
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Floorplan Representation, Global Placement, and Routability Analysis for VLSI Layout Design
Automation

Permalink
https://escholarship.org/uc/item/0gd0z8d0

Author
Kang, Ilgweon

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0gd0z8d0
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Floorplan Representation, Global Placement, and Routability Analysis
for VLSI Layout Design Automation

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Computer Science (Computer Engineering)

by

Ilgweon Kang

Committee in charge:

Professor Chung-Kuan Cheng, Chair
Professor Ronald Graham
Professor Andrew B. Kahng
Professor Farinaz Koushanfar
Professor Bill Lin

2018

Copyright

Ilgweon Kang, 2018

All rights reserved.

The dissertation of Ilgweon Kang is approved, and it is ac-

ceptable in quality and form for publication on microfilm and

electronically:

Chair

University of California, San Diego

2018

iii

DEDICATION

I dedicate this thesis to my family.

Without their support this thesis would not have been finished.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . viii

List of Tables . xii

Acknowledgments . xiii

Vita . xv

Abstract of the Dissertation . xviii

Chapter 1 Introduction . 1
1.1 Researches on Physical Layout 3

1.1.1 Back-Board Ordering 4
1.1.2 Two-Dimensional Physical Layout Design 4
1.1.3 Multi-Dimensional Physical Layout Design: 3-D, Po-

tentially 4-D and Beyond 7
1.1.4 Benchmarks . 7

1.2 New Opportunities On Physical Design 9
1.2.1 Physical Design and ITRS 10
1.2.2 New Techniques . 11
1.2.3 New Markets for IC Design 12

1.3 Conclusion . 14
1.4 Acknowledgments . 14

Chapter 2 3-D Floorplan Representations by Using Corner Links and Partial
Order . 15
2.1 Introduction . 16
2.2 Floorplan Overview . 20

2.2.1 Basis of Floorplanning 20
2.2.2 Classification of Floorplanning 21
2.2.3 Fundamental Floorplan Representations 23
2.2.4 Mosaic Floorplan . 25

2.3 New 3-D Floorplan Representations: Corner Link and Partial
Order . 29
2.3.1 Corner Links . 29
2.3.2 Partial Order . 34

v

2.4 3-D Floorplan Representation Properties 37
2.4.1 Corner Links and Partial Order Representations 38
2.4.2 Corner Links and Four Trees Representation 42
2.4.3 Partial Order Representation to Valid Floorplan 43
2.4.4 Partial Order Representation to Blocks’ Absolute Co-

ordinates . 46
2.5 3-D Floorplan Representation Algorithms 48

2.5.1 Corner Links to Partial Order Representation 48
2.5.2 Partial Order to Absolute Coordinate Representation . 49

2.6 Conclusion . 51
2.7 Acknowledgments . 52

Chapter 3 Advancing Solution Quality and Routability Validation in Global
Placement . 53
3.1 Introduction . 54

3.1.1 Density function and density penalty factor 55
3.1.2 Routability-driven placement 55

3.2 Placement Overview . 58
3.3 Constraint-Oriented Local-Density Function 58

3.3.1 Necessity of Local Density Function 58
3.3.2 Constraint-Oriented Local-Density Penalty for Each

Bin b j . 59
3.3.3 Local-Density Cost Coefficient ∆i per Each Cell i . . . 61
3.3.4 Formulation: Local Density Function and Gradient . . 62
3.3.5 Additional Details and Illustration 65

3.4 Improved Dynamic Step Size Adaptation 68
3.4.1 Improved Dynamic Step Size Adaptation 69
3.4.2 Trial Global Placement 73

3.5 Routability-Driven Placement 75
3.5.1 Capacity and Blockage Calculation 75
3.5.2 Demand Calculation 76
3.5.3 Cell Inflation . 77
3.5.4 Overall Flow . 78

3.6 Experiments . 82
3.6.1 Standard Cell Placement 82
3.6.2 Mixed-Size Placement 85
3.6.3 Routability-Driven Placement 86
3.6.4 State of Academic vs. Industry Placement 92

3.7 Conclusion . 92
3.8 Acknowledgments . 93

vi

Chapter 4 Fast and Precise Routability Analysis with Conditional Design Rules 94
4.1 Introduction . 94
4.2 Related Works and Our Approach 97
4.3 SAT-Friendly ILP Formulation 98

4.3.1 ILP-Based Detailed Routing Optimization 99
4.3.2 ILP-Based Design Rule Formulation 104

4.4 ILP-to-SAT Conversion . 107
4.4.1 Advantage of Our SAT-Friendly ILP 107
4.4.2 Logic Simplification 108
4.4.3 Reduced SAT Formulation 108

4.5 Experiments . 111
4.5.1 Overall Flow of the Proposed Framework 111
4.5.2 Experimental Results 115

4.6 Conclusion . 118
4.7 Acknowledgements . 119

Chapter 5 Conclusion . 120

Bibliography . 123

vii

LIST OF FIGURES

Figure 1.1: Illustrations of semiconductor industry market size for the past decades.
The asterisk marks at year indices indicate the value by forecasting. . 2

Figure 1.2: Distribution of hardware design cost per technology node (bar chart)
and the cost per gate trend (line) [155]. Hardware design cost at 90nm
technology node is not available from the reference [155]. 2

Figure 1.3: The organization of this dissertation. New 3-D floorplan representa-
tions, improved global placement engine, and SAT-based design-rule
correct routability analysis. 3

Figure 1.4: The benchmarks plotted with ranges of instances (displayed in log
scale). Benchmarks are selectively chosen from Table 1.1. The mini-
mum and maximum instances are displayed at the bottom and the top
of each bar, respectively. 9

Figure 1.5: Shrink scenarios for logic devices [160]. In the current market (Jan-
uary 2017), the state-of-the-art transistor structure is finFET with
10nm technology. 10

Figure 1.6: Transistor structure roadmap [159]. 11
Figure 1.7: Internet of Things (IoT): The explosively growing Internet device

market [119]. 13

Figure 2.1: An example of 3-D IC. (a) A 3-D IC package, re-illustrated based
on the original figure in [165]. (b) A general 3-D floorplan to map a
design into physical space of hardware [129]. 17

Figure 2.2: Classification of floorplans. (a) Set relation chart of floorplan classi-
fications. (b) An example of the mosaic floorplan. (c) An example of
the slicing floorplan where we can partition the floorplan into single
blocks by cutting blocks recursively. 22

Figure 2.3: An example of 3-D slicing floorplan with 11 blocks, i.e., blocks a-k.
(a) The 3-D slicing floorplan from Figure 2.2(c) and its coordinate
system. (b) The bottom layer layout of the 3-D slicing floorplan. (c)
The slicing tree representation of the 3-D slicing floorplan. 23

Figure 2.4: An example of corner-stitching-based 2-D floorplan representation.
Each blue arrow depicts stitch, which is pointer. Red dotted arrows
show the searching path for the block containing point A by following
the pre-defined pointers. 24

Figure 2.5: (a) An example of the 2-D mosaic floorplan, which has the same
topological structure with the 2-D floorplan in Figure 2.4. (b) The
twin binary trees for the floorplan of Figure 2.5(a). The pair of trees
represents the up-right and down-left corner relations. 26

Figure 2.6: Relations of the 3-D mosaic floorplan, corner links and four trees
representations, and face and block partial orders. 29

viii

Figure 2.7: A 3-D mosaic floorplan and layouts of the top and bottom layers.
There are ten blocks, a- j. A vertex of block i depicted by the red star
indicates i+−+ corner (iX+Y−Z+), meaning that the corner is located
at maximum X , minimum Y , and maximum Z coordinates of block i. 30

Figure 2.8: Illustrations of neighboring corners. (a) Each red dot is one of four
opposite corners in 3-D floorplan, forming the root for each of four
trees representation (as shown in Figure 2.9). (b)-(d) Examples of
corner links. 31

Figure 2.9: Four trees representation equivalent to the 3-D mosaic floorplan in
Figure 2.7. Each of the four trees is respectively rooted at the opposite
corners of the 3-D floorplan space P, i.e., (a) P+++, (b) P−−+, (c)
P+−−, and (d) P−+−. 32

Figure 2.10: Examples of constructing trees in Figures 2.9(a) and (b). Figures (a)
and (b) correspondingly illustrate traversing procedures from each
root, i.e., (a) corner g+++ and (b) corner a−−+. Blocks j and h have
three neighboring corners to diagonal, X , and Z directions. 33

Figure 2.11: The face partial order representation for the 3-D mosaic floorplan in
Figure 2.7. Figures (a), (b), and (c) present the face partial orders in
X (red), Y (green), and Z (blue) directions, respectively. 35

Figure 2.12: The equivalent relations of (a) the X-directional face partial order
(from Figure 2.11(a)), (b) the X-directional block partial orders, and
(c) the X-directional partial order representation. 36

Figure 2.13: The X-, Y -, and Z-directional partial order representations for the 3-D
mosaic floorplan in Figure 2.7. 37

Figure 2.14: (a) Cutting plane p3 of the 3-D floorplan example in Figure 2.7 and
its Z-directional partial order in Figure 2.13(c). (b) and (c) are cross-
sectional views of cutting plane p3 toward Z− (i.e., pZ−

3) and Z+
(i.e., pZ+

3) directions, respectively. 40
Figure 2.15: The symmetric difference for footprints across cutting plane pk. Grey

blocks go through cutting plane pk along with Z axis. By Theo-
rem 2.1, corner c−−+ must have a neighboring corner, i.e., g−−−.
S− and S+ are sets of blocks in pZ−

k and pZ+
k , respectively. 40

Figure 2.16: A special example for the non-degenerate 3-D floorplan, which has
corners having more than one neighboring corner. 42

Figure 2.17: Obtaining X-, Y -, and Z-dimensional relative orders of all blocks in
the 3-D floorplan based on the partial order representation in Fig-
ure 2.13. 46

Figure 3.1: Density forces with (a) global density-penalty factor λ, and (b) constraint-
oriented local-density penalty factor ν j per each bin. (Bin boundaries
are indicated by black dotted lines. Standard-cell instances are la-
beled i1, · · · , i5.) . 61

ix

Figure 3.2: Local smoothing methods (a) without and (b) with local-density cost
coefficient ∆i. Figures are ordered from left to right by iteration in-
dices. Figure (b) shows the effect of a larger force to spread cells
from the overflowed bin b4. 63

Figure 3.3: Placement of NEWBLUE1 [138]: left hand side (LHS) images are
from ePlace-MS [81], and right hand side (RHS) images are from
RePlAce-ld. The target density is set to 100%. 66

Figure 3.4: Placement of NEWBLUE1 [138]: left hand side (LHS) images are
from ePlace-MS [81], and right hand side (RHS) images are from
RePlAce-ld. The target density is set to 100%. Continued. 67

Figure 3.5: An illustration conceptually showing the benefit of dynamic step size
adaptation. Cost is composite of wirelength and density. (a) Constant
large step size; (b) Constant small step size; and (c) Our improved
dynamic step size adaptation. 69

Figure 3.6: HPWL curve of ADAPTEC1 from the trial placement procedure and
the estimated transition points (T P2 = red/blue stars, T P1 = yellow
squares). 71

Figure 3.7: Solution qualities achieved by constant step size scale as in ePlace-
MS [81] and by RePlAce-ds’ improved dynamic step size adaptation
strategy, on the ADAPTEC1 [138] testcase. RePlAce-ds achieves a
dominating runtime and solution quality (red square). 72

Figure 3.8: Flowchart of our trial placement procedure. The red rectangle in-
dicates nonlinear optimization using Nesterov’s method. The actual
placement procedure follows this trial placement procedure. 74

Figure 3.9: Illustration of blockage calculation. For the vertical edge on the right,
blk = blk1+blk2. Note the union of blocked capacity for the upper
two blockages. 76

Figure 3.10: An example of routing demand calculation: the upper-left tile has a
horizontal routing demand of max(15,19) = 19, and a vertical rout-
ing demand of max(18,20) = 20. 77

Figure 3.11: Overall flowchart of our routability-driven placement. 79
Figure 3.12: Global routing overflow (SUPERBLUE12) during routability-driven

global placement procedure. 81
Figure 3.13: Runtime breakdown (#iterations) aggregated over all reported test-

cases in the ISPD-2005 and ISPD-2006 benchmark suites for (a)
RePlAce-ds, and in the MMS benchmark suite for (b) RePlAce-ds
and (c) RePlAce-ldds. 86

Figure 4.1: Efforts to secure the pin-accessibility during the PD procedure. Fail-
ure to produce routable (or routed) design in each step indicates loop-
back of PD procedure, causing additional design cost. Our SAT-based
routability analysis (in red font) enables a fast and precise assessment. 97

x

Figure 4.2: Adjacent vertices (for our ILP formulation) of vi in the routing graph
G. 99

Figure 4.3: An example of supernodes. PIN1 and PIN2 respectively cover three
and five vertices on M1 layer. Outer pins (PIN3 and PIN4) are con-
nected to boundary vertices of G. 101

Figure 4.4: Relations of our ILP-based routing optimization formulas and variables.104
Figure 4.5: An example to determine gd,i. 105
Figure 4.6: An example of the minimum area rule. 105
Figure 4.7: An example of the end-of-line (EOL) spacing rule. 106
Figure 4.8: Overall flow of our routability analysis. 111
Figure 4.9: An example layout with 14×13 vertial and horizontal tracks. 70%

pin density. The total #pins=24. 17 pins are on M1 and seven
pins are outside of the layout (#outer pins are determined by Rent’s
rule [147]). We have 11 nets (i.e., two 3-pin nets and nine 2-pin nets). 112

Figure 4.10: The ILP-based optimal routing solution for the layout in Figure 4.9.
Cost = 417. Five more metal segments are assigned to avoid design
rule check (DRC) violations (red dotted circles). 113

Figure 4.11: The reduced SAT-based routing solution for the layout in Figure 4.9.
Cost = 604. The solution is not optimal, but takes only 0.19% of
ILP’s runtime, thus we can anaylze the routability quickly. 114

Figure 4.12: The runtime trends (in log-scale) across the (a) pin density and (b)
layout size (#vertical × #horizontal tracks). 118

xi

LIST OF TABLES

Table 1.1: Placement benchmark suites, from classic to modern benchmarks. . . 8

Table 2.1: X-, Y -, and Z-directional absolute coordinates of all blocks of the 3-D
floorplan in Figure 2.7, based on the relative orders of cutting planes
in Figure 2.17. With the given physical dimensions of blocks, we can
obtain the entire coordinates as described in Equations (2.2). 47

Table 3.1: Notations for local-density function. 64
Table 3.2: Notations for routability-driven placement. We use the default length

unit in the DAC-2012 and ICCAD-2012 benchmark suites. 75
Table 3.3: RePlAce functionalities and the corresponding suffixes (command-

line options) that produce the results reported below. 80
Table 3.4: Statistics for ISPD-2005 [93], ISPD-2006 [92], and MMS [138] bench-

mark suites. 83
Table 3.5: (Scaled†) HPWL (×106) and runtime (minutes) comparison of best

known, RePlAce-ld, RePlAce-ds and RePlAce-ldds on ISPD and MMS
benchmarks. 84

Table 3.6: Statistics for DAC-2012 [121] and ICCAD-2012 [122] benchmark
suites. 89

Table 3.7: Scaled HPWL (sHPWL) (×107), routing congestion (RC) and CPU
runtime (minutes) comparison of RePlAce to leading published results
for DAC-2012 [121] global routability-driven placement. 90

Table 3.8: Scaled HPWL (sHPWL) (×107), routing congestion (RC) and CPU
runtime (minutes) comparison of RePlAce to leading published results
for ICCAD-2012 [122] global routability-driven placement. 91

Table 4.1: Notations for ILP and SAT formulation. 100
Table 4.2: Experimental results presenting the ILP-based detailed routing vs. the

SAT- and the Reduced SAT-based routability analysis. Each row rep-
resents results of five distinct testcases, and shows numbers on average. 116

xii

ACKNOWLEDGMENTS

Foremost, I would like to thank my advisor Professor Chung-Kuan Cheng for

his encouragement and support. Without his generous advice my Ph.D. study would not

have been finished. Indeed, I have learned a lot from him not only his brilliant academic

knowledge, also his attitude toward research and life.

I would like to thank to my father Kyungchan Kang and my mother Woesoon

Kim for their devotion and support. I would like to thank to my father-in-law Jongkyun

Noh and my mother-in-law Kyoungock Jin for their encouragement. And I would like to

thank to my wife Heemin Noh for her selfless support and my son Ryan Hyunwoo Kang

for his assistance. My research would not have been possible without their sacrifice.

I would like to thank Professor Andrew B. Kahng for his academical support and

encouragement. I have been truly influenced by his passionate and responsible attitude

toward research.

I would like to thank my labmates (Xinyuan Wang, Po-Ya Hsu, Dongwon Park),

former labmates (Dr. Hao Zhuang, Dr. Jingwei Lu, Professor Seokhyeong Kang, Dr.

Tuck-Boon Chan, Dr. Siddhartha Nath, Dr. Jiajia Li, Dr. Wei-Ting (Jonas) Chan, Hyein

Lee, Kwangsoo Han, Jeng-Hau Lin, Xinan Wang) and schoolmates (Lutong Wang, Mu-

long Luo, Bangqi Xu, Yeseong Kim, Xun Jiao, Dr. Seungjin Na) for their support and

encouragement.

I would like to thank my industrial collaborators (Nancy MacDonald, Changho

Han) for their insightful feedback and comments in my researches. I would like to thank

my colleagues (Yufeng Luo, Dr. Chin-Chih Chang, Dr. Min Ouyang) for their thoughtful

support and invaluable guidance.

I sincerely appreciate my thesis committee members Professor Ronald Graham,

Professor Farinaz Koushanfar and Professor Bill Lin for their time and insightful feedback

and comments.

The material in this thesis is based on the following publications.

Chapter 1 contains a reprint of Ilgweon Kang and Chung-Kuan Cheng, “Physical

Layout after Half a Century: From Back-Board Ordering to Multi-Dimensional Placement

and Beyond”, Proc. ACM/IEEE International Symposium on Physical Design, 2017. The

dissertation author is the primary author of the paper.

xiii

Chapter 2 contains a reprint of Fang Qiao, Ilgweon Kang, Daniel Kane, Evan-

geline Fung Yu Young, Chung-Kuan Cheng and Ronald Graham, “3D Floorplan Repre-

sentations: Corner Links and Partial Order”, Proc. IEEE International Conference of 3D

System Integration, 2016. Chapter 2 also contains the draft submitted to ACM Transac-

tions on Design Automation of Electronic Systems, Ilgweon Kang, Fang Qiao, Dongwon

Park, Daniel Kane, Evangeline Fung Yu Young, Chung-Kuan Cheng and Ronald Graham,

“3-D Floorplan Representations by Using Corner Links and Partial Order”. The disser-

tation author is a main contributor of the paper and the primary author of the submitted

draft.

Chapter 3 contains the draft submitted to IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, Chung-Kuan Cheng, Andrew B. Kahng, Il-

gweon Kang and Lutong Wang, “Advancing Solution Quality and Routability Validation

in Global Placement”, 2017. The dissertation author is the primary author of the submitted

draft.

Chapter 4 contains a reprint of Ilgweon Kang, Dongwon Park, Changho Han

and Chung-Kuan Cheng, “Fast and Precise Routability Analysis with Conditional Design

Rules”, Proc. ACM International Workshop on System-Level Interconnect Prediction,

2018. The dissertation author is the primary author of the paper.

My coauthors (Professor Chung-Kuan Cheng, Professor Ronald Graham, Changho

Han, Professor Andrew B. Kahng, Professor Daniel Kane, Dongwon Park, Fang Qiao, Lu-

tong Wang, and Professor Evangeline F. Y. Young, listed in alphabetical order) have all

kindly approved the inclusion of the aforementioned publications in my thesis.

xiv

VITA

2006 B.Sc., Electrical and Electronics Engineering,
Yonsei University, Seoul, Republic of Korea

2008 M.Sc., Electrical and Electronics Engineering,
Yonsei University, Seoul, Republic of Korea

2008-2010 Engineer, DRAM Development Division,
SK Hynix, Icheon, Republic of Korea

2010-2012 Engineer, R&D Division,
SK Hynix, Icheon, Republic of Korea

2016 C.Phil., Computer Science (Computer Engineering),
University of California, San Diego

2017-Present Lead Software Engineer, Digital Signoff Group,
Cadence Design Systems Inc., San Jose

2018 Ph.D., Computer Science (Computer Engineering),
University of California, San Diego

All papers co-authored with Professor Andrew B. Kahng and the paper published

at International Symposium on Physical Design (2018) have authors listed in alphabetical

order. The first two drafts in the list are submitted for publication. The last three papers

are published when the dissertation author was pursuing his Master’s degree in Yonsei

university, Seoul, Republic of Korea.

• Ilgweon Kang, Fang Qiao, Dongwon Park, Daniel Kane, Evangeline Fung Yu

Young, Chung-Kuan Cheng and Ronald Graham, “3-D Floorplan Representations

by Using Corner Links and Partial Order”, ACM Transactions on Design Automa-

tion of Electronic Systems, under review.

• Chung-Kuan Cheng, Andrew B. Kahng, Ilgweon Kang and Lutong Wang, “Ad-

vancing Solution Quality and Routability Validation in Global Placement”, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, under

review.

• Ilgweon Kang, Dongwon Park, Changho Han and Chung-Kuan Cheng, “Fast and

Precise Routability Analysis with Conditional Design Rules”, Proc. ACM Interna-

tional Workshop on System-Level Interconnect Prediction, 2018, to appear.

xv

• Chung-Kuan Cheng, Ronald Graham, Ilgweon Kang, Dongwon Park, Xinyuan

Wang, “Tree Structures and Algorithms for Physical Design”, Proc. ACM/IEEE

International Symposium on Physical Design, 2018, pp. 120-125.

• Ilgweon Kang and Chung-Kuan Cheng, “Physical Layout after Half a Century:

From Back-Board Ordering to Multi-Dimensional Placement and Beyond”, Proc.

ACM/IEEE International Symposium on Physical Design, 2017, pp. 123-128.

• Fang Qiao, Ilgweon Kang, Daniel Kane, Chung-Kuan Cheng and Ronald Graham,

“3D Floorplan Representations: Corner Links and Partial Order”, Proc. IEEE In-

ternational Conference of 3D System Integration, 2016, pp. 1-5.

• Hao Zhuang, Wenjian Yu, Shih-Hung Weng, Ilgweon Kang, Jeng-Hau Lin, Xi-

ang Zhang, Ryan Coutts and Chung-Kuan Cheng, “Simulation Algorithms with

Exponential Integration for Time-Domain Analysis of Large-Scale Power Delivery

Networks”, IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems 35(10) (2016), pp. 1681-1694.

• Jingwei Lu, Hao Zhuang, Ilgweon Kang, Pengwen Chen and Chung-Kuan Cheng,

“ePlace-3D: Electrostatics based Placement for 3D-ICs”, Proc. ACM/IEEE Inter-

national Symposium on Physical Design, 2016, pp. 11-18.

• Jeng-Hau Lin, Hao Liu, Chia-Hung Liu, Phillip Lam, Gung-Yu Pan, Hao Zhuang,

Ilgweon Kang, Patrick P. Mercier and Chung-Kuan Cheng, “An Interdigitated Non-

Contact ECG Electrode for Impedance Compensation and Signal Restoration”, Proc.

IEEE Biomedical Circuits and Systems Conference, 2015, pp. 543-546.

• Hao Zhuang, Wenjian Yu, Ilgweon Kang, Xinan Wang and Chung-Kuan Cheng,

“An Algorithmic Framework of Large-Scale Circuit Simulation Using Exponential

Integrators”, Proc. ACM/IEEE Design Automation Conference, 2015, pp. 163:1-

163:6.

• Hao Zhuang, Xinan Wang, Ilgweon Kang, Jeng-Hau Lin and Chung-Kuan Cheng,

“Dynamic Analysis of Power Delivery Network with Nonlinear Components Using

Matrix Exponential Method”, Proc. IEEE Symposium on Electromagnetic Compat-

ibility and Signal Integrity, 2015, pp. 248-252.

xvi

• Ilgweon Kang, Xinan Wang, Jeng-Hau Lin, Ryan Coutts and Chung-Kuan Cheng,

“Impulse Response Generation from S-Parameters for Power Delivery Network

Simulation”, Proc. IEEE Symposium on Electromagnetic Compatibility and Sig-

nal Integrity, 2015, pp. 277-282.

• Tuck-Boon Chan, Andrew B. Kahng, Ilgweon Kang, Hyein Lee and Jiajia Li,

“Toward Assessment of True 3D Design Benefits over 2D Implementation”, Proc.

ACM International Workshop on System-Level Interconnect Prediction, 2014, poster

presentation.

• Andrew B. Kahng and Ilgweon Kang, “Co-Optimization of Memory BIST Group-

ing, Test Scheduling, and Logic Placement”, Proc. ACM/IEEE Design, Automation

and Test in Europe, 2014, pp. 196:1-196:6.

• Andrew B. Kahng, Ilgweon Kang and Siddhartha Nath, “Incremental Multiple-

Scan Chain Ordering for ECO Flip-Flop Insertion”, Proc. ACM/IEEE International

Conference on Computer-Aided Design, 2013, pp. 705-712.

• Woosik Jeong, Ilgweon Kang, Kyowon Jin and Sungho Kang, “A Fast Bulit-in

Redundancy Analysis for Memories with Optimal Repair Rate Using a Line-based

Search Tree”, IEEE Transactions on Very Large Scale Integration Systems 17(12)

(2009), pp. 1665-1678.

• Ilgweon Kang, Woosik Jeong and Sungho Kang, “High-Efficiency Memory BISR

with Two Serial RA Stages Using Spare Memories”, IET Electronics Letters 44(8)

(2008), pp. 515-517.

• Ilgweon Kang and Sungho Kang, “The Efficient Memory BISR Architecture Using

Sign Bits”, Journal of the Institute of Electronics Engineers of Korea SD 44(12)

(2007), pp. 85-92.

xvii

ABSTRACT OF THE DISSERTATION

Floorplan Representation, Global Placement, and Routability Analysis
for VLSI Layout Design Automation

by

Ilgweon Kang

Doctor of Philosophy in Computer Science (Computer Engineering)

University of California, San Diego, 2018

Professor Chung-Kuan Cheng, Chair

In the past decades, semiconductor technologies have significantly contributed to

the modern society and human welfare, and led entire industries toward more automated

systems with advancement of integrated circuits (ICs). Innovations and achievements

on physical design (PD) have guided progresses of modern VLSI designs and automa-

tion. With the advanced performance of ICs, the overall industry has been profitable, and

the global semiconductor market size has shown an upward-climbing trend for the past

decades. Consequently, high-performance ICs enable the recent advent of the fourth in-

dustrial revolution that evolves almost every industry, e.g., artificial intelligence (AI), the

Internet of things (IoT), bio- and nano-technology, autonomous vehicles, robotics, etc.

xviii

While “Moore’s Law” and “Dennard Scaling” have shown the correction of the

slowing down, designing IC has become much more sophisticated and complicated. IC

layout design directly impacts on timing closure, die utilization, routability, and design

turnaround time (TAT); these in turn affect the classic design metrics of operating fre-

quency, yield, power consumption and cost. As a result, physical design engineers face

many nontrivial challenges, and the overall design cost increases rapidly. The industries

look for higher efficiency in design optimization, automation, and innovation for high-

performance ICs and design-cost reduction.

This dissertation describes new design methodologies for the advanced IC layout

development and design automation. Chapter 2 introduces new three-dimensional (3-D)

floorplan representations, corner links, four trees, and partial order, which enhance 3-D

IC physical design automation. Our floorplan representations are potentially extendable

toward multiple dimensions by adding factors such as time, energy, temperature, security,

etc. Chapter 3 describes our constraint-driven and routability-driven global placement

engine, RePlAce. RePlAce is a flat, nonlinear analytical global placement engine with

electrostatics-based global-smooth density cost function. RePlAce addresses routing con-

gestion as well as classical design goals (such as wirelength, area, etc.) with analogy

of charge and electrical potential distribution. Chapter 4 presents a new framework that

quickly identifies the design rule-correct routability through well-organized Boolean sat-

isfiability (SAT) formulation. Our routability analysis method is developed on top of the

multi-commodity flow theory and SAT-friendly ILP-based (integer linear programming-

based) detailed routing formulation.

xix

Chapter 1

Introduction

In the past decades, semiconductor technologies have significantly contributed to

the modern society and human welfare, and led entire industries toward more automated

systems with advancement of integrated circuits (ICs). Innovations and advancements on

physical design (PD) guide progresses of modern VLSI designs and the automation and

deserve considerable credits on the reduction of design gaps of VLSI layout designs. By

virtue of the PD community and their efforts, the performance of ICs has been extremely

advanced, the overall industry has been profitable, and the global semiconductor market

size has shown an upward climbing for the past decades (as shown in Figures 1.1(a)-(b)).

While “Moore’s Law” and “Dennard Scaling” have shown the correction of the

slowing down, the hardware design cost increases rapidly and the cost per gate trend re-

verses from downward decreasing toward upward increasing after 20nm technology node.

Figure 1.2 shows the hardware design cost per technology node in bar chart and the cost

per gate trend in a curved line. In other words, the cost reduction by scaling becomes

harder and harder or no longer available. In the meantime, the growth rate of IC indus-

try revenue has stagnated. Thus, the industrial environment looks for higher efficiency

on design optimization, automation, and innovation for cost reduction and performance

improvement.

On the time scale of half a century, the challenges and opportunities we face today

are actually the extension of, and in the same context as what we encountered before in

the perspective of semiconductor history. Although we have faced many nontrivial chal-

1

(a) Semiconductor sales revenue worldwide
from 1987 to 2018 (in billion U.S.

dollars) [164].

(b) Global semiconductor industry revenue
from integrated circuits from 2009 to 2018

(in billion U.S. dollars) [154].

Figure 1.1: Illustrations of semiconductor industry market size for the past decades. The
asterisk marks at year indices indicate the value by forecasting.

Figure 1.2: Distribution of hardware design cost per technology node (bar chart) and the
cost per gate trend (line) [155]. Hardware design cost at 90nm technology node is not
available from the reference [155].

2

Figure 1.3: The organization of this dissertation. New 3-D floorplan representations, im-
proved global placement engine, and SAT-based design-rule correct routability analysis.

lenges in the past, the integrated circuit industry has overcome and grown by our research

and development. With this in mind, in the remaining Chapter 1, we present the current

challenges on physical design and present opportunities that enable us to drive new growth

engine. Then this dissertation describes new methodologies for improved physical design

and its automation in three topics; (i) three-dimensional floorplan representation in Chap-

ter 2, (ii) constraint-driven and routability-driven global placement in Chapter 3, and (iii)

design rule-correct routability analysis based on Boolean satisfiability (SAT) formulation

in Chapter 4.

The remainder of this chapter is organized as follows. Section 1.1 reviews re-

searches and progresses on VLSI physical layout design. Section 1.2 introduces new

opportunities on physical design with reference to the International Technology Roadmap

for Semiconductors (ITRS). Section 1.3 concludes this chapter.

1.1 Researches on Physical Layout

Physical layout formulation is based on the VLSI technologies. On the other

hand, physical layout enables the technologies, reduces design gaps, and extends the reach

of the design capability. The academic activities have blossomed following the original

3

mission started by the SHARE committee half a century ago. The SHARE committee

was formed in 1955 with the purpose of “Share to Help Avoid Redundant Effort”. In

1964, the committee organized the first design automation conference (DAC) to provide a

medium whereby people can interchange ideas, techniques, experience, and even specific

programs on a regular basis.1 In this section, we summarize researches and progresses on

physical layout designs.

1.1.1 Back-Board Ordering

The placement paper published at the first Design Automation Conference (DAC

1964) [130] is about back board ordering. At the very early days of physical layout de-

sign, most design complexity occurs at board and system levels. Placement of back boards

was formulated as a one-dimensional ordering problem. We arrange circuit boards on a

backplane in a linear order to minimize the wiring requirement of the backplane. Clearly,

the quality of the placement causes a direct impact on the cost and performance of the

system. Thus, the importance of physical layout optimization/automation is recognized in

the early time of circuit designs. In [35], the author devised graphs to represent the place-

ment process and thus used graph theory and Dijkstra algorithm to search for the optimal

solutions. This work is one of the early attempts to use graph theory and mathematical

algorithms for physical layout design automation.

1.1.2 Two-Dimensional Physical Layout Design

For IC chip designs, we treat the placement as a two-dimensional (2-D) problem.

In the transition between 1970s and 1980s, as the on-die circuit complexity increased,

the need of placement tools became evident: layout designers could no longer handle

hundreds of objects to produce high quality results in short turnaround. Early works in

1970s [36] [37] [38] [39] took advantage of previous works on one-dimensional ordering

to improve the two-dimensional placement by rows or by columns iteratively, then the

authors performed a two-dimensional placement with a tree search approach. After the

1The first three DACs (i.e., DAC’64-DAC’66) were called as the SHARE design automation workshop.
Later, International Conference on Computer-Aided Design was started in 1981 and then ISPD in 1997 after
several years of workshop as a predecessor.

4

investigation, an in-house place-and-route (P&R) system (namely LAMBDA) [39] was

announced as an industrial physical layout design tool.

As the circuit complexity kept growing, we observed several breakthroughs in

placement algorithms to tackle the design gaps. With interconnect dominance, place-

ment solution plays a significant role on system performance. IC designers allocate heavy

efforts to improve the placement quality. We have seen the innovations via netlist/graph

partitioning methods, combinatorial algorithms, and hierarchical approaches. In the 1980s

when the placement sizes are less than a hundred thousand components, annealing-based

methods produced excellent results [109]. However, as the problem sizes grew, the scala-

bility of the iterative methods became a bottleneck. Partitioning-based placement methods

could reduce the complexity using hierarchical methodologies at the expenses of quality

loss due to suboptimal partitioning results.

As the placement problem size approached million components, major placement

tools started with analytical algorithms using quadratic or nonlinear optimization. The

analytical methods were proposed in the late 1970s [6] [51] [104] [133]. Throughout the

years, many innovations made the method efficient and effective.

• The sparsity of the circuit was exploited with a quadratic formulation [22].

• The linear wire length metric was approximated with nonlinear equations.

• The cell density was enforced by partitioning, pulling anchors or local repulsive

forces [15] [19] [22] [62] [69] [72] [123].

• Recently in ePlace [80] [81], the density was treated as electronic charges. The

balance of the electrostatic system was modelled as classic Poisson equations. The

global repulsive force could then be derived using fast Fourier transform with

O(nlogn) complexity where n is the size of the problem.

• At the architecture level, floorplanning is a useful tool for physical layout design

automation [44] [91] [95] [102] [118] [134].

With the highly competitive environments discussed above, the semiconductor IC

market demand us more efforts and innovations to develop new design methodologies and

to improve IC’s performance. The role of physical design (PD) is to execute the physical

5

implementation flow, which carries the system design process. Physical design is one

corner stone of a reliable, predictable implementation fabric [58] that enables system-

level signoff. For a “modern” IC design, PD engineers must consider all design aspects

together with various nontrivial design goals.

Due to the important role in the IC implementation steps, placement is one crucial

research subject and we have many topics to further improve the solution quality. Thus, we

should push the edge to further improve the solution quality and reduce the design gaps.

In [5] [88], the authors summarize researches and progresses on placement and suggest

directions that require intensive studies. As the authors of [5] [88] commonly mentioned,

new approaches for performance-driven placement are intensively studied and should be

studied in addition to the traditional placement metrics. We have seen in placement ar-

ticles, the key words such as timing driven [87], routability driven [41], clock aware,

datapath aware, signal integrity aware, power aware, etc. Recently, low-power design

became one target objective for IC designs [5] [159]. The effort is to reduce packaging

cost, increase battery life, and achieve high performance without thermal stress. Still,

to produce low power design with tight constraints is nontrivial. In addition, mixed-size

placement needs further improvement [88] [138]. In mixed-size designs, large modules

can block routing space and enforce detours on critical interconnect. Thus, manual in-

tervention is still wanted to place, refine, and align large modules. Additionally, tighter

vertical integration in the design flow is important for the system performance. For ex-

ample, interactions and convergences among physical design procedures frequently occur

to reduce cost and improve solution quality: interactions between placement and gate siz-

ing, buffer insertion, design for manufacturing; interface with logic synthesis, clock tree

synthesis (CTS) and engineering change order (ECO). Thus, PD designers must consider

more design aspects than before. Separately, a recent publication [61] gives a couple of

interesting data points/correlations with respect to design automation research and design

automation research outputs (papers, patents, and EDA companies).

6

1.1.3 Multi-Dimensional Physical Layout Design: 3-D, Potentially 4-D and
Beyond

The extension to three-dimensional placement was initiated for the mapping of

the dynamic FPGA (field-programmable gate array). Physical layout becomes a compiler

tool for the high performance reconfigurable computing. Since the same space can be

time shared by various functions, time domain becomes the third dimension for the place-

ment. In this case, the turnaround time for the placement became even more critical since

compilation is part of user experiences.

Recently, as three-dimensional IC technologies emerged as a promising option

for the “more-than-Moore” strategy, three-dimensional layout became one key piece of

the puzzle to enable the technology. We have found that with the addition of the third

dimension, the floorplan topologies are much more complicated and the problem appears

intriguing [103]. On top of three-dimensional physical space, we can add time as an extra

dimension to make layout four-dimensional. Potentially, the number of dimensions can

increase with extra factors such as energy, thermal, security and etc.

For three-dimensional placement, physical design engineers must address the

challenging issues such as 3-D IC thermal distribution, floorplanning, clock tree synthe-

sis, power distribution network, stacking methods by using through-silicon via (TSV) or

monolithic inter-tier via (MIV), etc.

1.1.4 Benchmarks

The release of the benchmarks enables the researchers to measure the algorithms

on a common platform, and makes the research relevant to practice. Therefore, many in-

novations can be incorporated into EDA tools for applications in a faster pace. Table 1.1

lists classic and modern placement benchmark suites while Figure 1.4 depicts the trend.

As shown in Figure 1.4, the number of instances saturates after 2005, but additional design

features, e.g., density and routability, contribute to design complexity. In the meanwhile,

the saturated circuit size calls a necessity of benchmarks with even larger number of in-

stances since the size of circuits does matter on the choice of methods and quality of

results, e.g., using distributed computation and memory management.

7

Table 1.1: Placement benchmark suites, from classic to modern benchmarks.

Benchmark Description

Steinberg [115] Steinberg back-board placement

Illiac IV [116] Board-level design for supercomputer

MCNC [13] General purpose benchmarks for design automation

ISPD98 [3] Physical design applications, e.g., partitioning and placement

ISPD-2005 [93] Placement (also applicable to floorplanning and routing)

ISPD-2006 [92] Placement with target density per benchmark

MMS [138] Large-scale modern mixed-size (MMS) placement

ISPD-2011 [120] (Global) Routability-driven placement

DAC-2012 [121] (Global) Routability-driven placement

ICCAD-2012 [122] Design hierarchy aware (global) routability-driven placement

ICCAD-2013 [71] Placement finishing – detailed placement and legalization

ISPD-2014 [146] Detailed routing-driven placement

ICCAD-2014 [68] Incremental timing-driven placement

ISPD-2015 [11] Blockage-aware detailed routing-driven placement

ICCAD-2015 [67] Incremental timing-driven placement

ISPD-2016 [139] Routability-driven FPGA placement

ISPD-2017 [158] Clock-aware FPGA placement

8

Figure 1.4: The benchmarks plotted with ranges of instances (displayed in log scale).
Benchmarks are selectively chosen from Table 1.1. The minimum and maximum in-
stances are displayed at the bottom and the top of each bar, respectively.

1.2 New Opportunities On Physical Design

In this section, we introduce new opportunities on physical design in three as-

pects: (i) the international technology roadmap for semiconductors (ITRS) shows that

technology is going through divergence and evolution, which calls for new physical lay-

out researches; (ii) paradigm-shifting design methodologies and innovative algorithmic

techniques can improve design automation tools, and (iii) the semiconductor market and

economy forecast show potential returns for further investments from the government and

the industry.

9

1.2.1 Physical Design and ITRS

The latest ITRS [159] report suggests numerous challenging research topics. Fig-

ure 1.5 illustrates the transistor structures for logic devices. For 10nm technology, the

transistor structure use finFET and the technology node will advance to 7nm for mass

production soon. As shown in Figure 1.6, the extensions to the existing FDSOI and fin-

FET will sustain for two or three technology nodes until 2020 [159]. Beyond 2020 a

transition to gate-all-around and potentially to vertical nanowires devices will be needed,

providing new research topics.

Design of the routable and manufacturable layout for integrated circuits (ICs) has

been more and more challenging as technology nodes are continuously advanced to sub-

10nm [159]. One of the major difficulties is caused by the resolution limitations of optical

lithography, using 193i wavelength [40] [110]. Multi-patterning techniques such as LELE

(litho-etch-litho-etch), SADP and SAQP (self-aligned double and quadruple patterning)

enable successful development of 10nm and sub-10nm technology nodes for foundries.

However, they also induce complex conditional design rules for manufacturability which

introduce new huddles for IC design.

Securing pin accessibility of IC components has become a critical bottleneck

during detailed routing, due to less number of routing tracks and increasing pin den-

sity [110] [136]. FinFET device with smaller pin geometry makes the pin accessibility

problem even harder [1]. The number of routing tracks in a single placement row has been

Figure 1.5: Shrink scenarios for logic devices [160]. In the current market (January
2017), the state-of-the-art transistor structure is finFET with 10nm technology.

10

Figure 1.6: Transistor structure roadmap [159].

reduced from 12 tracks to nine/eight/seven tracks [64], and even five-track cell library with

one fin is recently announced [8]. In the meanwhile, scaling metal pitch is lagged behind

scaling device pitch, causing severe complications of interconnection induced by decrease

of the valid access points for pins [151]. Consequently, the detailed routing step easily

takes days of turnaround time (TAT), but a “successful” routing nonetheless is not guar-

anteed. Thus, we need a new design tool with fast TAT in analyzing the feasibility of the

given layout architecture, e.g., design rules and patterns of pin assignment.

In Chapter 4, we propose a novel framework that efficiently identifies the condi-

tional design rule-correct routability through well-organized ILP (integer linear program-

ming) and SAT (Boolean satisfiability) formulation. Due to less number of pin-access

points and dense pins for sub-10nm IC designs, the growing mismatch between global-

route congestion map and detailed-route design rule check (DRC) violations may endan-

ger the on-time tapeout by demanding too many manual layout revisions [17]. The ab-

sence of fast and precise routability analysis tool at the early physical design stage (e.g.,

before routing) exposes the entire IC design project to high-risk unpredictability. Our re-

sulting framework offers an early “go/no-go” decision opportunity for the remaining PD

procedure, based on the precise routability assessment.

1.2.2 New Techniques

Since designing ICs has been much more sophisticated and complicated, we need

new techniques to solve many nontrivial challenges. IC layout design quality directly

impacts overall design quality of results with respect to timing closure, die utilization,

11

routability, and design turnaround time; these in turn affect the classic metrics of oper-

ating frequency, yield, power consumption and cost. Thus, the industrial environment

looks for higher efficiency on design optimization, automation, and innovation for better

performance and cost reduction.

Emerging algorithmic techniques from outside fields also provide potential meth-

ods to solve some physical design bottlenecks. Attempts to apply artificial intelligence

and deep learning techniques present progresses to predict potential congestion during

placement and to detect data paths from netlist or design-hierarchy information. Mas-

sively parallel computing gives new chances to try distributed algorithms which can dras-

tically improve our computation and memory capacity. We remain the adaptation of the

paradigm-shifting new techniques into the physical design as the future works, but we

firmly believe that these new techniques will introduce new breakthroughs to us, opening

tremendous opportunities.

In Chapter 3, we describe our constraint- and routability-driven global place-

ment engine, RePlAce. Placement solution quality directly impacts overall IC design

quality as placement is a fundamental, critical step in the physical design (PD) of inte-

grated circuits (ICs) [60]. Despite significant improvement in placement algorithms over

the past decades [89], efficient and effective placement remains a challenging issue [5],

e.g., routable placement solution. The placement process must provide a routable so-

lution to the router. RePlAce is a flat, nonlinear analytical global placement engine with

electrostatics-based global-smooth density cost function, addressing routing congestion as

well as classical design goals with analogy of charge and electrical potential distribution.

RePlAce is the first work to achieve superior solution quality across all the ISPD-2005,

ISPD-2006, MMS, DAC-2012 and ICCAD-2012 benchmark suites with a single place-

ment engine.

1.2.3 New Markets for IC Design

By virtue of physical designers’ efforts, the performance of ICs has been ex-

tremely advanced, the overall industry has been profitable, and the global semiconductor

market size has shown an upward climbing for the past decades. Consequently, the highly

advanced ICs enable the recent advent of the fourth industrial revolution, evolving al-

12

Figure 1.7: Internet of Things (IoT): The explosively growing Internet device mar-
ket [119].

most every industry, e.g., artificial intelligence (AI), the Internet of things robotics (IoT),

biotechnology, autonomous vehicles, etc.

Historically, the EDA industry grew from solving new design problems and the

industry grew by expanding the market demand. From the mid-90s, the Internet revolu-

tion has led the skyrocketing growth of the information technology. The advancement of

semiconductor enabled portable and powerful devices with more functionality. Eventu-

ally, billions of electronic devices will be connected through the Internet (so called the

Internet of Things (IoT), Figure 1.7). The trend inevitably results in “small quantity batch

production” of ICs ensuring low power application, by very cost-effective design and

manufacturing. The new market will enable a new growth engine to our industry with

new opportunities.

In Chapter 2, we propose new 3-D IC floorplan representations, corner links, four

trees, and partial order, enhancing 3-D IC physical design automation. As the market de-

mand smaller footprint/wirelength and less power consumption, but better performance

and more functionalities, we need a new IC design methodology to deliver the high-

performance ICs. While “Moore’s Law” and “Dennard Scaling” have shown the cor-

rection of the slowing down, three-dimensional (3-D) ICs offer a potential breakthrough

to enable a paradigm-shift strategy, called “more than Moore”, with novel features and

13

advantages over the conventional 2-D process technology by the nature of 3-D IC fabri-

cation. With the three-dimensional (3-D) interconnections, 3-D IC provides substantial

wirelength reduction and massive amount of bandwidth, leading performance improve-

ment to overcome many of the nontrivial challenges of the semiconductor industry. More-

over, 3-D IC integration enables to stack disparate technologies with various functionali-

ties into a single system-in-package (SiP), introducing “true 3-D IC” design.

1.3 Conclusion

In this chapter, we briefly review the previous paths and challenges in physical

layout design field. Then, we introduce and summarize new opportunities of physical

design related researches. These new opportunities strongly motivate the researches in

this dissertation.

1.4 Acknowledgments

Chapter 1 contains a reprint of Ilgweon Kang and Chung-Kuan Cheng, “Physical

Layout after Half a Century: From Back-Board Ordering to Multi-Dimensional Placement

and Beyond”, Proc. ACM/IEEE International Symposium on Physical Design, 2017. The

dissertation author is the primary author of the paper.

I would like to thank my coauthor Chung-Kuan Cheng.

14

Chapter 2

3-D Floorplan Representations by

Using Corner Links and Partial

Order

Three-dimensional integrated circuit (3-D IC) technology offers a potential break-

through to enable a paradigm-shift strategy, called “more than Moore”, with novel features

and advantages over the conventional 2-D process technology. With the three-dimensional

interconnections, 3-D IC provides substantial wirelength reduction and a massive amount

of bandwidth, which gives significant performance improvement to overcome many of the

nontrivial challenges of semiconductor industry. Moreover, 3-D integration technology

enables stacking disparate technologies with various functionalities into a single system-

in-package (SiP), introducing “true 3-D IC” design.

As the first physical design (PD) step, floorplanning takes a crucial role to deter-

mine IC’s overall design qualities such as footprint area, timing closure, power distribu-

tion, thermal management, etc. However, lack of efficient 3-D floorplanning algorithms

that implement advantages of 3-D integration is a critical bottleneck for PD automation

of 3-D IC design and implementation. 3-D floorplanning is a well-known NP-hard prob-

lem, and most of 3-D floorplan algorithms rely on heuristics and iterative improvements.

Thus, developing efficient 3-D IC floorplan representations is important since floorplan

representation provides the foundation of data structure to search the solution space for

15

3-D IC floorplanning. A well-defined floorplan representation provides an organized and

cost-effective methodology to design high-performance 3-D IC.

We propose a new 3-D IC floorplan representation methodology using corner

links and partial order. Given a fixed number of cuboidal blocks and their volume, al-

gorithmic 3-D floorplan representations topologically describe orientations and physical

positions of each block relative to the origin in the 3-D floorplan space. In this chapter,

(1) we introduce our novel 3-D IC floorplan representation, called corner links, (2) we

analyze the equivalence relation between the corner links and the corresponding partial

order representations, and (3) we discuss several key properties of the corner links and

partial order representations. We demonstrate that the corner links representation can be

reduced to their corresponding partial order representation. Also, the corner links repre-

sentation for the non-degenerate 3-D mosaic floorplan can be equivalently expressed by

the four tree representation. The partial order representation defines the topological struc-

ture of the 3-D mosaic floorplan with three transitive closure graphs for each direction and

captures all cutting planes in the floorplan in the order of their respective directions. If

the partial order representation describes relations between all pairs of blocks in the 3-D

floorplan, then the floorplan is a valid floorplan. We show that the partial order represen-

tation can restore the absolute coordinates of all blocks in the 3-D mosaic floorplan by

using the given physical dimensions of blocks.

2.1 Introduction

Three-dimensional (3-D) integrated circuit (IC) technology (as shown in Fig-

ure 2.1(a)) offers a potential breakthrough with novel features and advantages over the

conventional 2-D integration technology. 3-D IC technology provides strong momentum

to overcome many of nontrivial challenges that arise from the semiconductor industry’s

relentless push into the deep nanoscale regime [74]. Recently, a feature editor of Nature

announced the paradigm shift from shrinking the devices to a new strategy called “more

than Moore” [124]. The author [124] declares that 3-D IC technology is a potential op-

tion to extend the trend. With the three-dimensional interconnections, wirelength can be

substantially reduced and massive amounts of bandwidth can be achieved between device

layers without incurring the usual latency penalties. Also 3-D IC technology introduces

16

(a) (b)

Figure 2.1: An example of 3-D IC. (a) A 3-D IC package, re-illustrated based on the
original figure in [165]. (b) A general 3-D floorplan to map a design into physical space
of hardware [129].

new architectures that can have much better performance for the future applications. For

example, 3-D IC technology enables us to stack and integrate disparate technologies into

a single system-in-package (SiP) implementation. Fabrication technologies to specific

functions such as RF circuits, memories, or optoelectronic devices are often incompati-

ble with the normal IC integration processes for high-performance logic devices. 3-D IC

technology suggests a flexible and promising way to include device layers with distinct

functionalities, toward “true 3-D IC”.

A number of studies have validated the benefits of 3-D IC integration technology,

and have explored the design space for 3-D architectures and physical implementations,

which maximize the advantages of 3-D ICs. Bernstein et al. [10] confirm the benefits

of 3-D integration in the scope of architecture and performance. In [132], the authors

demonstrate that a multicore processor chip design could reduce the number of intercon-

nections between critical intercore components by an order of magnitude through 3-D IC

implementation. Hybrid memory cube (HMC) consortium [156] is another example of

efforts from industrial leaders to drive 3-D ICs into mainstream production.

Despite the recent emphases on the necessity of 3-D IC designs and implemen-

tations, a multitude of challenges has so far obstructed large-scale transition from the

classical 2-D ICs to stacked 3-D ICs [73]. Knechtel and Lienig discuss the most rele-

vant aspects of automating the physical design (PD) process for 3-D ICs by highlighting

how 3-D IC design becomes increasingly difficult and demanding as compared to well-

engineered design automation for 2-D ICs. Major design challenges for 3-D ICs include

3-D IC-specific challenges such as 3-D fabrication technologies, 3-D architecture explo-

17

ration, system-level interconnection design, 3-D stacking-aware partitioning, etc., as well

as traditional challenges such as placement, clock-tree synthesis, thermal management,

reliability, power distribution, etc. For a past decade, 3-D IC design automation has been

intensively studied by both industry and academia [16] [21] [25] [34] [57] [82] [101] [107]

and not yet sufficient. Therefore, more sophisticated and practical solutions are urgently

required to fully exploit the benefits of 3-D IC technology. For example, for power distri-

bution, IC designers encounter many potential design choices of the packaging technolo-

gies such as on-chip and off-chip voltage regulators, decoupling capacitors, number of

dies, wire pitches and allocation of vertical vias (i.e., through-silicon via (TSV) or mono-

lithic inter-tier via (MIV)) for millions of nodes [49] [53] [111] [149]. The difficulties

of 3-D IC designs and implementations call for powerful and efficient design automation

algorithms to search and optimize the 3-D IC design space.

In this chapter, we focus on the 3-D IC floorplanning representations to enable

effective 3-D IC design automation. Floorplanning is the first step in the physical design

for VLSI circuits. Thus, the solution quality of floorplanning directly impacts overall

IC design quality with respect to footprint area, die utilization, interconnection, routing

congestion, power delivery network, timing closure, etc. With this in mind, the spatial

and topological structuring of non-overlapping blocks (or block packing) is an important

theoretical research topic for the IC floorplanning. The ultimate goal of having good

spatial structure is to optimize the performance of ICs in terms of timing closure, die

utilization, power consumption, production cost, design flow, etc.

Floorplan representation is crucial for IC designers as the foundation of data struc-

ture, providing an early perspective of the entire chip-level solution quality. Without an

efficient and complete methodology for the floorplan representation algorithms, design-

ing efficient floorplan becomes extremely hard due to the lack of computational tools for

IC designers to study the IC floorplanning solution space. While conventional 2-D floor-

planning researches have published a large amount of literature and prominent results, the

extension to 3-D IC floorplanning remains open with many challenges to explore. In this

work, we introduce the new 3-D IC floorplan representation by using corner links and

partial order. We also propose “four trees” representation which equivalently expresses

the corner links of the 3-D floorplan. We describe several key properties of the corner

links and partial order representations. The main contributions are as follows.

18

• We introduce a new 3-D floorplan representation methodology by using corner

links and partial order representations.

– We define a corner link as a set of 1/8 corners (i.e., vertices) that intersect at

the same coordinate, and belong to the adjacent blocks next to each other in

X , Y , Z, or diagonal direction.

– The partial order defines the topology of the floorplan with three transitive

closure graphs per each direction. There are two partial-order-related repre-

sentations; (i) face partial order and (ii) block partial order.

• We analyze the relations between the corner links representation and the partial

order representation.

– The corner links representation can be reduced to the partial order representa-

tion.

– For the non-degenerate 3-D mosaic floorplan, the corner links can be equiva-

lently expressed by a set of four trees representation.

– If the partial order representation describes relations of all pairs of blocks

in the 3-D floorplan, then the partial order representation produces the valid

floorplan.

– The partial order representation yields all cutting planes in the 3-D floorplan,

in sorted order by their respective directions.

• We present two algorithms for the following transformations:

– From the corner links representation to the partial order representation.

– From the partial order representation to the absolute coordinates of the entire

blocks in the floorplan.

The remainder of this chapter is organized as follows. Section 2.2 reviews general

foundations of classes of floorplans and floorplan representations. Section 2.3 introduces

our new 3-D IC floorplan representation, i.e., corner links, and partial order representa-

tion for 3-D IC floorplanning. Section 2.4 demonstrates the properties and relationships

of the corner links, four trees, and face and block partial orders. Then we demonstrate

19

these properties. Section 2.5 describes the algorithms to convert corner links to partial

order, and partial order to absolute coordinates of the entire blocks in the 3-D floorplan.

Section 2.6 concludes this chapter and present the future works.

2.2 Floorplan Overview

In this section, we first introduce the basis of floorplanning and the related terms

such as block overlap, block adjacency, and valid floorplan. Next, we describe three

floorplan classifications. In this work, we focus on a class of mosaic floorplans. Then we

present the fundamental floorplan representations, and several key characteristics of the

mosaic floorplan.

2.2.1 Basis of Floorplanning

In a d-dimensional (d-D) floorplanning (sometimes called as box partitioning)

problem, suppose we have a d-D floorplan space P. The floorplan space P is the rectan-

gular or block that covers the entire block components. We partition the given floorplan

space P into n blocks (or more generally find an arrangement of n non-overlapping blocks

within P). Each block B occupies the space spanning in an interval [minBi, maxBi] for

each dimension i where Bi is the coordinates of block B in dimension i. In this work,

we refer minBi and maxBi as Bi− and Bi+, respectively. Following this convention, for

3-D floorplanning, we use symbols X , Y , and Z to represent each dimension i in the 3-D

floorplan space P. Obviously, the strict inequality should hold for all blocks in P, i.e.,

minBi < maxBi (or Bi− < Bi+) for all dimensions i so that all the blocks have positive

volume. Note that, in the later sections of this chapter, we use superscripts for indicating

block’s dimensional information (e.g., BX+), and subscripts for indicating block’s index

(e.g., B1). We define four terminologies, frequently used in this work as follows.

Interval Overlap

For two blocks B1 and B2, we define interval overlap in a dimension i if two

intervals [Bi−
1 , Bi+

1] (i.e., [minBi
1, maxBi

1]) and [Bi−
2 , Bi+

2] (i.e., [minBi
2, maxBi

2]) hold

20

two inequalities: (i) Bi−
2 < Bi+

1 (i.e., minBi
2 < maxBi

1) and (ii) Bi−
1 < Bi+

2 (i.e., minBi
1 <

maxBi
2). The strict inequality ensures that the overlap has positive length.

Block Overlap

We define block overlap of two blocks B1 and B2 if intervals [Bi−
1 , Bi+

1] (i.e.,

[minBi
1, maxBi

1]) and [Bi−
2 , Bi+

2] (i.e., [minBi
2, maxBi

2]) overlap for all dimensions i in

the given d-D floorplan space P. In other words, two blocks B1 and B2 are not overlapped

if there exists a dimension i that does not hold the interval overlap.

Block Adjacency

A pair of blocks B1 and B2 are adjacent if there exists a dimension i such that

Bi−
1 = Bi+

2 (i.e., minBi
1 = maxBi

2) or Bi−
2 = Bi+

1 (i.e., minBi
2 = maxBi

1); and for the re-

maining dimension(s) j where j 6= i, all the intervals [B j−
1 , B j+

1] (i.e., [minB j
1, maxB j

1])

and [B j−
2 , B j+

2] (i.e., [minB j
2, maxB j

2]) are overlapped. For 3-D floorplanning, we define

two blocks B1 and B2 are adjacent if these two blocks are touching the surface of one

another.

Valid Floorplan

In the d-D floorplan space P, a floorplan is valid if any pair of blocks are not

overlapped with each other.

2.2.2 Classification of Floorplanning

We classify floorplans into three categories, (i) general floorplan, (ii) mosaic floor-

plan, and (iii) slicing floorplan. Figure 2.2(a) shows the set relation of three floorplan

classifications, and Figures 2.2(b) and (c) present the examples of mosaic and slicing

floorplan, respectively. A set of slicing floorplans is a subset of mosaic floorplans and a

set of mosaic floorplans is a subset of general floorplans. In this work, we focus on the

mosaic floorplan and its representation methodology.

21

General Floorplan

A general floorplan is a collection of non-overlapping (i.e., non-intersecting)

blocks, where all blocks are contained within the given floorplan space P. The general

floorplan allows empty spaces within the given floorplan space P. To reduce the prob-

lem complexity, we often focus on the case of a compact floorplan, where all blocks are

pushed toward the origin such that no block can be further shifted closer towards the origin

without overlapping or moving other blocks.

Mosaic Floorplan

A set of mosaic floorplans is a subset of the general floorplans, obtained by par-

titioning the floorplan space P into multiple blocks (as shown in Figure 2.2(b)). In the

mosaic floorplan, the blocks cover all available floorplan space P, indicating that there are

no empty spaces within the given floorplan space P. While nonexistence of empty space is

a substantial restriction compared to the general floorplans, the mosaic floorplan provides

much simpler thus more efficient structure to study and analyze. This allows designers

to reduce possible combinations of the solution range. Also, the mosaic floorplan can be

easily extended to the general floorplan by adding empty blocks with a controlled number

of gaps (i.e., holes). In addition, the mosaic floorplan gives a more general overview than

the slicing floorplan so that physical design engineers can obtain deeper insights of the IC

floorplanning problems. We further discuss the mosaic floorplan in Section 2.2.4.

(a) (b) (c)

Figure 2.2: Classification of floorplans. (a) Set relation chart of floorplan classifications.
(b) An example of the mosaic floorplan. (c) An example of the slicing floorplan where we
can partition the floorplan into single blocks by cutting blocks recursively.

22

Figure 2.3: An example of 3-D slicing floorplan with 11 blocks, i.e., blocks a-k. (a) The
3-D slicing floorplan from Figure 2.2(c) and its coordinate system. (b) The bottom layer
layout of the 3-D slicing floorplan. (c) The slicing tree representation of the 3-D slicing
floorplan.

Slicing Floorplan

A set of slicing floorplans is a subset of the mosaic floorplans, obtained by recur-

sively bi-partitioning (i.e., slicing) a block in the floorplan space P into two blocks with

new boundaries perpendicular to a dimensional axis. The slicing floorplan starts with as-

suming the floorplan space P as a single block (as shown in Figure 2.2(c)). With this in

mind, the slicing floorplan can be represented with a hierarchical tree structure (i.e., slic-

ing tree) [20] as shown in Figure 2.3. By its nature, a slicing tree is a full binary tree. The

root shows the first cut of the floorplan. Each node of the tree represents one of the three

cutting directions in the 3-D floorplan space. Each internal node represents the further

cuts on the partial subspace, derived through the path from the root to the node. The leaf

contains each individual block.

2.2.3 Fundamental Floorplan Representations

Floorplan representation is a fundamental and important research topic in IC

physical design. Many floorplanning problems for 2-D and 3-D ICs are NP-hard [128].

Most IC floorplanning algorithms are heuristic and rely on perturbations with random

searches and iterative improvements. Thus, research on floorplan representations are im-

portant since floorplan representations provide a foundation of the data structures for floor-

planning algorithms. Also, floorplan representations are a key component for efficient

23

iterative improvement procedure. Consequently, the floorplan representation methodolo-

gies expressing geometrical information of circuit blocks directly impacts complexity of

floorplanning algorithms as well as overall design quality of results (QoR) with respect to

footprint area, routability, timing closure, power consumption, etc.

Examples of simple floorplan representation methodologies are including floor-

plan specifications based on (i) absolute coordinate, (ii) corner-stitching, and (iii) partial

ordering. The absolute coordinate-based floorplan specification is a naı̈ve representation

method that directly gives the physical locations of blocks. These can be used, e.g., for vi-

sualization purposes to specify the physical position and dimensions of each circuit block

in a fixed space. While the absolute coordinate floorplan specification is usefully explicit,

it is a high-entropy representation, which makes the design problems more difficult to

work with and unsuitable for solving various optimization problems. Corner-stitching is

a well-known representation for 2-D IC floorplanning [96] [97]. During floorplanning,

we track all neighboring blocks through corner stitches connecting opposite corners (e.g.,

lower-left and upper-right corners in Figure 2.4) of every block. The stitches combined

all together form the data structure for the given floorplan. In this work, our new 3-D

floorplan representation methodology, i.e., corner links, is deeply inspired by the corner-

stitching representation (see Section 2.3.1). The partial ordering provides the topological

structure of a floorplan with transitive closure graphs per each dimension. There are two

partial order-related representations; face partial order and block partial order. The details

are described in Section 2.3.2.

Figure 2.4: An example of corner-stitching-based 2-D floorplan representation. Each
blue arrow depicts stitch, which is pointer. Red dotted arrows show the searching path for
the block containing point A by following the pre-defined pointers.

24

2.2.4 Mosaic Floorplan

In this section, we discuss the key features of the mosaic floorplan. For mosaic

floorplan, block sizes are flexible since the topological structure remains the same even

after adjusting block sizes.

Key Features

The 2-D mosaic floorplan is well-described in [44], and the authors summarize

the key features of the 2-D mosaic floorplan as follows:

• No empty space exists within the floorplan space, i.e., each coordinate is assigned

at-least one and only one block.

• The segment intersection forms a “T-junction”, except the corners of the given floor-

plan space. The T-junctions (0◦, 90◦, 180◦, 270◦) are defined as the point where one

end of the non-crossing segment contacts the crossing segment.

• There is no degenerate case where two distinct T-junctions meet at the same loca-

tion. We define the non-degenerate floorplan as the floorplan that does not have any

degenerate cases.

• The topological structure of the mosaic floorplan remains the same even after ad-

justing block sizes by shifting T-junction corners, unless the neighboring corners

are non-degenerate.

2-D Mosaic Floorplan

The mosaic floorplan has been well-studied in the past two decades [14]. Also,

many advances have been made in 2-D floorplan representations. In particular, our re-

search on the new 3-D floorplan representation, i.e., corner links, is inspired by corner

stitching [96] [97] and twin binary trees [141] [142] representations. For the 2-D mo-

saic floorplans, Yao et al. [141] present the precise number of mosaic floorplans with the

given-fixed number of blocks. The number of distinct mosaic floorplans with n blocks is

equal to the n-th Baxter number B(n) [9] [23] as shown in Equation (2.1). Dulucq and

Guibert [30] also prove that the exact number of distinct twin binary trees with n nodes

25

(a)

(b)

Figure 2.5: (a) An example of the 2-D mosaic floorplan, which has the same topological
structure with the 2-D floorplan in Figure 2.4. (b) The twin binary trees for the floorplan
of Figure 2.5(a). The pair of trees represents the up-right and down-left corner relations.

is equal to the Baxter number B(n). Finally, the authors of [141] demonstrate a bijective

mapping between the pair of twin binary trees and the 2-D mosaic floorplan.

26

B(n) =

n+1

1

−1n+1

2

−1

n

∑
k=1

n+1

k−1

n+1

k

n+1

k+1

 (2.1)

In this work, we define the corners of each block as 1/2d where d is the dimension

of the given floorplan space P. Thus in a 2-D floorplan, we refer to each corner of the four

corners of a block as 1/4 corner. Note that the two edges of the corner (i.e., a non-

crossing segment at a T-junction) divide the space into a 90-degree angle. Then, a straight

line (i.e., a crossing segment at a T-junction) is considered as a 1/2 corner. Therefore,

except for the four boundary corners of the 2-D floorplan space P, the tip of each 1/4

corner is always connected to either four 1/4 corners or two 1/4 corners and a 1/2 corner.

As we discussed in the previous Section 2.2.4, we refer to the four-1/4-corner-junction

configuration as a degenerate case. For the 2-D mosaic floorplan, we eliminate these

configurations by shifting the segment (forming a degenerate case) by a small distance, so

that we have no degenerate cases in our consideration. Without degenerate cases, i.e., in

the 2-D non-degenerate floorplan, the segment intersection always forms a T-junction.

In each dimension, we refer the corner that is closer to the origin as − and the

corner that is farther from the origin as +. And we denote each corner of block B as Bxy

(or Bxyz in 3-D) where x, y, and z respectively indicate the relative location of the corner

as − or + for each dimension. E.g., B−−1 = BX−Y−
1 , indicating that B1’s corner locating at

the minimum X and Y directional coordinate, BX−
1 (i.e., minBX

1) and BY−
1 (i.e., minBY

1).

For block A in Figure 2.5, the lower-left, upper-left, lower-right, and upper-right corners

are denoted as A−−, A−+, A+−, and A++, respectively. For each block in the 2-D mosaic

floorplan of Figure 2.5(a), the −− corners are linked by the forward arrows (depicted in

blue arrows) while the ++ corners are linked by the backward arrows (depicted in red

arrows).

Figure 2.5 illustrates (a) an example of 2-D mosaic floorplan which has the same

topological structure with the floorplan of Figure 2.4 and (b) the corresponding twin bi-

nary trees of the floorplan in Figure 2.5(a). The pair of trees represents the up-right and

down-left corner relations together. Blue and red arrows in Figure 2.5(a) indicate up-

27

right and down-left corner relations, and these are depicted by blue and red edges (left

and right trees respectively) in Figure 2.5(b), respectively. Solid and dotted edges in Fig-

ure 2.5(b) respectively represent horizontal and vertical relations. In Figure 2.5, τ− and

τ+ respectively denote twin binary trees for up-right (i.e., blue) and down-left (i.e., red)

corner relations. Θ is the leaf label sequence of tree ignoring the first, and I is the last bits

and the node sequence of the tree from the in-order traversal. Each in-order traversal of

the two trees (i.e., I(τ−) and I(τ+)) produces the same sequence, ACGHBDIEFJK. We

extend the two trees into binary leaves with label 0 at left and 1 at right. When we traverse

the leaves from left to right (except the first and the last leaves), the complement relation

of the binary strings is observed (i.e., 1100110011 (from tree τ−) vs. 0011001100 (from

tree τ+)). Combined Θ and I information together, we can decode and restore the physical

structure of 2-D mosaic floorplan [141].

3-D Mosaic Floorplan

Recently, 3-D floorplans have been intensively studied. Research on 3-D floor-

plan representation methodology include sequences of blocks to encode the topology of

3-D packing [137], representation for the 3-D slicing floorplan [20], 3-D corner block

lists (CBL) [85], 3-D bonded slice-surface grid (BSG) [148], T-tree data structure for the

spatial and temporal relations of blocks in 3-D space [144], graph-based topological 3-

D floorplan representation (3-D transitive closure subgraph) [145], topological structure

using weighted directed graph [65], and tree-based approaches and sequences to extend

twin binary tree [129] [127] [33]. Fischbach et al. present a comparative study of most of

the aforementioned 3-D floorplanning methods and more in [31].

As discussed in the previous Section 2.2.4, we define the corners of each block

as 1/2d where d is the dimension of the given d-D floorplan space. With this in mind, for

the 3-D floorplan, we define a point on a vertex of a block as 1/8 corner since the block

occupies
1
8

of the space at the point. Similarly, we define a point on an edge as 1/4 corner

and a point on a face as 1/2 corner since the block occupies
1
4

of the space at the point

on the edge and
1
2

of the space at the point on the face. The sum of the fractional corner

parts at any internal junction points is always 1.

28

2.3 New 3-D Floorplan Representations: Corner Link and Par-

tial Order

In this work, we develop novel 3-D floorplan representations and present their

properties. In this section, we introduce the new 3-D floorplan representation method-

ology using corner link, composed of a set of 1/8 corners (i.e., vertices) that belong

to the adjacent blocks next to each other in X , Y , Z, or diagonal direction in the 3-D

floorplan space. Then we connect our new 3-D floorplan representation to the partial

order [145] that shows the topological structure of the 3-D floorplan with three transi-

tive closure graphs for each dimension. Figure 2.6 summarizes the relations of the 3-D

mosaic floorplan, corner links and four trees representations, and face and block partial

orders. Each arrow describes the transformable relations through our proposed Lemmas

and Theorems in Section 2.4, and Algorithms in Section 2.5.

Figure 2.6: Relations of the 3-D mosaic floorplan, corner links and four trees representa-
tions, and face and block partial orders.

2.3.1 Corner Links

Corner links representation is our new representation methodology for the 3-D

mosaic floorplan. Inspired by corner stitching [96] [97], 2-D mosaic floorplan represen-

tation with T-junction [44], and twin binary trees representation [141] [142], we define

corner links as the spatial relations that describe all of the corner relations among the en-

tire blocks in the 3-D mosaic floorplan. We define a corner link as a set of 1/8 corners

29

Figure 2.7: A 3-D mosaic floorplan and layouts of the top and bottom layers. There
are ten blocks, a- j. A vertex of block i depicted by the red star indicates i+−+ corner
(iX+Y−Z+), meaning that the corner is located at maximum X , minimum Y , and maximum
Z coordinates of block i.

(i.e., vertices) that share the same coordinate and belong to the adjacent blocks next to

each other in X , Y , Z, or diagonal direction. For each corner link, we link all pairs of

1/8 corners in the adjacent blocks together that intersect at the same point, which we call

neighboring corners. Since we consider the 3-D mosaic floorplan, each corner link has

at least two 1/8 corners, i.e., we have at least one pair of neighboring corners in a cor-

ner link. The corner links representation describes all sets of such neighboring corners

between all distinct blocks in the floorplan space P.

Figure 2.7 shows an example of the 3-D mosaic floorplan and layouts of the top

and bottom layers. The 3-D floorplan space P (i.e., the outermost block that covers the

entire block components for the 3-D floorplan) has the origin at the farthest point from the

reader’s point of view (as shown in the left-most arrows depicting X-, Y -, and Z-direction).

There are ten blocks, a- j. For the 3-D floorplan space and each block B (where B is either

P or a- j), we denote vertices (i.e., 1/8 corners) of every single block as Bxyz where x, y,

and z are either + or −. In each dimension, we refer to the 1/8 corner that is closer to

the origin as − and the 1/8 corner that is farther from the origin as +, i.e., the symbols

+ and − respectively indicate the relative position of the 1/8 corners in each block on

X , Y , or Z-directional axis. For example, block i in Figure 2.7 has eight 1/8 corners.

And block i’s vertex depicted by the red star means that the corner is located at maximum

X- (iX+, i.e., max iX), minimum Y - (iY−, i.e., min iY), and maximum Z-coordinates (iZ+,

i.e., max iZ) of block i. This corner is expressed as iX+Y−Z+, and simplified to i+−+.

30

Corner i+−+ is linked to corner c+++ in Y -direction. Two corners i+−+ and c+++ are

neighboring corners each other, and these two corners make a corner link, the only corner

link at the location. Between two corners, the complement relation for Y -direction is

observed as two corners are linked in Y -axis. Likewise, corner i++− is linked to corner

e+++ in Z-axis direction, corner e−++ is linked to corner j+−− in diagonal direction,

etc. Each link determines a pair of neighboring corners. And a corner link is a set of

pairs of neighboring corners on the same coordinate. A set of neighboring corners is a

particular set of all corners in the 3-D floorplan that are pair-wise equal by the corner

equation. We write corner equations to describe each pair of neighboring corners. For

example, e−++ = j+−− is a corner equation equivalent to eX−Y+Z+ = jX+Y−Z−, meaning

that eX− = jX+ (i.e., minex = max jx), eY+ = jY− (i.e., maxey = min jy), and eZ+ = jZ−

(i.e., maxez = min jz). In the 3-D mosaic floorplan of Figure 2.7, there are 36 pairs of

neighboring corners and 36 sets of corner links.

Corner links of 3-D mosaic floorplan are conceptually matched to T-junctions for

2-D mosaic floorplan representation as determining the neighboring corners of blocks.

2-D mosaic floorplan can be represented by twin binary trees by using T-junctions. Simi-

larly, corner links can build trees for 3-D mosaic floorplan representation. For 3-D floor-

plan, two trees are insufficient to represent all spatial relations defined by corner links.

Instead, a 3-D mosaic floorplan requires four distinct trees that include all corner links in-

formation. Particularly, if the given 3-D mosaic floorplan is non-degenerate floorplan, the

Figure 2.8: Illustrations of neighboring corners. (a) Each red dot is one of four opposite
corners in 3-D floorplan, forming the root for each of four trees representation (as shown
in Figure 2.9). (b)-(d) Examples of corner links.

31

corner links representation is equivalent to the four trees representation. Each of four trees

is rooted at each of four opposite corners of the 3-D floorplan space P, i.e., P+++, P−−+,

P+−−, and P−+− corners or P−−−, P++−, P−++, and P+−+ corners. Figure 2.8 presents

illustrations of neighboring corners to create four trees. In Figure 2.8(a), red dots are four

opposite corners in 3-D floorplan, forming roots for four trees representation as shown in

Figure 2.9. In Figure 2.8(b)-(d), red (resp. black) corners have outgoing (resp. incoming)

links (i.e., edges in the four trees representation) to (resp. from) any neighboring corners

in the corner link.

Figure 2.9 shows the four trees representation equivalent to the 3-D mosaic floor-

plan in Figure 2.7. In Figures 2.9(a)-(d), each tree is respectively rooted at the four op-

posite corners of the 3-D floorplan space P, i.e., (a) P+++, (b) P−−+, (c) P+−−, and (d)

P−+−. Instead of Pxyz, each root of four trees is respectively denoted as g+++, a−−+,

c+−−, and f−+− because the four opposite corners of the 3-D floorplan space P share the

corners of g+++, a−−+, c+−−, and f−+−. Each node denotes blocks. Each edge repre-

sents each pair of neighboring corners in diagonal (black), X (red), Y (green), and Z (blue)

directions. For example, there is an edge showing diagonal direction neighboring corners

between blocks j and d (j−−− and d+++) in Figure 2.9(a). Since we have 36 neighboring

corners in the 3-D floorplan, the total number of edges in four trees is equal to 36. On each

Figure 2.9: Four trees representation equivalent to the 3-D mosaic floorplan in Figure 2.7.
Each of the four trees is respectively rooted at the opposite corners of the 3-D floorplan
space P, i.e., (a) P+++, (b) P−−+, (c) P+−−, and (d) P−+−.

32

edge of the four trees, there is a rectangle presenting the location of two corners. The rect-

angle describes a pair of neighboring corners, i.e., one corner from the parent node (upper

xyz symbols where x, y, z are either + or−) and another corner from the child node (lower

xyz symbols). For example, the rectangle

−++

+++

 between nodes (i.e., blocks) g and j in

Figure 2.9(a) represents that two corners g−++ and j+++ fabricate a pair of neighboring

corners. In other words, blocks g and j are adjacent next to each other in X-axis direction

and share the same coordinate at g−++ and j+++ corners. We refer the corner from the

parent node (e.g., g−++) and the corner from the child node (e.g., j+++) as the linking

and linked corners, respectively. Note that all linked neighboring corners in a single tree

have the same corner locations for each block since each child node represents the linked

and adjacent block to the direction from the root through its parent node. In Figure 2.9,

edges depicted by arrows are stitching together the cutting plane p3 of Figure 2.14. The

cutting plane will be described in Section 2.3.2.

Figures 2.10(a) and (b) present the examples of constructing trees by traversing

from the roots P+++ and P−−+ (i.e., g+++ and a−−+), respectively. Red and blue arrows

indicate the neighboring corners. Black dots are four opposite corners of the 3-D floorplan

space P. For Figure 2.10(a) from the root g+++, the linking neighboring corner g−++

Figure 2.10: Examples of constructing trees in Figures 2.9(a) and (b). Figures (a) and (b)
correspondingly illustrate traversing procedures from each root, i.e., (a) corner g+++ and
(b) corner a−−+. Blocks j and h have three neighboring corners to diagonal, X , and Z
directions.

33

links its linked neighboring corner j+++ in X direction. Block j has three neighboring

corners from j−++ to f+++ in X direction, from j++− to b+++ in Z direction, and from

j−−− to d+++ in diagonal direction. From the root, block i is linked with g+−+ in Y

direction. Then block i links corners c+++ and e+++ in Y and Z directions, respectively.

Block c links corner h+++, and block h links corner a+++. Figure 2.10(b) shows another

example to construct tree from the root a−−+. Note that we must consider the links for

the diagonal direction otherwise the tree cannot traverse all blocks in the 3-D floorplan.

For example, the tree in Figure 2.9(a) and Figure 2.10(a) may miss block d without the

diagonal-direction link, resulting in incomplete floorplan representation.

2.3.2 Partial Order

In this section, we describe the partial order representation for 3-D floorplan. The

partial order defines the topological structure of the 3-D mosaic floorplan with three tran-

sitive closure graphs per each dimension [145]. In this work, we have two partial-order-

related representations; (i) face partial order and (ii) block partial order representations.

The face partial order is our novel representation method that is equivalent to the block

partial order. Both of them can produce transitive closure graphs for each dimension.

For each dimension in the 3-D floorplan space, there exists a face partial order

through the faces of the blocks perpendicular to the dimensional direction. We determine

the face partial order by defining face (in)equalities, letting touching faces of adjacent

blocks be equal or relating opposite faces of the same block based on their coordinate in

the appropriate dimension. By taking the transitive closure graphs of each face partial

order relation in each dimension, we obtain a face partial order representation of the

3-D floorplan. The face partial order provides complete abstraction for the topological

structure of the 3-D mosaic floorplan. In this work, we determine the face partial order

based on the minimum (i.e., Bi−, minBi) and maximum (i.e., Bi+, maxBi) coordinate of

each block B in each dimension i. I.e., the face partial order in X direction is the transitive

closure graph composed of these relations by defining (i) any of two touching Y Z faces of

blocks as equal, and the two Y Z faces of the same block as naturally ordered. Therefore,

every coordinate on Y Z planes in the 3-D floorplan has and belongs to the corresponding

face partial order.

34

Figure 2.11: The face partial order representation for the 3-D mosaic floorplan in Fig-
ure 2.7. Figures (a), (b), and (c) present the face partial orders in X (red), Y (green), and
Z (blue) directions, respectively.

Figure 2.11 is the face partial order representation for the 3-D mosaic floorplan

in Figure 2.7. Figures 2.11(a)-(c) present the face partial orders in X (red), Y (green), and

Z (blue) directions, respectively. The − (resp. +) sign indicates the minimum (resp. the

maximum) coordinate of blocks (i.e., the closest (resp. the farthest) faces of blocks from

the origin in the dimension). For example, in Figure 2.11(a), PX− (equivalent to minPX)

denotes the Y Z face of the 3-D floorplan space P, which has the smallest X coordinate.

Likewise, aX− (resp. aX+) is the closest (resp. the farthest) Y Z face of block a from the

origin, which has the smallest (resp. the largest) X coordinate. For any point in Y Z plane

of block i, there are no other blocks in the X directional face partial order since block i

directly touches both Y Z faces of the given 3-D mosaic floorplan space P (i.e., PX− and

PX+) . In the 3-D floorplan of Figure 2.7, there are four blocks a, d, f , and i touching PX−

plane (i.e., Y Z face with the smallest X coordinate of the 3-D floorplan space P plane).

Block a is facing block h and b, blocks h and b are commonly facing block c, and block c

is facing PX+. Starting with PX−, finding the entire Y Z-plane face partial order relations

between blocks constructs the complete X-directional face partial order representation

as shown in Figure 2.11(a). Similarly, we obtain Y - and Z-directional face partial order

representations as shown in Figures 2.11(b)-(c).

35

In Figure 2.11(a), we obtain the following face equations by the definition of the

face partial order representation: aX+ = hX− = bX− = dX+ = f X+ = jX−, meaning that

X+ faces of blocks a, d, and f and X− faces of blocks h, b, and j are on the same Y Z

plane. This Y Z plane fabricates a single Y Z cutting plane, i.e., p1, which we define as a

equivalence class through the corner equations. Similarly, we have the following relations:

hX+ = cX− = eX− = bX+ = jX+ = gX−, describing another cutting plane p2. Intuitively,

the cutting plane consists of two sets of block faces touching in a particular axis, which

must have the same footprints (which we prove in Section 2.4). The cutting planes provide

key concept to assemble 3-D mosaic floorplan based on the partial order representation.

We determine a block partial order on the blocks by defining A > B (where A and

B are distinct blocks in the 3-D floorplan) if each properly oriented face of A is greater

than or equal to each properly oriented face of B in the face partial order of corresponding

direction. For example, for the block partial order relations in X direction, A > B if

the minimum X-coordinate face of A (i.e., AX−) is at least as large as the maximum X-

coordinate face of B (i.e., BX+) along with the X-directional face partial order. The block

partial order and the face partial order are equivalent. And both are equivalently capable

to construct the partial order representation, which abstracts the topological structure of

the given 3-D floorplan with three transitive closure graphs for each dimension.

Figure 2.12: The equivalent relations of (a) the X-directional face partial order (from
Figure 2.11(a)), (b) the X-directional block partial orders, and (c) the X-directional partial
order representation.

36

Figure 2.13: The X-, Y -, and Z-directional partial order representations for the 3-D mo-
saic floorplan in Figure 2.7.

Figures 2.12(a)-(c) present the equivalence relations of (a) the X-directional face

partial order (from Figure 2.11(a)), (b) the X-directional block partial order, and (c) the X-

directional partial order representation, the X-directional transitive closure graph for the

topological structure of the 3-D floorplan of Figure 2.7. Two Y Z planes p1 (p1 = pX−
1 =

pX+
1) and p2 (p2 = pX−

2 = pX+
2) fabricate two distinct Y Z cutting planes (i.e., p1 and p2)

in X direction, which we observe in Figure 2.7. For two blocks a and j, by analyzing

the partial order representation, we notice that the two blocks are facing the same cutting

plane p1 although these two blocks are not directly adjacent each other. There is no corner

links to stitch them together, however, the partial order representation provides intuitive

overview for the cutting planes, containing key joints to assemble blocks for the given

3-D floorplan. Finally, Figures 2.13(a)-(c) respectively show the X-, Y -, and Z-directional

partial order representations with three transitive closure graphs.

2.4 3-D Floorplan Representation Properties

In this section, we present several key properties for the corner links and par-

tial order representations. Theorems and Lemmas with proofs demonstrate characteristics

and relationships of the corner links, four trees, partial order representations, and their

37

corresponding 3-D mosaic floorplan. We show that (i) corner links representation can

be reduced to partial order representation, (ii) corner links representation for 3-D non-

degenerate mosaic floorplan can be equivalently expressed by four tree representation,

(iii) a 3-D floorplan is a valid floorplan if the partial order representation describes re-

lations between all pairs of blocks in the 3-D mosaic floorplan, and (iv) a partial order

representation can restore the absolute coordinates of all blocks in the 3-D mosaic floor-

plan by using the given physical dimensions of blocks.

2.4.1 Corner Links and Partial Order Representations

The corner links representation is capable of composing the partial order repre-

sentation for the mosaic floorplan, indicating that the information from the corner links

representation is sufficient to abstract the topological structure of 2-D and 3-D mosaic

floorplan.

Corner Links and 2-D Floorplan

Corner links representation for 2-D mosaic floorplan is equivalent to twin binary

trees representation when the mosaic floorplan is non-degenerate. The twin binary trees

include all T-junctions (i.e., neighboring corners) in the 2-D mosaic floorplan except at

the four corners of the 2-D floorplan space P. Since every corner link is composed of

a single pair of neighboring corners, twin binary trees and corner links representations

are equivalent to each other for 2-D mosaic floorplan. In Figure 2.5 above, (a) and (b)

respectively illustrate (a) the example of the corner links (red and blue arrows) for the 2-D

floorplan, and (b) the corresponding twin binary trees based on the corner links in (a).

Corner Links to Partial Order Representation

In this section, we show that the corner links representation can be reduced to the

partial order representation. As discussed in Section 2.2.4, we define the corners of each

block as 1/2d where d is the dimension of the floorplan space P. For 3-D floorplan, we

define a vertex, edge, and face of each block as a 1/8, 1/4, and 1/2 corners, respectively.

38

Given any internal junction point in the 3-D mosaic floorplan, the total sum of the frac-

tional corner parts at the junction point is always 1 since mosaic floorplans do not allow

any empty spaces. Consequently, there are always even number of 1/8 corners at any

internal junction point in the 3-D mosaic floorplan.

Lemma 1 (Odd Number of Neighboring Corners) Every 1/8 corner in a 3-D mosaic

floorplan, other than those at the eight outermost 1/8 corners of the 3-D floorplan space

P, must have an odd number of neighboring corners.

Proof:

1. The size of a single 1/8 corner (i.e., vertex) of each block in 3-D space is
1
8

.

2. Except the eight outermost corners of the 3-D floorplan space P, each 1/8 corner at

a certain point is contained in
1
4

,
1
2

, or 1 of space.

3. In order to fill
1
4

,
1
2

, or 1 of the space at the point, even number of 1/8 corners are

required.

4. Therefore, each 1/8 corner requires an odd number of 1/8 neighboring corners to

round up to
1
4

,
1
2

, or 1.

�

The XY plane between blocks b, d, e and h, j, i in Figure 2.7 is a cutting plane

p3 in Figure 2.14(a). Cutting plane p3 is the only cutting plane in Z direction. Also, the

cutting plane p3-related edges (between neighboring corners) are depicted by blue and

black arrows in Figures 2.9(a)-(d). Figures 2.14(b) and (c) present two cross-sectional

views of cutting plane p3 toward the bottom (Z−) direction (i.e., pZ−
3 in (b)) and the top

(Z+) direction (i.e., pZ+
3 in (c)), respectively. Grey blocks go through cutting plane p3

along with Z axis. By using the relevant corner links information, it is possible to show

that all of non-grey-color faces in Figures 2.14(b) and (c) have the same Z-coordinates.

Furthermore, we can find the symmetric difference between the set of blocks in pZ−
3 and

the set of blocks in pZ+
3 . Blocks b, d, e and h, j, i from two sets make the symmetric

difference. We refer the two sets as S− and S+, respectively. Figure 2.15 shows another

39

Figure 2.14: (a) Cutting plane p3 of the 3-D floorplan example in Figure 2.7 and its Z-
directional partial order in Figure 2.13(c). (b) and (c) are cross-sectional views of cutting
plane p3 toward Z− (i.e., pZ−

3) and Z+ (i.e., pZ+
3) directions, respectively.

example of two cross-sectional views from cutting plane pk, highlighting the symmetric

difference by purple blocks in pZ−
k (i.e., Figure (a)) and green blocks in pZ+

k (i.e., Figure

(b)). Note that S− and S+ are sets of blocks in pZ−
k and pZ+

k , respectively.

From the above Lemma 1, we claim that the structure of corner links is a con-

nected and acyclic directed graph. We also show that the corner links representation

contains sufficient information to restore the partial order representation.

Figure 2.15: The symmetric difference for footprints across cutting plane pk. Grey blocks
go through cutting plane pk along with Z axis. By Theorem 2.1, corner c−−+ must have a
neighboring corner, i.e., g−−−. S− and S+ are sets of blocks in pZ−

k and pZ+
k , respectively.

40

Theorem 2.1 (Restoring Partial Order from Corner Links) For a 3-D mosaic floor-

plan, the partial order representation can be restored from the corner links representation

by enumerating all blocks in p j−
k and p j+

k for every cutting plane pk in each dimension

j. Cutting plane pk is a plane characterized by the transitive closure of face equalities

obtained from faces that touch a corner, in each of the three dimensions.

We start with adjacent blocks which have a common surface (i.e., cutting plane

pk) perpendicular to dimension j. We consider one of these blocks, B1, looking at T that

is a set of all blocks which can be shown by using the corner links (thus the corner equa-

tions) and have a face along the cutting plane pk. Note that if any block B2 ∈ T shares an

1/8 corner at a point along the cutting plane pk with any other block B3, then block B3

should be in T . Also note that set T can be partitioned into two subsets according as to

whether a block in T is above or below cutting plane pk in dimension j. The two subsets

give two footprints E and F , from sets of blocks in p j−
k and p j+

k , respectively. To prove

Theorem 2.1, it is enought to show that the shapes of the two footprints are equal, i.e.,

E = F .

Proof (by contradiction):

1. Suppose that we have a 3-D mosaic floorplan. We use corner links representation to

identify the cutting plane pk. T is a set of all blocks which can be shown by using

the corner links and which have a face along the cutting plane pk.

2. Suppose that at least one block in the floorplan is not linked in the cutting plane pk

(i.e., the block is crossing the cutting plane pk). And S− and S+ are sets of blocks

in p j−
k and p j+

k where j is perpendicular to the cutting plane pk.

3. Assume footprints of S− and S+ are not equal, i.e., E 6=F . Then we take a corner of

the symmetric difference (e.g., a bottom-left corner c−−+ as shown in Figure 2.15).

4. The corner (e.g., c−−+) lies on the cutting plane p j−
k and belongs to S−. And

S− ∈ T .

5. The corner is a 1/8 corner of an odd number of 1/8 corners in T as E 6= F in (3).

41

6. However, the 1/8 corner must be in a set of an even number of 1/8 corners by

Lemma 1. Thus, there must be block Bi that has the corner (i.e., c−−+) as its

neighboring corner.

7. This would force Bi ∈ T by (1), a contradiction. Therefore, E = F .

�

2.4.2 Corner Links and Four Trees Representation

For a non-degenerate 3-D mosaic floorplan, the corner links representation can

be equivalently expressed by the four trees representation. Suppose that each corner has

only one neighboring corner except at the corner of the 3-D floorplan space P. Then,

the corner links representation forms trees. However, there are 3-D floorplans that have

corners having more than one neighboring corner as shown in Figure 2.16. Figure 2.16

shows a special example for the non-degenerate 3-D floorplan, which has corners having

more than one neighboring corner. Blocks a, b, c, and d are intersecting at the same coor-

dinate. For 2-D floorplan, when we have corners which have more than one neighboring

corner (i.e., two segments are crossing against each other), we can slide one segment to

Figure 2.16: A special example for the non-degenerate 3-D floorplan, which has corners
having more than one neighboring corner.

42

split the crossing into two T-junctions. Then the floorplan becomes the mosaic floorplan,

and its corresponding twin binary trees representation gives an exact one-to-one mapping

to the mosaic floorplan. However, the configuration of the 3-D floorplan in Figure 2.16

indicates that adjusting block size is inapplicable due to the alignments of red and blue

blocks above and below blocks a, b, c, and d, thus the 3-D floorplan is non-degenerate.

Theorem 2.2 (Conjecture of Four Trees Representation to 3-D Floorplan) For 3-D

mosaic floorplan, four trees are sufficient for a non-degenerate floorplan representation.

Proof:

1. Each face of a block has two corner links at two opposite corners to determine the

boundary of the block.

2. By Theorem 2.1, all faces on a cutting plane are linked together.

3. Based on 1 and 2, the statement of Theorem 2.2 is true.

�

More generally, we can conjecture that every 3-D mosaic floorplan can be ex-

pressed by its corresponding four trees representation. Conversely, each four trees rep-

resentation describes a single mosaic floorplan as both corner links representation and

four trees representation are based on corner equations. We can extend this conjecture

to higher dimensions. For d-D space, 2d−1 trees are sufficient for a non-degenerate d-D

mosaic floorplan representation.

2.4.3 Partial Order Representation to Valid Floorplan

From the corner links, we derive an important property of the partial order repre-

sentation. Based on Lemma 2, we show that the partial order representation can describe

a valid 3-D floorplan. Each corner link determines relations (either descendent or sibling)

43

between every pair of blocks in the corner link. The partial order representation yields all

cutting planes in the 3-D mosaic floorplan, in sorted order by their respective dimensions.

If the partial order representation describes relations between all pairs of blocks in the 3-D

floorplan, then the partial order representation produces a valid 3-D floorplan.

Lemma 2 (Partial Order based on Corner Link in 3-D Mosaic Floorplan) Given a

corner link between blocks B1 and B2 in a 3-D mosaic floorplan, let the locations of the

two neighboring corners be Bx1y1z1
1 and Bx2y2z2

2 where x1, x2, y1, y2, z1, z2 respectively

indicate the relative location of the corner as − or + for each dimension. If x1 6= x2, then

the two blocks B1 and B2 are in descendant relation in the partial order representation for

X dimension. Otherwise, the two blocks are in sibling relation under the cutting plane on

the Bx1
1 side. Similarly, Y and Z dimensional relations are obtained.

Proof:

By the definition of the corner links and the corner equations, the statement of Lemma 2

is true for all 3-D mosaic floorplans.

�

For example, from the mosaic 3-D floorplan in Figure 2.7 and the four trees rep-

resentation in Figure 2.9, we have a corner link composed of two neighboring corners

g−++ and j+++, describing the relation between two blocks g and j in X dimension. By

Lemma 2, block j is the parent of block g in the X-dimensional partial order. In the mean-

time, the two blocks are siblings under the cutting plane on the + sides (i.e., gY+ = jY+

and gZ+ = jZ+) in the Y - and Z-dimensional partial order representation (as shown in

Figure 2.13). Based on Lemma 2, we derive Theorem 2.3.

Theorem 2.3 (Valid 3-D Mosaic Floorplan and Partial Order Representation) Given

a valid and non-degenerate 3-D mosaic floorplan, any pair of distinct blocks are related

under at least one of the partial orders.

44

Proof (by enumeration):

1. The proof is by enumeration on the number of non-overlapping coordinates of the

two blocks, A and B.

2. If the two blocks A and B overlap in two coordinates (e.g., assume X and Y di-

mensions in this proof), tracing a straight line from one to the other will provide

a chain of face relations between one and the other, proving comparability in that

coordinate. Note that there are no blocks overlapping in three coordinates since we

consider valid 3-D floorplans.

3. If the two blocks A and B do not overlap in two coordinates (e.g., assume X and

Y dimensions) but overlap in the remaining coordinate (e.g., assume Z dimension),

consider the intersection with a plane (e.g., XY plane) that covers both block A

and block B. Assume (without loss of generality) that A’s coordinates are larger

than B’s coordinates in each dimension, e.g., AX− > BX+, AY− > BY+. Then, we

consider the intersecting XY plane as a 2-D floorplan. We produce a chain of blocks

A0, A1, A2, . . . , An where A = A0 and block Ai+1 has an 1/4 corner that shares the

corner with block Ai’s −− corner (i.e., A−−i). Note that such a corner must exist

for every block Ai since the corner A−−i coincides with an odd number of other

1/4 corners (similarly, by Lemma 1). Continue this procedure until we reach block

An that overlaps block B in at least one of X or Y coordinate, which must happen

eventually.

4. If the two blocks A and B do not overlap in any of three coordinates, assume (with-

out loss of generality) that A’s coordinates are larger than B’s coordinates in each

dimension, e.g., AX− > BX+, AY− > BY+, and AZ− > BZ+. We produce a chain of

blocks A0, A1, A2, . . . , An where A = A0 and block Ai+1 has an 1/8 corner that

shares the corner with block Ai’s−−− corner (i.e., A−−−i). Note that such a corner

must exist for every block Ai since the corner A−−−i coincides with an odd number

of other 1/8 corners (by Lemma 1). Continue this procedure until we reach block

An that overlaps block B in at least one of X , Y , or Z coordinate, which must happen

eventually.

45

5. Based on 2, 3, or 4, we obtain A0 ≥ A1 ≥ A2 ≥ . . . ≥ An under at least one of

dimensions. These inequalities hold for all the partial orders. Since A = A0 and

An ≥ B, A0 ≥ An ≥ B. Therefore, we have the relation A ≥ B under at least one of

the partial order representation.

�

2.4.4 Partial Order Representation to Blocks’ Absolute Coordinates

A partial order representation can restore the absolute coordinates of all blocks in

the 3-D mosaic floorplan by using the given physical dimensions of blocks. Based on the

relative orders of cutting planes per each dimension, the partial order of each dimension

provides information on the relative orders of the blocks in the corresponding dimension.

For direction d where d is one of X , Y , and Z, (1) we start from the minimum d-directional

coordinate of the floorplan space P, i.e., Pd−. (2) We iterate through the cutting planes,

incrementing a “layer counter” for each cutting plane. (3) We finish the procedure when

we reach Pd+. (4) Then we obtain the minimum and maximum coordinates of each block

in d direction. Examples are shown in Figure 2.17 and Table 2.1 for the 3-D mosaic

Figure 2.17: Obtaining X-, Y -, and Z-dimensional relative orders of all blocks in the 3-D
floorplan based on the partial order representation in Figure 2.13.

46

floorplan in Figure 2.7. The relative orders for cutting planes are x0 < x1 < x2 < x3,

y0 < y1 < y2 < y3, and z0 < z1 < z2 in X-, Y -, and Z-directional partial orders, respec-

tively. Suppose that block B’s X-directional physical dimension is B(X). Then we have

Equations (2.2) to obtain the absolute coordinates of the entire blocks in X direction. We

assume x0 = y0 = z0 = 0. Similarly, Y - and Z-directional absolute coordinates can be

obtained. In Table 2.1, Blockd+ and Blockd− denote Block’s d-directional maximum and

minimum coordinates, respectively, where d is X , Y , or Z.

a(X) = d(X) = f (X) ; x1 = a(X) ;

h(X) = b(X) = j(X) ; x2 = x1 +h(X) ;

c(X) = e(X) = g(X) ; x3 = x2 + c(X) ;

x3 = i(X)

(2.2)

Table 2.1: X-, Y -, and Z-directional absolute coordinates of all blocks of the 3-D floorplan
in Figure 2.7, based on the relative orders of cutting planes in Figure 2.17. With the
given physical dimensions of blocks, we can obtain the entire coordinates as described in
Equations (2.2).

Blocks
X Coordinate Y Coordinate Z Coordinate

BlockX− BlockX+ BlockY− BlockY+ BlockZ− BlockZ+

a x0 x1 y0 y1 z0 z2

b x1 x2 y0 y3 z0 z1

c x2 x3 y0 y1 z0 z2

d x0 x1 y1 y2 z0 z1

e x2 x3 y1 y2 z0 z1

f x0 x1 y2 y3 z0 z2

g x2 x3 y2 y3 z0 z2

h x1 x2 y0 y1 z1 z2

i x0 x3 y1 y2 z1 z2

j x1 x2 y2 y3 z1 z2

47

2.5 3-D Floorplan Representation Algorithms

In this section, we describe two algorithms: (i) to convert corner links represen-

tation to partial order representation (Algorithm 1 in Section 2.5.1), and (ii) to restore the

absolute coordinates of the entire blocks in the 3-D floorplan by using the relative orders

of cutting planes described by partial order representation (Algorithm 2 in Section 2.5.2).

2.5.1 Corner Links to Partial Order Representation

Algorithm 1 describes the procedure to convert corner links representation to par-

tial order representation. Based on Theorem 2.1, a complete list of the corner links in

the 3-D floorplan can be reduced to the three partial orders for each dimension of the

Algorithm 1 Corner Links to Partial Order Representation
1: Input: Complete set of corner links in the 3-D floorplan, composed of a set of equiv-

alent block corners
2: Output: Three partial orders for each dimension X , Y , and Z (i.e., three lists of cutting

planes that are ordered to each dimension)

/* Note: i-th cornerLink cLi ∈CornerLinks is composed of a set of neighboring
corners nC j, which includes all pairs of 1/8 corners in the adjacent blocks
that intersect at the same coordinate. j-th neighboring corner nC j ∈ cLi

is defined as Axyz = Bxyz where A and B denote blocks and x, y, z
indicate the relative location of the corner as + or −. */

3: Procedure getPartialOrders (CornerLinks)
4: for each dimension d ∈ {X ,Y,Z} do
5: sCuttingPlanes(d)← /0;
6: end for
7: for each cornerLink cLi ∈ CornerLinks do
8: for each neighboringCorners nC j ∈ cLi do
9: for each dimension d ∈ {X ,Y,Z} of the corner equation of nC j do

10: Obtain d-dimensional equivalent corner relation, i.e., cutting plane cPi(d);
11: sCuttingPlanes(d)← sCuttingPlanes(d) ∪ cuttingPlane cPi(d);
12: end for
13: end for
14: end for
15: for each sCuttingPlanes(d) where d ∈ {X ,Y,Z} do
16: partialOrder(d)← acyclicDirectedGraph(sCuttingPlanes(d));
17: end for

48

3-D space by using cutting planes. Algorithm 1 shows the conversion procedure from

the corner links representation to the partial order representation. From the inputs of the

complete set of corner links in 3-D mosaic floorplan, Algorithm 1 develops three partial

orders for each dimension X , Y , and Z as its outputs. The resulting partial orders are

acyclic directed graphs, i.e., topologically ordered three transitive closure graphs per each

dimension.

Note that corner links are composed of a set of neighboring corners, and each

corner link has at least two and the even number of 1/8 corners as shown in Lemma 1,

i.e., we have at least a pair of neighboring corners in the corner link. Also all 1/8 neigh-

boring corners are pair-wise equal by the corner equations. In Algorithm 1, i-th corner

link cLi in the set of the corner links CornerLinks is composed of a set of neighboring

corners nC j, which includes all pairs of 1/8 corners in the adjacent blocks that intersect at

the same coordinate. And j-th neighboring corner nC j is defined with corner equation as

Axyz = Bxyz where A and B denote blocks determining nC j and x, y, z indicate the relative

location of the corner within the blocks as + or−. Through the first FOR-loop, we initial-

ize sets of cutting planes per each dimension, sCuttingPlanes(d), as empty sets. We then

proceed the second FOR-loop for each corner link cLi in a set CornerLinks that includes

the entire corner links of the given 3-D floorplan. For each corner link cLi, we traverse ev-

ery neighboring corner nC j in cLi and obtain each dimensional equivalent corner relation

from the corner equation of nC j. This equivalent corner relation determines the cutting

plane cPi j(d), which will be added into the set of cutting planes for each dimension d.

After traversing all corner links through the second FOR-loop, we have complete sets of

cutting planes for each dimension. As every cutting plane defines the relative location of

blocks, we can generate each dimensional partial order partialOrder(d) by obtaining the

acyclic directed graph of cutting planes in sCuttingPlanes(d).

2.5.2 Partial Order to Absolute Coordinate Representation

Algorithm 2 describes the procedure to restore the absolute coordinates of ev-

ery block in the 3-D floorplan from the partial orders of blocks for each dimension. As

discussed in Section 2.4.3, the partial order representation can restore the absolute coor-

dinates of all blocks in the 3-D floorplan since the partial orders give the topological-

49

Algorithm 2 Partial Order to Absolute Coordinate
1: Input: Three partial orders for each dimension X , Y , and Z
2: Output: Absolute coordinates of −−− and +++ corners of each block

3: Procedure getCoordinateForAllBlocks (partialOrders)
4: for each partialOrder(d) ∈ partialOrders do
5: /* i.e., for each dimension d where d ∈ {X ,Y,Z} */
6: initialPlane iP← floorplanSpace.d−;
7: iP.d−.coordinate← 0;
8: sBlock← {Ai | blocks that are connected from iP plane in partialOrder(d)};
9: for each block Ai ∈ sBlock do

10: /* Block Ai is i-th block of sBlock */
11: Ai.d−.coordinate← iP.d−.coordinate;
12: end for
13: while sBlock 6= /0 do
14: getPlusCoordinate (sBlock);
15: updateSetBlock (sBlock);
16: end while
17: end for

18: Procedure getPlusCoordinate (sBlock)
19: for each block Ai ∈ sBlock do
20: Ai.d+.coordinate← Ai.d−.coordinate + Ai.d.dimension;
21: end for

22: Procedure updateSetBlock (sBlock)
23: for each block Ai ∈ sBlock do
24: if (Ai.d+ plane touches floorplanSpace.d+) then
25: sBlock← sBlock \ Ai;
26: continue;
27: end if
28: sNewBlock← {B j | blocks that are faced with Ai.d+ plane in partialOrder(d)};
29: for each block B j ∈ sNewBlock do
30: B j.d−.coordinate← Ai.d+.coordinate;
31: end for
32: sBlock← sBlock ∪ sNewBlock;
33: sBlock← sBlock \ Ai;
34: end for

relative orders of all blocks for each dimension. For each dimensional partial order

partialOrder(d), Algorithm 2 starts with the initialPlane iP as the minimum plane of

the floorplan space floorplanSpace.d−, i.e., the root node of each dimensional partial or-

50

der. We define the absolute coordinates of these root nodes as 0. In Algorithm 2, sBlock

is a set of blocks to be considered in each WHILE-loop iteration, and is initialized as

a set of blocks that are connected from iP plane in partialOrder(d). For each block

Ai ∈ sBlock, we determine the minimum coordinate of block Ai (i.e., Ai.d−.coordinate) as

the minimum coordinate of the 3-D floorplan space (i.e., iP.d−.coordinate). We execute

WHILE-loop until sBlock becomes empty set. WHILE-loop has two subprocedures. Pro-

cedure getPlusCoordinate (sBlock) obtains the maximum coordinates of each block Ai in

sBlock, which adds Ai’s d dimension to block Ai’s minimum coordinate. Then Procedure

updateSetBlock (sBlock) is performed for each block Ai ∈ sBlock. The procedure first

removes block Ai from sBlock if block Ai touches the maximum coordinate of the given

3-D floorplan. Otherwise, the procedure separately creates a set of blocks sNewBlock

containing all blocks faced with the maximum coordinate of block Ai. For each block

B j ∈ sNewBlock, we define the minimum coordinates of block B j as the maximum co-

ordinate of block Ai. Then the procedure adds all blocks in sNewBlock into sBlock, and

removes block Ai from sBlock. We obtain the absolute coordinates of all blocks when we

terminate WHILE-loop.

2.6 Conclusion

In this chapter, we have presented our new 3-D floorplan representation, corner

links representation. We define corner links representation as the spatial relations that

describe all corner relations of the entire blocks in the 3-D mosaic floorplan, where a

corner link is a set of 1/8 neighboring corners (i.e., vertices) that belong to the adjacent

blocks next to each other in X , Y , Z, or diagonal directions. We have analyzed corner

links’ key properties with lemmas, theorems, and their proofs along with that of the exist-

ing partial order representation, i.e., three transitive closure graphs for each dimension.

(1) Corner links representation can be reduced to the partial order representation. (2) A

non-degenerate 3-D mosaic floorplan can be equivalently expressed by the corresponding

four trees representation. (3) A partial order representation with three transitive closure

graphs captures all cutting planes in the 3-D mosaic floorplan, in order of their respective

dimensions. (4) The 3-D floorplan is a valid floorplan if the partial order representation

describes relations between all pairs of blocks in the 3-D mosaic floorplan. (5) A partial

51

order representation can restore the absolute coordinates of all blocks in the 3-D mosaic

floorplan by using the given physical dimensions of blocks. We leave to our future work

a couple of directions: (i) implementation and verification of the real 3-D floorplan rep-

resentation for 3-D IC design; (ii) more encoding schemes and further reduce the total

number of combinations while preserving the completeness of the encoding, and (iii) ex-

tension of our representation methodology to four (4-D) or even higher dimensions for the

mapping of dynamic re-programmable 3-D devices, the thermal management minimizing

the peak temperature, etc.

2.7 Acknowledgments

Chapter 2 contains a reprint of Fang Qiao, Ilgweon Kang, Daniel Kane, Evan-

geline Fung Yu Young, Chung-Kuan Cheng and Ronald Graham, “3D Floorplan Repre-

sentations: Corner Links and Partial Order”, Proc. IEEE International Conference of 3D

System Integration, 2016. Chapter 2 also contains the draft submitted to ACM Transac-

tions on Design Automation of Electronic Systems, Ilgweon Kang, Fang Qiao, Dongwon

Park, Daniel Kane, Evangeline Fung Yu Young, Chung-Kuan Cheng and Ronald Graham,

“3-D Floorplan Representations by Using Corner Links and Partial Order”, 2018. The dis-

sertation author is a main contributor of the paper and the primary author of the submitted

draft.

I would like to thank my coauthors Fang Qiao, Dongwon Park, Daniel Kane,

Evangeline Fung Yu Young, Chung-Kuan Cheng and Ronald Graham.

52

Chapter 3

Advancing Solution Quality and

Routability Validation in Global

Placement

The Nesterov’s method approach to analytic placement [79] [80] [81] has recently

demonstrated strong solution quality and scalability. We dissect the previous implemen-

tation strategy of [81] and show that solution quality can be significantly improved using

two levers: constraint-oriented local smoothing, and dynamic step size adaptation. We

propose a new density function that comprehends local overflow of area resources; this en-

ables a constraint-oriented local smoothing at per-bin granularity. Our improved dynamic

step size adaptation automatically determines step size and effectively allocates optimiza-

tion effort to significantly improve solution quality without undue runtime impact. Our

resulting global placement tool, RePlAce, achieves an average of 2.00% HPWL reduc-

tion over all best known ISPD-2005 and ISPD-2006 benchmark results, and an average

of 2.73% over all best known MMS benchmark results, without any benchmark-specific

code or tuning. We further extend our global placer to address routability, and achieve on

average 8.50% to 9.59% scaled HPWL reduction over previous leading academic placers

for the DAC-2012 and ICCAD-2012 benchmark suites. To our knowledge, RePlAce is

the first work to achieve superior solution quality across all the ISPD-2005, ISPD-2006,

MMS, DAC-2012 and ICCAD-2012 benchmark suites with a single placement engine.

53

3.1 Introduction

Placement is a fundamental, critical step in the physical design (PD) of integrated

circuits (ICs) [60]. Placement solution quality directly impacts overall design quality of

results with respect to timing closure, die utilization, routability, and design turnaround

time; these in turn affect the classic metrics of operating frequency, yield, power con-

sumption and cost. Despite significant improvement in placement algorithms over the

past decades [89], efficient and effective placement remains a challenging issue [5].

Among all academic placers, recent electrostatics-based placement (ePlace) im-

plementations [79] [80] [81] achieve benchmark solutions that rank among the best known

in terms of half-perimeter wirelength (HPWL). ePlace is a flat, nonlinear analytical global

placement engine with electrostatics-based global-smooth density cost function and Nes-

terov’s method nonlinear optimizer. The density cost function enables effective move-

ment of standard cells and macros over fixed instances, blockages and large macros. The

density cost is solved numerically by a fast Fourier transform (FFT) [113] with high ac-

curacy and O(n logn) complexity. Nesterov’s method provides accelerated convergence,

with steplength dynamically predicted via Lipschitz constant. A backtracking method

effectively prevents steplength overestimation. ePlace is capable of standard-cell place-

ment [80], mixed-size placement [81], and 3D-IC mixed-size placement [82]. Instance

size differences between standard cells and macros are addressed by an approximated non-

linear preconditioner. Yet despite these and other previous efforts, our work demonstrates

the availability of significant further improvement over best known HPWL results for stan-

dard academic benchmarks. Furthermore, ePlace [79] [80] [81] cannot produce routable

placements, e.g., for SUPERBLUE12 [121] ePlace routing hotspots demand 211.73% of

the routing supply (contrast this with RePlAce’s RC value of 102.43% in Table 3.7). In

RePlAce, we add optimization of routability in global routing to the Nesterov’s approach,

achieving substantial scaled HPWL improvements over previous leading academic plac-

ers for the DAC-2012 [121] and ICCAD-2012 [122] benchmark suites.

54

3.1.1 Density function and density penalty factor

Conventional global placement methodology seeks to minimize wirelength sub-

ject to density constraints which mitigate instance overlaps. The density constraints can

be transformed to yield an unconstrained objective with a density penalty factor, as shown

in Equation (3.1). Previous nonlinear placers [19] [63] [80] apply the density penalty

factor globally across the entire placement region, with the penalty factor increased pro-

portionally [63] [80], or at a constant rate [19], until the end of global placement. Such

approaches suffer from the “global” nature of their iterations, which can overlook the

fine-grain spatial and temporal behavior of the placement procedure. In other words, a

globally-applied penalty factor can be insensitive to density variations across the place-

ment region, and a fixed schedule for growth of the density penalty factor will not discern

between early and late stages of global placement. This can lead to unnecessary subopti-

mality of solutions.

3.1.2 Routability-driven placement

Routability is a fundamental requirement of real-world global placement [4] [121]

[122], as the placement process must provide a routable placement solution to the router.

It is well-understood that the standard minimum total HPWL placement objective at some

point becomes detrimental to routability. Previous works achieve improved routability via

(i) congestion estimation, and (ii) congestion mitigation. Several works [12] [126] [140]

are based on placement properties (e.g., Rent’s parameter, pin density, net overlapping,

etc.), without considering actual routing. Probabilistic estimations assume a uniform

wire density model [114], or pattern routing considering wire bends and vias [131].

More recent and effective constructive estimations used in recent routability-driven plac-

ers [43] [66] [75] are based on global routers [52] [77] [100]. To mitigate congestion,

the works of [47] [56] [114] formulate a routability-driven objective function with mul-

tiple Lagrangian multipliers. The works of [42] [43] [66] [75] implement cell inflation

with local refinement, or a rough legalizer during global placement, to spread overlapped

instances. The DAC-2012 [121] and ICCAD-2012 [122] routability-driven global place-

ment benchmark suites are the most recent academic evaluation frameworks that ad-

55

dress the routability issue at the global routing stage, and are widely used to validate

the performance of academic placers. Among all published results for these two bench-

mark suites, [24] [43] [47] [75] show leading-edge solution qualities in terms of scaled

HPWL, considering routing congestion (RC) as a penalty factor to HPWL as defined

in [121] [122]. A separate body of work (e.g., [27] [54]) addresses the routing-driven

ISPD-2014 [146] and ISPD-2015 [11] benchmarks. However, quality of results heavily

depends on detailed placers that are sensitive to details of technology and library cells,

which is beyond scope for a global placement framework such as ours.

In our work, we achieve global placement solution quality well beyond published

(best known) results for the ISPD-2005, ISPD-2006 and MMS benchmark suites via a

new constraint-oriented local-density function (RePlAce-ld), and an improved dynamic

step size adaptation (RePlAce-ds, RePlAce-ldds). With extensions to support routability

as assessed in global routing (RePlAce-r), we achieve superior solution quality on the

DAC-2012 and ICCAD-2012 benchmark suites. Our contributions are as follows.

• We propose a new constraint-oriented local-density function for mixed-size place-

ment that incorporates (i) a constraint-oriented local-density penalty factor for each

bin (i.e., local Lagrangian multiplier for each bin), and (ii) a constraint-oriented

local-density cost coefficient for each instance. Combining the previous global

density function [81] with a new local density function that comprehends local den-

sity overflow per bin2, we obtain a global placement with constraint-oriented local

smoothing that achieves improved solution quality.

• We propose a methodology for density-penalty adaptation via an improved dynamic

step size adaptation that automatically adjusts the density penalty factor based on

the HPWL curve (i.e., trajectory of HPWL cost versus iteration count) observed in

a trial placement procedure.3 Our improved dynamic step size adaptation applies

more fine-grained control at transition points on the HPWL curve. Compared to a

constant small step size, we obtain better solution quality while saving runtime.

2Density overflow for a given placement bin is defined as the total area of instances inside the placement
bin, minus the placement bin area.

3As we describe in detail below, a trial placement procedure is performed initially to capture transition
points on the HPWL curve; these transition points inform the step size adaptation.

56

• We validate RePlAce by HPWL comparison to all best known ISPD and MMS

benchmark results. Without any testcase-specific tuning, we achieve an average

HPWL reduction of 2.00% over the best known ISPD benchmark results, and of

2.73% over the best known MMS benchmark results.

• We propose a layer-aware cell inflation technique, considering per-layer pin block-

ages, and integrate the official global router NCTU-GR [161] of the DAC-2012 and

ICCAD-2012 benchmark suites for congestion estimation. We develop a simple but

effective superlinear cell inflation technique to mitigate global routing congestion

during global placement. Following the strategy of recent leading works [42] [43],

we further include a post-placement optimization by [76]. By integrating all our

innovations to improve routability, our placer delivers solution quality in terms of

scaled HPWL that substantially improves over previous leading academic placers

for the DAC-2012 and ICCAD-2012 benchmark suites, achieving on average 8.50%

to 9.59% scaled HPWL reduction over previous placers.4

The remainder of this chapter is organized as follows. Section 3.2 briefly states

the fundamental placement problem formulation. Section 3.3 introduces our constraint-

oriented local-density function with local Lagrangian multiplier, achieving local smooth-

ing. Section 3.4 describes our improved dynamic step size adaptation. Section 3.5 de-

scribes our methodology to improve routability, with congestion estimation by a global

router and a cell inflation technique. Section 3.6 presents our experimental setups and

results. Section 3.7 concludes this chapter.

4We use these benchmarks instead of the ISPD-2014 and ISPD-2015 benchmarks since our focus is on
mitigating congestion reported by the global router, along the lines of well-addressed, industry-formulated
routability-driven global placement contests [121] [122]. From a practical IC implementation flow (i.e.,
turnaround time) standpoint, global placement-based mitigation of (global) routing congestion remains cru-
cially important. In Section 3.6.3 below, a brief comparison between RePlAce and a leading-edge commer-
cial placer suggests that remaining “gaps” between academic research and industry practice are potentially
tractable in today’s university research context.

57

3.2 Placement Overview

Placement seeks to determine the location of instances (e.g., standard cells and

macros) while addressing optimization objectives such as HPWL, routed wirelength, tim-

ing, power, routability, etc. A placement solution is represented as

v = (x, y)T = (x1, x2, · · · , xn; y1, y2, · · · , yn)
T ,

where (xi, yi) is the physical location (of the origin, with orientation) of the ith instance. A

legal placement solution requires that (i) every instance is placed in the placement region

within predefined rows; and (ii) instances do not overlap. We follow the basic notations

in [81] and formulate the placement objective function as shown in Equation (3.1).

min
v

f (v) =W (v)+λD(v) (3.1)

The wirelength objective W (v) is the HPWL of the design modeled with a weighted-

average (WA) smoothing technique [46], while the density cost function D(v) addresses

instance overlap via an electrostatic analogy [81]. During nonlinear optimization, a den-

sity penalty factor (i.e., global Lagrangian multiplier) λ is gradually increased to reduce

overlap, at the cost of increased wirelength.

3.3 Constraint-Oriented Local-Density Function

We now describe our improvement of the previous electrostatics-based density

formulation in [79] [80] [81].

3.3.1 Necessity of Local Density Function

Scaling the density penalty factor in the placement objective function is critical

since this directly impacts the placement solution quality. Like many other analytical plac-

ers [19] [45], the previous ePlace implementations of [79] [80] [81] use the density penalty

factor λ, applied equally to every placement grid or bin in each iteration, to balance wire-

length and density costs. However, in our work, we make the motivating observation that

58

globally applying the density penalty factor (i.e., applying global Lagrangian multiplier)

sacrifices wirelength in less-overlapped bins to resolve more-overlapped bins, resulting in

unnecessary wirelength increase.

With this in mind, we propose a new local-density function that comprehends

locally overflowed (with respect to area resources) bins; this enables constraint-oriented

local smoothing at a per-bin granularity. To help effective removal of overlaps among

placement instances, our local-density function (per each bin) provides more repulsive

forces5 for overflowed bins, on the basis of the global-smooth density distribution ob-

tained by global-density function. This is beneficial since the local-density function on

top of the global-density function effectively helps us restrain suboptimal wirelength in-

crease caused by global-density penalty factor λ. In this section, we use the term global

when we refer to a density penalty that is applied equally throughout the layout, and lo-

cal when we refer to penalty factors or coefficients that are separately defined and used

at a per-bin granularity. We denote our new local-density function as Dlocal(v), and the

previous global-density function of [79] [80] [81] as Dglobal(v).

With respect to Equation (3.1), we begin with D(v) = Dglobal(v), and then add a

further term Dlocal(v) to introduce the local smoothing to our placement engine. The local

density function incorporates two innovations. First, we formulate a constraint-oriented

local-density penalty factor ν j (i.e., local Lagrangian multiplier) per bin to spread cells

in highly overflowed regions by increased repulsive forces (Section 3.3.2). Second, we

apply a constraint-oriented local-density coefficient ∆i per instance i to the local-density

function (Section 3.3.3). ∆i helps the instance i maintain a certain amount of repulsive

force induced from overflowed bins, even as the instance i escapes from (i.e., is no longer

contained in) those overflowed bins.

3.3.2 Constraint-Oriented Local-Density Penalty for Each Bin b j

To enable the constraint-oriented local smoothing, we introduce a local-density

penalty factor ν j (i.e., local Lagrangian multiplier) per each bin b j based on demands for

5We note that in our electrostatic analogy, the gradient of the cost function is the repulsive force from
electric charges. We use “force” to refer to this repulsive force due to electric charges.

59

area resources. We formulate the local-density penalty factor ν j as

ν j = eα·(BinDemand j−BinCapacity j). (3.2)

In Equation (3.2), BinCapacity j and BinDemand j respectively denote the area of bin b j

and the total area of cells intersecting b j. We define b j’s overflow as (BinDemand j −
BinCapacity j). The bin b j is overflowed if BinDemand j−BinCapacity j > 0. α is a co-

efficient to weight the local-density cost function as detailed in Equations (3.5) and (3.6)

below; α starts at a very small value, e.g., 1e-12 (empirically determined), and gradually

increases through the Nesterov’s optimization. When a bin b j is overflowed, ν j has ex-

ponentially larger value, generating larger repulsive force. Thus, cells in b j experience

larger force to be spread toward not-overflowed bins. When b j is not overflowed, cells

in b j experience small force. The local-density penalty factor ν j is especially beneficial

early in the placement procedure since it guides cells to quickly find their directions of

movement.6 Consequently, the local-density penalty factor ν j of each bin b j helps our

RePlAce to spread cells quickly for those cells on highly over-demanded bins.

Figure 3.1 illustrates the benefit of the constraint-oriented local-density penalty

factor ν j. Each i represents a placement instance (cell) belonging to the same (5-pin) net,

and red arrows indicate the repulsive force to spread cells. The faint outlines show the

previous locations of cells. In Figure 3.1(a), the global λ is applied equally to all cells

in the layout, helping to remove overlap between i5 and Macro1. In Figure 3.1(b), the

local smoothing is applied with local density-penalty factor ν j per bin, so that HPWL

increases (from the dotted to the solid blue rectangle) less than in (a). To remove the

overlap between i5 and Macro1, in (a) the global density function Dglobal(v) is applied to

all cells, scaled uniformly by the global density penalty factor λ, even though most of the

affected cells are not in the overflowed bins. The repulsive forces induced by Dglobal(v)

and λ cause a large HPWL increment, depicted by the transition between dotted and solid

blue rectangles. By contrast, in (b) the constraint-oriented local-density penalty factor ν j

separately scales the magnitude of the repulsive force per each bin based on that bin’s

overflow, i.e., bins b2 and b4 have relatively larger ν j to resolve overlaps. In this way,

6Initial placement typically seeks only to minimize wirelength, which results in a number of highly over-
flowed bins.

60

Figure 3.1: Density forces with (a) global density-penalty factor λ, and (b) constraint-
oriented local-density penalty factor ν j per each bin. (Bin boundaries are indicated by
black dotted lines. Standard-cell instances are labeled i1, · · · , i5.)

the local density suppresses the increase of the global Lagrangian multiplier, and bins b1

and b3 could experience smaller density force than in Figure 3.1(a), resulting in a smaller

HPWL increment.

3.3.3 Local-Density Cost Coefficient ∆i per Each Cell i

With constraint-oriented local smoothing, per Equation (3.2), cell i from an over-

flowed bin immediately loses much of its repulsive force component after it escapes the

overflowed bin. Without sufficient repulsive force induced from the global density func-

tion, the movement of cell i slows down if the adjacent bin to which it moves is not

overflowed. Furthermore, the cell i can return to its previous, (formerly) overflowed bin

as a consequence of wirelength-induced attractive force. In such a scenario, instances

(cells) are not effectively spread to resolve the cell overlapping. To effectively achieve

local smoothing via a local density penalty factor without globally sacrificing HPWL, we

propose a new mechanism to maintain the repulsive forces generated by the constraint-

oriented local-density penalty factor ν j of the overflowed bin b j.

61

Equation (3.3) gives the constraint-oriented local-density cost coefficient, ∆i, per

each cell i (ci, ci ∈ b j). We use the convention ci ∈ b j to indicate that cell i intersects bin

b j. ∆i is used to multiplicatively scale the local density function Dlocal(v).

∆
iter+1
i = ∆

iter
i +β ·

max(Over f low j,0)
∑i Ai

(3.3)

Here, Ai is the area of cell i (ci) and iter is the index of the iteration. We initialize ∆i = 0.

With respect to the current overflow of bin b j, ∆i accumulates positive overflow normal-

ized by the total cell area in the design (i.e., ∑i Ai). β is a coefficient to balance between

global-density and local-density induced forces. β initially takes on a very small value,

e.g., 1e-13 (empirically determined), and gradually increases through the Nesterov’s op-

timization.7 Multiplicatively scaling the local-density function by ∆i prevents cell i from

losing its local-density penalty factor induced from the repulsive force, even as cell i

moves out of the overflowed bin b j. (See Equation (3.9) and Algorithm 3)

Figure 3.2 illustrates the advantage of multiplying by the constraint-oriented local-

density cost coefficient ∆i. Bin b4 is overflowed, while the other bins are not overflowed.

Red arrows depict the repulsive force component induced from the local-density penalty

factor ν j. In Figure 3.2(a), without ∆i, the magnitude of force rapidly decreases after a cell

i escapes from the overflowed bin b4, resulting in slower movements. In Figure 3.2(b), the

local-density cost coefficient ∆i compensates the loss of the repulsive force component

induced from the overflowed bins. Blue arrows in Figure 3.2(b) indicate the repulsive

force components induced from the local-density cost coefficient ∆i in each iteration.

3.3.4 Formulation: Local Density Function and Gradient

Table 3.1 summarizes our notations.8 Equation (3.4) shows the global density

function introduced in [81],

Dglobal(v) = ∑
i

Dglobal
i (v) = ∑

i
qiφi(v), (3.4)

7βiter+1 = co f ×βiter where co f is the step size defined in Section 3.4.1.
8φ j and E j are the electric potential and field at bin j, respectively. They are calculated using the existing

charge density (from current placement of all instances) by FFT. Due to the discrete nature of FFT, the electric
potential and field has a discrete value at per-bin granularity. Thus, Ei for instance i is E j where instance i is
at bin j.

62

(a) Local smoothing without local-density cost coefficient ∆i.

(b) Local smoothing with local-density cost coefficient ∆i.

Figure 3.2: Local smoothing methods (a) without and (b) with local-density cost coeffi-
cient ∆i. Figures are ordered from left to right by iteration indices. Figure (b) shows the
effect of a larger force to spread cells from the overflowed bin b4.

where qi is the electric charge and φi is the potential of cell i. Dglobal(v) is equal to D(v)

in Equation (3.1).

To achieve local smoothing, we add the local-density function Dlocal(v) as a fur-

ther term to our placement objective function. Using the constraint-oriented local-density

penalty factor ν j, we formulate the new local-density function Dlocal(v) as

Dlocal(v) = ∑
b j∈B

ν jDlocal
j (v) = ∑

b j∈B
ν j

(
∑

ci∈b j

Ai jqiφ j

)
, (3.5)

where Ai j is the overlapped area between cell i and bin b j, qi is again the electric charge

of cell i, and φ j is the local electric potential of bin b j.

Our new placement objective function f (v) incorporates the global density func-

tion Dglobal(v) of Equation (3.4) and the local density function Dlocal(v):

min
v

f (v) =W (v)+λDglobal(v)+Dlocal(v) (3.6)

63

Table 3.1: Notations for local-density function.

Term Description

i Index of the ith placement instance (cell), i = 1, ...,n

ci ith placement instance (cell), i = 1, ...,n

b j jth bin in the placement region

B the set of placement bins

qi Electric charge of the ith placement instance

φ j Electric potential at bin j

φi Electric potential at the location of ith placement instance

E Gradient of the potential φ, i.e., electric field

Ai j Overlap area between ith placement instance and bin b j

λ Lagrangian multiplier for global density cost function

ν j Constraint-oriented local-density penalty factor of bin b j

∆i Local-density cost coefficient of the ith placement instance

By differentiating Equation (3.6), we obtain the force to spread instances (cells

and macros). Equation (3.7) gives the gradient of the global density function Dglobal(v)

described in [81]. Equation (3.8) gives the gradient of the local density function Dlocal(v)

∂Dglobal(v)
∂xi

= qi
∂φi

∂xi
= qiEi(v), (3.7)

∂Dlocal(v)
∂xi

= ∑
b j∈B

α
∂BinDemand j

∂xi
ν j ∑

k 6=i,k∈b j

Ak jqkφ j

+ ∑
b j∈B

ν j

(
∂Ai j

∂xi
qiφ j + ∑

k 6=i,k∈b j

Ak jqkE j

)
,

(3.8)

where E is the electric field. Costi in Equation (3.9) determines the cell i’s movement,

comprehending both the global density distribution and the local overflowed region.

Costi =
∂W (v)

∂xi
+λ

∂Dglobal(v)
∂xi

+∆i
∂Dlocal(v)

∂xi
(3.9)

64

Algorithm 3 Local-Density Cost Function
1: Procedure LocalDensityCostFunction(ci)
2: Initialize ∆i← 0;
3: for all b j (b j ∩ ci 6= 0) do
4: over f low j← BinDemand j−BinCapacity j;
5: if over f low j > 0 then
6: ∆i += β× over f low j

total cell area ;
7: end if
8: LDCosti += ∆i×Gradient j(ci ∈ b j);
9: end for

10: return Gradienti;
11: Procedure Gradient j(ci ∈ b j)
12: calculate Gradient j [81];
13: return Gradient j;

Algorithm 3 describes the procedure to obtain the local-density cost, LDCosti.

Line 2 initializes ∆i = 0. We store the electric potential information at a per-bin gran-

ularity, so we first calculate Gradient j to compute LDCosti (Line 8 and Lines 11-13).

Based on cell/charge/energy distribution of the previous iteration, we calculate Gradient j

by using FFT [81] (Lines 11-13). In Lines 5-7, we add the normalized over f low j of the

bin b j (ci ∈ b j) to ∆i when the bin b j is overflowed. In Line 8, we obtain LDCost i after

multiplying by ∆i.

3.3.5 Additional Details and Illustration

Figures 3.3(a)-(c) and Figures 3.4(d)-(e) contrast the mixed-size global placement

for NEWBLUE1 [138], by ePlace-MS [81] (left-side images) and the constraint-oriented

local-density function equipped RePlAce-ld (right-side images).9 Red and green dots

represent standard cells and filler cells, respectively. Blue rectangles are movable macros.

RePlAce-ld encourages faster cell spreading in overflowed regions by virtue of the repul-

sive force induced from the local density function. Figures 3.3(a)-(c) show the mixed-size

global placement stage (mGP) with movable standard cells and macros. The figures show

how ePlace-MS [81] fails to move the largest macro due to lack of force, while RePlAce-

ld moves the largest macro toward the boundary of the layout. After mGP, we execute

9We follow the same mixed-size placement procedure and naming convention as detailed in [81].

65

(a) Iteration: 250 (mGP), HPWL= 2.07×107 (LHS), 2.14×107 (RHS).

(b) Iteration: 400 (mGP), HPWL= 4.51×107 (LHS), 4.32×107 (RHS).

(c) Iteration: 600 (mGP), HPWL= 6.55×107 (LHS), 5.32×107 (RHS).

Figure 3.3: Placement of NEWBLUE1 [138]: left hand side (LHS) images are from
ePlace-MS [81], and right hand side (RHS) images are from RePlAce-ld. The target
density is set to 100%.

66

(d) Iteration: 30 (cGP), HPWL= 5.18×107 (LHS), 5.96×107 (RHS).

(e) Final legalized layout, HPWL= 6.39×107 (LHS), 5.60×107 (RHS).

Figure 3.4: Placement of NEWBLUE1 [138]: left hand side (LHS) images are from
ePlace-MS [81], and right hand side (RHS) images are from RePlAce-ld. The target
density is set to 100%. Continued.

67

a simulated annealing-based macro legalization stage (mLG) to fix all macro locations.

Then, a standard-cell only global placement stage (cGP, inheriting instance locations from

mLG with macros fixed) is called to recover solution quality lost during macro legaliza-

tion. Figure 3.4(d) shows that moving the largest macro to the boundary of the layout

helps to improve the solution quality by providing more space in the center of the layout

region for the standard-cell placement. Moreover, Figure 3.3(b) (left) shows that ePlace-

MS applies only one large center-oriented force to filler cells. By contrast, RePlAce-ld

applies multiple overflowed-region-induced force components to filler cells, as a result of

the local-density function. Figure 3.4(e) shows the final legalized layouts. HPWL values

for ePlace-MS and RePlAce-ld are 6.39×107 and 5.60×107, respectively.

3.4 Improved Dynamic Step Size Adaptation

In this section, we describe our improved dynamic step size adaptation. How to

decide the step size is a well-studied topic in the global placement literature [18] [19].

In general, constant large step size leads to faster convergence, but can sacrifice solution

quality (Figure 3.5(a)). Constant small step size generates an accurate solution according

to the given formulation, but with large runtime (Figure 3.5(b)). Neither strategy accounts

for the shape characteristics (e.g., instantaneous slope at different iterations) of the HPWL

curve10 shown in the figure. We start and end with small step size since we have observed

that the step sizes in early and last iterations significantly impact on the placement solution

quality. Also we observe that transition points11 on HPWL curve are crucial to obtain bet-

ter solution quality. Thus our improved dynamic step size adaptation strategy invests more

iterations near those transition points on HPWL curve by shrinking the range of step sizes

such that the maximum step size is suppressed down to hundreds times smaller compared

to our default procedure. Figure 3.5(c) conceptually illustrates our improved dynamic step

size adaptation that comprehends the characteristics of the HPWL curve. To effectively

10We define the HPWL curve as the plot of HPWL values versus iterations in the global placement proce-
dure.

11In our improved dynamic step size adaptation, we define and use two classes of transition points based
on instantaneous rate of slope change: 1st-order transition point T P1 and 2nd-order transition point T P2. The
transition points are described in Section 3.4.2.

68

Figure 3.5: An illustration conceptually showing the benefit of dynamic step size adap-
tation. Cost is composite of wirelength and density. (a) Constant large step size; (b)
Constant small step size; and (c) Our improved dynamic step size adaptation.

allocate optimization effort, we dynamically adjust both the step size and the step size

scaling range during global placement, while previous approaches [18] [19] [79] [80] [81]

adjust step size within a constant step size range.

3.4.1 Improved Dynamic Step Size Adaptation

The density penalty factor λ (in Equation (3.1)) is used to resolve instance over-

laps. In previous ePlace implementations [79] [80] [81], the λ scaling tries to maintain

a constant HPWL increment12 across iterations. Algorithm 4 summarizes the ePlace λ

scaling methodology, whereby step size (i.e., co f in Algorithm 4) is dynamically scaled

to maintain a constant HPWL increment of ∆HPWLre f (Line 4 in Algorithm 4). In our

implementation, we use the same ∆HPWLre f as in ePlace-MS [81]. Based on HPWL

increment per iteration, co f varies within a predefined step size scale [co f min, co f max],

co fmax and co fmin respectively indicate the maximum and the minimum step sizes. A

larger (resp. smaller) HPWL increment corresponds to a smaller (resp. larger) co f . The

previous work of ePlace-MS [81] fixes co f min = 0.95 and co f max = 1.05.

12A “constant cell displacement” results in failure to converge for at least four of 16 (ISPD-2005 and
ISPD-2006) testcases; we therefore believe that this is an enabling difference in RePlAce.

69

Algorithm 4 λ Scaling
1: Procedure λ Scaling()
2: λ←(∑i gradient wirelength)/(∑i gradient potential);
3: for k = 0 to last iteration do
4: p← (HPWLk − HPWLk−1) /∆HPWLre f ;
5: if p < 0 then
6: co f ← co fmax;
7: else
8: co f ← max(co fmin, pow(co fmax,1− p));
9: end if

10: λ← λ× co f ;
11: end for

In RePlAce, to efficiently allocate the optimization effort we propose an improved

dynamic step size adaptation strategy that dynamically adjusts the step size co f and

the maximum step size co fmax (i.e., the range of step size scaling) with respect to the

HPWL increment per each iteration. Figure 3.6 shows the HPWL curve from the testcase

ADAPTEC1 [138] across iterations in the placement procedure. The slope of the HPWL

curve can change at each iteration, and changes rapidly near the star symbols. In our

experience, all observed HPWL curves from a wide range of testcases have very strong

commonality, with trajectory shapes as shown in Figure 3.6 and two classes of extreme

points. We define two classes of transition points based on the HPWL curve’s instanta-

neous slope-change rate: (i) 2nd-order transition point (T P2), and (ii) 1st-order transition

point (T P1).

We perform a trial placement ahead of the actual placement procedure to capture

transition points. We observe that the HPWL on transition points from the trial placement

are close to those from the actual global placement procedure that applies our improved

dynamic step size adaptation method (i.e., < 5%). The trial placement procedure is de-

scribed in Section 3.4.2. On the HPWL curve from the placement procedure, the T P2

points are defined to be the two points with largest absolute instantaneous rate of slope

change (red and blue stars in Figure 3.6). Two T P2 points divide the HPWL curve into

three phases (blue, green, and yellow regions in Figure 3.6), and each phase has one T P1

point. The T P1 point within a given phase is determined as follows. (i) Within each of the

1st and 3rd phases, the T P1 point has the same instantaneous slope as the line segment

70

Figure 3.6: HPWL curve of ADAPTEC1 from the trial placement procedure and the esti-
mated transition points (T P2 = red/blue stars, T P1 = yellow squares).

(purple solid line segment in Figure 3.6) drawn between the two extreme (i.e., leftmost

and rightmost) points of the HPWL curve within the phase. (ii) Within the 2nd phase, the

T P1 point corresponds to the intersection between the HPWL curve and the purple solid

line segment. The T P1 points are shown as yellow squares in Figure 3.6.

We observe that transition points are important to obtaining improved solution

quality because (i) instances tend to alter their moving directions and to settle their lo-

cations near the T P2s, which determines the overall solution quality; and (ii) instances

move actively toward their final locations near the T P1s, which provides an opportunity

to save runtime. We allocate optimization effort based on these observations, applying

the smallest step size at the T P2s and the largest step size at the T P1s. We achieve this

71

Figure 3.7: Solution qualities achieved by constant step size scale as in ePlace-
MS [81] and by RePlAce-ds’ improved dynamic step size adaptation strategy, on the
ADAPTEC1 [138] testcase. RePlAce-ds achieves a dominating runtime and solution qual-
ity (red square).

dynamical adaptation of the step size scale by controlling the maximum step size co fmax.

Our empirically determined step size scale ranges from [0.95, 1.0001] to [0.95, 1.05].

co fmax = minco fmax + co frange×
|HPWLcurrent −HPWLT P2 |
|HPWLT P1−HPWLT P2 |

(3.10)

With the given minco fmax , co frange, and the current iteration’s HPWL, we compute

maximum step size using Equation (3.10), which achieves dynamic control of the step size

scale. In our implementation, minco fmax is 1.0001 in the first phase, 1.001 in the second

phase, and 1.005 in the third phase. We empirically determine co frange as 0.0009, 0.024

and 0.045 for the three phases, respectively. We allocate more optimization effort at the

beginning of the nonlinear optimization based on our observations that the solution quality

achieved in early iterations is critical to the final placement solution. Figure 3.7 shows the

72

tradeoff between solution quality (HPWL) and runtime (#iterations) with various constant

step sizes. Our improved dynamic step size adaptation achieves a superior result (red

square) in terms of both HPWL and runtime. We note that ePlace-MS (blue line) does not

converge with smaller step sizes (i.e., [0.95,1.002] or below).

3.4.2 Trial Global Placement

To find the 1st-order (T P1) and the 2nd-order (T P2) transition points on the

HPWL curve, we perform a trial placement procedure that includes a trial global place-

ment (tGP). We terminate tGP when the density overflow is≤ τinit

2.5
.13 Figure 3.8 describes

our trial procedure. Inspired by [108], the transition points are determined as follows. (1)

In Line 2 of Algorithm 5, we first perform tGP and obtain the HPWL curve, as shown

in Figure 3.6. (2) In Line 3, we connect the initial (start of tGP) and final (end of tGP)

HPWL points on the HPWL curve by a primary line segment (green solid line segment in

Figure 3.6). In Line 4, for each tGP iteration (along the x-axis in Figure 3.6), we calculate

the absolute HPWL differences between the HPWL curve and the primary line segment

(black arrows in Figure 3.6). (3) In Line 5, we pick the point with the largest absolute dif-

ference as one of the T P2 points (red star in Figure 3.6). (4) To find the other T P2 point,

we connect the existing T P2 point to the initial and final HPWL points, respectively, using

two secondary line segments (green dotted line segments in Figure 3.6). The point (blue

star in Figure 3.6) with the largest absolute HPWL difference between the HPWL curve

and the two secondary line segments is determined as the other T P2 point. (5) In Line 6,

we divide the HPWL curve into three phases based on the two T P2 points. In Line 7, we

repeat (2) separately for the HPWL curve of each phase. (6) In Lines 8-9, we repeat (3)

to find a T P1 point within each of the 1st and 3rd phases. The T P1 point in the 2nd phase

is the point of intersection where the HPWL curve transitions from above to below the

purple line segment.

13Overall density overflow τ is defined as the sum of the density overflow for all placement bins over the
total cell area. 0≤ τ≤ 1. The initial density overflow τinit is the density overflow obtained from a wirelength-
only optimization before our nonlinear optimization. We empirically determine the constant as 2.5, which
provides better results in terms of tradeoff between HPWL and the number of iterations.

73

Figure 3.8: Flowchart of our trial placement procedure. The red rectangle indicates non-
linear optimization using Nesterov’s method. The actual placement procedure follows this
trial placement procedure.

Algorithm 5 Finding Transition Points
1: Procedure Trial()
2: Trial placement();
3: Connect initial and final points on HPWL curve using a linear line;
4: Calculate HPWL differences between HPWL curve and linear line for each tGP iter-

ation;
5: Get the 2nd-order transition points (T P2);
6: Divide the HPWL curve into three phases by T P2;
7: Connect initial and final points on HPWL curve separately for each phase;
8: Calculate HPWL differences between HPWL curve and linear line for each phase for

each tGP iteration;
9: Get the 1st-order transition points (T P1);

10: return T P2 and T P1;

74

3.5 Routability-Driven Placement

To produce routable placement has recently being recognized as being of critical

importance. This is reflected by many routability-driven placement contests [11] [120]

[121] [122] [146] and placers [24] [27] [43] [47] [66] [75]. In this section, we describe

how global routability-driven placement is achieved in RePlAce, including (i) capacity

and blockage calculation; (ii) demand calculation; (iii) cell inflation technique; and (iv)

overall flow. Notations are described in Table 3.2.

3.5.1 Capacity and Blockage Calculation

According to DAC-2012 [121] and ICCAD-2012 [122] contest and benchmark

suite descriptions, global routing is performed using global routing tiles, with back-end-

of-line capacity (i.e., tile width or height) and blockage (in the unit of tile dimension) de-

fined for each layer in the official benchmark inputs. We follow the definitions from [121]

[122], and associate a capacity value (cap) to each edge of the global routing tile for each

metal layer. As an example, for a unidirectional horizontal routing layer, the left and right

tile edges have a capacity value directly from the benchmark specification, while the up-

Table 3.2: Notations for routability-driven placement. We use the default length unit in
the DAC-2012 and ICCAD-2012 benchmark suites.

Term Description

blk blocked routing capacity per tile edge

cap routing capacity (by length unit) per tile edge

demand routing demand per tile edge

in f l ratio cell inflation ratio

ml metal layer index

pincnt pin count per tile

pitchml metal pitch (by length unit) on layer ml

rt global routing tile index

usage # tracks used per tile edge

75

Figure 3.9: Illustration of blockage calculation. For the vertical edge on the right, blk =
blk1+blk2. Note the union of blocked capacity for the upper two blockages.

per and lower tile edges have a capacity of zero. We also associate a routing blockage

(blk) to each edge of a global routing tile for each metal layer. The blockage is defined as

the total blocked capacity (total blocked tile width or height), as illustrated in Figure 3.9.

3.5.2 Demand Calculation

During global placement, we invoke the official router NCTU-GR [161] from

the DAC-2012 and ICCAD-2012 contests to obtain the routing demand. As described

in [121], the global router reports cross-tile routing segments, so that tile edge-based rout-

ing usage (#tracks used) can be obtained. For each layer, we multiply the usage (usage)

with metal pitch to obtain the routing demand. Additionally, for metal 2 and below, we fur-

ther consider the pin blockage effect. Here, we calculate the total number of pins (pincnt)

within a tile and use γpin as a pin blockage factor. We describe the demand calculation in

Equation (3.11):

demande,ml = (usagee,ml + γpin · pincnt) · pitchml, (3.11)

where the subscript e indicates one of the four edges of a given global routing tile, and the

subscript ml indicates a specific metal layer. Thus, we calculate the demand for all four

tile edges and for all metal layers. We use the same pin blockage factor as specified in

each of the benchmark suites, i.e., γpin = 0 for DAC-2012 benchmark and γpin = 0.05 for

ICCAD-2012 benchmark.

76

Figure 3.10: An example of routing demand calculation: the upper-left tile has a horizon-
tal routing demand of max(15,19) = 19, and a vertical routing demand of max(18,20) =
20.

3.5.3 Cell Inflation

To resolve congestion, we inflate cells within tiles for which the demand is larger

than the corresponding capacity. Since we calculate the capacity and demand per tile edge

on each layer, there are multiple (capacity, demand) pairs. The inflation ratio for each cell

is calculated as the maximum demand over capacity ratio, as shown in Equation (3.12).

Cell width and height are increased according to the square root of the inflation ratio

for each direction. Based on empirical studies, we enable superlinear cell inflation with

γsuper = 2.33 and we bound the maximum inflation ratio to be 2.5. In this way, we achieve

metal layer-aware inflation, rather than relying only on sums of capacities and demands

over all metal layers [43] [75].

in f l ratio = max
all e,ml

((demande,ml +blke,ml

cape,ml

)γsuper
,2.5

)
(3.12)

To avoid the total inflated area exceeding available white-space, we adopt the

dynamic inflation ratio adjustment methodology from [42]. Algorithm 6 describes the

inflation ratio adjustment. We first calculate the total inflated area according to the initial

77

Algorithm 6 Inflation Ratio Adjustment
1: Procedure Ad justIn f lationRatio
2: total in f lated area← GetTotalIn f latedArea();
3: while total in f lated area≥ max in f lated area do
4: in f l ratio0← GetIn f lationRatioForLeastCongestedTile();
5: for all tiles (rt) do
6: in f l ratiort ←

in f l ratiort
in f l ratio0

;
7: end for
8: total in f lated area←U pdateTotalIn f latedArea();
9: end while

Algorithm 7 Routability Optimization
1: Procedure RouteOpt
2: CalculateIn f lationRatio();
3: Ad justIn f lationRatio();
4: In f lateCell();
5: λcurr iter← λcurr iter−100;
6: Ad justUtilization();
7: U pdateEarlyTerminationIndicator();

inflation ratio. If the total inflated area exceeds a predefined maximum value,

max in f lated area, we divide the horizontal inflation ratio for each tile by the inflation

ratio of the least-congested tile that has a ratio greater than one, and recalculate the total

inflated area. We repeat the above procedure until the total inflated area becomes smaller

than the predefined maximum value. We describe max in f lated area in Section 3.5.4.

3.5.4 Overall Flow

Figure 3.11 shows the overall flow of our global routability-driven placement.

When the wirelength-driven global placement reaches 20% density overflow, we invoke

the global router NCTU-GR [161] to obtain our internal routing congestion (RC) evalu-

ation. We then perform routability optimization using our cell inflation technique (see

discussion below), then feed the new cell sizes, die utilization, and density penalty fac-

tor back to the global placement engine. We choose to perform routability optimization

only if we meet all three of the following conditions: (i) the latest congestion estimation

indicates a less than 1% routing overflow (RC < 1.01); (ii) fewer than 10 rounds of cell

inflation have been performed; and (iii) the binary indicator earlyTermination is false.

78

Figure 3.11: Overall flowchart of our routability-driven placement.

Otherwise, we execute the remaining global placement procedure and pass the placement

solution on to the detailed placer. The binary earlyTermination flag is used to skip the

following rounds of cell inflation once the design is considered difficult to improve further

(see discussion below). Since our work solely focuses on global placement, we use NTU-

place3 [19] as the detailed placer. We then perform a post-placement optimization [76]

if we believe there can be further benefits. In our implementation, we go through post-

placement optimization only when both of the following conditions are met: (i) there is

still more than 2% routing overflow (RC > 1.02); and (ii) there is still room for improve-

ment (earlyTermination is false). Results reported below (in Section 3.6.3) show that

improvements over previous works can be attributable to RePlAce global placement as

opposed to the use of NTUplace3 (or, even, NTUplace4h [47]).

The routability optimization process is described in Algorithm 7. In Line 2, we

first calculate the inflation ratio from congestion estimation, as described in Sections 3.5.1

79

and 3.5.2. Then, in Line 3, we adjust the inflation ratio according to Algorithm 6. In Line

4, we perform cell inflation to improve routability. In Line 5, we roll back the density

penalty factor λ by 100 Nesterov’s optimization iterations [81] to encourage re-placement

of cells based on the new cell sizes. Line 6 reflects that the overall die utilization should be

adjusted because the equivalent total cell area becomes larger due to inflation. We adjust

the die utilization based on the ratio of equivalent total cell area over die area, as given in

Equation (3.13). In each routability optimization, we limit max in f lated area to be 10%

of the total whitespace area, so that the total utilization is constrained to remain less than

100%. In Line 7, we update the binary indicator earlyTermination. The indicator remains

false until the minimum RC value thus far has not improved by 0.008 over the last four

consecutive rounds of cell inflation.

util =
curr cell area+ total in f lated area

die area
(3.13)

Figure 3.12 shows snapshots of congestion maps during our routability optimiza-

tion procedure for SUPERBLUE12. The figure shows how the global placement process

effectively reduces the congestion (i.e., hotspots) indicated by red regions. In Figure 3.12,

RC = Routing Congestion reported by the DAC-2012 official evaluation script. Figures

(Hk) and (Vk) show horizontal and vertical congestion before the kth cell inflation. Fig-

ures (Hf) and (Vf) show final horizontal and vertical routing congestion after detailed

placement.

Table 3.3: RePlAce functionalities and the corresponding suffixes (command-line op-
tions) that produce the results reported below.

Benchmark Type -ld -ds -ldds -r

ISPD-2005 and ISPD-2006 benchmarks •

MMS benchmarks • • •

DAC-2012 and ICCAD-2012 benchmarks •

80

(V
1)

R
C

=2
11

.7
3

(H
1)

R
C

=2
11

.7
3

(V
2)

R
C

=1
38

.5
0

(H
2)

R
C

=1
38

.5
0

(V
3)

R
C

=1
09

.0
5

(H
3)

R
C

=1
09

.0
5

(V
5)

R
C

=1
04

.6
0

(H
5)

R
C

=1
04

.6
0

(V
7)

R
C

=1
01

.9
5

(H
7)

R
C

=1
01

.9
5

(V
f)

R
C

=1
02

.4
3

(H
f)

R
C

=1
02

.4
3

R
C

Fi
gu

re
3.

12
:G

lo
ba

lr
ou

tin
g

ov
er

flo
w

(S
U

P
E

R
B

LU
E

12
)d

ur
in

g
ro

ut
ab

ili
ty

-d
riv

en
gl

ob
al

pl
ac

em
en

tp
ro

ce
du

re
.

81

3.6 Experiments

In this section, we describe our experimental setups and results. We implement

RePlAce in C++ and perform experiments in single-thread mode using a 2.5GHz Intel

Xeon server. Our implementation has no benchmark-specific code or tuning: a single bi-

nary produces all results, with command-line options as we describe below. Experiments

are performed on three types of well-studied academic benchmarks: (i) ISPD-2005 [93]

and ISPD-2006 [92] benchmark suites for standard cell placement; (ii) the large-scale

modern mixed-size (MMS) [138] benchmark suite for mixed-size placement; and (iii)

DAC-2012 [121] and ICCAD-2012 [122] benchmark suites for global routability-driven

placement. RePlAce functionalities and corresponding suffixes (command-line options)

are summarized in Table 3.3. We briefly give some insight into the remaining gaps be-

tween academic and real-world placers and testcases, by comparing final-routed wire-

length for real standard-cell placements obtained by RePlAce-r and a leading-edge com-

mercial place-and-route tool in a foundry 28LP technology. In all of our experimental

results tables, bold numbers indicate the best HPWL (sHPWL) for each testcase.

3.6.1 Standard Cell Placement

For standard cell placement, we validate RePlAce using the ISPD-2005 [93] and

ISPD-2006 [92] benchmark suites, whose parameters are summarized in Table 3.4. We

employ NTUplace3 [19] as our detailed placer. Experimental results are summarized in

Table 3.5. For testcases with a specified target density, we report the scaled HPWL using

the official evaluation scripts [92].

Table 3.5 compares RePlAce-ds to the best known results [80] [150] across ISPD-

2005 and ISPD-2006 benchmark suites. In Table 3.5, best known ISPD results are cited

from Tables II and V of Nonsmooth placer [150] and Tables II and V of ePlace [80].

We observe that RePlAce-ds achieves (new) best known results for 15 out of 16

testcases. Overall, RePlAce-ds achieves up to 4.00% HPWL reduction (ADAPTEC2) and

2.00% HPWL reduction on average, when compared to the previous best known results.

82

Ta
bl

e
3.

4:
St

at
is

tic
s

fo
rI

SP
D

-2
00

5
[9

3]
,I

SP
D

-2
00

6
[9

2]
,a

nd
M

M
S

[1
38

]b
en

ch
m

ar
k

su
ite

s.

C
ir

cu
its

#
O

bj
ec

ts
#

St
an

da
rd

#
N

et
s

Ta
rg

et
IS

PD
M

ac
ro

s
M

M
S

M
ac

ro
s

C
el

ls
D

en
si

ty
(%

)
#M

ov
ab

le
#F

ix
ed

#M
ov

ab
le

#F
ix

ed

A
D

A
PT

E
C

1
21

14
47

21
09

04
22

11
42

10
0

0
54

3
63

48
0

A
D

A
PT

E
C

2
22

55
02

3
25

44
57

26
60

09
10

0
0

56
6

12
7

43
9

A
D

A
PT

E
C

3
24

51
65

0
45

09
27

46
67

58
10

0
0

72
3

58
66

5

A
D

A
PT

E
C

4
24

96
04

5
49

47
16

51
59

51
10

0
0

13
29

69
12

60

B
IG

B
L

U
E

1
22

78
16

4
27

76
04

28
44

79
10

0
0

56
0

32
52

8

B
IG

B
L

U
E

2
25

57
86

6
53

47
82

57
72

35
10

0
0

23
08

4
95

9
22

12
5

B
IG

B
L

U
E

3
21

09
68

12
10

93
03

4
11

23
17

0
10

0
24

85
12

93
25

49
12

29

B
IG

B
L

U
E

4
22

17
73

53
21

69
18

3
22

29
88

6
10

0
0

81
70

19
9

79
70

A
D

A
PT

E
C

5
28

43
12

8
84

24
82

86
77

98
50

0
64

6
76

57
0

N
E

W
B

L
U

E
1

23
30

47
4

33
01

37
33

89
01

80
64

33
7

64
33

7

N
E

W
B

L
U

E
2

24
41

51
6

43
65

16
46

52
19

90
37

23
12

77
37

48
12

52

N
E

W
B

L
U

E
3

24
94

01
1

48
28

33
55

21
99

80
0

11
17

8
51

11
12

7

N
E

W
B

L
U

E
4

26
46

13
9

64
27

17
63

70
51

50
0

34
22

81
33

41

N
E

W
B

L
U

E
5

21
23

30
58

12
28

17
7

12
84

25
1

50
0

48
81

91
47

90

N
E

W
B

L
U

E
6

21
25

50
39

12
48

15
0

12
88

44
3

80
0

68
89

74
68

15

N
E

W
B

L
U

E
7

22
50

79
54

24
81

37
2

26
36

82
0

80
0

26
58

2
16

1
26

42
1

83

Ta
bl

e
3.

5:
(S

ca
le

d†)H
PW

L
(×

10
6)a

nd
ru

nt
im

e
(m

in
ut

es
)c

om
pa

ri
so

n
of

be
st

kn
ow

n,
R

eP
lA

ce
-l

d,
R

eP
lA

ce
-d

s
an

d
R

eP
lA

ce
-l

dd
s

on
IS

PD
an

d
M

M
S

be
nc

hm
ar

ks
.

C
ir

cu
its

IS
PD

-2
00

5,
IS

PD
-2

00
6

M
M

S

B
es

tk
no

w
n

[8
0]

[1
50

]
R

eP
lA

ce
-d

s
B

es
tk

no
w

n
[8

1]
R

eP
lA

ce
-l

d
R

eP
lA

ce
-d

s
R

eP
lA

ce
-l

dd
s

H
PW

L
C

PU
H

PW
L

C
PU

H
PW

L
C

PU
H

PW
L

C
PU

H
PW

L
C

PU
H

PW
L

C
PU

A
D

A
PT

E
C

1
74

.2
0

13
.1

3
73

.0
1

14
.1

8
66

.8
2

5.
47

65
.1

7
5.

30
65

.3
2

15
.3

4
64

.9
8

19
.0

8

A
D

A
PT

E
C

2
84

.8
4

4.
90

81
.4

5
25

.7
5

76
.7

4
7.

58
72

.7
5

7.
68

71
.6

8
20

.4
3

71
.5

1
25

.0
8

A
D

A
PT

E
C

3
19

4.
07

26
.1

3
19

0.
45

50
.8

8
16

1.
55

27
.2

3
15

4.
18

23
.2

2
15

1.
34

62
.8

1
15

1.
42

69
.1

5

A
D

A
PT

E
C

4
17

4.
11

27
.8

5
17

2.
22

87
.5

5
14

5.
89

56
.4

0
14

2.
05

32
.9

1
13

9.
70

96
.7

1
14

0.
57

11
7.

35

B
IG

B
L

U
E

1
90

.9
8

6.
25

89
.0

5
23

.7
8

86
.2

9
7.

82
85

.7
9

8.
15

86
.0

3
23

.8
5

85
.0

4
28

.2
3

B
IG

B
L

U
E

2
14

1.
83

10
.5

0
13

6.
67

48
.1

9
13

0.
06

13
.7

0
12

5.
33

16
.2

9
12

5.
84

47
.9

5
12

5.
49

53
.4

6

B
IG

B
L

U
E

3
30

6.
94

27
.2

9
29

8.
61

11
2.

98
28

4.
39

72
.9

8
27

0.
17

73
.8

3
28

2.
42

16
5.

23
28

0.
31

18
3.

76

B
IG

B
L

U
E

4
74

2.
45

14
5.

00
74

0.
57

33
7.

23
65

6.
68

20
4.

15
65

3.
24

16
2.

34
65

0.
09

31
7.

67
64

7.
55

36
3.

32

A
D

A
PT

E
C

5†
39

1.
02

83
.6

5
39

1.
24

74
.9

2
29

4.
24

46
.0

7
30

3.
36

35
.1

3
30

1.
78

81
.8

3
30

2.
53

92
.5

3

N
E

W
B

L
U

E
1†

59
.2

6
14

.0
0

57
.4

4
27

.5
6

60
.4

3
11

.7
0

58
.6

3
9.

90
57

.7
5

27
.5

6
57

.4
4

31
.6

7

N
E

W
B

L
U

E
2†

18
2.

42
20

.0
1

17
7.

82
32

.5
6

15
9.

11
51

.1
2

15
2.

32
15

.4
4

15
2.

34
51

.3
1

15
0.

09
58

.2
9

N
E

W
B

L
U

E
3†

26
4.

48
33

.1
5

25
5.

07
68

.6
2

26
9.

47
36

.3
0

25
8.

53
20

.9
7

25
7.

22
57

.1
9

25
7.

67
65

.7
6

N
E

W
B

L
U

E
4†

26
9.

58
56

.2
6

26
7.

71
58

.3
3

22
6.

29
28

.2
7

22
3.

52
26

.0
8

22
4.

02
59

.9
2

22
3.

62
68

.2
4

N
E

W
B

L
U

E
5†

49
2.

62
54

.8
3

48
6.

37
11

8.
19

39
2.

77
55

.4
7

39
0.

14
75

.8
1

38
8.

74
15

1.
55

38
6.

30
16

7.
19

N
E

W
B

L
U

E
6†

46
4.

36
11

6.
70

46
0.

24
11

8.
45

40
9.

28
69

.6
5

40
8.

89
84

.0
4

40
7.

04
16

8.
23

40
6.

60
18

4.
09

N
E

W
B

L
U

E
7†

97
8.

07
24

6.
00

95
0.

27
33

5.
19

88
9.

18
39

2.
02

87
6.

36
17

2.
58

87
7.

83
27

7.
77

88
0.

67
32

6.
00

A
vg

.
+0

.0
0%

1.
00
×

-2
.0

0%
1.

78
×

+0
.0

0%
1.

00
×

-2
.2

5%
0.

72
×

-2
.4

3%
1.

81
×

-2
.7

3%
2.

09
×

84

3.6.2 Mixed-Size Placement

We demonstrate the benefit from our constraint-oriented local density function

using the large-scale modern mixed-size (MMS) placement benchmarks [138]. Parame-

ters of the benchmarks are summarized in Table 3.4. The MMS benchmarks embody the

same designs as the ISPD-2005 and ISPD-2006 benchmarks, except that some macros

are movable. We use NTUplace3 [19] as our detailed placer. Experimental results are

summarized in Table 3.5. For testcases with a specified target density, we report scaled

HPWL using the official evaluation scripts [138].

Table 3.5 compares RePlAce mixed-size placement results with best known pre-

vious results, referred from Table II of ePlace-MS [81]. We apply three different schemes:

(1) local density function equipped RePlAce-ld,14 (2) improved dynamic step size adap-

tation equipped RePlAce-ds, and (3) combined RePlAce-ldds. Runtimes of (2) and (3)

include the trial procedure’s runtimes. sHPWL is HPWL scaled by placement density

overflow. Runtime with “*” indicates cited results. All cited and reported results use

NTUplace3 [19] as the detailed placer. From the bottom row of the table, we see that

RePlAce-ld reduces HPWL by approximately 2.25% on average compared to best known

results.15 Compared to best known results, RePlAce-ld produces shorter HPWL for 15

out of 16 testcases. In addition, RePlAce-ldds shows further improvement of solution

quality with the addition of dynamic step size adaptation. Albeit with increased runtime,

RePlAce-ldds appears to effectively invest its effort (i.e., iterations, runtime), and achieve

the best solution quality on average, by incorporating both the -ld and -ds techniques.

Together, RePlAce-ds and RePlAce-ldds produce the best solution quality for 15 out of

16 testcases. As our results show merits to both constraint-oriented local smoothing and

dynamic step size adaptation, as well as their explicit combination, we leave to future

practitioners the question of how to best apply and orchestrate these techniques.

Last, Figure 3.13 shows a breakdown of #iterations across the component global

placement procedures for (a) RePlAce-ds with the ISPD-2005 and ISPD-2006 benchmark

suites, and (b) RePlAce-ds and (c) RePlAce-ldds with the MMS benchmark suite, aggre-

14We see little benefit by applying local density to testcases without large movable macros. Thus, “-ld”
option is only applied to MMS benchmark suites.

15However, with local density function, we do not find a uniform trend with accelerated convergence rate
for global placement. The local density calculation takes on average ∼ 1.8% of the total runtime.

85

Figure 3.13: Runtime breakdown (#iterations) aggregated over all reported testcases in
the ISPD-2005 and ISPD-2006 benchmark suites for (a) RePlAce-ds, and in the MMS
benchmark suite for (b) RePlAce-ds and (c) RePlAce-ldds.

gated over all reported testcases. (Note that for any given testcase, runtime will be roughly

proportional to #iterations.) Here, tGP, mGP, and cGP respectively denote trial placement,

macro and standard cell placement, and standard cell-only placement. In the figure, tGP

indicates trial placement; mGP indicates macro and standard-cell placement; and cGP in-

dicates standard-cell only placement. With dynamic step size adaptation, approximately

17-22% of iterations (i.e., of runtimes) are additionally consumed by the tGP procedure.

3.6.3 Routability-Driven Placement

We validate RePlAce global routability-driven placement using the DAC-2012

[121] and ICCAD-2012 [122] benchmark suites. We compare our placement solutions

to those of all published results from leading-edge academic placers [24] [43] [47] [75].

Parameters of the DAC-2012 and ICCAD-2012 benchmark suites are summarized in Ta-

ble 3.6. The DAC-2012 and ICCAD-2012 benchmark suites do not include movable

macros, but contain .shapes and .route files that respectively describe the component

shapes for non-rectangular nodes and routing-related information (e.g., the number of

routing tracks per each metal layer, routing blockages, etc.).

Experimental results are summarized in Table 3.7 and Table 3.8. Table 3.7 shows

scaled HPWL (sHPWL) (×107), routing congestion (RC) and CPU runtime (minutes)

comparison of RePlAce to leading published results for DAC-2012 [121] routability-

86

driven placement. sHPWL is HPWL scaled with routing congestion penalty. (Each unit

of RC in excess of 100 results in a 3% sHPWL penalty.) Published results are cited from

best contest results at DAC-2012 [121], and newest versions of mPL [24]. Missing bench-

mark results are indicated by N/A. “RePlAce-r alt” uses NTUplace4h as its detailed placer.

Global routing is performed by the official global router NCTU-GR [161], and sHPWL

is evaluated by the official DAC-2012 contest evaluation scripts. To match the reporting

convention in Table 3.5, the improvement of RePlAce-r over previous best known DAC-

2012 results (with those previous best known results set to be 1.00×) would be -7.93%.

Runtime with “*” indicates cited results. Only SUPERBLUE2 invokes post-placement

optimization, with sHPWL improvement of 2.74% (sHPWL from 62.58 to 60.87). Ta-

ble 3.8 shows scaled HPWL (sHPWL) (×107), routing congestion (RC) and CPU runtime

(minutes) comparison of RePlAce to leading published results for ICCAD-2012 [122]

routability-driven placement. sHPWL is HPWL scaled with routing congestion penalty.

(Each unit of RC in excess of 100 results in a 3% sHPWL penalty.) Published results

are cited from best contest results at ICCAD-2012 [122], and newest versions of POLAR

2.0 [75], NTUplace4h [47] and Ripple 2.0 [43] (listed in chronological order). “RePlAce-

r alt” uses NTUplace4h as its detailed placer. Global routing is performed by the official

global router NCTU-GR [161], and sHPWL is evaluated by the official ICCAD-2012 con-

test evaluation scripts. To match the reporting convention in Table 3.5, the improvement

of RePlAce-r over previous best known ICCAD-2012 results (with those previous best

known results set to be 1.00×) would be -6.66%. Runtime with “*” indicates cited re-

sults. Only SUPERBLUE10 invokes post-placement optimization, with sHPWL improve-

ment of 7.47% (sHPWL from 63.12 to 58.41).

For all testcases, we set the target density as 90%16. We report scaled HPWL

(sHPWL) and routing congestion (RC) as evaluated by the official global router NCTU-

GR [77] [161] and contest evaluation scripts [121] [122]. In the DAC-2012 and ICCAD-

2012 benchmark suites, routing congestion is described using the “ACE(X)” metric, which

is the averaged congestion of the top X% tile edges. Then, peak weighted congestion

(PWC) and Routing Congestion (RC) are obtained by Equations (3.14) and (3.15), where

16In our work, we apply the uniform 90% target density, based on experience, to balance wirelength
and congestion from a initial global placement perspective, and we keep using the same value without per-
benchmark tuning.

87

ki = 1. Equation (3.16) defines the final evaluation metric, i.e., scaled HPWL. Each unit

of RC in excess of 100 results in a 3% sHPWL penalty.

PWC =
Σi=0.5,1,2,5ki ·ACE(i)

Σki
(3.14)

RC = max(100,PWC) (3.15)

sHPWL = HPWL× (1+0.03× (RC−100)) (3.16)

Compared to all published results, RePlAce achieves smaller sHPWL for all

testcases (10 and eight testcases from DAC-2012 and ICCAD-2012, respectively). Re-

PlAce achieves on average 9.80% and 9.60% sHPWL reduction over best DAC-2012

and ICCAD-2012 contest results, respectively; and on average 8.50% to 9.59% scaled

HPWL reduction over the leading previous academic placers.17 In our flow as shown in

Figure 3.11, 16 out of 18 testcases automatically bypass the post-placement optimiza-

tion stage, and only two testcases (SUPERBLUE2 and SUPERBLUE10) invoke post-

placement optimization, with sHPWL improved by 2.74% and 7.47% respectively. These

indicate that our routability-driven global placement effectively reduces overall routing

congestion, with an average RC value similar to all published leading-edge results.

To show the impact of the detailed placer, we have conducted additional experi-

ments with the DAC-2012 and ICCAD-2012 benchmark suites by employing a routability-

driven detailed placer, NTUplace4h [47], shown as “RePlAce-r alt” in Table 3.7 and Ta-

ble 3.8. Interestingly, all 18 testcases end up with worse sHPWL than “RePlAce-r”, and

11 out of 18 testcases have worse routing congestion. However, “RePlAce-r alt” is still

7.09% to 8.47% better on average compared to the leading previous academic placers.

This provides confirmation of the effectiveness of our routability optimization during the

global placement.

17To match the reporting convention in Table 3.5, the improvement over previous best known DAC-2012
and ICCAD-2012 results (with those previous best known results set to be 1.00×) would be -7.93% and
-6.66%, respectively.

88

Ta
bl

e
3.

6:
St

at
is

tic
s

fo
rD

A
C

-2
01

2
[1

21
]a

nd
IC

C
A

D
-2

01
2

[1
22

]b
en

ch
m

ar
k

su
ite

s.

C
ir

cu
its

#
O

bj
ec

ts
#

M
ov

ab
le

#
Te

rm
in

al
#

N
et

s
#

Pi
ns

U
til

D
en

si
ty

C
el

ls
N

od
es

(%
)

(%
)

SU
PE

R
B

L
U

E
1

84
94

41
76

51
02

52
62

7
82

27
44

28
61

18
8

69
35

SU
PE

R
B

L
U

E
2

10
14

02
9

92
12

73
59

31
2

99
08

99
32

28
34

5
76

28

SU
PE

R
B

L
U

E
3

91
99

11
83

33
70

55
03

3
89

80
01

31
10

50
9

73
42

SU
PE

R
B

L
U

E
4

60
02

20
52

14
66

40
55

0
56

76
07

18
84

00
8

70
44

SU
PE

R
B

L
U

E
5

77
24

57
67

74
16

74
36

5
78

69
99

25
00

30
6

77
37

SU
PE

R
B

L
U

E
6

10
14

20
9

91
90

93
65

31
6

10
06

62
9

34
01

19
9

73
43

SU
PE

R
B

L
U

E
7

13
64

95
8

12
71

88
7

66
99

5
13

40
41

8
49

35
08

3
76

58

SU
PE

R
B

L
U

E
9

84
66

78
78

90
64

37
57

4
83

38
08

28
98

85
3

73
47

SU
PE

R
B

L
U

E
10

12
02

66
5

10
45

87
4

96
25

1
11

58
78

4
38

94
13

8
70

32

SU
PE

R
B

L
U

E
11

95
46

86
85

97
71

67
30

3
93

57
31

30
71

94
0

79
40

SU
PE

R
B

L
U

E
12

12
93

43
3

12
78

08
4

89
53

12
93

43
6

47
74

06
9

56
44

SU
PE

R
B

L
U

E
14

63
45

55
56

78
40

44
74

3
61

98
15

20
49

69
1

72
50

SU
PE

R
B

L
U

E
16

69
87

41
68

04
50

41
9

69
74

58
22

80
93

1
69

46

SU
PE

R
B

L
U

E
18

48
34

52
44

24
05

25
06

3
46

89
18

18
64

30
6

67
47

SU
PE

R
B

L
U

E
19

52
27

75
50

60
97

28
6

51
16

85
17

14
35

1
78

49

89

Ta
bl

e
3.

7:
Sc

al
ed

H
PW

L
(s

H
PW

L
)

(×
10

7),
ro

ut
in

g
co

ng
es

tio
n

(R
C

)
an

d
C

PU
ru

nt
im

e
(m

in
ut

es
)

co
m

pa
ri

so
n

of
R

eP
lA

ce
to

le
ad

in
g

pu
bl

is
he

d
re

su
lts

fo
rD

A
C

-2
01

2
[1

21
]g

lo
ba

lr
ou

ta
bi

lit
y-

dr
iv

en
pl

ac
em

en
t.

C
ir

cu
its

be
st

in
co

nt
es

t[
12

1]
m

PL
12

[2
4]

R
eP

lA
ce

-r
R

eP
lA

ce
-r

al
t

sH
PW

L
R

C
C

PU
sH

PW
L

R
C

C
PU

sH
PW

L
R

C
C

PU
sH

PW
L

R
C

C
PU

SU
PE

R
B

L
U

E
2

62
.4

0
10

0.
68

29
1

61
.4

0
N

/A
31

2
60

.8
7

10
0.

96
15

5
60

.9
6

10
1.

00
16

0

SU
PE

R
B

L
U

E
3

36
.2

0
10

0.
56

23
6

36
.0

0
N

/A
21

5
30

.6
8

10
0.

78
62

32
.0

8
10

2.
10

64

SU
PE

R
B

L
U

E
6

34
.2

5
10

0.
32

18
6

34
.0

0
N

/A
28

5
31

.2
0

10
0.

51
41

31
.4

0
10

0.
52

43

SU
PE

R
B

L
U

E
7

39
.8

5
10

0.
71

43
3

39
.5

0
N

/A
28

7
37

.2
8

10
1.

22
47

37
.3

6
10

1.
07

51

SU
PE

R
B

L
U

E
9

25
.4

6
10

2.
48

21
9

25
.0

0
N

/A
21

2
21

.2
8

10
0.

78
42

21
.3

9
10

0.
81

44

SU
PE

R
B

L
U

E
11

34
.2

2
10

0.
02

25
4

34
.0

0
N

/A
24

5
33

.6
9

10
2.

07
52

34
.2

0
10

2.
35

54

SU
PE

R
B

L
U

E
12

31
.1

9
10

0.
02

58
1

30
.4

0
N

/A
32

0
26

.5
2

10
2.

43
75

27
.4

9
10

3.
02

80

SU
PE

R
B

L
U

E
14

22
.5

6
10

0.
07

15
6

24
.5

0
N

/A
12

6
21

.2
1

10
0.

65
16

21
.3

2
10

0.
68

18

SU
PE

R
B

L
U

E
16

27
.3

9
10

1.
38

46
27

.4
0

N
/A

15
7

25
.2

7
10

1.
87

42
25

.5
1

10
1.

94
44

SU
PE

R
B

L
U

E
19

15
.3

1
10

0.
61

14
0

15
.1

0
N

/A
16

5
14

.2
7

10
0.

71
29

14
.6

5
10

1.
55

30

A
vg

.
+9

.8
0%

0.
99

5×
5.

31
×

+9
.5

9%
N

/A
5.

00
×

+0
.0

0%
1.

00
0×

1.
00
×

+1
.5

4%
1.

00
3×

1.
05
×

90

Table 3.8: Scaled HPWL (sHPWL) (×107), routing congestion (RC) and CPU runtime
(minutes) comparison of RePlAce to leading published results for ICCAD-2012 [122]
global routability-driven placement.

Circuits
best in contest [122] Polar 2.0 [75] NTUplace4h [47]

sHPWL RC CPU sHPWL RC CPU sHPWL RC CPU

SUPERBLUE1 27.89 100.97 39 28.20 101.15 27 28.13 101.15 84

SUPERBLUE3 34.39 100.56 45 33.30 101.06 29 34.59 101.06 92

SUPERBLUE4 22.69 101.32 143 22.40 100.96 21 23.05 100.96 65

SUPERBLUE5 34.86 100.38 180 35.10 100.70 18 35.56 100.70 86

SUPERBLUE7 41.37 100.71 250 40.70 100.82 31 39.82 100.82 166

SUPERBLUE10 61.11 101.91 439 62.10 101.11 49 61.67 101.11 153

SUPERBLUE16 28.33 101.55 100 27.20 101.30 17 27.94 101.30 63

SUPERBLUE18 17.09 103.15 77 16.90 101.47 21 16.36 101.47 55

Avg. +9.60% 1.003× 2.63× +8.50% 1.000× 0.50× +9.06% 1.007× 1.81×

Circuits
Ripple 2.0 [43] RePlAce-r RePlAce-r alt

sHPWL RC CPU sHPWL RC CPU sHPWL RC CPU

SUPERBLUE1 28.48 100.74 51 25.89 100.43 43 27.84 102.67 46

SUPERBLUE3 34.07 100.22 64 30.78 100.85 52 30.91 100.84 45

SUPERBLUE4 22.51 100.30 32 20.94 100.52 35 20.99 100.53 36

SUPERBLUE5 35.38 100.41 70 33.37 100.93 64 33.40 100.82 66

SUPERBLUE7 40.76 100.79 100 37.10 100.76 44 37.42 100.84 48

SUPERBLUE10 60.44 100.57 90 58.41 101.32 189 58.79 101.53 191

SUPERBLUE16 27.95 100.71 46 25.46 101.35 45 25.64 101.34 48

SUPERBLUE18 17.07 100.78 35 14.60 102.10 36 14.70 102.16 38

Avg. +9.29% 0.995× 1.15× +0.00% 1.000× 1.00× +1.41% 1.003× 1.04×

91

3.6.4 State of Academic vs. Industry Placement

Finally, to help assess remaining gaps between our work and “the real world,” and

to demonstrate tractability of such assessment, we apply RePlAce to standard-cell place-

ment using a foundry 28LP 8-track cell library after applying format conversion scripts as

in [59]. We place-and-route four design blocks (JPEG, VGA, LEON3MP and NETCARD

from [99] [162]), with up to 300K instances.18 In our experiments, RePlAce achieves

2.4% reduction of routed wirelength on average with similar number (<100) of DRVs,

and consumes less than 2× runtime compared to the commercial place-and-route tool.

We believe that these results show encouraging progress toward bridging remaining gaps

between academic and real-world placement.

3.7 Conclusion

We have described RePlAce, a single engine for global placement that, with-

out testcase-specific tuning, achieves significant improvements over best known HPWL

results on standard-cell and mixed-size benchmarks suites, as well as improvements over

best known sHPWL on global routability-driven placement benchmark suites. We propose

a new density function that comprehends local over-demand for area resources, leading to

constraint-oriented local smoothing at a per-bin granularity. Our dynamic step size adap-

tation determines step size and allocates optimization effort to significantly improve so-

lution quality without undue runtime impact. We achieve an average HPWL reduction of

2.00% over best known ISPD-2005 and ISPD-2006 benchmark results, and of 2.73% over

best known MMS benchmark results. For routability-driven placement, we achieve better

sHPWL on all testcases from the DAC-2012 and ICCAD-2012 benchmark suites, with on

average 8.50% to 9.59% scaled HPWL reduction compared to the leading previous aca-

demic placers. To our knowledge, RePlAce is the first work to achieve overall superior

solution quality across the ISPD-2005, ISPD-2006, MMS, DAC-2012 and ICCAD-2012

18We push placement utilization up to the limit of a 2016 release of a leading commercial tool, i.e., until
post-detailed routing design rule violations (DRVs) appear without exceeding 100 DRVs in the commercial
tool. The number of post-route DRVs for the commercial tool (C), and RePlAce (R) are (C, R) = (5, 3), (40,
12), (79, 68), (34, 81) for JPEG, VGA, LEON3MP and NETCARD, respectively. Due to license restrictions,
we are unable to more specifically identify the commercial tool.

92

benchmarks with a single global placement engine. We leave to our future work several

enhancements: (i) timing-driven global placement; (ii) parallel and/or distributed imple-

mentation for runtime improvement; (iii) a more systematic approach for dynamic step

size adaptation with reduced runtime; (iv) integration of constraint-driven local smooth-

ing with routability-driven placement; and (v) techniques to accelerate convergence.

3.8 Acknowledgments

Chapter 3 contains the draft submitted to IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, Chung-Kuan Cheng, Andrew B. Kahng, Il-

gweon Kang and Lutong Wang, “Advancing Solution Quality and Routability Validation

in Global Placement”, 2017. The dissertation author is the primary author of the submitted

draft.

I would like to thank my coauthors Chung-Kuan Cheng, Andrew B. Kahng and

Lutong Wang. I also would like to thank the authors of [82] for providing access to,

and useful discussions of, their implementation. I would like to thank the authors of

NTUplace3 [19] and NTUplace4h [47] for providing the executables that we use as our

detailed placer.

93

Chapter 4

Fast and Precise Routability

Analysis with Conditional Design

Rules

As pin accessibility encounters more challenges due to the less number of tracks,

higher pin density, and more complex design rules, routability has become one bottleneck

of sub-10nm designs. Thus, we need a new design methodology for fast turnaround in

analyzing the feasibility of the layout architecture, e.g., design rules and patterns of pin

assignment. In this work, we propose a novel framework that efficiently identifies the de-

sign rule-correct routability by creating well-organized formulation. We start with a new

SAT-friendly ILP formulation which satisfies conditional design rules. In the ILP-to-SAT

conversion stage, we reduce the complexity of the SAT problem by utilizing a logic mini-

mizer and further refining the SAT formula. We demonstrate that our framework performs

the routability analysis within 0.24% of ILP runtime on average, while guaranteeing the

precise assessment of the routability.

4.1 Introduction

Design of the routable and manufacturable layout for integrated circuits (ICs) has

been more and more challenging as technology nodes are continuously advanced to sub-

94

10nm [159]. One of the major difficulties is caused by the resolution limitations of optical

lithography, using 193nm (i.e., 193i) wavelength [40] [110]. Previous efforts [7] [83] [86]

to improve multi-patterning techniques such as LELE (litho-etch-litho-etch), SADP and

SAQP (self-aligned double and quadruple patterning) enable successful development of

10nm and sub-10nm technology nodes for foundries. Although recent multi-patterning

provides advanced technology nodes, they also induce complex conditional design rules

(e.g., unidirectional routing tracks per metal layer, minimum area rules, end-of-line (EOL)

spacing constraints, adjacent via placement restrictions, etc.) for manufacturability which

introduce new hurdles for IC physical design (PD) practitioners.

Securing pin accessibility of IC components has become a critical bottleneck

during detailed routing, due to less number of routing tracks and increasing pin den-

sity [110] [136]. FinFET device with smaller pin geometry makes the pin accessibility

problem even harder [1]. The number of routing tracks in a single placement row has

been reduced from 12 tracks to nine/eight/seven tracks [64], and even five-track cell li-

brary with one fin is recently announced [8]. In the meanwhile, scaling metal pitch is lag-

ging behind scaling device pitch, causing severe complications of interconnection induced

by decrease of the valid access points for pins [151]. Consequently, the detailed routing

step easily takes days of turnaround time (TAT), but a “successful” routing nonetheless is

not guaranteed. Moreover, the growing mismatch between global-route congestion map

and detailed-route design rule check (DRC) violations may endanger the on-time tapeout

by demanding too many manual layout revisions [17]. To address the problem, several

ILP-based (integer linear programming-based) approaches are proposed to obtain design

rule-correct layout. Despite their precise formulation and ILP’s optimal solutions, apply-

ing these tools to practical design procedure is difficult due to the tedious ILP optimiza-

tion. The absence of fast and precise routability analysis tool at the early physical design

stage (e.g., before routing) exposes the entire IC design project to high-risk unpredictabil-

ity.19 Thus, we need a new design tool with fast TAT in analyzing the feasibility of the

given layout architecture, e.g., design rules and patterns of pin assignment.

19As an attempt to reduce the unpredictability between “routable” cell layout and physical design, cell
library designers often develop a subset of cells that are essential to synthesize a small IC block. PD designers
perform place-and-route (P&R), then feedback the routability assessment. However, this still takes significant
time.

95

In this work, we propose a novel framework that efficiently identifies the design

rule-correct routability for switchboxes from the placed layout through well-organized

ILP and SAT (Boolean satisfiability) formulation. Our contributions are as follows.

• We propose a fast and precise routability analysis framework by using a novel SAT

formulation comprehending the net structure (i.e., source-sink connectivity) and the

conditional design rules. Our proposed framework produces design rule-correct

routability assessment, offering an early “go/no-go” decision opportunity for the

remaining PD procedure.

• We develop a new SAT-friendly ILP formulation based on multi-commodity flow.

In contrast to previous ILP-based detailed routers, our ILP formulation refines all

variables at the solution space as 0-1 indicator (so-called SAT-friendly) and defines

source-sink connectivity of each net at a per-commodity granularity, to facilitate the

SAT conversion.

• We devise an ILP-to-SAT conversion mechanism that exploits CNF (conjunctive

normal form) formula by a logic minimizer [152] upon dissecting the ILP formula-

tion. This reduces the number of literals and clauses for less complexity to further

enhance runtime of the SAT solver [163].

• We demonstrate that our resulting framework gives the routability analysis within

0.24% of ILP runtime on average, while guaranteeing the precise assessment of the

design rule-correct routability.

The rest of this chapter is organized as follows. Section 4.2 introduces the related

works and our motivation. Section 4.3 describes our SAT-friendly ILP formulation using

0-1 indicators that comprehend complex design rules, which facilitates the SAT conver-

sion. Section 4.4 presents our ILP-to-SAT conversion to reduce the problem complexity,

exploited by a two-level logic minimizer. Section 4.5 discusses our experimental setups

and results. Section 4.6 concludes this chapter.

96

4.2 Related Works and Our Approach

Cell library designers must consider BEOL-aware pin-accessibility optimization

to ensure routable configurations for PD procedure [26] [135]. Also PD engineers must

co-optimize both pin accessibility and pin density, while achieving design rule-correct

layout as well as classical design optimization goals such as area and wirelength [48].

Recently, pin-accessibility optimization under DFM (design for manufacturabil-

ity) constraints have been massively studied as shown in Figure 4.1. Pin accessibility-

and BEOL-aware cell layout optimizations [26] [110] [135], and three-dimensional (3D)

monolithic standard cells to improve pin accessibility [112] are introduced. Previous

ISPD-2014 [146] and ISPD-2015 [11] contests are dedicated to the detailed routing-driven

placement. Placement migrations to mitigate local routing congestion [117] [125] and pin

accessibility-aware detailed placement refinements [28] [29] are proposed. For detailed

Figure 4.1: Efforts to secure the pin-accessibility during the PD procedure. Failure to
produce routable (or routed) design in each step indicates loop-back of PD procedure,
causing additional design cost. Our SAT-based routability analysis (in red font) enables a
fast and precise assessment.

97

routing, an algorithm for dense pin clusters [98] and a pin-access planning framework

comprehending SADP [136] are presented. Despite the previous studies above, there still

exist high risks of design failure for achieving proper pin accessibility during the routing

step, causing undesired additional design cost.

By virtue of its ability to obtain optimal solutions, ILP-based optimization has

been widely applied to global and detailed routers, on top of the multi-commodity flow

theory. Recent works in [26] [40] [55] describe ILP-based detailed routing formulation

for standard cell design [26] and detailed routers [40] [55], comprehending conditional

design rules for advanced technologies. By nature of ILP seeking optimal solutions, they

are nevertheless timely-expensive and unaffordable for quick routability analysis.

Due to the high complexity in expressing “countable” design metrics and con-

straints into CNF representation, adopting SAT for PD has been limited to standard cell

routing [106], escape routing for board design [84], and special-purpose ICs such as

FPGA [32] [90] [94] and cross-referencing biochips [143]. In [106], the authors use a

maze routing algorithm to find all possible routes within a bounding box, and create a

Boolean literal for each route.

Conventional routability predictions ((2) in Figure 4.1) after placement are based

on congestion map estimation, often producing false-positive or -negative analyses that

induce unnecessary design efforts. Therefore, we need a new design tool for fast and

precise routability analysis for the given layout architecture, e.g., design rules and patterns

of pin assignment. In the remaining sections, we describe our novel SAT-based routability

analysis ((1) in Figure 4.1) on top of SAT-friendly ILP formulation, which enables design

rule-correct routability assessment.

4.3 SAT-Friendly ILP Formulation

As discussed above, to adopt Boolean satisfiability (SAT) for PD is nontrivial.

Countable design metrics and constraints can be dealt with integer linear programming

(ILP), but careful formulation is required to preserve the Boolean nature of 0-1 vari-

ables [2]. In this section, we describe a new ILP-based routing formulation that refines

all variables at the solution space as 0-1 indicator and defines source-sink connectivity of

98

each net at a per-commodity granularity20 (i.e., per each sink), to facilitate our ILP-to-

SAT conversion (so-called SAT-friendly ILP). Our ILP formulation captures discrepancies

between minimum-cost wirelength and design rule-correct metal segments and optimizes

both. Table 4.1 presents the notations.

Figure 4.2: Adjacent vertices (for our ILP formulation) of vi in the routing graph G.

4.3.1 ILP-Based Detailed Routing Optimization

We formulate our ILP-based routing formulation on top of the multi-commodity

flow network theory. In the three-dimensional (3D) routing graph G=(V,A), we represent

circuit components (e.g., sources, sinks) and available routing resources (e.g., horizontal

and vertical tracks on multiple metal layers, inter-layer vias). Each vertex vi is mapped to

coordinate (zi,yi,xi), where zi, yi, and xi are metal layer, horizontal and vertical routing

tracks, respectively. We define a directed edge ai, j and an undirected edge ei, j, including

inter-layer vias. We refine all the variables and constants to have either 0 or 1 to facilitate

ILP-to-SAT conversion.22

20As a result, all constants in our ILP formulation have either 0 or 1.
21The symbol d is L (Left), R (Right), F (Front), B (Back), U (Up), D (Down), or a combination of these

directions, e.g., FL (FrontLeft), FR (FrontRight), BL (BackLeft), BR (BackRight), UR (UpperRight), UB
(UpperBack), and UBR (UpperBackRight) as shown in Figure 4.2.

22The only exception is made to define f k
m(i) = −1 when vi = tk

m. When we perform the ILP-to-SAT
conversion, we associate −1 with ‘True’, and we check the other variables in the ILP formula to determine
the feasibility of the ILP’s (in)equality.

99

Table 4.1: Notations for ILP and SAT formulation.

Term Description

G(V,A) Three-dimensional (3D) routing graph

V Set of vertices in the routing graph G

vi A vertex with the coordinate (zi,yi,xi)

A Set of directed edges in the routing graph G

ai, j A directed edge from vi to v j

E Set of undirected edges in the routing graph G

ei, j An undirected edge between vi and v j

cmi, j Cost for metal segment on ei, j

cwi, j Cost for wire segment on ei, j

N Set of multi-pin nets in the given routing box

nk kth multi-pin net

sk A source of nk

T k Set of sinks in nk

tk
m mth sink of nk

f k
m mth commodity flow of nk heading to tk

m

ak
i, j 0-1 indicator if ai, j is used for nk

ek
i, j 0-1 indicator if ei, j is used for nk

f k
m(i) Flow variable on vi for commodity tk

m

f k
m(i, j) 0-1 indicator if ai, j is used for commodity tk

m

uk
m(i, j) 0-1 indicator if ei, j is used for commodity tk

m

mi, j 0-1 indicator if there is a metal segment on ei, j

wi, j 0-1 indicator if there is a wire segment on ei, j

vid A d-directional21adjacent vertex of vi

gd,i 0-1 indicator if vi forms d-side EOL of a metal segment

100

Figure 4.3: An example of supernodes. PIN1 and PIN2 respectively cover three and five
vertices on M1 layer. Outer pins (PIN3 and PIN4) are connected to boundary vertices of
G.

Objective. We minimize both the weighted total wirelength and the weighted total metal

length. We define inter-layer via cost as 4 and wire/metal cost on the same metal layer

as 1. The wire segments are not necessarily the same with the metal segments since we

often assign extra metal segments to avoid design rule check (DRC) violations such as

minimum area rule (MAR), end-of-line (EOL) spacing, etc (as shown in Figure 4.10).

Our objective function is shown in Equation (4.1).

Minimize : Cost = ∑
ei, j∈E

(
cwi, j wi, j + cmi, j mi, j

)
(4.1)

Supernode. A commodity must outflow from a vertex (i.e., source) and inflow to another

vertex (i.e., sink). Since a pin includes multiple vertices, we generate supernodes for each

pin, which cover vertices on each pin. Figure 4.3 illustrates supernodes in G. A supernode

for a pin on M1 is connected to vertices covering the pin (red circles on PIN1 and PIN2).

A supernode for a pin outside of G is connected to vertices at the boundary of G (i.e.,

left/right/front/back-most vertices on M2 and M3, and all accessible vertices on M4) as

depicted in green squares. We avoid placing horizontal metal segments and inter-layer

vias in the yellow boxes, reserved for power rail.

101

Unidirectional Routing. We assume unidirectional routing. We simply do not generate

edges that are not in the preferred direction.

Commodity Flow Conservation (CFC). The CFC on each vertex and its connected edges

ensures source-to-sink connectivity of each commodity flow, as shown in Constraint (4.2).

f k
m(i)+ ∑

vi:a j,i∈A
f k
m(j, i)− ∑

vi:ai, j∈A
f k
m(i, j) = 0, ∀vi ∈V, ∀nk ∈ N, ∀tk

m ∈ T k
(4.2)

f k
m(i) =

1, if vi = sk

−1, else if vi = tk
m

0, otherwise

(4.3)

Based on the given layout definition, Constraint (4.3) defines the commodity flow vari-

ables on each vertex at a per-net and per-commodity granularity. If a vertex vi is sk,

f k
m(i) = 1. Since a net has a single source, f k

m(i) = 1 for all commodities belonging nk. If

a vertex vi is tk
m, f k

m(i) =−1 (see Footnote 22). For any vertex vi that is neither source nor

sink, f k
m(i) = 0. In Constraint (4.2), the second and third terms are the sum of commodity

flows inflowing to vi and outflowing from vi, respectively. If vi = sk (or tk
m), the second

and third terms must be 0 and 1 (or 1 and 0). Otherwise, both terms are 1 (or 0) when vi

is (or is not) used for commodity flow f k
m.

Edge Assignment (EA). To obtain Steiner tree of net nk, we determine ak
i, j by overlapping

each commodity flow. Note that our ILP is formulated at a per-commodity granularity of

each net. As shown in Constraint (4.4), ak
i, j = 1 when f k

m(i, j) = 1. If f k
m(i, j) = 0, ak

i, j can

be either 0 or 1, ensuring multi-commodity flow of nk.

ak
i, j− f k

m(i, j)≥ 0, ∀ai, j ∈ A, ∀nk ∈ N, ∀tk
m ∈ T k (4.4)

102

Exclusiveness Use of Vertex (EUV). A vertex vi should be used by only one net. Con-

straint (4.5) ensures that there are no intersecting nets on any vertex. To preserve multi-pin

nets, we only constrain inflows to vi, thus vi can have multiple outflows if required. When

vi = sk, the sum of inflows to vi is 0. Otherwise, the sum is 1.

∑
vi:nk∈N

ak
j,i ≤

0, if vi = sk

1, otherwise
, ∀vi ∈V (4.5)

Metal Segment (and Exclusiveness Use of Edge) (MS). We adopt mi, j to determine

whether a metal segment is on ei, j or not. Constraint (4.6) also ensures that there are no

intersecting nets on any edge. The RHS term is the total sum of ak
i, j and ak

j,i for all nk ∈ N.

The sum is at most 1, ensuring the exclusiveness use of ei, j.

mi, j = ∑
nk∈N

(
ak

i, j +ak
j,i
)
, ∀vi ∈V (4.6)

Wire Segment (WS). We determine wi, j by logically ORing all commodity flows on ei, j

for all nk ∈ N as shown in Constraint (4.7).

wi, j =
∨

nk∈N

∨
tk
m∈T k

(
f k
m(i, j)∨ f k

m(j, i)
)
, ∀vi ∈V (4.7)

Inspired by [105], we transform Constraint (4.7) into a set of linear expressions as shown

in Constraint (4.8). By combined, Constraint (4.8) determines wi, j = 1 if there are com-

modity flows on ei, j.

wi, j ≤ ∑
nk∈N

∑
tk
m∈T k

(
f k
m(i, j)+ f k

m(j, i)
)

;

wi, j ≥ f 1
1 (i, j) ; wi, j ≥ f 1

1 (j, i) ;

· · · ; · · · ;

wi, j ≥ f k
m(i, j) ; wi, j ≥ f k

m(j, i)

(4.8)

103

Figure 4.4: Relations of our ILP-based routing optimization formulas and variables.

Figure 4.4 illustrates relations of our ILP-based routing optimization formulas

and variables. The geometric variable gd,i and conditional design rules will be formulated

in Section 4.3.2.

4.3.2 ILP-Based Design Rule Formulation

In this section, we describe our ILP-based conditional design rule formulation.

Geometric Variable (GV). Geometric variable gd,i determines if vi forms a d-directional

end of line (EOL) for a metal segment where d is an adjacent vertex of vi. Geometric

variables are logically expressed as shown in Constraint (4.9).

gL,i = ¬miL,i∧mi,iR , ∀vi ∈V

gR,i = miL,i∧¬mi,iR , ∀vi ∈V

gF,i = ¬miF ,i∧mi,iB , ∀vi ∈V

gB,i = miF ,i∧¬mi,iB , ∀vi ∈V

(4.9)

104

Figure 4.5 shows an example to determine gd,i. Since the left- and right-directional EOLs

(depicted in red and blue bars) are respectively located at v2 and v4, gL,2 = 1 and gR,4 = 1.

We convert logical Constraint (4.9) into linear Constraint (4.10) since x∧ y = z⇔ z ≤ x,

z≤ y, z≥ x+ y−1 and ¬x⇔ 1− x, as described in [40].

gL,i ≤ 1−miL,i ; gL,i ≤ mi,iR ; gL,i ≥ mi,iR−miL,i

gR,i ≤ miL,i ; gR,i ≤ 1−mi,iR ; gR,i ≥ miL,i−mi,iR

gF,i ≤ 1−miF ,i ; gF,i ≤ mi,iB ; gF,i ≥ mi,iB−miF ,i

gB,i ≤ miF ,i ; gB,i ≤ 1−mi,iB ; gB,i ≥ miF ,i−mi,iB

(4.10)

Figure 4.5: An example to determine gd,i.

Minimum Area Rule (MAR). Each disjoint metal segment should be larger than the

minimum manufacturable size. Constraint (4.11) ensures that there are no metal segments

violating the MAR. In our formulation, we assume that a metal segment must cover at

least three vertices. Figure 4.6 illustrates the MAR formula.

gL,i +gR,i +gL,iR +gR,iR ≤ 1, gF,i +gB,i +gF,iB +gB,iB ≤ 1, ∀vi ∈V (4.11)

Figure 4.6: An example of the minimum area rule.

End-of-Line (EOL) Spacing Rule. The distance between each EOL (i.e., “tip”) of two

metal segments that are coming from opposite directions should be greater than the min-

imum spacing distance (tip-to-tip spacing rule). In our formulation, we assume that the

105

minimum distance between any of two opposite tips should be larger than L1 norm (i.e.,

Manhattan distance) of two vertices in G, as described in Constraint (4.12) and Figure 4.7.

A notation iLL (or iRR) denotes left-adjacent (or right-adjacent) vertex of viL (or viR).

gL,i +gR,iFL ≤ 1 ; gL,i +gR,iL +gR,iLL
≤ 1 ; gL,i +gR,iBL ≤ 1, ∀vi ∈V

gR,i +gL,iFR ≤ 1 ; gR,i +gL,iR +gL,iRR
≤ 1 ; gR,i +gL,iBR ≤ 1, ∀vi ∈V

gF,i +gB,iFL ≤ 1 ; gF,i +gB,iF +gB,iFF
≤ 1 ; gF,i +gB,iFR ≤ 1, ∀vi ∈V

gB,i +gF,iBL ≤ 1 ; gB,i +gF,iB +gF,iBB
≤ 1 ; gB,i +gF,iBR ≤ 1, ∀vi ∈V

(4.12)

Figure 4.7: An example of the end-of-line (EOL) spacing rule.

Via Rules (VR). Inter-layer via placements in side-by-side as well as in diagonal direction

are strictly restricted as described in Constraint (4.13) (i.e., via-to-via spacing rule). Also

inter-layer via placements on the top of another inter-layer via are not allowed as shown

in Constraint (4.14) (i.e., stacked-via placement restriction).

mi,iU +miR,iUR +miB,iUB +miBR,iUBR ≤ 1, ∀vi ∈V (4.13)

miD,i +mi,iU ≤ 1, ∀vi ∈V (4.14)

Power Rail. Since the top- and bottom-most routing tracks for each placement row are

reserved for power rails, we prohibit placing horizontal metal segments and inter-layer

vias on those power rails. We trivially set all 0-1 indicators on corresponding edges as 0.

106

4.4 ILP-to-SAT Conversion

We describe our ILP-to-SAT conversion that considers to improve the runtime of

SAT solvers [163]. A general SAT solver takes input in conjunctive normal form (CNF):

an AND of ORs of literals, i.e., propositional variables and their negations. A CNF for-

mula is a conjunction (AND) of clauses that are expressed in a disjunction (OR) of literals.

We reduce our SAT’s complexity by utilizing the logic minimizer [152] upon dissecting

the structures and patterns of our ILP formulas. Moreover, we develop a reduced SAT for-

mulation, which further decreases the numbers of literals and clauses in our CNF formula

by replacing directed edges into undirected edges.

4.4.1 Advantage of Our SAT-Friendly ILP

To facilitate the ILP-to-SAT conversion, we devise two techniques for our ILP

formulation: (i) refining all the variables as 0-1 indicator and (ii) formulating source-sink

connectivity of each net at a per-commodity granularity. To convert an ILP constraint

into a set of clauses in a CNF formula, we analyze feasibilities for all combinations of

values of each variable within the ILP constraint. Each feasible combination corresponds

to a single clause. This would present a huge chance of having exponential numbers of

clauses. For example, suppose that an ILP constraint is expressed as:

x1 + x2 + · · ·+ xn ≤ y, (4.15)

where xi,y ∈ Z∗, Z∗ is a set of nonnegative integers. For nonnegative xi and y, the number

of feasible cases that satisfy Constraint (4.15) is
(

n(y+1)
y

)
, which yields

(
n(y+1)

y

)
of

y-literal clauses. For example, when n = 10 and y = 10, the number of clauses we should

consider is larger than 1.0e18, inapplicable to the ILP-to-SAT conversion. Thus, we refine

all the variables in our ILP as 0-1 indicator to reduce the complexity. When we restrict

xi to 0-1 indicator, Constraint (4.15) yields
(

2n
y

)
y-literal clauses, approximately 1.8e5

clauses when n= 10 and y= 10. However, this is still insufficient for practical ILP-to-SAT

conversion since an ILP problem has many constraints (ranging 10K-2.5M in our work)

with many variables (up to thousands). To further facilitate our ILP-to-SAT conversion,

we formulate the source-sink connectivity at a per-commodity (i.e., per-sink) granularity,

107

inducing RHS constant (i.e., y in Constraint (4.15)) to be 0 or 1. By restricting both xi

and y to 0-1 valued variables and constants, Constraint (4.15) only yields n+ 2 clauses,

i.e., 12 clauses when n = 10 and y = 10. This reduction enables the efficient ILP-to-SAT

conversion.

4.4.2 Logic Simplification

We exploit our SAT formulation by the two-level logic minimizer Espresso [152]

to obtain the minimal CNF representations providing the functionally-equivalent CNF

formula with the fewest number of clauses and literals. By virtue of regularity of the

3D routing graph G, ILP constraints derived by the same ILP formula have the similar

structure. Also sets of clauses oriented from the same ILP formula share common patterns

of CNF representation. With this in mind, we dissect the structures of ILP constraints and

their patterns of the minimal CNF representations. We utilize the preprocessed Espresso’s

results as the predetermined minimal CNF representations for each ILP formula. As a

result, we generate the minimal CNF formula without calling Espresso during our ILP-to-

SAT conversion.

Although a CNF formula is an AND of ORs, i.e., a product of sums, we feed

the ON-set (i.e., a set of all feasible input combinations of the ILP constraint) in sum-of-

product form to Espresso. Espresso swaps the ON-set and OFF-set to simplify the OFF-

set, so Espresso’s solution is a set of all infeasible cases for the given ILP constraint. To

obtain minimal CNF representations in product-of-sum form, we complement Espresso’s

solution.

4.4.3 Reduced SAT Formulation

We propose a reduced SAT formulation to further reduce the numbers of liter-

als and clauses in the CNF formula by replacing directed edges into undirected edges.

We can ignore directions of flows since we mainly focus on source-sink connectivities

in analyzing the routability. Instead of ak
i, j and f k

m(i, j) in ILP formulation, we associate

ek
i, j = ak

i, jYak
j,i and uk

m(i, j) = f k
m(i, j)Y f k

m(j, i) with the directed-edge-related terms in the

108

ILP-based routing optimization (in Section 4.3.1), where Y denotes XOR. Note that we

only reduce the SAT-based routability formulation since the design-rule formulas do not

have directed-edge-related terms.

Reduced SAT-Based Routability Formulation. Logical Expressions (4.16,4.18) and

(4.17,4.19) represent the feasibilities of ILP formulas, CFC (Constraints (4.2-4.3)) and

EUV (Constraint (4.5)), respectively. Expressions (4.16-4.17) determine the feasibilities

when vi 6= sk, tk
m.

FCFC =

(
¬ f k

m(i)∧uk
m(i, p)∧uk

m(i,q)∧
∧

vi:ei, j∈E, j 6=p, j 6=q

¬uk
m(i, j)

)

∨
(
¬ f k

m(i)∧
∧

vi:ei, j∈E

¬uk
m(i, j)

)
(4.16)

FEUV =

(
ek

i,p∧
∨

vi:ei, j∈E, j 6=p

ek
i, j ∧

∧
vi:nr∈N,r 6=k

¬er
i, j

)
∨

∧
vi:nk∈N

¬ek
i, j (4.17)

Expressions (4.18-4.19) determine the feasibilities when vi = sk, tk
m.

FCFC = f k
m(i)∧uk

m(i, p)∧
∧

vi:ei, j∈E, j 6=p

¬uk
m(i, j) (4.18)

FEUV = ek
i,p∧

∧
vi:ei, j∈E, j 6=p

¬ek
i, j ∧

∧
vi:nr∈N,r 6=k

¬er
i, j (4.19)

Logical Expressions (4.20-4.22) represent the feasibilities of ILP Constraints (4.4,4.6-

4.7), i.e., EA, MS, and WS, respectively.

FEA = ek
i, j ∨¬uk

m(i, j) (4.20)

FMS =

(
mi, j ∧ ek

i, j ∧
∧

nr∈N,r 6=k

¬er
i, j

)
∨
(
¬mi, j ∧

∧
nk∈N

¬ek
i, j

)
(4.21)

FWS =

(
wi, j ∧

∨
nk∈N

∨
tk
m∈T k

uk
m(i, j)

)
∨
(
¬wi, j ∧

∧
nk∈N

∧
tk
m∈T k

¬uk
m(i, j)

)
(4.22)

The routing feasibility F is defined as

F = FCFC ∧FEUV ∧FEA∧FMS∧FWS. (4.23)

109

SAT-Based Design Rule Formulation. Logical Expression (4.24) represents the left-

and right-directional EOL of a metal segment for the CNF formula (corresponding ILP

Constraint (4.9)). The front- and back-directional representation is derived by switching

L and R to F and B, respectively.

DGVL = (gL,i∧¬miL,i∧mi,iR)∨ (¬gL,i∧¬mi,iR)∨ (¬gL,i∧miL,i)

DGVR = (gR,i∧miL,i∧¬mi,iR)∨ (¬gR,i∧¬miL,i)∨ (¬gR,i∧mi,iR) (4.24)

DGV = DGVL ∧DGVR ∧DGVF ∧DGVB

Logical Expressions (4.25-4.28) represent ILP Constraints (4.11-4.14), i.e., MAR, EOL,

and VR. For EOL, we only present gL,i-related formulation (DEOLL) as DEOLR , DEOLF , and

DEOLB are similarly derived.

DMAR = (¬gL,i∧¬gR,i∧¬gL,iR)∨ (¬gL,i∧¬gR,i∧¬gR,iR)

∨ (¬gL,i∧¬gL,iR ∧¬gR,iR)∨ (¬gR,i∧¬gL,iR ∧¬gR,iR) (4.25)

DEOLL = ¬gL,i∨ (¬gR,iFL ∧¬gR,iL ∧¬gR,iLL ∧¬gR,iBL) (4.26)

DEOL = DEOLL ∧DEOLR ∧DEOLF ∧DEOLB (4.27)

DV R = (¬miR,iUR ∧¬miBR,iUB ∧¬miBR,iUBR ∧¬miD,i)∨ (¬mi,iU ∧¬miB,iUB ∧¬miBR,iUBR)

∨ (¬mi,iU ∧¬miR,iUR ∧¬miBR,iUBR)∨ (¬mi,iU ∧¬miR,iUR ∧¬miB,iUB) (4.28)

The design rule correctness D is defined as

D = DGV ∧DMAR∧DEOL∧DV R. (4.29)

SAT-Based Design Rule-Correct Routability Analysis. Combined with the given input

layout representation I, the design rule-correct routability R is determined as shown in

Expression (4.30).

R = F∧D∧ I (4.30)

110

4.5 Experiments

We now describe the overall flow of our proposed framework and the experimen-

tal results through the ILP-, the SAT- and the reduced SAT based routability analysis.

4.5.1 Overall Flow of the Proposed Framework

Figure 4.8 presents the overall flow of our framework. Red and blue rectangles

respectively represent our toolchain and each step’s inputs. We separately depict the logic

simplification step as red-dotted rectangle at the outside of our routability analysis pro-

cedure since we perform the logic simplification only once based on the patterns and

structures of ILP formulas. We refine our ILP-to-SAT conversion by exploiting the sim-

plified CNF representations through the logic minimizer Espresso [152]. The blue arrow

presents the ILP-based detailed routing procedure. We adopt CPLEX 12.7.1 [157] as our

ILP solver. The green arrows present the SAT-based routability analysis procedures. We

employ a popular open-source multi-threading SAT solver Plingeling 2.4.1 [163]. We im-

plement our framework as a chain of scripts to create artificial testcases, generate the ILP

formulation, and convert the ILP into the SAT and the reduced SAT formulation.

Figure 4.8: Overall flow of our routability analysis.

111

Fi
gu

re
4.

9:
A

n
ex

am
pl

e
la

yo
ut

w
ith

14
×

13
ve

rt
ia

la
nd

ho
ri

zo
nt

al
tr

ac
ks

.7
0%

pi
n

de
ns

ity
.T

he
to

ta
l#

pi
ns
=

24
.1

7
pi

ns
ar

e
on

M
1

an
d

se
ve

n
pi

ns
ar

e
ou

ts
id

e
of

th
e

la
yo

ut
(#

ou
te

r
pi

ns
ar

e
de

te
rm

in
ed

by
R

en
t’s

ru
le

[1
47

])
.

W
e

ha
ve

11
ne

ts
(i

.e
.,

tw
o

3-
pi

n
ne

ts
an

d
ni

ne
2-

pi
n

ne
ts

).

112

Fi
gu

re
4.

10
:T

he
IL

P-
ba

se
d

op
tim

al
ro

ut
in

g
so

lu
tio

n
fo

rt
he

la
yo

ut
in

Fi
gu

re
4.

9.
C

os
t=

41
7.

Fi
ve

m
or

e
m

et
al

se
gm

en
ts

ar
e

as
si

gn
ed

to
av

oi
d

de
si

gn
ru

le
ch

ec
k

(D
R

C
)v

io
la

tio
ns

(r
ed

do
tte

d
ci

rc
le

s)
.

113

Fi
gu

re
4.

11
:

T
he

re
du

ce
d

SA
T-

ba
se

d
ro

ut
in

g
so

lu
tio

n
fo

r
th

e
la

yo
ut

in
Fi

gu
re

4.
9.

C
os

t=
60

4.
T

he
so

lu
tio

n
is

no
to

pt
im

al
,b

ut
ta

ke
s

on
ly

0.
19

%
of

IL
P’

s
ru

nt
im

e,
th

us
w

e
ca

n
an

ay
lz

e
th

e
ro

ut
ab

ili
ty

qu
ic

kl
y.

114

For the testcase generation, we specify the inputs as the numbers of vertical and

horizontal tracks, and pin density for the switchbox. We assume 7-track cell library, i.e.,

five tracks for each placement row are applicable for detailed routing. Each pin on M1

layer cover 3-5 vertices. Based on [147], we consider Rent’s rule for the artificial testcase

generation, indicating that the numbers of outward net connections, outer pins, multi-pin

nets, and multi-fanout gates in the switchbox are practical. We do not apply any detailed-

placement refinement techniques (such as cell padding) for routability (i.e., pin accessi-

bility) improvement. With the given switchbox information, we sequentially generate our

ILP formulation (.lp file) and the SAT (or the reduced SAT) formulation (.cnf file).

Our framework produces (i) the design rule-correct optimal routing solution in

terms of wirelength and metal length through ILP-based detailed routing procedure; and

(ii) a design rule-correct routing feasibility assessment through the SAT-based or the re-

duced SAT-based routability analysis procedure. Figures 4.9-4.11 respectively show an

example pin layout on M1, the ILP-based routing solution, and the reduced SAT-based

routing solution. In Figure 4.10, the optimal wirelength and metal length are different

since there are five more metal segments (depicted in red-dotted circles) to avoid design

rule violation (DRV). The reduced SAT-based solution in Figure 4.11 is not optimized,

but takes 0.19% of ILP’s runtime to analyze the design-rule correct routability.

4.5.2 Experimental Results

Our framework is validated on a 2.6GHz Intel Xeon E5-2640 Linux workstation

with 128GB memory and 16 hyperthreaded CPU cores. For fair comparisons between

the ILP-based routing optimization23 and the SAT-based routability analysis24, we re-

strict the maximum number of threads to 16 during experiments for both the ILP solver

CPLEX [157] and the SAT solver Plingeling [163]. For CPLEX, we limit the maximum

execution time to 12 hours to avoid tedious optimization procedure regardless of solution

existence.25

23CPLEX provides user options to display the conflicts among variables/constraints and to check the fea-
sibility of the problem. However, we observe that both procedures take longer than 12 hours for our smallest
testcase, i.e., 14×13 with 60% pin density.

24A class of MaxSAT and MinSAT solvers suggest optimization features, however, their scalability is
usually limited to thousands instances thus inapplicable to our framework.

25E.g., we run one of our 20 19 70 testcases in Table 4.2 after execution for a week using CPLEX 16
threads, however, the gap to the best node is still 12.28% (started with 15%).

115

Ta
bl

e
4.

2:
E

xp
er

im
en

ta
lr

es
ul

ts
pr

es
en

tin
g

th
e

IL
P-

ba
se

d
de

ta
ile

d
ro

ut
in

g
vs

.t
he

SA
T-

an
d

th
e

R
ed

uc
ed

SA
T-

ba
se

d
ro

ut
ab

ili
ty

an
al

ys
is

.
E

ac
h

ro
w

re
pr

es
en

ts
re

su
lts

of
fiv

e
di

st
in

ct
te

st
ca

se
s,

an
d

sh
ow

s
nu

m
be

rs
on

av
er

ag
e.

Te
st

ca
se

Sp
ec

.
IL

P-
ba

se
d

R
ou

tin
g

O
pt

im
iz

at
io

n
SA

T-
ba

se
d

R
ou

ta
bi

lit
y

A
na

ly
si

s
R

ed
uc

ed
SA

T-
ba

se
d

R
ou

ta
bi

lit
y

A
na

ly
si

s

#N
#P

#O
#V

ar
#C

on
R

A
I

R
C

T
(s

)
#V

ar
#L

it
#C

la
R

A
S

T
(s

)
T

%
#V

ar
#L

it
#C

la
R

A
S

T
(s

)T
%

14
13

60
10

.0
21

.8
7.

8
14

4,
72

1.
2

23
2,

17
4.

2
5

0
0

27
6.

6
0.

0
51

7.
3

14
4,

72
1.

2
47

,2
57

,8
81

.8
23

,6
22

,7
76

.2
5

0
0

39
.5

8.
63

80
,3

15
.6

6,
80

7,
43

5.
0

3,
47

1,
78

8.
6

5
0

0
3.

1
0.

63

14
13

70
12

.0
26

.4
9.

4
19

5,
52

2.
0

31
2,

68
3.

8
4

1
0

36
4.

0
0.

0
1,

40
8.

0
19

5,
52

2.
0

80
,8

70
,7

59
.4

40
,4

35
,2

81
.0

4
1

0
96

.8
9.

99
10

7,
11

2.
6

12
,0

46
,8

90
.0

6,
04

8,
13

6.
6

4
1

0
3.

7
0.

39

14
13

80
12

.8
29

.0
10

.0
22

2,
47

6.
0

35
9,

91
2.

4
0

5
0

-
-

66
0.

4
22

2,
47

6.
0

96
,4

45
,1

55
.4

48
,2

24
,6

57
.2

0
5

0
93

.8
16

.9
2

12
1,

43
7.

6
14

,5
07

,6
63

.0
7,

24
6,

11
2.

6
0

5
0

4.
5

0.
77

14
13

90
14

.6
32

.6
10

.6
26

2,
91

0.
4

41
9,

86
7.

8
0

5
0

-
-

72
1.

0
26

2,
91

0.
4

14
0,

23
7,

38
2.

8
70

,1
25

,6
95

.6
0

5
0

98
.4

14
.6

5
14

2,
52

2.
8

22
,5

17
,1

42
.2

11
,1

79
,3

71
.8

0
5

0
5.

1
0.

71

14
19

60
14

.2
32

.2
10

.2
35

7,
11

1.
8

57
8,

82
9.

2
4

1
0

48
6.

8
5.

0
23

,2
63

.3
35

7,
11

1.
8

24
2,

61
3,

85
0.

6
12

1,
31

1,
50

1.
8

4
1

0
40

3.
4

4.
86

19
4,

27
8.

6
27

,3
16

,7
33

.8
13

,7
43

,4
76

.8
4

1
0

7.
3

0.
07

14
19

70
16

.4
36

.0
11

.0
41

7,
01

5.
6

66
3,

01
6.

0
4

1
0

59
6.

8
7.

6
31

,8
55

.7
41

7,
01

5.
6

33
9,

87
0,

05
2.

0
16

9,
94

7,
61

7.
8

4
1

0
61

9.
9

4.
23

22
5,

42
6.

4
38

,2
28

,8
30

.0
19

,1
43

,8
67

.2
4

1
0

9.
8

0.
06

14
19

80
18

.6
41

.8
12

.8
53

6,
19

5.
4

85
8,

17
3.

4
0

3
2

-
-

18
,8

69
.2

53
6,

19
5.

4
51

6,
23

8,
69

2.
2

25
8,

15
3,

51
5.

2
0

5
0

81
3.

8
20

.2
5

28
7,

67
4.

2
62

,5
28

,2
12

.2
31

,1
02

,5
52

.6
0

5
0

12
.0

0.
27

14
19

90
19

.8
44

.6
12

.6
56

6,
15

7.
6

90
3,

38
4.

4
0

3
2

-
-

19
,0

97
.6

56
6,

15
7.

6
58

3,
62

4,
35

9.
2

29
1,

84
4,

83
0.

6
0

5
0

70
9.

9
13

.0
0

30
3,

51
9.

2
70

,3
35

,7
65

.8
34

,9
62

,6
29

.8
0

5
0

12
.9

0.
22

20
13

60
14

.6
32

.8
10

.8
36

8,
25

5.
8

59
5,

00
7.

8
4

1
0

48
9.

5
0.

0
11

,4
65

.1
36

8,
25

5.
8

25
8,

38
2,

32
7.

2
12

9,
20

2,
42

0.
4

4
1

0
43

6.
8

5.
54

19
9,

82
9.

8
29

,7
61

,6
72

.6
14

,9
47

,2
86

.4
4

1
0

7.
1

0.
08

20
13

70
16

.4
36

.2
11

.2
41

5,
53

0.
2

66
2,

94
6.

0
3

1
1

57
1.

0
5.

3
37

,2
27

.0
41

5,
53

0.
2

35
5,

11
6,

36
4.

0
16

7,
57

8,
85

1.
2

3
2

0
43

9.
8

1.
33

22
4,

50
3.

8
38

,5
50

,5
81

.4
19

,2
87

,0
22

.2
3

2
0

9.
2

0.
03

20
13

80
17

.6
40

.0
11

.0
45

3,
80

4.
8

73
2,

49
1.

4
0

4
1

-
-

17
,7

71
.1

45
3,

80
4.

8
37

5,
53

1,
84

7.
4

18
7,

77
8,

81
0.

2
0

5
0

63
9.

7
5.

35
24

5,
03

5.
2

42
,6

41
,5

20
.6

21
,2

66
,3

87
.2

0
5

0
8.

1
0.

06

20
13

90
19

.4
44

.2
12

.2
53

9,
26

6.
0

86
9,

00
6.

2
0

4
1

-
-

18
,6

34
.8

53
9,

26
6.

0
51

3,
57

1,
39

3.
8

25
6,

81
4,

50
7.

6
0

5
0

76
3.

9
8.

27
28

9,
51

7.
0

61
,9

99
,4

34
.0

30
,7

94
,4

34
.8

0
5

0
10

.9
0.

13

20
19

60
16

.6
44

.8
12

.8
79

7,
50

7.
6

1,
29

3,
68

1.
0

0
1

4
-

-
41

,8
49

.2
79

7,
50

7.
6

1,
07

2,
22

5,
60

6.
0

53
6,

16
4,

72
6.

6
3

1
1

3,
04

3.
3

8.
00

42
7,

87
1.

0
95

,0
90

,6
66

.4
47

,5
96

,7
32

.8
4

1
0

24
.8

0.
06

20
19

70
23

.0
52

.6
14

.6
1,

03
7,

19
5.

2
1,

67
7,

74
2.

8
0

1
4

-
-

39
,3

98
.3

1,
03

7,
19

5.
2

1,
74

9,
42

7,
42

3.
0

87
4,

81
6,

26
9.

0
0

2
3

46
8.

9
1.

48
55

2,
12

3.
0

17
6,

17
4,

45
2.

4
87

,5
85

,8
49

.8
0

5
0

31
.5

0.
08

20
19

80
25

.0
56

.8
13

.8
1,

06
5,

15
5.

6
1,

71
1,

46
2.

2
0

5
0

-
-

26
,4

90
.7

1,
06

5,
15

5.
6

1,
89

7,
30

3,
80

1.
4

94
8,

73
7,

20
8.

4
0

1
4

46
2.

1
1.

20
56

7,
54

4.
8

17
4,

90
2,

01
7.

8
87

,0
39

,3
86

.6
0

5
0

29
.1

0.
12

20
19

90
28

.6
64

.4
15

.4
1,

29
8,

44
7.

2
2,

07
3,

36
3.

0
0

3
2

-
-

30
,3

53
.6

1,
29

8,
44

7.
2

2,
69

4,
70

7,
00

9.
0

1,
34

7,
48

6,
50

2.
6

0
0

5
-

-
68

8,
23

8.
2

25
5,

00
9,

62
3.

2
12

6,
67

4,
31

4.
2

0
5

0
42

.5
0.

16

SD
%

5.
5

4.
7

15
.9

15
.1

15
.0

-
-

-
4.

2
9.

8
45

.9
15

.1
25

.4
25

.5
-

-
-

27
.1

-
14

.5
31

.8
31

.4
-

-
-

28
.9

-

T
%

Av
er

ag
e

(r
ef

er
en

ce
)1

00
.0

0
8.

25
0.

24

116

Table 4.2 presents our experimental results comparing the ILP-based detailed

routing vs. the SAT- and the reduced SAT-based routability analysis. We validate our

implementation with 80 testcases. Note that each row in Table 4.2 represents five distinct

testcases, and shows numbers on average. All routability analyses produce the design

rule-correct routability assessments. The naming convention for the testcase in each row

is < 1 > < 2 > < 3 >, where < 1-3 > are the numbers of vertical tracks, horizontal

tracks, and pin density, respectively. In the table, #N = #Nets, #P = #Pins, #O = #Outer

pins, #Var = #Variables, #Con = #Constraints, RAI = Routability Analysis by the ILP

(#Routable, #Unroutable, and #Undecided testcases by the pre-specified time limit, i.e.,

12 hours), RC = for routed testcases (average Routing Cost, average gap (%) between

the best-feasible solution found and the best node when CPLEX is terminated by the time

limit), T = runTime, #Lit = #Literals, #Cla = #Clauses, RAS = Routability Analysis by

the SAT (or the reduced SAT) (#Routable, #Unroutable, and #Undecided testcases by tool

limitation), and T% = runTime% vs. ILP. For the two bottom rows, SD% = the average

Standard Deviation (in percent) for each column, T% Average = the average T% of the

SAT and the reduced SAT. The symbol ‘-’ denotes the empty entries.

For the ILP, our testcases range up to 1.5M of ILP variables and 2.5M of ILP con-

straints. For the SAT and the reduced SAT, the numbers of variables, literals and clauses

range up to 1.6M, 3.4B and 1.7B, and 0.8M, 0.4B and 0.2B, respectively. For RAI and

RAS (routability analysis by ILP and SAT), we report the numbers of routable, unroutable,

and undecided (in terms of routability) testcases, respectively. We have undecided test-

cases due to the time limit of ILP procedure and the tool limitation of SAT solver.26 For

the ILP, if the testcase is routable, we report the routing cost (i.e., the total sum of routed

wirelength and the metal length), and we separately show the gap% between the current

best-feasible solution (at the moment of the termination) and the best node of optimiza-

tion if CPLEX has any feasible solutions. At the two bottom rows, we present the average

standard deviation in percent for each column and the average runtime% of the SAT and

the reduced SAT.

Our reduced SAT-based routability analysis identifies the design rule-correct rout-

ing feasibility within 0.24% of the ILP runtime on average (ranging 0.01-1.05%). Among

26Plingeling can solve SAT problems with up to 0.6B clauses.

117

Figure 4.12: The runtime trends (in log-scale) across the (a) pin density and (b) layout
size (#vertical × #horizontal tracks).

80 testcases, 28 testcases are routable. Across the pin density, 17 and 11 out of 20 test-

cases are routable at 60% and 70%, respectively. None of testcases are routable beyond

80%. As we do not apply the placement refinements for improving pin accessibility, we

have a few unrouted testcases at the low pin densities (e.g., 60-70%) since they have lo-

cally congested regions. The ILP-, SAT-, and reduced SAT-based methods give the same

routability assessment if they have solutions. While the reduced SAT-based analysis pro-

vides the routability results of all 80 testcases, the ILP-based and the SAT-based analyses

fail to identify the routability for 17 and 13 out of 80 testcases, respectively. For ILP, 23

testcases are terminated by the time limit (six of them are routable). Figure 4.12 shows

the runtime trends of our framework in log-scale across the (a) pin density and (b) layout

size (i.e., #vertical × #horizontal tracks), indicating the reduced SAT-based routability

analysis performs > 1e3× faster than the ILP-based analysis.

4.6 Conclusion

We have described our framework, a new design methodology for fast turnaround

in analyzing the routing feasibility of the given layout architecture. Our framework ef-

ficiently identifies the design rule-correct routability by creating the well-organized ILP

and SAT formulation. We develop a new SAT-friendly ILP-based detailed routing formu-

118

lation satisfying conditional design rules. During our ILP-to-SAT conversion, we reduce

the complexity of the SAT problem by utilizing a logic minimizer and further refining the

SAT formula. We demonstrate that our resulting SAT-based routability analysis produces

the precise assessment of the design rule-correct routability, within 0.24% of ILP runtime

on average.

Our future work includes (i) to directly derive the SAT formulation, (ii) to further

reduce the SAT’s complexity, (iii) to diagnose potentail routing failures by extracting con-

flicting clauses, and (iv) to develop a new design tool to plan routable layout patterns for

optimal IC chip area usage.

4.7 Acknowledgements

Chapter 4 contains a reprint of Ilgweon Kang, Dongwon Park, Changho Han

and Chung-Kuan Cheng, “Fast and Precise Routability Analysis with Conditional Design

Rules”, Proc. ACM International Workshop on System-Level Interconnect Prediction,

2018. The dissertation author is the primary author of the paper.

I would like to thank my coauthors Dongwan Park, Changho Han and Chung-

Kuan Cheng. Also I would like to thank Professor Masahiro Fujita and Professor Sicun

Gao for invaluable comments and discussions.

119

Chapter 5

Conclusion

This thesis describes new design methodologies for advanced technology nodes

in three categories: (1) 3-D IC floorplan representations, (2) constraint- and routability-

driven global placement, and (3) conditional design rule-correct routability analysis.

Chapter 2 presents new 3-D IC floorplan representations, i.e., corner links, four

trees, and partial order, enhancing 3-D IC physical design automation. As the market

demand smaller footprint/wirelength and less power consumption, but better performance

and more functionalities, three-dimensional integrated circuit (3-D IC) offers a potential

breakthrough to enable a paradigm-shift strategy. Algorithmic 3-D IC floorplan represen-

tations describe orientations and physical positions of each block relative to the origin in

the 3-D space, also provide a foundation of data structure to efficiently search 3-D IC’s

design space. Chapter 2 introduces a novel 3-D IC floorplan representation, called corner

links, analyzes the relation of the corner links to their corresponding partial order repre-

sentation, and discusses the equivalence relation of the corner links and the partial order

representations through mathematical proofs and algorithms. The chapter dissects several

key properties. First, the corner links representation can be reduced to its corresponding

partial order representation. Second, four trees representation equivalently expresses the

corner links representation of the non-degenerate 3-D mosaic floorplan. Third, the 3-D

mosaic floorplan is valid if the partial order representation defines relationships between

all pairs of blocks. Last, the partial order representation captures all cutting planes in the

3-D mosaic floorplan, in the order of their respective dimensions. The chapter also show

120

that the partial order representation can restore the absolute coordinates of all blocks in

the 3-D mosaic floorplan by using the given physical dimensions of blocks.

Chapter 3 describes our constraint- and routability-driven global placement en-

gine, RePlAce. RePlAce is a flat, nonlinear analytical global placement engine with

electrostatics-based global-smooth density cost function, addressing routing congestion

as well as classical design goals with analogy of charge and electrical potential distribu-

tion. Chapter 3 proposes a new constraint-oriented local-density function for mixed-size

placement that incorporates (i) a constraint-oriented local-density penalty factor for each

bin, and (ii) a constraint-oriented local-density cost coefficient for each instance. The

chapter also proposes a methodology for density-penalty adaptation via an improved dy-

namic step size adaptation that automatically adjusts the density penalty factor based

on the HPWL curve (i.e., trajectory of HPWL cost versus iteration count) observed in

a trial placement procedure. The improved dynamic step size adaptation applies more

fine-grained control at transition points on the HPWL curve. RePlAce is validated by

HPWL comparison to all best known ISPD and MMS benchmark results. Without any

testcase-specific tuning, RePlAce achieves an average HPWL reduction of 2.00% over

the best known ISPD benchmark results, and of 2.73% over the best known MMS bench-

mark results. For routability-driven global placement, the chapter proposes a layer-aware

cell inflation technique, considering per-layer pin blockages. RePlAce integrates the offi-

cial global router NCTU-GR [161] of the DAC-2012 and ICCAD-2012 benchmark suites

for congestion estimation. RePlAce uses a simple but effective superlinear cell inflation

technique to mitigate global routing congestion during global placement. Following the

strategy of recent leading works [42] [43], a post-placement optimization by [76] is in-

cluded. By integrating all innovations to improve routability, RePlAce delivers solution

quality in terms of scaled HPWL that substantially improves over previous leading aca-

demic placers for the DAC-2012 and ICCAD-2012 benchmark suites, achieving on aver-

age 8.50% to 9.59% scaled HPWL reduction over previous placers. RePlAce is the first

work to achieve superior solution quality across all the ISPD-2005, ISPD-2006, MMS,

DAC-2012 and ICCAD-2012 benchmark suites with a single placement engine.

Chapter 4 presents a new design methodology that efficiently identifies the condi-

tional design rule-correct routability through well-organized ILP (integer linear program-

ming) and SAT (Boolean satisfiability) formulation. Since scaling metal pitch is lagged

121

behind scaling device pitch, securing pin accessibility of IC components has become a

critical bottleneck during detailed routing, e.g., less number of routing tracks, increasing

pin density, and smaller pin geometry make the pin accessibility problem harder. The ab-

sence of fast and precise routability analysis tool at the early physical design stage (e.g.,

before routing) exposes the entire IC design project to high-risk unpredictability. Chap-

ter 4 proposes a fast and precise routability analysis framework by using a novel SAT

formulation comprehending the net structure (i.e., source-sink connectivity) and the con-

ditional design rules. The proposed framework produces design rule-correct routability

assessment, offering an early “go/no-go” decision opportunity for the remaining PD pro-

cedure. In the chapter, a new SAT-friendly ILP formulation is proposed based on multi-

commodity flow. In contrast to previous ILP-based detailed routers, the proposed ILP

formulation refines all variables at the solution space as 0-1 indicator (so-called SAT-

friendly) and defines source-sink connectivity of each net at a per-commodity granularity,

to facilitate the SAT conversion. Also an ILP-to-SAT conversion mechanism is developed

which exploits CNF (conjunctive normal form) formula by a logic minimizer [152] upon

dissecting the ILP formulation. This reduces the number of literals and clauses for less

complexity to further enhance runtime of the SAT solver [163]. Our resulting framework

performs the routability analysis within 0.24% of ILP runtime on average, while guaran-

teeing the precise assessment of the design rule-correct routability.

122

Bibliography

[1] R. Aitken, G. Yeric, B. Cline, S. Sinha, L. Shifren, I. Iqbal and V. Chandra, “Phys-
ical Design and FinFETs”, Proc. ACM/IEEE International Symposium on Physical
Design, 2014, pp. 65-68.

[2] F. A. Aloul, A. Ramani, I. L. Markov and K. A. Sakallah, “Generic ILP versus
Specialized 0-1 ILP: An Update”, Proc. ACM/IEEE International Conference on
Computer-Aided Design, 2002, pp. 450-457.

[3] C. J. Alpert, “The ISPD98 Circuit Benchmark Suite”, Proc. ACM/IEEE Interna-
tional Symposium on Physical Design, 1998, pp. 80-85.

[4] C. J. Alpert, Z. Li, M. D. Moffitt, G.-J. Nam, J. A. Roy and G. Tellez, ”What
Makes a Design Difficult to Route”, Proc. ACM/IEEE International Symposium on
Physical Design, 2010, pp. 7-12.

[5] C. J. Alpert, Z. Li, G.-J. Nam, C. N. Sze, N. Viswanathan and S. I. Ward, “Place-
ment: Hot or Not?”, Proc. ACM/IEEE International Conference on Computer-
Aided Design, 2012, pp. 283-290.

[6] K. J. Antreich, F. M. Johnnes and F. H. Kirsch, “A New Approach for Solving the
Placement Problem using Force Models”,‘ Proc. IEEE International Symposium
on Circuits and Systems, 1982, pp. 481-486.

[7] Y. Badr, K.-W. Ma and P. Gupta, “Layout Pattern-Driven Design Rule Evaluation”,
SPIE Journal of Micro/Nanolithography, MEMS, and MOEMS 13(4) (2014), pp.
043018:1-043018:8.

[8] M. G. Bardon, Y. Sherazi, P. Schuddinck, D. Jang, D. Yakimets, P. Debacker, R.
Baert, H. Mertens, M. Badaroglu, A. Mocuta, N. Horiguchi, D. Mocuta, P. Ragha-
van, J. Ryckaert, A. Spessot, D. Verkest and A. Steegen, “Extreme Scaling Enabled
by 5 Tracks Cells: Holistic Design-Device Co-optimization for FinFETs and Lat-
eral Nanowires”, Proc. IEEE International Electron Devices Meeting, 2016, pp.
28.2.1-28.2.4.

[9] G. Baxter, “On Fixed Points of the Composite of Commuting Functions”, Journal
of the American Mathematical Society 15(6) (1964), pp. 851-855.

123

[10] K. Bernstein, P. Andry, J. Cann, P. Emma, D. Greenberg, W. Haensch, M. Igna-
towski, S. Koester, J. Magerlein, R. Puri and A. Young, “Interconnects in the Third
Dimension: Design Challenges for 3D ICs”, Proc. ACM/IEEE Design Automation
Conference, 2007, pp. 562-567.

[11] I. S. Bustany, D. Chinnery, J. R. Shinnerl and V. Yutsis, “ISPD 2015 Benchmarks
with Fence Regions and Routing Blockages for Detailed-Routing-Driven Place-
ment”, Proc. ACM/IEEE International Symposium on Physical Design, 2015, pp.
157-164.

[12] U. Brenner and A. Rohe, “An Effective Congestion-Driven Placement Framework”,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
22(4) (2003), pp. 387-394.

[13] F. Brglez, D. Bryan and K. Kozminski, “Combinational Profiles of Sequential
Benchmark Circuits”, Proc. IEEE International Symposium on Circuits and Sys-
tems, 1989, pp. 1929-1934.

[14] H. H. Chan, S. N. Adya and I. L. Markov, “Are Floorplan Representations Impor-
tant in Digital Design?”, Proc. ACM/IEEE International Symposium on Physical
Design, 2005, pp. 129-136.

[15] T. F. Chan, J. Cong, M. Romesis, J. R. Shinnerl, K. Sze and M. Xie, “mPL6: A
Robust Multilevel Mixed-Size Placement Engine”, Proc. ACM/IEEE International
Symposium on Physical Design, 2005, pp. 227-229.

[16] W.-T. J. Chan, Y. Du, A. B. Kahng, S. Nath and K. Samadi, “3D-IC Benefit Estima-
tion and Implementation Guidance from 2D-IC Implementation”, Proc. ACM/IEEE
Design Automation Conference, 2015, pp. 30:1-30:6.

[17] W.-T. J. Chan, P.-H. Ho, A. B. Kahng and P. Saxena, “Routability Optimization for
Industrial Designs at Sub-14nm Process Nodes Using Machine Learning”, Proc.
ACM/IEEE International Symposium on Physical Design, 2017, pp. 15-21.

[18] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen and Y.-W. Chang, “A High-Quality
Mixed-Size Analytical Placer Considering Preplaced Blocks and Density Con-
straints”, Proc. ACM/IEEE International Conference on Computer-Aided Design,
2006, pp. 187-192.

[19] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen and Y.-W. Chang, “NTUplace3: An
Analytical Placer for Large-Scale Mixed-Size Designs with Preplaced Blocks and
Density Constraints”, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 27(7) (2008), pp. 1228-1240.

[20] L. Cheng, L. Deng and M. D. F. Wong, “Floorplanning for 3-D VLSI Design”,
Proc. ACM/IEEE Asia and South Pacific Design Automation Conference, 2005, pp.
405-411.

124

[21] C.-K. Cheng, P. Du, A. B. Kahng and S.-H. Weng, “Low-Power Gated Bus Syn-
thesis for 3D IC via Rectilinear Shortest-path Steiner Graph”, Proc. ACM/IEEE
International Symposium on Physical Design, 2012, pp. 105-112.

[22] C.-K. Cheng and E. S. Kuh, “Module Placement Based on Resistive Network Op-
timization”, IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 3(3), 1984, pp. 218-225.

[23] F. R. K Chung, R. L. Graham, V. E. Hoggatt Jr. and M. Kleiman, “The Number
of Baxter Permutations”, Journal of Combinatorial Theory, Series A 24(3) (1978),
pp. 382-394.

[24] J. Cong, G. Luo, K. Tsota and B. Xiao, “Optimizing Routability in Large-scale
Mixed-size Placement”, Proc. ACM/IEEE Asia and South Pacific Design Automa-
tion Conference, 2013, pp. 441-446.

[25] J. Cong, G. Luo, J. Wei and Y. Zhang, “Thermal-Aware 3D IC Placement Via
Transformation”, Proc. ACM/IEEE Design Automation Conference, 2007, pp. 780-
785.

[26] P. Cremer, S. Hougardy, J. Schneider and J. Silvanus, “Automatic Cell Layout in the
7nm Era”, Proc. ACM/IEEE International Symposium on Physical Design, 2017,
pp. 99-106.

[27] N. K. Darav, A. Kennings, A. F. Tabrizi, D. Westwick and L. Behjat, “Eh?Placer:
A High-Performance Modern Technology-Driven Placer”, ACM Transactions on
Design Automation of Electronic Systems 21(3) (2016), pp. 37:1-37:27.

[28] P. Debacker, K. Han, A. B. Kahng, H. Lee, P. Raghavan and L. Wang, “Vertical
M1 Routing-Aware Detailed Placement for Congestion and Wirelength Reduction
in Sub-10nm Nodes”, Proc. ACM/IEEE Design Automation Conference, 2017, pp.
1-6.

[29] Y. Ding, C. Chu and W.-K. Mak, “Pin Accessibility-Driven Detailed Placement Re-
finement”, Proc. ACM/IEEE International Symposium on Physical Design, 2017,
pp. 133-140.

[30] S. Dulucq and O. Guibert, “Baxter Permutations 1”, Discrete Mathematics 180(1-
3) (1998), pp. 143-156.

[31] R. Fischbach, J. Lienig and M. Thiele, “Solution Space Investigation and Com-
parison of Modern Data Structures for Heterogeneous 3D Designs”, Proc. IEEE
International Conference of 3D System Integration, 2010, pp. 1-8.

[32] H. Fraisse, A. Joshi, D. Gaitonde and A. Kaviani, “Boolean Satisfiability-
Based Routing and Its Application to Xilinx UltraScale Clock Network”, Proc.
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2016,
pp. 74-79.

125

[33] K. Fujiyoshi, H. Kawai and K. Ishihara, “A Tree Based Novel Representation for
3D-Block Packing”, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 28(5) (2009), pp. 759-764.

[34] B. Goplen and S. S. Sapatnekar, “Placement of 3D ICs with Thermal and Interlayer
Via Considerations”, Proc. ACM/IEEE Design Automation Conference, 2007, pp.
626-631.

[35] S. Goto, I. Cederbaum and B. S. Ting, “Suboptimum Solution of the Back-Board
Ordering with Channel Capacity Constraint”, IEEE Transactions on Circuits and
Systems CAS-24(11), 1977, pp. 645-652.

[36] S. Goto and E. S. Kuh, “An Approach to the Two-Dimensional Placement Problem
in Circuit Layout”, IEEE Transactions on Circuits and Systems CAS-25(4), 1978,
pp. 208-217.

[37] S. Goto, “A Two-Dimensional Placement Algorithm for the Master Slice LSI Lay-
out Problem”, Proc. ACM/IEEE Design Automation Conference, 1979, pp. 11-17.

[38] S. Goto, “An Efficient Algorithm for the Two-Dimensional Placement Problem in
Electrical Circuit Layout”, IEEE Transactions on Circuits and Systems CAS-28(1),
1981, pp. 12-18.

[39] S. Goto, T. Matsuda, K. Takamizawa, T. Fujita, H. Mizumura, H. Nakamura and F.
Kitajima, “LAMBDA, an Integrated Master-Slice LSI CAD System”, Integration,
the VLSI Journal 1(1), 1983, Elsevier, pp. 53-69.

[40] K. Han, A. B. Kahng and H. Lee, “Evaluation of BEOL Design Rule Impacts Us-
ing An Optimal ILP-based Detailed Router”, Proc. ACM/IEEE Design Automation
Conference, 2015, pp. 1-6.

[41] X. He, T. Huang, L. Xiao, H. Tian, G. Cui and E. F. Y. Young, “Ripple: An Ef-
fective Routability-Driven Placer by Iterative Cell Movement”, Proc. ACM/IEEE
International Conference on Computer-Aided Design, 2011, pp. 74-79.

[42] X. He, T. Huang, L. Xiao, H. Tian and E. F. Y. Young, “Ripple: A Robust and Ef-
fective Routability-Driven Placer”, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 32(10) (2013), pp. 1546-1556.

[43] X. He, Y. Wang, Y. Guo and E. F. Y. Young, “Ripple 2.0: Improved Movement of
Cells in Routability-Driven Placement”, ACM Transactions on Design Automation
of Electronic Systems 22(1) (2016), pp. 10:1-10:26.

[44] X. Hong, G. Huang, Y. Cai, J. Gu, S. Dong, C.-K. Cheng and J. Gu, “Corner
Block List: An Effective and Efficient Topological Representation of Non-Slicing
Floorplan”, Proc. ACM/IEEE International Conference on Computer-Aided De-
sign, 2000, pp. 8-12.

126

[45] M.-K. Hsu and Y.-W. Chang, “Unified Analytical Global Placement for Large-
Scale Mixed-Size Circuit Designs”, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 31(9) (2012), pp. 1366-1378.

[46] M. K. Hsu, Y.-W. Chang and V. Balabanov, “TSV-aware Analytical Placement for
3D IC Designs”, Proc. ACM/IEEE Design Automation Conference, 2011, pp. 664-
669.

[47] M.-K. Hsu, Y.-F. Chen, C.-C. Huang, S. Chou, T.-H. Lin, T.-C. Chen and Y.-W.
Chang, “NTUplace4h: A Novel Routability-Driven Placement Algorithm for Hi-
erarchical Mixed-Size Circuit Designs”, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 33(12) (2014), pp. 1914-1927.

[48] M.-K. Hsu, N. Katta, H. Y.-H. Lin, K. T.-H. Lin, K. H. Tam and K. C.-H. Wang,
“Design and Manufacturing Process Co-optimization in Nano-technology”, Proc.
ACM/IEEE International Conference on Computer-Aided Design, 2014, pp. 574-
581.

[49] X. Hu, P. Du, J. F. Buckwalter and C.-K. Cheng, “Modeling and Analysis of Power
Distribution Networks in 3-D ICs”, IEEE Transactions on Very Large Scale Inte-
gration Systems 21(2) (2013), pp. 354-366.

[50] J. Hu, A. B. Kahng, S. Kang, M. Kim and I. Markov, “Sensitivity-Guided Meta-
heuristics for Accurate Discrete Gate Sizing”, Proc. ACM/IEEE International Con-
ference on Computer-Aided Design, 2012, pp. 233-239.

[51] T.-C. Hu and E.-S. Kuh, VLSI Circuit Layout Theory and Design, IEEE Press, 1985.

[52] J. Hu, J. A. Roy and I. L. Markov, “Completing High-Quality Global Routes”,
Proc. ACM/IEEE International Symposium on Physical Design, 2010, pp. 35-41.

[53] G. Huang, M. Bakir, A. Naeemi, H. Chen and J. D. Meindl, “Power Delivery for 3D
Chip Stacks: Physical Modeling and Design Implication”, Proc. IEEE Electrical
Performance of Electronic Packaging and Systems, 2007, pp. 205-208.

[54] C.-C. Huang, C.-H. Chiou, K.-H. Tseng and Y.-W. Chang, “Detailed-Routing-
Driven Analytical Standard-Cell Placement”, Proc. ACM/IEEE Asia and South Pa-
cific Design Automation Conference, 2015, pp. 378-383.

[55] X. Jia, Y. Cai, Q. Zhou, G. Chen, Z. Li and Z. Li, “MCFRoute: A Detailed Router
Based on Multi-Commodity Flow Method” Proc. ACM/IEEE International Con-
ference on Computer-Aided Design, 2014, pp. 397-404.

[56] Z.-W. Jiang, B.-Y. Su and Y.-W. Chang, “Routability-Driven Analytical Place-
ment by Net Overlapping Removal for Large-Scale Mixed-Size Designs”, Proc.
ACM/IEEE Design Automation Conference, 2008, pp. 167-172.

127

[57] M. Jung, T. Song, Y. Wan, Y.-J. Lee, D. Mohapatra, H. Wang, G. Taylor, D. Jari-
wala, V. Pitchumani, P. Morrow, C. Webb, P. Fischer and S. K. Lim, “How to
Reduce Power in 3D IC Designs: A Case Study with OpenSPARC T2 Core”, Proc.
IEEE Custom Integrated Circuits Conference, 2013, pp. 1-4.

[58] A. B. Kahng, “A Roadmap and Vision for Physical Design”, Proc. ACM/IEEE
International Symposium on Physical Design, 2002, pp. 112-117.

[59] A. B. Kahng, H. Lee and J. Li, “Horizontal Benchmark Extension for Improved
Assessment of Physical CAD Research”, Proc. Great Lakes Symposium on Very
Large Scale Integration, 2014, pp. 27-32.

[60] A. B. Kahng, J. Lienig, I. L. Markov and J. Hu, VLSI Physical Design: From Graph
Partitioning to Timing Closure, Springer, 2011.

[61] A. B. Kahng, M. Luo, G.-J. Nam, S. Nath, D. Z. Pan and G. Robins, “Toward
Metrics of Design Automation Research Impact”, Proc. ACM/IEEE International
Conference on Computer-Aided Design, 2015, pp. 263-270.

[62] A. B. Kahng, S. Reda and Q. Wang, “APlace: A General Analytic Placement
Framework”, Proc. ACM/IEEE International Symposium on Physical Design,
2005, pp. 233-235.

[63] A. B. Kahng and Q. Wang, “Implementation and Extensibility of an Analytic
Placer”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 24(5) (2005), pp. 734-747.

[64] I. Kang and C.-K. Cheng, “Physical Layout after Half a Century: From Back-
Board Ordering to Multi-Dimensional Placement and Beyond”, Proc. ACM/IEEE
International Symposium on Physical Design, 2017, pp. 123-128.

[65] A. K. Khan, R. Vatsa, S. Roy and B. Das, “A New Efficient Topological Structure
for Floorplanning in 3D VLSI Physical Design”, Proc. IEEE International Advance
Computing Conference, 2014, pp. 696-701.

[66] M.-C. Kim, J. Hu, D.-J. Lee and I. L. Markov, “A SimPLR method for Routability-
Driven Placement”, Proc. ACM/IEEE International Conference on Computer-
Aided Design, 2011, pp. 67-73.

[67] M.-C. Kim, J. Hu, J. Li and N. Viswanathan, “ICCAD-2015 CAD Contest in
Incremental Timing-Driven Placement and Benchmark Suite”, Proc. ACM/IEEE
International Conference on Computer-Aided Design, 2015, pp. 921-926. http:
//cad-contest.el.cycu.edu.tw/CAD-contest-at-ICCAD2015/index.html.

[68] M.-C. Kim, J. Hu and N. Viswanathan, “ICCAD-2014 CAD Contest in Incremental
Timing-Driven Placement and Benchmark Suite”, Proc. ACM/IEEE International
Conference on Computer-Aided Design, 2014, pp. 361-366. http://cad contest.ee.
ncu.edu.tw/CAD-Contest-at-ICCAD2014/default.html.

128

[69] M.-C. Kim, D.-J. Lee and I. L. Markov, “SimPL: An Effective Placement Algo-
rithm”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 31(1), 2012, pp. 50-60.

[70] M.-C. Kim and I. L. Markov, “ComPLx: An Competitive Primal-dual Lagrange
Optimization for Global Placement”, Proc. ACM/IEEE Design Automation Con-
ference, 2012, pp. 747-752.

[71] M.-C. Kim, N. Viswanathan, Z. Li and C. Alpert, “ICCAD-2013 CAD contest in
Placement Finishing and Benchmark Suite”, Proc. ACM/IEEE International Con-
ference on Computer-Aided Design, 2013, pp. 268-270. http://cad-contest.cs.nctu.
edu.tw/CAD-contest-at-ICCAD2013/default.html.

[72] J. M. Kleinhans, G. Sigl, F. M. Johannes and K. J. Antreich, “GORDIAN: VLSI
Placement by Quadratic Programming and Slicing Optimization”, IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems 10(3), 1991,
pp. 356-365.

[73] J. Knechtel and J. Lienig, “Physical Design Automation for 3D Chip Stacks – Chal-
lenges and Solutions”, Proc. ACM/IEEE International Symposium on Physical De-
sign, 2016, pp. 3-10.

[74] J. U. Knickerbocker, P. S. Andry, B. Dang, R. R. Horton, C. S. Patel, R. J. Polastre,
K. Sakuma, E. S. Sprogis, C. K. Tsang, B. C. Webb and S. L. Wright, “3D Sili-
con Integration”, Proc. IEEE Electronic Components and Technology Conference,
2008, pp. 538-543.

[75] T. Lin and C. Chu, “POLAR 2.0: An Effective Routability-Driven Placer”, Proc.
ACM/IEEE Design Automation Conference, 2014, pp. 1-6.

[76] W.-H. Liu, C.-K. Koh and Y.-L. Li, “Optimization of Placement Solutions for
Routability”, Proc. ACM/IEEE Design Automation Conference, 2013, pp. 1-9.

[77] W.-H. Liu, W.-C. Kao, Y.-L. Li and K.-Y. Chao, “Multi-Threaded Collision-Aware
Global Routing with Bounded-Length Maze Routing”, Proc. ACM/IEEE Design
Automation Conference, 2010, pp. 200-205.

[78] W.-H. Liu, W.-C. Kao, Y.-L. Li and K.-Y. Chao, “NCTU-GR 2.0: Multithreaded
Collision-Aware Global Routing with Bounded-Length Maze Routing”, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 32(5)
(2013), pp. 709-722.

[79] J. Lu, P. Chen, C.-C. Chang, L. Sha, D. J.-H. Huang, C.-C. Teng and C.-K.
Cheng, “ePlace: Electrostatics Based Placement Using Nesterov’s Method”, Proc.
ACM/IEEE Design Automation Conference, 2014, pp. 1-6.

129

[80] J. Lu, P. Chen, C.-C. Chang, L. Sha, D. J.-H. Huang, C.-C. Teng and C.-K. Cheng,
“ePlace: Electrostatics-Based Placement Using Fast Fourier Transform and Nes-
terov’s Method”, ACM Transactions on Design Automation of Electronic Systems
20(2) (2015), pp. 17:1-17:34.

[81] J. Lu, H. Zhang, P. Chen H. Chang, C.-C. Chang, Y.-C. Wong, L. Sha, D. Huang, Y.
Luo, C.-C. Teng and C.-K. Cheng, “ePlace-MS: Electrostatics-Based Placement for
Mixed-Size Circuits”, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 34(5) (2015), pp. 685-698.

[82] J. Lu, H. Zhuang, I. Kang, P. Chen and C.-K. Cheng, “ePlace-3D: Electrostat-
ics based Placement for 3D-ICs”, Proc. ACM/IEEE International Symposium on
Physical Design, 2016, pp. 11-18.

[83] K. Lucas, C. Cork, B. Yu, G. Luk-Pat, B. Painter and D. Z. Pan, “Implications of
Triple Patterning for 14nm Node Design and Patterning”, SPIE Advanced Lithog-
raphy, 2012, pp. 1-12.

[84] L. Luo and M. D. F. Wong, “Ordered Escape Routing Based on Boolean Satisfia-
bility”, Proc. ASPDAC, 2008, pp. 244-249.

[85] Y. Ma, X. Hong, S. Dong and C.-K. Cheng, “3D CBL: An Efficient Algorithm for
General 3D Packing Problems”, Proc. IEEE International Midwest Symposium on
Circuits and Systems, 2005, pp. 1079-1082.

[86] Y. Ma, J. Sweis, H. Yoshida, Y. Wang, J. Kye and H. J. Levinson, “Self-Aligned
Double Patterning (SADP) Compliant Design Flow”, SPIE Advanced Lithography,
2012, pp. 1-13.

[87] M. Marek-Sadowska and S. P. Lin, “Timing Driven Placement”, Proc. ACM/IEEE
International Conference on Computer-Aided Design, 1989, pp. 94-97.

[88] I. L. Markov, J. Hu and M.-C. Kim, “Progress and Challenges in VLSI Placement
Research”, Proc. ACM/IEEE International Conference on Computer-Aided Design,
2012, pp. 275-282.

[89] I. L. Markov, J. Hu and M.-C. Kim, “Progress and Challenges in VLSI Placement
Research”, Proc. of the IEEE 103(11) (2015), pp. 1985-2003.

[90] S. Mukherjee and S. Roy, “SAT Based Multi Pin Net Detailed Routing for FPGA”,
Proc. International Symposium on Electronic System Design, 2010, pp. 141-146.

[91] H. Murata, K. Fujiyoshi, S. Nakatake and Y. Kajitani, “VLSI Module Place-
ment Based on Rectangle-Packing by the Sequence-Pair”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 15(12), 1996, pp. 1518-
1524.

130

[92] G.-J. Nam, “ISPD 2006 Placement Contest: Benchmark Suite and Results”, Proc.
ACM/IEEE International Symposium on Physical Design, 2006, pp. 167.

[93] G.-J. Nam, C. J. Alpert, P. Villarrubia, B. Winter and M. Yildiz, “The ISPD 2005
Placement Contest and Benchmark Suite”, Proc. ACM/IEEE International Sympo-
sium on Physical Design, 2005, pp. 216-220.

[94] G.-J. Nam, K. A. Sakallah and R. A. Rutenbar, “A New FPGA Detailed Rout-
ing Approach via Search-Based Boolean Satisfiability”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 21(6) (2002), pp. 674-
684.

[95] R. H. J. M. Otten, “Automatic Floorplan Design”, Proc. ACM/IEEE Design Au-
tomation Conference, 1982, pp. 261-267.

[96] J. K. Ousterhout, “Corner Stitching: A Data-Structuring Technique for VLSI Lay-
out Tools”, IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 3(1) (1984), pp. 87-100.

[97] J. K. Ousterhout, G. T. Hamachi, R. N. Mayo, W. S. Scott and G. S. Taylor, “The
Magic VLSI Layout System”, IEEE Design and Test of Computers 2(1) (1985), pp.
19-30.

[98] M. M. Ozdal, “Detailed-Routing Algorithms for Dense Pin Clusters in Integrated
Circuits”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 28(3) (2009), pp. 340-349.

[99] M. M. Ozdal, C. Amin, A. Ayupov, S. Burns, G. Wilke and C. Zhuo, “The ISPD-
2012 Discrete Cell Sizing Contest and benchmark suite”, Proc. ACM/IEEE Inter-
national Symposium on Physical Design, 2012, pp. 161-164.

[100] M. Pan and C. Chu, ”FastRoute: a Step to Integrate Global Routing into Place-
ment”, Proc. ACM/IEEE International Conference on Computer-Aided Design,
2006, pp. 464-471.

[101] S. Panth, K. Samadi, Y. Du and S. K. Lim, “Design and CAD methodologies for
low power gate-level monolithic 3D ICs”, Proc. ACM/IEEE International Sympo-
sium on Low Power Electronic Design, 2008, pp. 171-176.

[102] B. T. Preas and W. M. van Cleemput, “Placement Algorithms for Arbitrarily Shaped
Blocks”, Proc. ACM/IEEE Design Automation Conference, 1979, pp. 474-480.

[103] F. Qiao, I. Kang, D. Kane, E. F. Y. Young, C.-K. Cheng and R. Graham, “3D Floor-
plan Representations: Corner Links and Partial Order”, Proc. IEEE International
Conference of 3D System Integration, 2016, pp.1-5.

131

[104] N. Quinn and M. Breuer, “A Forced Directed Component Placement Procedure for
Printed Circuit Boards”, IEEE Transactions on Circuits and Systems 26(6), 1979,
pp. 377-388.

[105] S. Russel and P. Norvig, Artificial Intelligence - A Modern Approach, Prentice Hall,
1995.

[106] N. Ryzhenko and S. Burns, “Standard Cell Routing via Boolean Satisfiability”,
Proc. DAC, 2012, pp. 603-612

[107] S. S. Sapatnekar, “Addressing Thermal and Power Delivery Bottlenecks in 3D Cir-
cuits”, Proc. ACM/IEEE Asia and South Pacific Design Automation Conference,
2009, pp. 423-428.

[108] V. Satopää, J. Albrecht, D. Irwin and B. Raghavan, “Finding a “Kneedle” and a
Haystack: Detecting Knee Points in System Behavior”, Proc. International Con-
ference on Distributed Computing Systems, 2011, pp. 166-171.

[109] C. Sechen and A. Sangiovanni-Vincentelli, “The TimberWolf Placement and Rout-
ing Package”, IEEE Journal of Solid-State Circuits 20(2), 1985, pp. 510-522.

[110] J. Seo, J. Jung, S. Kim and Y. Shin, “Pin Accessibility-Driven Cell Layout Redesign
and Placement Optimization”, Proc. ACM/IEEE Design Automation Conference,
2017, Article 54.

[111] A. Shayan, X. Hu, H. Peng, C.-K. Cheng, W. Yu, M. Popovich, T. Toms and X.
Chen, “Reliability aware through silicon via planning for 3D stacked ICs”, Proc.
ACM/IEEE Design, Automation and Test in Europe, 2009, pp. 288-291.

[112] D. Shi and A. Davoodi, “Improving Detailed Routability and Pin Access with 3D
Monolithic Standard Cells”, Proc. ACM/IEEE International Symposium on Physi-
cal Design, 2017, pp. 107-112.

[113] G. Skollermo, “A Fourier Method for the Numerical Solution of Poisson’s Equa-
tion”, AMS Journal on Mathematics of Computation 29(131) (1975), pp. 697-711.

[114] P. Spindler and F. M. Johannes, “Fast and Accurate Routing Demand Estimation
for Efficient Routability-Driven Placement”, Proc. ACM/IEEE Design, Automation
and Test in Europe, 2007, pp. 1226-1231.

[115] L. Steinberg, “The Backboard Wiring Problem: A Placement Algorithm,” SIAM
Review 3(1), 1961, pp. 37-50.

[116] J. E. Stevens, “Fast Heuristic Techniques for Placing and Wiring Printed Circuit
Boards”, Ph. D. dissertation, University of Illinois at Urbana-Champaign, 1972.

132

[117] T. Taghavi, Z. Li, C. Alpert, G.-J. Nam, A. Huber and S. Ramji, “New Place-
ment Prediction and Mitigation Techniques for Local Routing Congestion”, Proc.
ACM/IEEE International Conference on Computer-Aided Design, 2010, pp. 621-
624.

[118] X. Tang and D. F. Wong, “FAST-SP: A Fast Algorithm for Block Placement Based
on Sequence Pair”, Proc. ACM/IEEE Asia and South Pacific Design Automation
Conference, 2001, pp. 521-526.

[119] A. Thierer and A. Castillo, “Projecting the Growth and Economic Impact of
the Internet of Things”, Technology Policy, Policy Briefing, Mercatus Center at
George Mason University, June 15, 2015, http://www.mercatus.org/system/files/
IoT-EP-v3.pdf.

[120] N. Viswanathan, C. J. Alpert, C. N. Sze, Z. Li, G.-J. Nam and J. A. Roy, “The
ISPD-2011 Routability-Driven Placement Contest and Benchmark Suite”, Proc.
ACM/IEEE International Symposium on Physical Design, 2011, pp. 141-146. http:
//cad contest.ee.ncu.edu.tw/CAD-Contest-at-ICCAD2014/default.html.

[121] N. Viswanathan, C. J. Alpert, C. N. Sze, Z. Li and Y. Wei, “The DAC 2012
Routability-driven Placement Contest and Benchmark Suite”, Proc. ACM/IEEE
Design Automation Conference, 2012, pp. 774-782, http://archive.sigda.org/
dac2012/contest/dac2012 contest.html.

[122] N. Viswanathan, C. J. Alpert, C. N. Sze, Z. Li and Y. Wei, “ICCAD-
2012 CAD Contest in Design Hierarchy Aware Routability-Driven Place-
ment and Benchmark Suite”, Proc. ACM/IEEE International Conference on
Computer-Aided Design, 2012, pp. 345-348, http://cad-contest.cs.nctu.edu.tw/
CAD-contest-at-ICCAD2012/problems/p2/p2.html.

[123] N. Viswanathan, M. Pan and C. Chu, “FastPlace 3.0: A Fast Multilevel Quadratic
Placement Algorithm with Placement Congestion Control”, Proc. ACM/IEEE Asia
and South Pacific Design Automation Conference, 2007, pp. 135-140.

[124] M. M. Waldrop, “The Chips are Down for Moore’s Law”, Nature 530(7589)
(2016), pp. 144-147.

[125] C.-K. Wang, C.-C. Huang, S. S.-Y. Liu, C.-Y. Chin, S.-T. Hu, W.-C. Wu and H.-M.
Chen, “Closing the Gap between Global and Detailed Placement: Techniques for
Improving Routability”, Proc. ACM/IEEE International Symposium on Physical
Design, 2015, pp. 149-156.

[126] M. Wang, X. Yang, K. Eguro and M. Sarrafzadeh, “Multicenter Congestion Esti-
mation and Minimization During Placement”, Proc. ACM/IEEE International Sym-
posium on Physical Design, 2000, pp. 147-152.

133

[127] R. Wang, E. F. Y. Young and C.-K. Cheng, “Representing Topological Structures
for 3-D Floorplanning”, Proc. IEEE International Conference of Communications,
Circuits and Systems, 2009, pp. 1098-1102.

[128] R. Wang, E. F. Y. Young and C.-K. Cheng, “Complexity of 3-D Floorplans by Anal-
ysis of Graph Cuboidal Dual Hardness”, ACM Transactions on Design Automation
of Electronic Systems 15(4) (2010), pp. 33:1-33:22.

[129] R. Wang, E. F. Y. Young, Y. Zhu, F. C. Graham, R. Graham and C.-K. Cheng,
“3-D Floorplanning Using Labeled Tree and Dual Sequences”, Proc. ACM/IEEE
International Symposium on Physical Design, 2008, pp. 54-59.

[130] M. B. Weindling, “A Method for the Best Geometric Placement of Units on a
Plane”, Proc. ACM/IEEE Design Automation Conference, 1964, pp. 5.1-5.54.

[131] J. Westra, C. Bartels and P. Groeneveld, “Probabilistic Congestion Prediction”,
Proc. ACM/IEEE International Symposium on Physical Design, 2004, pp. 204-209.

[132] R. Widialaksono, R. B. R. Chowdhury, Z. Zhang, J. Schabel, S. Lipa, E. Rotenberg,
R. Davis and P. Franzon, “Physical Design of a 3D-Stacked Heterogeneous Multi-
Core Processor”, Proc. IEEE International Conference of 3D System Integration,
2016, pp. 1-5.

[133] G. J. Wipfler, M. Wiesel and D. A. Mlynski, “A combined force and cut algorithm
for hierarchical VLSI layout” Proc. ACM/IEEE Design Automation Conference,
1982, pp. 671-677.

[134] D. F. M. Wong and C.-L. Liu “A New Algorithm for Floorplan Design”, Proc.
ACM/IEEE Design Automation Conference, 1986, pp. 101-107.

[135] X. Xu, B. Cline, G. Yeric, B. Yu and D. Z. Pan, “Self-aligned Double Patterning
Aware Pin Access and Standard Cell Layout Co-optimization”, IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 34(5) (2015), pp.
699-712.

[136] X. Xu, B. Yu, J.-R. Gao, C.-L. Hsu and D. Z. Pan, “PARR: Pin-Access Planning
and Regular Routing for Self-Aligned Double Patterning”, ACM Transactions on
Design Automation of Electronic Systems 21(3) (2016), pp. 42:1-42:21.

[137] H. Yamazaki, K. Sakanushi, S. Nakatake and Y. Kajitani, “The 3D-Packing by Meta
Data Structure and Packing Heuristics”, IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences 83(4) (2000), pp. 639-645.

[138] J. Z. Yan, N. Viswanathan and C. Chu, “Handling Complexities in Modern Large-
Scale Mixed-Size Placement”, Proc. ACM/IEEE Design Automation Conference,
2009, pp. 436-441.

134

[139] S. Yang, A. Gayasen, C. Mulpuri, S. Reddy and R. Aggarwal, “Routability-Driven
FPGA Placement Contest”, Proc. ACM/IEEE International Symposium on Physical
Design, 2016, pp. 139-143.

[140] X. Yang, R. Kastner and M. Sarrafzadeh, “Congestion Estimation During Top-
Down Placement”, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 21(1) (2002), pp. 72-80.

[141] B. Yao, H. Chen, C.-K. Cheng and R. Graham, “Floorplan Representations: Com-
plexity and Connections”, ACM Transactions on Design Automation of Electronic
Systems 8(1) (2003), pp. 55-80.

[142] E. F. Y. Young, C. C. N. Chu and Z. C. Shen, “Twin Binary Sequences: A Nonre-
dundant Representation for General Nonslicing Floorplan”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 22(4) (2003), pp. 457-
469.

[143] P.-H. Yuh, C. C.-Y. Lin, T.-W. Huang, T.-Y. Ho, C.-L. Yang and Y.-W. Chang,
“A SAT-based Routing Algorithm for Cross-Referencing Biochips”, Proc. ACM
International Workshop on System-Level Interconnect Prediction, 2011, pp. 6:1-
6:7.

[144] P.-H. Yuh, C.-L. Yang and Y.-W. Chang, “Temporal Floorplanning Using the T-
Tree Formulation”, Proc. ACM/IEEE International Conference on Computer-Aided
Design, 2004, pp. 300-305.

[145] P.-H. Yuh, C.-L. Yang and Y.-W. Chang, “Temporal Floorplanning Using the Three-
Dimensional Transitive Closure subGraph”, ACM Transactions on Design Automa-
tion of Electronic Systems 12(4) (2007), pp. 37:1-37:34.

[146] V. Yutsis, I. S. Bustany, D. Chinnery, J. Shinnerl and W.-H. Liu, “ISPD 2014
Benchmarks with Sub-45nm Technology Rules for Detailed-Routing-Driven Place-
ment”, Proc. ACM/IEEE International Symposium on Physical Design, 2014, pp.
161-168.

[147] P. Zarkesh-Ha, J. A. Davis, W. Loh and J. D. Meindl, “Prediction of Interconnect
Fan-Out Distribution using Rent’s Rule”, Proc. ACM International Workshop on
System-Level Interconnect Prediction, 2000, pp. 107-112.

[148] L. Zhang, S. Dong, X. Hong and Y. Ma, “A Fast 3D-BSG Algorithm for 3D Packing
Problem”, Proc. IEEE International Symposium on Circuits and Systems, 2007, pp.
2044-2047.

[149] W. Zhang, W. Yu, X. Hu, A. Shayan, A. E. Engin and C.-K. Cheng, “Predicting the
Worst-Case Voltage Violation in a 3D Power Network”, Proc. ACM International
Workshop on System-Level Interconnect Prediction, 2009, pp. 93-98.

135

[150] W. Zhu, J. Chen, Z. Peng and G. Fan, “Nonsmooth Optimization Method for VLSI
Global Placement”, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 34(4) (2015), pp. 642-655.

[151] Cadence Design Systems, Inc., Sr Software Engineering Group Director, personal
communication, 2017.

[152] Espresso, Logic Minimizer, http://embedded.eecs.berkeley.edu/pubs/downloads/
espresso/.

[153] General Purpose FFT Package, http://www.kurims.kyoto-u.ac.jp/∼ooura/fft.html.

[154] Global Semiconductor Industry Revenue from ICs 2009-2018, http://www.statista.
com/statistics/519456/.

[155] Hardware Design Cost: Faster, Cooler, Simpler, could FD-
SOI be Cheaper too?, https://www.semiwiki.com/forum/content/
2991-faster-cooler-simpler-could-fd-soi-cheaper-too.html.

[156] Hybrid Memory Cube Consortium, http://www.hybridmemorycube.org/.

[157] IBM ILOG CPLEX, http://www.ilog.com/products/cplex/.

[158] ISPD-2017 Contest, http://www.ispd.cc/contests/17/.

[159] ITRS Report 2015 Edition, http://www.semiconductors.org/main/
2015 international technology roadmap for semiconductors itrs/.

[160] Many Ways to Shrink: The Right Moves to 10 Nanometer and Beyond,
https://staticwww.asml.com/doclib/investor/asml 3 Investor Day-Many ways to
shrink MvdBrink1.pdf.

[161] NCTU-GR, http://people.cs.nctu.edu.tw/∼whliu/NCTU-GR.htm.

[162] OpenCores, http://opencores.org/projects/.

[163] Plingeling, Multi-Threading SAT Solver, http://fmv.jku.at/lingeling/.

[164] Semiconductor Sales Revenue Worldwide from 1987 to 2018, http://www.statista.
com/statistics/266973/.

[165] Yole Développement, Equipment & Materials for 3DIC & WLP Applications,
2015, http://www.yole.fr/2014-galery-3D.aspx#I000350e1.

136

