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ABSTRACT OF THE DISSERTATION

Performance-robust, Non-blocking, Data-driven Barrier Synchronization for Multicore,
Multithreaded Parallel Algorithms

By

Arturo Garza Rodriguez

Doctor of Philosophy in Computer Science

University of California, Irvine, 2023

Professor Isaac D. Scherson, Chair

In a general-purpose multicore multithreaded parallel environment, multiple threads work

simultaneously to finish a task faster. Usually, threads need to communicate with each

other due to the need to share data or synchronize access to shared data. Communications

commonly occur when threads need to wait for the computational results of other threads

before continuing their own computations; all necessary data dependencies need to be met

before subsequent computations take place.

A barrier is a synchronization construct that enforces a collective pause and data sharing at a

given execution point between all participating threads of a parallel computation. No thread

proceeds beyond a barrier until all other threads have reached it. However, in a general-

purpose system where many processes compete for the available computational cores, a

scheduler decides which thread gets a core to execute its next line of code. The barrier can

easily become a performance bottleneck due to its global blocking nature: one preempted

thread blocks the progress of all other threads that are waiting at a barrier.

This dissertation introduces a novel technique that changes the global nature of the barrier

into a distributed data-driven synchronization model with non-blocking thread progression

guarantees. The idea is to exploit the algorithm-based memory access patterns to extract

xii



peer-to-peer interthread communication and remove the explicit use of a barrier synchro-

nization construct. Our proposed technique is experimentally validated. The results are

promising and show considerable robustness in performance as opposed to their barrier-

based algorithm counterparts.
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Chapter 1

Introduction

Prophets have voiced the contention that the organization of a single

computer has reached its limits and that truly significant advances

can be made only by interconnection of a multiplicity of computers.

Gene Amdahl

Multicore CPU architectures are a pillar in modern computing platforms. However, it is not

straightforward to efficiently exploit the underlying parallelism that the hardware provides.

This has brought considerable attention to this research field.

One of the most common forms of parallelism for these modern computer architectures is

the Single Program Multiple Data (SPMD) model. The SPMD model splits a task into

multiple identical execution threads that will run simultaneously on multiple CPU cores

and, usually, work on disjoint subsets of data. Generally, these programs are written in

sequential languages extended with communication and synchronization primitives, with

barrier synchronization being one of the most common constructs for synchronizing parallel

programs. Also, these parallel algorithms exhibit data dependencies at different points in

time within their implementations; and threads may need to wait for the results produced

1



by other threads. A barrier is a synchronization construct that forces an execution thread

to wait until all participating threads reach the same barrier. The necessity for barrier

synchronization arises from the algorithmic data dependencies requirements.

Communicating and synchronizing multiple execution threads present significant challenges.

Modern CPUs are powerful out of order execution engines, there are features like branch

prediction, instruction prefetching, store buffering, and others that accelerate the computa-

tions of sequential programs. However, these features may represent major drawbacks when

multiple threads try to work collectively.

Additionally, these systems are not designed to execute just specific types of workloads, they

are also formidable general purpose engines that execute large volumes of diverse tasks. The

oversubscribed nature of multicore computing platforms impose additional difficulties since

a CPU core is now a resource that needs to be shared between multiple threads that are

just waiting to be executed. The overall performance of a parallel application may suffer

significantly when multiple threads are waiting for the result of the computations of another

thread that is yet to be assigned for execution on a CPU core.

This work presents a model that addresses the previously mentioned deficiency and pro-

vides performance robustness to parallel tasks with data dependencies that require barrier

synchronization. By exploiting the memory access patterns, our data-driven model confers

better thread progression guarantees against the oversubscribed blocking nature of modern

multicore computing platforms. The rest of the thesis is organized as follows.

Chapter 2 presents the preliminary information, concepts, definitions, and terms that are

necessary in order to introduce the rest of the material. It explores the notion of parallel

computing and its taxonomy, a classification of the different types of thread progression

guarantees that have been proposed, and a deeper insight into barrier synchronization.

2



Chapter 3 illustrates the challenges to overcome and the embodiment for the rest of this

work. It presents the target architecture, its capabilities, its limitations, how barrier syn-

chronization can be achieved, and the main complications faced by parallel multithreaded

applications.

Chapter 4 gathers and summarizes a thorough study in all the related work that has been

performed so far to address the challenges stated in chapter 3. The summary is organized

in two major categories. One to address the overhead introduced by barrier synchronization

constructs and how to mitigate it. The second one shows how to design parallel algorithms

that are more tolerant to unexpected system delays.

Chapter 5 presents the main contribution of this dissertation: the non-blocking data-driven

barrier synchronization (NBD2BS) model. The general idea is to exploit the fixed memory

access patterns that are exhibited in some parallel algorithms. This, in order to generate

peer-to-peer communication and synchronization schemes, instead of using blocking barrier

synchronization constructs.

Chapter 6 is the experimental verification of the proposed model. We devised novel non-

blocking implementations of important algorithms that are core computational tasks in the

fields of parallel sorting and signal processing that can be attractive to other research areas.

Chapter 7 motivates future work towards wait-free barrier synchronization. A multithreaded

task-stealing model is proposed and the experimental results are promising to keep exploring

more efficient methods.

Finally, chapter 8 presents the concluding remarks, emphasizing the impact of our contribu-

tions and motivating the future opportunities in this research field.

3



Chapter 2

Preliminaries

If I have seen further, it is by standing on the shoulders of giants.

Isaac Newton

The advent of multicore parallel computing has become a revolution, enabling new technology

advances and delivering high performance to the most demanding applications. Over the

years, this research field has been widely studied: from the design and implementation of

novel parallel computer architectures, all the way to unprecedented approaches to solve

massively large problems.

However, only one thing is certain, the field of parallel computing is in constant evolution

with different goals in mind; including, but not limited to: improving performance, reducing

costs, using multiple computational resources effectively, and ease of programming. This

chapter presents the necessary concepts to introduce the rest of the dissertation and serves

as a guideline of the main areas in which this thesis contributes to the field of computer

science.

4



2.1 Multicore Parallel Computing

Parallel computing is the art of solving a problem by decomposing it into smaller subproblems

and solving them simultaneously using multiple computational resources. It is a necessity

in problems and tasks that would otherwise take a long time to complete. With claims in

the past few years of the deceleration of Moore’s law [50], the need for and popularity of

multicore parallel computers has been steadily increasing.

Arguably, one of the most important turning points in parallel computing is the Gustafson’s

correction [36] to Amdhal’s law [7], where the benefits of using multiple computational

resources to solve large problems was shown. Michael Flynn introduced a taxonomy of

computing systems [30] that has been highly adopted ever since, which includes Single In-

struction Multiple Data (SIMD), Multiple Instructions Single Data (MISD), and Multiple

Instructions Multiple Data (MIMD) to help classify parallel computing systems.

SIMD-type systems refer to the so-called data-parallelism or vector-parallelism, where the

granularity of the computation is at the instruction level. The same instruction is executed

simultaneously across multiple pieces of data. Whereas, MISD-type systems refer to mul-

tiple different instructions working on a single data stream. A simple example of a MISD

computational model is an instruction pipeline where each stage of the pipeline executes,

simultaneously, a different instruction over the same data pool. MIMD-type systems extend

the MISD model, multiple instructions are being independently executed over different pieces

of data and most modern general-purpose processors follow this model.

Throughout the years, MIMD-type computers have been in the vanguard of research efforts.

Multiple interconnected processing units (cores) executing independent instruction streams

and working cooperatively to solve a given problem. Consequently, recent advances focus

on increasing the available parallelism and exploiting such parallelism is at the forefront of

modern computing challenges [40, 58].
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One fundamental characteristic of multicore systems is the utilization of a shared memory

address space. Applications running on such systems exploit their parallelism by using more

than one core at the same time. By sharing a common memory address space, multicore

processors facilitate data sharing across all cores. It provides low latency and high bandwidth

for communication, making them ideal for high performance computing.

Programming parallel algorithms in multicore systems is relatively straightforward. It is

similar to writing sequential programs, but multiple identical copies of the same program

run simultaneously on different cores and they usually work on disjoint sets of data. This

parallel computational model was introduced as Single Program Multiple Data (SPMD).

2.2 Single Program Multiple Data (SPMD)

The Single Program Multiple Data (SPMD) parallel computational model was originally

devised by Frederica Darema [20, 21, 22]. This model was first developed as an effort to

pursue low-overhead, ease of programming, and high-cooperative parallelism. The premise

to maximize cooperativeness is based on that all processing units execute the same stream

of instructions; the same computer program. It is often referred to as an execution thread.

Without loss of generality, a thread can be defined as a lightweight process and as the

smallest unit of execution of the SPMD model.

SPMD-type parallelism is sometimes considered a generalized version of the SIMD-type or

vector-type parallelism, since SPMD becomes SIMD at its minimum possible program size:

one instruction. Another way to think about it is that if all SPMD programs are executed

in lockstep, then it becomes SIMD. This is one of the most important characteristics of the

SPMD model, there is no restriction about which instruction is executed at any point in
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time. Multiple threads can be executing different instructions of the same program at the

same time and not necessarily moving at the same step.

The described behavior has been also widely studied and it is a research field in its own

right. Concurrency, then, can be defined as a composition of multiple independent threads.

This is, any thread can execute any given instruction at any given point in time.

Furthermore, the SPMD model is also considered more general than the SIMD model in the

data spectrum, since each thread is not limited to act on different and disjoint pieces of data;

creating contention and consistency problems when some pieces of data are shared across

multiple execution threads. Hence, heavily impacting and degrading the performance and

scalability of parallel applications.

The SPMD model has been widely adopted and several state-of-the-art parallel programming

environments are based on SPMD: OpenMP [91], MPI [90], and multithreading techniques

are just a few. SPMD proved that it is straightforward to map parallel applications into

parallel machines, but imposes significant challenges as well; including, but not limited to:

communication and synchronization among multiple execution threads.

2.3 Concurrent Computations and Synchronization

Synchronization refers to the use of mechanisms or techniques to impose or constraint some

order in the operations performed by multiple concurrent threads. In other words, it is a

consensus problem, where all involved participant threads need to agree in the order of their

actions. In a system with multiple threads, getting all of them to observe the same order of

events is a very difficult task [55].
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There is an unpredictable nature about when an operation or event can occur or be observed

among multiple independent execution threads. It is not hard to imagine a scenario where

one action takes place in a particular thread, but it does not communicate it properly to the

rest of them. It is possible, that from another thread’s point of view, this action never takes

place or it just happens after another series of events.

Definition 2.1. A “happened before” time ordering relation between two events, “a” and

“b”, of a system is the smallest relation satisfying the following three conditions:

1. If “a” and “b” are events in the same thread, and “a” comes before “b”, then “a”

happens before “b”.

2. If “a” is the sending of a message by one thread and “b” is the receipt of the same

message by another thread, then “a” happens before “b”.

3. If “a” happens before “b” and “b” happens before “c”, then “a” happens before “c”.

Two distinct events “a” and “b” are said to be concurrent if no “happened before” relationship

can be established between them.

Leslie Lamport formalized this notion of time in multithreaded systems [55]. The idea

that a certain event can happen before another must be specified in terms of events that

are observable within the system and not just in terms of physical theories about an event

happening at an earlier time than other event. Lamport also devised one of the concepts that

refer to the correctness properties of parallel and concurrent algorithms [56]. The sequentially

consistent concept states that the result of any concurrent execution is the same as if the

operations of all threads were executed in some sequential order and the operations of each

thread appear in this sequence in the order specified by its program. Sequential consistency

has been widely adopted and it is arguably one of the most common ways to corroborate

the correctness of multithreaded algorithms.

Definition 2.2. Sequential consistency states that the result of an execution is the same as

a single interleaving of sequential, program-order memory accesses from different threads.
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In the context of shared memory multicore systems, one thread sending a message to another

thread is implicit and transparent via memory access instructions (read and write). The

sending of a message by one thread is performed via writing into memory and the receipt of

the same message by another thread is done by reading from memory.

Definition 2.3. Concurrent shared memory computing consists of multiple threads, each

of which is a sequential program on its own right. These threads communicate by calling

methods of objects that reside in a shared memory. Threads are asynchronous, meaning that

they run at different speeds, and any thread can halt for an unpredictable duration at any

time.

Multicore systems are naturally concurrent, the operations performed by the many threads

running in the different cores can interleave arbitrarily and halt unpredictably. Multiple

synchronization mechanisms with different goals in mind have been proposed [44]. The

next section presents a model to classify different synchronization mechanisms on how the

behavior of one thread can have an effect on the execution of other threads.

2.4 A Thread Progression Model

Maurice Herlihy and Nir Shavit [39, 41, 43, 44] proposed and formalized a widely adopted

taxonomy of multithreaded systems based on the progression guarantees that each of the

threads exhibit. These thread progression guarantees are classified based on the ability of

each thread to take steps towards its completion regardless of the progress of the rest of the

threads, see table 2.1.

The concepts illustrated in table 2.1 will be explained by means of example. Without loss of

generality, assume we are required to devise a mechanism to solve one of the oldest problems

in synchronization: mutual exclusion. In order to protect a shared computational resource,

often referred as critical section (CS), from multiple threads accessing it at the same time.
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Blocking Non-blocking

Some threads make progress Deadlock-freedom Lock-freedom

Every thread makes progress Starvation-freedom Wait-freedom

Table 2.1: Taxonomy of thread progression guarantees.

Definition 2.4. Mutual exclusion is when critical sections of different threads do not overlap.

For threads A and B, and integers j and k, either CSk
A happened before CSj

B or CSj
B happened

before CSk
A; where CSk

A is the interval during which A executes the critical section for the

k-th time.

One way to solve the mutual exclusion problem is to let threads compete for a lock, which

is a construct that a thread can acquire in one indivisible step (atomic read-modify-write

memory operation). Then, the first thread to acquire the lock is the one who wins access

to the shared resource. Otherwise, if a thread fails to acquire the lock, it keeps trying until

success. This technique is considered to be deadlock-free because at least one thread makes

progress towards the shared resource and eventually another thread might gain access to the

shared resource when the lock becomes available again.

Definition 2.5. Deadlock-freedom guarantees that if some thread attempts to acquire the

lock, then some thread will succeed in acquiring the lock. If a thread calls acquire lock() but

never acquires the lock, then other threads must be completing an infinite number of critical

sections.

However, there is no guarantee that all involved threads will actually gain access to the

shared resource; with just a little bit of bad luck, a thread might never win a contention

match to acquire the lock. Hence, it is not considered starvation-free.

Definition 2.6. Starvation-freedom guarantees that every thread that attempts to acquire

the lock eventually succeeds. Every call to acquire lock() eventually returns. This property is

sometimes called lockout-freedom.
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A different way to approach mutual exclusion, with starvation-freedom progression guaran-

tees, is to enqueue each thread in order to gain access to the shared resource. This fairness

mechanism guarantees that all threads eventually will make progress towards the shared re-

source. Nevertheless, it is important to point out that a stronger progression guarantee does

not necessarily imply better performance. The introduction of the queue might slowdown

the overall performance, but it ensures that all threads will eventually acquire the lock.

An important aspect of deadlock-freedom and starvation-freedom is that both continue to

block the computational progress of the rest of the threads while they wait for the lock to

become available, this is known as blocking synchronization.

Definition 2.7. Blocking synchronization comprises techniques used to prevent multiple

threads from simultaneously accessing shared computational resources by allowing only a

single thread to make progress.

Synchronizing multiple threads using locks is relatively straightforward to reason about.

However, threads get blocked under these circumstances and new ways to maximize the

available parallelism among multiple threads have become a necessity. Herlihy and Shavit

pioneered what is known as non-blocking synchronization [39, 41, 43, 44].

Definition 2.8. Non-blocking synchronization comprises techniques used to prevent multiple

threads from simultaneously accessing shared computational resources without having to block

other threads progress.

In non-blocking synchronization there are three different progression guarantees that gener-

ally apply to the SPMD parallel model. Each one with better progression guarantees than

the previous one. It is said that an operation is obstruction-free if a thread makes progress

when the rest of the threads do not take any steps in their execution. Then, a lock-free

mechanism guarantees that at least one thread makes progress. Finally, an operation is

wait-free if it guarantees that all threads make progress.
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Definition 2.9. A method is obstruction-free if, from any point after which it executes in

isolation, it finishes in a finite number of steps.

Definition 2.10. A method is lock-free if it guarantees that infinitely often some method

call finishes in a finite number of steps.

Definition 2.11. A method is wait-free if it guarantees that every call finishes its execution

in a finite number of steps.

These definitions are similar to their blocking counterparts, deadlock-freedom and starvation-

freedom. However, non-blocking synchronization algorithms are designed to not block the

progress of other threads while executing their own operations. Figure 2.1 presents the

complete hierarchy of the different thread progression guarantees.

Deadlock-freedom

Starvation-freedom

Obstruction-freedom

Lock-freedom

Wait-freedom

Weaker Guarantees

Stronger Guarantees

Figure 2.1: Hierarchy of thread progression guarantees.

To illustrate non-blocking synchronization, the mutual exclusion mechanism will be modified

and it will allow multiple read-only threads in the shared resource. This is known as a reader-

writer lock. If a thread only wants to read from the shared resource, it may proceed without

waiting. On the other hand, if a thread wants to write into the shared resource, it waits

until all read-only threads finish. This technique provides wait-free progression guarantees
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to all read-only threads. However, a writer thread must compete against all readers in order

to access the shared resource and potentially impacting its performance. Ideally, the goal

is to maximize progress among multiple threads without side effects; but in practice, this is

not easy to accomplish.

This dissertation leverages the same model proposed by Herlihy and Shavit to characterize

the different progression guarantees that our proposed technique exhibits. Our target syn-

chronization construct is the so-called barrier synchronization and we show how it achieves

non-blocking thread progression guarantees.

2.5 Barrier Synchronization

Arguably, the most common construct to coordinate multiple execution threads in the SPMD

parallel model is the so-called barrier synchronization, ensuring that no thread continues

execution beyond a barrier until all other threads reach the same barrier. See figure 2.2.

Barrier Barrier

Stage i Stage i + 1Stage i - 1

Thread 0

Thread 1

Thread 2

Thread 3

Figure 2.2: Barrier synchronization.

Barrier synchronization is used to protect the concurrent reads and writes that can happen

across multiple iterations or stages of a parallel algorithm. This ensures the correctness of
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the algorithm by safeguarding the possible data dependencies that the algorithm exhibits.

Figure 2.3 shows a general pseudocode snippet of the execution flow of a parallel algorithm

where each participating thread needs to complete a series of iterations. The explicit barrier

construct ensures that all threads complete their current task before proceeding into the

next iteration. An important aspect to point out is that the finer the granularity of the

computational task, the more barriers may be necessary.

// sequential code

// parallel section

for each thread:

for i in 1 to N:

Task(i)

barrier

// sequential code

Figure 2.3: Barrier synchronization pseudocode usage example.

The barrier is the synchronization point where data realignment, repartitioning, and all com-

munication between all participating execution threads takes place. Barrier synchronization

points can easily become hot-spots and significantly degrade the performance of parallel ap-

plications. The overall performance is limited by the slowest of the threads involved in the

computations and a single delayed thread blocks the progress of the rest of the threads.

2.6 Common Terms

◾ Parallel computing: Art of solving a problem by decomposing it into smaller sub-

problems and solving them simultaneously using multiple computational resources.

◾ Single Program Multiple Data (SPMD): Computational model where the same

sequences of instructions are executed simultaneously over disjoint sets of data.

◾ Thread: Smallest unit of execution of the SPMD parallel model.
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◾ Atomic memory operation: Instruction that allows a thread to read, modify, or

write memory in one indivisible step.

◾ Concurrency: Multiple threads can execute multiple operations at any time.

◾ Synchronization: Art of enforcing some order in the operations of concurrent threads.

◾ Blocking synchronization: One thread may prevent others from making progress.

◾ Non-blocking synchronization: One thread may make progress regardless of others.

◾ Deadlock-freedom: At least one thread makes progress in a finite number of steps,

but may prevent others from making progress.

◾ Starvation-freedom: Each thread makes progress in a finite number of steps, but

may prevent others from making progress.

◾ Obstruction-freedom: Each thread makes progress in a finite number of steps when

they are executed in isolation (the rest of threads do not take any steps).

◾ Lock-freedom: At least one thread makes progress in a finite number of steps.

◾ Wait-freedom: Each thread makes progress in a finite number of steps.

◾ Barrier synchronization: One thread waits for all others before resuming execution.
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Chapter 3

Problem Statement

If you were plowing a field, which would you rather use:

two strong oxen or 1024 chickens?

Seymour Cray

Barrier synchronization is an algorithmic need in parallel algorithms that are composed of

several computational stages. The barrier implementation is critical to deliver high perfor-

mance. It should be fast, avoid unnecessary overhead, and minimize the time between the

last thread reaching the barrier and the last thread leaving the barrier.

In this chapter, the limitations to overcome are presented within the context of the target

computer architecture: the Central Processing Unit (CPU) and multicore CPU systems with

a shared memory address space. Primarily, there are two major performance troublemakers:

the own hardware abilities to guarantee correctness and consistency across all CPUs and

the oversubscribed nature of these general-purpose systems where multiple threads compete

with each other to execute their next line of code in a CPU core.
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3.1 Thread-level Parallelism in Multicore CPUs

SPMD parallel algorithms are relatively straightforward to implement in modern multicore

CPU architectures: one thread runs in one CPU core. There are several multithreaded

programming techniques and libraries that allow programmers to execute the same program

(thread) simultaneously across the different CPU cores. However, efficiently exploiting the

full parallel capabilities of multicore systems is a hard task.

Figure 3.1: Multicore system architecture.

Multicore systems have many CPUs per physical chip, also known as cores, see figure 3.1.

CPUs are powerful out of order execution engines: branch prediction, instruction prefetching,

store buffering, speculation, compiler instruction scheduling, and other compiler optimiza-

tions are features to make the CPU as fast as possible and most of the time the program

is executed in a different order than it was originally written. These features increase the

performance of sequential programs, but they do more harm than good to parallel mul-

tithreaded SPMD applications where threads need to communicate: remember Lamport’s

work on correctness of multithreaded systems [55, 56]. The hardware needs to provide addi-

tional conditions to guarantee that a computer correctly executes multithreaded programs.
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3.2 CPU Hardware Capabilities

When threads communicate with each other, they do it via messages. Intuitively, due to

the out of order execution nature of multicore CPU systems, it is not difficult to imagine a

scenario where receiving or sending a message from or to another thread actually happens

in a different order than expected and, for that reason, compromising the correctness of the

algorithm.

The multiple CPU cores communicate through a complex system of interconnected memories,

namely, caches. In consequence, receiving and sending messages translates into reading and

writing memory, respectively. Instructions that interact with memory are usually more

expensive than others that perform simple calculations, even for a single thread.

Memory operations become more expensive when shared among multiple cores, since some-

how it is necessary to enforce the correct order when reading and writing memory. All CPU

cores maintain their own copy of the piece of shared data and it is stored in what is known as

a cache line and it can store multiple elements depending on their size. Then, memory con-

sistency refers to the property where each core must have an up-to-date copy of the shared

data. A phenomena known as race condition happens when at least two threads perform

memory operations to the same location, one of them is a write, and there is no notion that

either of them happened before the other.

Definition 3.1. A memory consistency model defines the ordering of externally observable

events, i.e. reads and writes to memory. A read operation returns the value of the most

recent write operation.

Definition 3.2. A race condition occurs when two or more threads access the same memory

location, at least one is a write, and no happened before relation can be established between

said operations.
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In order to overcome all these major drawbacks, the hardware provides different mechanisms

to help maintain memory consistency for multithreaded parallel SPMD applications. The

most important ones are cache coherence protocols, atomic memory operations, and memory

fences. Each of these specifically designed to address a particular problem and each has its

own associated performance costs.

3.2.1 Cache Coherence

The cache coherence problem arises because all CPU cores maintain their own copy of shared

data in their local cache and at least one core modifies its copy. This action invalidates the

rest of the copies and creates an incoherent situation. To avoid this, a cache coherence

protocol defines a set of rules to maintain consistency across all local copies of shared data.

Each cache line is marked with a given status, most coherence protocols in modern multicore

CPUs are based in the MESI protocol, which stands for Modified, Exclusive, Shared, and

Invalid. One cache line can transition from one state to another depending on a given action.

For example, in bus interconnected caches, if one core broadcasts on the bus a request of a

cache line in exclusive mode, the other cores, which are constantly snooping the bus, will

invalidate any copies of that particular cache line.

3.2.2 Atomic Memory Operations

An atomic memory operation allows a thread to read, modify, or write memory in one

indivisible step. In order to ensure this behavior, the core writing to a piece of shared data

must have exclusive access to the specific cache line. This consists in identifying and locking

the cache lines that contain the shared data. Once the exclusive access is guaranteed, the

core can then proceed with its atomic memory operation and relinquish the lock afterwards.
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Another important aspect of working with atomic memory operations in shared data is that

an update to an individual element of a cache line, invalidates the entire cache line. This is

particularly harmful when another core wants to read a different piece of data that happens

to be stored in the same cache line and needs to wait for the cache line to be valid again,

referred to as a cache miss. This phenomena is known as false sharing and if the cache line

gets invalidated frequently, for example in a loop, the performance cost increases.

3.2.3 Memory Fences

Memory fences are used to avoid reordering of memory operations. For example, a store

buffer is a First-In-First-Out (FIFO) hardware construct that is used to accelerate the write

to memory operations of a single thread. This buffer is smaller than the cache and faster to

access. So, whenever a write instruction is issued, the piece of data is written in the store

buffer and not directly in the cache. Eventually, the store buffer is flushed and the modified

piece of data reaches the cache.

However, in contrast to the cache, the store buffer is also local to the CPU but does not

have a coherence protocol with respect to the other store buffers. As a consequence, a write

operation that is still in the store buffer has not yet occurred from the perspective of the

rest of the threads. A thread that reads the same piece of data will observe a different

order of operations than the one that is actually happening in the system. This is known as

bypassing the store to load operations and it is common in Total Store Order (TSO) memory

consistency models such as x86. To address this problem, a memory fence instruction needs

to be issued to force the contents of the store buffer to be flushed into memory.
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3.3 Barrier Synchronization in Multicore CPUs

Synchronization can be achieved via busy-wait techniques. One thread is constantly checking

a piece of shared data to see if certain criteria is met. Only then, the thread may proceed

with its computations.

To implement a barrier synchronization construct, it is necessary to consider how to properly

signal all the threads that are involved in the parallel execution. First, a thread should

announce when it reaches the barrier and, second, a thread should know when to leave the

barrier. Algorithm 1 presents a pseudocode implementation of a central counter barrier.

Algorithm 1 Central counter barrier implementation.

1: procedure Wait(atomic &thread count, atomic &global flag)
2: this thread flag = load(&global flag)
3: this thread position = fetch and sub(&thread count, 1)
4:

5: if (this thread position == 1) ▷ Last thread reaches the barrier
6: store(&thread count, total number of threads)
7: store(&global flag, ∼this thread flag)
8: else
9: while (load(&global flag) == this thread flag) ▷ Wait for last thread
10: yield cpu()

The central counter barrier has two pieces of data that are shared between all participating

threads. These two variables are marked as atomic: the thread count is used to signal that

a thread has reached the barrier and the global flag is employed to notify threads to leave

the barrier.

Whenever a thread reaches the barrier, it atomically decreases the thread count and, if it is

not the last thread that reaches the barrier, it waits for the last thread to flip the global flag

by constantly and atomically reading the flag value. Otherwise, if the thread that reaches

the barrier is the last one, it then atomically resets the thread count and flips the global flag

so the other threads can leave the barrier.
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It is important to mention that when a thread waits for synchronization, it can basically en-

gage in only one of two different behaviors (line 10 of algorithm 1): active waiting (consuming

CPU cycles) and passive waiting (yielding the CPU core to another thread).

Definition 3.3. A thread is actively waiting for synchronization if it is constantly consuming

CPU cycles without doing any meaningful computation towards completion.

Definition 3.4. A thread is passively waiting for synchronization if it yields the CPU and

then it is scheduled back at a later time. This, however, requires support from the kernel

scheduler and it has no difference from active waiting if there are no threads waiting to be

executed.

Nevertheless, none of the two waiting mechanism help to unblock a thread faster while

waiting since this totally depends on other threads delays. Yet, algorithms with passive

waiting might outperform those with active waiting in scenarios where CPU cores are heavily

contended by multiple threads, since there will be threads that have not yet reached the

barrier, but they are waiting to be assigned to a CPU core by the kernel scheduler. This

problem will be discussed in more detail in section 3.4.2.

Algorithm 1, even though it is easy to reason about, may present some inconveniences.

One, already mentioned, there is another agent (the scheduler) that may impact parallel

multithreaded applications and, second, the inherent overhead of the barrier itself. For

example, the complexity of decreasing the thread count grows exponentially with the number

of threads trying to access it because the threads need to compete against each other in order

to gain exclusive access to the cache line where the variable is stored. This problem will be

discussed in more detail in section 3.4.1.
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3.4 Challenges in Barrier-synchronized Multithreaded

Parallel Algorithms

Barriers are widely used and, in parallel algorithms that require multiple of them, it is of

utmost importance to minimize their inherent overhead in order to maximize the application

performance. The challenges to overcome are the scalability of the atomic operations within

the barrier implementation and the unnecessary waiting that a thread has to endure due to

their asynchronous nature, i.e. the execution threads will not reach the barrier at the same

time. Being the latter the main problem addressed in this dissertation.

3.4.1 Scalability of Atomic Memory Operations

Atomic operations are expensive because the may involve flushing the store buffer, obtaining

exclusive access to a cache line, and invalidating other copies of a shared piece of data.

Figure 3.2: Cache line bouncing.
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Imagine a scenario where we want to implement a concurrent counter. This counter is shared

among multiple execution threads and each thread increments the count by one. This is not

trivial to do so. In order for a thread to correctly increase the count, it needs to consider all

the hardware limitations to make sure that each increment is consistent.

Each thread running in a CPU core will update its local copy of the counter and will invalidate

the rest of the copies. The most up-to-date copy of the counter will be moving from cache

to cache so that each thread correctly increments its own copy of the value, figure 3.2. This

phenomena is known as cache line bouncing and results in poor performance, figure 3.3.

Figure 3.3: Atomic increment scalabilty in x86.

When a CPU reads an invalid cache line, it waits for the most up-to-date value from another

CPU cache and only then proceed with its computations. This is known as a cache miss

and they are one of the major obstacles in CPU performance.
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3.4.2 Blocking Due to Unexpected System Delays

Unexpected delays are common due to the asynchronous nature of multicore systems, hence

breaking the ideal computational model where all threads reach the barrier at the same time,

figure 3.4. In modern multicore systems, some of the common culprits are, but not limited

to: cache misses, page faults, clock rates, network, I/O, and interruptions.

However, a CPU is also a shared resource. An execution thread is assigned to a CPU core by

the operating system kernel scheduler, but this thread can also be preempted and give up the

CPU to another thread. This phenomena is known as context-switching and it can severely

degrade the performance of barrier-synchronized multithreaded parallel SPMD programs. It

is not hard to imagine a scenario where a preempted thread will block the progress of all the

threads that are already waiting at the barrier, see figure 3.5. Hence, heavily impacting the

overall execution time of a parallel application.

Barrier

Wait

Wait

Wait

CPU

CPU

CPU

CPU

Figure 3.4: Waiting for slowest thread.
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Wait

Wait

CPU

CPU

CPU

CPU

Figure 3.5: Blocking the overall task.

This is the main problem that this dissertation addresses. Thread preemption is very likely

to happen due to the oversubscribed nature of modern multicore systems. The number of

threads from different programs that are being executed is much greater than the number

of physical CPU cores.
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When developing parallel solutions, it is natural to try to use all available physical CPU

cores in order to take full advantage of the parallelism offered by the hardware. These

programs run in what is called user space and all hardware resources are managed by the

operating system kernel, see figure 3.6. These resources include, but are not limited to:

scheduling threads to CPU cores, memory management, I/O, interruption handling, etc. It

is noteworthy to clarify that the software stack levels are independent of each other and one

user space program can only interact with whatever kernel space provides. For example, it

is not possible to avoid thread preemption from user space.

USER SPACE

KERNEL SPACE

HARDWARE

Scheduler could be

an adversary

Figure 3.6: Kernel scheduler could be an adversary.

As a consequence, the kernel scheduler could be consider as a non-deterministic adversary

that can block the execution of all threads of a parallel application and, overall, degrade its

performance. Figures 3.7 and 3.8 respectively show what an ideal computational model looks

like and what actually occurs in reality where a thread is preempted and tasks partitioned

at any time, so the CPU can be shared with other programs.

The only assumption we make about the underlying scheduler is that eventually all threads

will be scheduled for execution. This dissertation contributes with a novel scheduler-oblivious

and preempt-robust technique to provide performance-robustness and non-blocking thread

progression guarantees to barrier-synchronized multithreaded parallel SPMD applications.
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Figure 3.7: Ideal barrier-synchronized parallel computational model.
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Figure 3.8: Real barrier-synchronized parallel computational model.
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Chapter 4

Related Work

I know of no way of judging the future but by the past.

Patrick Henry

Past literature has given great attention to barrier synchronization primitives and their im-

plementations. It has been shown how barriers can easily become a hot-spot in parallel

applications due to the challenges presented in section 3.4. Research in barrier synchro-

nization has targeted different ways to avoid the performance degradation caused by atomic

operations and unexpected system delays.

This chapter includes a summary of the related work in the field. In section 4.1, a variety of

different barrier synchronization implementations are presented: counter barriers, tree-based

barriers, dissemination barriers, and tournament barriers. In section 4.2, a variety of different

mechanisms to avoid the unnecessary waiting problem are presented: use of multiple disjoint

barriers, fuzzy barriers, task-stealing barriers, and speculative barrier synchronization. Other

proposals are based on these techniques or they solve the barrier synchronization problem

by leveraging additional, but sometimes unpractical, hardware support [1, 2, 25, 31, 45, 78].
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4.1 Scaling Barrier Synchronization

Barriers are commonly used across stages of data parallel algorithms in order to protect data

dependencies between those stages. One research goal is to reduce the associated cost of the

atomic memory operations that take place to ensure algorithmic correctness and to notify

other threads when they reach the barrier.

The barrier implementations that rely on busy-waiting (spinning) in a global flag produce

high amounts of memory and interconnection network contention that significantly impact

the performance of parallel applications. Thus, research on the field aims to improve the

locality of reference of atomic operations in pursuance of decreasing the inherent overhead

of the barrier synchronization construct.

4.1.1 Counter Barriers

Counter-based barriers have been widely studied [38, 44, 61, 66, 67, 73, 76, 87, 99]. They

are conceptually simple and straightforward to think about. However, they can suffer from

high contention problems in central shared counters.

Central Counter

Spin until 0 Spin until 0

Decrease Decrease

Leave Leave

Thread 0 Thread N

Figure 4.1: Central counter barrier.

Distributed Counter

Spin until all 0 Spin until all 0

Decrease Decrease

Leave Leave

Thread 0 Thread N

Figure 4.2: Distributed counter barrier.
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In a central counter barrier, figure 4.1, the value of the counter is initialized to the number

of execution threads that are participating in the parallel computations. When a thread

reaches the barrier, it decreases the value of this counter and then waits (spins) until it

becomes zero. This means that the last thread from the execution group has reached the

barrier.

On the other hand, distributing the shared counter across local counters in each participating

thread, figure 4.2, helps to avoid contention in a central counter. The downside of this

implementation is that threads waiting at the barrier need to verify that all local counters

of all participating threads have reached zero so they can proceed.

4.1.2 Tree-based Barriers

Tree-based barriers have been widely studied [8, 38, 44, 47, 66, 67, 69, 87, 98, 99]. The general

idea behind a tree-based barrier is to distribute the signaling between threads in a tree-like

fashion, where threads are assigned to nodes in a tree with notifications going up and down

whenever a thread reaches the barrier. This, in order to alleviate the contention that is

commonly presented in their central barrier counterparts. Some important contributions are

the static-tree barrier [44], the combining-tree barrier [98], and the MCS (Mellor-Crummey

and Scott) barrier [66].

In the combining-tree barrier, the execution threads are organized in groups of k and each

group is assigned to a leaf of a k-ary tree. When a thread reaches the barrier, it performs

an increment operation in a local counter of its own group. The last thread of the group

continues up the tree by updating the count of the node’s parent. This eventually propagates

the updates to the root of the tree when the last thread of all groups reaches the barrier.

Finally, a series of notifications are propagated down the tree so the waiting threads wake

up and continue execution.
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In the MCS barrier, to synchronize k threads, the barrier employs a pair of k-node trees, an

arrival, and a wake-up tree. The general idea is that when a thread reaches the barrier, it

sets a flag in its parent node in the arrival tree and gets notified by its parent in the wake-up

tree when all threads have reached the barrier. This way, any given thread (at a node) does

not modify nor test any other nodes rather than its parent or its children, leveraging the

importance of locality of reference.

Thread 0

Thread 1 Thread 2

Thread 3 Thread 4

Notify Notify

Notify Notify

Flag

Spin

Spin

Spin

Spin

Figure 4.3: Wait at the static-tree barrier.

Thread 0

Thread 1 Thread 2

Thread 3 Thread 4

Notify Notify

Notify Notify

Flag

Figure 4.4: Leave the static-tree barrier.

Finally, the static-tree barrier is a great pedagogical example, and it will be used to show the

importance of tree-like barriers in a more detailed way. Figures 4.3 and 4.4 help exemplify.

Same as the MCS barrier, each thread is statically assigned to a node in the tree. This

is, k nodes to synchronize k execution threads and each node has an associated count to

it, which is the number of children that have not yet reached the barrier. When a thread

reaches the barrier: if its local counter is 0, it means that all its children have reached the

barrier, so it notifies its parent node by decreasing the local counter of the parent and it

waits by spinning on a global flag (figure 4.3). Otherwise, the thread waits locally until its

local counter becomes 0. Eventually, the root counter will become 0 and this thread is in

charge to flip the global flag so the rest of the threads may proceed (figure 4.4).
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4.1.3 Dissemination Barriers

Dissemination barriers are possibly the most widely used barriers in the field thanks to their

performance and scalability [13, 31, 38, 66, 67, 70, 78]. First devised by Brooks [13] with

a butterfly barrier proposal and then Hensgen et al. introduced the dissemination barrier

[38], which enhances the original algorithm with a more efficient synchronization signaling

pattern. An example can be found in figure 4.5.

(0,5)

(0,5,4,3)

(0,5,4,3,2,1)

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5

Barrier

Region

Barrier

Region

Figure 4.5: Dissemination barrier.

The main idea is that one thread will signal only another thread in a specific pattern. In the

illustrated example, in round j, thread i signals thread ((i+2j) mod k) and waits for thread

((i − 2j) mod k) in order to synchronize k threads. As a result of this, a given thread only

needs to wait for another specific thread to move forward within the barrier region requiring

only ⌈log2 k⌉ synchronization rounds. Figure 4.5 shows how thread 0 is signaled by a specific

thread in each round.

The dissemination barriers present characteristics that make them good candidates for shared

memory computer architectures where network interconnect accesses can be performed in

parallel, due to the nature of its series of symmetric and pairwise synchronization operations.
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4.1.4 Tournament Barriers

Tournament barriers are a form of dissemination barriers where winner threads continue to

the next round and loser threads wait at a global flag. The idea behind these barriers is

that only winner threads wait for the signaling of other winner threads.

These type of barriers might be more suitable for different scenarios than their dissemina-

tion barrier counterparts, for example, in architectures with a central memory bus where

contention in the interconnection network can happen [67]. Figure 4.6 shows an example of

a tournament barrier.

Wait Wait Wait

Wait Wait

Wait

Global

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5

Barrier

Region

Barrier

Region

Thread 6

Figure 4.6: Tournament barrier.

Lubachevsky [61] and Hensgen et al. [38] first devised the tournament barriers. At each

round within the barrier region, a winner thread is statically determined and continues to

the next round. Whereas the loser threads spins at the global flag, waiting for thread 0 to flip

it at the end of the synchronization rounds. A tournament barrier, as in the dissemination

barriers, requires a total of ⌈log2 k⌉ rounds to synchronize k threads.
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4.2 Unblocking Barrier Synchronization

Barrier-synchronized parallel algorithms suffer from the global blocking nature of the bar-

rier itself. Section 4.1 shows different ways to implement different barrier synchronization

constructs, aiming to reduce their intrinsic overhead.

However, research in non-blocking barrier synchronization and this dissertation have a dif-

ferent goal: allow the necessary system-wide progress of all execution threads without com-

promising the algorithmic correctness that is enforced by data dependencies.

4.2.1 Multiple Disjoint Barriers

If different execution threads do not exhibit data dependencies that will force them to syn-

chronize every time a barrier is used. Disjoint threads can synchronize only among themselves

by placing independent barriers for only those threads involved, see figure 4.7.
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Barrier A

Barrier B
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Figure 4.7: Progress with multiple disjoint barriers.

There are numerous ways to achieve this. The key idea is that each thread must anticipate

which other threads are involved at each barrier synchronization.
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Logically, separate barriers are assigned to distinct subsets of the input data. As a conse-

quence, a thread needs to know which barrier to reach at each synchronization point. This

requires overcomplicated control flows.

Furthermore, it has been shown that a system with N threads, with at most N input data

streams, may need at most N - 1 barriers [35]. Hence, although the problem is solved and

unnecessary barrier synchronization constructs are eliminated, the added complexity in the

program’s control flow makes this technique exceptionally difficult to maintain and scale to

a general model.

4.2.2 Fuzzy Barriers

The Fuzzy Barrier was originally devised by Rajiv Gupta in 1989 [35]. The main idea is to

extend the barrier concept to include a sequence of statements that a thread can execute while

waiting for the others to reach the barrier and necessary data communication, alignment, or

partitioning can happen at any time inside the barrier region. Ideally, the larger the barrier

region, the more likely it is that none of the threads will have to stall.

repeat N times:

S0

if:

S1

else:

S2

barrier

Figure 4.8: Branches outside barrier.

repeat N times:

S0

barrier:

if:

S1

else:

S2

Figure 4.9: Branches inside barrier.

For example, figures 4.8 and 4.10 show a simple case where a thread executes multiple

statements with branches and waits for the rest of the threads at the end of each iteration.

Without loss of generality, assume that statement S1 takes longer to execute than statement

S2. Then, all threads taking the S2 branch will reach the barrier first and stall.
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Figure 4.10: Progress with normal barrier.
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Thread x Thread y

Exchange

Exchange

Barrier region

Figure 4.11: Progress with fuzzy barrier.

If the branches are included as part of the barrier region, even if multiple threads take

different execution paths, they may not have to stall; see figures 4.9 and 4.11. It is important

to point out that both S1 and S2 can be independent of each other, which means that a

thread can start its next iteration without waiting for other threads. Note that the data

exchange/communication is triggered when the last thread reaches the beginning of its barrier

region and all other threads are inside their respective barrier region.

This example shows how the fuzzy barrier provides better protection against the performance

degradation that is caused by the unexpected delays of other threads. Data communication

can take place at any point in a wider range rather than forcing all threads to do so at a

specific point.

The concept of the fuzzy barrier pioneered the idea of exploiting the communication and

computation overlap that some parallel algorithms exhibit. Motivating the pursuit of more

efficient implementations of parallel algorithms [48, 79, 83].

4.2.3 Task-stealing Barriers

Task-stealing barriers form part of a broader spectrum of techniques known as load balancing

[24, 29, 44, 51, 54, 57, 65, 97]. As seen so far, barrier synchronization is used when the
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computations of a program are divided into several stages and a given thread waits for the

necessary data dependencies in order to proceed to its next stage.

From the perspective of a task-stealing barrier, a thread waiting at a barrier could mean

unbalanced computations between the participating threads. A task-stealing barrier aims to

mitigate this, i.e. balance the computational workload.

T Task 3

Barrier

a s k 1

Task 1 Task 2 Task 3CPU

CPU Ta sk2

Figure 4.12: Task-stealing barrier.

T

Task 3

Barrier

a s k 1

Task 1 Task 2 Task 3CPU

CPU Ta sk2

Figure 4.13: Task-stealing barrier steals task.

Figures 4.12 and 4.13 illustrate the task-stealing behavior: a stalled thread waiting at a

barrier, can steal a task from another thread yet to reach the barrier. Inherently, this

technique introduces overhead. Each thread maintains a queue of tasks, where multiple

threads produce multiple tasks and multiple threads might consume multiple tasks. Thus,

making the communication among threads more expensive than other barrier synchronization

mechanisms and usually involves the use of complex underlying runtime environments.
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4.2.4 Speculative Barriers

Speculative synchronization has been broadly studied [18, 27, 34, 37, 44, 53, 63, 64, 75, 77, 84].

In general, speculative synchronization tries to exploit the idea that some synchronization

constructs are placed suboptimally and that a thread can make progress without conflicts.

Barrier

Thread x

Thread y

Figure 4.14: Speculative thread is rolled back.

In the barrier synchronization context, a thread can execute after the barrier and proceed if

no conflict is detected. However, if a conflict is detected, the thread is rolled back. Figure

4.14 illustrates this behavior, where a conflict is detected in one of the threads and it is rolled

back to recompute before the barrier.

One of the most common examples of thread speculation is transactional memory [42, 81]. A

transaction is always performed in a speculative manner. As a transaction executes, it makes

tentative changes to pieces of data. If the transaction completes without synchronization

conflicts, then it commits. Otherwise, it aborts.

Modern hardware can nearly emulate transactional memory. Each CPU has its local cache

and synchronization conflicts are handled via a cache coherence protocol. Each CPU can take

advantage of their respective store buffers for tentative changes before they reach memory

and force a flush to emulate a transaction commit operation. Therefore, small changes

to hardware have been proposed in order to achieve hardware transactional memory [44].

Without hardware transactional support, software transactional memory techniques (using

atomic memory instructions) are employed to detect synchronization conflicts.
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4.3 Related Work Summary

This section presents a summary of the research performed in the barrier synchronization

spectrum. There has been multiple barrier synchronization techniques that have been pro-

posed and that address either the scalability problem or the unnecessary waiting problem.

Table 4.1 shows the advantages and disadvantages of each proposal.

Pros Cons

Counter barriers Practical Blocking

Tree-based barriers Low contention Blocking

Dissemination barriers Low contention Blocking

Tournament barriers Low contention Blocking

Multiple disjoint barriers Non-blocking Complex control flow

Fuzzy barriers Non-blocking Application specific

Task-stealing barriers Non-blocking Complex runtime support

Speculative barriers Non-blocking Tradeoff: accuracy vs speed

Table 4.1: Summary of related work in barrier synchronization.

There are two main groups: the blocking barriers and the non-blocking barriers. The novel

contribution of this dissertation is in the latter group in order to address the unnecessary

waiting problem that threads encounter while waiting at the barrier.

In this work, we propose a non-blocking barrier mechanism driven by data that does not

require creating complex control flows nor expensive runtime support. Parallel algorithms

that exhibit certain criteria can benefit from the model presented in the next chapter.
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Chapter 5

A Non-blocking Data-driven Barrier

Synchronization Model (NBD2BS)

The barrier is a rather strong means for synchronizing, and it may

be more severe than is actually necessary.

Harold Stone

Previously, multiple ways were shown to reduce the associated overhead of a barrier synchro-

nization construct and how to achieve non-blocking thread synchronization. However, most

of the proposals address the problem from the perspective of the program’s execution, i.e.

the control flow. Thus, completely excluding another important dimension: the data flow.

See figure 5.1.

The general rule of thumb to parallelize an algorithm is to partition the input data into

multiple disjoint subsets. By means of multithreaded programming, each partition is assigned

to a thread to be executed on a CPU core. Finally, perform all necessary synchronization

and proceed to the next algorithmic stage.
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Figure 5.1: Control flow vs data flow in parallel applications with barrier synchronization.

Since there is no guarantee that every thread is executed at the same pace, there is no way

to avoid the barrier synchronization point. However, it is possible to take advantage of

the data flow dimension if given by a regular access pattern. This is, having knowledge of

all data-code convergence points. Additionally, we are adding an extra dimension into our

model: the parallelism. We call it the thread-data-code three-dimensional convergence. In

other words, the access pattern is regular enough that it is possible to know which thread

at which algorithmic stage needs which data partition.

Definition 5.1. A parallel algorithm is three-convergent if the data access pattern is regular

enough to know which thread at which algorithmic stage needs which data partition in order

to proceed with its computations.

Barrier synchronization enforces strong synchronization semantics to ensure that a thread

reads the correct value written by another thread in subsequent stages, figure 5.2. Our

model employs a more relaxed semantics model with finer granularity that achieves the

same behavior: post-wait semantics.
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5.1 Post-wait Synchronization Semantics

Post-wait synchronization semantics is generally used as a technique for efficient placement of

synchronization constructs. It has been widely studied [4, 14, 23, 52, 71, 86], but most of these

studies are focused on correctness analysis of parallel programs, algorithm-specific optimiza-

tions, and compiler techniques that leverage only the information available at compile-time.

The idea behind post-wait synchronization is to be able to identify the data dependencies

that are exhibited across the different stages of the algorithm. Each piece of data has as-

sociated a flag construct that is used to represent whenever that particular data has been

produced by one thread and it is ready to be consumed by another thread, see figure 5.3.

Write A

Barrier Barrier

Read A

Thread x Thread y

Stage i + 1

Stage i

Figure 5.2: Barrier semantics.

Write A

Post A’ Wait A’

Read A

Thread x Thread y

Stage i + 1

Stage i

Figure 5.3: Post-wait semantics.

Figures 5.4 and 5.5 show a more concrete example of how three-convergent algorithms can

benefit from explicit post-wait synchronization. In figure 5.4, thread w and thread y write in

disjoint pieces of data. Whereas, thread x and thread z read their respective pieces of data in

the following stage. The barrier synchronization construct enforces consistency in the values

that are going to be read in the subsequent stage. However, this solves the problem from

the control-flow perspective, all threads must finish their computations before proceeding to

the next stage. This is a perfectly correct solution, but thread w and thread x do not present

any data dependencies with thread y and thread z across these two stages; and there is no

reason to stop the execution of either pair of threads if they are ready to begin their next

stage.
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Figure 5.4: Progress using barrier synchronization semantics.

Different ways to address this problem have been discussed, see related work in section

4.2, but none of them fully exploit the data flow dimension. Our contribution is based in

identifying and leveraging the fixed data patterns of parallel algorithms and map them into

post-wait synchronization semantics.

Write A

Post A’ Wait A’

Read A

Thread w Thread x

Stage i + 1

Stage i
Write B

Post B’

Thread y

Wait B’

Read B

Thread z

Stage i

Stage i + 1

Figure 5.5: Progress using post-wait synchronization semantics.

Figure 5.5 presents the same scenario. Due to the two disjoint pieces of data, two different

post-wait semantic constructs are necessary in order to know which piece is ready for the

next stage. Hence, implying Θ(n) additional space for all post-wait semantic constructs,

where n is the number of disjoint partitions of data. With this in mind, thread x and thread

z can proceed to the subsequent stage independently of each other. Thread x only depends

on thread w to post the necessary synchronization construct in order to proceed.
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5.2 Non-blocking Data-driven Barrier Synchronization

Barrier synchronization is now driven by data, see figure 5.6. By exploiting the algorithm’s

memory access pattern, it is possible to identify data dependencies across the parallel com-

putational stages of the algorithm.
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Figure 5.6: Control flow vs data flow in parallel applications with post-wait synchronization.

This enables peer-to-peer synchronization and removes the global blocking nature of the

barrier synchronization construct. One thread can block only another thread at a given

computational stage. Hence, providing non-blocking thread progression guarantees and al-

lowing system-wide progress.

for each thread:

for each stage:

Task()

barrier

Figure 5.7: Control flow barrier.

for each thread:

for each stage:

wait for my data

Task()

Figure 5.8: Data flow barrier.

Figures 5.7 and 5.8 show the differences in pseudocode of parallel regions of a barrier-

synchronized algorithm and an algorithm using our proposed model. Individual partitions

of data have now their associated flags for post-wait synchronization and they indicate the

particular algorithmic stage in which said partitions of data are currently at.
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These flags can be implemented as atomic counters that represent the current algorithmic

stage of the corresponding segment. Each post synchronization operation increases the count

of its associated data segment. Each wait synchronization operation is translated to a busy-

wait (spin) read from the associated atomic counter. This way, a thread only waits for the

partitions that it needs at its current computational stage.

We first introduced our model in [32] and we are naming it: A non-blocking data-driven

barrier synchronization model or NBD2BS, for short.

Definition 5.2. An algorithm is considered NBD2BS if:

1. can be parallelized as a linear composition of smaller subproblems of the same type,

2. can represent its control flow as a number of barrier-synchronized stages,

3. can represent its data flow across those stages as a directed acyclic graph (DAG),

4. and the data access pattern, within a single stage of this graph, is fixed.

NBD2BS algorithms are expected to guarantee better thread progression conditions than

their barrier-based counterparts. Barrier-synchronized parallel algorithms naturally block

the progress of those threads waiting at a barrier. Yet, it is important to point out that

barrier-based algorithms may exhibit a weak non-blocking property, like obstruction-freedom,

based on its definition.

Lemma 5.1. A barrier-synchronized parallel algorithm is at most obstruction-free.

Proof. By contradiction. Assume, without loss of generality, one thread gets stuck before

reaching the barrier at a given computational stage. By the obstruction-freedom definition,

eventually this thread will run in isolation for a sufficient duration. Hence, reaching the

barrier and allowing all threads to make progress.

It is not hard to imagine a scenario where if each thread runs in isolation for a sufficient

duration; then, all threads will eventually reach the barrier. However, in the context of fault

tolerance or robustness against context-switching, the obstruction-freedom property does not

hold the same progress conditions in the presence of arbitrary halting of other threads.
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On the contrary, NBD2BS parallel algorithms manifest a stronger non-blocking progression

condition.

Lemma 5.2. An NBD2BS parallel algorithm is at most lock-free.

Proof. By contradiction. Assume, without loss of generality, one thread gets stuck before

reaching the barrier at a given computational stage. Following from the NBD2BS definition,

this thread will block at most one different thread. Hence, allowing the rest of the threads

to make progress.

The premise of the NBD2BS model is to provide barrier-synchronized parallel algorithms with

non-blocking progression guarantees. Chapter 6 shows the experimental validation of our

model and the advantages of an NBD2BS algorithm with respect to its barrier-synchronized

counterpart, being preempt-robust and, hence, performance-robust the foremost of them.

5.3 Summary of Conditions for the Applicability and

Properties of NBD2BS

To determine whether an algorithm possesses the required properties so that the NBD2BS

model can be applied, a thorough assessment is necessary. The properties can be viewed as

essential characteristics that ensure that the algorithm aligns with the requirements of our

proposed technique.

Generally, to parallelize an algorithm means to partition the input data and assign it evenly

to multiple execution threads to perform simultaneous computations over these subsets of

data. Whenever a thread needs data from the computations of another thread, it waits until

this data is available.
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Instead of using a barrier synchronization construct, the idea behind NBD2BS is to synchro-

nize only those threads that are data-dependent at defined stages of an algorithm. This is

achieved entirely by analyzing the data flow graph of the algorithm and exploiting the usage

of post-wait synchronization semantics without adding any additional control flow construct.

Different algorithms may benefit from the NBD2BS model. In chapter 6, we experimentally

validate our model by showing its applicability to different algorithms. Ideally, what we are

looking for in an algorithm is:

◾ The algorithm and its input data can be partitioned into smaller subproblems of the

same type.

◾ The algorithm can be written in the form of multiple iterations and it exhibits fixed

data dependencies across these iterations.

It is possible to parallelize these type of algorithms and insert a barrier synchronization

construct to protect the data dependencies between each iteration. However, following these

characteristics, it is also possible to associate a post-wait synchronization construct to each

of the input data partitions and parallelize the algorithm with our NBD2BS model. The

synchronization is now driven by the data flow and not by the control flow anymore.

Table 5.1 shows a summary of the main differences of a traditional barrier-based parallel

algorithm and an NBD2BS-based parallel algorithm.

Barrier-based NBD2BS-based

Synchronization semantics Central barrier Distributed post-wait

Synchronization degree Global Peer-to-peer

Synchronization category Blocking Non-blocking

Synchronization driven by Control flow Data flow

Best progression condition Obstruction-freedom Lock-freedom

Table 5.1: Differences between barrier-based and NBD2BS-based parallel algorithms.
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Chapter 6

Experimental Verification

The true method of knowledge is experiment.

William Blake

This chapter presents the experimental validation of our proposed NBD2BS model for barrier-

synchronized parallel SPMD applications. Multiple algorithms may benefit from our con-

tribution, specially in the domain of high performance computing (HPC). We selected a

handful of algorithms that are essential and core computational tasks in diverse fields such

as, but not limited to: sorting, query processing, databases, signal processing, and machine

learning.

The methodology is broadly applicable to other families of algorithms and it is general enough

to cover the main obstacles that barrier-synchronized multithreaded parallel algorithms face-

off in modern multicore CPU systems. The benefits of NBD2BS algorithms with respect to

their barrier-synchronized counterparts are promising.

The performance of each of the algorithms presented in this dissertation is characterized on

a system with 16 x 1700 MHz (up to 4.1 GHz) x86 AMD Ryzen 7 CPUs with the following
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memory hierarchy: L1 Instruction 32 KiB (x8), L1 Data 32 KiB (x8), L2 Unified 512 KiB

(x8), and L3 Unified 4096 KiB (x2).

We are interested in the scalability and performance robustness of the NBD2BS algorithms

and how they compare against the traditional barrier-synchronized implementation of said

algorithms. In order to do this, the system is intentionally stressed to force context-switching

among the threads that are participating in the execution and, hence, increasing the wait

time of individual threads at barrier synchronization points. The system is stressed using

the Linux stress tool [89] as a workload generator without any particular affinity to bound

CPUs by spinning on sqrt(). The system stress rate is then defined as the ratio of CPUs

that are already busy.

The experiments are carried out in a machine with a Linux 5.15 kernel. This version contains

a Complete Fair Scheduler (CFS) to allocate CPU time to each execution thread [88]. The

CFS algorithm is based on the idea of virtual runtime, where each thread is assigned a virtual

runtime value that is proportional to the amount of CPU time it has consumed so far. Then,

the thread with the smallest virtual runtime value is considered to be the next one to be

allocated in a CPU.

The fair scheduler maintains a time-ordered red-black tree structure to track the virtual

runtime of each thread. The leftmost thread in the tree is the one with the smallest virtual

runtime and, as the system progresses forward, the executed threads are inserted more and

more to the right part of the tree. This mechanism gives a chance for every thread to reach

the leftmost part of the tree and, therefore, being assigned to a CPU core.

It is important to mention that this scheduler provides the only assumption we make in our

thread progression model, which is that eventually all threads are scheduled for execution in

a given CPU core.
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6.1 Parallel Sorting

Sorting is one of the most researched problems in the field of computer science and one of

the most important basic computational tasks that serves other major research areas and

applications. Sorting is an important task because it enables efficient search and retrieval of

data from large datasets. Sorted data is easier to analyze and visualize. Multiple scientific

research areas may benefit from sorting algorithms that are more robust against the context-

switching nature of oversubscribed modern general-purpose multicore CPU systems.

This section contributes two new parallel implementations of different sorting algorithms

that were devised using our NBD2BS model, bitonicsort and odd-even transposition sort.

Our contributions convey non-blocking thread progression guarantees and robustness against

context-switching in high-load scenarios. Our algorithms achieve performance-robustness

since our novel implementations exhibit graceful degradation in their performance in the

presence of unexpected system delays.

6.1.1 High Performance Sorting: Bitonicsort

Arguably the most ground breaking contribution to the family of parallel sorting, bitonicsort

was originally developed by Kenneth E. Batcher in 1968 [11] and extensively studied ever

since. The popularity of bitonicsort increased over the years due to its characteristics, being

massively parallelizable the foremost of them.

Bitonicsort can sort any power of 2 sequence with a worst-case time complexity of O(n log2 n)
by repeatedly comparing pairs of elements that are at a fixed distance from each other and

recursively sorting smaller subsequences. The correctness of the algorithm is based on the

bitonic theorem.
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Definition 6.1. A bitonic sequence is a sequence of keys consisting of a first non-decreasing

section followed by a non-increasing section, or a sequence on which a finite number of cyclic

shifts will bring to the non-decreasing, non-increasing form.

Theorem 6.1. An odd-even compare-exchange on a shuffled bitonic sequence results in two

mutually sorted sequences obtained by grouping, in order, the low (and high) outputs of the

compare-exchange.
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Figure 6.1: Bitonic theorem for a bitonic sequence of size 8.

Figure 6.1 refers to the bitonic theorem and shows how the outputs of the compare-exchange

operations are grouped, generating two bitonic sequences sorted with respect to each other.

By definition, the smallest bitonic sequence that can be formed is of size 2 and, after the

bitonic theorem, the sequence can be grouped in sequences of size 1 that are sorted with

respect to each other in just one compare-exchange stage. Following, a bitonic sequence

of size 4 requires two compare-exchange stages, the first stage is to generate two bitonic

sequences of size 2 (out of the bitonic sequence of size 4) and the second stage sorts each

bitonic sequence of size 2 (refer to the 4-bitonic sorter of figure 6.2). Then, for example, to

sort a bitonic sequence of size 8 (refer to the 8-bitonic sorter of figure 6.2); the first stage

generates two bitonic sequences of size 4, the second stage generates 4 bitonic sequences of
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size 2, and the last stage sorts each sequence of size 2. This means that each bitonic sorter

can sort any bitonic sequence of size n in just O(logn) stages.

If multiple bitonic sorters are grouped together, the resulting network can sort any arbitrary

sequence and not just any bitonic sequence. Suppose a scenario with an arbitrary input

sequence of 8 elements and the desired output is the same sequence in non-descending order,

see figure 6.2.
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Figure 6.2: Bitonicsort network for an arbitrary sequence of size 8.

The idea is to generate a series of bitonic sequences which serve as input to the next stage

of the sorting network. For instance, to sort a bitonic sequence of size 2, only one 2-bitonic

sorter is needed. To generate a bitonic sequence of size 4, two 2-bitonic sorters, in opposite

directions, are needed. Then, to sort the bitonic sequence of size 4, a 4-bitonic sorter is

needed. Consequently, using two 4-bitonic sorters, in opposite directions, it is possible to

generate a bitonic sequence of size 8 which, finally, can be sorted with an 8-bitonic sorter.

This requires O(logn) bitonic sorters to sort any arbitrary sequence of size n, or O(logn)
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bitonic sorters of O(logn) stages each; leading to a total execution time complexity of

O(n log2 n) to sort any arbitrary sequence of size n.

On the other hand, it might not be straightforward to picture the bitonic sorting network in

a shared memory computer architecture. Refer to figure 6.3 for a different way to represent

the sorting network, where each compare-exchange operation takes place in a respective

algorithmic stage.
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Figure 6.3: Bitonicsort algorithm pattern for an arbitrary sequence of size 8.

By transitivity, if doing compare-exchange operations sorts the input sequence. Then, doing

merge operations, in previously sorted segments of data, sorts the input sequence as well.

By definition, the low half (and high) of the resulting groups of the merge operation are

mutually sorted, see figure 6.4.

The next sections present two different ways to parallelize this segmented bitonicsort. Section

6.1.1.1 presents the traditional way to parallelize it using a barrier synchronization. Then,

section 6.1.1.2 presents a novel solution to the problem, by mapping it to our contributed

model from chapter 5 and creating the first non-blocking parallel version of bitonicsort.
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Figure 6.4: Bitonicsort algorithm pattern for an arbitrary sequence divided into segments.

6.1.1.1 Barrier-synchronized Parallel Bitonicsort

This section presents our barrier-synchronized multithreaded implementation of bitonicsort,

see figure 6.5. The input is divided into segments of arbitrary size and evenly partitioned

among all the execution threads.

Initially, individual segments are locally sorted and, then, merged in O(log2 n) stages. Each
stage is protected with a barrier synchronization construct ensuring that all merge operations

in a given stage finish before a thread can proceed to its next computational stage. From

figure 6.5, the blue thread and the green thread are forced to advance to each stage together

and algorithm 2 is the pseudocode implementation that shows how to achieve this.

Lines 4 and 9 of algorithm 2 are the barrier synchronization constructs that impose the

progression conditions for each thread. In other words, all segments need to be locally

sorted before proceeding to the merging network and all merge operations need to finish

before advancing to the next stage.
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Figure 6.5: Barrier-synchronized parallel bitonicsort example.

Algorithm 2 Blocking barrier bitonicsort implementation.

1: procedure BlockingBarrierThread(&barrier)
2: for segment : assigned segments
3: sort(&segment)
4: wait(&barrier) ▷ Wait for all threads
5:

6: for each stage
7: for segment 1, segment 2 : assigned segments
8: merge(&segment 1, &segment 2)
9: wait(&barrier) ▷ Wait for all threads
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6.1.1.2 Non-blocking Parallel Bitonicsort

This section presents our NBD2BS multithreaded bitonicsort. To the best of our knowledge,

this is the first time a multithreaded non-blocking version of bitonicsort is devised.

Figure 6.6: Non-blocking parallel bitonicsort example.

Figure 6.6 illustrates the thread progression under our new model. The input is divided into

segments of arbitrary size and evenly partitioned among all the execution threads, but the

synchronization is now driven by data. For example, once a segment is locally sorted, it is

therefore ready to be merged in the next stage and this operation does not need to wait for

the rest of the threads to finish their respective local sort operations.

Algorithm 3 shows the high-level implementation. Each thread keeps track of its current

execution stage (lines 2, 7, and 20) and, once it finishes any given operation on any given

segment, it will notify that the segment is ready for the next stage (lines 6, 18, and 19)

by incrementing the associated atomic counter. Similarly, in order to execute the expected

operations of a given stage, a thread only needs to wait the notification that the expected

segment is ready for that particular stage (lines 11 and 13), i.e. spinning until the atomic

counter of the expected segment is the same as the local count of the execution thread.

56



Algorithm 3 Non-blocking bitonicsort implementation.

1: procedure NonBlockingThread(atomic &segment stage[number of segments])
2: my stage = 0
3:

4: for segment : assigned segments
5: sort(&segment)
6: fetch and add(&segment stage[segment], 1) ▷ Post segment for next stage
7: my stage++
8:

9: for each stage
10: for segment 1, segment 2 : assigned segments
11: while (my stage != load(&segment stage[segment 1])) ▷ Wait for segment
12: yield cpu()
13: while (my stage != load(&segment stage[segment 2])) ▷ Wait for segment
14: yield cpu()
15:

16: merge(&segment 1, &segment 2)
17:

18: fetch and add(&segment stage[segment 1], 1) ▷ Post segment for next stage
19: fetch and add(&segment stage[segment 2], 1) ▷ Post segment for next stage
20: my stage++

From figure 6.6, it is important to point out that even though the green thread gets blocked,

the blue thread is able to make progress because there are no data dependencies between

the two threads in the following stages.

6.1.1.3 Performance Analysis

In all the experiments that were carried out, the implementation of the barrier synchro-

nization that was used is a central counter barrier like the one presented in algorithm 1 in

section 3.3. Other implementations were not used as our goal is not the barrier itself, but

the system-wide progress of the NBD2BS algorithm against the barrier-synchronized imple-

mentation. Throughout this section, every time we refer to the non-blocking implementation

of bitonicsort, it refers to the implementation based on our NBD2BS model. The sequential

implementation behavior is shown for reference purposes.
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The first experiment shows how both algorithms scale when the input size increases, see figure

6.7. This figure show a comparison between the sequential (single-threaded) implementa-

tion of bitonicsort and the parallel implementations (NBD2BS and barrier-based) using all

available physical cores (16 threads). After removing the barrier synchronization, the per-

formance of the NBD2BS bitonicsort is slighlty better since it is no longer affected by all

potential minor delays that could restrict the progress of each thread, i.e. it is no longer

necessary to wait for the slowest thread.

Figure 6.7: Bitonicsort performance behavior in terms of input size.

It is important to point out that the input data sizes force the system to interact with the

memory hierarchy, i.e. the data does not fit only in L1 nor L2 caches. For smaller input data

sizes, due to the distributed synchronization nature of our NBD2BS model, the associated

cost of the atomic operations to signal the stage of each segment can be more significant

and impact its performance more than in the barrier-synchronized implementation. However,

once the input data size is big enough and the system delays start to become more significant,

our novel non-blocking bitonicsort performs better than its barrier-based counterpart.
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The setup for the next experiments is sorting a total of 1024 KiB of data, where each element

is a 32 bit integer. The data is partitioned into 256 segments of 4 KiB each, resulting in a

bitonic sorting network of 36 stages.

Figure 6.8: Bitonicsort performance behavior in terms of number of threads.

Figure 6.8 shows the same expected behavior but varying the number of execution threads.

Our novel non-blocking bitonicsort performs slightly better than the traditional parallel

barrier-based implementation.

However, these results are based on an ideal scenario: all CPUs are available to execute

a given thread and no other tasks are contending for a CPU. The results become more

interesting when the system is stressed (under high loads). As defined before, the system

stress rate is the number of CPUs that are already executing another task. Thus, forcing

context-switching and intentionally causing delays in the progress of the involved execution

threads.

Figure 6.9 shows the performance robustness of the different implementations of bitonicsort.

Notice the big performance discontinuity in the barrier-synchronized bitonicsort. When

the system is busy enough, the performance of the parallel barrier-based implementation
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Figure 6.9: Bitonicsort performance behavior in terms of system stress rate.

is severely impacted, it could even be 3.8 times slower than its sequential counterpart and

4.8 times slower than our novel non-blocking implementation. Mainly, because one single

preempted thread slows down the rest of the execution threads by blocking the progress

of those waiting at a barrier. Non-blocking bitonicsort excels under stressed circumstances,

achieving graceful performance degradation when the CPUs are highly contended. Providing

robustness against thread preemption by removing the global blocking nature of each barrier.

Figures 6.10 and 6.11 show the performance robustness in terms of different number of exe-

cution threads and with different system stress rates. Figure 6.10 illustrates the performance

behavior at 50% system stress rate: 8 out of 16 CPUs are already busy. Both bitonicsort

implementations scale until they start using more than 8 threads. They start to decrease in

their performance but the barrier-based decreases faster. At higher stress rates, figure 6.11

shows the performance characterization at 75% system stress rate: 12 out of 16 CPUs are

already busy. Similarly, both implementations scale while there are CPUs available to run

their threads. After that, there is a big cliff in the performance of the barrier-synchronized

bitonicsort implementation, whereas non-blocking bitonicsort achieves graceful degradation.
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Figure 6.10: Bitonicsort performance robustness at 50% system stress rate.

Figure 6.11: Bitonicsort performance robustness at 75% system stress rate.
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6.1.1.4 Bitonicsort and Multiway Mergesort Comparative Analysis

The previous section covered the performance characterization of our novel non-blocking

bitonicsort implementation based in the NBD2BS model. In this section, a comparative

analysis against the state-of-the-art parallel sorting implementation is presented.

The GNU parallel extension to the C++ standard library uses OpenMP [91] to implement

Multiway Mergesort or MWMS, for short. This is an algorithm that can sort any sequence of

size n in O(n logn) time complexity. The parallel implementation is based on Peter Sanders

algorithm [80, 82]. Initially, the input data is partitioned into N segments of arbitrary size,

where N is the number of execution threads. Each thread creates a local temporal copy of

its assigned partition and sorts it. Then, each thread performs a multisequence partitioning

that will result in the splitting points where each thread will merge its final sequence. Finally,

each thread executes a N-way merge into their respective places in the original array.

It is important to point out the barrier synchronization points that this algorithm exhibits.

The first one is that all local sorts must finish before proceeding into the partitioning stage.

Then, each thread needs to conclude its partitioning stage before the merging stage begins.

Finally, the merging must end before each thread can start deleting its temporary local

storage. The MWMS algorithm consists of 4 algorithmic stages despite of the size of the

input. Observe that this is the first big difference with respect to bitonicsort, the number of

stages in the bitonicsort network depends on the number of input segments. The granularity

of the operations performed is also different, the partitioning time complexity of N segments

of size k is O(k logN). Whereas, one merge operation takes only O(k); implying that

bitonicsort may reach a barrier synchronization point faster than multiway mergesort. Notice

that smaller operations are more likely to finish before the next context-switch happens.

Figure 6.12 shows the performance behavior under ideal circumstances, with the same exper-

imental setup as section 6.1.1.3, and using the sequential std::sort (hybrid between quicksort
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and heapsort) as performance baseline. MWMS algorithm exhibits better performance, at

least a factor of 2 faster than our non-blocking bitonicsort.

Figure 6.12: Bitonicsort and Multiway Mergesort varying the number of threads.

Figure 6.13 illustrates the behavior under stressed circumstances. NBD2BS bitonicsort is

more robust, its performance degrades similarly to the sequential algorithm that runs in just

one CPU core.

Another scenario to explore in terms of performance robustness and scalability is where

multiple instances of the same program run concurrently and compete against each other

for the CPU cores. These situations commonly occur in server or workstation environments

where numerous requests from different clients are being processed. Figure 6.14 illustrates

this structure, where the number of concurrent instances of the same program varies. In this

experiment, 4096 KiB of 32 bit integers are being sorted and it is shown that our non-blocking

bitonicsort is more performance-robust than the GNU multiway mergesort implementation.

For example, in the case where 64 concurrent instances (of 16 threads each) compete for the

available 16 CPUs, the non-blocking bitonicsort is at least a factor of 3 faster than the GNU

parallel multiway mergesort.
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Figure 6.13: Bitonicsort and Multiway Mergesort varying the system stress rate.

Figure 6.14: Bitonicsort and Multiway Mergesort varying the number of concurrent in-
stances.
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6.1.2 A Pedagogical Example: Odd Even Transposition Sort

Other algorithms with different, but regular, access patterns are good candidates for our

NBD2BS model as well, like Odd-Even Transposition Sort, figure 6.15. We learned about

this algorithm from Selim G. Akl’s book in design and analysis of parallel algorithms [5].
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Figure 6.15: Odd-even transpose pattern for an arbitrary sequence divided into segments.

The algorithm starts by dividing the input data into segments of arbitrary size which will be

assigned to all participating execution threads. First, each thread locally sorts their assigned

segments of data. Then, two steps are performed repeatedly. In the first step, each odd-

numbered thread Ti merges two segments, Si and Si+1 into a sorted sequence. The second

step is identical except that it is performed by all even-numbered execution threads. Finally,

these two steps are repeated alternately and after ⌈N/ 2⌉ iterations (being N the number of

input segments) the input data will be globally sorted.

Let n be the total number of data elements to be sorted and, without loss of generality,

assume the data is divided into N segments. Then, the first step to locally sort individual

segments takes O((n/N) log(n/N)) steps and each merge requires O(n/N). Therefore, the
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total cost in parallel is O((n/N) log(n/N)) + ⌈N/ 2⌉ × O(n/N) and, then, the cost can be

reduced to O(n logn) +O(nN), which can be optimal when N ≤ logn. The characteristics

and extreme simplicity of this algorithm makes it an ideally candidate for the classroom.

6.1.2.1 Barrier-synchronized Parallel Odd Even Transposition Sort

This section presents our barrier-synchronized multithreaded implementation of odd-even

transposition sort, figure 6.16. First, the input is divided into segments of arbitrary size and

evenly partitioned among all the execution threads.

Figure 6.16: Barrier-synchronized parallel odd-even transposition sort example.

All individual segments are locally sorted and, then, merged together into larger sorted se-

quences in the already described odd-even transposition fashion. As previously seen, a series

of barrier synchronization constructs, between each stage of the algorithm, are necessary to

ensure that, for example, no even-numbered merge operation can occur without all preceding

odd-numbered merge operations finishing first.
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Algorithm 4 illustrates the high-level implementation. It is important to point out that due

to the odd-even iterations nature of this algorithm, there are threads that will not perform

any useful work or that will execute less work at some stages. Lines 8 and 9 illustrate this

behavior, a thread at an even-numbered stage will not merge the last segment with any other

segment. Hence, proceeding to the barrier immediately and wait for the rest of the threads

to finish the merge computations.

Algorithm 4 Blocking barrier odd-even transposition sort implementation.

1: procedure BlockingBarrierThread(&barrier)
2: for segment : assigned segments
3: sort(&segment)
4: wait(&barrier) ▷ Wait for all threads
5:

6: for each stage
7: for segment 1, segment 2 : assigned segments
8: if (&segment 1 == &last segment)
9: break
10: merge(&segment 1, &segment 2)
11: wait(&barrier) ▷ Wait for all threads

The unbalanced computational nature of the algorithm creates room for experimentation.

Next section demonstrates how we map the algorithm to our proposed non-blocking model

and how this helps accelerate unbalanced computations from different threads.

6.1.2.2 Non-blocking Parallel Odd Even Transposition Sort

This section presents our NBD2BS multithreaded implementation of the odd-even transpo-

sition sort, figure 6.17. The input data is divided into segments of arbitrary size and evenly

partitioned among all execution threads, but the synchronization is now driven by data. For

example, once two segments are merged in their respective stage, both segments are posted

as ready for their next stage.
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Figure 6.17: Non-blocking parallel odd-even transposition sort example.

Figure 6.17 illustrates the non-blocking thread progression under the NBD2BS model. For

example, the blue thread makes progress even though, at some point, the green thread

suffers from delays. It is important to point out the data dependencies exhibited by the

green thread and the red thread. From the figure, the green thread in its second stage waits

for the segments to be advanced to the third stage by the red thread.

Algorithm 5 shows the high-level implementation of our non-blocking odd-even transposition

sort. Notice how extra logic is necessary to handle the odd-numbered and the even-numbered

stages separately, due to the unbalanced nature of the computations of the different threads.

In line 11, if a thread happens to be in an odd-numbered iteration, the very first segment

should not be merged and, hence, move it forward to the next stage. Same for the last

segment, line 13, it needs to be posted for the next stage and the thread can also continue

to the next stage. Lines 17 and 19 show how each thread waits for its respective segments,

which are going to be merged in line 22. Finally, lines 24 and 25 post the recent merged

segments to be used in the next algorithmic stage.
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It is important to point out that this implementation does not balance the amount of work

among the execution threads, but makes it more robust against unexpected context-switches

due to its peer-to-peer synchronization scheme.

Algorithm 5 Non-blocking odd-even transposition sort implementation.

1: procedure NonBlockingThread(atomic &segment stage[number of segments])
2: my stage = 0
3:

4: for segment : assigned segments
5: sort(&segment)
6: fetch and add(&segment stage[segment], 1) ▷ Post segment for next stage
7: my stage++
8:

9: for each stage
10: for segment 1, segment 2 : assigned segments
11: if (&segment 1 == &second segment)
12: fetch and add(&segment stage[first segment], 1) ▷ Post for next stage
13: if (&segment 1 == &last segment)
14: fetch and add(&segment stage[last segment], 1) ▷ Post for next stage
15: break
16:

17: while (my stage != load(&segment stage[segment 1])) ▷ Wait for segment
18: yield cpu()
19: while (my stage != load(&segment stage[segment 2])) ▷ Wait for segment
20: yield cpu()
21:

22: merge(&segment 1, &segment 2)
23:

24: fetch and add(&segment stage[segment 1], 1) ▷ Post segment for next stage
25: fetch and add(&segment stage[segment 2], 1) ▷ Post segment for next stage
26: my stage++

6.1.2.3 Performance Analysis

The experimental setup is equal to the previous section. This is, our experiments sort a

total of 1024 KiB of data and each element is a 32 bit integer. The data is partitioned into

256 segments of 4 KiB each, resulting in an odd-even sorting network of 256 stages. The

first important detail to notice is that the odd-even transposition network is larger than
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the bitonicsort network. Again, every time we refer to the non-blocking implementation of

odd-even transposition sort, it refers to the implementation based on our NBD2BS model.

The sequential implementation behavior is shown for reference purposes.

Under ideal conditions (figure 6.18), the performance of both implementations (barrier-

based and non-blocking) is similar. However, our non-blocking implementation, based in

the NBD2BS model, excels under high load scenarios. Figure 6.19 shows the performance

behavior when the system is under different stress rates. The performance remains similar

when 8 out of our 16 CPUs are already busy, but the barrier-synchronized implementation

still exhibits a bigger performance cliff when the system is stressed more than 50%.

An unusual characteristic of odd-even transposition sort is that sorting network is long

enough that even the performance of our non-blocking implementation suffers more than its

sequential counterpart. Figures 6.20 and 6.21 illustrate the scalability of both implementa-

tions under high load cricumstances to better understand this phenomena.

Figure 6.20 describes a scenario with 50% stress rate, i.e. half of our available cores are

already running other tasks. At this point, odd-even transposition sort still benefits from

exploiting multithreading up to the number of available CPU cores. Then, both implemen-

tations start to degrade in performance but the NBD2BS version of the algorithm degrades

gracefully and still performs better than its sequential counterpart.

Figure 6.21 shows a scenario where 75% of the CPU cores are already running other tasks.

Both multithreaded versions of the algorithm scale poorly while the number of used threads

increase and the sequential implementation achieves better performance.

Odd-even transposition sort is not as robust in performance as bitonicsort exhibited. The

main culprit is that the sorting network is composed by a larger number of algorithmic stages

and their unbalanced computational nature: one thread does not execute any work in all

even-numbered stages.
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Figure 6.18: Odd-even sort performance behavior in terms of number of threads.

Figure 6.19: Odd-even sort performance behavior in terms of system stress rate.
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Figure 6.20: Odd-even sort performance robustness at 50% system stress rate.

Figure 6.21: Odd-even sort performance robustness at 75% system stress rate.
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6.2 Parallel Signal Processing

In the field of signal processing, multiple algorithms can also take advantage of the many

CPU cores of modern systems to accelerate their computations. Examples of signal process-

ing applications are, but not limited to: image reconstruction, filtering, audio and speech

recognition, radar and communications processing, computer vision, and convolutional neu-

ral networks in machine learning [28, 46, 49, 59, 60, 85, 92, 96, 100]. Consequently, efficient

and robust parallel implementations are of paramount importance.

The most important operation of these signal processing applications is the well-known

Fourier Transform. The Fourier transform is an important mathematical transformation

that decomposes a signal in its frequency components. This is, the transformation converts

a signal from the time domain (signal amplitude as a function of time) to the frequency

domain (a composition of the amplitude of each frequency component of the signal).

In this dissertation, the Fourier transform operation is just briefly discussed since our main

goal is to apply our novel NBD2BS model to provide thread preemption robustness and,

hence, performance robustness to this important operation. See [12] for a thorough intro-

duction to the Fourier transform.

For simplicity, only discrete-time signals with finite number of samples are considered. In

other words, the actual operation to be performed is the Discrete Fourier Transform or DFT,

for short. Arguably, J. W. Cooley and J. W. Tukey devised the most important algorithm to

date to compute the DFT [19]. This algorithm is known as the Cooley-Tukey Fast Fourier

Transform (FFT) and it is the next experimental vehicle for our NBD2BS model.
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6.2.1 The Core Operation: Fast Fourier Transform

The Cooley-Tukey algorithm is a widely used FFT implementation. The main idea is to

divide the input sequence into smaller sequences and recursively applying the FFT on them.

There are different ways to implement it, but one of the most common is the radix-2 FFT,

which means that the algorithm works on input sequences whose size is a power of 2 and, then,

factoring an N -point sequence into subsequences of size N/ 2, N/ 4, and so on, until each

subsequence has a size of length 2. Hence, the time complexity is bounded by O(N logN)
steps.
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Figure 6.22: FFT algorithm pattern for an arbitrary sequence divided into segments.

Figure 6.22 illustrates the structure of the algorithm. There are two type of algorithmic

structures, which main difference is the order in which the operations are performed; one is

decimation in time and the other one is decimation in frequency [12]. This example follows a

decimation in frequency approach to solve the FFT and, also, an out-of-core approach. The

out-of-core approach means that the input sequence is large enough that in order to compute

the FFT, it is better to distribute it across multiple execution units where local FFTs will
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take place. Finally, the results will be combined together following the same Cooley-Tukey

algorithmic structure [15, 16, 62, 95].

The main operation in the Cooley-Tukey algorithm is known as the butterfly operation and

it is defined at the bottom of figure 6.22, where the high-part is expressed as the sum of

the two inputs and the low-part is determined as the difference of the two inputs multiplied

by a factor. A twiddle factor is used to represent a given frequency component for a given

sample and it is written as W k
N = e−2πik/N . Finally, after O(N logN) stages, the final FFT

result will be produced.

The next sections show our two parallel implementations of the out-of-core FFT. First, the

traditional implementation using a barrier synchronization construct between the stages of

the algorithm and a novel non-blocking parallel implementation using our proposed NBD2BS

model.

6.2.1.1 Barrier-synchronized Parallel Fast Fourier Transform

This section presents our barrier-synchronized multithreaded implementation of the out-of-

core Cooley-Tukey FFT, figure 6.23. The input is divided into segments of arbitrary size

and evenly partitioned among all execution threads.

At first, the FFT is applied to individual segments only and, then, combined together using

the defined butterfly operation in O(logn) Cooley-Tukey-like stages. Then, a barrier syn-

chronization construct enforces that no thread executes past a given stage until all threads

finish their operations at said stage. For example, from figure 6.23, the blue thread and the

green thread are forced to advance to each stage together. Algorithm 6 shows the high-level

implementation, notice that lines 4 and 9 represent the barrier synchronization.
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Figure 6.23: Barrier-synchronized parallel FFT example.

Algorithm 6 Blocking barrier FFT implementation.

1: procedure BlockingBarrierThread(&barrier)
2: for segment : assigned segments
3: fft(&segment)
4: wait(&barrier) ▷ Wait for all threads
5:

6: for each stage
7: for segment 1, segment 2 : assigned segments
8: butterfly(&segment 1, &segment 2)
9: wait(&barrier) ▷ Wait for all threads
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6.2.1.2 Non-blocking Parallel Fast Fourier Transform

This section presents our NBD2BS multithreaded implementation of the out-of-core Cooley-

Tukey FFT, see figure 6.24 for reference.

Figure 6.24: Non-blocking parallel FFT example.

The main aspect of this implementation is that the synchronization is now driven by data.

Once a thread is done with a segment, the segment will be posted to its respective next stage

regardless of the progress of the rest of the threads. From figure 6.24, notice that the blue

thread can proceed to further stages, even though the green thread suffers from delays.

The high-level implementation is presented in algorithm 7. It is important to point out

that each thread only waits for the segments it needs in its current stage (lines 11 and 13).

Hereafter, once a thread finishes a butterfly operation with a given pair of segments, those

segments are posted for use in the next stage (lines 6, 18, and 19). Finally, if a thread finishes

all its respective operations, it will move forward to the next stage (line 20) and, then, it

waits for its respective segments.
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Algorithm 7 Non-blocking FFT implementation.

1: procedure NonBlockingThread(atomic &segment stage[number of segments])
2: my stage = 0
3:

4: for segment : assigned segments
5: fft(&segment)
6: fetch and add(&segment stage[segment], 1) ▷ Post segment for next stage
7: my stage++
8:

9: for each stage
10: for segment 1, segment 2 : assigned segments
11: while (my stage != load(&segment stage[segment 1])) ▷ Wait for segment
12: yield cpu()
13: while (my stage != load(&segment stage[segment 2])) ▷ Wait for segment
14: yield cpu()
15:

16: butterfly(&segment 1, &segment 2)
17:

18: fetch and add(&segment stage[segment 1], 1) ▷ Post segment for next stage
19: fetch and add(&segment stage[segment 2], 1) ▷ Post segment for next stage
20: my stage++

6.2.1.3 Performance Analysis

The experimentation consists of an input sequence consists in 128 Ki-samples of a pair (real

and imaginary) of 32 bit floating point elements. The data is partitioned into segments of

128 elements and, thus, resulting in a butterfly network of 10 stages. Every time we refer to

the non-blocking implementation of the FFT, it refers to the implementation based on our

NBD2BS model. The sequential implementation behavior is shown for reference purposes.

In an ideal scenario, figure 6.25 shows that both implementations exhibit the same behavior,

mainly due to the small amount of computational stages. Figure 6.26 illustrates the tolerance

to different system stress rates. This behavior has been consistently observed, the parallel

barrier-synchronized version of the FFT suffers a big performance cliff towards high load

scenarios. Our NBD2BS FFT shows better robustness and performance than its barrier-

based counterpart by a factor of 2.
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Figure 6.25: FFT performance behavior in terms of number of threads.

Figure 6.26: FFT performance behavior in terms of system stress rate.
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Figures 6.27 and 6.28 present the scalability of our implemented versions of the FFT al-

gorithm under different circumstances. First, figure 6.27 illustrates the behavior when half

of the available CPU cores are busy running another task. From the picture, both parallel

versions of the algorithm scale similarly until they start using more than 8 execution threads.

Both FFT algorithms degrade in performance, but they still benefit from the multithreaded

parallelism.

On the other hand, figure 6.28 demonstrates the robustness of our non-blocking NBD2BS

FFT implementation. In this scenario, the system is already stressed by 75%, i.e. 12 out of

the 16 available CPU cores are running a different task. The non-blocking FFT outperforms

its barrier-synchronized counterpart by more than a factor of 2 and its performance degrades

gracefully when the system is under high loads.

Figure 6.27: FFT performance robustness at 50% system stress rate.
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Figure 6.28: FFT performance robustness at 75% system stress rate.
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Chapter 7

Road to Wait-free Barrier

Synchronization

A problem well stated is a problem half-solved.

Charles Kettering

A practical definition of wait-freedom is that all execution threads eventually make progress.

We pose the question: can a barrier-synchronized parallel algorithm achieve this level of

progression?

In the contributed non-blocking model, NBD2BS, one delayed thread can at most block just

another thread at a given computational stage. So, there is still no guarantee that each

individual thread will make progress at each synchronization point.

What if it is possible to provide a thread with the ability to unblock itself? A task-stealing

thread can do work from another thread and, ideally, steal a task that will unblock itself and

continue execution beyond the barrier synchronization point.
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7.1 A Task-stealing Multithreading Model

Task-stealing is often referred as a load balancing technique and it is used as a means

for efficient parallelism. The premise of load balancing is to prevent that no processing

unit is doing too much and no processing unit is doing too little. Lately, it has been a

primary focus of attention since researchers look for more ways to efficiently scale parallel

applications [6, 17, 51, 54, 65, 72, 97]. This is also possible thanks to the work in concurrent

data structures, particularly queues [3, 9, 10, 26, 33, 68, 93, 94], in order to provide fast

thread communication to allow task-stealing.

Our model allows a thread to steal a pending task from another thread while waiting for syn-

chronization, similar to termination detection barriers [44]. For example, whenever a thread

reaches a barrier synchronization or waits for a given data post, it inspects the execution

queues of the rest of the threads and executes pending tasks if any.

CPU

CPU

CPU

CPU

Barrier

Pending task Executed task

Thread 0

Thread 1

Queue 1

Thread 2

Thread 3

Queue 2

Queue 3

Queue 4

Figure 7.1: Task-stealing model.

Figure 7.1 helps to illustrate our task-stealing model explained below:

◾ Each thread has its own execution queue and each queue is visible to all threads.
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◾ Each thread produces its own tasks at the beginning of each algorithmic stage, but

each queue can be consumed by any thread that is waiting for synchronization.

◾ Threads steal tasks only from other threads that are in the same or in a previous

algorithmic stage. For barrier-synchronized algorithms, it occurs naturally. Whereas

for NBD2BS algorithms, it needs to be enforced in order to protect the integrity of the

data dependency flow.

Notice that figure 7.1 corresponds only to barrier synchronization semantics, where all

threads are executing their own tasks and only thread 1 is able to steal tasks from other

threads while waiting at the barrier. However, both, task-stealing barrier-synchronized algo-

rithms and task-stealing NBD2BS algorithms have different thread progression guarantees.

Lemma 7.1. All task-stealing barrier-synchronized parallel algorithms are obstruction-free.

Proof. By contradiction. Assume, without loss of generality, one thread gets stuck before

reaching the barrier at a given computational stage. By the obstruction-freedom definition,

eventually this thread will run in isolation for a sufficient duration. Even if it happens that

other threads stole some or all of its tasks, it will reach the barrier and will allow all threads

to make progress.

Lemma 7.2. All task-stealing NBD2BS parallel algorithms are wait-free.

Proof. By contradiction. Assume, without loss of generality, one thread gets stuck before

reaching the barrier at a given computational stage, but it was able to produce its tasks.

Following from the NBD2BS definition, this thread can block at most one different thread.

However, this other thread can steal the task that is currently blocking it. Hence, each

thread now is able to make progress regardless of the delays of others.

It is important to point out that algorithms with stealing-barriers cannot guarantee stronger

progression guarantees since system-wide progress still depends on all threads reaching the

barrier. On the other hand, in order for NBD2BS algorithms to be wait-free, each thread

needs to produce their tasks at the beginning of each algorithmic stage.
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7.2 Case Study: Can Bitonicsort AchieveWait-freedom?

Two more ways to parallelize bitonicsort are presented. First, the common parallelization

using a barrier synchronization, but every barrier is now considered a stealing-barrier where

each thread steal tasks while waiting at the barrier. Second, the NBD2BS multithreaded

implementation of bitonicsort where each thread can steal tasks when waiting for a particular

segment of data to be posted in the thread current execution stage. Finally, we present the

performance analysis of our task-stealing model.

7.2.1 Stealing-barrier Parallel Bitonicsort

The algorithm is the same as the one presented in section 6.1.1.1, but adding the task-

stealing capabilities to each of the execution threads. Figure 7.2 helps to illustrate the idea.

The input sequence is partitioned into smaller segments of arbitrary size and assigned to a

particular execution thread.

Figure 7.2: Stealing-barrier parallel bitonicsort example.
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All threads produce their own tasks like a local sort or a merge operation between two

segments at the beginning of each stage, consume its own tasks, and, finally, wait for the

rest of the threads at each barrier synchronization point. However, if a given thread gets

delayed, another thread can consume the delayed thread tasks while waiting at the barrier.

From figure 7.2, the blue thread steals a task from the green thread since it is already waiting

at the barrier. Note that the blue thread cannot continue execution even though it steals a

task, this is because the green thread has not reached the barrier yet. Algorithm 8 shows

the high-level implementation.

Algorithm 8 Stealing-barrier bitonicsort implementation.

1: procedure StealingBarrierThread(&barrier, &queues[number of threads])
2: for segment : assigned segments
3: queues[thread id].push({ sort(&segment) })
4: queues[thread id].execute all()
5: steal and wait(&barrier, &queues) ▷ Try to steal while waiting for all threads
6:

7: for each stage
8: for segment 1, segment 2 : assigned segments
9: queues[thread id].push({ merge(&segment 1, &segment 2) })
10: queues[thread id].execute all()
11: steal and wait(&barrier, &queues) ▷ Try to steal while waiting for all threads

It is important to notice that some changes with respect to the original barrier-based im-

plementation are those in lines 5 and 11. The behavior of the barrier differs, instead of just

yielding the CPU to another potential thread waiting to be scheduled, a thread will check

all the execution queues of the rest of the threads and it will try to steal a pending task to

try to speed up the overall execution time.

Note that, as per our task-stealing model, each execution queue is produced by their owner

threads (lines 3 and 9), but it can be consumed by any other thread if a task were to be

stolen (lines 5 and 11). Hence, the implementation of each queue should be thread-safe and

should handle its concurrency aspect internally.

86



7.2.2 Wait-free Parallel Bitonicsort

The wait-free parallel bitonicsort refers to the NBD2BS implementation in section 6.1.1.2,

but each execution thread now has the ability to steal tasks from any other thread. A

blocked thread (potential victim) can give up tasks to its data-dependent counterpart thread

(potential stealer). The stealer thread will unblock itself as the data, from a stolen task,

will be now ready for upcoming computational stages and the victim thread will eventually

make progress to the next stage since its tasks could have been already executed by other

threads.

Figure 7.3: Wait-free parallel bitonicsort example.

Figure 7.3 illustrates how the wait-free parallel bitonicsort works. At some point, the blue

thread gets stuck because of the data dependency that exhibits with the green thread. As

opposed to the NBD2BS implementation, the blue thread has the ability to unblock itself

by stealing the missing merge operation that the green thread has left as a result of a delay.

Then, the blue thread will post those data segments for the next algorithmic stage and both

threads will be able to continue their execution.
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Algorithm 9 shows the high-level implementation. Notice how it differs from the previous

non-blocking bitonicsort in lines 16 and 18, where a thread will try to steal a task while

it waits for a specific segment. The stealing approach is the same as in the barrier-based

counterpart, where a thread will check all other execution queues to see if it can help execute

other tasks. If that is the case, once the thread finish stealing, it does not need to wait any

more since it would have executed the task that was blocking it from making progress.

Algorithm 9 Wait-free bitonicsort implementation.

1: procedure WaitFreeThread(atomic &segment stage[number of segments],
2: &queues[number of threads])
3: my stage = 0
4:

5: for segment : assigned segments
6: queues[thread id].push({
7: sort(&segment)
8: fetch and add(&segment stage[segment], 1) ▷ Post segment for next stage
9: })
10: queues[thread id].execute all()
11: my stage++
12:

13: for each stage
14: for segment 1, segment 2 : assigned segments
15: while (my stage != load(&segment stage[segment 1])) ▷ Wait for segment
16: steal() ▷ Try to steal
17: while (my stage != load(&segment stage[segment 2])) ▷ Wait for segment
18: steal() ▷ Try to steal
19:

20: queues[thread id].push({
21: merge(&segment 1, &segment 2)
22: fetch and add(&segment stage[segment 1], 1) ▷ Post seg. for next stage
23: fetch and add(&segment stage[segment 2], 1) ▷ Post seg. for next stage
24: })
25: queues[thread id].execute all()
26: my stage++

Again, it is important to point out that the execution queue of each thread internally manages

its concurrency aspect and the algorithm does not show how it is handled. It is assumed

that all threads correctly produce and consume tasks from the different execution queues.
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7.2.3 Performance Analysis

The experimental setup is the same as in the previous bitonicsort section 6.1.1.3. Figure

7.4 shows the scalability of our non-blocking bitonicsort based on our NBD2BS model, the

parallel implementation of bitonicsort with a stealing-barrier (which is the central counter

barrier with task-stealing), and the wait-free parallel bitonicsort (which is the non-blocking

bitonicsort with task-stealing). Also, it is important to point out that each execution queue

that is used handles concurrency in the simplest possible form. This is using a global lock

that a thread needs to acquire in order to produce or consume a task.

Under ideal circumstances, where all CPUs are available to run all execution threads, our

task-stealing model introduces a slight overhead; but both new task-stealing implementations

scale as the input size increases.

Figure 7.4: Task-stealing bitonicsort performance behavior in terms of input size.

From now on, the experiments sorts 1024 KiB of data, where each element is a 32 bit integer.

The data is partitioned into 256 segments of 4 KiB each, resulting in a sorting network of

36 stages.
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Figure 7.5: Task-stealing bitonicsort performance behavior in terms of number of threads.

Continuing with our ideal scenario, figure 7.5 shows how the same algorithms scale while

modifying the number of execution threads. It is possible to see how the stealing-barrier in-

troduces more overhead than the non-blocking with task-stealing bitonicsort. This is mainly

because, in ideal circumstances, all threads may arrive at similar times at the barrier; but

all of them check if they can steal a task to see if they can help with the execution of other

threads.

On the other hand, figure 7.6 shows the behavior under stressed circumstances. Note that

the implementations with task-stealing techniques, both stealing-barrier and NBD2BS plus

task-stealing, excel under low system stress rates.

The overall execution time may benefit from our task-stealing model. However, in scenarios

with high system stress rates, both task-stealing implementations suffer big performance cliffs

and they do not degrade gracefully as our original NBD2BS bitonicsort implementation. The

reason behind this is that each execution queue also becomes a hot-spot, where all execution

threads are now contending to gain access to the multiple execution queues.
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Figure 7.6: Task-stealing bitonicsort performance behavior in terms of system stress rate.

Figures 7.7 and 7.8 show the behavior of these algorithms at specific stress rate scenarios.

First, when 8 out of 16 CPUs are already busy (50% system stress rate), figure 7.7, our novel

NBD2BS bitonicsort with task-stealing capabilities exhibits better performance robustness

when using more threads.

Then, at 75% system stress rate (12 out of 16 CPUs are busy), figure 7.8 shows how the

implementations with task-stealing queues degrade faster than our original contribution, the

NBD2BS bitonicsort. It is not hard to imagine a scenario where a thread is not only waiting

for other threads or for a specific segment, it is also now waiting for a preempted thread to

release the acquired lock of a particular execution queue.

As this model evolves, it is important to explain that part of the work to be performed

towards wait-free barrier synchronization is not limited to task-stealing techniques only (as

these experiments showed). High performance concurrent queues/deques, like lock-free and

wait-free, are vital in order to scale this model and make it more robust against the over-

subscribed nature of modern multicore systems.
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Figure 7.7: Task-stealing bitonicsort performance robustness at 50% system stress rate.

Figure 7.8: Task-stealing bitonicsort performance robustness at 75% system stress rate.
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7.2.4 Wait-free Bitonicsort and Multiway Mergesort Comparative

Analysis

This section presents a comparative analysis of our non-blocking bitonicsort with task-

stealing capabilities and the state-of-the-art parallel multiway mergesort (MWMS) that was

described in section 6.1.1.4. The experimental setup is, once again, similar to all previous

experiments. This is, sorting 1024 KiB of data, where each element is a 32 bit integer. For

bitonicsort, the data is partitioned into 256 segments of 4 KiB each, resulting in a sorting

network of 36 stages.

As seen before, parallel multiway mergesort performs better in ideal circumstances, see

figure 7.9. However, in situations where the system is already running other tasks, wait-free

bitonicsort (which is the non-blocking implementation based on our NBD2BS model plus

task-stealing techniques) performs better. From figure 7.10, note that in scenarios where

the system stress rate is less than 50%, our wait-free bitonicsort implementation is at least

a factor of 2 faster than multiway mergesort. Task-stealing techniques can help boost the

performance of parallel applications, notice the performance differences even in low system

stress rates. The experiment is set up to run using the maximum available hardware (16

threads), but the performance of multiway mergesort degrades significantly even when only

2 out of 16 CPU cores are busy running other tasks.

It is important to notice from figure 7.10 that in high-load situations, where the system

stress rate is greater than 50%, the wait-free bitonicsort implementation suffers from a big

performance cliff due to high-level contention in each thread execution queue. This dis-

continuity in performance is similar to the one in multiway mergesort, suggesting that the

context-switching becomes an important bottleneck in parallel applications.

In the end, the results are promising, they show that it is possible to design parallel algo-

rithms that are robust to the high context-switch rate nature of modern multicore systems.
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Figure 7.9: Wait-free Bitonicsort and Multiway Mergesort varying the number of threads.

Figure 7.10: Wait-free Bitonicsort and Multiway Mergesort varying the system stress rate.
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Chapter 8

Concluding Remarks

The proper method for inquiring after the properties of things is to

deduce them from experiments.

Isaac Newton

Modern multicore CPUs present challenges when it comes to efficiently exploit the underlying

parallelism that the hardware provides. These systems are general purpose processors that

run not only one, but a large number of tasks and each CPU core becomes a resource that

is shared among all those tasks that are just waiting to be executed.

The oversubscribed nature of multicore systems impacts the performance of a given task.

Furthermore, tasks that are parallelized in multiple execution threads can also be severely

impacted. The most common form of parallelism in multicore computing is the Single Pro-

gram Multiple Data (SPMD) model, where multiple threads are executed simultaneously

over disjoint subsets of data. Additionally, these threads are working cooperatively to ac-

complish a task, it is likely that, at defined moments in time, they need to communicate

with each other. This particular moment in time, where threads perform the necessary data

realignments and repartitionings due to data dependencies, is known as barrier synchroniza-
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tion. In other words, a thread must not continue its execution if it needs the computational

results that are being produced by other threads. It is not hard to imagine a scenario where

the expected parallelism significantly reduces if even just one thread, out of a group of N

threads, is preempted from its CPU. The rest of the threads still have to wait in a barrier

synchronization point until the preempted thread is assigned back to a CPU core to finish

its respective computations and reaches the barrier.

This dissertation addressed the problem mentioned above with a novel model that we called

non-blocking data-driven barrier synchronization or NBD2BS, for short. The main idea is

to exploit the memory access pattern of an algorithm to provide better thread progression

guarantees, preemption robustness, and, thus, performance robustness; so that the algorithm

degrades gracefully in its performance whenever the system is under high load/stress. The

experimental results are promising, they show that an NBD2BS parallel algorithm exhibits

better performance in scenarios with high system stress rates by almost a factor of 5 than

its barrier-synchronized counterpart.

Table 8.1 is almost identical to the one presented in section 4.3. However, there is an

additional row: this is our contribution and now it is part of the work that has been done

in this research field.

Pros Cons

Counter barriers Practical Blocking

Tree-based barriers Low contention Blocking

Dissemination barriers Low contention Blocking

Tournament barriers Low contention Blocking

Multiple disjoint barriers Non-blocking Complex control flow

Fuzzy barriers Non-blocking Application specific

Task-stealing barriers Non-blocking Complex runtime support

Speculative barriers Non-blocking Tradeoff: accuracy vs speed

NBD2BS Non-blocking Θ(n) additional space

Table 8.1: New summary of related work in barrier synchronization.
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The contributed model was successfully applied to a variety of algorithms, specially in the

field of high performance sorting and signal processing due to the importance of these core

computational tasks, which can serve and be attractive to a wide range of applications and

academic research fields.

There is important work yet to be explored. The dissertation aims to motivate additional

efforts in the future. For example, introducing the problem from a linear optimization point of

view, where the number of threads can be adjusted depending on the current level of workload

in the system to find optimal performance. Another example is to establish a probabilistic

model on how to characterize the impact in performance of parallel multithreaded algorithms

with different scheduler properties for CPU allocation. This could be particularly useful due

to the non-deterministic nature of multithreaded algorithms working concurrently.

Finally, this dissertation also opens new research possibilities by introducing a model towards

wait-free barrier synchronization in chapter 7. In other words, the overall task always makes

progress regardless of any unexpected delays of individual execution threads. The reasoning

behind is that, even if N-1 threads (out of a total of N threads) are preempted, one thread

can still perform the computational tasks of the rest of the threads by exploiting task-stealing

techniques. Our experimental results are encouraging and motivate research towards more

efficient methods.
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