially maximize the information divergence. Then in Section
4.2 we will see how to parameterize the different combinatorial types and how this helps
develop an algorithm to compute D(M). This chapter is based on [6].

Related prior work

The problem of determining D(E) and studying the maximizers of the divergence function
from an exponential family E ⊂ ∆n−1 was first posed by Ay [16] who computed the gradient
of DE(p). The exponential family M of probability distributions of independent random
variables Xi, i = 1, . . . ,m with state spaces [di] := {1, . . . , di} is known as an independence
model. In this case, DM(p) is the multi-information, and D(M) ≤

∑m−1
i=1 log(di) where

2 ≤ d1 ≤ d2 ≤ · · · ≤ dm [18]. In the same work, the structure of the global maximizers of
the multi-information when the above bound is achieved was also determined. Subsequently,
Matúš has computed the optimality conditions forDE(p) for any exponential model E ⊂ ∆n−1

[84]. We will use these conditions heavily. Rauh’s dissertation [100] as well as his work
in [101] gave algorithms to compute D(M) for a discrete exponential family M. These
algorithms have two components: a combinatorial step followed by an algebraic step, both
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of which can be challenging. Nevertheless, they were capable of computing the maximum
multi-information to an independence model with d1 = 2 and d2 = d3 = 3, the smallest
case where the aforementioned bound is not attained. This chapter will provide another
algorithm in the same spirit with combinatorial and algebraic steps. Finally, the literature
contains results on the maximum divergence from certain hierarchical models [83], partition
models [102], naive Bayes models and restricted Boltzmann machines [91].

Preliminaries

Let X be a finite set of cardinality n and let A be a d × n matrix with entries in R. With
respect to the reference measure ω(x), x ∈ X, the exponential family E = Eω,A consists of
the positive probability distributions in ∆n−1 of the form

Pθ(x) =
ω(x)

Zθ

exp

(
d∑

i=1

θiAi,x

)
,

where Ai is the ith row of A and Zθ is the normalizing constant. Here θi ∈ R and E ,
the Euclidean closure of E in ∆n−1, will be referred to as the extended exponential family.
Usually we will identify X with [n] and write pi and ωi instead of P (x) and ω(x), respectively.

In this chapter, we consider discrete exponential families because of the bridge to toric
geometry and algebraic statistics [47, 114]. This means that A is a matrix with integer
entries. Since without loss of generality we can assume that the row span of A

A =
(
a1 a2 · · · an

)
contains (1, 1, . . . , 1), we will take the columns aj ∈ Nd, j = 1, . . . , n and fix the first row of
A to be the row of all ones. The toric variety Xω,A is the Zariski closure in Cn of the image
of the algebraic torus (C∗)d under the monomial map Ψ : (C∗)d −→ Cn given by

z = (z1, . . . , zd) 7→ (ω1z
a1 , ω2z

a2 , . . . , ωnz
an).

Because of the assumption on the first row of A, we can also view Xω,A as a toric variety
in the projective space Pn−1. The following theorem connects exponential families and toric
varieties.

Theorem 4.0.1. [55, Theorem 3.2] The extended exponential family Eω,A equals Xω,A ∩
∆n−1.

Therefore, we will refer to discrete exponential families as toric models. We will denote them
byMω,A or justMA.

Given a toric model MA and a fixed u ∈ ∆n−1, we know from Proposition 1.1.11 that the
minimum DMA

(u) is attained at a unique point q ∈ MA, which the maximum likelihood
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estimate of u. Birch’s Theorem (see [47, Proposition 2.1.5], [78, Theorem 4.8], [94, Theorem
1.10]) states that the maximum likelihood estimate of u is equal to the unique point in the
intersection

MA ∩ {p ∈ ∆n−1 : Au = Ap}.

The second term in this intersection is the polytope Qu := {p ∈ ∆n−1 : Au = Ap}. If
q ∈ MA is the MLE of u, by Birch’s Theorem Qq = Qu. The polytope Qq is precisely the
logarithmic Voronoi polytope at q, which we previously denoted by log VorM(q). Since we
will use logarithmic Voronoi polytopes often in this chapter, we will use the less cumbersome
notation Qq moving forward. The analogue of Proposition 3.3.1 holds in the toric case.

Proposition 4.0.2. Let M ⊂ ∆n−1 be a toric model and let q ∈ M. Then the maximum
of DM(u) restricted to the logarithmic Voronoi polytope Qq is achieved at a vertex of Qq.
The maximizers are a subset of the vertices in Qq.

Proof. It is again true that D(u ∥ q) is strictly convex in u over ∆n−1. The result follows
since Qq is a convex polytope.

Corollary 4.0.3. [16, Proposition 3.2] Let MA ⊆ ∆n−1 be a toric model where A ∈ Nd×n

and rank(A) = d. If p is a maximizer of the information divergence then |supp(p)| ≤ d =
dim(MA) + 1.

Proof. If q ∈ MA is the MLE of p, then p is a vertex of Qq = {u ∈ ∆n−1 : Au = Aq}. Any
vertex of Qq is a basic feasible solution to the system Au = Aq. In other words, it is of the
form p = (pB, pN) where pN = 0 and BpB = Aq with B a d × d invertible submatrix of A.
This shows |supp(p)| ≤ d.

4.1 Critical points of information divergence
For a face F of a given polytope Q, we define the support of F as the union of the supports
of the vertices on F and denote it by supp(F ). This section starts with a definition that will
pave the path for characterizing the critical points of the function DM(·).

Definition 4.1.1. Let Qq be a logarithmic Voronoi polytope at a point on a toric model
MA ⊂ ∆n−1. A vertex v of Qq is complementary if there exists a face F of Qq such that
supp(F ) = [n] \ supp(v). We call F the complementary face of v.

Definition 4.1.2. Let MA ⊂ ∆n−1 be a toric model and let p be a point in ∆n−1 whose
MLE is q with supp(q) = [n]. We say that p is a projection point if

pi =

{
qi∑

j∈supp(p) qj
if i ∈ supp(p)

0 otherwise.
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Remark 4.1.3. We can relax the condition for the full support of the MLE in the above
definition. In this case, we need to consider MLEs that are in the extended exponential
family, namely, those that are on MA and on a proper face Γ of ∆n−1. However, these can
be separately treated by focusing on the toric model MAΓ

⊂ Γ where AΓ consists of the
columns ai of A with i ∈ supp(Γ).

Theorem 4.1.4. If p is a local maximizer of DMA
then p is a projection point. Moreover,

every such projection point is a complementary vertex of Qq where q is the MLE of p. A
complementary vertex v of Qq with the complementary face F is a projection point if and
only if the line passing through v and q intersects the relative interior of F .

Proof. The first statement is proved in [84, Theorem 5.1]. Since p is a local maximizer it
needs to be a vertex of Qq. The point p̃ defined by

p̃i =

{
qi∑

j ̸∈supp(p) qj
if i ̸∈ supp(p)

0 otherwise

is obtained by p̃ = p+ 1∑
j ̸∈supp(p) qj

[q−p] where [q−p] is a vector parallel to the line through p
and q. The support of p̃ is precisely [n] \ supp(p) and therefore it is contained in the interior
of a face F with identical support. Hence p is a complementary vertex and the last statement
follows.

Example 4.1.5. The binomial model of size 3 is precisely the twisted cubic curve from
Example 1.1.12. It is the set of probability distributions on X = {0, 1, 2, 3} parametrized as

qj =

(
3

j

)
θj(1− θ)j, j = 0, 1, 2, 3.

This is a one-dimensional toric model that describes the experiment of flipping a coin with
the bias θ three times. The matrix A can be taken to be

A =

(
1 1 1 1
0 1 2 3

)
.

For u = (u0, u1, u2, u3) ∈ ∆3 the MLE is given by

q0 =
1

27
(3u0 + 2u1 + u2)

3,

q1 =
1

9
(u1 + 2u2 + 3u3)(3u0 + 2u1 + u2)

2,

q2 =
1

9
(u1 + 2u2 + 3u3)

2(3u0 + 2u1 + u2),

q3 =
1

27
(u1 + 2u2 + 3u3)

3.
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The logarithmic Voronoi polytopes are of the form Qb = {u ∈ ∆3 : u1 + 2u2 + 3u3 = b}
where 0 < b < 3. For 0 < b < 1 and 2 < b < 3 these polytopes are triangles. The first kind
has vertices with supports {0, 1}, {0, 2}, and {0, 3}. The vertices of the second kind have
supports {0, 3}, {1, 3}, and {2, 3}. None of these triangles have a complementary vertex.
When b = 1 and b = 2, Qb is still a triangle: the supports of the vertices of Q1 are {1},
{0, 2}, and {0, 3}. Those of Q2 are {0, 3}, {1, 3}, and {2}. In Q1, the vertex (0, 1, 0, 0) is a
projection point with divergence log 9

4
. In Q2, the vertex (0, 0, 1, 0) is a projection point with

the same divergence. The logarithmic Voronoi polytopes for 1 < b < 2 are quadrangles with
vertex supports {0, 2}, {0, 3}, {1, 2}, and {1, 3}. Therefore each vertex is a complementary
vertex where the corresponding complementary face F is a vertex itself. Among all these,
we find projection points only when b = 3/2. The vertices of Q 3

2
are (1

4
, 0, 3

4
, 0), (1

2
, 0, 0, 1

2
),

(0, 1
2
, 1
2
, 0), and (0, 3

4
, 0, 1

4
). All are projection points with the MLE q = (1

8
, 3
8
, 3
8
, 1
8
) which

is the intersection of the diagonals of the quadrangle. The divergences from each vertex to
this binomial model are log(2), 2 log(2), 2 log(2)− log(3), and log(2), respectively. Therefore
(1
2
, 0, 0, 1

2
) is the unique global maximizer attaining D(M) = 2 log(2).

Corollary 4.1.6. [101, Section VI] LetMA be a codimension one toric model in ∆n−1, i.e.,
let rank(A) = d = n − 1. Then there are exactly two projection points and at most two
global maximizers of DMA

.

Proof. The toric variety XA is defined by a single equation which we can assume is of the
form xu1

1 x
u2
2 · · ·xur

r − x
ur+1

r+1 · · ·xun
n where

∑r
i=1 ui =

∑n
j=r+1 uj. The one-dimensional ker(A)

is spanned by (u1, . . . , ur,−ur+1, . . . ,−un), and all logarithmic Voronoi polytopes are one-
dimensional whose affine span is parallel to ker(A). Since each such polytope has exactly two
vertices, the line through these vertices always intersectsMA. Hence, for these vertices to be
projection points, we only need to make sure that they have complementary support. This
can only happen if the vertices are p = (p1, . . . , pr, 0, . . . , 0) and p̃ = (0, . . . , 0, p̃r+1, . . . , p̃n)
where pi = ui∑r

i=1 ui
for i = 1, . . . , r and p̃j =

uj∑n
j=r+1 uj

for j = r + 1, . . . , n. Both points are
projection points and either one or both of them are global maximizers of DMA

.

Example 4.1.7. Let X and Y be two independent binary random variables. The set of
joint probability distributions qij = P(X = i, Y = j) with i, j ∈ {0, 1}2 is parametrized by
qij = aibj. This toric modelMA ⊂ ∆3 has codimension one and can be given by the matrix

A =

 1 1 1 1
0 0 1 1
0 1 0 1

 .

The kernel of A is generated by (1,−1,−1, 1), and the only two projection points are
(1
2
, 0, 0, 1

2
) and (0, 1

2
, 1
2
, 0) with the MLE q = (1

4
, 1
4
, 1
4
, 1
4
). Since the information divergence

from both projection points is log(2) they are both global maximizers.

We finish this section with a result that will be useful later.
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Theorem 4.1.8. [90, Lemma 3.2] Let A1, A2, . . . , Ak be di × ni matrices, i = 1, . . . , k with
nonnegative entries and with the corresponding all ones vector as their first row. Let

A =


A1 0 · · · 0
0 A2 · · · 0
...

... . . . ...
0 0 · · · Ak

 .

Then D(MA) = max{D(MA1), . . . , D(MAk
)}.

Proof. Let n =
∑k

i=1 ni and d =
∑k

i=1 di. The toric variety XA as an affine variety is XA1 ×
· · ·×XAk

and the defining toric ideal is IA = IA1+· · ·+IAk
. Without loss of generality we can

assume that D(MA1) attains the maximum among the maximum information divergences
for MA1 , . . . ,MAk

. Let p(1) ∈ ∆n1−1 be a global maximizer with the associated MLE
q(1). Setting p = (p(1), 0, . . . , 0) and q = (q(1), 0, . . . , 0), we get p ∈ ∆n−1 and q ∈ MA =
∆n−1∩XA. Since DMA

(p∥q) = DMA1
(p(1)∥q(1)) we conclude that DMA

≥ DMA1
. Conversely,

let p = (p(1), . . . , p(k)) be a global maximizer of DMA
with the MLE q = (q(1), . . . , q(k)). Set

p
(i)
+ =

∑ni

j=1 p
(i)
j and q(i)+ =

∑ni

j=1 q
(i)
j . Note that Aip

(i) = Aiq
(i), so p(i)+ = q

(i)
+ , and q(i) ∈ XAi

.
Moreover

∑k
i=1 p

(i)
+ = 1. Now let p̃(i) = 1

p
(i)
+

p(i) and q̃(i) = 1

p
(i)
+

q(i). We see that p̃(i) ∈ ∆ni−1,

and q̃(i) ∈MAi
is the MLE of p̃(i). Since D(p̃(i)∥q̃(i)) = 1

p
(i)
+

D(p(i)∥q(i)) we conclude that

D(MA) = D(p∥q) =
k∑

i=1

D(p(i)∥q(i)) =
k∑

i=1

p
(i)
+ D(p̃(i)∥q̃(i)) ≤ max{D(MA1), . . . , D(MAk

)},

as desired.

4.2 The chamber complex and the algorithm
We devote this section to describing an algorithm to compute D(MA) and the corresponding
global maximizers for a toric model MA. We first introduce the chamber complex of A: a
polytopal complex CA that is supported on the convex hull of (the columns of) A. This
combinatorial object parametrizes all logarithmic Voronoi polytopes for the model MA. In
particular, the finitely many faces (chambers) of CA correspond to all possible combinatorial
types of these logarithmic Voronoi polytopes. It appears that, in order to locate all global
maximizers of DMA

, one needs to examine the vertices of all logarithmic Voronoi polytopes.
With the help of CA we will reduce this task to examining vertices of each combinatorial
type where we essentially do an algebraic computation for each chamber in CA. For any
omitted details in the definition and computation of CA as well as its properties we refer to
[38, Chapter 5].



CHAPTER 4. TORIC MODELS 73

Recall that A is a d× n matrix with nonnegative integer entries and rank(A) = d. We also
assume that the first row of A is the vector of all ones. This means that the convex hull of
the columns of A, conv(A), is a polytope of dimension d− 1 whose set of vertices is a subset
of the columns of A. For a nonempty σ ⊂ [n] we let Aσ = {ai : i ∈ σ}. When |σ| = d and
Aσ is invertible, conv(Aσ) is a (d − 1)-dimensional simplex. We will also use σ to denote
conv(Aσ). By Carathéodory’s theorem [126, Proposition 1.15], conv(A) is the union of all
such simplices.

Definition 4.2.1. For b ∈ conv(A) let Cb :=
⋂
σ∋b
σ. The chamber complex of A is

CA := {Cb : b ∈ conv(A)}.

We note that CA is a polytopal complex supported on conv(A), and each Cb is a face of CA.
Each such face of CA is called a chamber. For every b ∈ conv(A) the set Qb = {p ∈ ∆n−1 :
Ap = b} is a logarithmic Voronoi polytope. The polytope Qb has the maximum dimension
n− d− 1 if and only if b is in the relative interior of conv(A).

Theorem 4.2.2. Let C be a chamber of the chamber complex CA. Then for each b in the
relative interior of C, the vertices of Qb are in bijection with σ ⊂ [n] such that C is contained
in the relative interior of conv(Aσ) where the columns of Aσ are linearly independent. The
support of the vertex corresponding to such σ is precisely σ. More generally, each face F of
Qb is of the form F = Qb ∩

⋂
i ̸∈supp(F )

{pi = 0}. As b varies in the relative interior of C, the

support of each face of Qb as well as the combinatorial type of Qb does not change.

Proof. The polytope Qb is a polyhedron in standard form. Hence, v ∈ ∆n−1 is a vertex
of Qb if and only if Av = b where there exists σ ⊂ [n] such that the columns of Aσ are
linearly independent, and i ̸∈ σ implies vi = 0; see [23, Theorem 2.4]. This is equivalent to
C ⊂ conv(Aσ). The extra condition that C is contained in the relative interior of conv(Aσ)
is equivalent to supp(v) = σ. More generally, each face F of Qb is defined by some subset of
coordinate hyperplanes pi = 0. Since supp(F ) is the union of the supports of all the vertices
on F we conclude that F = Qb ∩

⋂
i ̸∈supp(F )

{pi = 0}. By the first part of this theorem, as b

varies in the relative interior of C, the support of each vertex does not change, and hence
the support of each face does not change. Since each face is determined by the set of vertices
contained in that face this implies that the face lattice of Qb is constant, i.e. every Qb has
the same combinatorial type.

Example 4.2.3. Let

A =

 1 1 1 1 1
0 1 2 3 2
1 0 0 1 2

 ,
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where we denote the columns of A by a, b, c, d, and e. Here conv(A) is a pentagon which,
together with its chamber complex CA, can be seen in Figure 4.1. This chamber com-
plex consists of 10 vertices, 20 edges, and 11 two-dimensional chambers. For some cham-
bers C we have depicted the logarithmic Voronoi polytopes Qb where b is in the relative
interior of C. For instance, the horizontal (red) edge of the pentagonal chamber sup-
ports logarithmic Voronoi polytopes that are quadrangles. The supports of their vertices
are {a, d}, {a, c, e}, {b, c, e}, and {b, d, e} because C is contained in the relative interiors of
conv(Aa,d), conv(Aa,c,e), conv(Ab,c,e), and conv(Ab,d,e).

a

b c

d

eace

abe

ade

ade

bde

bce

ace

ace

beade

bde

bce

ace
acd

abd

ace

ad
be

ad

bde

bce

ace

Figure 4.1: The chamber complex of a pentagon.

Remark 4.2.4. Although each chamber of CA gives rise to logarithmic Voronoi polytopes
of MA that have the same combinatorial type, different chambers might yield identical
combinatorial types. For instance, in Example 4.2.3 we see that there are multiple chambers
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that support logarithmic Voronoi polytopes that are triangles or quadrangles. In fact, CA
parametrizes these polytopes according to a finer invariant, namely, the normal fan of each
polytope. We will not directly need this finer differentiation, though we will use the fact
from Theorem 4.2.2 that the supports of the faces of Qb given by b in a fixed chamber are
constant.

Remark 4.2.5. In the algorithm we present, first we have to compute the chamber complex
CA. Using Definition 4.2.1 for this computation is highly inefficient. Here is an outline for a
more efficient way. First, one computes a Gale transform B of A where B is a (n − d) × n
matrix whose rows form a basis for the kernel of A. Then the secondary fan ΠB of B is
computed. This is a complete fan in Rn in which each cone consists of weight vectors that
induce the same regular subdivision of the vector configuration given by the n columns of
B. The cones of the secondary fan ΠB are in bijection with the chambers of CA. More
precisely, if u1, . . . , uk are the generators of a cone in ΠB the corresponding chamber in CA is
the convex hull of Au1, . . . , Auk. The details can be found in [38, Section 5.4]; in particular,
for the claimed bijection see Theorem 5.4.5 in the same reference. We used Gfan [70] to
compute ΠB which can also be accessed via Macaulay 2 [60].

Example 4.2.6. As the matrix A gets larger, all of these computations become challenging.
To give an idea, we consider the toric modelMA that is the independence model of a binary
and two ternary random variables. It is a 5-dimensional model in ∆17. The f -vector of
the 5-dimensional polytope conv(A) is (18, 45, 48, 27, 8), i.e., this polytope has 18 vertices,
45 edges, etc. The chamber complex CA that was computed via the methods outlined in
Remark 4.2.5 has the f -vector

(3503407, 33084756, 105341820, 151227738, 100828884, 25361616).

The computation took about two days on a standard laptop, and it could only be done after
taking into account the symmetries of conv(A). We note that, luckily, this computation needs
to be done only once, and once CA is computed, its chambers have to be processed as we will
explain in our algorithm. This processing can be shortened by considering the symmetries
of the chamber complex (if there are any) as well as by using a few simple observations on
the structure of the supports of the vertices of the logarithmic Voronoi polytopes. We will
outline these ideas below.

According to Theorem 4.1.4, given a logarithmic Voronoi polytope Qb where b ∈ conv(A), we
need to identify complementary vertices of Qb and decide whether any of these vertices are
projection points. These, in turn, are potential local and global maximizers of DMA

. The
following proposition gives a way to decide whether a complementary vertex is a projection
point.

Proposition 4.2.7. Let v be a complementary vertex of the logarithmic Voronoi polytope
Qb of a toric model MA with the complementary face F . Let Lv,F be the collection of the
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lines passing through v and each point on F . Then v is a projection point if and only if Lv,F

intersectsMA.

Proof. By Birch’s theorem, Qb intersects MA in a single point, namely, the MLE q of any
point p in Qb. The vertex v is a projection point if and only if one of the lines in Lv,F passes
through q. This happens if and only if Lv,F intersectsMA in the only possible point q.

In light of Proposition 4.2.7, to check whether a complementary vertex v of Qb is a projection
point reduces to an algebraic computation. Let F be the complementary face of dimension
k. Then Lv,F , the Zariski closure of Lv,F , is an affine subspace of dimension k + 1 whose
defining equations can easily be computed. For instance, if v1, . . . , vk+1 are vertices of F that
are affinely independent, then Lv,F is the image of the map

(s, t1, . . . , tk+1) 7→ sv + (1− s)(t1v1 + · · ·+ tk+1vk+1)

where t1 + . . .+ tk+1 = 1. To intersect Lv,F with MA we use the equations of Lv,F and the
binomial equations defining the toric variety XA. Since Lv,F is contained in the affine span
of Qb, and since the latter affine subspace intersects XA in finitely many complex points (see
Definition 4.4.1), Lv,F intersectsXA also in finitely many points. They can be computed using
a numerical algebraic geometry software such as Bertini [19] or HomotopyContinuation.jl [27].
Finally, one checks whether this finite set contains a point with positive coordinates.

Example 4.2.8. We use Example 4.2.3. The point b = (1, 7/4, 1) is the midpoint of the
horizontal (red) edge of the pentagonal chamber. The vertex v = (5/12, 0, 0, 7/12, 0) of Qb is
complementary to another vertex v1 = (0, 1/4, 1/4, 0, 1/2). The toric variety XA is defined
by the equations

p22p
2
4 − p33p5 = p1p

3
3 − p32p4 = p1p4 − p2p5 = 0.

The affine subspace spanned by v and v1 is just a line defined by

12p4 + 14p5 − 7 = 2p3 − p5 = 2p2 − p5 = 12p1 + 10p5 − 5 = 0.

The intersection of XA with Lv,{v1} is empty. Hence, we conclude that v is not a projection
point.

The above discussion describes a way of checking whether a complementary vertex of a fixed
logarithmic Voronoi polytope Qb is a projection point. Next, we describe how to accomplish
the same task for a complementary vertex of Qb as b varies in the interior of a fixed chamber
C in the chamber complex CA. By Theorem 4.2.2 each such Qb has the same combinatorial
type and the support of any face of Qb stays constant. Now let (v(b), F (b)) be a pair of
a complementary vertex and its corresponding complementary face in Qb where b is in the
relative interior of a chamber C. Let w1, . . . , wm be the vertices of C. Then b =

∑m
i=1 riwi

where
∑m

i=1 ri = 1 and ri ≥ 0 for all i = 1, . . . ,m. This means that the coordinates of v(b)
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and those of the vertices v1(b), . . . , vz(b) of F (b) are linear functions of r1, . . . , rm. Next, we
parametrize a general point w(b) on F (b) via w(b) =

∑z
i=1 tivi(b) where

∑z
i=1 ti = 1 and

ti ≥ 0 for all i = 1, . . . , z. Finally, the line segment between v(b) and w(b) is parametrized
by sv(b)+ (1− s)w(b) where 0 ≤ s ≤ 1. The last expression gives points in ∆n−1 where each
coordinate is a polynomial in the parameters r1, . . . , rm, t1, . . . , tz, and s, and it defines the
map

Ψv,F : ∆m−1 ×∆z−1 ×∆1 −→ ∆n−1.

Proposition 4.2.7 implies that v(b) is a projection point for some b ∈ C if and only if the image
of Ψv,F intersects MA. Again, this boils down to an algebraic computation. We substitute
the coordinates of sv(b) + (1 − s)w(b) into the equations defining XA, check whether this
system of equations has solutions in Cm+z+1, and if there are any, compute imΨv,F ∩MA by
imposing the positivity constraints on the solution set. The resulting semi-algebraic set is
then the feasible region over which DMA

can be maximized to identify local maximizers with
support equal to the support of v(b). Finally, we locate the global maximizer(s) among these
local maximizers contributed by each chamber C of the chamber complex CA that supports
projection points. We summarize this in a high-level algorithm.

Algorithm:

Input: A ∈ Nd×n that defines a toric modelMA ⊂ ∆n−1 of dimension d− 1.
Output: All maximizers of DMA

.

1. Compute the equations of the toric variety XA.

2. Compute the chamber complex CA.

3. For each chamber C in CA do:

a) for any fixed b̂ in the relative interior of C compute the face lattice of Qb̂ and
identify complementary vertex/face pairs (v, F );

b) for each (v, F ) do:

i. compute the parametrization Ψv,F and substitute it into the equations of XA;
ii. if the resulting algebraic set in Cm+z+1 is nonempty then

∗ compute the semi-algebraic set imΨv,F ∩MA by imposing positivity con-
straints on the parameters in Ψv,F ;

∗ find the maximizers DC,v,F of DMA
over imΨv,F ∩MA.

4. Identify global maximizers of DMA
by comparing all DC,v,F .

Example 4.2.9. We illustrate this algorithm using the toric model of Example 4.2.3. The
equations ofXA are the three polynomials computed in Example 4.2.8. The chamber complex
CA is the polytopal complex in Figure 4.1. The chambers which support complementary
vertices are the (relative interior of) the boundary edges of the pentagonal chamber. Step 3
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is executed only for these chambers. For instance, the horizontal edge is the convex hull of
its vertices (3/2, 1) and (2, 1), and the unique complementary vertex/face pair (v, F ) is given
by vertex v with support {a, d} and the vertex F with support {b, c, e}. We note that for
such pair of complementary vertices (v, {w}) we do not need to consider the pair (w, {v})
in the next computation. The parametrization Ψv,F is given by

(r1, s) 7→
(
s(
1

6
r1 +

1

3
), (1− s)r1

2
, (1− s)1− r1

2
, s(−1

6
r1 +

2

3
),

1− s
2

)
,

where we are parametrizing b on this edge by r1(3/2, 1) + (1 − r1)(2, 1). Substituting Ψv,F

into the equations of XA results in

s2r21 + 7s2r1 − 8s2 − 18sr1 + 9r1 = 0

197s4r1 − 194s4 − 1401s3r1 − 3sr31 + 1014s3 + 4398s2r1 + 246sr21 − 2094s2 − 5837sr1 − 81r21 + 2s+ 2349r1 = 0

885s4 − 31312s3r1 − 294sr31 + 32392s3 + 179435s2r1 + 17016sr21 − 117350s2 − 295438sr1 − 6165r21 + 2560s+ 129141r1 − 591 = 0.

This is a zero-dimensional system that has 11 solutions which we have computed using
Bertini. Four of these are complex and seven are real. There is a unique real solution where
0 < r1, s < 1, namely

r1 = 0.4702953126494577 and s = 0.4106301713351522.

The corresponding KL-divergence at the vertex v is 0.890062259952966. At the vertex w,
the divergence is 0.528701425022976. For each of the remaining four edges of this pentagonal
chamber we also get a pair of projection vertices with corresponding KL-divergences equal to

0.729916767214609 and 0.657681783609608

0.736523721240758 and 0.651574202843057

0.927851227501820 and 0.503192212618303

0.856820834934792 and 0.552532602066626.

The global maximizer is the vertex

v = (0, 0.6722451790633609, 0, 0, 0.3277548209366391)

corresponding to the divergence value 0.927851227501820. It is a vertex of the logarithmic
Voronoi polytope Qb where b = (1.3277548209366392, 0.6555096418732783) lies on the edge
of the pentagonal chamber contained in the line segment between (1, 0) and (2, 2).

The basic algorithm above can be improved on many fronts. We will now present some ideas
for such improvements.

For Step 1, one could replace the equations of XA, which could be challenging to compute
for large models, with n − d equations corresponding to a basis of kerZ(A). Let B be an
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(n− d)× n matrix whose rows bi, i = 1, . . . , n− d form such a basis. The lattice basis ideal

IB = ⟨
n∏

j=1

p
b+ij
j −

n∏
j=1

p
b−ij
j , i = 1, . . . , n− d⟩

where bi = b+i − b−i with b+i , b
−
i ≥ 0 and supp(b+i ) ∩ supp(b−i ) = ∅ defines a variety YB

containing XA. In fact, YB is the union of XA together with varieties contained in various
coordinate subspaces defined by setting a subset of coordinates equal to zero (see [109,
Section 8.3] and [64]). This means that M>0

A = XA ∩∆◦
n−1 is equal to YB ∩∆◦

n−1. This is
what is ultimately needed in Step 3.b.ii.

For Step 2, Example 4.2.6 illustrated that computing CA might be out of reach due to the
combinatorial explosion in the number of chambers. However, one does not need to compute
CA all at once. It can be computed one chamber at a time. This is how a software like Gfan
[70] internally computes CA based on reverse search enumeration [15]. In this case, Step 3
can be executed as chambers get computed.

In Step 3, not all chambers need to be considered. For instance, any chamber that is con-
tained in the boundary of conv(A) can be skipped: if b is in such a chamber, the logarithmic
Voronoi polytope Qb is contained in the boundary of ∆n−1. Such Qb does not contribute
global maximizers of DMA

. There are also ways to eliminate chambers since they cannot
contain complementary vertices. We present a few ways this can be done.

Proposition 4.2.10. Suppose conv(A) is a simplicial polytope where each column of A is a
vertex. Let C be a chamber that intersects the boundary as well as the interior of conv(A).
Then for any b that is in the relative interior of C, the logarithmic Voronoi polytope Qb does
not contain complementary vertices.

Proof. The intersection of C with the boundary of conv(A) is a simplex spanned by a subset
of columns of A, say Ai1 , . . . , Aik . Then the support of every vertex ofQb contains {i1, . . . , ik}.
This disallows the existence of complementary vertices.

Note, for instance, in our running Example 4.2.3, it is enough to consider the pentagonal
chamber and its faces by the above proposition. In fact, the interior of this chamber does
not have to be considered either for the following reason.

Proposition 4.2.11. Let C be a chamber of dimension k where k+1 > n/2. Then for any
b that is in the relative interior of C, the logarithmic Voronoi polytope Qb does not contain
complementary vertices.

Proof. By Theorem 4.2.2, each of the vertices of Qb has support of size at least k + 1. If a
vertex v ofQb is complementary there must exist a vertex w such that supp(v)∩supp(w) = ∅.
Such two vertices can only exist when 2(k + 1) ≤ n.
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Proposition 4.2.12. If (v, F ) is a pair of a complementary vertex and its complementary
face F where both v and F are contained in the same facet F ′ of Qb, then v cannot be a
projection point.

Proof. The line segments from v to the points in F are entirely contained in F ′ which is in
the boundary of ∆n−1. Then v cannot be a projection point since no such line segment can
intersect the toric modelMA in the interior of ∆n−1.

Again, we note that, Proposition 4.2.12 rules out the zero-dimensional chambers that are the
vertices of the pentagonal chamber in Example 4.2.3 since they give rise to complementary
pairs (v, F ) lying in the same facet of their logarithmic Voronoi polytope.

Proposition 4.2.13. Let C be a chamber in the chamber complex CA. If no two vertices of
the logarithmic Voronoi polytope Qb corresponding to points b in the relative interior of C
have disjoint supports, then the same is true for any chamber C ′ containing C.

Proof. The supports of vertices of Qb′ where b′ is in the relative interior of C ′ are in bijection
with σ′ where columns of Aσ′ are affinely independent and the relative interior of conv(Aσ′)
contains the relative interior of C ′. Since C is a face of C ′, for any σ such that the columns
of Aσ are affinely independent and the relative interior of conv(Aσ) contains the relative
interior of C, there is (possibly multiple) σ′ ⊃ σ as above. Hence if no two vertices of Qb

have disjoint supports, the same is true for Qb′ .

Corollary 4.2.14. Let A ∈ N3×5 such that conv(A) is a planar pentagon. If a logarithmic
Voronoi polytope Qb contains a projection point then b is in the interior of an edge of the
pentagonal chamber. Moreover, each such edge contributes either finitely many projection
points or for every b on the edge, Qb has a projection point.

Proof. Propositions 4.2.10, 4.2.11, and 4.2.12 imply the first statement. Any logarithmic
Voronoi polytope Qb where b is on an edge of the pentagonal chamber has a pair of comple-
mentary vertices (v, w). The Zariski closure of the image of Ψv,w : ∆1 ×∆1 −→ ∆4 in P4

C
is a two-dimensional irreducible surface. Since XA is also two-dimensional and irreducible,
and it is never equal to the former Zariski closure, their intersection has either finitely many
points (this is the generic case) or it is an algebraic curve. This means that imΨv,w ∩MA

has either finitely many points or contains the positive real part of an algebraic curve. In
the second case, the projection of the preimage of this positive real part under Ψv,w to the
first ∆1 in the domain of Ψv,w must be all of ∆1. Hence, for every b on this edge, Qb has a
projection point.

Our final remark about the algorithm concerns the step where DMA
needs to be maximized

over the semi-algebraic set imΨv,F ∩MA. Of course, this is a challenging step. However,
generically one expects this set to be finite. In that case, numerical algebraic geometry tools
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perform well to compute each point in this finite intersection. Another relatively easier case
is when the maximum likelihood degree of XA is one; see Definition 4.4.1. There are two
advantages in this case. First, the intersection of imΨv,F with XA is guaranteed to be in
∆n−1 since the affine span of each logarithmic Voronoi polytope Qb intersects XA in exactly
one point, namely the unique maximum likelihood estimator q(b) in Qb. Second, q(b) is a
rational function of v(b) – an equivalent condition for an algebraic statistical model to have
maximum likelihood degree equal to one. In other words, both v(b) and q(b) are rational
functions of the parameters (r1, . . . , rm) ∈ ∆m−1. In turn, DMA

restricted to the potential
projection points v(b) is a greatly simplified function of the same parameters. Now, one
needs to optimize DMA

(r1, . . . , rm) over ∆m−1.

Example 4.2.15 (Independence model 2 × 3). Consider the independence model of two
random variables, binary X and ternary Y . Similar to Example 4.1.7, this is a 3-dimensional
toric model inside ∆5 given by the matrix

A =


1 1 1 1 1 1
0 0 0 1 1 1
0 1 0 0 1 0
0 0 1 0 0 1

 .

The polytope conv(A) is a triangular prism with six vertices that is highly symmetrical due
to the action of the group S2 × S3 on the states of X and Y . This, in turn, induces a
partition of the elements in the chamber complex CA into symmetry classes. This way, 18
full-dimensional chambers are split into 5 classes, 44 ridges are split into 7 classes, 36 edges
are split into 6 classes, and 11 vertices are split into 3 classes. Figure 4.2 demonstrates
this division of full-dimensional chambers: any chambers that share a color are in the same
symmetry class. The red middle chamber is a bipyramid with a triangular base and is the
only one in its class.

To run the algorithm, note that 9 out of the 11 vertices are on the boundary of conv(A),
and hence do not contribute any projection vertices by Proposition 4.2.12. Call the two
interior vertices b1 and b2. They are both in the same symmetry class and lie on the middle
red full-dimensional chamber. The logarithmic Voronoi polytope at a point corresponding
to b1 is a triangle with no complementary vertices, and the same is true of b2 by symmetry.
Hence, no vertices of the chamber complex will contribute any projection points. Next,
out of 36 edges 21 are on the boundary. Moreover, 6 of the remaining edges contain the
vertex b1 and by symmetry another 6 contain the vertex b2, so we do not need to check
these edges by Proposition 4.2.13. This leaves us with three edges e1, e2, and e3 on the base
of the red bipyramid. We will treat them in the next paragraph. Out of 44 ridges, 14 are
on the boundary, 12 contain vertex b1, and another 12 contain vertex b2. The remaining
6 are in the same symmetry class. Logarithmic Voronoi polytopes corresponding to these
are quadrilaterals with supports like {1234, 1345, 1246, 156} that contain no complementary
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Figure 4.2: Chamber complex of the 2 × 3 independence model (left and middle) and the
middle chamber (right).

vertices. Hence, none of the ridges will contribute projection points. Finally, none of the
three-dimensional chambers will contribute any projection points by Proposition 4.2.11.

Hence, we only need to run step 3 of our algorithm on the edges e1, e2, and e3. By symmetry, it
suffices to run it on e1 only. A point b on this edge can be parametrized as r1(1/2, 1/2, 0)+(1−
r1)(1/2, 0, 1/2). The only vertex-face pair we need to consider is the pair of complementary
vertices (v, {w}), where v = 1/2(1, 0, 0, 0, r1, 1 − r1) and w = 1/2(0, r1, 1 − r1, 1, 0, 0). The
parametrization Ψv,{w} of the line between them gives rise to the single equation (s−1)2−s2 =
0. Therefore s = 1/2, while r1 is a free variable between 0 and 1. Upon substituting
s = 1/2 into D(v, im(Ψv,{w})), we get the constant value log 2. Therefore, the divergence
at every point b of the edge e1 is log 2, attained at the two vertices of the logarithmic
Voronoi polytope v and w. By symmetry, the same is true of e2 and e3. We conclude that
the maximum divergence from this model is log 2 and there are infinitely many maximizers
which we completely characterized above. These maximizers were also studied and visualized
in [18].

4.3 Reducible models
This section is devoted to logarithmic Voronoi polytopes of toric models that are known as
reducible hierarchical log-linear models [47, 65, 78]. Besides giving a structural result about
these polytopes, we also prove results relating the maximum information divergence to such
models with those that are obtained by certain marginalizations. For similar work see [83].

A simplicial complex is a set Γ ⊆ 2[m] such that if F ∈ Γ and S ⊆ F , then S ∈ Γ. The
elements of Γ are called faces. We refer to inclusion-maximal faces of Γ as facets. It is
sufficient to list the facets to describe a simplicial complex. For example, Γ = [12][13][23]
will denote the simplicial complex Γ = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}.
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Let X1, . . . , Xm be discrete random variables. For each i ∈ [m], assume that Xi has the
state space [di] for some di ∈ N. Let R =

∏m
i=1[di] be the state space of the random vector

(X1, . . . , Xm). For each i = (i1, . . . , im) ∈ R and F = {f1, f2, . . .} ⊆ [m], we will denote
iF = (if1 , if2 , . . .). Moreover, each such subset F ⊆ [m] gives rise to the random vector
XF = (Xf )f∈F with the state space RF =

∏
f∈F [df ].

Definition 4.3.1. Let Γ ⊆ 2[m] be a simplicial complex and let d1, . . . , dm ∈ N. For each
facet F ∈ Γ, introduce |RF | parameters θ(F )

iF
, one for each iF ∈ RF . The hierarchical

log-linear model associated with Γ and d = (d1, . . . , dm) is defined to be

MΓ,d =

p ∈ ∆|R|−1 : pi =
1

Z(θ)

∏
F∈facets(Γ)

θ
(F )
iF

for all i ∈ R


where Z(θ) is the normalizing constant defined as

Z(θ) :=
∑
i∈R

∏
F∈facets(Γ)

θFiF .

If u ∈ N|R| is a d1 × · · · × dm contingency table containing data for the random vector
(X1, . . . , Xm) and F = {f1, f2, . . .} ⊆ [m], let uF denote the df1 × df2 × · · · table with
(uF )iF =

∑
j∈R[m]\F

uiF ,j. Such table uF is called the F -marginal of u. For simplicity, we
will denote the simplex in whichMΓ,d lives by ∆Γ,d.

Proposition 4.3.2. [47, Prop. 1.2.9] Hierarchical log-linear models are toric models. For
any simplicial complex Γ ⊂ 2[m] and positive integers d = (d1, . . . , dm), the model MΓ,d is
realized by the 0/1 matrix AΓ,d representing the marginalization map

φ(u) = (uF1 , uF2 , . . .)

where F1, F2, . . . are the facets of Γ. In other words,MΓ,d =MAΓ,d
.

Here we wish to point out that for any point q ∈ ∆Γ,d (in particular, for q ∈ MΓ,d) the
logarithmic Voronoi polytope QΓ

q consists of all p ∈ ∆Γ,d such that φ(p) = φ(q).

Definition 4.3.3. A simplicial complex Γ on [m] is called reducible with decomposition
(Γ1, S,Γ2) if there exist sub-complexes Γ1, Γ2 of Γ and a subset S ⊆ [m] such that Γ = Γ1∪Γ2

and Γ1 ∩ Γ2 = 2S. We say Γ is decomposable if it is reducible and each of the Γ1,Γ2 is
either decomposable or a simplex. A hierarchical log-linear model associated to a reducible
(decomposable) simplicial complex is called reducible (decomposable).
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Decomposition theory of logarithmic Voronoi polytopes

Let Γ be a reducible simplicial complex on [m] with decomposition (Γ1, S,Γ2) and d =
(d1, . . . , dm) ∈ Nm. Suppose Γ1 has the vertex set α = {α1, . . . , αk} and Γ2 has the vertex
set β = {β1, . . . , βs}. Then S = {α1, . . . , αk}∩ {β1, . . . , βs}. We also let dα = (dα1 , . . . , dαk

),
with analogous definitions for dβ and dS. Let p be a point in ∆Γ,d and consider the maps

π1 : ∆Γ,d → ∆Γ1,dα p 7→ p1 = p{α1,...,αk}.

π2 : ∆Γ,d → ∆Γ2,dβ
p 7→ p2 = p{β1,...,βs}.

More precisely,

(π1(p))iα =
∑

j∈R:jα=iα

pj and (π2(p))iβ =
∑

j∈R:jβ=iβ

pj.

Lemma 4.3.4. Let Γ be a reducible simplicial complex on [m] with decomposition (Γ1, S,Γ2)
and d = (d1, . . . , dm) ∈ Nm. Let q ∈ MΓ,d so that q1 = π1(q) and q2 = π2(q). Furthermore,
consider the maps

π′
1 : ∆Γ1,dα → ∆2S ,dS

p 7→ pS

π′
2 : ∆Γ1,dβ

→ ∆2S ,dS
p 7→ pS

defined by
(π′

1(p))iS =
∑

j∈Rα:jS=iS

pj and (π′
2(p))iS =

∑
j∈Rβ :jS=iS

pj.

Then q1 ∈MΓ1,dα and q2 ∈MΓ2,dβ
, and the following diagram commutes:

q ∈MΓ,d

q1 ∈MΓ1,dα q2 ∈MΓ2,dβ

q3 ∈M2S ,dS

π1 π2

π′
1 π′

2

Proof. By the definitions of the maps, π′
1 ◦ π1 = π′

2 ◦ π2. Also, since M2S ,dS
= ∆2S ,dS

it is
clear that q3 ∈ M2S ,dS

. We just need to show q1 ∈ MΓ1,dα and q2 ∈ MΓ2,dβ
. We prove the

first claim since the second one requires the same argument. Let t ∈ MΓ1,dα be the MLE
of q1 and r ∈ MΓ2,dβ

be the MLE of q2. We will show that q1 = t. Note that q ∈ MΓ,d,
so it is its own MLE in the model. Since t is in the same logarithmic Voronoi polytope as
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q1 and r is in the same logarithmic Voronoi polytope as q2, we see that π′
1(t) = tS = q3 and

π′
2(r) = rS = q3. Then by [78, Prop 4.1.4]

qi1,...,im =
(tiα) · (riβ)

(rS)iS
,

where iα = (iα1 , . . . , iαk
) and iβ = (iβ1 , . . . , iβs). Then observe that for any iα, we get

(q1)iα =
∑

j∈R:jα=iα

(tjα) · (rjβ)
(rS)jS

=
tiα

(rS)iS

∑
jβ :jS=iS

rjβ =
tiα · (rS)iS
(rS)iS

= tiα .

Since iα was arbitrary, we get that q1 = t.

Now we are ready to prove the main result of this section. From the discussion so far we
see that π1 and π2 restrict to logarithmic Voronoi polytopes, i.e., π1 : QΓ

p −→ QΓ1
p1

and
π2 : QΓ

p −→ QΓ2
p2

where p1 = π1(p) and p2 = π2(p) for p ∈ ∆Γ,d. In fact, we can take
q = p ∈ MΓ,d so that q1 and q2 are in MΓ1,dα and MΓ2,dβ

, respectively, by the above
lemma. The next theorem reconstructs QΓ

p from the logarithmic Voronoi polytopes QΓ1
p1

and QΓ2
p2

.

Theorem 4.3.5. Let Γ be a reducible simplicial complex on [m] with a decomposition
(Γ1, S,Γ2) and d = (d1, . . . , dm) ∈ Nm. Let ψ : ∆Γ,d → ∆Γ1,dα × ∆Γ2,dβ

be the map
ψ(u) = (π1(u), π2(u)). Then for any q ∈MΓ,d, we have

QΓ
q =

[{
u ∈ ∆Γ,d : ui1,··· ,im =

viα · wiβ

(qS)iS
for v ∈ QΓ1

q1
and w ∈ QΓ2

q2

}
+ ker(ψ)

]
∩∆Γ,d

Proof. We proceed by double containment. To show that the right-hand side is contained in
QΓ

q , let u = u(1)+u(2) ∈ ∆Γ,d where u(1)i1,··· ,im =
viα ·wiβ

(qS)iS
for v ∈ QΓ1

q1
, w ∈ QΓ2

q2
and u(2) ∈ ker(ψ).

Let F = {f1, . . . , fk} be any facet of Γ. Then F is either in Γ1 or in Γ2. Without loss of
generality, assume F is in Γ1. Then for any iF = (if1 , . . . , ifk), we have

((u(1))F )iF =
∑

{jα:jF=iF }

 ∑
{j∈R:jα=iα,jF=iF }

vjα · wjβ

(qS)jS

 =
∑

{jα:jF=iF }

vjα · (wS)jS
(qS)jS

=
∑

{jα:jF=iF }

vjα = (vF )iF = (qF )iF .

Hence u(1) ∈ QΓ
q . But since u(2) ∈ ker(ψ), it has a zero F -marginal for every facet of Γ.

Thus, u = u(1) + u(2) ∈ QΓ
q , as desired.
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To show the reverse containment, let u ∈ QΓ
q and let v ∈ ∆Γ,d be the point defined by

vi1,··· ,im =
(uα)iα · (uβ)iβ

(qS)iS

for all (i1, . . . , im). We write u = v+(u− v). Since uα = π1(u) ∈ QΓ1
q1

and uβ = π2(u) ∈ QΓ2
q2

,
it suffices to show that u − v ∈ kerψ. That is, we must show that [(u − v)α]iα = 0 and
[(u− v)β]iβ = 0. For any iα, [(u− v)α]iα is equal to

(uα)iα −
∑

{j∈R:jα=iα}
(uα)jα ·(uβ)jβ

(qS)jS
= (uα)iα −

(uα)iα
(qS)iS

∑
{jβ :jS=iS}(uβ)jβ = (uα)iα −

(uα)iα ·(uS)iS
(qS)iS

= 0.

Similarly, one shows that (u− v)iβ = 0 as well. Thus, u− v ∈ kerψ, and this concludes the
proof.

In this theorem, the first summand in the Minkowski sum that appears in the decomposition
of QΓ

q is an interesting object. It is nonlinear and captures a portion of QΓ
q .

Definition 4.3.6. Let Γ be a reducible simplicial complex on [m] with decomposition
(Γ1, S,Γ2) and d = (d1, . . . , dm) ∈ Nm. Let p ∈ ∆Γ,d and pi = πi(p) for i = 1, 2. Then
the product of QΓ1

p1
and QΓ2

p2
is defined as

QΓ1
p1
⊗p Q

Γ2
p2

=

{
u ∈ ∆Γ,d : ui1,··· ,im =

viα · wiβ

(pS)iS
for v ∈ QΓ1

p1
and w ∈ QΓ2

p2

}
.

Remark 4.3.7. If p′ ∈ QΓ
p we get the equality of the logarithmic Voronoi polytopes QΓ

p′ =

QΓ
p . Moreover, since p′i = πi(p

′) ∈ QΓi
pi

for i = 1, 2, we see that QΓi

p′i
= QΓi

pi
. Therefore,

QΓ1
p1
⊗p Q

Γ2
p2

= QΓ1

p′1
⊗p′ Q

Γ2

p′2
. In other words, the product depends only on the logarithmic

Voronoi polytope QΓ
p and not on the individual points in the polytope.

Example 4.3.8. Consider the complex Γ = [12][13][23][24][34] for m = 4. Suppose both
X1, X2, X3, and X4 are binary random variables, i.e., di = 2 for all i = 1, . . . , 4. Let
Γ1 = [12][13][23] and Γ2 = [23][24][34], so S = {2, 3}. The logarithmic Voronoi polytopes
QΓ1

p1
and QΓ2

p2
have dimension one whereas the dimension of QΓ

p is six. This is consistent
with Theorem 4.3.5 since QΓ1

p1
⊗p Q

Γ2
p2

is a two-dimensional surface in ∆15 and ker(ψ) has
dimension four. More explicitly, if v = (vijk) and w = (wjkℓ) are points in QΓ1

p1
and QΓ2

p2
,

respectively, where in particular v+jk = v1jk + v2jk and wjk+ = wjk1 +wjk2 are equal to each
other for all j, k = 1, 2, then QΓ1

p1
⊗p Q

Γ2
p2

consists of points u = (uijkℓ) where

uijkℓ =
vijk · wjkℓ

v+jk

.
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Comparing divergences

Since a reducible modelMΓ,d associated to a simplicial complex Γ on [m] with decomposition
(Γ1, S,Γ2) has the two associated models MΓ1,dα and MΓ2,dβ

it is natural to ask how the
divergences from these three models are related. Before we present our contributions we
wish to cite two results of Matúš that are relevant.

Proposition 4.3.9. [83, Lemma 3] For any p ∈ ∆Γ,d and a reducible modelMΓ,d,

DMΓ,d
(p) = DMΓ1,dα

(π1(p))+DMΓ2,dβ
(π2(p))+H(π1(p))+H(π2(p))−H(p)−H((π′

1◦π1)(p))

where H(·) is the entropy.

Proposition 4.3.10. [83, Corollary 3] For a hierarchical log-linear modelMΓ,d we have

D(MΓ,d) ≤ min
F facet of Γ

{∑
i ̸∈F

log di

}
.

With regards to Proposition 4.3.9 we point out that the four entropy terms together give a
nonnegative quantity because of the strong subadditivity property of entropy. Therefore, for
a reducible model we get the inequality DMΓ,d

(p) ≥ DMΓ1,dα
(π1(p)) + DMΓ2,dβ

(π2(p)). We
state and prove a similar inequality in Corollary 4.3.13. In the case when the point p lives
in the product portion of its logarithmic Voronoi polytope (as in Theorem 4.3.5), we recover
the equality below.

Proposition 4.3.11. Let Γ be a reducible simplicial complex on [m] with decomposition
(Γ1, S,Γ2) and d = (d1, . . . , dm) ∈ Nm. Let p ∈ ∆Γ,d and pi = πi(p) for i = 1, 2. If u = v⊗pw
where v ∈ QΓ1

p1
and w ∈ QΓ2

p2
, then DMΓ,d

(u) = DMΓ1,dα
(v) +DMΓ2,dβ

(w).

Proof. Let t ∈ MΓ1,dα and r ∈ MΓ2,dβ
be the respective maximum likelihood estimators of

v and w. Similarly, let q ∈ MΓ,d be the maximum likelihood estimator of u. By [78, Prop
4.1.4], q = t⊗p r and

DMΓ,d
(u) =

∑
i∈R

ui log(ui/qi) =
∑
i∈R

ui log(viα/tiα) +
∑
i∈R

ui log(wiβ/riβ).

Since (uα)iα =
∑

j∈R:jα=iα
uj = viα and (uβ)iβ =

∑
j∈R:jβ=iβ

uj = wiβ (see the proof of Lemma
4.3.4) we conclude that

DMΓ,d
(u) =

∑
iα

viα log(viα/tiα) +
∑
iβ

wiβ log(wiβ/riβ) = DMΓ1,dα
(v) +DMΓ2,dβ

(w).
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Corollary 4.3.12. Let Γ be a reducible simplicial complex on [m] with decomposition
(Γ1, S,Γ2) and d = (d1, . . . , dm) ∈ Nm. Let p ∈ ∆Γ,d and pi = πi(p) for i = 1, 2. Suppose
v ∈ QΓ1

p1
maximizes the divergence to MΓ1,dα over all points in QΓ1

p1
. Similarly, suppose

w ∈ QΓ2
p2

and p′ ∈ QΓ
p be such maximizers. Then DMΓ,d

(p′) ≥ DMΓ1,dα
(v) +DMΓ2,dβ

(w).

Proof. Use Proposition 4.3.11 with DMΓ,d
(p′) ≥ DMΓ,d

(u) where u = v ⊗p w.

The corollary has the following implication for the maximum divergence to a reducible model.

Corollary 4.3.13. Let Γ be a reducible simplicial complex on [m] with decomposition
(Γ1, S,Γ2) and d = (d1, . . . , dm) ∈ Nm. Let p ∈ ∆Γ,d be a point that attains the maximum
divergence D(MΓ,d) and pi = πi(p) for i = 1, 2. If QΓ1

p1
and QΓ2

p2
contain points which

attain the maximum divergence D(MΓ1,dα) and D(MΓ2,dβ
), respectively, then D(MΓ,d) ≥

D(MΓ1,dα) +D(MΓ2,dβ
).

Independence and related models

We have already encountered an independence model in Example 4.2.15. More generally,
for discrete random variables X1, . . . , Xm with respective state spaces [di], the independence
model is the hierarchical log-linear model on [m] associated to the simplicial complex Γ
consisting of just the m vertices Γ = [1][2] · · · [m]. This is a reducible (in fact decomposable)
model. Proposition 4.3.10 immediately implies the following (see also [18]).

Corollary 4.3.14. Let M be the independence model of m discrete random variables
X1, . . . , Xm with state spaces [di], respectively, where d1 ≤ d2 ≤ · · · ≤ dm. Then

D(M) ≤ log d1 + · · ·+ log dm−1.

Those independence models which achieve the upper bound in this result have been charac-
terized [18, Theorem 4.4]. For instance, when m = 2 as well as in the case of d1 = · · · = dm,
the upper bound is achieved. Since we will use it later we record a precise result regarding
the latter case. For this, let Sd+1 denote the group of permutations on {0, 1, . . . , d} and let
δ denote the Dirac delta (indicator) function. Namely, δv returns a vector in Rn that has 1
in the coordinate indexed by v and 0 everywhere else.

Theorem 4.3.15. [18] LetM be the independence model of m (d+1)-ary random variables.
Then the maximum divergence from M is D(M) = (m − 1) log(d + 1). This maximum
value is achieved at vertices of the logarithmic Voronoi polytope at the unique point q =(

1
(d+1)m

, . . . , 1
(d+1)m

)
. Each maximizer has the form 1

d+1

∑d
j=0 δj,σ2(j),...,σm(j) where σi ∈ Sd+1

for all i = 2, . . . ,m.

Now we wish to illustrate the utility of Corollary 4.3.13 for independence models in two
examples.
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Example 4.3.16. The independence modelM222 of three binary variables is a 3-dimensional
model in ∆7. We denote the coordinates of the points in ∆7 by pijk where i, j, k = 1, 2. By
using Corollary 4.3.13 we can show that D(M222) = 2 log 2. Note that this model is reducible
with Γ = (Γ1, S,Γ2) where Γ1 = [1][2], Γ2 = [2][3], and S = {2}. The modelsMΓ1 andMΓ2

are themselves independence models of two binary variables. In Example 4.1.7 we saw that
D(MΓ1) = D(MΓ2) = log 2 where there are exactly two maximizers

v = (v11, v12, v21, v22) = (
1

2
, 0, 0,

1

2
) and w = (w11, w12, w21, w22) = (0,

1

2
,
1

2
, 0).

We will view v and w as elements of the logarithmic Voronoi polytopes QΓ1
v and QΓ2

w , re-
spectively. These two polytopes are compatible in the sense that π′

1(v) = (v+1, v+2) = (1
2
, 1
2
)

is equal to π′
2(w) = (w1+, w2+) = (1

2
, 1
2
). In other words, there exists a logarithmic Voronoi

polytope QΓ
p such that QΓ1

v ⊗ QΓ2
w ⊂ QΓ

p . Here p = v ⊗ w where pijk =
vijwjk

v+j
, and we see

that p112 = p221 =
1
2
. Since DM222(p) = D(MΓ1) +D(MΓ2) = log 2+ log 2 we conclude that

D(M222) = 2 log 2.

Example 4.3.17. Now we consider the independence model M233. Corollary 4.3.14 states
that D(M233) ≤ log 2 + log 3, but this bound cannot be attained by [18, Theorem 4.4]. We
wish to provide a rationale based on Corollary 4.3.13. The modelMΓ1 is the independence
model of a binary and a ternary random variables, and the modelMΓ2 is the independence
model of two ternary random variables. By Example 4.2.15, there are six types of divergence
maximizers for MΓ1 . If we denote the points in ∆5 in which MΓ1 is contained by v =
(v11, v12, v13; v21, v22, v23) these maximizers are

(
1

2
, 0, 0; 0,

r

2
,
1− r
2

) (0,
r

2
,
1− r
2

;
1

2
, 0, 0)

(0,
1

2
, 0;

r

2
, 0,

1− r
2

) (
r

2
, 0,

1− r
2

; 0,
1

2
, 0)

(0, 0,
1

2
;
r

2
,
1− r
2

, 0) (
r

2
,
1− r
2

, 0; 0, 0,
1

2
)

where 0 < r < 1. According to Theorem 4.3.15, there are six divergence maximizers of
MΓ2 ⊂ ∆8. If we denote the points in ∆8 by w = (wjk : j, k = 1, 2, 3) these maximizers are
wσ for each σ ∈ S3 given by

wid
11 = wid

22 = wid
33 =

1

3
w

(1 2)
12 = w

(1 2)
21 = w

(1 2)
33 =

1

3

w
(1 3)
13 = w

(1 3)
22 = w

(1 3)
31 =

1

3
w

(2 3)
11 = w

(2 3)
23 = w

(2 3)
32 =

1

3

w
(1 2 3)
12 = w

(1 2 3)
23 = w

(1 2 3)
31 =

1

3
w

(1 3 2)
13 = w

(1 3 2)
21 = w

(1 3 2)
32 =

1

3

Now we see that π′
1(v) = (v+1, v+2, v+3) and π′

2(w
σ) = (wσ

1+, w
σ
2+, w

σ
3+) = (1

3
, 1
3
, 1
3
) are not

equal to each other for any choice of the maximizer v of MΓ1 and wσ of MΓ2 . This means
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that QΓ1
v and QΓ2

wσ are not compatible. In other words, it is impossible to apply Corollary
4.3.13. Indeed, the bound cannot be attained as it was explicitly shown in [101, Example 20].
The maximum divergence is equal to log(3 + 2

√
2) < log 6 = log 2 + log 3. Up to symmetry

there is a unique global maximizer given by

p111 =
√
2− 1, p222 = p233 = 1−

√
2

2
.

We believe that for reducible models induced by Γ = (Γ1, S,Γ2) finding compatible logarith-
mic Voronoi polytopes QΓ1

v and QΓ2
w that will give meaningful bounds for D(MΓ) is worth

exploring.

We close our discussion of reducible hierarchical log-linear models with a result involving
conditional independence. For this we consider three random variables X1, X2, and X3 with
state spaces [d1], [d2], and [d3], respectively. We let d = (d1, d2, d3). The simplicial complex
we will use is Γ = [12][23] with the decomposition ([12], {2}, [23]). The toric model MΓ,d

consists of the joint probability distributions where X1 ⊥⊥ X3 |X2.

Proposition 4.3.18. Let Γ be the reducible simplicial complex on [3] with decomposition
([12], {2}, [23]) and d = (d1, d2, d3) ∈ N3. Then D(MΓ,d) = min(log d1, log d3).

Proof. Proposition 4.3.10 implies that D(MΓ,d) ≤ min(log d1, log d3). The 0/1 matrix AΓ,d

defining the model can be organized as follows. Recall that this model is defined by the
parametrization pijk = aijbjk with i ∈ [d1], j ∈ [d2], and k ∈ [d3]. We order the indices
(i, j, k) lexicographically as follows: (i, j, k) < (i′, j′, k′) if j < j′, or if j = j′ and i < i′, or
if j = j′ and i = i′ and k < k′. We sort the columns of AΓ,d with respect to this ordering.
We will also sort the rows of the matrix into d2 blocks where in block j we list first the rows
corresponding to the parameters aij with i = 1, . . . , d1 and then the parameters bjk with
k = 1, . . . , d3. Then

AΓ,d =


Ad1,d3 0 · · · 0
0 Ad1,d3 · · · 0
...

... . . . ...
0 0 · · · Ad1,d3


where Ad1,d3 is the matrix defining an independence model of two random variables with state
spaces [d1] and [d3]. Since the maximum divergence from such a model is min(log d1, log d3),
and each block gives the same maximum divergence, Theorem 4.1.8 implies the result.

4.4 Models of ML degree one
I start by introducing the following version of the definition of ML degree, specifically for
toric models.
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Definition 4.4.1. The maximum likelihood degree (ML degree) of a toric modelMA ⊂ ∆n−1

is the number of points in Cn that are in the intersection of the toric variety XA and the
affine span of the logarithmic Voronoi polytope Qb, where b = Au for a generic u ∈ ∆n−1.

The definition above is equivalent to the standard Definition 1.1.8. Moreover, a model has
ML degree one if and only if the maximum likelihood estimate of any data u ∈ ∆n−1 can
be expressed as a rational function of the coordinates of u [67]. We study the maximum
divergence to such models in this section. Two dimensional models (toric surfaces) of ML
degree one were classified in [37] along with some families of three dimensional models. We
treat these families and the generalizations of some of them.

Multinomial distributions

We start by considering m independent identically distributed (d+ 1)-ary random variables
X1, . . . , Xm with state spaces {0, . . . , d}. Let sj be the probability of state j, and let pi0...id
denote the probability of observing exactly ij occurrences of state j for each j ∈ {0, 1, . . . , d}.
Thus, pi0...id =

(
m

i0,...,id

)
si00 . . . s

id
d and we have the d-dimensional toric model parametrized as

φ : ∆d → ∆n−1 : (s0, . . . , sd) 7→ (pi0...id : Σij = m)

where n =
(
m+d
d

)
. We refer to the the Zariski closure of the image of φ as the twisted

Veronese model and denote it by Vd,m. The columns of the matrix A corresponding to the
parametrization are the nonnegative integer solutions to i0 + · · ·+ id = m. Note that A has
the constant vector n1 in its rowspan. Moreover, it has the same rowspan as the matrix A′

whose columns are of the form (1, v) where v ∈ Rd is a nonnegative integer solution to the
inequality i1 + · · · + id ≤ m. Thus, geometrically, the model is given by all lattice points
in the convex hull of {0,me1, . . . ,med} ⊆ Rd, a d-dimensional simplex dilated by a factor
of m. Hence Vd,m is isomorphic to the Veronese variety, except the weights are modified so
that Vd,m has ML degree one. That is, if we were to change all multinomial coefficients in
the definition of pi0...id to 1, we would recover the usual Veronese variety.

Since the ML degree of Vd,m is one, the MLE can be expressed as a rational function of the
data. Fix u ∈ ∆n−1 and suppose u is in the logarithmic Voronoi polytope Qp at some un-
known p = (p1, . . . , pn) ∈ Vd,m. Let Ap = b where b = (b0, . . . , bd) is the point corresponding
to p in conv(A). Then each coordinate of the MLE of u can be expressed as

qi0,...,id =

(
m

i0, . . . , id

)(
b0
m

)i0

· · ·
(
bd
m

)id

. (4.1)

Example 4.4.2 (d = 2,m = 3). Consider the twisted Veronese variety V2,3. As discussed
above, the defining matrices A and A′ can be written as either

A =

3 2 2 1 1 1 0 0 0 0
0 1 0 2 1 0 3 2 1 0
0 0 1 0 1 2 0 1 2 3

 or A′ =

1 1 1 1 1 1 1 1 1 1
0 1 0 2 1 0 3 2 1 0
0 0 1 0 1 2 0 1 2 3

 .
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In our computations, we will usually use the matrix A. The polytope associated to V2,3 is
plotted in Figure 4.3 on the left.

b
b

Figure 4.3: Twisted Veronese models V2,3 and V3,2, respectvely.

The maximum divergence from V2,3 is 2 log 3, achieved at the unique point v ∈ ∆9, uniformly
supported on 3e1, 3e2, and 3e3, i.e. v300 = v030 = v003 = 1/3 and all other coordinates of v
are 0. Note that v is a vertex of the logarithmic Voronoi polytope Qb corresponding to the
centroid b of conv(A), i.e. Aq = b = (1, 1, 1). The point q can be computed using (4.1), so
q = (1/3)3(1, 3, 3, 3, 6, 3, 1, 3, 3, 1). The maximum divergence is

D(v||q) = v300 log(v300/q300) + v030 log(v030/q030) + v003 log(v003/q003)

= 1/3 log(33/3) + 1/3 log(33/3) + 1/3 log(33/3) = 2 log 3.

Example 4.4.3 (d = 3,m = 2). For the twisted Veronese model V3,2, the maximum diver-
gence is log 4. It is achieved at 10 different vertices of the logarithmic Voronoi polytope at
the point q = 1/16(1, 2, 1, 2, 2, 1, 2, 2, 2, 1). Note that Aq = b = (1/2, 1/2, 1/2, 1/2), which is
again the centroid of conv(A). One of such vertices is v = (1/4, 0, 1/4, 0, 0, 0, 0, 0, 1/2, 0), so
the divergence is D(v||q) = 1/4 log 4 + 1/4 log 4 + 1/2 log 4 = log 4. The polytope conv(A)
for this model is shown in Figure 4.3 on the right. Each of the 10 maximizers arises from
one of the 10 permutations in S4 of order at most two. This will follow from the proof of
Theorem 4.4.4 in the next section.

The formula for the maximum divergence from a general model Vd,m as well as the full
description of maximizers were given in [73]. We summarize these results in the theorem
below. A more detailed discussion about the maximizers will be presented in the next section.

Theorem 4.4.4. [73, Theorem 1.1] The maximum divergence to Vd,m equals (m−1) log(d+
1). It is achieved at some vertices of the unique logarithmic Voronoi polytope Qb where
b =

(
m
d+1

, . . . , m
d+1

)
. There is a unique vertex of this polytope maximizing divergence if and

only if m > 2.
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Box model

In this section we will consider a generalization of the twisted Veronese model. Suppose we
have k > 1 groups of random variables, with ai independent identically distributed (d+ 1)-
ary random variables with state space {0, . . . , d} in the ith group for i ∈ [k]. Let siℓ be
the probability of state ℓ in the group i and let p(j10...j1d),...,(jk0...jkd) denote the probability
of observing exactly jiℓ occurrences of state ℓ in the group i. Hence, p(j10...j1d),...,(jk0...jkd) =∏k

i=1

(
ai

ji0...jid

)
s
ji0
i0 . . . s

jid
id and we have a kd-dimensional toric model parametrized as

∆d × . . .×∆d → ∆n−1 : ((s10, . . . , s1d), . . . , (sk0, . . . , skd)) 7→ (p(j10...j1d),...,(jk0...jkd) : 0 ≤ jiℓ ≤ ai),

where n =
∏k

i=1

(
ai+d
d

)
. The columns of the corresponding matrix A are naturally identified

with the nonnegative integer solutions to the linear system ji0+ . . .+ jid = ai for i ∈ [k]. We
will refer to this model as the box model motivated by the shape of conv(A) when d = 1.
We denote these models by B(d)

a1,...,ak . The special case when d = 1, k = 2 was studied in [37].
The box model also has ML degree one, and hence the MLE can be written as a rational
function of data. For u ∈ ∆n−1 such that Au = b = ((b10, . . . , b1a1), . . . , (bk0, . . . , bkak)), the
MLE is

q(j10...j1d),...,(jk0...jkd) =
k∏

i=1

(
ai

ji0, . . . , jid

)(
bi0
ai

)ji0

. . .

(
bid
ai

)jid

.

Theorem 4.4.5. The maximum divergence to the model B(d)
a1,...,ak equals (a1 + . . . + ak −

1) log(d+1). It is achieved at [(d+1)!]k−1 vertices of the unique logarithmic Voronoi polytope
Qb such that b = (( a1

d+1
, . . . , a1

d+1
), . . . , ( ak

d+1
, . . . , ak

d+1
)).

Our proof of Theorem 4.4.5 relies heavily on the methods used to prove Theorem 4.4.4 in
[73]. Before we present both proofs, we outline the general theory below.

Let F be a model inside the simplex ∆N−1. Let SN be the symmetric group of all permu-
tations on [N ]. This group acts on ∆N−1 by permuting the coordinates of the points in the
simplex. Let G be a subgroup of SN .

Definition 4.4.6. The model F is said to be G-symmetrical if for all σ ∈ G and all p ∈ F ,
we have σp ∈ F . A point p ∈ ∆N−1 is said to be G-exchangeable if for all σ ∈ G, we have
σp = p.

Let F be a G-symmetrical model and let F/G denote the set of all orbits of F under the
action of G. Let

γG : F → F/G : p 7→ {σp : σ ∈ G}
be the map that sends an element in F to its orbit. Denote by E the closure of all G-
exchangeable distributions in ∆N−1 and let M = F ∩ E denote the induced model of all
exchangeable distributions in F . The following theorem holds in general.
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Theorem 4.4.7. [73, Corollary 2.6] Let G be a subgroup of SN and let F ⊆ ∆N−1 be a G-
symmetrical family of distributions. If there exists a maximizer of DF that is exchangeable,
then D(γG(M)) = D(F ) and all maximizers of DγG(M) are of the form γG(v) where v is an
exchangeable maximizer of DF .

Proof of Theorem 4.4.4 [73]. Let F be the independence model of m (d + 1)-ary random
variables induced by ∆d × · · · ×∆d. Then F ⊆ ∆N−1 where N = (d + 1)m and it is given
by the following parametrization

φ : ((x10, . . . , x1d), . . . , (xm0, . . . , xmd)) 7→ (pj1,...,jm = x1j1x2,j2 · · ·xmjm : j1, . . . , jm ∈ {0, . . . , d}).
(4.2)

Let G be the subgroup of SN given by

G ={σρ ∈ SN : ρ ∈ Sm and
σρ((x10, . . . , x1d), . . . , (xm0, . . . , xmd)) = ((xρ(1)0, . . . , xρ(1)d), . . . , (xρ(m)0, . . . , xρ(m)d))}.

Note that G ∼= Sm and it acts on each coordinate of p ∈ F as σpi1...im = piσ(1)...iσ(m)
. Under this

action, note that F is G-symmetrical and that the set of all G-exchangeable distributions in F is
M = {φ(x, x, . . . , x) : x ∈ ∆d}. Then the twisted Veronese model Vd,m can be identified with the
set of all orbits of F coming from exchangeable distributions, i.e. Vd,m = γG(M).

Since F is an independence model, we know that D(F ) = (m−1) log(d+1) and all of its maximizers
are given in Theorem 4.3.15. Denote each such maximizer by vσ2,...,σm := 1

d+1

∑d
j=0 δj,σ2(j),...,σm(j).

Note that v = vid,...,id is the distribution in F such that vjj...j =
1

d+1 for each j ∈ {0, . . . , d} and 0
otherwise. By Theorem 4.4.7, it then follows that D(Vd,m) = D(γG(M)) = D(F ) = (m−1) log(d+
1), as desired. Moreover, w = γG(v) is a maximizer of DVd,m

. Explicitly, it is given as wx = 1
d+1 if

x = mej for j ∈ {0, . . . , d} and 0 otherwise.

If m > 2, we claim that w is the unique maximizer. Indeed, let v = vσ2,...,σm be another exchangeable
maximizer of F . Without loss of generality, assume σ2 ̸= id, so there is some j such that σ2(j) ̸= j.
Since (j, σ2(j), j3, . . . , jm) ∈ supp(v) for some j3, . . . jm ∈ {0, . . . , d}, it has to be the case that
(σ2(j), j, j3, . . . , jm) ∈ supp(v), since v is exchangeable and has to have the same value in both
coordinates. But since m > 2, it then follows that jk = σk(j) = σk(σ2(j)), so σk is not injective for
every k ≥ 3, a contradiction.

If m = 2, then let σ = σ2 and note that if σ2 ̸= id, then vjk ∈ supp(v), but vjk = 0 for some
j, k ∈ {0, . . . , d}, which would contradict exchangeability of v. Hence, every maximizer of Vd,2 is
of the form w = 1

d+1

∑d
j=0 δej + δeσ(j)

for some σ ∈ Sd+1 of order at most two. Every nonzero
coordinate of w is thus either 1

d+1 or 2
d+1 . The number of maximizers in this case is the number

of permutations in Sd+1 of order at most two. Note that for each of the maximizers, we have
Av =

(
m
d+1 , . . . ,

m
d+1

)
and hence they all lie in the same logarithmic Voronoi polytope at q ∈ Vd,m,

corresponding to the centroid of conv(A).



CHAPTER 4. TORIC MODELS 95

Proof of Theorem 4.4.5. Let F be the independence model of a1+· · ·+ak (d+1)-ary random
variables divided into k groups, induced by

(∆d × . . .×∆d)︸ ︷︷ ︸
a1

× · · · × (∆d × . . .×∆d)︸ ︷︷ ︸
ak

.

Then F ⊆ ∆N−1 where N = (d+1)a1+...+ak and has the parametrization φ like (4.2), except
each probability p• factors as a product of a1 + . . .+ ak parameters. Let G be a subgroup
of SN defined as

G = {σρ1,...,ρk ∈ SN : ρi ∈ Sai and

σρ1,...,ρk((y
(1)
1 , . . . , y(1)a1 ), . . . , (y

(k)
1 , . . . , y(k)ak

)) = ((y
(1)
ρ1(1)

, . . . , y
(1)
ρ1(a1)

), . . . , (y
(k)
ρk(1)

, . . . , y
(k)
ρk(ak)

))},

where y
(i)
j = (x

(i)
j1 , . . . , x

(i)
jd ) ∈ ∆d. Note that G ∼= Sa1 × . . .× Sak .

Under this action, F is G-symmetrical and the set of all G-exchangeable distributions in F is
M = {φ((x(1), . . . , x(1)), . . . , (x(k), . . . , x(k))) : x(i) ∈ ∆d for all i ∈ [k]}. The box model B(d)a1,...,ak is
then identified with the set of all orbits of F coming from exchangeable distributions, i.e. B(d)a1,...,ak =
γG(M).

Since F is again an independence model, we know that D(F ) = (a1 + . . .+ ak − 1) log(d+1) from
Theorem 4.3.15. Denote each maximizer by

v
σ
(1)
2 ,...,σ

(1)
a1

,...,σ
(k)
1 ,...,σ

(k)
a1

:=
1

d+ 1

d∑
j=0

δ
j,σ

(1)
2 (j),...,σ

(1)
a1

(j),...,σ
(k)
1 (j),...,σ

(k)
ak

(j)
.

First let σ(1)
2 = . . . = σ

(1)
a1 = π1 = id and σ

(i)
1 = . . . = σ

(i)
ai = πi for some πi ∈ Sd+1 for all i > 1. Then

v is a G-exchangeable maximizer of F , and is explicitly given as v(j...j),(π2(j)...π2(j)),...,(πk(j)...πk(j)) =
1

d+1 for any choice of j ∈ {0, . . . , d} and 0 otherwise. The image of this maximizer under γ is
then w = 1

d+1

∑d
j=0 δąk

i=1
aieπi(j)

, where
ą

denotes the Cartesian product of vectors in Rd+1. By

Theorem 4.4.7, w is a maximizer of B(d)a1...ak . There are exactly [(d + 1)!]k−1 such maximizers: one
for every choice of (π2, . . . , πk) ∈ Sd+1 × · · · × Sd+1. Note also that for each such maximizer w, we
have Aw = (( a1

d+1 , . . . ,
a1
d+1), . . . , (

ak
d+1 , . . . ,

ak
d+1)), so all of them are the vertices of the logarithmic

Voronoi polytope at the point q ∈ B(d)a1,...,ak corresponding to the centroid of conv(A).

We claim that there are no other maximizers of B(d)a1...ak . Indeed, if ai > 2 for all i ∈ [k], then
there are no other G-exchangeable maximizers of F by the proof of Theorem 4.4.4. Indeed, if
a1 = a2 = 1 and k = 2, then all maximizers are of the form discussed in the previous paragraph.
If ai = 2 for some i ∈ [k], without loss of generality assume that a1 = 2 and that v is a G-
exchangeable maximizer of F with π(j) = σ

(1)
2 (j) ̸= j for some j. If v is G-exchangeable, it has

to be the case that there are some values j3, . . . , ja1+...+ak such that both (j, π(j), j3, . . . , ja1+...+ak)

and (π(j), j, j3, . . . , ja1+...+ak) are in supp(v). But then j3 = σ
(2)
1 (j) = σ

(2)
1 (π(j)), a contradiction

to the injectivity of π. Hence, there are no other maximizers.
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When d = 1, the maximizers of the box model B(1)
a1,...,ak have the following nice geometric

interpretation.

Corollary 4.4.8. The maximum divergence from the box model B(1)
a1,...,ak equals (a1 + . . .+

ak−1) log 2. The maximum divergence is achieved at 2k−1 vertices of the unique logarithmic
Voronoi polytope. These vertices correspond to the main diagonals of conv(A).

Example 4.4.9 (d = 1, k = 3). Consider the box model B(1)
3,3,2. It is a 3-dimensional model

inside ∆47. The columns of the corresponding matrix A can be identified with the lattice
points {(i, j, k) ∈ Z3 : 0 ≤ i, j ≤ 3, 0 ≤ k ≤ 2}. The maximum divergence of this model is
7 log 2 and it is achieved at four vertices of the logarithmic Voronoi polytopeQb corresponding
to the point b = (3/2, 3/2, 1) in conv(A). This is illustrated in Figure 4.4.

(0, 0, 0)
(3, 0, 0)

(0, 3, 0)

(0, 0, 2)

b

Figure 4.4: Chamber complex of the box model B(1)
3,3,2.

The four vertices givingD(B(1)
3,3,2) are supported on the main diagonals of conv(A). Explicitly,

the four maximizers are

w1 =
1

2

(
δ(0,0,0) + δ(3,3,2)

)
, w2 =

1

2

(
δ(0,0,2) + δ(3,3,0)

)
,

w3 =
1

2

(
δ(0,3,0) + δ(3,0,2)

)
, w4 =

1

2

(
δ(3,0,0) + δ(0,3,2)

)
.

Trapezoid model

One interesting extension of the box model B(1)
a1,a2 is the trapezoid model, which we discuss

in this section. It also has ML degree one [37]. Fix some positive integers a, b, d. Suppose we
have two coins, with the probabilities of flipping heads being s and t, respectively. First, we
flip the second coin b times, and record the number of heads j ∈ {0, . . . , b}. Then we flip the
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first coin a times and record the number of heads, and then flip the first coin again d(b− j)
times and record the number of heads. The probability pr,j of getting exactly r heads from
the first coin and exactly j heads from the second coin is then

pr,j = cr,js
r(1− s)a+d(b−j)−rtj(1− t)b−j (4.3)

where
cr,j =

(
b

j

) ∑
0≤i≤a

0≤k≤d(b−j)
i+k=r

(
a

i

)(
d(b− j)

k

)
.

Geometrically, this model is given by all lattice points inside the trapezoid with the vertices
{(0, 0), (0, b), (a, b), (a + db, 0)} with the weight of each point (r, j) given by cr,j. Hence we
will call this model the trapezoid model and denote it by Ta,b,d. This is a 2-dimensional
model inside ∆n−1, parametrized by (s, t) 7→ (pr,j : 0 ≤ j ≤ b, 0 ≤ r ≤ a + d(b − j)) where
n =

∑b
j=0

∑a+d(b−j)
r=0 r.

The MLE for any data point u ∈ ∆n is a rational function of u. If Au = (1, b1, b2), the MLE
of u is the point q ∈ Ta,b,d such that Aq = (1, b1, b2). This point is given as

qr,j = cr,j

(
b1

a+ d(b− b2)

)r (
1− b1

a+ d(b− b2)

)a+d(b−j)−r (
b2
b

)j (
1− b2

b

)b−j

.

Example 4.4.10 (a = b = d = 1). Consider the simplest nontrivial trapezoid model with
a = b = d = 1. It is a 2-dimensional toric model in ∆4 where

A =

1 1 1 1 1
0 0 1 1 2
0 1 0 1 0


and the chamber complex is shown in the middle of Figure 4.5. Note that two-dimensional
chambers will not contribute any projection points by Proposition 4.2.11. There are only
three interior vertices: (1/2, 1/2), (2/3, 2/3) and (1, 1/2). All of them have triangles for
logarithmic Voronoi polytopes, with supports {14, 25, 234}, {23, 14, 125}, and {34, 25, 145},
respectively. Therefore, all potential projection points will come from the edges. Running our
algorithm on the ten interior edges, we find that there are exactly four projection vertices,
corresponding to two different points on the model T1,1,1. The first point maps to b1 =
(2
√
5/5, −

√
5/5 + 1) ∈ conv(A), and the two projection vertices are(√

5/5, 0, 0,−
√
5/5 + 1, 0

)
and

(
0,−
√
5/5 + 1, 3

√
5/5− 1, 0,−2

√
5/5 + 1

)
.

The latter vertex yields the maximum divergence log 2 + log
(

1
3−

√
5

)
. Similarly, the second

point on the model maps to b2 = (−
√
5/5 + 1,−

√
5/5 + 1), and the two projection vertices

are (
0,
√
5/5 + 1, 0, 0,

√
5/5
)

and
(
−2
√
5/5 + 1, 0, 3

√
5/5− 1,−

√
5/5 + 1, 0

)
.
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The former vertex yields the same maximum divergence log 2 + log
(

1
3−

√
5

)
.

The logarithmic Voronoi polytopes corresponding to both b1 and b2 are quadrilaterals. After
projecting onto two-dimensional planes, we plot both polytopes in Figure 4.5.

q1 max
b2b1

q2

max

Figure 4.5: The chamber complex and two logarithmic Voronoi polytopes that yield maxi-
mum divergence.

Theorem 4.4.11. The divergence to the trapezoid model Ta,b,d is bounded above by (a +
bd+ b) log 2.

Proof. Fix a model Ta,b,d in ∆n−1, parametrized by s and t. Let u = (ur,j) ∈ ∆n−1 be a
general data vector. Then the log-likelihood function is

ℓu(p) =
∑

ur,j log(pr,j) =
∑

ur,j log cr,j +
∑

ur,j[r log s+ (a+ d(b− j)− r) log(1− s)]

+
∑

ur,j[j log(t) + (b− j) log(1− t)].

Taking the partial derivatives and solving for the parameters, we get that ŝ =
∑

ur,jr∑
ur,j(a+d(b−j))

and t̂ =
∑

ur,jj

b
. The MLE q is obtained by plugging in these parameters into (4.3). Hence,

the divergence function from the general point u to the model Ta,b,d is

D(u||Ta,b,d) =
∑

ur,j log(ur,j/qr,j) = −H(u)−
∑

ur,j log(cr,j)︸ ︷︷ ︸
≤0

−
∑

ur,jr log(ŝ)−
∑

ur,j(a+ (b− j)− r) log(1− ŝ)

−
∑

ur,jj log(t̂)−
∑

ur,j(b− j) log(1− t̂),

where H(u) = −
∑n

i=1 ui log(ui) is the entropy. Let h(p) denote the entropy of a binary
random variable with the probability of success p, i.e. h(p) = −p log(p)− (1− p) log(1− p).
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Note that h(p) always attains its maximum value at p = 1/2. Therefore, we have

D(u||Ta,b,d) ≤
(∑

ur,j(a+ d(b− j))
)
h(ŝ) + b h(t̂)

≤
(∑

ur,j(a+ d(b− j) + b)
)
h(1/2)

= (a+ db+ b) log 2− d
∑

ur,jj

≤ (a+ db+ b) log 2,

as desired.

Note that the polytope of the trapezoid model Ta,b,d sits in-between the polytopes of the two
box models B(1)

a,b and B(1)
a+db,b. However, the weights assigned to the lattice points are different.

This presents the question of whether D(Ta,b,d) is bounded by D(B(1)
a,b) and D(B(1)

a+db,b) below
and above, respectively. Note that this is indeed the case for Example 4.4.10. We present
the following conjecture.

Conjecture 4.4.12. The divergence from the trapezoid model Ta,b,d is at least (a+b−1) log 2
and at most (a+ bd+ b− 1) log 2. This upper bound is sharp if and only if d = 0.

In [37], the authors present several families of 3-dimensional models that have ML degree
one. We compute the maximum divergence for the simplest nontrivial examples in those
families in the table below.

polytope conv(A) D(M) notes

conv{(0,0,0),(0,0,1),(0,1,0),
(0,1,1),(1,1,0),(2,0,0)} 2 log 2 conjectured

conv{(0,0,0),(0,0,1),(0,1,0),
(1,0,1),(1,1,0),(2,0,0)} log 2 + log

(
1

3−
√
5

)
conv{(0,0,0),(0,0,1),(0,1,0),

(1,1,0),(2,0,0)} log 2 + log
(

1
3−

√
5

)
boundary

conv{(0,0,0),(0,0,1),(0,1,0),
(0,1,1),(2,0,0),(2,1,0)} log 3 conjectured

conv{(0,0,0),(0,0,1),(0,1,0),
(1,0,0),(1,1,0)} log 2 boundary

conv{(0,0,0),(0,0,1),(0,1,0),(1,0,0),
(0,0,1),(1,0,1),(1,1,0),(1,1,1)} 2 log 2 box model

conv{(0,0,0),(0,0,1),(0,1,0),
(1,0,0),(0,0,1),(1,0,1)} log 2 2× 3 independence
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Interestingly, the second example in the table has infinitely many maximizers. For the third
and the fifth models, all the maximizers of information divergence lie on the boundary of the
simplex. For the conjectured examples, we were able to compute most of the ideals in step 3
of the algorithm, but not all. Some of the higher-dimensional ideals that arise in those cases
are very complicated and we were not able to solve them using numerical tools.

Conclusion. In this chapter, we revisited the problem of maximizing information divergence
to toric models from the new perspective using logarithmic Voronoi polytopes. We presented
an algorithm for locating maximizers that combines the combinatorics of the chamber com-
plex with numerical algebraic geometry. We also paid special attention to reducible models
and models of maximum likelihood degree one. In particular, we provided a way to recon-
struct logarithmic Voronoi polytopes of a reducible modelM from the logarithmic Voronoi
polytopes of the models induced by the the reduction ofM. We then explained how to use
this decomposition to obtain and bound information divergence to reducible models. We
also established the maximum divergence and characterized the set of maximizers for the
box model. Finally, we established an upper bound for divergence to the trapezoid model.
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Chapter 5

Gaussian setting

In this chapter, we study logarithmic Voronoi cells for different families of Gaussian models.
We start by proving that logarithmic Voronoi cells are always convex sets, like in the discrete
case. Then we prove several basic results about when logarithmic Voronoi cells coinside with
the log-normal spectrahedra, in which they are contained. We then investigate the geometry
and combinatorics of logarithmic Voronoi cells for linear concentration models in Section 5.1,
directed graphical models in Section 5.2, and covariance models in Section 5.3. This chapter
is based on [5].

Proposition 5.0.1. For a Gaussian model Θ ⊆ PDm and Σ ∈ Θ, the logarithmic Voronoi
cell log VorΘΣ is a convex set.

Proof. The logarithmic Voronoi cell at Σ is

log VorΘ(Σ) = {S ∈ PDm : ℓn(Σ, S) ≥ ℓn(Σ
′, S) for all Σ′ ∈ Θ}.

Since ℓn(Σ, S) is linear in S, each inequality ℓn(Σ, S) ≥ ℓn(Σ
′, S) defines a closed halfspace.

Therefore the logarithmic Voronoi cell at Σ is the intersection of these halfspaces for each
Σ′ ∈ Θ and the convex cone PDm.

In Proposition 1.2.9, we saw that log-Voronoi cells are contained in log-normal spectrahedra.
More precisely, we may write

log VorΘΣ = {S ∈ KΘΣ : ℓn(Σ, S) ≥ ℓn(Σ
′, S) for all critical points Σ′}. (5.1)

Example 1.2.8 illustrated that the reverse containment doesn’t hold in general. However, the
two convex sets are equal if the log-likelihood function has a unique optimum on the model
Θ, and more strongly, if the maximum likelihood degree of the Gaussian model is one. We
get the following two corollaries.

Corollary 5.0.2. If ℓn(Σ, S) has a unique maximum Σ over the Gaussian model Θ ⊆ PDm,
then log VorΘ(Σ) = KΘ(Σ).
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Proof. Since Σ is the unique maximum the inequalities in (5.1) are superfluous.

Corollary 5.0.3. If the ML degree of a Gaussian model Θ ⊆ PDm is one then log VorΘ(Σ) =
KΘ(Σ) for every Σ ∈ Θ.

Proof. Since Σ is the unique critical point, the result follows from Corollary 5.0.2.

5.1 Linear concentration models
In a multivariate Gaussian distribution, the inverse of the covariance matrix K = Σ−1 is
known as the concentration matrix. Linear concentration models [14] are given by concen-
tration matrices which form a linear subspace. Let L be a d-dimensional linear subspace of
m×m real symmetric matrices. Then a linear concentration model is given by

Θ = {Σ ∈ PDm : K = Σ−1 ∈ L}.

The log-likelihood function equals

−n
2
log detK − n

2
tr(SK),

and it is a strictly concave function on L ∩ PDm. If K1, . . . , Kd are a basis of L and S is
a sample covariance matrix, the maximizer Σ̂ = K̂−1 of the log-likelihood function is the
unique solution to

tr(Σ̂Kj) = tr(SKj), j = 1, . . . , d. (5.2)

This follows from writing K =
∑d

i=1 λjKj and taking partial derivatives of the log-likelihood
function with respect to λj, j = 1, . . . , d; see [112]. Therefore, we immediately get the
following.

Proposition 5.1.1. Let Θ be a linear concentration model given by L = span{K1, . . . , Kd},
and let Σ ∈ Θ. Then

log VorΘ(Σ) = KΘ(Σ) = {S ∈ PDm : tr(SKj) = tr(ΣKj), j = 1, . . . , d}.

Proof. The equality of the logarithmic Voronoi cell and the log-normal spectrahedron follows
from Corollary 5.0.2. The linear description of these convex sets follows from (5.2).

Corollary 5.1.2. Let Θ be a one-dimensional linear concentration model spanned by K ∈
PDm. For λ > 0 and Σ = 1

λ
K−1, the logarithmic Voronoi cell at Σ is log VorΘ(Σ) = {S ∈

PDm : tr(SK) = m
λ
}. Therefore, it is the intersection of a translate of L⊥ with PDm where

L = span(K).

Proof. Since tr(ΣK) = m
λ
, the result follows Proposition 5.1.1.
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Corollary 5.1.3. When m = 2, the logarithmic Voronoi cells of one-dimensional concentra-
tion models are convex regions defined by ellipses.

Proof. Let K =

(
a b
b c

)
≻ 0, λ > 0, and Σ = 1

λ
K−1. With S =

(
s11 s12
s12 s22

)
, from (5.2) we

get as11 + 2bs12 + cs22 =
2
λ
. Then log VorΘ(Σ) is defined by the inequalities

1

a

(
2

λ
− 2bs12 − cs22

)
s22 − s212 ≥ 0,

1

a

(
2

λ
− 2bs12 − cs22

)
≥ 0, s22 ≥ 0.

The quadric defines an ellipse since its ∆-invariant and δ-invariant [57, Section 5.2] are
λ2

a2
̸= 0 and ac−b2

a2
> 0, respectively. Finally, the nonnegativity of the quadric implies the

other inequalities for positive definite S.

We would like to point out that, despite the concavity of ℓn(Σ, S) on a linear concentration
model Θ, the maximum likelihood degree of Θ is much bigger than one. This was first
studied in [112] which included conjectures on the ML degree of such models. Most of these
conjectures were settled in [82] and [86]. See also [10] and [71] for related work.

Undirected graphical models

Let G = (V,E) be a simple undirected graph with |V (G)| = m. A concentration model of
G is

Θ(G) = {Σ ∈ PDm : (Σ)−1
ij = 0 if ij /∈ E(G) and i ̸= j}.

Concentration models of undirected graphs are examples of linear concentration models.
Thus, their logarithmic Voronoi cells are equal to the log-normal spectrahedra. Following
Proposition 5.1.1, we can describe logarithmic Voronoi cells explicitly as

log VorΘ(G)(Σ) = {S ∈ PDm : Σij = Sij for all ij ∈ E(G) and i = j}.

Example 5.1.4. Consider the graphical model associated to the undirected path 1−2−3−4
on four vertices. This model is

Θ(G) = {Σ ∈ PD4 : (Σ
−1)13 = (Σ−1)14 = (Σ−1)24 = 0}.

Let Σ′ =


6 1 1/7 1/28
1 7 1 1/4

1/7 1 8 2
1/28 1/4 2 9

 . Then the logarithmic Voronoi cell at Σ′ is

log VorΘ(G)(Σ
′) =

(x, y, z) :Mx,y,z =


6 1 x y
1 7 1 z
x 1 8 2
y z 2 9

 ≻ 0

 .
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We plot the algebraic boundary of this spectrahedron on the left of Figure 5.1. It is defined
by the quartic det(Mx,y,z). The right figure is the spectrahedron itself where “ears” are
removed by the quadric that is the third principal minor of Mx,y,z.

Figure 5.1: Pillow-shaped logarithmic Voronoi spectrahedra

The boundary of log VorΘ(G)(Σ
′) consists of matrices of rank at most three. This spectrahe-

dron has four singular points that have rank two. Computations reveal that for any matrix
Σ on the model Θ(G), the general combinatorial type of the logarithmic Voronoi spectrahe-
dron at Σ will be the same as that of Σ′; informally, log VorΘ(G)(Σ) is pillow-shaped for all
Σ ∈ Θ(G). An interesting problem would be to study the logarithmic Voronoi cells of con-
centration models and how their combinatorial type changes as points on the model vary. In
the discrete setting, it was done for linear models [1]. In the Gaussian setting, combinatorial
types of spectrahedra can be described using patches ; see [33, 98].

Decomposition of logarithmic Voronoi cells

In the theory and practice of graphical models, reducible and decomposable models play
a significant role [78, 114]. They provide a recursive structure that can be exploited, for
instance, in maximum likelihood estimation. In this subsection, we develop a decomposition
theory of the logarithmic Voronoi cells for such models.

Let G = (V,E) be an undirected graph with the vertex set labeled by [m]. A clique of G is a
subset C ⊆ [m] such that ij ∈ E(G) for every i, j ∈ C. We say that a clique in G is maximal
if the subgraph it induces does not embed into a larger clique of G. Let C(G) denote the
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set of all cliques of G. Note that C(G) is a simplicial complex on [m], whose facets are the
maximal cliques of G.

A simplicial complex Γ ⊆ [m] is called reducible with decomposition (Γ1, T,Γ2) if there exist
sub-complexes Γ1, Γ2 of Γ and a subset T ⊆ [m] such that Γ = Γ1 ∪ Γ2 and Γ1 ∩ Γ2 = 2T .
Moreover, we assume that Γi ̸= 2T for i = 1, 2. We say Γ is decomposable if it is reducible
and each of the Γ1,Γ2 is either decomposable or a simplex. A graphical model associated to
an undirected graph G is reducible (resp. decomposable) if its complex of cliques C(G) is
reducible (resp. decomposable).

Given a graph G on m vertices with the complex of cliques C(G), let Θ(G) denote the
associated graphical model. Suppose Θ(G) is reducible with a decomposition (Γ1, T,Γ2) of
C(G). Note that the simplicial complex Γi is the clique complex of a subgraph Gi ⊂ G for
i = 1, 2, and the intersection of G1 and G2 is the complete graph on the vertex set T . We
will denote the vertex set of G1 by U and the vertex set of G2 by W . Associated to these
subgraphs we have graphical models Θ(G1) and Θ(G2). When A is an m×m matrix whose
rows and columns are indexed by [m], we let AIJ denote the submatrix of A, whose rows are
indexed by I ⊆ [m] and whose columns are indexed by J ⊆ [m]. For any |I| × |J | matrix
B = (bij)i∈I,j∈J , we define [B][m] to be the matrix obtained from B by filling in zero entries
to obtain a m×m matrix, i.e.

([B][m])ij :=

{
bij if i ∈ I, j ∈ J
0 otherwise

.

The maximum likelihood estimate of S ∈ PDm in Θ(G) can be computed as follows.

Proposition 5.1.5. [78, Proposition 5.6] Let Θ(G) be a reducible graphical model on the
undirected graph G with a decomposition (Γ1, T,Γ2). Let S ∈ PDm, and let Σ̂UU be the
MLE of SUU in Θ(G1) and let Σ̂WW be the MLE of SWW in Θ(G2). Let Σ̂TT := STT . The
maximum likelihood estimate Σ̂ of S in Θ(G) is given by

Σ̂−1 = [(Σ̂UU)
−1][m] + [(Σ̂WW )−1][m] − [(Σ̂TT )

−1][m].

For a graph G and a matrix Σ ∈ Θ(G), we denote the logarithmic Voronoi cell at Σ by
log VorG(Σ). For reducible graphical models, we have the following decomposition theorem.

Theorem 5.1.6. Let Θ(G) be a reducible graphical model on the undirected graph G
with a decomposition (Γ1, T,Γ2). For any matrix Σ ∈ Θ(G), the logarithmic Voronoi cell
log VorG(Σ) equals({(

[S−1
1 ][m] + [S−1

2 ][m] − [Σ−1
TT ]

[m]
)−1

: S1 ∈ log VorG1(ΣUU ) and S2 ∈ log VorG2(ΣWW )

}
+ ker(ψ)

)
∩ PDm,

where ψ : Sym(Rm)→ Sym(RU)× Sym(RW ) is the map

ψ :M 7→ (MUU ,MWW ).
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Proof. First, observe that the projections ΣUU and ΣWW are in Θ(G1) and Θ(G2), respec-
tively. This follows from the Schur complement formula for matrix inverses. Let A := U \ T
and B := W \ T . First consider the matrix S given by

S−1 = [S−1
1 ][m] + [S−1

2 ][m] − [Σ−1
TT ]

[m]

where S1 ∈ log VorG1(ΣUU) and S2 ∈ log VorG2(ΣWW ). We will show that S ∈ log VorG(Σ).
Recall that the logarithmic Voronoi cell at Σ is the set

log VorG(Σ) = {S ∈ PDm : Σij = Sij for all ij ∈ E(G) and i = j}.

Hence, it suffices to show that SCC = ΣCC for every clique C of G. Note first that we may
write S−1 in the block form as follows:

S−1 =

(S−1
1 )AA (S−1

1 )AT 0
(S−1

1 )TA (S−1
1 )TT + (S−1

2 )TT − (Σ−1
TT ) (S−1

2 )TB

0 (S−1
2 )BT (S−1

2 )BB

 .
Using Schur complements one checks that SUU = ((S−1)−1)UU = (S−1

1 )−1 = S1 and SWW =
S2. Now, let C be a clique in G, so either C ⊆ Γ1 or C ⊆ Γ2. Without loss of generality,
assume C ⊆ Γ1. Then

SCC = (SUU)CC = (S1)CC = (ΣUU)CC = ΣCC ,

and we conclude that S ∈ log VorG(Σ).

Now let M = (mij) ∈ ker(ψ), i.e., mij = 0 for all ij ∈ E(G) or i = j. In particular, MCC = 0
for every clique C of G. Thus, if S +M is positive definite, we have S +M ∈ log VorG(Σ),
as desired.

For the other direction, let S ∈ log VorG(Σ). Define S1 := SUU and S2 := SWW . Note
that for any clique C ⊆ Γ1, we have (S1)CC = (SUU)CC = SCC = ΣCC = (ΣUU)CC , so
S1 ∈ log VorG1(ΣUU). Similarly, S2 ∈ log VorG2(ΣWW ). Let L = [S−1

1 ][m]+[S−1
2 ][m]−[Σ−1

TT ]
[m],

and let M := S − (L−1). Note that S = L−1 + (S − L−1) = L−1 + M , so it suffices
to show that M ∈ ker(ψ). We observe that (L−1)UU = ((S−1

1 )−1)UU = S1 = SUU , so
MUU = SUU − (L−1)UU = 0. Similarly, we find that MWW = 0. Hence, indeed M ∈ ker(ψ),
and this concludes the proof.

Remark 5.1.7. The analogous decomposition theorem holds for discrete hierarchical models
associated to a reducible simplicial complex, as discussed in Chapter 4. In both cases, the de-
composition of logarithmic Voronoi cells is interesting: log VorG(Σ) as well as log VorG1(ΣUU)
and log VorG2(ΣWW ) are spectrahedra, but the first term in the Minkowski sum in Theo-
rem 5.1.6 is a nonlinear object. How the geometry and combinatorics of the spectrahedra
log VorG1(ΣUU) and log VorG2(ΣWW ) affect that at log VorG(Σ) via this decomposition is
worthwhile to study in a future project.
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5.2 Directed graphical models
In this section we turn to Gaussian models defined by directed acyclic graphs (DAGs). A
DAG G consists of a vertex set V of cardinality m and a set E of directed edges (i, j) without
a directed cycle. We will assume that (i, j) ∈ E implies i < j. Such a topological ordering
of the vertices can always be achieved. For each vertex j ∈ G there is a normal random
variable Xj such that Xj =

∑
k∈pa(j) λjkXk + εj. Here pa(j) denotes the set of parents of

the vertex j. The coefficients λjk are real parameters, known as regression coefficients. The
term εj is a random variable that has a univariate normal distribution. This model can be
summarized by the identity

X = ΛTX + ε

where Λ = (λkj) is an upper triangular matrix with λkk = 0 for k = 1, . . . ,m. The joint
random variable X = (X1, . . . , Xm)

T has a Gaussian distribution with covariance matrix Σ.
We also denote the diagonal covariance matrix of ε by Ω. With this Σ = (I−Λ)−TΩ(I−Λ)−1,
and the maximum likelihood estimation aims to estimate the |E| and m parameters in Λ
and Ω, respectively. The concentration matrix K = Σ−1 is equal to (I − Λ)Ω−1(I − Λ)T .
The maximum likelihood estimate can be found by solving a sequence of independent least
squares problems for each vertex in the graph coming from the gradient of the log-likelihood
function: Given n independent observations of the random variable X, we collect them in a
n×m matrix Y . Then the log-likelihood function is

ℓn(Σ, Y
TY ) = log detK − tr(Y TY K) = −

m∑
k=1

log Ωkk −
m∑
k=1

1

Ωkk

[(Y (I − Λ))T (Y (I − Λ))]kk.

One observes the solutions to ∇ℓn = 0 are obtained by first minimizing ||Yk −
∑k−1

j=1 λjkYj||2
for k = 1, . . . ,m independently. These are least squares problems with unique solutions.
This development leads to the following.

Theorem 5.2.1. [78, p. 154], [122] The maximum likelihood degree of a Gaussian model
on a directed acyclic graph is one. Therefore, the logarithmic Voronoi cell at Σ on such a
model is equal to its log-normal spectrahedron.

For algebraic computations a convenient parametrization for Gaussian models on DAGs
based on the trek rule exists [113]. In this parametrization, for each directed edge (i, j) ∈ E
there is λij and for each vertex i ∈ [m] there is ai. For each pair of vertices i, j ∈ [m], we
let T (i, j) be the set of paths from i to j which do not contain colliders where a collider is a
pair of edges (s, t) and (u, t) with the same head. Such a path without colliders is called a
trek. Every trek P from i to j is a sequence of edges from i up to top(P ), the “top” vertex
on the path, and then a sequence of edges down to j. With this the parametrization of the
entries of the covariance matrix Σ reads as follows:

σij =
∑

P∈T (i,j)

atop(P )

∏
(k,l)∈P

λkl.
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We note that σii = ai, and if T (i, j) = ∅ then σij = 0.

Example 5.2.2. Consider the DAG 1 → 2 → 4 ← 3. The associated graphical model Θ is
seven-dimensional. We may express Σ = (σij) ∈ Θ parametrically as

σii = ai for i = 1, 2, 3, 4,

σ12 = a1λ12, σ13 = 0, σ14 = a1λ12λ24, , σ23 = 0, σ24 = a2λ24, σ34 = a3λ34.

The logarithmic Voronoi cell and hence the log-normal spectrahedron of a general Σ ∈ Θ is
three-dimensional, given as


a1 a1λ12 x y

a1λ12 a2 z a2λ24 + λ34z
x z a3 a3λ34 + λ24z
y a2λ24 + λ34z a3λ34 + λ24z 2λ24λ34z + a4

 ≻ 0 : x, y, z ∈ R

 .

For the matrix Σ′ given by the parameters

a1 = 1, a2 = 2, a3 = 3, a4 = 4, λ12 = 1/2, λ24 = 1, λ34 = 1/2,

the spectrahedron log VorΘ(Σ
′) is the intersection of a quadric, defining a cylinder, and a

quartic, defining a surface with five components. The intersection is the middle component
of the quartic surface. We plot the quadric surface (left), the quartic surface (middle) and
their intersection (right) in Figure 5.2.

Figure 5.2: The logarithmic Voronoi cell at Σ′ of 1→ 2→ 4← 3.

We close this section with a simple decomposition result for logarithmic Voronoi cells when
the underlying graph is the disjoint union of two graphs.
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Proposition 5.2.3. Let G be a DAG with vertex set [m] such that G is a disjoint union of
two graphs G1 and G2 with vertex sets U and W = [m] \ U , respectively. Then

Θ(G) =

{
Σ =

(
Σ1 0UW

0WU Σ2

)
: Σ1 ∈ Θ(G1),Σ2 ∈ Θ(G2)

}
,

and for Σ ∈ Θ(G)

log VorΘ(G)(Σ) =

{(
S1 SUW

SWU S2

)
≻ 0 : S1 ∈ log VorΘ(G1)(Σ1), S2 ∈ log VorΘ(G2)(Σ2)

}
.

Proof. The first statement is a direct consequence of Proposition 3.6 in [113]. The second
statement follows from the observation that ℓn(Σ, S) = ℓn(ΣUU , SUU) + ℓn(ΣWW , SWW ).

5.3 Covariance models
Let A ∈ PDm and let L be a linear subspace of Sym(Rm). Then A+L is an affine subspace
of Sym(Rm). Models defined by Θ = (A+L)∩PDm are called covariance models. For such
models, a necessary condition for Σ ∈ PDm to be a local maximum of the log-likelihood
function is Σ− A ∈ L and K −KSK ∈ L⊥ where K = Σ−1; see [12] and [111]. From this,
one can describe the log-normal spectrahedron at Σ in the model Θ explicitly.

Proposition 5.3.1. The log-normal spectrahedron KΣ(Θ) at Σ ∈ Θ on a covariance model
Θ = (A+ L) ∩ PDm is equal to NΣΘ ∩ PDm where

NΣΘ = {S ∈ Sym(Rm) : K −KSK ∈ L⊥}.

The log-likelihood function ℓn(Σ, S) is generally not concave on a covariance model, and
the maximum likelihood degree of such models can be arbitrarily high [111]. Therefore, in
general, the logarithmic Voronoi cells are strictly contained in log-normal spectrahedra. On
the other hand, we would like to point out the following interesting result.

Proposition 5.3.2. [127, Proposition 3.1] Let Θ ⊆ PDm be a Gaussian covariance model
and let S ∈ PDm. The log-likelihood function ℓn(Σ, S) is strictly concave on the convex set
∆2S = {Σ ∈ PDm : 0 ≺ Σ ≺ 2S}, and hence it is strictly concave on ∆2S ∩Θ.

This proposition immediately implies the following.

Corollary 5.3.3. Let Θ ⊆ PDm be a Gaussian covariance model and let Σ ∈ Θ. Then we
have the following containments:

{S ∈ KΘ(Σ) : 0 ≺ Σ ≺ 2S} ⊆ log VorΘ(Σ) ⊆ KΘ(Σ). (5.3)
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In general, both containments may be strict, as demonstrated in the next example.

Example 5.3.4. Consider the covariance model given by

Θ =

Σ ∈ PD3 : Σ =

1 x z
x 1 y
z y 1

 .

This is an unrestricted correlation model. Its ML degree is 15. We can represent each matrix
Σ ∈ Θ by the triple (Σ12,Σ23,Σ13). To see that the two containments in (5.3) are strict, first
consider the matrix Σ′ = (1/2, 1/3, 1/4) ∈ Θ, and let

S =

 1211/4560 −217/3420 1/30
−217/3420 827/2565 1/9

1/30 1/9 1

 ∈ KΘ(Σ
′).

The log-likelihood function ℓn(Σ, S) has 15 critical points, three of which are real. The real
points are given numerically by

{(1/2, 1/3, 1/4), (−0.73841, 0.213623,−0.0580265), (0.182141, 0.316592, 0.190067)}.

The values of the log-likelihood function are, respectively

− 1.53844955693696,

− 1.24750351572487,

− 1.55375020617405.

We see that the maximum is achieved at the second point, meaning S /∈ log VorΘ(Σ
′). This

shows that the second containment in (5.3) is strict. To see that the first containment is
strict, let

S =

 813/304 103/76 1/2
103/76 85/57 1/3

1/2 1/3 1/3

 ∈ KΘ(Σ
′).

The matrix 2S − Σ′ is not positive definite. However, ℓn(Σ, S) has only one real critical
point, namely Σ′. Thus S ∈ log VorΘ(Σ

′), which shows that the first containment is also
strict.

Bivariate correlation model

A bivariate correlation model is an affine covariance model given parametrically as

Θ =

{
Σx :=

(
1 x
x 1

)
: x ∈ (−1, 1)

}
.
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Maximum likelihood estimation of this model has been studied extensively in [12]. In this
section we give an explicit description of its logarithmic Voronoi cells and show that they are
semialgebraic sets. This is extremely surprising. As the development below will demonstrate,
the potential constraints which define the boundary of logarithmic Voronoi cells of these one-
dimensional models are very complicated. In particular, they are not algebraic. Nevertheless,
one recovers a semi-algebraic description.

Given a sample covariance matrix S, the derivative of the log-likelihood function ℓn(Σ, S)
with respect to x is 2

(1−x2)2
· f(x) where

f(x) = x(x2 − 1)− S12(1 + x2) + x(S11 + S22).

This polynomial has at least one real root in the interval (−1, 1), which corresponds to a
positive definite covariance matrix in the model. This tells us that the MLE always exists,
and hence the logarithmic Voronoi cells fill the cone PD2. Letting a = (S11 + S22)/2 and
b = S12, the polynomial f can be re-written as f(x) = x3 − bx2 − x(1 − 2a) − b. This
polynomial has either one or three real roots in the interval (−1, 1). In the first case, there is
a unique positive definite matrix that appears as a critical point when optimizing ℓn(Σ, S).
In the second case, there are three possible positive definite critical points. As shown in [12],
the latter happens if and only if ∆f (b, a) > 0 and a < 1/2, where

∆f (b, a) = −4[b4 − (a4 + 8a− 11)b2 + (2a− 1)3]

is the discriminant of f .

Fix c ∈ (−1, 1). We wish to compute the logarithmic Voronoi cell at Σc. Note that for
a sample covariance matrix S to have Σc as a critical point, c must be a root of f(x).
Substituting c for x in f , we get an equation f(c) = 0 in a and b. From this equation, we
may express a in terms of b and c:

a =
bc2 − c3 + b+ c

2 c
. (5.4)

Only S ∈ PD2 that satisfy this equation will have Σc as a critical point when maximizing
ℓn(Σ, S). If for such S we have ∆f (b, a) ≤ 0 or a ≥ 1/2, then S has Σc as the MLE and
thus S ∈ log VorΘ(Σc). If ∆f (b, a) > 0 and a < 1/2, then we must compare the value that
ℓn takes on Σc to the values that it takes on the two matrices Σ1,Σ2 corresponding to the
other two real roots of f(x), for the fixed a and b. Given the relationship between a and b
as in (5.4) we find all three roots of f(x) in terms of b and c. They are

c1 =
bc− c2 −

√
b2c2 − 2 bc3 + c4 − 4 bc

2 c

c2 =
bc− c2 +

√
b2c2 − 2 bc3 + c4 − 4 bc

2 c
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and, of course, c itself.

Let
Sb,k =

(
k b
b 2a− k

)
≻ 0, 0 < k < 2a

denote a general matrix in PD2 that has Σc as a critical point when computing the MLE. In
particular, the relation (5.4) is satisfied. This set of matrices forms the log-normal spectra-
hedron KΘ(Σc) of Σc .

Theorem 5.3.5. Let Θ be the bivariate correlation model and let Σc ∈ Θ. If c > 0, then
log VorΘ(Σc) = {Sb,k ∈ KΘ(Σc) : b ≥ 0}. If c < 0, then log VorΘ(Σc) = {Sb,k ∈ KΘ(Σc) : b ≤
0}. If c = 0, then log VorΘ(Σc) = {diag(k, 2a − k) : a ≥ 1/2, 0 < k < 2a}. In particular,
logarithmic Voronoi cells of Θ are semi-algebraic sets.

Proof. First, suppose that c > 0. Since we only consider the positive definite matrices Sb,k,
we are working in the cone a > |b|. This gives us the restriction b > c(c− 1)/(c + 1). Note
that

∆f (b, c) =
(b2c− 2 bc2 − 4 b+ c3)(bc2 − 2 c3 − b)2

c3
.

Thus, ∆f ≤ 0 if and only if

c2 − 2
√
c2 + 1 + 2

c
≤ b ≤ c2 + 2

√
c2 + 1 + 2

c
. (5.5)

Moreover, since a = bc2−c3+b+c
2 c

, we also have a ≥ 1/2 if and only if b ≥ c3

c2+1
. Since for c > 0,

we always have
c3

c2 + 1
≤ c2 + 2

√
c2 + 1 + 2

c
,

it follows that {
Sb,k ∈ KΘ(Σc) : b ≥

c2 − 2
√
c2 + 1 + 2

c

}
⊆ log VorΘ(Σc).

Now, suppose b ≤ c2−2
√
c2+1+2
c

. Such sample covariance matrices Sb,k will have three positive
definite roots when optimizing ℓn(Σ, S), namely Σc1 , Σc2 , and Σc. In order for such matrix
Sb,k to be in log VorΘ(Σc), it has to be the case that

ℓn(Σc, S) ≥ ℓn(Σci , S) for i = 1, 2.

A computation (in SAGE [103]) shows that both inequalities above are inequalities in b only.
The only constraints on k are given by the positive definiteness of S. The values of the
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log-likelihood function are

ℓn(Σc1 , Sb,k) = − 1
D

[
4 bc2 +

(
2 bc2 − c3 −

(
b2 − 2

)
c+ 2 b

)
log

(
2 bc2−c3−(b2−2)c+

√
b2c2−2 bc3+c4−4 bc(b−c)+2 b

2 c

)

+
√
b2c2 − 2 bc3 + c4 − 4 bc

(
(b− c) log

(
2 bc2−c3−(b2−2)c+

√
b2c2−2 bc3+c4−4 bc(b−c)+2 b

2 c

)
+ 2 b

)
+ 2 b− 2 c3 − 2

(
b2 − 1

)
c

]

ℓn(Σc2 , Sb,k) = − 1
D

[
4 bc2 +

(
2 bc2 − c3 −

(
b2 − 2

)
c+ 2 b

)
log

(
2 bc2−c3−(b2−2)c−

√
b2c2−2 bc3+c4−4 bc(b−c)+2 b

2 c

)

−
√
b2c2 − 2 bc3 + c4 − 4 bc

(
(b− c) log

(
2 bc2−c3−(b2−2)c−

√
b2c2−2 bc3+c4−4 bc(b−c)+2 b

2 c

)
+ 2 b

)
+ 2 b− 2 c3 − 2

(
b2 − 1

)
c

]

ℓn(Σc, Sb,k) = − c log(−c2+1)+b+c

c
,

where D = 2 bc2 − c3 − (b2 − 2)c+
√
b2c2 − 2 bc3 + c4 − 4 bc(b− c) + 2 b. Note that for fixed

c, the last function is linear in b, with the negative slope −1/c. At b = 0, we always
have ℓn(Σc1 , S0,k) = ℓn(Σc, S0,k) > ℓn(Σc2 , S0,k), so S0,k ∈ log VorΘ(Σc) for 0 < k < 2a.
Since logarithmic Voronoi cells are convex sets by Proposition 5.0.1, this means that the
containment {Sb,k ∈ KΘ(Σc) : b ≥ 0} ⊆ log VorΘ(Σc) holds. For the other containment, let
g(b) = ℓn(Σc1 , Sb,k)−ℓn(Σc, Sb,k) and consider its Taylor expansion g(b) = g(0)+g′(0)b+ · · · .
Note that g(0) = 0 and g′(0) < 0 for all 0 < c < 1. Thus, for all b∗ < 0 with |b∗| sufficiently
small, the term g′(0)b∗ is positive and dominating in the expansion. This means that for
such b∗ < 0, we have ℓn(Σc1 , Sb∗,k) > ℓn(Σc, Sb∗,k), and so Sb∗,k /∈ log VorΘ(Σc). Thus,
{Sb,k ∈ KΘ(Σc) : b ≥ 0} = logVorΘ(Σc) by convexity of logarithmic Voronoi cells. The proof
for c < 0 is similar. For c = 0, we have that b = 0 and the log-normal spectrahedron is given
by {Sa,k := diag(k, 2a− k) : 0 ≤ k ≤ 2a}. The two other critical points, besides 0, are given
by c1 =

√
1− 2a and c2 = −

√
1− 2a. These are real if a ≤ 1/2. In this case, the values of

the log-likelihood function are as follows:

ℓn(Σc1 , Sa,k) = ℓn(Σc2 , Sa,k) = − log(2a)− 1, ℓn(Σc, Sa,k) = −2a.

Note that ℓn(Σc1 , Sa,k) is a monotone decreasing strictly convex function and ℓn(Σc, Sa,k) is
a linear function with slope −2, tangent to ℓn(Σc1 , Sa,k) at a = 1/2. Thus, the only time Σ0

is the MLE in this regime is when a = 1/2. If a > 1/2, c = 0 is the only real critical point
and gives the MLE. We conclude that log VorΘ(Σ0) = {diag(k, 2a − k) : a ≥ 1/2, 0 < k <
2a}.

Remark 5.3.6. Note that since the bivariate correlation model is a compact set inside PD2,
its log-normal spectrahedra for general matrices as well as logarithmic Voronoi cells are
unbounded. In general, for 0 < c < 1, the part of the log-normal spectrahedron at Σc that is
not in the logarithmic Voronoi cell at Σc is small. This is due to the fact that c(c−1)/(c+1) is
a negative number with small magnitude. As c→ 1, the logarithmic Voronoi cell converges
to the log-normal spectrahedron. In Figure 5.3, we plot the logarithmic Voronoi cell at
c = 1/2 as the intersection of the pink log-normal spectrahedron and the blue half-space
b ≥ 0. Similar statement is true of −1 < c < 0.
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Figure 5.3: The logarithmic Voronoi cell at Σ1/2 for the bivariate correlation model.

Equicorrelation models

An equicorrelation model is given by the parameter space

Θm = {Σx ∈ Sym(Rm) : Σii = 1,Σij = x for i ̸= j, i, j ∈ [m], x ∈ R} ∩ PDm .

Note that this model is an instance of the affine covariance model, with A = Im and L =
spanR{11T − Im}, where 1 denotes the all-ones vector in Rm. Note also that Θ2 is precisely
the bivariate correlation model. For a symmetric matrix Σx = (1 − x)Im + x11T to be
positive definite, − 1

m−1
< x < 1 must hold.

Given c ∈ R such that − 1
m−1

< c < 1, we wish to describe the logarithmic Voronoi cell
at Σc ∈ Θm. Let S ∈ PDm be a sample covariance matrix. Following [12], define the
symmetrized sample covariance matrix to be the matrix

S̄ =
1

m!

∑
P∈Sm

PSP T

where Sm denotes the group of all m×m permutation matrices. Let N denote the space of
all symmetrized sample covariance matrices. Note that for i, j ∈ [m], we have S̄ii = a and
S̄ij = b whenever i ̸= j. From Lemma 5.2 in [12], we have ⟨S,Σ−1

c ⟩ = ⟨S̄,Σ−1
c ⟩, so optimizing

ℓn(Σ, S) is equivalent to optimizing ℓn(Σ, S̄). Hence, we may fully recover the logarithmic
Voronoi cells at Σc with the matrices S̄ for which ℓn(Σ, S̄) is maximized at Σc.

From Theorem 5.4 in [12], we know that the ML degree of the equicorrelation model is 3
and the critical points for a general S̄ with S̄ii = a and S̄ij = b for i ̸= j are given by the
points Σr where r is a root of the cubic

fm(x) = (m− 1)x3 + ((m− 2)(a− 1)− (m− 1)b)x2 + (2a− 1)x− b.
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Since we are interested in the matrices S̄ that have Σc as a critical point, c must be a root
of fm(x). Then, the equation fm(c) = 0 becomes an equation expressing the relationship
between a and b, namely

a = −(b+ 2)c2 − c3 − ((b+ 1)c2 − c3)m− b− c
c2m− 2 c2 + 2 c

.

All positive definite matrices S̄ satisfying the above relationship are the set KΘm(Σc) ∩ N .
The matrices in this set depend only on the parameter b, so we will denote them by S̄b. Not
all such matrices may be in the logarithmic Voronoi cell at Σc. The matrices S̄b for which
the discriminant ∆f,m(b, a) is negative will be in the logarithmic Voronoi cell, since for such
points, fm has only one real root. When ∆f,m(b, a) ≥ 0 , the situation is more complicated.
The good news is that most such matrices S̄b satisfying fm(c) = 0 will still have only one
positive definite critical point in the model, namely Σc. However, some matrices may have
two additional critical points. In such cases, we have to evaluate ℓn(Σ, S̄b) on the other two
roots of fm(x), denoted by c1 and c2. If ℓn(Σc, S̄b) is the largest, then S̄b would be in the
logarithmic Voronoi cell at Σc. Precisely, we have that

log VorΘm(Σc) ∩N = {S̄b ∈ KΘm(Σc) ∩N : ℓn(Σc, S̄b) ≥ ℓn(Σci , S̄b), i = 1, 2}.

For fixed c, the two inequalities defining the above set are inequalities in one variable b.
Thus, the set log VorΘm(Σc) ∩N is one-dimensional. We have the following theorem.

Theorem 5.3.7. Let Σc ∈ Θm. The logarithmic Voronoi cell at Σc is given as

log VorΘm(Σc) = {S ∈ PDm : ψ(S) = S̄, S̄ ∈ N ∩ log VorΘm(Σc)},

where ψ : PDm → N : S 7→ S̄.

Proof. This follows from the equality ⟨S,Σ−1
c ⟩ = ⟨S̄,Σ−1

c ⟩.

Note that the pre-image of any symmetrized covariance matrix S̄ under ψ has dimension(
m+1
2

)
− 2, and so the logarithmic Voronoi cell at any generic Σc ∈ Θm has dimension(

m+1
2

)
− 2 + 1 =

(
m+1
2

)
− 1, i.e. co-dimension 1, as expected.

We also observe that when m increases, the number of matrices S̄b that have two other
positive-definite critical points besides Σc decreases. Moreover, in statistical practice, such
matrices S̄b are rare, even for small sample sizes [12]. This means that for practical purposes,
we may say that the logarithmic Voronoi cell at Σc ∈ Θm is approximately its log-normal
spectrahedron.

Transcendentality of logarithmic Voronoi cells

In this chapter we have introduced logarithmic Voronoi cells for Gaussian models. In the case
of models that are also well-known in algebraic statistics we have proved that the logarithmic
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Voronoi cells are spectrahedra with explicit descriptions. These include linear concentration
models such as Gaussian models on undirected graphs as well as Gaussian models on DAGs.
The spectrahedra we have identified deserve further study.

The case of bivariate correlation models is quite interesting since they provide the first small
instance where logarithmic Voronoi cells need not be semi-algebraic. However, we showed
that even in this case we get semialgebraicity even though the logarithmic Voronoi cells are
not equal to the log-normal spectrahedra. The bivariate correlation models fit into a larger
class of models known as unrestricted correlation models. Such a model is given by the
parameter space

Θ = {Σ ∈ Sym(Rm) : Σii = 1, i ∈ [m]} ∩ PDm .

The ML degree of these models for m ≤ 6 was computed in [12]. The case m = 2 is the
bivariate correlation model whose ML degree is 3.

When m = 3, the model is a compact spectrahedron known as the elliptope in convex alge-
braic geometry literature. We have encountered this model with ML degree 15 in Example
5.3.4. The logarithmic Voronoi cells of the elliptope are unbounded 3-dimensional convex
sets. We found it quite challenging to give a good description for them besides the one
coming from its definition. We venture the following conjecture.

Conjecture 5.3.8. The logarithmic Voronoi cells for general points on the elliptope are not
semi-algebraic; in other words, their boundary is defined by transcendental functions.

Conclusion. In this chapter, we showed that for Gaussian models of ML degree one and
linear covariance models, logarithmic Voronoi cells and log-normal spectrahedra coincide. In
particular, they are equal for both directed and undirected graphical models. We introduced
a decomposition theory of logarithmic Voronoi cells for the latter family. We also gave
an explicit description of logarithmic Voronoi cells for the bivariate correlation model and
showed that they are semi-algebraic sets. Finally, we stated an important conjecture that
logarithmic Voronoi cells for unrestricted correlation models are not semi-algebraic.
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Part II

Context-specific models
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Chapter 6

Decomposable context-specific models

In this chapter, we are interested in how algebra can be used to model causality and capture
finer forms of independence; specifically, context-specific independence. In Section 6.1, we
present the necessary background on CStree models and their connection to discrete DAG
models discussed in Chapter 1. Decomposable CSmodels are defined in 6.2, where we il-
lustrate the nature of CStrees and decomposable CSmodels by presenting a classification
of all CStree models in three random variables. A highlight from this section is Theorem
6.2.1, which states that if the number of random variables is three then a CStree model is
decomposable if and only if all of its minimal context DAGs are perfect. This is no longer
true for four variables, see Example 6.2.4. In Section 6.3, we establish several combinato-
rial properties for balanced CStrees. Finally, Section 6.4 contains the proofs of the main
algebraic results. This chapter is based on [2].

From Chapter 1, we know that a discrete graphical modelM(G) is a set of joint probability
distributions for a vector of discrete random variables (X1, . . . , Xp) that satisfy conditional
independence (CI) relations according to the non-adjacencies of a graph G = ([p], E) where
[p] := {1, . . . , p}. The type of graph used to encode CI relations is typically a directed acyclic
graph (DAG) or an undirected graph (UG), although other types of graphs are possible [78].

Graphical models are widely used in several fields of science, such as artificial intelligence,
biology, and epidemiology [76, 81, 96]. However, in some applications it is useful to consider
models that encode a finer form of independence. Context-specific independence (CSI) is
a generalization of conditional independence where the conditional independence between
the random variables only holds for particular outcomes of the variables in the conditioning
set. The classical graphical models based on DAGs or UGs are no longer able to capture
these more refined relations. Several extended graphical representations of CSI models have
been proposed in the literature, [25, 30, 97, 99, 105]. Apart from its usage to encode model
assumptions more accurately, context-specific independence is also important in the study
of structural causal models because the presence of more refined independence can improve
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the identifiability of causal links [118].

We have seen graphical models associated to directed acyclic graphs in Section 1.1. A graph-
ical modelM(G) associated to an undirected graph G is called decomposable if G is chordal.
Decomposable graphical models play a prominent role among graphical models because they
exhibit optimal properties for probabilistic inference. There are several characterizations of
decomposable models in terms of their algebraic, combinatorial, and geometric properties
[49, 54, 55, 78]. This chapter generalizes this class of models to the context-specific setting
via decomposable context-specific models (see Section 6.2) and shows that they mirror many
of the properties that characterize decomposable graphical models. For brevity, we will refer
to these models as decomposable CSmodels. Previous work on context-specific versions of
decomposable models defines them by introducing labels to the edges of a decomposable
undirected graph and taking care of preserving the properties such as perfect elimination
ordering and clique factorization [35, 69]. Our approach in this chapter will be different
in that we will define decomposable CSmodels to be the set of log-linear models contained
inside the more general context-specific models known as CStrees. Thus each decomposable
CSmodelM(T ) is represented by a CStree T .

Similar to discrete DAG models in Chapter 1, there are two ways to define a decomposable
CSmodelM(T ). The first approach uses a recursive factorization property according to T ,
while the second one uses the local CSI relations implied by T . From an algebro-geometric
point of view, the recursive factorization property is a polynomial parametrization ofM(T ),
while the polynomials associated to the local CSI statements in T define the model M(T )
implicitly. An important open problem that arises in the study of context-specific models is
characterizing the set of all CSI statements implied by the local CSI statements defining the
model [25, 36]. This problem is especially amenable to algebraic techniques because any CSI
relation that holds in the model can be represented by a collection of polynomials. Stated
in algebraic terms, this problem is equivalent to that of finding a prime polynomial ideal
that defines M(T ) implicitly [53]. Moreover, for log-linear models, the generators of the
ideal that defines M(T ) form a Markov basis [40]. Our first main theorem is an algebraic
characterization of the distributions that belong to a decomposable CSmodel. This theo-
rem is similar to the Hammersley-Clifford theorem for undirected graphical models and its
generalization [55, Theorem 4.2]. Note that we do not assume positivity of the distribution.

Theorem 6.0.1 (Context-specific Hammersley-Clifford). A distribution f factorizes accord-
ing to a decomposable CSmodelM(T ) if and only if the polynomials associated to saturated
CSI statements in T vanish at f . Moreover, the polynomials associated to the saturated CSI
statements of a decomposable CSmodel form its Markov basis.

Every decomposable CSmodel M(T ) can also be represented by a collection of minimal
context DAGs. We also prove that the saturated CSI statements in Theorem 6.0.1 are
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obtained as the union of saturated d-separation statements that hold in each of the minimal
context DAGs that represent the modelM(T ) (Corollary 6.4.5).

This work also informs us about the set of CSI statements that hold for certain context-
specific models known as LDAGs [97]. Briefly, an LDAG is a context-specific model repre-
sented by a DAG with edge labels, where these labels encode the extra CSI relations that hold
for the model. Every CStree is an LDAG and every LDAG is a staged tree [50]. Whenever
the LDAG is represented by a balanced CStree, Theorem 6.0.1 gives a complete character-
ization of the CSI statements that hold for the LDAG. In general, however, describing all
CSI statements that hold for LDAGs is coNP-hard [36].

6.1 Introduction to CStrees
In this section, we introduce notation used in this chapter and generalize conditional inde-
pendence statements to the context-specific case. We then introduce staged trees, CStrees,
and explain how they may be represented by DAGs. Finally, we define balanced CStrees
and discuss their importance.

Notation

Similar to Chapter 1, we consider a vector of discrete random variables X[p] = (X1, . . . , Xp)
where [di] is the state space ofXi andR =

∏
i∈[p][di] is the state space ofX[p]. To be consistent

with the literature, we will denote elements in R by sequences x = (x1, . . . , xp) = x1 · · ·xp
where xk ∈ [dk] for every k ∈ [p]. Note that these sequences are the same sequences as in
Section 1.1, except we denoted their coordinates by ij as opposed to xj. For A ⊂ [p], XA is
a vector of discrete random variables with indices in A. A probability distribution f for X[p]

is a tuple (f(x) : x ∈ R) where f(x) > 0 and
∑

x∈R f(x) = 1, f(x) is the probability of the
outcome x ∈ R. All distributions for X[p] live inside ∆◦

|R|−1.

To define a subvariety of the probability simplex we use the polynomial ring R[D] :=
R[px : x ∈ R]. For any subset H ⊂ R[D] we denote the algebraic variety V(H) = {x ∈
C|R| : g(x) = 0 for all g ∈ H}, so the intersection V(H) ∩ ∆◦

|R|−1 is a statistical model. In
our situation, statistical models can also be defined as closed images of rational maps inter-
sected with the probability simplex. A main question in Algebraic Statistics is to find the
implicit equations that define the parametrized model. In this statistical setting, the defin-
ing algebraic equations translate into restrictions on the distributions which encode model
assumptions.

Example 6.1.1. Consider the case p = 3 and X1, X2, X3 are binary random variables. The
graph G = ([3], 1 → 2 → 3) imposes conditional independence relations among the Xi, i ∈
[3]. The state space of (X1, X2, X3) is R = {0, 1}3 because all random variables are binary,
hence |R| = 8. The polynomial ring is R[D] = R[p000, p001, p010, p011, p100, p101, p110, p111].
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From Chapter 1, we know that G tells us that X1 is independent of X3, given X2, as there
is no edge from 1 to 3. This CI relation translates into two equations, one for each outcome
of the conditioning variable X2:

p100p001 − p101p000, p110p011 − p111p010.

These two equations, together with the hyperplane
∑

x∈R px = 1, define a variety in the
affine 8-dimensional space. Taking into account positivity conditions yields the model inside
∆◦

7. By ignoring the sum-to-one hyperplane we immediately see that this model defines a
toric variety in P7 as it is cut out by a prime binomial ideal.

Context-specific conditional independence statements

Let A,B,C, S be disjoint subsets of [p] and xC ∈ RC , a distribution f ∈ ∆◦
|R|−1 satisfies the

context-specific conditional independence statement (CSI statement) XA ⊥⊥ XB|S,XC = xC
if for all outcomes (xA, xB, xS) ∈ RA ×RB ×RS

f(xA|xB, xS, xC) = f(xA|xS, xC).

When C is empty we recover the notion of conditional independence XA ⊥⊥ XB|XS. To each
CSI statement XA ⊥⊥ XB|XS, XC = xC we associate the collection of polynomials

pxAxBxSxC+pyAyBxSxC+ − pxAyBxSxC+pyAxBxSxC+ (6.1)

for every xA, yA ∈ RA, xB, yB ∈ RB and xS ∈ RS where

pxAxBxSxC+ =
∑

z∈R[p]\(A∪B∪C∪S)

pxAxBxSxCz.

Note that these polynomials are the 2-minors of the matrix (pxAxBxSxC+)xA∈RA,xB∈RB
for all

outcomes xS ∈ RS. We define the ideal IXA⊥⊥XB |XS ,XC=xC
in R[D] to be the ideal generated

by all the polynomials in (6.1).

Given a collection C of CSI statements, we define the CSI ideal generated by the polynomials
associated to all CSI statements in C, i.e.

IC =
∑

XA⊥⊥XB |XS ,XC=xC∈C

IXA⊥⊥XB |XS ,XC=xC
.

Graphical models are a widely used class of CI models. Recall that the DAG model M(G)
is the set of all the distributions in ∆◦

|R|−1 that satisfy the recursive factorization property
according to G. However, DAG models can also be defined implicitly by using the polyno-
mials associated to the CI statements obtained via the different Markov properties. Any CI
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Figure 6.1: A CStree for p = 3 and its minimal context DAGs.

relation that holds for the modelM(G) is obtained from G via d-separation statements [78]
and the set of all d-separation statements, denoted by global(G), defines the global Markov
property on G. The corresponding ideal Iglobal(G) is not prime in general, as we discussed in
the introduction. It is however prime and generated by binomials if the graph is perfect (see
Definition 6.1.7).

While DAG models are well-suited to encode CI statements, they cannot encode CSI state-
ments. There are several models one could use instead to encode CSI statements. In this
chapter we focus on staged tree models, first introduced in [105], which we define next.

Staged Trees and CStrees

To have control of the CSI statements that hold in the model, it is convenient to represent the
outcome space of X[p] as an event tree. Let π1 · · · πp be an ordering of [p] and let T = (V,E)
be a rooted tree with V := {root} ∪

⋃
j∈[p]R{π1···πj} and set of edges

E :={root→ xπ1 : xπ1 ∈ [dπ1 ]}∪
{xπ1 · · ·xπk−1

→ xπ1 · · ·xπk
: xπ1 · · ·xπk−1

∈ Rπ1,...,πk−1
, xk ∈ [dk], k ∈ [p]}.

The level of a node v ∈ V is the number of edges in the unique path in T from the root to
v. The kth level of T is the set of all nodes in T at level k and is denoted by Lk. For T
as defined, we see that Lk is in bijection with the space of outcomes of the random vector
X{π1,...,πk}. Hence we associate the variable Xπk

with the level Lk and denote this association
by (L1, . . . , Lp) ∼ (Xπ1 , . . . , Xπp). For any tree T we write VT and ET for its sets of vertices
and edges, respectively. We write E(v) to denote the set of all outgoing edges from v.
Without loss of generality, throughout this chapter we will assume πi = i for all i ∈ [p]. In
particular, this implies (L1, . . . , Lp) ∼ (X1, . . . , Xp). The tree in Figure 6.1 represents an
event tree for a vector (X1, X2, X3) of binary random variables. To illustrate part of the
notation, in this tree we have L2 = {00, 01, 10, 11} and E(0) := {0→ 00, 0→ 01}.

Let T = (V,E) be a rooted tree with levels (L1, · · · , Lp) ∼ (X1, . . . , Xp), L a finite set of
labels and θ : E → L a labeling of the edges. The pair (T , θ) is a staged tree if
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(1) |θ(E(v))| = |E(v)| for all v ∈ V , and

(2) for any pair v, w ∈ V , θ(E(v)) and θ(E(w)) are either equal or disjoint.

Two vertices v, w in (T , θ) are in the same stage if and only if θ(E(v)) = θ(E(w)). In this
case we write v ∼ w. The equivalence relation ∼ on the set V induces a partition of V
called the staging of T . We refer to each set in this partition as a stage. When depicting
staged trees, such as in Figure 6.1, we use colors in the vertices to indicate that two vertices
are in the same stage, except for white vertices which always represent singleton stages.
Intuitively, the vertices in a stage S in level Lk−1 represent outcomes x1 · · ·xk−1 for which
the conditional distributions f(Xk|x1 · · ·xk−1), x1 · · ·xk−1 ∈ S are all equal.

Definition 6.1.2. The staged tree (T , θ) is a CStree if

(1) θ(E(v)) ̸= θ(E(w)) if v, w are in different levels,

(2) θ(x1 · · ·xk−1 → x1 · · ·xk−1xk) = θ(y1 · · · yk−1 → y1 · · · yk−1xk) whenever the nodes
x1 · · ·xk−1 and y1 · · · yk−1 are in the same stage.

(3) For every stage S ⊂ Lk−1, k ∈ [p], there exists C ⊂ [k − 1] and xC ∈ RC such that

S =
⋃

y∈R[k−1]\C

{xCy}.

Condition (1) ensures that two nodes in different levels do not share the same conditional
distribution. Condition (2) forces that edges with the same label must point to the same
outcome of Xk. The CStree modelM(T ) has the space of parameters

ΘT =

x ∈ R|L| : ∀e ∈ E, xθ(e) ∈ (0, 1) and ∀v ∈ V,
∑

e∈E(v)

xθ(e) = 1


and is defined to be the image of the map

ΨT : ΘT → ∆◦
|R|−1, x 7→

 ∏
e∈E(root→x)

xθ(e)


x∈R

where E(root → x) denotes the set of all edges on the path from the root to x. We say a
distribution f ∈ ∆◦

|R|−1 factors according to T if f ∈ im(ΨT ).

To describe a CStree modelM(T ) as an algebraic variety intersected with the open proba-
bility simplex we consider the ring homomorphism

ψT : R[D]→ R[ΘT ], px 7→
∏

e∈E(root→x)

θ(e)
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where R[ΘT ] := R[θ(e) : e ∈ E]/⟨θ − 1⟩ and ⟨θ − 1⟩ := ⟨
∑

e∈E(v) θ(e) − 1 : v ∈ V ⟩ is the
ideal representing the sum-to-one conditions on the parameter space. The ring map ψT is
the algebraic counterpart of the parametrization ΨT of the modelM(T ). Using ψT , we can
write the CStree model as

M(T ) = V(ker(ψT )) ∩∆◦
|R|−1.

Remark 6.1.3. The DAG model M(G) is the set of all the distributions in ∆◦
|R|−1 that

satisfy the recursive factorization property according to G. By [50, Section 2.1] any DAG
model M(G) is a CStree model. The level k − 1 of the CStree TG representing G has one
stage Sxpa(k)

= {xpa(k)y : y ∈ R[k−1]\pa(k)} for each outcome xpa(k) ∈ Rpa(k).

For a DAG G, the map ψTG is the well-known recursive factorization according to G. It is
important to know that the ideal Iglobal(G) is not always equal to the prime ideal ker(ψTG). [53]
contains several examples where equality holds as well as numerous counterexamples. The
strongest possible algebraic characterization of a model is to find the generators for ker(ψT ).
For most graphical models, discrete and Gaussian, it is an open question to find generators
of ker(ψT ). A recent overview of the state of the art is presented in [81, Chapter 3]. For
discrete decomposable DAG models such characterization can be found in [55, Theorem 4.4].
Our Theorem 6.4.3 characterizes ker(ψT ) in terms of CSI statements for all balanced CStree
models as defined in 6.1.8.

The next lemma describes the type of CSI statements encoded by a CStree; they are a
consequence of condition (3) in Definition 6.1.2.

Lemma 6.1.4. [50, Lemma 3.1] Let T be a CStree with levels (L1, . . . , Lp)
∼ (X1, . . . , Xp). Then for any f ∈M(T ) and stage S ⊂ Lk−1, we have that f entails the CSI
statement Xk ⊥⊥ X[k−1]\C |XC = xC where C is the set of all indices ℓ such that all elements
in S have the same outcome for Xℓ. Hence, xC = yC for any y ∈ S.

For any stage S the context XC = xC in Lemma 6.1.4 is called the stage-defining context of
the stage S. Given a stage defining context XC = xC for a stage S in level Lk−1 we recover
the stage from the statement Xk ⊥⊥ X[k−1]\C |XC = xC as S =

⋃
y∈R[k−1]\C

{xCy}.

CStrees as collections of context DAGs

Let J (T ) be the set of all CSI statements implied by applying the CSI axioms [50, Section
3.2] to the statements in Lemma 6.1.4. By the absorption axiom, there exists a collection
CT := {XC = xC} of contexts such that for any XA ⊥⊥ XB|XS, XC = xC ∈ J (T ) with
XC = xC ∈ CT , there is no subset T ⊆ C for which XA ⊥⊥ XB|XS∪T , XC\T = xC\T ∈ J (T ).
We call such XC = xC ∈ CT a minimal context of T . Note that

J (T ) =
⋃

XC=xC∈CT

J (XC = xC)
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where J (XC = xC) is the set of all CI statements of the form XA ⊥⊥ XB|XS that hold in the
context XC = xC . To each such XC = xC ∈ CT , we can associate a minimal context DAG
with set of nodes [p] \ C, denoted by GXC=xC

, via the I-MAP of J (XC = xC) [50, Section
3.2]. An example of a CStree and its corresponding collection of context DAGs is depicted
in Figure 6.1.

Each context DAG GXC=xC
is in particular a DAG, thus by Remark 6.1.3, it has a staged

tree representation which we denote by TGXC=xC
. To relate TGXC=xC

to the original tree
T , we define a context subtree TXC=xC

for each context XC = xC . Let x1 · · ·xk ∈ T
and denote by Tx1···xk

the directed subtree of T with root node x1 · · ·xk. For C ⊂ [p] and
xC ∈ RC we construct the context subtree TXC=xc = (VXC=xC

, EXC=xC
) by deleting all

subtrees Tx1···xk
and all edges x1 · · ·xk−1 → x1 · · · xk with xk ̸= xC∩k, and then contracting

the edges x1 · · ·xk−1 → x1 · · ·xk−1(xC)k for all x1 · · ·xk−1 ∈ R[k−1], for all k ∈ C. The single
node resulting from this contraction is labeled x1 · · ·xk−1(xC)k and it is in the same stage
as x1 · · ·xk−1xC∩{k} in T . All of the other nodes in TXC=xC

inherit their staging from T .
Note that the context subtree TXC=xC

is itself a CStree and Tx1···xk
is the context subtree

TX[k]=x1···xk
.

Moreover, let XC = xC be a minimal context of T . Then by the construction of TXC=xC
and

GXC=xC
, we have

J (TXC=xC
) = {XA ⊥⊥ XB|XS, XD = xD : XA ⊥⊥ XB|XS, XD = xD, XC = xC ∈ J (T )}

with A,B, S,D ⊂ [p] \ C, and the CI statements implied by GXC=xC
are

J (XC = xC) = {XA ⊥⊥ XB|XS : XA ⊥⊥ XB|XS, XC = xC ∈ J (T )}.

This shows that the CI statements implied by the DAGGXC=xC
are exactly the CI statements

implied by the CStree TXC=xC
. In general, the CStrees TGXC=xC

and TXC=xC
are different,

since the CStree TXC=xC
may imply more CSI statements (see Example 6.3.1). If ∅ ∈ CT

then G∅ is a DAG that captures the CI relations implied by T . When ∅ /∈ CT , then T
entails no CI relations, in this case we associate to T the complete DAG on [p] nodes whose
directed arrows are in agreement with the causal ordering of T , we also denote this DAG
by G∅.

Example 6.1.5. Consider the binary CStree T on three random variables given in Fig-
ure 6.1. Since the two nodes in level 1 are in the same stage (represented by the same
colors), this CStree implies the CI statement X1 ⊥⊥ X2. As the nodes 00 and 10 are in the
same stage but 01 and 11 are not, we get the CSI statement X3 ⊥⊥ X1|X2 = 0. Therefore,
J (T ) = {X1 ⊥⊥ X2, X1 ⊥⊥ X3|X2 = 0}. In particular, we see that the minimal contexts are
∅ and X2 = 0.

Example 6.1.6. For the sake of intuition we present an example of a collection of context
DAGs that do not define a CStree. Consider the two DAGs G∅ = ([3], {2 → 3}) and
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GX1=0 = ({2, 3},∅) and assume all random variables are binary. These two DAGs imply the
CI relation X1 ⊥⊥ X2,3 and the CSI relation X2 ⊥⊥ X3|X1 = 0.

Let T be a staged tree representing the outcomes of the vector X[3]. We will see that the
staging of T cannot be a CStree. The vertices 10 and 00 are in the same stage because
in the empty context DAG, G∅, f(X3|X1,2 = 10) = f(X3|X1,2 = 00). Moreover, since
X2 ⊥⊥ X3|X1 = 0, we also have f(X3|X1,2 = 00) = f(X3|X1,2 = 01), thus 00 and 01 are also
in the same stage. This implies 10, 00, 01 are all in the same stage, which by definition of
CStree implies that so are all vertices 00, 01, 10, 11. Thus the CI statement X3 ⊥⊥ X1,2 holds
in the CStree. However, this statement is not implied by the two DAGs.

Balanced CStrees

Decomposable graphical models are a set of graphical models for which the undirected and
directed Markov properties coincide. These are characterized in many different ways, com-
binatorially as chordal UGs or as perfect DAGs, and geometrically as those DAG models
that are discrete exponential families [54], also known as toric varieties in the Algebraic
Statistics literature [114]. The article [50] suggests the family of balanced staged tree models
as a suitable generalization of decomposable DAG models because these models are discrete
exponential families. Furthermore, a DAG is perfect if and only if its CStree representation
is balanced. Thus we identify the class of balanced CStrees as a good candidate for decom-
posable models in the context-specific setting. Our main goal is to explore to which extent
the properties of decomposable DAG models carry over to the context-specific case.

Definition 6.1.7. A DAG G = ([p], E) is perfect if the skeleton of the induced subgraph on
the vertices pa(k) is a complete graph for all k ∈ [p].

There are several equivalent ways to define a perfect DAG. Another way to characterize
a perfect DAG G is to require that its skeleton is chordal and there is no triple u, v, w of
vertices such that u→ w, v → w are edges in G but u and v are not adjacent. One can also
characterize a perfect DAG via its moral graph, see [78].

Let G be a DAG and let TG be the staged tree representation of G. A characterization of
perfect DAGs is also available via balanced CStrees.

Definition 6.1.8. Let T be a CStree. For any vertex v = x1 · · ·xk−1 ∈ T we define the
polynomial

t(v) :=
∑

z∈R[p]\[k−1]

 ∏
e∈E(v→vz)

θ(e)

 ∈ R[θ(e) : e ∈ E].
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A pair of vertices v = x1 · · ·xk−1 and w = y1 · · · yk−1 in the same stage is balanced if for all
s, r ∈ [dk], we have the equality

t(vs)t(wr) = t(vr)t(ws)

in the polynomial ring R[θ(e) : e ∈ E]. The tree T is balanced if every pair of vertices in the
same stage is balanced.

Remark 6.1.9. The polynomial t(root) in the previous definition is called the interpolating
polynomial of T . Such polynomial is useful to study equivalence classes of staged tree models
[59] and enumerating the trees in the equivalence class [58] of any given staged tree.

Theorem 6.1.10. [49, Theorem 3.1] The DAG G is perfect if and only if TG is balanced if
and only ifM(G) is decomposable.

One could hope that the direct generalization of Theorem 6.1.10 is true for balanced CStrees.
Namely that a CStree T is balanced if and only all of its minimal context DAGs are perfect.
This equivalence only holds for three random variables (p = 3). For p = 4, Example 6.2.4
provides a counterexample. In general, only one implication holds, namely, the CStree model
M(T ) is balanced whenever all minimal contexts are perfect (Theorem 6.3.5).

6.2 Decomposable CSmodels in three variables
Our subject of study from this point forward are balanced CStree models, the combinatorics
of their context-specific DAG representations and the properties of their defining equations.
The results in Section 6.4 show that the properties of these models closely mirror those of de-
composable DAG models. Therefore we will refer to balanced CStree models as decomposable
context-specific models (decomposable CSmodels). Consistent with our previous notation, we
will denote such models byM(T ), where T denotes the associated balanced CStree.

The goal of this section is to provide a complete description of CStree models in three random
variables and to prove the generalization of Theorem 6.1.10 for p = 3. That is, we prove the
following result.

Theorem 6.2.1. A CStree T with p = 3 is balanced, i.e. M(T ) is a decomposable CSmodel,
if and only if all minimal context DAGs of T are perfect.

Before proving the above theorem, we classify all possible CStrees on three random variables
along with their minimal contexts, taking advantage of the small value of p.

Example 6.2.2. We provide a list of all CStrees which are not staged tree representations
of a DAG with causal ordering 123 (see Figure 6.2). In this case there are four families of
CStrees.
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Figure 6.2: All CStrees with p = 3, which do not represent a DAG.

Consider the two pairs of DAGs {([3], {1 → 2, 1 → 3, 2 → 3}), ([3], {1 → 3, 2 → 3})} and
{({1, 3},∅), ({2, 3},∅)}. Each of the four families is defined as follows: Choose two graphs
G1, G2, one from each pair. Let i ∈ {1, 2} such that i does not appear in the vertex set of G2

and let I ⊊ [di]. Now, consider the CStree defined by taking G1 as its empty context DAG
and G2 as the minimal context DAG for the contexts Xi = j for every j ∈ I. Depending
on the choice of G1, G2 we get exactly the four families in Figure 6.2. The first family for
example corresponds to choosing G1 to be the complete graph, G2 = ({1, 3},∅) and some
I ⊊ [d2].

Note that any such choice does define a CStree and all contexts will be minimal contexts
(except the empty context if the DAG is chosen to be the complete graph). If one would
take I = [di] this would no longer be true and the CStree would in fact be the staged tree
representation of a DAG. The staged trees on the left of Figure 6.2 are examples in which
all random variables are binary and such that the minimal context which is not the empty
context is either X1 = x11 or X2 = x12.
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In the first two families the empty context is not a minimal context as there are no CI
relations that hold. We still draw the complete graph in this example for consistency.

Moreover, we can check that the first two families are balanced CStrees whereas the latter
two are not. In the first two cases we also see that all minimal context DAGs are perfect
which again is not the case for the latter two (cf. Theorems 6.3.5, 6.2.1).

We will not give a proof here that this is in fact a complete list of CStrees that are not DAGs
for p = 3. However, as we are especially interested in balanced CStrees, we show in the next
theorem that the first two families are in fact the only CStrees on p = 3 vertices that are
balanced and are not staged tree representations of DAGs.

Lemma 6.2.3. Let T be a balanced CStree with p = 3. If X1 ⊥⊥ X2, then T represents a
DAG.

Proof. SinceX1 ⊥⊥ X2, all vertices in the first level of T are in the same stage and ∅ ∈ CT . We
claim that there are no other minimal contexts, besides the empty one. Since T is balanced
by assumption, for any two vertices v and u in level 1 and vi, vj ∈ chT (v), ui, uj ∈ chT (u)
with θ(u → uℓ) = θ(v → vℓ) for ℓ ∈ [d2], we have t(vi)t(uj) = t(vj)t(ui). Since p = 3, we
have one of the following cases:

1) t(vi) = t(vj) =⇒ vi ∼ vj and ui ∼ uj

2) t(vi) ̸= t(vj) =⇒ ui ∼ vi and uj ∼ vj,

where ∼ denotes the equivalence relation of being in the same stage. Since T is a CStree,
the first case implies that all children of any vertex v in level 1 are in the same stage. But
then X2 ⊥⊥ X3|X1, so X1 = ℓ is not a minimal context for any ℓ ∈ [d1]. In the second case,
we get that for any two vertices v and u in level 1, we have v′ ∼ w′ for some v′ ∈ chT (v) and
w′ ∈ chT (w). But then X1 ⊥⊥ X3|X2, so again X2 = ℓ ̸∈ CT for any ℓ ∈ [d2]. We conclude
CT = {∅}, so indeed T represents a DAG.

We are now ready to prove Theorem 6.2.1.
Proof of Theorem 6.2.1. We show in Theorem 6.3.5 that (for any p) if all minimal context
DAGs of T are perfect, then T is balanced. Hence, it suffices to show the other implication.
Let T be a balanced CStree with p = 3. Assume there exists a minimal context DAG G that
is not perfect. This has to be the empty context DAG as other minimal context DAGs can
only have two vertices. Hence, the empty minimal context DAG is 1→ 3← 2 which implies
X1 ⊥⊥ X2. Using Lemma 6.2.3 it follows that T = TG is the staged tree representation of G.
However, such a CStree is unbalanced by Theorem 6.1.10.

We have just observed that every balanced CStree has only perfect minimal contexts DAGs
when p = 3. This is no longer true for p ≥ 4, as illustrated by the next example.
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Figure 6.3: A balanced CStree with a non-perfect minimal context.

Example 6.2.4. We consider the binary CStree in Figure 6.3 on p = 4 binary random
variables which is equivalently given by its three minimal context DAGs. This CStree is
balanced as one can check using Definition 6.1.8, but the empty minimal context DAG G∅ is
not perfect as the parents of 4 do not form a complete graph. Therefore, a straightforward
generalization of Theorem 6.2.1 is not true.

This example can also be generalized to get more counterexamples for any p ≥ 4 and with an
arbitrarily large number of minimal context. We may note that the statement X2 ⊥⊥ X3|X1

(which prevents the parents of 4 from forming a complete graph) is implied by the other two
minimal contexts using absorption. We reveal why this happens in Section 6.4.

Remark 6.2.5. In the case p = 4 the CStree in Figure 6.3 is essentially the only binary
balanced CStree with a non-perfect minimal context (up to swapping the outcomes of X1 in
the minimal contexts). If we do not restrict to binary CStrees there exists a family of such
CStrees with a non-perfect context DAG, it can be constructed similarly to Example 6.2.2.

Remark 6.2.6. Another characterizing property of decomposable graphical is in terms of its
maximum likelihood estimator (MLE). Decomposable graphical models are the only class of
undirected graphical models whose MLE has closed form [55, Theorem 4.4]. Decomposable
CSmodels also have closed form for their MLE, which follows from the fact that they are a
subclass of staged tree models [48].

6.3 Combinatorial properties of balanced CStrees
This section studies context subtrees of CStrees to understand which properties of CStrees
are preserved when restricting to specific contexts. It turns out that any context subtree of
a balanced CStree is itself balanced (Theorem 6.3.4) which can be seen as a generalization of
the fact that removing a vertex from a perfect DAG results in a perfect DAG. Moreover, we
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saw in Example 6.2.4 that a CStree can be balanced without its minimal context DAGs being
perfect. The reverse implication does hold, i.e. if all minimal context DAGs are perfect, then
the CStree is balanced (Theorem 6.3.5). The proof is mostly combinatorial in nature and
does not make use of algebraic methods other than the definition of balancedness. This
section also establishes Proposition 6.3.6 which will be used in the main proof of the last
section. It gives an interpretation of the staging of a CStree in terms of CSI statements, as
well as combinatorial conditions on minimal context DAGs for stagings to exist.

Context subtrees

While Section 6.1 provides the formal definition of a context subtree, an illustrative example
is given below. For any contextXC = xC , the subtree TXC=xC

is a CStree, the DAG GXC=xC ,∅
denotes the empty context DAG of TXC=xC

.

Example 6.3.1. We consider the CStree T in Figure 6.5 and construct the context subtree
TX3=0 given in Figure 6.4. We remove all subtrees with root x1x21 and x1, x2 ∈ {0, 1} and
contract the edges x1x2 → x1x20. The stage of the node resulting from this contraction is
the stage of the node x1x21. The stages of level 2 do not exist anymore and they do not
have any meaning in the construction of the context subtree. We could now construct the
minimal context DAGs from this CStree. However, we will instead do this from the minimal
context DAGs of the full tree. We check if any minimal context is invalid in the case X3 = 0,
i.e. is only valid for X3 = 1, and discard this DAG. This however is not the case here. Now
we remove the node 3 from any minimal context DAG, resulting in the collection of DAGs
in Figure 6.4. In this case all non-empty contexts are in fact minimal contexts of the context
subtree TX3=0, however this is not true in general.

Moreover, we see that this context subtree TX3=0 is different from the tree TGX3=0,∅ (the
staged tree representation of the empty context DAG) of which every stage is a singleton.

Lemma 6.3.2. Suppose T is a CStree with levels (L1, . . . , Lp) ∼ (X1, . . . , Xp) and let
XC = xC be a context.

(1) Every stage in TG∅ is a subset of a stage in T .

(2) Suppose C ⊂ [p] is a context with maximum index k and let v = x1 . . . xq ∈ VT with
k ≤ q. Then for any xC ∈ RC , (xC)i = xi (i ∈ C), Tv = (TXC=xC

)v. Since tT (v) only
depends on the subtree Tv we see tT (v) = tTXC′=xC′

(v) ∈ R[ΘTv ].

Proof. (1) Let S be a stage in TG∅ immediately preceding the level of the variable Xk, k ∈ [p].
Since TG∅ represents a DAG, the stage defining context XA = xA of S satisfies A = paG∅(k)
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Figure 6.4: The context subtree of the tree in Figure 6.5 for the context X3 = 0, and its minimal
context DAGs.

and xA ∈ RA. Thus, as a subset of vertices in T ,

S =
⋃

y∈R[k−1]\A

{xAy}

for some xA ∈ RA. By the ordered Markov property in G∅, G∅ encodes the CI relation Xk ⊥⊥
X[k−1]\A|XA. This CI statement in G∅ corresponds to the CI statement Xk ⊥⊥ X[k−1]\A|XA in
T . Thus, by [50, Theorem 3.3] Xk ⊥⊥ X[k−1]\A|XA holds in T . By specialization to XA = xA,
the statement Xk ⊥⊥ X[k−1]\A|XA = xA holds in T . The fact that this latter statement holds
in T , implies that the nodes in S must be a subset of a stage in T .

(2) The vertices of the two trees are the same. A stage in the tree Tv is defined by a
statement Xj ⊥⊥ X[j−1]\([q]∪D)|XD = xD for some j > q and D ⊂ [j − 1] \ [q]. A stage in the
tree (TXC=xC

)v is defined by exactly the same kind of statement since C ⊂ [k] ⊂ [q].

Lemma 6.3.2 (1) says that every CStree T is a coarsening of the CStree TG∅ , as every stage of
T is the union of possibly several stages in TG∅ . This coarsening is a result of other minimal
context DAGs entailing more CSI statements. Hence, if T = TG∅ all CSI statements implied
by T are specializations of CI statements also implied by T .

We recall a useful lemma to prove balancedness.

Lemma 6.3.3 ([49, Lemma 3.2]). Let G = ([p], E) be a DAG and assume π = 12 · · · p is
a linear extension of G. Then TG is balanced if and only if for every pair of vertices in the
same stage with v = x1 · · · xi, w = x′1 · · ·x′i ∈ R{i}, there exists a bijection

Φ : R[p]\[i+1] ×R[p]\[i+1] → R[p]\[i+1] ×R[p]\[i+1]

(yi+2 · · · yp, y′i+2 · · · y′p) 7→ (zi+2 · · · zp, z′i+2 · · · z′p)
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such that for all k ≥ i+ 2 and all s ̸= r ∈ [di+1]

f(yk | (x1 · · ·xi, s, yi+2 · · · yp)pa(k))f(y′k | (x′1 · · ·x′i, r, y′i+2 · · · y′p)pa(k))
= f(zk | (x′1 · · ·x′i, s, zi+2 · · · zp)pa(k))f(z′k | (x1 · · ·xi, r, z′i+2 · · · z′p)pa(k)).

Theorem 6.3.4. If a CStree T is balanced, then so is T := TXC=xC
for every context

XC = xC .

Proof. Let k ∈ [p]\C and suppose v = x1 . . . xk−1 and w = y1 · · · yk−1 are two vertices in the
same stage in T with xi = yi for i ∈ C ∩ [k − 1]. Note that v, w are also in the same stage
in T since k /∈ C.

Then their children in T and T are

ch(v) = {x1 · · ·xk−1s : s ∈ [dk]},
ch(w) = {y1 · · · yk−1s : s ∈ [dk]}.

Let v1, v2 ∈ ch(v) and w1, w2 ∈ ch(w) be such that θ(v → vi) = θ(w → wi), (i = 1, 2). Since
CStrees are compatibly labeled, then

v1 = x1 · · ·xk−1s, v2 = x1 · · ·xk−1r,

w1 = y1 · · · yk−1s, w2 = y1 · · · yk−1r,

for some s, r ∈ [dk]. We want to show tT (v1)tT (w2) = tT (w1)tT (v2). Choose a monomial on
the left-hand-side. This corresponds to a product of edge labels of two paths λ′1 and λ′2 in
T , λ′1 is a path from v1 to a leaf and λ′2 is a path from w2 to a leaf. Each leaf in T is also
a leaf in T (Section 6.1). In T there exists a directed path λ1 from v1 to the leaf using all
edges in λ′1 and a directed path λ2 from w2 to the other leaf using λ′2.

Since v, w are in the same stage in T , they are also in the same stage in T . The balanced
condition in T implies

tT (x1 · · · xk−1s)tT (y1 · · · yk−1r) = tT (x1 · · ·xk−1r)tT (y1 · · · yk−1s). (6.2)

Choose the product of monomials on the left hand side of this equation that is the product
of the edge labels in the concatenation of paths λ1λ2 and denote it by θ(λ1)θ(λ2). Since T is
balanced, it follows from the bijection in Lemma 6.3.3 that there exists a product θ(λ3)θ(λ4)
corresponding to paths λ3, λ4 in T from v2 to a leaf and w1 to a leaf on the right-hand side
of (6.2) such that

θ(λ1)θ(λ2) = θ(λ3)θ(λ4). (6.3)

We claim that the paths λ3, λ4 are paths in T , i.e. the nodes in the paths λ3, λ4 contract to
nodes in T . Let j ∈ [p] \ [k] and denote by ei,j the edge of the path i, (i = 1, 2, 3, 4) from
level j to level j + 1. The fact that T is stratified and (6.3) holds, implies

θ(e1,j)θ(e2,j) = θ(e3,j)θ(e4,j) for all j ∈ [p] \ [k]. (6.4)
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If j+1 ∈ C then the edges e1,j, e2,j point to the same outcome (xC)j+1. From (6.4) and since
T is compatibly labeled, different outcomes can never have equal edge labels, thus e3,j, e4,j
must also point to the outcome (xC)j+1. This shows λ3, λ4 are paths in T .

Finally, if j + 1 /∈ C then (6.4) implies that the product of the edge labels of the restric-
tions λ′3, λ′4 of λ3, λ4 to paths in T is equal to the product of the edge labels of λ′1, λ′2.
This establishes a bijection between terms on the right-hand side and the left-hand side of
tT (v1)tT (w2) = tT (w1)tT (v2), which means T is balanced.

Decomposable DAG models and decomposable CSmodels

We start by proving the one-sided generalization of Theorem 6.2.1 and Theorem 6.1.10 to
CStrees.

Theorem 6.3.5. Let T be a CStree with only perfect minimal contexts. Then T is balanced.

Proof. Let v = x1 . . . xk−1, w = y1 . . . yk−1 ∈ VT be two vertices in the same stage S in T .
Then S has a stage defining context C that entails the CSI relation

Xk ⊥⊥ X[k−1]\C |XC = xC

for some xC ∈ RC . By definition C ⊂ [k − 1], and from [50, Lemma 3.2] there exists a
minimal context C ′ ⊂ C such that

Xk ⊥⊥ X[k−1]\C |XC\C′ , XC′ = xC′

holds with xC′ = (xC)C′ . Every node in S contains the context xC′ , hence every node in S
appears in TXC′=xC′ and by construction S is a stage in TXC′=xC′ . We claim that v and w
are also in the same stage in TGXC′=xC′

:

By [49, Proposition 2.2], this holds if and only if (v)paGXC′=xC′
(k) = (w)paGXC′=xC′

(k). That

is, the entries of v and w agree for the indices in paGXC′=xC′
(k). Let i ∈ paGXC′=xC′

(k) then
Xk ̸⊥⊥ Xi|XC′ = xC′ . Therefore i /∈ [k − 1] \ C, i.e. i ∈ C \ C ′ because we are in the context
XC′ = xC′ . Since C is the stage defining context of S, we have xi = yi.

Since GXC′=xC′ is perfect by assumption, the nodes v, w are balanced in the CStree T :=
TGXC′=xC′

by [49, Theorem 3.1]. This means that for any v1, v2 ∈ chT (v) and w1, w2 ∈ chT (w)

with θT (v → vi) = θT (w → wi), (i = 1, 2) the following equation holds

tT (v1)tT (w2) = tT (v2)tT (w1)

in R[ΘT ]. Since there is a surjective ring homomorphism R[ΘT ] → R[ΘTXC′=xC′
] the same

equation
tTXC′=xC′

(v1)tTXC′=xC′
(w2) = tTXC′=xC′

(v2)tTXC′=xC′
(w1)
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holds in R[ΘTXC′=xC′
]. By Lemma 6.3.2 (ii) we have tT (v) = tTXC′=xC′

(v) and hence the
equality

tT (v1)tT (w2) = tT (v2)tT (w1)

holds in R[ΘT ], i.e. the nodes v, w are balanced.

Proposition 6.3.6. Let T be a CStree. Let A,B,C ⊂ [p] pairwise disjoint with A∪B∪C =
[k−1]. Let xA ∈ RA, xB ∈ RB, xC ∈ RC , then the following rule holds for the CSI statements
in T :

Xk ⊥⊥ XA|XB∪C = xBxC and Xk ⊥⊥ XB|XA∪C = xAxC ⇒ Xk ⊥⊥ XA∪B|XC = xC .

Proof. In level k − 1 we have the two stages

S1 =
⋃

yA∈RA

{yAxBxC}, S2 =
⋃

yB∈RB

{xAyBxC}.

However, these are both contained in a single stage: Both contain the element xAxBxC . But
different stages cannot intersect, hence the two are contained in a single stage S.

Let yA ̸= xA and yB ̸= xB. The elements xAyBxC and yAxBxC are contained in S and
therefore zAzBxC ∈ S for every zA ∈ RA, zB ∈ RB. But this means Xk ⊥⊥ XA∪B|XC =
xC .

In terms of context DAGs the last lemma says the following: If in a context DAG GXC=xC ,∅
there is an edge i → j, i.e. Xi ̸⊥⊥ Xj|XC = xC , but Xi ⊥⊥ Xj|XC = xC , XC′ = xC′ , then for
every v ∈ C ′ there is an edge v → j. The lemma can also be understood as a stronger but
slightly different version in CStrees of the intersection axiom

XA ⊥⊥ XB|XS∪D, XC = xC , XA ⊥⊥ XD|XS∪B, XC = xC ⇒ XA ⊥⊥ XB∪D|XS, XC = xC

as it only requires the first two CSI statements to each hold in one context XD = xD and
XB = xB.

Example 6.3.7. Consider a CStree T with empty minimal context DAG G∅ = ([4], {1 →
2, 2→ 3, 2→ 4}). Lemma 6.3.6 implies that this CStree is in fact the staged tree represen-
tation of the DAG G∅. Indeed, there is no vertex with at least two incoming edges which
implies that any CSI statement in T is already a specialization of a CI statement.

Using these observations, one can see that the CStrees given in Example 6.2.2 are in fact all
CStrees on p = 3 variables. To generalize the other implication of Theorem 6.1.10 we use an
algebraic approach presented in the next section.
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6.4 Algebraic characterization
The core of this section is Theorem 6.4.3 as it provides a complete characterization of the CSI
statements that hold in a decomposable CSmodel. It states that for a balanced CStree T , the
polynomials associated to saturated CSI statements are a generating set of the prime ideal
ker(ψT ) that defines M(T ) implicitly. This is precisely the case for perfect DAG models,
see [55, Theorem 4.4], which once again highlights the important role that decomposable
CSmodels play in generalizing the algebraic properties of single DAGs to collections of DAGs
in the context-specific setting. The proof of this result uses the algebraic notion of the toric
fiber product, first introduced in [115].

For any collection C of CSI statements in a CStree T , recall that the ideal IC is generated
by the polynomials associated to all CSI statements in C, as defined in Section 6.1.

Setup

Let T be a balanced CStree, T the subtree of T up to level p− 1 and S1, . . . , Sr the stages
in T in level p − 1. Let Tp =

⋃
i∈[r] Bi, where each Bi is a one-level tree together with its

edge labels as in [13, Section 3]. Consider the rings

R[T ] := R[pix : i ∈ [r], x ∈ Si],
R[Tp] := R[pik : i ∈ [r], k ∈ [dp]],
R[T ] := R[pixk : i ∈ [r], x ∈ Si, k ∈ [dp]]

with multigrading deg(pix) = deg(pik) = deg(pixk), i ∈ [r], x ∈ Si, k ∈ [dp] where A =
{e1, . . . , er} and ei is the i-th standard unit vector in Zr. Note that the rings R[T ] and
R[D] are the same, except the former is multigraded. Consider the ring homomorphism

R[T ]→ R[T ]⊗ R[Tp], pixk 7→ pix ⊗ pik (i ∈ [r], x ∈ Si, k ∈ [dp]).

Following [115], we call the kernel of this map Quad. It is given by

Quad = ⟨pixk1p
i
yk2
− pixk2p

i
yk1

: k1 ̸= k2 ∈ [dp], x, y ∈ Si, i ∈ [r]⟩.

Note that the generators of Quad are the 2× 2 minors of the matrices (pixk)x∈Si,k∈[dp] for all
i ∈ [r]. Now, consider the ring homomorphism

R[T ]→ R[T ]/ ker(ψT )⊗ R[Tp], pixk 7→ pix ⊗ pik (i ∈ [r], x ∈ Si, k ∈ [dp]).

The kernel of this map is the toric fiber product of ker(ψT ) and the zero ideal ⟨0⟩ ⊆ R[Tp],
and is denoted by ker(ψT )×A ⟨0⟩. By [13, Proposition 3.5], this toric fiber product is equal to
ker(ψT ) when T is balanced. The generators of ker(ψT ) are obtained from two sets, namely
ker(ψT ) = ⟨Quad,Lift(F )⟩, where F is a set of generators of ker(ψT ) and

Lift(F ) := {pix1k1
pjy1k2 − p

i
x2k1

pjy2k2 : x1, x2 ∈ Si, y1, y2 ∈ Sj, k1, k2 ∈ [dp], p
i
x1
pjy1 − p

i
x2
pjy2 ∈ F}.

Note that the construction above relies heavily on the fact that T is balanced since this is
the only case in which ker(ψT ) and ker(ψT ) are toric and A-homogeneous.
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Figure 6.5: Balanced CStree on five binary random variables whose empty context DAG is not
perfect.

Main results

In what follows saturated CSI statements will be the main actors. Let T be a CStree with p
levels and letM(T ) be the associated model. A saturated CSI statement is a CSI statement
of the form XA ⊥⊥ XB|XS, XC = xC , where A ∪ B ∪ C ∪ S = [p]. If C is a collection of
saturated CSI statements then the ideal IC is generated by binomials. Any ideal that is
generated by binomials and in addition is prime is a toric ideal.

Definition 6.4.1. Let C be any collection of CSI statements of random variables X1, . . . , Xp.
We define Sat(C) to be the set of all saturated CSI statements in C. For a CStree T
let Sat(T ) := Sat(J (T )) where J (T ) denotes the set of all CSI statements that hold in
T . For a DAG G we define Sat(G) := Sat(TG). Since J (TG) = global(G), we also get
Sat(G) = Sat(global(G)).

The proofs of the results in this section rely heavily on the toric fiber product construction.
We motivate these results with the following concrete example.

Example 6.4.2 (Decomposable CSmodel with a non-perfect empty context). Consider the
decomposable CSmodel given by the CStree in Figure 6.5 for p = 5. It has four minimal
contexts, namely,

CT = {∅, X1 = 1, X1X2 = 01, X2 = 0}.

Only the non-empty minimal contexts are perfect, yet the tree is balanced. The CSI state-
ments corresponding to the four minimal contexts are, respectively,

X3 ⊥⊥ X4|X1X2, X4 ⊥⊥ X5|X2X3, X1 = 1, X4 ⊥⊥ X5|X3, X1X2 = 01, X4 ⊥⊥ X5|X1X3, X2 = 0.
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The last three statements, corresponding to the three perfect minimal contexts, are saturated.
Contracting each of these statements with the statement X3 ⊥⊥ X4|X1X2 (corresponding to
the empty context), we get the following three saturated statements

X3X5 ⊥⊥ X4|X2, X1 = 1, X3X5 ⊥⊥ X4|X1X2 = 01, X3X5 ⊥⊥ X4|X1, X2 = 0.

These three saturated statements give rise to 24 polynomials, 8 of which coincide with stage-
defining statements for level 5. These 8 polynomials, one of which is

p100000p
1
00011 − p100001p100010,

are precisely the polynomials in Quad. The remaining 16 polynomials, one of which is

p100000p
2
00110 − p100010p200100,

are the polynomials in Lift(F ), defined above. Hence, the 24 polynomials associated to the
saturated statements are precisely the generators of ker(ψT ).

Turns out, the phenomenon in the example above can be generalized to all decomposable
CSmodels. The next theorem is the technical foundation of this chapter. It demonstrates the
important role that saturated CSI statements play in the algebra of decomposable CSmodels
and it also contains most of the technical work in its proof.

Theorem 6.4.3. If M(T ) is a decomposable CSmodel, then ker(ψT ) is generated by the
quadratic binomials associated to all saturated CSI statements in J (T ), i.e.

ker(ψT ) = ISat(T ).

Proof. The containment ISat(T ) ⊂ ker(ψT ) holds because all polynomials associated to state-
ments in J (T ) belong to ker(ψT ). In particular, all binomials coming from saturated CSI
statements are in ker(ψT ).

For the other containment we proceed by induction on the number of random variables in T .
The statement is trivially true for p = 1, 2. Suppose that T has p levels, and any balanced
CStree with less than p levels satisfies the statement. Let T be the subtree of T up to level
p− 1. Then T is balanced, thus by induction hypothesis ker(ψT ) is generated by a set F of
binomials associated to saturated CSI statements in the variables X[p−1]. Moreover,

ker(ψT ) = ker(ψT )×A ⟨0⟩ = ⟨Quad,Lift(F )⟩.

Hence, it suffices to prove that Quad and Lift(F ) are polynomials associated to saturated
CSI statements in the variables X[p]. Let S1, . . . , Sr be the stages of level p− 1 in T . For all
i ∈ [r], let XCi

= xCi
be the stage defining context of the stage Si. Recall that

Quad = ⟨pixk1p
i
yk2
− pixk2p

i
yk1

: k1 ̸= k2 ∈ [dp], x, y ∈ Si, i ∈ [r]⟩.
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which, by (6.1), is precisely the set of binomials associated to the saturated CSI statements
Xp ⊥⊥ X[p−1]\Ci

|XCi
= xCi

for all i ∈ [r].

Since T is balanced, F is a set of A-homogeneous binomials. Let g ∈ F , then it is associated
to a CSI statement XA ⊥⊥ XB|XD, XC = xC with A ∪B ∪ C ∪D = [p− 1] and xC ∈ RC as
in (6.1).

Choose yA, y′A ∈ RA and yB, y
′
B ∈ RB such that for all i ∈ A, (yA)i ̸= (y′A)i, and for all

i ∈ B, (yB)i ̸= (y′B)i. Consider the polynomial

h = pkyAyBxCxD
pℓy′Ay′BxCxD

− pmy′AyBxCxD
pnyAy′BxCxD

associated to the same CSI statement as g and its lift

hz1,z2 = pkyAyBxCxDz1
pℓy′Ay′BxCxDz2

− pmy′AyBxCxDz1
pnyAy′BxCxDz2

, z1, z2 ∈ [dp].

Since h is A-homogeneous, either (k, ℓ) = (m,n) or (k, ℓ) = (n,m) . Assume it is the for-
mer. By the assignment of the grading, it follows that (yAyBxCxDz1)Ck

= (y′AyBxCxDz1)Ck

because they are in the same stage, therefore Ck ∩A = ∅. The CSI statement associated to
the stage Sk is Xp ⊥⊥ X[p−1]\Ck

|XCk
= xCk

, this entails Xp ⊥⊥ XA|XB = yB, XC∪D = xCxD
because Ck ∩ A = ∅.

For every zB, z′B ∈ RB there exist α, β ∈ [r] such that the grading is either

pαyAzBxCxDz1
pβy′Az′BxCxDz2

− pαy′AzBxCxDz1
pβyAz′BxCxDz2

or
pαyAzBxCxDz1

pβy′Az′BxCxDz2
− pβy′AzBxCxDz1

pαyAz′BxCxDz2
.

Case 1: For every zB and z′B entry-wise different, we have the first grading. Then by the same
argument as for yB, y′B we get the saturated CSI statement Xp ⊥⊥ XA|XB = zB, XC∪D =
xCxD for all zB. Hence, by absorption we get

Xp ⊥⊥ XA|XB, XC∪D = xCxD.

Contracting this statement with XA ⊥⊥ XB|XD, XC = xC we get the saturated CSI statement

XA ⊥⊥ XB∪{p}|XC∪D = xCxD.

This statement entails all binomials in Lift(g), equivalently Lift(g) ⊂ IXA⊥⊥XB∪{p}|XC∪D=xCxD
.

Case 2: There exists a pair zB, z′B, entry-wise different, such that the binomial has the second
grading. Using the same argument as above with B instead of A, this implies the statement
Xp ⊥⊥ XB|XA = yA, XC∪D = xCxD. Combining this statement with Xp ⊥⊥ XA|XB =
yB, XC∪D = xCxD and Proposition 6.3.6 we get

Xp ⊥⊥ XA∪B|XC∪D = xCxD.
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By the weak union axiom, we get Xp ⊥⊥ XA|XB, XC∪D = xCxD. As in Case 1, we obtain the
CSI statement

XA ⊥⊥ XB∪{p}|XC∪D = xCxD.

and the conclusion Lift(g) ⊂ IXA⊥⊥XB∪{p}|XC∪D=xCxD
follows. The proof for the second choice

of grading (k, ℓ) = (n,m) of h is analogous, by swapping the roles of A and B in the above
arguments.

For the rest of this section, we can relax the assumption of working with minimal contexts.
Let T be a CStree and C be any collection of contexts with associated DAGs GXC=xC

,
XC = xC ∈ C, such that J (T ) = ∪XC=xC∈C global(GXC=xC

). That is, assume that the CSI
statements that hold in C are the same CSI statements that hold in T . The collection of
minimal contexts is one such choice for C.

Corollary 6.4.4. Let M(T ) be a decomposable CSmodel. The ideal ker(ψT ) is generated
by the binomials associated to all saturated CSI statements that hold in the context DAGs
GXC=xC

, XC = xC ∈ C , i.e.

ker(ψT ) =
∑

XC=xC∈C

ISat(GXC=xC
).

Proof. This follows from the fact that J (T ) = ∪XC=xC∈CJ (XC = xC) and Theorem 6.4.3.

Corollary 6.4.5. LetM(T ) be a decomposable CSmodel. Then

ker(ψT ) =
∑

XC=xC∈C

Iglobal(GXC=xC
).

Proof. We show the following chain of inclusions

ker(ψT ) =
∑

XC=xC∈C

ISat(GXC=xC
) ⊆

∑
XC=xC∈C

Iglobal(GXC=xC
) ⊆ ker(ψT ),

which implies the theorem. The equality follows from Corollary 6.4.4 and the middle inclusion
follows from the containment Sat(GXC=xC

) ⊆ global(GXC=xC
) for all XC = xC ∈ C. For the

last inclusion, let J :=
∑

XC=xC∈C Iglobal(GXC=xC
). From [50, Theorem 3.3], we know the

equality
V(J) ∩∆◦

|R|−1 = V(ker(ψT )) ∩∆◦
|R|−1 =M(T ).

Since kerψT is a prime ideal, this implies that

J ⊆ I
(
V (J) ∩∆◦

|R|−1

)
∩ R[D]

= I(V(ker(ψT )) ∩∆◦
|R|−1) ∩ R[D]

= I(V(kerψT )) ∩ R[D] = kerψT

where I(V ) denotes the set of polynomials in C[D] that vanish on a set V ⊆ C|R|.
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Conclusion. In this chapter, we introduced a family of discrete decomposable context-
specific models, which we constructed from the subclass of staged tree models known as
CStree models. We gave an algebraic and combinatorial characterization of all context spe-
cific independence relations that hold in a decomposable context-specific model, which yields
a Markov basis. More generally, we established that several algebraic, combinatorial, and ge-
ometric properties of decomposable context-specific models generalize those of decomposable
graphical models to the context-specific setting.
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Part III

Nonparametric algebraic statistics
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Chapter 7

Moment varieties for mixtures of
products

In this chapter, we introduce moment varieties of conditionally independent mixture distri-
butions on Rn. There will be no assumptions on the constituent distributions in the product,
so the setup in this chapter is nonparametric. First, we introduce these moment varieties
and discuss how some familiar varieties from statistics arise as examples. We then present
several results revolving around the dimensions, degrees, defining polynomials, and finite-
ness properties of our general moment varieties. We focus on both toric varieties and their
secants. This chapter is based on [7].

Consider n independent random variables X1, X2, . . . , Xn on the line R. We make no as-
sumptions about the Xk other than that their moments µki = E(X i

k) exist. Then, by [24,
Theorem 30.1], the random variable Xk is uniquely characterized by its sequence of moments
µk1, µk2, µk3, . . .. These moments satisfy the Hamburger moment condition, which states that

µk0 µk1 µk2 . . .
µk1 µk2 µk3 . . .
µk2 µk3 µk4 . . .
...

...
...

. . .

 is positive semi-definite for all k. (7.1)

For us, the µki are unknowns. The only equations we require are µk0 = 1 for k = 1, 2 . . . , n.

We write mi1i2···in for the moments of the random vector X = (X1, X2, . . . , Xn). The mo-
ments are the expected values of the monomials X i1

1 X
i2
2 · · ·X in

n . By independence, we have

mi1i2···in = E(X i1
1 X

i2
2 · · ·X in

n ) = E(X i1
1 )E(X i2

2 ) · · · E(X in
n ) = µ1i1µ2i2 · · · µnin . (7.2)

We examine this squarefree monomial parametrization for the moments with i1+i2+· · ·+in =

d. Its image is a toric varietyMn,d in the projective space P(
n+d−1

d )−1 of symmetric tensors.
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Example 7.0.1 (n = d = 3). The moment variety M3,3 is defined by the monomial
parametrization mi1i2i3 = µ1i1µ2i2µ3i3 for i1 + i2 + i3 = 3. We find that M3,3 is a cubic
hypersurface in the space P9 of symmetric 3×3×3 tensors. It is defined by m012m120m201 =
m021m210m102.

This chapter studies mixtures of r independent distributions. The associated moment variety
σr(Mn,d) is the rth secant variety of the toric varietyMn,d. It is parametrized by

mi1i2···in =
r∑

j=1

µ
(j)
1i1
µ
(j)
2i2
· · · µ(j)

nin
where i1, i2, . . . , in ≥ 0 and i1 + i2 + · · ·+ in = d. (7.3)

These are the moment varieties in this chapter. Mixture weights can be omitted in (7.3)
since we work in projective geometry.

We study these and their images under certain coordinate projections P(
n+d−1

d )−1 99K P|Nλ|−1.
Here λ is any partition of d, and Nλ is the set of moments mi1i2...in where {i1, i2, . . . , in}\{0}
equals λ as a multiset. The images in P|Nλ|−1 of the restricted parametrizations (7.2) and
(7.3) are denoted by Mn,λ and σr(Mn,λ). The restricted varieties make sense for statistics
because they refer to subclasses of moments that are natural when infering parameters. We
note thatMn,λ is also a toric variety and σr(Mn,λ) is its rth secant variety.

Example 7.0.2 (n = 5, d = 3). There are three partitions λ = (111), λ = (21) and
λ = (3). The number of moments mi1i2i3i4i5 equals

(
5+3−1

3

)
= 35. This is the sum of

N(111) = 10, N(21) = 20 and N(3) = 5. The following three toric varieties have dimensions
4, 8, 4 respectively:

M5,(111) ⊂ P9 : m11100 = µ11µ21µ31, m11010 = µ11µ21µ41, . . . , m00111 = µ31µ41µ51.
M5,(21) ⊂ P19 : m21000 = µ12µ21, m12000 = µ11µ22, m20100 = µ12µ31, . . . , m00012 = µ41µ52.
M5,(3) = P4 : m30000 = µ13, m03000 = µ23, . . . , m00003 = µ53.

Combining these parametrizations yields the 14-dimensional moment variety M5,3 ⊂ P34.
We will discuss the ideals of these toric varieties and their secant varieties later on.

This chapter is a sequel to the work of Zhang and Kileel in [125]. That article takes an
applied data science perspective and it offers numerical algorithms for learning the param-
eters µ(j)

ki from empirical moments mi1i2···in . The primary focus in [125] lies on numerical
tensor methods for this recovery task. A key ingredient for their approach is identifiability,
which means that the dimension of the moment variety σr(Mn,•) matches the number of
free parameters.

The work in this chapter lies at the interface of computer algebra and nonparametric statis-
tics. Our set-up is nonparametric in the sense that no model assumptions are made on the
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constituent random variables on R. Conditional independence arises by passing via (7.3) to
multivariate distributions on Rn. This imposes semialgebraic constraints on the moments
mi1i2···in . We disregard the inequalities in (7.1) and focus on polynomial equations. This
leads us to projective varieties, as is customary in algebraic statistics [114]. Their defining
equations provide test statistics for mixtures of products [46, Section 3].

7.1 Familiar varieties
This section demonstrates the wide range of interesting models that are featured in this
chapter. The scope includes themes from the early days of algebraic statistics: factor analy-
sis [46] and permutation data [40, Section 6]. For the special partition λ = (1, 1, . . . , 1) one
obtains the toric ideals associated with hypersimplices.

The study of highly structured projective varieties is a main theme in algebraic statistics.
This includes varieties of discrete probability distributions as well as moment varieties of
continuous distributions; see e.g. [9, 75]. Note that Veronese varieties fall into both categories.
In this section we match some of our moment varieties σr(Mn,•) with the existing literature.

We begin with d = 2, so each (i1, i2, . . . , in) has at most two non-zero entries. We change
notation so that the second moments are the entries of the n× n covariance matrix (mij).

Example 7.1.1 (n = 5, d = 2). The parametrization of the toric varietyM5,2 given in (7.2)
is written in matrix form as

m11 m12 m13 m14 m15

m12 m22 m23 m24 m25

m13 m23 m33 m34 m35

m14 m24 m34 m44 m45

m15 m25 m35 m45 m55

 =


µ12 µ11µ21 µ11µ31 µ11µ41 µ11µ51

µ11µ21 µ22 µ21µ31 µ21µ41 µ21µ51

µ11µ31 µ21µ31 µ32 µ31µ41 µ31µ51

µ11µ41 µ21µ41 µ31µ41 µ42 µ41µ51

µ11µ51 µ21µ51 µ31µ51 µ41µ51 µ52

 .

This shows thatM5,2 is the join in P14 of the projective spaceM5,(2) = P4 with coordinates
mii = µi2 and the 4-dimensional toric varietyM5,(11) ⊂ P9 given by the off-diagonal entries.
The toric fourfold M5,(11) has degree 11. This is visualized in [108, Figure 9-2]. Its ideal
is generated by ten binomial quadrics, like m12m34 − m13m24, as shown in [108, Equation
(9.2)].

Passing from r = 1 to r = 2, we note that the secant variety has the join decomposition

σ2(M5,2) = σ2
(
P4 ⋆M5,(11)

)
= P4 ⋆ σ2(M5,(11)) ⊂ P4 ⋆ P9 = P14.

The star denotes the join of projective varieties, which arises from the Minkowski sum of the
corresponding affine cones.
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The prime ideal of the model σ2(M5,2) is found by eliminating the diagonal entries mii from
the ideal of 3 × 3-minors of the symmetric 5 × 5 matrix (mij). The elimination ideal is
principal, and its generator is the polynomial

m12m13m24m35m45 −m12m13m25m34m45 −m12m14m23m35m45 +m12m14m25m34m35

+m12m15m23m34m45 −m12m15m24m34m35 +m13m14m23m25m45 −m13m14m24m25m35

−m13m15m23m24m45 +m13m15m24m25m34 +m14m15m23m24m35 −m14m15m23m25m34.
(7.4)

This quintic is known as the pentad, and it plays an important role in factor analysis [46]. In
conclusion, the 8-dimensional moment variety σ2(M5,(11)) is already familiar to statisticians.

We now generalize to the toric variety defined by λ = (1d) = (1, 1, . . . , 1) for any n > d.

Remark 7.1.2. The moment varietyMn,(1d) is the toric variety associated with the hyper-
simplex

∆(n, d) = conv
{
el1 + el2 + · · ·+ eld : 1 ≤ l1 < l2 < · · · < ld ≤ n

}
.

The variety Mn,(1d) has dimension n − 1, it lives in P(
n
d)−1 and its degree is the Eulerian

number A(n, d). This is the number of permutations of [n] = {1, 2, . . . , n} which have exactly
d descents. Indeed, the degree of any projective toric variety equals the normalized volume
of the associated polytope [108, Theorem 4.16], and the formula Vol(∆(n, d)) = A(n, d) is
well-known in algebraic combinatorics. In [80, Theorem 2.2] it is attributed to Laplace.

In the case of the second hypersimplex, one can compute the prime ideal of σr(Mn,(11)) by
eliminating the diagonal entries mii from the ideal of (r+1)× (r+1) minors of the covariance
matrix (mij). This elimination problem is tough. For some instances see [46, Table 1].

Example 7.1.3. The moment variety σ5(M9,(11)) is a hypersurface of degree 54 in P35. The
representation of its equation by means of resultants is explained in [46, Example 24].

We now turn to a scenario that played a pivotal role in launching algebraic statistics in the
1990s, namely the spectral analysis of permutation data, as described in [40, Section 6]. This
is based on the toric ideal associated with the Birkhoff polytope, whose vertices are the n!
permutation matrices of size n× n. For an algebraic discussion see [108, Section 14.B].

Proposition 7.1.4. The moment varietyMn,λ for the partition λ = (n− 1, n− 2, . . . , 2, 1)
is the toric variety of the Birkhoff polytope, which lives in Pn!−1 and has dimension (n− 1)2.

Proof. The moment coordinates mi1i2...in for Mn,λ are indexed by the n! permutations of
{0, 1, 2, . . . , n − 1}. The monomials on the right hand side of (7.2) have degree n − 1 in
n(n− 1) distinct parameters µki. The exponent vectors of these monomials can be identified
with the permutation matrices from which the first row has been removed. This removal is an
affine isomorphism, so it preserves the Birkhoff polytope, which has dimension (n− 1)2.
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Example 7.1.5 (n = 4). The toric variety M4,(321) ⊂ P23 has dimension 9 and degree
352. Its ideal is minimally generated by 18 quadrics like m0123m1032 −m0132m1023 and 160
cubics like m0123m1203m2013 −m0213m2103m1023. The latter are induced from the n = 3 case
in Example 7.0.1. See [108, Example 14.7] for a Gröbner basis and [40, Section 6.1] for a
statistical perspective.

Example 7.1.6 (n = 5). This appears in the last paragraph of [40, Section 6.1]. The
toric variety M5,(4321) ⊂ P119 has dimension 16 and degree 4718075. Its ideal is minimally
generated by 1050 quadrics and 28840 cubics.

Yamaguchi, Ogawa and Takemura [123] showed that the toric ideal for the variety in Proposi-
tion 7.1.4 is always generated in degree two and three. Theorem 7.3.6 generalizes this result.

The degrees reported in Examples 7.1.5 and 7.1.6 are the volume of the Birkhoff polytope.
This volume is known up to n = 10 [21, 22].

7.2 Finiteness
This section shows that our moment varieties exhibit finiteness up to symmetry, in the sense
of Draisma and collaborators [28, 42, 43, 44]. Namely, if r, d, λ are fixed and n is unbounded
then finitely many Sn-orbits of polynomials suffice to cut out the varieties σr(Mn,•). There-
fore, computer algebra can be useful for high-dimensional data analysis in the setting of [125].

We consider the projective variety σr(Mn,d) ⊂ P(
n+d−1

d )−1 defined by (7.3). This parametriza-
tion can be understood as follows without any reference to probability or statistics. Namely,
mi1i2···in is the coefficient of the monomial xi11 x

i2
2 · · · xinn in the expansion of the polynomial

F (x1, x2, . . . , xn) =
r∑

j=1

f
(j)
1 (x1) f

(j)
2 (x2) · · · f (j)

n (xn), (7.5)

where f (j)
k (x) = 1+µ

(j)
k1 x+µ

(j)
k2 x

2+ · · ·+µ
(j)
kdx

d are rn unknown univariate polynomials. For
any partition λ of d, let Nλ be the subset of coefficients mi1i2...in where {i1, i2, . . . , in}\{0}
equals λ as a multiset. The variety σr(Mn,λ) is the closure of the image of σr(Mn,d) under
the map P(

n+d−1
d )−1 99K P|Nλ|−1. The polynomial in (7.5) is the truncated moment generating

function. Taking r = 1 we obtain the toric varietiesMn,•.

The equations for these varieties satisfy finiteness up to symmetry when r, d, λ are fixed and
n grows. Here symmetry refers to the action of the symmetric group Sn on our varieties,
their parametrizations (7.3), and their prime ideals. These ideals satisfy natural inclusions

I(σr(Mn,•)) ⊂ I(σr(Mn+1,•)), where • ∈ {d, λ},
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by appending a zero to the indices of every coordinate. In symbols, mi1i2···in 7→ mi1i2···in0.
If we iterate these inclusions and let the big symmetric group act, then we obtain inclusions

⟨SnI(σr(Mn0,•))⟩ ⊆ I(σr(Mn,•)) for n > n0. (7.6)

Ideal-theoretic finiteness means that there exists n0 such that equality holds for all n > n0.
The weaker notion of set-theoretic finiteness means that equality holds in (7.6) after the left
ideal is enlarged to its radical. The smallest possible n0, if it exists, is a function of r, d, λ.

Example 7.2.1 (Pentads and 3 × 3 minors). If r = 2 and λ = (11) then ideal-theoretic
finiteness holds with n0 = 6. This was proved by Brouwer and Draisma in [28, Theorem 1.7]
in response to [46, Conjecture 26]. The prime ideal of σ2(Mn,(11)) is generated by the

(
n
5

)
pentads and the 5

(
n
6

)
off-diagonal 3×3 minors of a symmetric n×nmatrix. See [28, Section 3]

for an equivariant Gröbner basis. If r = 1 then ideal-theoretic finiteness holds with n0 = 4,
by the Gröbner basis in [108, Theorem 9.1] for the toric ideal of the second hypersimplex.

In recent years, there has been considerable progress on commutative algebra in infinite
polynomial rings with an action of the infinite symmetric group, or of rings over the category
FI of finite sets with injections. The following result reflects the state of the art on that topic.

Theorem 7.2.2. Given any partition λ ⊢ d and integer r ≥ 1, set-theoretic finiteness holds
for the varieties σr(Mn,d) and σr(Mn,λ). Ideal-theoretic finiteness holds in the toric case
r = 1.

Proof. The statement about toric varieties (r = 1) follows from [44, Theorem 1.1]. For r ≥ 2,
we apply the main theorem in [43]. First we consider the varieties σr(Mn,d). Use the map
(7.3) between two polynomial rings in countably many variables. This is a morphism of FI-
algebras as in [43, Section 1.1]. In the formulation of [43, Corollary 1.1.2], the parametrization
takes the rd × N matrix whose entries are µ(j)

ki to the N × · · · × N (d times) tensor whose
entries are mi1···in viewed as degree-d moments in n dimensions. The closure of the image
is topologically Sym(N)-Noetherian, which yields set-theoretic finiteness for σr(Mn,d). The
case of σr(Mn,λ) is similar.

Remark 7.2.3. It is conjectured in [43, Conjecture 1.1.3] that the main result in [43] holds
ideal-theoretically. This would imply ideal-theoretic finiteness for σr(Mn,d) and σr(Mn,λ).

Whenever ideal-theoretic finiteness holds, one can try to use equivariant Gröbner bases [28]
for computing the desired finite generating set. An implementation for the toric case is de-
scribed in [44], but we found this to be quite slow. The case λ = (11) is covered by Exam-
ple 7.2.1.

Example 7.2.4 (Cycles in bipartite graphs). If r = 1 and λ = (21) then ideal-theoretic
finiteness holds with n0 = 4. Namely, the toric ideal ofMn,(21) is generated by 6

(
n
4

)
quadrics
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and
(
n
3

)
cubics. This follows from [92, Lemma 1.1]. Indeed, the above binomials correspond

to the chordless cycles in the bipartite graph that is obtained from Kn,n by removing the
n edges (1, 1), (2, 2), . . . , (n, n). For n > 4, every such chordless cycle is supported on a
bipartite subgraph of the same kind with n0 = 4.

Example 7.2.5 (Hypersimplex). As seen in Section 7.1, when r = 1 and λ = (1d), the
moment varietyMn,λ is the toric variety associated to the hypersimplex ∆(n, d). Its ideal is
generated by quadrics [108, Section 14A]. The indices occurring in each quadratic binomial
are 1 in at most 2d of the n coordinates. Therefore, ideal-theoretic finiteness holds with
n0 = 2d.

We close with a corollary that generalizes the previous two examples. Its proof rests on a
forward reference to the next section, where we derive various results for our toric ideals.

Corollary 7.2.6. Fix a partition λ with e nonzero parts, fix r = 1, and suppose that n
increases. The toric varietiesMn,λ satisfy ideal-theoretic finiteness for some n0 ≤ 3e where
e is the length of λ.

Proof. Theorem 7.3.6 says that the ideal of Mn,λ is generated by binomials of degree at
most 3. Each of the two monomials in such a binomial is a product of two or three variables
mi1i2···in . The two monomials have the same A-degree, where A is the matrix representing
(7.2). This implies that the slots ℓ ∈ {1, 2, . . . , n} where a nonzero index iℓ occurs are the
same in both monomials. The total number of such slots is at most 3e. This yields the
bound n0 ≤ 3e.

Remark 7.2.7. Every partition λ ⊢ d satisfies e ≤ d, and equality holds only for λ = (1d), as
in Example 7.2.5. For λ = (21) in Example 7.2.4, we have e = 2, and this yields n0 = 2e = 4.

7.3 Toric combinatorics
This section is a detailed study of the toric varieties Mn,•. In particular, we study their
dimensions, polytopes, and toric ideals. The ideal for Mn,λ is generated by quadrics and
cubics, but the ideal forMn,d is more complicated.

With each such toric variety we associate a 0-1 matrix A as in [108] whose columns correspond
to the monomials in (7.2). The rank of A is one more than the dimension of the projective
toric variety. We first show that Mn,d has the expected dimension, namely the number of
parameters minus one.

Theorem 7.3.1. The dimension of the moment varietyMn,d is

min

{
nd− 1,

(
n+ d− 1

d

)
− 1

}
.
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Proof. First assume n > d. We will show that the A-matrix associated to the moment variety
has rank nd by displaying a nonzero nd× nd minor. Consider the d special partitions

(1, 1, . . . , 1), (2, 1, . . . , 1), . . . , (d− 2, 1, 1), (d− 1, 1), (d). (7.7)

Each of these partitions induces (by permutation) at least n columns in the A-matrix. For
each (k, 1, . . . , 1) ⊢ d, pick n of these columns such that k appears in each of the n spots.
The principal submatrix of A induced by all these columns is an nd×nd matrix of the form

B =



M ∗ ∗ . . . ∗ 0

0 In 0 . . . 0 0

0 0 In . . . 0 0

0 0 0
. . . 0 0

0 0 0 . . . In 0

0 0 0 . . . 0 In

 ,

where the d row blocks are labeled (µk1 : k ∈ [n]), . . . , (µkd : k ∈ [n]) and the d column blocks
are (7.7). The matrix M gives a column basis for the A-matrix of the hypersimplex variety
Mn,(1,1,...,1), so it is invertible. We conclude detB = detM ̸= 0, and so rank(A) = nd.

Now suppose n ≤ d. Index the columns of the A-matrix by permutations of (i1, . . . , in) with
i1 + · · · + in = d ordered reverse-lexicographically. Index the rows by µ11, µ12, . . . , µnd. The
principal submatrix on the first 2d + 1 rows and columns is invertible, so the first 2d + 1
columns of A are linearly independent. From the remaining columns, we pick d(n − 2) − 1
of them such that for every j = 2d + 1, . . . , nd exactly one has 1 in the jth coordinate. In
this way we obtain nd linearly independent columns of A. Therefore, A has full rank.

Given a partition λ ⊢ d padded by zeroes to have length n, we define a partition ν, called
the reduction of λ. Let k0 ≥ · · · ≥ ks be the multiplicities of the distinct parts in λ. Then

ν =
(
s, . . . , s︸ ︷︷ ︸

ks

, s− 1, . . . , s− 1︸ ︷︷ ︸
ks−1

, . . . , 1, . . . , 1︸ ︷︷ ︸
k1

, 0 . . . , 0︸ ︷︷ ︸
k0

)
. (7.8)

We write s for the largest part of ν, so s+1 is the number of distinct parts of λ. For example,
the partitions (8, 5, 5, 4) and (7, 7, 3, 0) have the same reduction ν = (2, 1, 0, 0), with s = 2.

Lemma 7.3.2. If ν is the reduction of λ then |Nλ| = |Nν | andMn,λ =Mn,ν in P|Nν |−1.

Proof. Let the µk0 be unknowns in the monomial parametrization (7.2). The image of this
altered map also equals Mn,λ. The toric variety Mn,ν has the same parametrization, after
changing the index i ∈ λ in each parameter µki to the corresponding entry in ν.

Example 7.3.3 (Hypersimplex). If s = 1 and λ = (1d) with n/2 < d < n then ν = (1n−d) in
Lemma 7.3.2, and we recover the identification of the hypersimplices ∆(n, d) and ∆(n, n−d).
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Theorem 7.3.4. The moment varietyMn,λ =Mn,ν has dimension (n− 1)s, for ν in (7.8).

Proof. We must show that the A-matrix of Mn,ν has rank (n − 1)s + 1. We proceed by
induction on s, the base case s = 1 being the hypersimplex. We partition the rows of A
into s blocks (µk1 : k ∈ [n]), . . . , (µks : k ∈ [n]). The rows of A in the ith block sum to the
constant vector (ki, ki, . . . ki). Hence, the rank of A is bounded above by (n − 1)s + 1. We
will show that this is also a lower bound by displaying an invertible submatrix of this size.

First, assume that ks > 1. Consider the columns of the A-matrix indexed by mi1···in such
that i1 = s. By induction on n, these columns induce a submatrix of rank (n − 2)s + 1.
Hence, we may pick ns− 2s+ 1 linearly independent columns from this set. Next, for each
j = 0, . . . , s−1, pick a column indexed by some mi1···in with i1 = j. By construction, adding
these s columns does not introduce dependence relations. We have constructed a set of
ns− 2s+1+ s = (n− 1)s+1 linearly independent columns of A, so A has the desired rank.

Now consider the case when ks = 1. Again, consider the columns of the A-matrix indexed by
mi1···in such that i1 = s. By induction, but now also on s, these columns induce a submatrix
of rank (n − 2)(s − 1) + 1. Next, add n − 1 columns that are indexed by mi1···in where
i1 = s−1 and such that for each j = 2, . . . , n there is an index with ij = s. Finally, add s−1
columns indexed bymi1···in such that for each j = s−2, . . . , 0 there is an index with i1 = j and
mi2 ̸= s, s−1. This way we obtain (n−2)(s−1)+1+(n−1)+(s−1) = (n−1)s+1 columns,
which are linearly independent by construction. Therefore, A has the desired rank.

The toric varietyMn,d is an aggregate of theMn,λ for λ ⊢ d, but there is no easy transition.
For instance, ideal generators forMn,d do not restrict to ideal generators forMn,λ.

Example 7.3.5 (n = d = 4). The partitions λ = (4), (31), (22), (211), (1111) have the
reductions ν = (1), (21), (11), (21), () with s = 1, 2, 2, 2, 0. Two nontrivial varietiesM4,ν are
given by the off-diagonal entries of 4× 4-matrices. The variety M4,4 has dimension 15 and
degree 1072 in P34, and its ideal is generated by 52 quadrics and 28 cubics. The subset
which involves the twelve unknowns m2110, . . . , m0112 does not suffice to cut out M4,(211)

in P11. The ideal of M4,(211) is generated by 6 quadrics and 4 cubics, namely the cycles in
Example 7.2.4.

The toric ideals for individual partitions are very nice. Our next result builds upon [123].

Theorem 7.3.6. For any partition λ, the ideal ofMn,λ is generated by quadrics and cubics.

Proof. For a partition λ = (λ1, . . . , λe), set R = R[mi1i2···in : {i1, . . . , in} is λ]. Let I ⊂ R
be the toric ideal defining Mn,λ. Note that η = (e, e − 1, . . . , 1) is a partition of the same
length but possibly with a different sum. Let J ⊂ S be the toric ideal defining Mn,η where
S = R[mj1j2···jn : {j1, . . . , jn} is η]. Define a surjective ring homomorphism φ : S → R by
mapping mj1j2···jn to mi1i2···in where {i1, . . . , in} is obtained from {j1, . . . , jn} by replacing e
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with λ1, replacing e − 1 with λ2, etc. We claim that φ(J) = I. This implies the theorem
because J is generated by quadrics and cubics [123, Theorem 2.1] and φ preserves N-degree.

Since I and J are toric, we may verify φ(J) = I on binomials. To show φ(J) ⊆ I, fix a
binomial in J , say of degree δ, written as b =

∏δ
α=1mjα1···jαn −

∏δ
α=1mj′α1···j′αn

. Encode this
by two δ × n matrices B = (jαβ) and C = (j′αβ). Membership in J means that substituting
the parametrization (7.2) into b gives the result 0, and this is equivalent to the multiset of
entries in corresponding columns of B and C being equal. This property is preserved after
replacing e by λ1, replacing e− 1 by λ2 etc. throughout B and C. So φ(b) ∈ I as desired.

To prove I ⊆ φ(J), let c =
∏δ

α=1miα1···iαn −
∏δ

α=1mi′α1···i′αn
be a binomial in I encoded by

matrices D = (iαβ) and E = (i′αβ). We will construct a binomial d ∈ J such that φ(d) = c.
In terms of matrices D and E, in each of their rows we must choose one element that equals
λ1 and replace it by e, then choose another element that equals λ2 and replace it by e − 1,
and so forth until the set of nonzero elements in each row has been replaced by [e], in such
a way so that the multiset of entries in corresponding columns of the transformed matrices
D and E are equal. To achieve this it suffices to consider distinct values in λ one at a time.

Without loss of generality, assume λ = (1e). Now D and E have e ones and n − e zeros
per each row. To choose the elements to replace by e, we consider a bipartite multigraph
between the rows of D and the rows of E, where an edge is drawn between a row in D and
a row in E for every column in which there is a 1 in both rows. A perfect matching would
give a valid choice of elements to replace by e. Such a matching exists by Hall’s Marriage
Theorem. Indeed, for any subset W of rows in D their neighborhood must contain at least
|W | rows in E. Otherwise, there exists a column in D with more ones than the corresponding
column in E, since each row contains the same number of ones. But this contradicts c ∈ I.
Similarly, we carry out the subsequent replacements. Thus a suitable binomial d exists. It
follows I ⊆ φ(J). Combining with the preceding paragraph, we conclude φ(J) = I.

By contrast, the ideals for Mn,d appear to be more complicated. We conjecture that there
does not exist a uniform degree bound for their generators that is independent of n, d.

Example 7.3.7 (n=3, d=7). The toric varietyM3,7 has dimension 20 and degree 14922 in
P35. Its ideal is minimally generated by 46 cubics, 168 quartics, 135 quintics and 18 sextics.

7.4 Secant varieties
In his section we inquire about the identifiability of the secant varieties σr(Mn,•) for r ≥ 2
and present what we know about their dimensions. The main results are Theorems 7.4.3 and
7.4.8. These rest on integer programming and tropical geometry. Moreover, the parametriza-
tion (7.3) represents a challenging implicitization problem. We also report on some compu-
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tational results, featuring both symbolic and numerical methods. For most examples in this
chapter, symbolic computations were used.

Dimension

Theorems 7.3.1 and 7.3.4 gave the dimensions of our moment varieties for r = 1. We next
focus on r ≥ 2, where σr(Mn,d) and σr(Mn,λ) are no longer toric. We begin with an example.

Example 7.4.1 (n = 5, d = 3). The toric varietyM5,3 and its secant variety σ2(M5,3) live in
the projective space P34 of symmetric 5 × 5 × 5 tensors; see Example 7.0.2. By Theorem
7.3.1, we have dim(M5,3) = 14. The expected dimension of the secant variety σ2(M5,3)
would be 2 · 14 + 1 = 29. However, we must subtract 5 = 4 + 1 becauseM5,3 is a cone with
apex σ2(M5,(3)) = P4. Therefore, σ2(M5,3) has dimension 24. The prime ideal of σ2(M5,3)
will be presented in Proposition 7.4.11.

Our first result explains the drop in dimension seen in the example above.

Proposition 7.4.2. The dimension of the moment variety satisfies the upper bound

dim
(
σr(Mn,d)

)
≤ min

{
rnd− rn+ n− 1,

(
n+d−1

d

)
− 1

}
. (7.9)

Proof. The given toric variety is a cone over the projective spaceMn,(d) = Pn−1. In symbols,
Mn,d = Pn−1 ⋆ M̃n,d, where M̃n,d is the toric variety given by all

(
n+d−1

d

)
− n moments that

involve more than one coordinate. By counting parameters, we find dim(M̃n,d) ≤ n(d−1)−1.
We obtain the secant variety of the big toric variety as the join of the apex with the reduced
toric variety: σr(Mn,d) = Pn−1 ⋆ σr(M̃n,d). The dimension of the right-hand side is bounded
above by n+ r

(
dim(M̃n,d)

)
+ r − 1 ≤ n+ r ·

(
n(d− 1)− 1

)
+ r − 1. This yields (7.9).

We found the inequality (7.9) to be strict when r ≥ n. The following sharper bound holds.
(To see it is sharper, consider S = [d] and S = {d} in (7.10).)

Theorem 7.4.3. The dimension of the secant variety σr(Mn,d) is bounded above by the
optimal value of the following integer linear programming problem:

maximize c1 + c2 + · · ·+ cd − 1 subject to 0 ≤ ci ≤ nr for i ∈ [d]
and

∑
i∈S ci ≤

∑
λ∩S ̸=∅ |Nλ| for S ⊆ [d].

(7.10)

The last sum ranges over partitions λ ⊢ d of length ≤ n having nonempty intersection with S.

Proof. The secant variety σr(Mn,d) is parametrized by the polynomial map (7.3). Therefore
its dimension is one less than the maximal rank assumed by the differential of (7.3). This
Jacobian matrix has size

(
n+d−1

d

)
× nrd, where the rows are labeled by mi1i2···in such that

i1, . . . , in ≥ 0 and i1+· · ·+in = d, and the columns are labeled by µ(j)
1i , . . . , µ

(j)
ni for i = 1, . . . , d
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and j = 1, . . . , r. We view this as a block matrix, where the rows are grouped according to
the partition λ given by (i1, . . . , in) and the columns are grouped according to the degree i.
Notice that the matrix is sparse, in that a block labeled by (λ, i) is nonzero only if i ∈ λ.

Let C be a set of linearly independent columns in the Jacobian matrix, with ci columns
labeled by i. The integers ci satisfy 0 ≤ ci ≤ nr for i = 1, . . . , d. Let S ⊆ [d] and C ′ the
subset of columns in C that are labeled by elements of S. Since C ′ is linearly independent,
the number of rows which are nonzero in C exceeds |C ′|. By the aforementioned sparsity,∑

i∈S

ci ≤
∑

λ⊢d, λ∩S ̸=∅,
length of λ is at most n

|Nλ|. (7.11)

We conclude that |C| − 1 is bounded above by the maximum value in (7.10), as desired.

Solving an integer linear program is expensive in general. However, the integer linear program
in (7.10) has a special structure which allows for a greedy solution that is optimal.

Theorem 7.4.4. We construct a feasible solution for (7.10) greedily, starting with c(0) = 0

in Zd. For t = 1, . . . , r, choose c(t) ∈ Zd such that c(t−1)
i ≤ c

(t)
i ≤ c

(t−1)
i +n for all i ∈ [d], and

if c(t)i < c
(t−1)
i + n then there exists S ⊆ [d] containing i such that

∑
j∈S c

(t)
j =

∑
λ∩S ̸=∅ |Nλ|.

Then c(r) ∈ Zd is optimal for the integer linear program (7.10).

Proof. We claim that c(r) is optimal for the linear program (7.10), with integrality constraints
dropped. The dual linear program has variables yS for ∅ ̸= S ⊆ [d] and zi for i ∈ [d]. This
dual linear program equals:

minimize nr(z1 + . . .+ zd) +
∑
S⊆[d]

( ∑
λ∩S ̸=∅

|Nλ|
)
yS − 1

subject to y ∈ R2d−1
≥0 , z ∈ Rd

≥0 and zi +
∑
S∋i

yS ≥ 1 for i ∈ [d].

It suffices to find a dual feasible point at which the dual objective equals the primal objective
evaluated at c(r). We call a set S ⊆ [d] saturated if equality holds in (7.11) for c(r). We
define

y
(r)
S =

{
1 if S ⊆ [d] is saturated and maximal such set
0 otherwise;

z
(r)
i =

{
1 if ∄S ⊆ [d] s.t. i ∈ S and S is saturated
0 otherwise.

The vector (y(r), z(r)) is dual feasible. Further, we claim that there is a unique maxi-
mal saturated subset of [d], possibly empty. Suppose that S and T are saturated. Then
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∑
i∈T\S c

(r)
i +

∑
i∈T∩S c

(r)
i =

∑
λ∩T ̸=∅ |Nλ| and

∑
i∈T∩S c

(r)
i ≤

∑
λ∩(T∩S)̸=∅ |Nλ| since T is

saturated and c(r) is primal feasible. Subtracting these, we find∑
i∈T\S

c
(r)
i ≥

∑
λ∩T ̸=∅

|Nλ| −
∑

λ∩(S∩T ) ̸=∅

|Nλ| =
∑

λ∩T ̸=∅,λ∩(S∩T )=∅

|Nλ|.

Adding
∑

i∈S c
(r)
i =

∑
λ∩S ̸=∅ |Nλ| implies

∑
i∈S∪T c

(r)
i ≥

∑
λ∩(S∪T )̸=∅ |Nλ|. Hence S ∪ T is

saturated by primal feasibility. Thus there is a unique maximal saturated subset of [d]. It
follows that the dual objective evaluated at (y(r), z(r)) equals the primal objective evaluated
at c(r). This completes the proof.

We conjecture that the integer linear program (7.10) computes the correct dimension:

Conjecture 7.4.5. If d ≥ 3 then the bound for dim(σr(Mn,d)) in Theorem 7.4.3 is tight.

Informally, the conjecture says that the secant variety has the maximal dimension possible
given the sparsity pattern of its parametrization (7.3). This has been verified in many cases.

Example 7.4.6. Let n = 4, d = 12. The inclusion σr(M4,12) ⊂ P454 is strict for r ≤ 11. The
dimensions are 47, 91, 135, 175, 215, 255, 291, 327, 363, 399, 431. This was found correctly by
Theorem 7.4.3. Compare this to the sequence 47, 91, 135, 179, 223, 267, 311, 355, 399, 443, 454,
which is the upper bound min{44r+3, 454} for dim

(
σr(M4,12)

)
given in Proposition 7.4.2.

The question of finding the dimension is equally intriguing if we replace the parameter d by
one specific partition λ ⊢ d. Of particular interest is the partition λ = (1, 1, 1, . . . , 1) = (1d).
This toric variety has dimension n− 1, and hence we have the trivial upper bound

dim
(
σr(Mn,(1d))

)
≤ r(n− 1) + r − 1 = nr − 1. (7.12)

Based on extensive computations, we conjecture that equality holds outside the matrix case:

Conjecture 7.4.7. Secant varieties of hypersimplices, other than the second hypersimplex,
have the expected dimension. In symbols, if 3 ≤ d ≤ n−3 then dim

(
σr(Mn,(1d))

)
= nr−1.

Theorem 5.1 in [125] implies σr(Mn,(1d)) is strongly identifiable for r ≲ n⌊(d−1)/2⌋. In particu-
lar, the secant variety has the expected dimension. Our next result is that the secant variety
also has the expected dimension if r ≲ nd−2. The proof relies on tropical geometry [41].

Theorem 7.4.8. The secant variety of the hypersimplex has the expected dimension if(
1 + d(n− d) +

(
d

2

)(
n− d
2

))
(r − 1) <

(
n

d

)
. (7.13)
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Proof. Assume (7.13) holds. Let S = ∆(n, d) ∩ Zn. From [41, Lemma 3.8] and [41, Corol-
lary 3.2], it suffices to show that there exist points v1, . . . , vr ∈ Rn such that each of the
Voronoi cells

Vori(v) := {α ∈ S : ∥α− vi∥2 < ∥α− vj∥2 for all i ̸= j}

spans an affine space of dimension n− 1 inside Rn. To argue this, choose v1 ∈ S arbitrarily
and set N1 = {α ∈ S : ∥α − v1∥2 ≤ 2}. Next choose v2 ∈ S\N1 arbitarily and set
N2 = {α ∈ S : ∥α−v2∥2 ≤ 2}. Next choose v3 ∈ S \ (N1 ∪N2) arbitrarily and define N3. We
continue until S \ (N1 ∪N2 ∪ . . .) = ∅. Note that the parenthesized sum on the left-hand
side of (7.13) equals the size of each set Ni, while the right-hand side gives the size of S.
Thus, (7.13) guarantees that we choose at least r points in S. Furthermore, these points
differ pairwise in at least 3 coordinates by construction. So, the ith Voronoi cell contains
all elements of S that differ from vi in at most one coordinate. That is, it contains vi and
all vertices in the hypersimplex adjacent to vi. Hence Vori(v) has the same affine span as
∆(n, d).

Implicitization

We verified the dimensions in Section 7.4 with numerical methods for fairly large instances,
by computing the rank of the Jacobian matrix of the parametrization (7.2). For this we
employed Maple, Julia, and the numerical Macaulay2 package in [29]. We found it much
more difficult to solve the implicitization problem, that is, to compute the defining poly-
nomials of our moment varieties. The pentad (7.4) suggests that such polynomials can be
quite interesting. This section offers more examples of equations, along with the degrees for
our varieties.

Remark 7.4.9. It is preferable to work with birational parametrizations when numerically
computing the degree of a variety [88]. However the map (7.2) is d-to-1: if ω is a primitive
dth root of unity then we can replace µki by µki ω

i without changing mi1i2···in . This implies
that the map (7.3) has fibers of size at least r! dr. We set µ2,1 = 1 and let µ1,0 be an
unknown to make (7.2) into a birational parametrization of Mn,d. Likewise, we turn (7.3)
into a parametrization of σr(Mn,d) that is expected to be r!-to-1, by setting µ(j)

2,1 to 1 and
using unknowns for µ(j)

1,0.

Let us now present a case study for implicitization, focused on the hypersimplex ∆(6, 3).

Example 7.4.10 (n = 6, d = 3). The 5-dimensional toric variety M6,(111) lives in P19, and
it has degree A(6, 3) = 66 by Remark 7.1.2. Its toric ideal is minimally generated by 69
binomial quadrics. These quadrics are the 2× 2 minors that are visible (i.e. do not involve
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any stars) in the following masked Hankel matrix:
⋆ ⋆ ⋆ ⋆ ⋆ m123 m124 m125 m126 m134 m135 m136 m145 m146 m156

⋆ m123 m124 m125 m126 ⋆ ⋆ ⋆ ⋆ m234 m235 m236 m245 m246 m256

m123 ⋆ m134 m135 m136 ⋆ m234 m235 m236 ⋆ ⋆ ⋆ m345 m346 m356

m124 m134 ⋆ m145 m146 m234 ⋆ m245 m246 ⋆ m345 m346 ⋆ ⋆ m456

m125 m135 m145 ⋆ m156 m235 m245 ⋆ m256 m345 ⋆ m356 ⋆ m456 ⋆
m126 m136 m146 m156 ⋆ m236 m246 m256 ⋆ m346 m356 ⋆ m456 ⋆ ⋆


The rows are labeled by i ∈ {1, 2, . . . , 6}, and the columns by pairs {j, k} of such indices.
The entry is mijk if these are disjoint, and it is ⋆ otherwise. Here we use m123 = m111000,
m124 = m110100, . . . , m456 = m000111. Our toric ideal is generated by all 2×2 minors without ⋆.

The 6 × 15 matrix has twenty 3 × 3 minors without ⋆, and these vanish on σ2(M6,(111)).
In addition to these cubics, the ideal contains 12 pentads (7.4), one for each facet ∆(5, 2)
of the hypersimplex ∆(6, 3). Our ideal for r = 2 is generated by these 20 cubics and 12
quintics. Numerical degree computations using Remark 7.4.9 with HomotopyContinuation.jl
[27] reveal

deg(σ2(M6,(111))) = 465 and deg(σ3(M6,(111))) = 80. (7.14)

Symbolic computations for r = 3 are challenging. Our secant variety has codimension 2 in
P19. There are no quadrics or cubics vanishing on σ3(M6,(111)), but there is a unique quartic:

m123m145m246m356−m123m145m256m346−m123m146m245m356

+m123m146m256m345+m123m156m245m346−m123m156m246m345

−m124m135m236m456+m124m135m256m346+m124m136m235m456

−m124m136m256m345−m124m156m235m346+m124m156m236m345

+m125m134m236m456−m125m134m246m356−m125m136m234m456

+m125m136m246m345+m125m146m234m356−m125m146m236m345

−m126m134m235m456+m126m134m245m356+m126m135m234m456

−m126m135m245m346−m126m145m234m356+m126m145m235m346

+m134m156m235m246−m134m156m236m245−m135m146m234m256

+m135m146m236m245+m136m145m234m256−m136m145m235m246.

(7.15)

Note the beautiful combinatorics in this polynomial: the role of the 5-cycle for the pentad is
now played by the quadrilateral set, i.e. the six intersection points of four lines in the plane.

We conclude this article with the smallest non-trivial secant varieties. Here “non-trivial”
means r ≥ 2, the variety does not fill its ambient projective space, and the ambient dimen-
sion is as small as possible. The next two results feature all cases where

(
n+d−1

d

)
≤ 50. The

list consists of (r, n, d) = (2, 5, 3) from Example 7.4.1 and (r, n, d) = (2, 4, 4) from Exam-
ple 7.3.5. We state these as propositions because they represent case studies that are of
independent interest for experimental mathematics, especially in the ubiquitous setting of
tensor decompositions.
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Proposition 7.4.11. The secant variety σ2(M5,3) has dimension 24 and degree 3225 in P34.
Its prime ideal is generated by 313 polynomials, namely 10 cubics, 283 quintics, 10 sextics
and 10 septics. These ideal generators are obtained by elimination from the ideal of 3 × 3
minors of the 5× 15 matrix

a23 a24 a25 a34 a35 a45 ⋆ ⋆ ⋆ ⋆ ⋆ b21 b31 b41 b51
a13 a14 a15 ⋆ ⋆ ⋆ a34 a35 a45 ⋆ b12 ⋆ b32 b42 b52
a12 ⋆ ⋆ a14 a15 ⋆ a24 a25 ⋆ a45 b13 b23 ⋆ b43 b53
⋆ a12 ⋆ a13 ⋆ a15 a23 ⋆ a25 a35 b14 b24 b34 ⋆ b54
⋆ ⋆ a12 ⋆ a13 a14 ⋆ a23 a24 a34 b15 b25 b35 b45 ⋆

. (7.16)

Proposition 7.4.11 is important in that it displays a general technique of obtaining equations
for varieties of low rank structured symmetric tensors from masked Hankel matrices.

Notation and Proof. The visible entries in the masked matrix (7.16) are 30 of the 35 moments
mi1i2i3i4i5 . The 10 moments for λ = (111) are denoted a12 = m00111, a13 = m01011, . . . a35 =
m11010, a45 = m11100, and the 20 moments for λ = (12) are denoted b12 = m21000, b13 =
m20100, . . . , b21 = m12000, . . . , b53 = m00102, b54 = m00012. The 25 stars are distinct new
unknowns, and these are being eliminated. The matrix contains ten 3× 3-submatrices with
no stars. Their determinants are the ten cubics mentioned in Proposition 7.4.11.

The ideal of σ2(M5,3) is homogeneous in the bigrading given by a and b. Among the gen-
erators, we find 1, 55, 110, 90, 27 quintics of bidegrees (5, 0), (3, 2), (2, 3), (1, 4), (0, 5). The
quintic of bidegree (5, 0) is the pentad of the symmetric 5 × 5-matrix (aij). One of the
quintics of bidegree (2, 3) is

a13a45b25b41b53−a13a45b25b43b51−a14a34b21b43b54
+a14a34b23b41b54−a14a35b23b45b51+a14a35b25b43b51
+a14a45b24b45b51−a14a45b25b41b54+a15a34b21b45b53
−a15a34b25b41b53−a34a45b24b45b53+a34a45b25b43b54.

The ten sextics have bidegrees (4, 2) and (0, 6), five each. All ten septics have bidegree (3, 4).
The 27 + 5 generators of bidegrees (0, 5) and (0, 6) generate the prime ideal of σ2(M5,(21)).
They arise from the 5 × 5 matrix (bij) by eliminating the diagonal. The degree 3225 was
first found numerically, and later confirmed symbolically by Macaulay2.

Our final result concerns tensors of format 4× 4× 4× 4.

Proposition 7.4.12. The secant variety σ2(M4,4) has dimension 27 and degree 8650 in P34.
Its prime ideal has only three minimal generators in degrees at most six. These are the
cubics

det

m2200 m2110 m2020

m1201 m1111 m1021

m0202 m0112 m0022

, det
m2200 m2101 m2002

m1210 m1111 m1012

m0220 m0121 m0022

,
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det

m2020 m2011 m2002

m1120 m1111 m1102

m0220 m0211 m0202

. (7.17)

Proposition 7.4.12 is proved by direct computation. The degree 8650 was found with Homo-
topyContinuation.jl using the method in [88]. The absence of minimal generators in degrees
4, 5, 6 was verified by solving the linear equations for each A-degree in that range. Each
solution was found to be in the ideal (7.17). At present we know of no ideal generators for
σ2(M4,4) that involve the moments m3100,m1300, . . . ,m0013. What is the smallest degree in
which we can find such generators?

Conclusion. In this chapter, we defined the moment varieties of conditionally independent
mixture distributions on Rn. We focused on computing their dimensions, defining polyno-
mials, and degrees. Our future research in this area would extend the results to block-wise
independence structures, systematically generate equations by resultants, and numerically
compute high degrees.
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