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Introduction

Abstract. Evaluation of segmentation algorithms usually involves comparisons of segmentations to gold-stan-
dard delineations without regard to the ultimate medical decision-making task. We compare two segmentation
evaluations methods—a Dice similarity coefficient (DSC) evaluation and a diagnostic classification task—based
evaluation method using lesions from breast computed tomography. In our investigation, we use results from two
previously developed lesion-segmentation algorithms [a global active contour model (GAC) and a global with
local aspects active contour model]. Although similar DSC values were obtained (0.80 versus 0.77), we show
that the global + local active contour (GLAC) model, as compared with the GAC model, is able to yield signifi-
cantly improved classification performance in terms of area under the receivers operating characteristic (ROC)
curve in the task of distinguishing malignant from benign lesions. [Area under the ROC curve (AUC) = 0.78
compared to 0.63, p <« 0.001]. This is mainly because the GLAC model yields better detailed information
required in the calculation of morphological features. Based on our findings, we conclude that the DSC metric
alone is not sufficient for evaluating segmentation lesions in computer-aided diagnosis tasks. © 2014 Society of Photo-
Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.1.3.031012]

Keywords: breast computed tomography; segmentation; computer-aided diagnosis/detection; image analysis; breast mass
classification.
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automated image segmentation methods, spatial overlap mea-
sures, such as the overlap ratio'*'” or Dice similarity coefficient

Mammography is currently the standard breast cancer screening
method and studies have demonstrated a reduced mortality rate
in the screened population.! The low sensitivity for women with
dense breasts found in some studies® and the rather low positive
predictive value for biopsy (10% to 30%)*> have prompted
researchers to develop new three-dimensional (3-D) imaging
modalities. 3-D breast imaging modalities that mitigate tissue
superimposition effects include magnetic resonance imaging,
digital breast tomosynthesis, and more recently, dedicated
breast computed tomography (bCT) and 3-D automated breast
ultrasound.! ™3¢ Studies involving these latter two emerging
technologies are promising, but more research is needed to
determine their potential role in breast cancer screening and/or
diagnosis.”'? The use of 3-D imaging modalities, however,
requires viewing 3-D image volumes on two-dimensional dis-
plays and increases the amount of data that radiologists need
to interpret. Computer-aided diagnosis/detection (CAD) may
alleviate the burden by automatically detecting and diagnosing
suspicious areas embedded in the 3-D image volumes.?

In current breast cancer CAD systems, morphological fea-
tures, such as shape, are important for differentiating between
malignant and benign lesions.'* The quality of automated lesion
segmentation impacts the quality of the computer-extracted
mathematical lesion descriptors, i.e., features. Hence, lesion seg-
mentation is a crucial step in CAD algorithms. To evaluate

*Address all Correspondence to: Hsien-Chi Kuo, E-mail: mars930@ msn.com
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(DSC),'#22 without assessing the overall effect on CAD
performance between computer segmentation and manual delin-
eations are routinely calculated. A concern with spatial overlap
metrics, however, is that they may not fully predict how the
segmentation affects the extraction of individual image-based
lesion features and, ultimately, the performance of the entire
CAD algorithm.

Based on a literature review, segmentation methods are
evaluated mainly in terms of overlap as opposed to CAD
performance Therefore, in this paper, we use two previously
developed lesion segmentation methods**?° for breast CT and
evaluate the segmentation performance in two different man-
ners. First, we compare the segmentation methods in a more
“traditional” way by using a spatial overlap metric (DSC), then
we assess segmentation quality based on the performance of the
entire CAD scheme in the classification task of distinguishing
between malignant and benign breast lesions.

2 Materials

We compared the segmentation evaluation methods on a dataset
of 116 noncontrast breast CTs containing 129 masses (80
malignant, 49 benign) that had been acquired at University of
California at Davis under an IRB-approved protocol. The spatial
resolution of the image volumes included in coronal plane
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voxels of ~300-um> with coronal slice spacing varying from
200 to 400 um. For use in evaluation, lesions were manually
outlined in the central coronal, sagittal, and axial planes by a
research specialist (Alexandra Edwards) with over 15 years
of experience in mammography.

3 Methods

3.1 Segmentation Methods Used in the Evaluations

Automated lesion segmentation was performed with two previ-
ously developed segmentation algorithms, referred to here as
(1) a global active contour (GAC) segmentation algorithm and
(2) a global + local active contour (GLAC) segmentation algo-
rithm.?*?° Briefly, each involves an initial radial gradient index
segmentation'*** along with a subsequent morphological ero-
sion step to yield an initial contour. Next, a level set-based active
contour model is used to refine the initial contour producing the
final contour. Both models include two energy functionals rep-
resenting a fronts propagating term and a regularization term,
however, GLAC also contains a region fitting energy term to
capture detailed local morphology. In the GLAC segmentation,
the fronts propagating term evolves the contour globally and the
region fitting energy term handles the morphological details
locally within a convolution kernel.

3.2 DSC Metric of Segmentation Performance

The overlap measure—DSC—was averaged from the DSC
values calculated from the three central orthogonal planes in
comparison with manually delineated outlines. Details can be
found in prior studies.'®

3.3 Classification ROC Analysis as a Metric of
Segmentation Performance

The mathematical descriptions of the computer-extracted lesion-
features have been described in previous studies. We calculated
10 morphological features,'**>?° 14 texture features*’*® based
on the gray level co-occurrence matrix, and a 3-D spiculation
index.?”’ The texture feature values were calculated for both
the segmented lesion and background as well as the differences
between them. Thus, the total number of features was 53 (14
texture features for segmented lesions, 14 texture features for
the background, 14 “difference” features, and 10 morphological
features plus the spiculation feature, “spiculation index”).
Details for 3-D texture features can be found in Chen et al.?®

Feature selection was performed in a single leave-one-case-
out analysis for the purpose of reducing the database bias. In
each step, stepwise feature selection was performed on N — 1
cases using multilinear regression (“stepwisefit,” MATLAB®,
MathWorks, Inc.) at a significance level of 0.05, and then the
linear discriminant analysis (LDA)* classifier was used to dis-
tinguish benign and malignant lesions.

The LDA classifier output is input to receivers operating
characteristic (ROC) analysis for classification performance
assessment.>! In this study, we used ROCKIT?? to generate con-
ventional binormal ROC curves® and calculate the area under
the ROC curve (AUC) that yields the performance in distin-
guishing between malignant and benign lesions, as well as to
compare the ROC curves obtained with the different segmenta-
tion methods by calculating the corresponding p-value.
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Table 1 Dice similarity coefficient (DSC) and area under the ROC
curve (AUC) values resulting from the global + local and global active
contour (GLAC) models.

GLAC model GAC model p-value
DSC coefficient 0.80 +£0.11 0.77 £0.10 0.0016°
AUC 0.78 £0.04 0.63 +0.05 <0.001
@paired t-test.
1 ROC curves
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Fig. 1 Classification performance of the breast computed tomogra-
phy computer-aided diagnosis method for the task of distinguishing
between cancerous and noncancerous breast lesions when using
the global active contour (GAC) and global + local active contour
(GLAC) segmentation models.

Irregularity2 DSumAverage

Variance

Circularity Entropy
Ellipsoid C01ulect§d
axesratio arearatio

— GLAC model
Compactness Spiculation ~— GAC model
index

Fig. 2 Spider plot depicting the classification performance for the
task of distinguishing between cancerous and noncancerous lesions
of selected computer-extracted lesion features in terms of AUC
values when using the GAC and GLAC segmentation models
(DSumAverage refers to the value difference of the texture feature
“sum of average” between lesion and background).
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Fig. 3 A comparison of DSC and irregularity values for a malignant
breast mass lesion segmented with the (a) GAC and (b) GLAC
segmentation models, respectively. Black: computer segmentation.
Yellow: manual delineation.

Table 2 Values of three selected features calculated from the results
generated by two segmentation models.

Feature values

Benign Malignant
Segmentation cases cases -test

Feature method N =49 N =80 p-values?
Irregularity1 GAC 0.16 £0.05 0.16 +0.05 0.45

GLAC 0.17+0.06 0.19+0.05 0.07
Irregularity2 GAC 0.56 £ 0.06 0.58 +0.06 0.07

GLAC 0.53+0.07 0.57+0.06 <«0.05
Spiculation GAC 3.74+£2.84 4.56 +3.74 0.20
index

GLAC 4.83+3.34 6.96+3.93 0.02

@p-values represent the comparison of feature values between the
two segmentation models.
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4 Results

The DSC values that were calculated in our previous studies for
the two segmentation models are listed in Table 1 and are
significantly different (DSCgac = 0.77, DSCgpac = 0.80, and
p-value = 0.0016). The AUC values, which assess the classifi-
cation performances using the two segmentation models,
are also given in Table 1, and are also significantly different
(AUCgac = 0.63 versus AUCgpac = 0.78, and p-value <
0.001). Figure 1 shows the resulting ROC curves from the
use of the GAC and GLAC segmentation models. According
to DSC values, both segmentation results are well above 0.7,
which is suggested by Zijdenbos et al.'® as a threshold of accept-
able overlap between computer segmentation and human out-
lines for medical images. Therefore, both algorithms yielded
satisfactory segmentation performance in terms of spatial over-
lap. However, their performances in terms of the diagnostic
classification task substantially differ (Table 1 and Fig. 1).
Figure 2 displays the classification performance, in terms of
AUC, of the various features most frequently used in either the
GAC model or GLAC model, in order to demonstrate how fea-
tures might be affected by segmentation results whether or not
they were selected for a particular classifier. The most common
feature set for GAC model is {difference of sum of average
between the lesion and background,””* the ratio of connected
fibroglandular tissue area to lesion surface area,” spiculation
index,” compactness25 }. The most common feature set for
GLAC model is {irregularity1,? irregularity2,? entropy,?’*® spic-
ulation index,* ellipsoid axes ratio,? variance,?’? circularity26}.
In the diagnosis of mass lesions in mammography, charac-
terization of mass shape, margin, and density are important
indicators for radiologists to use.***> D’Orsi and Kopans®
reported that masses with irregular shapes, indistinct, or spicu-
lated margins, and higher density are considered highly suspi-
cious.** Only one morphological feature, i.e., compactness, was
selected when the GAC model was used and the AUC value for
this individual feature is quite low (0.58, see Fig. 2). The GAC
model appears not to be capable of delineating essential mor-
phological detail that is crucial for diagnostic classification.
In contrast, the GLAC segmentation method enabled multiple
morphological features (i.e., irregularityl, irregularity2, ellip-
soid axes ratio, and circularity; see Fig. 2 for their individual

GLAC

[l Linear discriminant plane
o Benign cases
4 Malignant cases

0.3

— 0.4
0.1 \0 Irregularity

Irregularity1

Fig. 4 Scatter plots of computer-extracted lesion features: (a) three-dimensional (3-D) plot of
Irregularity1, Irregularity2, and Spiculation index extracted from the segmentations using the GAC
model; (b) 3-D plot of Irregularity1, Irregularity2, and Spiculation index extracted from the segmentations

using the GLAC model.
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performances). Figure 3 shows an example where the GLAC
model produced a more irregular segmentation, which increased
the value of the irregularity feature for this segmentation, com-
pared to the less irregular segmentation produced by the GAC
model, even though the DSC value was lower. Table 2 shows
the feature values of the most dominant features (the two irregu-
larity features and spiculation index) based on the two segmen-
tation models compared in this study. Their values for malignant
and benign classes became discernible when the GLAC model
was used. Figures 4(a) and 4(b) show the scatter plots of these
three features. Compared to Fig. 4(a), Fig. 4(b) demonstrates
better differentiability based on these two features. Figure 4(b)
discerns the two classes better than Fig. 4(a). By taking advan-
tage of these multiple features, the AUC value of the overall
classification performance was statistically improved.

5 Discussion and Conclusion

Our finding suggests that using a spatial-based segmentation
evaluation method alone to assess the quality of segmentation
for breast masses in bCT images may not be sufficient. Due
to intra-rater and inter-rater variabilities, it has been shown
that the DSC can be substantially influenced by individual radi-
ologist’s delineations,?***° and thus, a large overlap may not
correspond to the best classification performance. Based on
our findings, one might not have expected the AUC to increase
from a marginal value of 0.63 to a reasonably good value of
0.78, for a corresponding DSC increase from 0.77 to 0.80 for
the GAC model and the GLAC model, respectively. Figure 3
demonstrates that a higher DSC value does not always ensure
better extraction of morphological information. In Fig. 3(a), the
GAC model resulted in a higher DSC value but yielded a lower
irregularity value. In Fig. 3(b), although the DSC value from the
GLAC model is not as high as that in Fig 3(a), the irregularity
value is greater, as it is expected for a malignant lesion. This
example also demonstrates potential inadequacy if the evalu-
ation of segmentation is solely based on simple overlap because
manual outlines can miss important shape details, such as lesion
spiculations.

It is worth noting that the improved extraction of the mor-
phological details allowed for the spiculation index feature to
yield improved performance (see Table 2). In Kuo et al.,*’
tumor mass, fibroglandular tissues, and spiculation were simul-
taneously classified in the step of fuzzy c-means-based segmen-
tation. There the spiculation index is given as the number of
connected locations of fibroglandular tissues and spiculation on
the lesion surface. A more accurate lesion margin helps reduce
erroneous locations. This highlights the role of segmentation in
capturing small shape details that might not substantially con-
tribute to the value of overlap measure, i.e., making shape-
related features useful (Table 2).

Based on the results from this study, we conclude that the
concept of spatial overlap alone is not always sufficient to evalu-
ate segmentation quality when segmentation is a component of
an overall CAD application. Although a spatial overlap metric
can be used to ensure that the segmentation algorithm performs
correctly with the radiologist’s outlines, additional evaluation is
still suggested for the purpose of extracting essential informa-
tion that is directly related to the classification task. In addition,
our justification for including feature selection within the CAD
(LDA) output comparison is that with different segmentations,
different features may perform better, and thus, by allowing
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feature selection for each, we are comparing each CAD algo-
rithm at its best.

Our study had some limitations, including the moderate size
of the dataset. Since significant differences were found among
important morphological features, we expect to observe in the
future consistent and stronger results when a larger-size dataset
is used. In this study, overall, the trends for DSC and AUC were
preserved in that both evaluation techniques found the GLAC
model to be superior to the GAC model. This may not always
be the case, however, as discussed in the previous paragraph and
demonstrated for the lesion shown in Fig. 3. Depending on
lesion characteristics and corresponding manual lesion outlines,
a DSC-based evaluation may produce trends that are different
from those found with an AUC-based evaluation. Although we
were not able to show opposing trends, we were able to show
that the magnitude of improvement in algorithm performance
was better predicted by the AUC-based evaluation.
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