
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Decoupled Vector-Fetch Architecture with a Scalarizing Compiler

Permalink
https://escholarship.org/uc/item/0fm0z48h

Author
Lee, Yunsup

Publication Date
2016

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0fm0z48h
https://escholarship.org
http://www.cdlib.org/

Decoupled Vector-Fetch Architecture with a Scalarizing Compiler

by

Yunsup Lee

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Krste Asanović, Chair
Professor David A. Patterson
Professor Borivoje Nikolić
Professor Paul K. Wright

Spring 2016

Decoupled Vector-Fetch Architecture with a Scalarizing Compiler

Copyright 2016
by

Yunsup Lee

1

Abstract

Decoupled Vector-Fetch Architecture with a Scalarizing Compiler

by

Yunsup Lee

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Krste Asanović, Chair

As we approach the end of conventional technology scaling, computer architects are forced to
incorporate specialized and heterogeneous accelerators into general-purpose processors for greater
energy efficiency. Among the prominent accelerators that have recently become more popular are
data-parallel processing units, such as classic vector units, SIMD units, and graphics processing
units (GPUs). Surveying a wide range of data-parallel architectures and their parallel program-
ming models and compilers reveals an opportunity to construct a new data-parallel machine that
is highly performant and efficient, yet a favorable compiler target that maintains the same level of
programmability as the others.

In this thesis, I present the Hwacha decoupled vector-fetch architecture as the basis of a new
data-parallel machine. I reason through the design decisions while describing its programming
model, microarchitecture, and LLVM-based scalarizing compiler that efficiently maps OpenCL
kernels to the architecture. The Hwacha vector unit is implemented in Chisel as an accelerator at-
tached to a RISC-V Rocket control processor within the open-source Rocket Chip SoC generator.
Using complete VLSI implementations of Hwacha, including a cache-coherent memory hierarchy
in a commercial 28 nm process and simulated LPDDR3 DRAM modules, I quantify the area, per-
formance, and energy consumption of the Hwacha accelerator. These numbers are then validated
against an ARM Mali-T628 MP6 GPU, also built in a 28 nm process, using a set of OpenCL mi-
crobenchmarks compiled from the same source code with our custom compiler and ARM’s stock
OpenCL compiler.

i

To my loving wife Soyoung and my family.

ii

Contents

Contents ii

List of Figures iii

List of Tables iv

1 Introduction 1
1.1 Upheaval in Computer Design . 2
1.2 Specialization To the Rescue . 3
1.3 Rise of Programmable Data-Parallel Architectures 4
1.4 The Maven Project . 5
1.5 Thesis Contributions and Overview . 6
1.6 Collaboration, Previous Publications, and Funding 7

2 Background 9
2.1 Data-Parallel Programming Languages . 9
2.2 Assembly Programming Models of Data-Parallel Architectures 12
2.3 Divergence Management Schemes of Data-Parallel Architectures 18
2.4 Background Summary . 23

3 Scalarizing Compilers 24
3.1 Overheads of SPMD . 24
3.2 Scalarization . 25
3.3 Predication . 28

4 Scalarization 31
4.1 Compiler Foundation . 31
4.2 Implementation . 38
4.3 Evaluation . 38
4.4 Discussion . 42
4.5 Future Research Directions . 44
4.6 Scalarization Summary . 45

iii

5 Predication 47
5.1 Compiler Foundation . 47
5.2 Implementation . 53
5.3 Evaluation . 54
5.4 Discussion . 62
5.5 Future Research Directions . 64
5.6 Predication Summary . 65

6 The Hwacha Vector-Fetch Architecture 66
6.1 Hwacha Vector-Fetch Assembly Programming Model 67
6.2 Architectural Features . 70
6.3 History . 75

7 Hwacha Instruction Set Architecture 78
7.1 Control Thread Instructions . 78
7.2 Worker Thread Instructions . 80
7.3 Future Research Directions . 92

8 Hwacha Decoupled Vector Microarchitecture 94
8.1 System Architecture . 94
8.2 Machine Organization . 98
8.3 Vector Frontend: RoCC Unit and Scalar Unit . 99
8.4 Vector Runahead Unit . 101
8.5 Vector Execution Unit . 103
8.6 Vector Memory Unit . 111
8.7 Design Space . 113

9 Hwacha Evaluation 117
9.1 Evaluation Framework . 117
9.2 Microbenchmarks . 119
9.3 Scalarizing OpenCL Compiler . 121
9.4 Implementation . 121
9.5 Memory System Validation . 124
9.6 Area and Cycle-Time Comparison . 125
9.7 Performance Comparison . 127
9.8 Energy Comparison . 130

10 Conclusion 133
10.1 Thesis Summary and Contributions . 133
10.2 Future Work . 136

iv

List of Figures

1.1 Trends in Cost per Gate and Nominal Vdd for Advanced Process Nodes 2
1.2 The Application Space . 3

2.1 Single-Precision Matrix Multiplication Kernel (SGEMM) Written in Two Parallel Pro-
gramming Languages . 10

2.2 Conditional SAXPY Kernel Written in C . 13
2.3 CSAXPY Kernel Mapped to the Packed-SIMD Assembly Programming Model 14
2.4 CSAXPY Kernel Mapped to the GPU/SIMT Assembly Programming Model 15
2.5 CSAXPY Kernel Mapped to the Traditional Vector Assembly Programming Model . . 16
2.6 CSAXPY Kernel Mapped to the Vector-Thread Assembly Programming Model 17
2.7 Control Flow Examples Written in the SPMD Programming Model 18
2.8 Divergence Management on Vector Architectures . 19
2.9 Divergence Management on Vector Architectures with Implicit Predicates 21
2.10 Hardware Divergence Management on NVIDIA GPUs 21
2.11 Software Divergence Management on NVIDIA GPUs 22

3.1 Vectorizing Compilers and Scalarizing Compilers . 25
3.2 Simplified FIR Filter Code Example . 26
3.3 Code Example with Complex Control Flow . 29

4.1 Example Control Flow and Dependence Graphs . 33
4.2 Combined Convergence and Variance Analysis . 35
4.3 Effectiveness of Convergence Analysis . 39
4.4 Static Scalarization Metrics . 40
4.5 Dynamic Scalarization Metrics . 41
4.6 Data-Parallel Microarchitectures with Scalarization Support 43

5.1 Thread-Aware Predication Code Example with Nested If-Then-Else Statements 48
5.2 Thread-Aware Predication Code Example with a Loop with Two Exits 49
5.3 Benchmark Characterization with Thread-Aware Predication 59
5.4 Speedup of Thread-Aware Predication Against Divergence Stack 60
5.5 Short-Circuit Example Showing Limitations of the Divergence Stack 63
5.6 Supporting Virtual Function Calls with Predication 64

v

6.1 Hwacha User-Visible Register State . 68
6.2 CSAXPY Kernel Mapped to the Hwacha Assembly Programming Model 69
6.3 Reconfigurable Vector Register File . 74

7.1 RoCC Instruction Format . 79
7.2 Layout of the vcfg Configuration Register . 79
7.3 Hwacha Worker Thread Instruction Formats . 81

8.1 System Architecture Provided by the Rocket Chip SoC Generator 95
8.2 Block Diagram of the Hwacha Decoupled Vector Accelerator 97
8.3 Block Diagram of the RoCC Unit . 99
8.4 Pipeline Diagram of the Scalar Unit . 100
8.5 Block Diagram of the Vector Runahead Unit . 102
8.6 Block Diagram of the Vector Execution Unit . 104
8.7 Systolic Bank Execution Diagram . 105
8.8 Block Diagram of the Sequencer . 106
8.9 Block Diagram of the Expander . 110
8.10 Block Diagram of the Vector Memory Unit . 112
8.11 Mapping of Elements Across a Four-Lane Hwacha Vector Machine 116
8.12 Example of Redundant Memory Requests by Adjacent Vector Lanes 116

9.1 Evaluation Framework . 118
9.2 OpenCL Kernels of Evaluated Microbenchmarks . 120
9.3 Block Diagram of the Samsung Exynos 5422 SoC . 122
9.4 Memory System Validation . 125
9.5 Area Distribution for Hwacha Configurations . 127
9.6 Layout of the Single-Lane Hwacha Design with Mixed-Precision Support 128
9.7 Annotated Die Photo of the 20 nm Samsung Exynos 5430 SoC Annotated Die Photo . 129
9.8 Hwacha Performance Results . 131
9.9 Hwacha Energy Results . 132

10.1 Thesis Timeline . 135

vi

List of Tables

5.1 Benchmark Statistics Compiled for Kepler and Run on Tesla K20c (GK110) 56
5.2 Benchmark Statistics Compiled for Kepler and Run on Tesla K20c (GK110) Cont’d . . 57

7.1 Listing of Hwacha Control Thread Instructions . 79
7.2 Hwacha Worker Thread Instruction Opcode Map . 81
7.3 Listing of Vector Unit-Strided, Constant-Strided Memory Instructions 82
7.4 Listing of Vector Indexed Memory Instructions . 83
7.5 Listing of Vector Atomic Memory Instructions . 84
7.6 Listing of Vector Integer Compute Instructions . 85
7.7 Listing of Vector Reduction Instructions . 86
7.8 Listing of Vector Floating-Point Compute Instructions 87
7.9 Listing of Vector Floating-Point Convert Instructions 87
7.10 Listing of Vector Compare Instructions . 88
7.11 Listing of Vector Predicate Memory Instructions . 89
7.12 Listing of Vector Predicate Compute Instructions . 89
7.13 Listing of Scalar Memory Instructions . 91
7.14 Listing of Scalar Compute Instructions . 92
7.15 Listing of Control Flow Instructions . 93

8.1 Actions Taken by the RoCC Unit for Each Hwacha Control Thread Instruction 100
8.2 Actions Taken by the Scalar Unit for Each Hwacha Worker Thread Instruction Group . 101
8.3 List of Sequencer Operations . 107
8.4 Sequencer Operations Issued for Each Hwacha Worker Thread Instruction Group . . . 108
8.5 List of Bank Micro-Operations (µops) . 109
8.6 Bank µops Scheduled for Each Sequencer Operation 111
8.7 Tunable Hwacha Design Parameters and Default Values 114

9.1 Listing of Evaluated Microbenchmarks . 119
9.2 Used Rocket Chip SoC Generator Parameters . 123
9.3 VLSI Quality of Results . 126

vii

Acknowledgments

Looking back at all the years I have been at U.C. Berkeley, I am grateful to have had a chance
to work with so many talented colleagues and friends.

First and foremost, I would like to thank my advisor Krste Asanović who has been a true
mentor, a role model, and a passionate teacher. Thanks for supporting me throughout various
projects and shaping up my knowledge and understanding of computer architecture and research.
Thanks for your advice, encouragement, and exceptional patience throughout the long journey of
figuring out how to build computer systems right. I would also like to thank the rest of my thesis
committee, Dave Patterson, Bora Nikolić, and Paul Wright for their valuable feedback. Sadly,
committee member David Wessel passed away, the loss of a mentor and a friend.

Special thanks to Andrew Waterman, who co-designed the RISC-V ISA among many other
things. I have truly enjoyed our late-night conversations, debates, and arguments—I believe they
have improved the work we have done together. Thanks to other RISC-V instigators, Krste and
Dave—I look forward to seeing RISC-V evolve into something even bigger.

Thanks to the members of the Hwacha team at U.C. Berkeley for helping to create a new
data-parallel machine and a compiler that goes with it. Particular thanks to Albert Ou, Colin
Schmidt, and Sagar Karandikar for making it happen. Without your help, the Hwacha vector-fetch
architecture and this thesis would not have existed in their current form. Thanks to the rest of
the Hwacha team including Henry Cook, Andrew Waterman, Palmer Dabbelt, Howard Mao, John
Hauser, Huy Vo, Stephen Twigg, and Quan Nguyen. Section 1.6 discusses in more detail how the
members of the Hwacha project contributed to this thesis.

Thanks to the members of the EOS team at U.C. Berkeley and MIT for helping to design and
fabricate working 45 nm RISC-V prototypes. Particular thanks to Chen Sun and Rimas Avižienis,
who taught me how to whisper into the ear of ECAD tools. Chen, I will never forget the night
at BWRC when we got the EOS22 chip to execute the Hello World! program using our silicon
photonics links. Thanks to the rest of the EOS team including Michael Georgas, Yu-Hsin Chen,
Rajeev Ram, and Vladimir Stojanović.

Thanks to the members of the Raven team at U.C. Berkeley for helping to design and fabricate
working 28 nm RISC-V prototypes. Particular thanks to Brian Zimmer, who was there starting
from the very first Raven tapeout. Thanks to the rest of the Raven team including Jaehwa Kwak,
Ružica Jevtić, Hanh-Phuc Le, Ben Keller, Stevo Bailey, Pi-Feng Chiu, Alberto Puggelli, Milovan
Blagojević, Brian Richards, Elad Alon, and Bora Nikolić. Brian, Alberto, I will never forget the
night at BWRC when we got Linux to boot on the Raven3 chip.

Thanks to the members of the architecture research team at NVIDIA for helping to develop
scalarization and predication ideas. Particular thanks to Ronny Krashinsky, Vinod Grover, Mark
Stephenson, and Steve Keckler who helped me hack the production CUDA compiler for three
years. Thanks to the rest of the architecture research team including James Balfour, Brucek
Khailany, Daniel Johnson, Siva Hari, and Bill Dally.

Thanks to the members of the Chisel team at U.C. Berkeley for spearheading the custom HDL
effort. Particular thanks to Jonathan Bachrach and Stephen Twigg for putting a lot of effort into
making it all work. Thanks to the rest of the Chisel team including Jim Lawson.

viii

Thanks to the members of the Maven team at U.C. Berkeley for helping to design the Maven
vector-thread architecture and evaluate it. Particular thanks to Christopher Batten, who has been
a great mentor and teacher, and Rimas Avižienis, who has always found a way to workaround the
nastiest problems I have given up on. Thanks to the rest of the Maven team including Alex Bishara,
Richard Xia, and Chris Celio.

Thanks to the members of the RAMP Gold team at U.C. Berkeley for showing me what it takes
to build working things. Particular thanks to Zhangxi Tan, who always told me to make it work! I
can now say with more confidence, I sure did.

Thanks to my fellow graduate students, system administrators, and administrative staff at U.C.
Berkeley who have enhanced my graduate school experience and taught me a great deal. Particular
thanks to Scott Beamer, Kostadin Ilov, Jon Kuroda, Roxana Infante, Tamille Johnson, and the rest
of my research group.

Thanks to my parents, Sangkook Lee and Kueyoung Lee, for guiding me through my life, and
being supportive throughout graduate school even from 5,000 miles away. Thanks to my wife,
Soyoung, for her unending patience, love, and support for everything in my life. I could not have
done it without you.

1

Chapter 1

Introduction

It is truly an interesting time to be a computer architect, as we hit the inflection point at which
old conventional wisdom in computer architecture breaks down. For the past 50 years, Moore’s
law [87] in conjunction with Dennard scaling [35] have given computer architects 2×more transis-
tors every 18 months in successive process nodes that fit in a similar power budget while increasing
clock frequency. That meant the main job of a computer architect was to design a computer that
delivered twice the performance compared to the previous generation by using those extra faster
transistors. However, in an era where transistor scaling and Dennard scaling is slowing down or
arguably grinding to a halt due to physical limits and leakage concerns, the job of a computer
architect is radically different [124]. Power and energy efficiency are the most critical aspects to
consider when designing a computer. Architects also need to carefully budget their transistors to
deliver more performance and energy efficiency, as the cost of transistors is increasing as we move
to the more advanced FinFET process nodes. Yet, users’ imagination is unlimited, creating new
useful applications with endlessly growing compute demands.

This thesis first surveys a wide range of data-parallel architectures—a set of machines designed
by other computer architects to address the problem stated above—and analyzes pros and cons of
their assembly programming models, architectural features, and compiler support. Based on these
observations, this thesis then presents the new Hwacha decoupled vector-fetch architecture, an
attempt to build a highly performant and efficient data-parallel machine that maintains the same
level of programmability as others, by pushing some complexity into the scalarizing compiler and
therefore simplifying the underlying hardware.

This chapter expands on the current trends in computer architecture, how computer architects
are responding to them, and the rise of programmable data-parallel architectures, before outlining
the thesis contributions and overview.

1.1 Upheaval in Computer Design
In 1965, Gordon Moore made an observation after looking at a few years of data that the number of
transistors per integrated circuit doubled every year, and if that trend was extrapolated, we would

CHAPTER 1. INTRODUCTION 2

0.0401

0.0282

0.0194

0.014 0.0142
0.0162

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

90nm 65nm 40nm 28nm 20nm 16/14nm

V
dd

 H
P

C
os

t p
er

 M
ill

io
n

G
at

es
 ($

)

Cost per Million Gates ($) Vdd HP

Figure 1.1: Trends in Cost per Gate and Nominal Vdd for Advanced HP (High-Performance)
Process Nodes – Cost per gate data from [59] and nominal Vdd data from International Technology
Roadmap of Semiconductors (ITRS).

be able to integrate 65,000 transistors on one chip by 1975 [87]. In 1974, Robert Dennard also
made an important observation that as the technology scales with a factor of 1/κ, the quantity of
transistors (Q) increases by a factor of κ2, the speed of the transistor (F) increases by a factor
of κ, the gate capacitance (C) shrinks by a factor of 1/κ, and assuming that the voltage (V) also
scales by 1/κ, the power density QCV 2F would remain constant [35]. These observations have
later been coined as “Moore’s Law” and “Dennard Scaling”. Coupled together, they meant that
computer architects would get twice more transistors to use at the same power budget: a golden
era where performance doubled every 12–18 months thanks to higher clock frequencies, bigger
caches, more functional units, more on-die integration, more aggressive speculation with better
branch prediction, larger issue windows and larger reorder buffers.

However, as Gordon Moore said in 2003, no exponential is forever [88]. As shown in Fig-
ure 1.1, around 2004 when the 90 nm process node was introduced, Dennard scaling unexpectedly
hit a wall in which we could no longer reduce the supply voltage by a factor of 1/κ due to in-
creasing leakage power. As a result, the power density went up by a factor of κ2 every process
node rather than staying constant. This meant that computer architects would still get twice more
transistors to use every successive process node, but they could not switch all the extra transistors
at full frequency at the same time: the dark silicon era, a term later coined by ARM’s CTO Mike
Muller in 2009 [86], had arrived. Industry responded to the dark silicon era with a new roadmap of
multicore designs around 2005 that doubled the number of cores on a chip each process generation
while making individual cores simpler [15].

Despite skepticism, Moore’s law has kept up in the last decade: five successive process genera-
tions were introduced since the 90 nm node from 2004 with advances in technology such as optical

CHAPTER 1. INTRODUCTION 3

All Applications
1x

10x

100x

General-Purpose
Processor

Fixed-Function Accelerator

Data-Parallel
Accelerator

Im
pr

ov
em

en
t

Figure 1.2: The Application Space – All applications are shown on the X-axis, and the im-
provement in terms of performance and energy efficiency by running an application on a particular
architecture is shown on the Y-axis.

proximity correction (OPC), multi-patterning, FinFET transistors, and EUV ultraviolet lithogra-
phy. However, as shown in Figure 1.1, the cost per million gates has gone up starting from the
28 nm process and beyond. This means that computer architects can still get more transistors, but
they are not only dark but also no longer “cheap”: as we approach the terminal era of Moore’s law,
transistors need to be carefully budgeted. It is also unclear when the actual doubling will stop since
we are close to counting the number of silicon atoms across the gate of a transistor. It may be the
case that 3D stacking of chips or a new process technology could keep the transistor doubling on
track, however, it seems unlikely that a general solution is imminent that will be applicable across
the board.

1.2 Specialization To the Rescue
So what are the implications in designing computers given the trends in Section 1.1? It means
that power and energy efficiency are first-class design constraints that shape the primary design
decisions in architecting a computer system. In particular, computer architects are motivated to
incorporate specialized and heterogeneous accelerators into general-purpose processors.

When it comes to specialization, there are two schools of thought. Figure 1.2 helps describe
both approaches. All applications that run on computer systems are shown on the X-axis, while
the improvement running a given application on a given architecture over running it on a simple
baseline processor in terms of performance and energy efficiency is shown on the Y-axis. For
example, the blue line shows the improvement of running all applications on a general-purpose
out-of-order processor. As architectural features of an out-of-order processor generally improve
performance across the board, the blue line smoothly spreads across the spectrum of applications.

CHAPTER 1. INTRODUCTION 4

The blue line has ups and downs as the out-of-order features help some applications more than
others, however, the variance is not too high.

One school of thought is to deploy hundreds of fixed-function accelerators that provide focused
specialization, which individually target 100× improvement over the baseline or more [50]. These
accelerators target a very limited set of applications but give large improvements, and therefore are
shown as green lines in Figure 1.2 that resemble impulse responses.

The other school of thought is to deploy a few flexible accelerators that provide general-
purpose specialization, which target somewhere around the 10× improvement range over the base-
line but cover a wider range of applications. Floating-point units and data-parallel accelerators are
good examples that help performance and energy efficiency while not changing the programming
model, and interacting amicably with the operating system and virtualization. The red line in Fig-
ure 1.2 depicts an example data-parallel accelerator. Generally speaking, it improves performance
and energy efficiency on a much wider range of applications than a fixed-function accelerator,
however, the gain is lower. Since not all applications are able to take advantage of the accelerator,
the red line does not spread across the entire spectrum of applications.

Both approaches have their own set of tradeoffs. It is up to the computer architect to make
the decision on which approach to take to solve for a given problem. The former approach can
dramatically improve performance and energy efficiency, however, more area is spent on imple-
menting a wide range of accelerator as individual accelerators can only cover a very narrow subset
of applications. Power- and clock-gating circuitry become more complicated in order to keep indi-
vidual accelerators from consuming energy when they are not in-use. A bigger die area also means
that more energy is spent on inter-accelerator data movement. Backwards compatibility becomes
problematic as the number of accelerators grow. The latter approach is more likely to end up with
a smaller die area as fewer accelerators are implemented in total, sidestepping some drawbacks
of the former approach related to using up more area. The latter approach, however, might not
be able to deliver the same efficiency gains of the former as it is less specialized to target a wider
subset of applications. Also, the area of an individual accelerator that provides general-purpose
specialization might turn out to be bigger than an individual fixed-function accelerator, therefore
spending more energy on intra-accelerator data movement.

1.3 Rise of Programmable Data-Parallel Architectures
Given the current trends and constraints, especially the fact that transistors and die area are not
totally free, we prefer general-purpose specialization over deploying hundreds of fixed-function
accelerators, which are specialized for very narrow tasks. We believe this is why programmable
data-parallel processing units, such as classic vector units, packed-SIMD units, and graphics pro-
cessing units (GPUs) have become popular.

Accepting the benefits of programmable data-parallel architectures, a very important question
arises for those computer architects: what architectural features should be added in order to im-
prove performance and energy efficiency on existing applications as well as programmability to
cover a wider range of applications? In other words, what can an architect do to push the red line

CHAPTER 1. INTRODUCTION 5

in Figure 1.2 towards the red arrow (upper left direction), while not hampering improvements on
existing applications (not pushing the tail of the red line back down)? Indeed, in the last decade,
most of the research and innovation related to data-parallel architectures were geared towards that
direction. For example, GPUs added texture caches, transcendental functional units, and hard-
ware divergence stacks to support applications with irregular control flow. Texture caches and
transcendental functional units improve performance and energy efficiency on existing graphics
applications, while hardware divergence stacks widen the range of applications that can run on a
GPU.

This thesis documents our journey in answering the key question stated above. By surveying
a wide range of data-parallel architectures, we look into the pros and cons of new architectural
features that were added, and wonder whether there are simpler yet more efficient ways to support
them, and also whether there are new ideas that have potential to further improve performance,
energy efficiency, and programmability.

1.4 The Maven Project
The earlier Maven project was our first attempt to build a highly performant and efficient data-
parallel architecture that was flexible enough to support a wide spectrum of applications. Through-
out the project, we explored the tradeoffs between programmability and efficiency of three differ-
ent data-parallel architectures: MIMD, traditional vector, and the newly-proposed Maven vector-
thread architecture. The Maven vector-thread architecture was a hybrid architecture between tra-
ditional vector and GPU [81] to maintain the efficiency of a traditional vector machine while pro-
viding the flexibility of a GPU machine by pushing the divergence management burden onto the
hardware.

We implemented a flexible microarchitecture that was capable of instantiating the MIMD ar-
chitecture, the traditional vector architecture, and the Maven vector-thread architecture from the
same RTL code base. We pushed hundreds of designs with different parameters through the VLSI
flow using the TSMC 65 nm process node to get accurate area and cycle time numbers. We ran
compiled microbenchmarks and application kernels on the gate-level simulator to get accurate per-
formance and energy numbers. These numbers were then compared to quantify tradeoffs between
programmability (how easy is it to write software for the architecture) and efficiency (energy/task
and tasks/second/area).

The details of the project are published in Christopher Batten’s PhD thesis [21], the ISCA
conference paper [72], my master thesis [70], and the TOCS journal paper [71]. The takeaway
points from the project are summarized here. Successes of the project include showing that vector-
based architectures (such as the Cray-1 vector machine [109] built by Seymour Cray in the 1970s)
are indeed more area and energy efficient than other data-parallel architectures. We also show
that decoupling—which enables non-speculative prefetching—is an efficient way to hide memory
latency. Banked vector register files are proven to be area efficient. Weaknesses of the Maven
project were that the hardware divergence management was tricky to get right: we have spent
more than half of our debugging cycles on getting the divergence management hardware to function

CHAPTER 1. INTRODUCTION 6

correctly. We have confirmed that lack of scalar registers has negative consequences in terms of
performance and energy efficiency. Also, multi-ported flip-flop-based register files are proven to
be area inefficient.

These observations heavily influenced the research in this thesis. We carefully examine other
divergence management architectures (see Chapter 2), and ways to integrate scalar resources into
the microarchitecture. We also explore the best machine organization to incorporate a banked
register file built with area-efficient SRAM macros.

During the Maven project, we glossed over details of popular GPU architectures, due to time
and resource constraints. This led me to pursue an internship at NVIDIA after the Maven project
was over in 2011. I ended up working part-time at NVIDIA until 2014, where I got a chance to
take a fresh look at the compiler-architecture boundary for the GPU architecture, and argue for a
different split where the compiler takes more burden off the hardware to make it both simpler and
more efficient. The main results are summarized in Chapter 3–5, in which we argue for scalarizing
compilers.

1.5 Thesis Contributions and Overview
This thesis makes the following contributions:

• Survey of Data-Parallel Architectures on their Assembly Programming Models, Archi-
tectural Features, and Compiler Support – Chapter 2 starts out by providing an overview
of the most popular data-parallel programming models (implicitly parallel autovectoriza-
tion and explicitly parallel Single-Program Multiple-Data (SPMD) programming models
like CUDA [91], and OpenCL [125]). We then walk through a range of data-parallel ar-
chitectures (packed-SIMD, GPU/SIMT, traditional vector [109, 13], vector-thread [66, 21,
71]) and present their assembly programming models, the abstract low-level software in-
terface that gives programmers or compiler writers an idea of how code executes on the
machine. We also discuss how different data-parallel architectures support irregular control
flow present in data-parallel programming models—the way to manage divergence is often
the single most important design decision that shapes the architecture.

• Scalarizing Compilers – Chapter 3 presents the overheads of the SPMD programming
model, and proposes an alternate way of managing the execution of SPMD programs on
data-parallel architectures: let the scalarizing compiler automatically scalarize and predi-
cate the explicitly parallel SPMD program, so that the generated code can run on simpler yet
efficient data-parallel hardware. An easy way to reason about scalarizing compilers is that
they are the opposite of vectorizing compilers. Vectorizing compilers automatically convert
parts of a single-threaded program to run on a data-parallel unit, while scalarizing compilers
automatically convert parts of an explicitly parallel program to run on a scalar processor.
Scalarizing compilers also make transformations to the code to efficiently map the parallel
portion down to the data-parallel unit. Chapter 4 describes the compiler foundation for the
scalarization compiler pass, discusses the details of implementing the compiler pass in a

CHAPTER 1. INTRODUCTION 7

production CUDA compiler, and presents the evaluation results. Similarly, Chapter 5 walks
through the compiler foundation, implementation, and evaluation results for the predication
compiler pass.

• The Hwacha Vector-Fetch Architecture – With the scalarizing compiler mentioned above,
this thesis shows that traditional vector-like architectures can maintain the same level of pro-
grammability as other data-parallel architectures while being highly performant, efficient,
yet a favorable compiler target. With that in mind, Chapter 6 introduces the Hwacha vector-
fetch architecture as the basis of a new data-parallel machine. We also present its assem-
bly programming model and architectural features, and reason through the design decisions.
Later chapters describe the instruction set architecture (Chapter 7), microarchitecture (Chap-
ter 8), implementation and evaluation results (Chapter 9) of the new Hwacha vector machine.

1.6 Collaboration, Previous Publications, and Funding
As with all large systems projects, this thesis describes work that was performed as part of a group
effort. Many people have made contributions to the Hwacha project. The Hwacha vector accel-
erator was developed by myself, Albert Ou, Colin Schmidt, Sagar Karandikar, Krste Asanović,
and others from 2011 through 2016. As the lead architect of Hwacha, I directed the development
and evaluation of the ISA, architecture, microarchitecture, RTL, compiler, verification framework,
microbenchmarks, and application kernels. Albert Ou was primarily responsible for the RTL im-
plementation of the Vector Memory Unit (VMU) and mixed-precision extensions. Colin Schmidt
took the lead on the definition of the Hwacha ISA, RTL implementation of the scalar unit, C++
functional ISA simulator, vector torture test generator, Hwacha extensions to the GNU toolchain
port, and the OpenCL compiler and benchmark suite. Sagar Karandikar took the lead on the bar-
crawl tool for design-space exploration, VLSI floorplanning, RTL implementation of the Vector
Runahead Unit (VRU), ARM Mali-T628 MP6 GPU evaluation, and the assembly microbench-
mark suite. Palmer Dabbelt took the lead on the physical design flow and post-PAR gate-level
simulation in the 28 nm process technology. Henry Cook took the lead on the RTL implementa-
tion of the uncore components, including the L2 cache and the TileLink cache coherence protocol.
Howard Mao took the lead on dual LPDDR3 memory channel support and provided critical fixes
for the outer memory system. Andrew Waterman took the lead on the definition of the RISC-V
ISA, the RISC-V GNU toolchain port, and the RTL implementation of the Rocket core. Andrew
also helped to define the Hwacha ISA. John Hauser took the lead on developing the hardware
floating-point units. Many others contributed to the surrounding infrastructure, such as the Rocket
Chip SoC generator. Huy Vo, Stephen Twigg, and Quan Nguyen contributed to older versions of
Hwacha. Finally, Krste Asanović was integral in all aspects of the project.

Some of the content in this thesis is adapted from previous publications, including: “Conver-
gence and Scalarization for Data-Parallel Architectures” from CGO, 2013 [74], “Exploring the
Design Space of SPMD Divergence Management on Data-Parallel Architectures” from MICRO,
2014 [73], “A 45nm 1.3GHz 16.7 Double-Precision GFLOPS/W RISC-V Processor with Vector

CHAPTER 1. INTRODUCTION 8

Accelerators” from ESSCIRC, 2014 [78], “A Case for MVPs: Mixed-Precision Vector Processors”
from PRISM, 2014 [100], “A Case for OS-Friendly Hardware Accelerators” from WIVOSCA,
2013 [127], and technical reports, including: “The Hwacha Vector-Fetch Architecture Manual,
Version 3.8.1” [77], “The Hwacha Microarchitecture Manual, Version 3.8.1” [75], “Hwacha Pre-
liminary Evaluation Results, Version 3.8.1” [76]. Permission to use any material from above pub-
lications have been received from all co-authors in writing (via email).

This work has been partially funded by the following sponsors.

• Par Lab: Research supported by Microsoft (Award #024263) and Intel (Award #024894)
funding and by matching funding by U.C. Discovery (Award #DIG07-10227). Additional
support came from Par Lab affiliates: Nokia, NVIDIA, Oracle, and Samsung.

• Silicon Photonics: DARPA POEM program, Award HR0011-11-C-0100.

• ASPIRE Lab: DARPA PERFECT program, Award HR0011-12-2-0016. The Center for
Future Architectures Research (C-FAR), a STARnet center funded by the Semiconductor
Research Corporation. Additional support came from ASPIRE Lab industrial sponsors and
affiliates: Intel, Google, HP, Huawei, LGE, Nokia, NVIDIA, Oracle, and Samsung.

• NVIDIA graduate fellowship

9

Chapter 2

Background

Data-parallel architectures have long been known to provide greater performance and energy ef-
ficiency than general-purpose architectures for applications with abundant data-level parallelism.
This chapter provides background on a wide range of data-parallel architectures such as Cray-1-
like vector machines [109, 71], Intel packed-SIMD units [105, 82], NVIDIA and AMD graphics
processing units (GPUs) [81, 97, 96, 5], and Intel MIC accelerators [110]. We mainly discuss
how they get programmed, and how the code gets executed on the machine. Section 2.1 first
presents two of the most popular data-parallel programming models—autovectorization and the
Single-Program Multiple-Data (SPMD) model. Section 2.2 then pops down one level and de-
scribes assembly programming models for these data-parallel architectures, the abstract low-level
software interface that gives programmers or compiler writers an idea on how code executes on the
machine. Section 2.3 goes into more detail on how these data-parallel architectures support irreg-
ular control flow present in the programming models described above. Divergence management
is of particular importance, as it often ends up dictating how a data-parallel machine is organized.
Section 2.4 summarizes and gives an overview of the rest of the thesis.

2.1 Data-Parallel Programming Languages
Programming data-parallel systems is inherently challenging, and over decades of research and
development only a few models have attained broad success. Implicitly parallel autovectoriza-
tion approaches were popular with early vector machines, while explicitly parallel Single-Program
Multiple-Data (SPMD) accelerator languages like CUDA [91] and OpenCL [125] have proven to
be accessible and productive for newer GPUs and SIMD extensions. Figure 2.1 uses the SGEMM
kernel, which multiplies 32 by 32 single-precision floating-point matrices (C = A×B), as an ex-
ample to describe the similarities and differences of both programming models.

The SGEMM kernel is written as a triply nested loop in Figure 2.1a. In the program, the outer
two loops i and j (lines 2 and 3) iterate through all elements in the C matrix, and perform a dot
product of a row in matrix A and a column in matrix B. The same SGEMM kernel is written in
the SPMD programming model in Figure 2.1c. The program is organized into a 2-D thread launch

CHAPTER 2. BACKGROUND 10

1 float C[32][32], A[32][32], B[32][32]; // assume C is zeroed
2

3 for (int i = 0; i < 32; ++i)
4 for (int j = 0; j < 32; ++j)
5 for (int k = 0; k < 32; ++k)
6 C[i][j] += A[i][k] * B[k][j];

(a) Triply Nested Loop

1 float C[32][32], A[32][32], B[32][32]; // assume C is zeroed
2

3 for (int i = 0; i < 32; ++i)
4 for (int k = 0; k < 32; ++k)
5 for (int j = 0; j < 32; ++j)
6 C[i][j] += A[i][k] * B[k][j];

(b) Interchanged Triply Nested Loop that is Vectorizable

1 float C[32][32], A[32][32], B[32][32]; // assume C is zeroed
2

3 sgemm<<<32, 32>>>(C, A, B);
4

5 void sgemm(float** C, float** A, float** B)
6 {
7 for (int k = 0; k < 32; ++k)
8 C[tid.y][tid.x] += A[tid.y][k] * B[k][tid.x];
9 }

(c) SPMD Model

Figure 2.1: Single-Precision Matrix Multiplication Kernel (SGEMM) Written in Two Paral-
lel Programming Languages – (a) triply nested loop, (b) interchanged triply nested loop that is
vectorizable, and (c) SPMD model.

CHAPTER 2. BACKGROUND 11

(line 3) and an kernel function (lines 5–9) that all threads execute. 32 threads are launched in both
X and Y dimensions (1024 threads are launched in total), and they mimic the outer two loops i
and j from Figure 2.1a. Each thread has access to the loop variables i and j through tid.y and
tid.x, and is responsible for calculating the result for an element in the C matrix.

The autovectorization programming model lets the programmer write sequential loops to ex-
press data-parallel computation. It is the vectorizing compiler’s job to extract the parallelism out
of a single-threaded program, hence we refer to it as the implicitly parallel programming model.
The vectorizing compiler first analyzes loop dependence of the nested loop, interchanges the loop
ordering based on the dependence information so that the innermost loop is vectorizable (i.e., the
loop does not carry a dependence that prevents from running it in parallel) and the outermost loop
is parallelizable, and finally performs the vectorizing transformation on the code [1, 3, 4]. Bern-
stein’s conditions for parallel execution give the formal definition of dependence [23]. There are
three types of dependences among two statements that access the same memory location, which
are identical to the data hazards that show up in a processor pipeline [55]—true dependence (a
read-after-write or RAW hazard in a processor pipeline), anti-dependence (a WAR hazard), and
output dependence (a WAW hazard). Testing loop dependence based on the dependence informa-
tion above turns out to be an NP-complete problem [49], so conservative heuristics are often used
as approximations such as the Banerjee’s test [20] and the more recent polyhedral models [25].

A vectorizing compiler would take the triply nested loop in Figure 2.1a, analyze the loop de-
pendence, and figure out that the inner loop (k loop) cannot be vectorized (i.e., all iterations must
execute sequentially), since it writes and reads the same memory location (C[i][j]) every it-
eration. The compiler will then interchange the k loop and the j loop as shown in Figure 2.1b,
as it maximizes profitability: the resulting triply nested loop not only exposes unit-strided vector
memory operations in the innermost loop, but also allows the outermost loop to be executed in
parallel. Finally, the compiler will vectorize the innermost j loop, and generate code with scalar
instructions and vector instructions. The compiler leaves loop bookkeeping, address calculation,
shared data across all elements in a vector on the scalar control processor, and only maps the data-
parallel computation onto the vector unit. The compiler will also generate unit-strided vector loads
and stores for efficient data movement and vector-scalar instructions to minimize data replication.
If the compiler fails to vectorize the code for whatever reason, it can always fall back and map the
code onto the scalar processor.

SPMD accelerator languages express data-parallel computation in the form of multithreaded
kernels, hence we refer to it as the explicitly parallel programming model. Inside a kernel, the
programmer writes code for a single thread. A thread typically processes a small amount of data.
For example, a thread might compute the color of a single pixel in a graphics application. The pro-
grammer expresses parallel computation with explicit data-parallel kernel invocations that direct a
group of threads to execute the kernel code. In CUDA, these thread groups are termed cooperative
thread arrays (CTAs). A CTA may have up to 1024 threads. This approach allows the SPMD
compiler to use a fairly conventional thread compilation model, while pushing most of the burden
onto the hardware to figure out an efficient way of executing the threaded code.

Explicitly data-parallel languages map naturally to highly multithreaded architectures, such as
GPUs and other multicore accelerators. These throughput architectures leverage parallelism spa-

CHAPTER 2. BACKGROUND 12

tially to execute computations at a high rate across many datapaths and cores. They also leverage
parallelism temporally to saturate high-bandwidth memory systems. The interleaved execution of
multiple threads essentially hides hardware latencies from each individual thread. This approach
simplifies the programming model since the code written for an individual thread can simply access
data and operate on it, without great concern for the access latency.

SPMD programming models also implicitly expose locality, which improves efficiency. GPUs
use a Single-Instruction Multiple-Thread (SIMT) architecture that executes an instruction on par-
allel datapaths for many threads at the same time, for example 32 threads in warps using NVIDIA
terminology, or 64 threads in wavefronts using AMD terminology. A warp may issue in a single
cycle if the datapath width matches the warp width, or it may be sequenced over several cycles
on a narrower datapath. Similar to Single-Instruction Multiple-Data (SIMD) architectures, SIMT
architectures use this organization to amortize the instruction fetch and other control overheads as-
sociated with executing instructions. SIMT architectures also derive efficiency from data locality
for the common case when the threads in a warp access neighboring data elements. To exploit this
locality, SIMT architectures use dynamic address coalescing to turn individual element accesses
into wide block accesses that the memory system can process more efficiently, for example with
only a single cache tag check.

Although the SPMD programming model is simple for the programmer, it can introduce many
hidden overheads. The programmers cannot express the scalar parts of the computation, since they
only specify the kernel function and the grid dimensions for thread launch. As a result, there are in-
structions and data that are redundant across all threads executing a kernel. Also, SPMD programs
tend to have substantial and complex per-thread control flow, extending beyond simple if-then-else
clauses to nested loops and function calls. Section 2.3 describes how different data-parallel ar-
chitectures manage divergence (i.e., support irregular control flow present in SPMD programming
models) in more detail. Chapter 3 describes the overheads of the SPMD programming model in
more detail, and how scalarizing compilers alleviate these overheads while retaining the identical
threaded SPMD programming model.

2.2 Assembly Programming Models of Data-Parallel
Architectures

This section introduces assembly programming models of various data-parallel architectures, such
as packed-SIMD, GPU/SIMT, traditional vector, and vector-thread architectures. The assembly
programming model is the abstract low-level software interface that gives programmers or com-
piler writers an idea on how the code executes on each data-parallel machine. The compiler will
typically take the high-level program written in a parallel programming language introduced in
the previous section, and generate assembly code for a given data-parallel architecture described
below.

As a running example, we use a conditionalized SAXPY kernel (CSAXPY), which performs
single-precision a·X plus Y conditionally. Figure 2.2 shows CSAXPY expressed in both a vec-

CHAPTER 2. BACKGROUND 13

1 void csaxpy(size_t n, bool cond[], float a, float x[], float y[])
2 {
3 for (size_t i = 0; i < n; ++i)
4 if (cond[i])
5 y[i] = a*x[i] + y[i];
6 }

(a) Vectorizable Loop

1 csaxpy_spmd<<<((n-1)/32+1)*32>>>;
2

3 void csaxpy_spmd(size_t n, bool cond[], float a, float x[], float y[])
4 {
5 if (tid.x < n)
6 if (cond[tid.x])
7 y[tid.x] = a*x[tid.x] + y[tid.x];
8 }

(b) SPMD Model

Figure 2.2: Conditional SAXPY Kernel Written in C – (a) vectorizable loop, and (b) SPMD
model.

torizable loop and as a SPMD kernel. CSAXPY takes as input an array of conditions, a scalar
a, and vectors x and y; it computes y += ax for the elements for which the condition is true. In
Figure 2.2a, the computation is written as a sequential for loop (lines 3–5). In Figure 2.2b, the
computation is written as a 1-D thread launch (line 1), and a kernel function saxpy spmd (lines
3–8). Note, the number of launched threads has to be quantized to a multiple of the warp size
(32 for NVIDIA GPUs), and as a result, the kernel function has to check whether the thread index
(tid.x) is in bounds with the application vector length (n) with a conditional. Note, this bounds
check is unnecessary when the computation is expressed with a for loop in Figure 2.2a.

Packed-SIMD Assembly Programming Model
Figure 2.3a shows the CSAXPY kernel mapped to a hypothetical packed-SIMD architecture

with predication support, similar to Intel’s SSE and AVX extensions. Predication support is quite
uncommon; Intel’s AVX architecture, for example, only supports predication as of 2015, and then
only in its Xeon line of server processors. The example SIMD architecture has 128-bit registers,
each partitioned into four 32-bit fields. As with other packed-SIMD machines, ours cannot mix
scalar and vector operands, so the code begins by filling a SIMD register with copies of a (line
4). To map a long vector computation to this architecture, the compiler generates a stripmine
loop, each iteration of which processes one four-element vector (lines 5–15). In this example, the
stripmine loop consists of a load from the conditions vector (line 6), which in turn is used to set a
predicate register (line 7). The next four instructions (lines 8–11), which correspond to the body

CHAPTER 2. BACKGROUND 14

1 csaxpy_simd_with_predication:
2 slli a0, a0, 2
3 add a0, a0, a3
4 vsplat4 vv0, a2
5 stripmine_loop:
6 vlb4 vv1, (a1)
7 vcmpez4 vp0, vv1
8 !vp0 vlw4 vv1, (a3)
9 !vp0 vlw4 vv2, (a4)

10 !vp0 vfma4 vv1, vv0, vv1, vv2
11 !vp0 vsw4 vv1, (a4)
12 addi a1, a1, 4
13 addi a3, a3, 16
14 addi a4, a4, 16
15 bleu a3, a0, stripmine_loop
16 # handle edge cases
17 # when (n % 4) != 0 ...
18 ret

(a) With Predication

1 csaxpy_simd_without_predication:
2 slli a0, a0, 2
3 add a0, a0, a3
4 vsplat4 vv0, a2
5 stripmine_loop:
6 vlb4 vv1, (a1)
7 vcmpez4 vv3, vv1
8 vlw4 vv1, (a3)
9 vlw4 vv2, (a4)

10 vfma4 vv1, vv0, vv1, vv2
11 vblend4 vv1, vv3, vv1, vv2
12 vsw4 vv1, (a4)
13 addi a1, a1, 4
14 addi a3, a3, 16
15 addi a4, a4, 16
16 bleu a3, a0, stripmine_loop
17 # handle edge cases
18 # when (n % 4) != 0 ...
19 ret

(b) Without Predication

Figure 2.3: CSAXPY Kernel Mapped to the Packed-SIMD Assembly Programming Model –
In all pseudo-assembly examples presented in this section, a0 holds variable n, a1 holds pointer
cond, a2 holds scalar a, a3 holds pointer x, and a4 holds pointer y. The vblend4 d,m,s,t
instruction computes d=s&m|t&~m and implements a select function.

of the if-statement (y[i]=a*x[i]+y[i]) in Figure 2.2a, are masked by the predicate register.
Finally, the address registers are incremented by the SIMD width (lines 12–14), and the stripmine
loop is repeated until the computation is finished—almost. Since the loop handles four elements
at a time, extra code is needed to handle up to three fringe elements (lines 16–17). For brevity,
we omitted this code; in this case, it suffices to duplicate the loop body, predicating all of the
instructions on whether their index is less than n.

Figure 2.3b shows CSAXPY kernel mapped to a similar packed-SIMD architecture without
predication support. The compare instruction sets up the mask in a vector register instead (line
7). The bulk of the computation is done regardless of the condition (lines 8–10). The vblend4
selects the new value or the old value depending on the condition (line 11). The result is then
stored back out to memory (line 12). The fringe case is handled on the scalar processor due to lack
of predication.

The most important drawback to packed-SIMD architectures lurks in the assembly code: the
SIMD width is expressly encoded in the instruction opcodes and memory addressing code. When
the architects of such an ISA wish to increase performance by widening the vectors, they must
add a new set of instructions to process these vectors. This consumes substantial opcode space:

CHAPTER 2. BACKGROUND 15

for example, Intel’s newest AVX instructions are as long as 11 bytes. Worse, application code
cannot automatically leverage the widened vectors. In order to take advantage of them, application
code must be recompiled. Conversely, code compiled for wider SIMD registers fails to execute on
older machines with narrower ones. As we later show, this complexity is merely an artifact of poor
design.

GPU/SIMT Assembly Programming Model
Figure 2.4 shows the same code mapped to a hypothetical SIMT architecture, akin to an

NVIDIA GPU. The SIMT architecture exposes the data-parallel execution resources as multiple
threads of execution; each thread executes one element of the vector. The microarchitecture fetches
an instruction once but then executes it on many threads simultaneously using parallel datapaths.
Therefore, a scalar instruction shown in Figure 2.4 executes like a vector instruction.

One inefficiency of this approach is immediately evident: the first action each thread takes
is to determine whether it is within bounds, so that it can conditionally perform no useful work
(line 3). Section 2.3 details how the microarchitecture manages divergence at control conditions
such as if-then-else statements, loops, and function calls, as each thread may execute control flow
independently.

Another inefficiency results from the duplication of scalar computation: despite the unit-stride
access pattern, each thread explicitly computes its own addresses (lines 4, 7–9). The SIMD archi-
tecture, in contrast, amortized this work over the SIMD width, as the address bookkeeping is only
done once per vector on the scalar processor (lines 12–14 in Figure 2.3a). Moreover, massive repli-

1 csaxpy_simt:
2 mv t0, tid
3 bgeu t0, a0, skip
4 add t1, a1, t0
5 lb t1, (t1)
6 beqz t1, skip
7 slli t0, t0, 2
8 add a3, a3, t0
9 add a4, a4, t0

10 lw t1, (a3)
11 lw t2, (a4)
12 fma t0, a2, t1, t2
13 sw t0, (a4)
14 skip:
15 stop

Figure 2.4: CSAXPY Kernel Mapped to the GPU/SIMT Assembly Programming Model –
The SPMD kernel launch code, which runs on the host processor, is omitted for brevity. This
example only shows the assembly code for the kernel function.

CHAPTER 2. BACKGROUND 16

cation of scalar operands reduces the effective utilization of register file resources: each thread has
its own copy of the three array base addresses (registers a1, a3, and a4) and the scalar a (register
a2). This represents a threefold increase over the fundamental architectural state.

Traditional Vector Assembly Programming Model
Packed-SIMD and GPU/SIMT architectures have a disjoint set of drawbacks: the main lim-

itation of the former is the static encoding of the vector length, whereas the primary drawback
of the latter is the lack of scalar processing. One can imagine an architecture that has the scalar
support of the former and the dynamism of the latter. In fact, it has existed for over 40 years, in
the form of the traditional vector machine, embodied by the Cray-1. The key feature of this archi-
tecture is the vector length register (VLR), which represents the number of vector elements that
will be processed by the vector instructions, up to the hardware vector length (HVL). As shown in
Figure 2.5, software manipulates the VLR with a vsetvl instruction (line 3), which requests a
certain application vector length (AVL); the vector unit responds with the smaller of the AVL and
the HVL [13].

As with packed-SIMD architectures, a stripmine loop iterates until the application vector has
been completely processed. But, as Figure 2.5 shows, the difference lies in the manipulation of the
VLR at the head of every loop iteration (line 3). The primary benefits of this architecture follow
directly from this code generation strategy. Most importantly, the scalar software is completely
oblivious to the hardware vector length: the same code executes correctly and with maximal effi-

1 csaxpy_tvec:
2 stripmine_loop:
3 vsetvl t0, a0
4 vlb vv0, (a1)
5 vcmpez vp0, vv0
6 !vp0 vlw vv0, (a3)
7 !vp0 vlw vv1, (a4)
8 !vp0 vfma vv0, vv0, a2, vv1
9 !vp0 vsw vv0, (a4)

10 add a1, a1, t0
11 slli t1, t0, 2
12 add a3, a3, t1
13 add a4, a4, t1
14 sub a0, a0, t0
15 bnez a0, stripmine_loop
16 ret

Figure 2.5: CSAXPY Kernel Mapped to the Traditional Vector Assembly Programming
Model – The overall structure looks similar to Figure 2.3a, however, the vector length is not ex-
posed in the vector instruction.

CHAPTER 2. BACKGROUND 17

ciency on machines with any HVL. Second, there is no fringe code: on the final trip through the
loop, the VLR is simply set to the length of the fringe.

The advantages of traditional vector architectures over the GPU/SIMT approach are owed to
the coupled scalar control processor. There is only one copy of the array pointers and of the scalar
a. The address computation instructions execute only once per stripmine loop iteration, rather than
once per element, effectively amortizing their cost by a factor of the HVL.

Vector-Thread Assembly Programming Model
The vector-thread assembly programming model loosely follows the traditional vector assem-

bly programming model. The vector memory instructions are left in the stripmine loop, while the
vector arithmetic instructions are hoisted out into a separate vector-fetch block.

Figure 2.6 shows the same CSAXPY code mapped to the Maven vector-thread architecture [71].
The stripmine loop structure is unchanged (lines 2–15). The mtvtu instruction moves the scalar
a to a vector register. Vector memory operations (lines 5–7, 9) are left in the stripmine loop, while
the vector arithmetic operations are hoisted out into a separate vector-fetch block (lines 18–22),
and are connected via a vector-fetch instruction (line 8). The vector-fetch abstraction is that each

1 csaxpy_vt:
2 stripmine_loop:
3 vsetvl t0, a0
4 mtvtu vv0, a2
5 vlb vv1, (a1)
6 vlw vv2, (a3)
7 vlw vv3, (a4)
8 vf csaxpy_vt_vf
9 vsw vv3, (a4)

10 add a1, a1, t0
11 slli t1, t0, 2
12 add a3, a3, t1
13 add a4, a4, t1
14 sub a0, a0, t0
15 bnez a0, stripmine_loop
16 ret
17

18 csaxpy_vt_vf:
19 beqz v1, skip
20 fma v3, v0, v2, v3
21 skip:
22 stop

Figure 2.6: CSAXPY Kernel Mapped to the Vector-Thread Assembly Programming Model –
The mtvtu instruction stands for “move to vector-thread unit” and splats a scalar value to a vector
register, similar to the vsplat4 instruction used in Figure 2.3.

CHAPTER 2. BACKGROUND 18

element in a vector will execute the scalar instructions in the vector-fetch block (lines 19–22) until
it hits the stop instruction (line 22), similar to the GPU/SIMT assembly programming model
shown in Figure 2.4. Note, the scalar control processor views a scalar register in a vector-fetch
block as a vector register: register v0 (line 20) is considered as vector register vv0 (line 4) outside
the vector-fetch block.

The vector-thread assembly programming model lets the Maven vector-thread processor queue
up the vector arithmetic instructions only to be fetched and decoded after vector memory instruc-
tions have run ahead to prefetch the needed data. The microarchitecture implements a Pending
Vector Fragment Buffer (PVFB) in hardware to implicitly manage divergence—a consequence of
allowing branches in the assembly programming model (line 19). Similar to the GPU/SIMT as-
sembly programming model, the Maven vector-thread assembly programming model precludes
scalar operands and scalar computation to be expressed in a vector-fetch block, which affects the
efficiency of the architecture. More details of the Maven vector-thread architecture can be found
in [71].

The earlier Scale vector-thread architecture had a similar vector-thread assembly programming
model, however, the clustering of the different functional units within the vector lane is exposed to
the programmer or the compiler writer, complicating the assembly programming model [66, 53].

2.3 Divergence Management Schemes of Data-Parallel
Architectures

This section provides an overview on how different data-parallel architectures support control
flow present in the parallel programming languages discussed in Section 2.1. For the discussion,
without any loss of generality, we use examples written in the SPMD programming model, where
data-parallel computation is expressed in the form of multithreaded kernels. The programmer

1 kernel<<<32>>>(...);
2

3 void kernel(...) {
4 a = op0;
5 b = op1;
6 if (a < b) {
7 c = op2;
8 } else {
9 c = op3;

10 }
11 d = op4;
12 }

(a) If-Then-Else Statement

1 kernel<<<32>>>(...);
2

3 void kernel(...) {
4 bool done = false;
5 while (!done) {
6 a = op0;
7 b = op1;
8 done = a < b;
9 }

10 c = op2;
11 }

(b) While Loop

Figure 2.7: Control Flow Examples Written in the SPMD Programming Model – (a) if-then-
else statement, and (b) while loop.

CHAPTER 2. BACKGROUND 19

writes code both for a single thread and for an explicit kernel invocation that directs a group of
threads to execute the kernel code in parallel.

To achieve an efficient mapping, threads are processed together in SIMD vectors, but orches-
trating the execution of SPMD threads on wide SIMD datapaths is challenging. As each thread
executes control flow independently, execution may diverge at control conditions such as if-then-
else statements, loops, and function calls. The architecture must therefore track and sequence
through the various control paths taken through the program by the different elements in a vector.
This is generally done by selectively enabling a subset of threads in a vector while each control path
is traversed. Because divergence leads to a loss of efficiency, reconvergence is another important
component of divergence management on data-parallel architectures.

We explain next how different data-parallel architectures manage divergence and reconver-
gence with the if-then-else statement and the while loop example shown in Figure 2.7. Due to the
SIMD execution nature of these architectures, the hardware must provide a mechanism to execute
an instruction only for selected elements within a vector. Some architectures expose predication to
the compiler, while others hide it from the compiler and manage divergence implicitly in hardware.

Vector-Like Machines
Compilers for vector machines manage divergence explicitly. Figure 2.8 illustrates how a vec-

tor machine would typically handle the control flow shown in Figure 2.7. The example shows a
mixture of scalar and vector instructions, along with scalar and vector registers. To execute both
sides of the if-then-else statement conditionally, the vector machine first writes the result of the
vslt compare instruction into a vector predicate register vp0, then conditionally executes vop2
under vp0. Similarly, vop3 is executed under the negated condition !vp0. Vector register vc
is partially updated from both sides of the execution paths. The diverged execution paths merge

1 va = vop0
2 vb = vop1
3 vp0 = vslt va, vb
4 s0 = vpopcnt vp0
5 branch.eqz s0, else
6 @vp0 vc = vop2
7 else:
8 s0 = vpopcnt !vp0
9 branch.eqz s0, ipdom

10 !@vp0 vc = vop3
11 ipdom:
12 vd = vop4

(a) If-Then-Else Statement

1 vp0 = true
2 loop:
3 s0 = vpopcnt vp0
4 branch.eqz s0, exit
5 @vp0 va = vop0
6 @vp0 vb = vop1
7 @vp0 vp1 = vslt va, vb
8 vp0 = vand vp0, !vp1
9 j loop

10 exit:
11 vc = vop2

(b) While Loop

Figure 2.8: Divergence Management on Vector Architectures – (a) if-then-else statement, and
(b) while loop.

CHAPTER 2. BACKGROUND 20

1 va = vop0
2 vb = vop1
3 vslt va, vb # vcc=va<vb
4 s0 = mov exec
5 exec = and s0, vcc
6 branch.execz else
7 vc = vop2
8 else:
9 exec = and s0, !vcc

10 branch.execz ipdom
11 vc = vop3
12 ipdom:
13 exec = mov s0
14 vd = vop4

(a) If-Then-Else Statement

1 s0 = mov exec
2 loop:
3 branch.execz exit
4 va = vop0
5 vb = vop1
6 vslt va, vb # vcc=va<vb
7 exec = and exec, !vcc
8 j loop
9 exit:

10 exec = mov s0
11 vc = vop2

(b) While Loop

Figure 2.9: Divergence Management on Vector Architectures with Implicit Predicates – (a)
if-then-else statement, and (b) while loop. The vcc predicate register implicitly stores the result
of the vector compare instruction (vslt above). The exec predicate register implicitly masks all
instruction execution.

at the immediate post-dominator, where vop4 is executed. The compiler statically encodes this
information by emitting vop4 under no predicate condition.

Several optimizations such as density-time execution and compress-expand transformations
have been proposed [115] and evaluated [71] to save execution time of sparsely activated vector
instructions. However, these optimizations cannot prevent vector instructions with an all-false
predicate mask from being fetched and decoded. The compiler can optionally insert a check to test
whether the predicate condition is null, meaning that instructions under that predicate condition are
unnecessary. In Figure 2.8a, both conditionally executed paths are guarded with a dynamic check.
A vpopcnt instruction, which writes a count of all true conditions in a vector predicate register
to a scalar register, is used to count active elements. A scalar branch (branch.eqz instruction)
checks whether the count is zero to jump around unnecessary work. These checks may not always
turn out to be profitable, as the condition could truly be unbiased. For those cases, it would be
better to schedule both sides of the execution paths simultaneously.

Figure 2.8b shows how while loops in SPMD programs are mapped to vector machines. Loop
mask vp0, which keeps track of active elements executing the loop, is initialized to true. A
vpopcnt instruction is combined with a branch-if-equals-zero instruction to test whether all ele-
ments have exited the loop. All instructions in the loop body (vop0, vop1, vslt) are predicated
under the loop mask vp0, except the vand instruction, which updates the loop mask. The loop’s
backwards branch is implemented with an unconditional jump instruction (j).

Cray-1 vector processors, AMD GPUs, and Intel MIC accelerators execute in a similar manner
as shown in Figure 2.9. The Cray-1 has one vector predicate register on which vector instructions

CHAPTER 2. BACKGROUND 21

are implicitly predicated [109, 115], while the Intel MIC has 8 explicit vector predicate regis-
ters [57]. AMD GPUs use special vcc and exec predicate registers to hold vector comparison
results and to implicitly mask instruction execution [5]. AMD GPUs also provide a form of escape
hatch for complex irreducible control flow. Fork and join instructions are provided for managing
divergence in these cases, and a stack of deferred paths is physically stored in the scalar register
file [7].

Some vector machines lack vector predicate registers and instead have an instruction to con-
ditionally move a word from a source register to a destination register. Packed-SIMD extensions
in Intel desktop processors are a common example of this pattern. However, these approaches
have limitations, including the exclusion of instructions with side-effects from poly-path execu-
tion [83]. Karrenberg and Hack [61, 60] propose compiler algorithms to map OpenCL kernels
down to packed-SIMD units with explicit vector blend instructions.

NVIDIA Graphics Processing Units
Hardware Divergence Management. NVIDIA GPUs provide implicit divergence management
in hardware. As shown in Figure 2.10, control flow is expressed with thread branches (tbranch.eqz
and tbranch.neqz instructions) in the code. When threads in a warp branch in different direc-
tions, the warp diverges and is split into two subsets: one for branch taken and the other for branch
not taken. Execution of one subset is deferred until the other subset has completed execution. A
divergence stack is used to manage execution of deferred warp subsets. The compiler pushes a re-
convergence point with the current active mask onto the divergence stack before the thread branch.
The reconvergence point indicates where diverged threads are supposed to join.

In Figure 2.10a, the reconvergence point is the immediate post-dominator of the if-then-else
statement. When the warp splits, the hardware picks one subset (then clause), and pushes the

1 a = op0
2 b = op1
3 p = slt a, b
4 push.stack reconverge
5 tbranch.eqz p, else
6 c = op2
7 pop.stack
8 else:
9 c = op3

10 pop.stack
11 reconverge:
12 d = op4

(a) If-Then-Else Statement

1 done = false
2 push.stack reconverge
3 loop:
4 tbranch.neqz done, exit
5 a = op0
6 b = op1
7 done = slt a, b
8 j loop
9 exit:

10 pop.stack
11 reconverge:
12 c = op2

(b) While Loop

Figure 2.10: Hardware Divergence Management on NVIDIA GPUs – (a) if-then-else state-
ment, and (b) while loop.

CHAPTER 2. BACKGROUND 22

1 a = op0
2 b = op1
3 p0 = slt a, b
4 cbranch.ifnone p0, else
5 @p0 c = op2
6 else:
7 cbranch.ifnone !p0, ipdom
8 @!p0 c = op3
9 ipdom:

10 d = op4

(a) If-Then-Else Statement

1 p0 = true
2 loop:
3 cbranch.ifnone p0, exit
4 @p0 a = op0
5 @p0 b = op1
6 @p0 p1 = slt a, b
7 p0 = and p0, !p1
8 j loop
9 exit:

10 c = op2

(b) While Loop

Figure 2.11: Software Divergence Management on NVIDIA GPUs – (a) if-then-else statement,
and (b) while loop.

other (else clause) onto the stack. Then the hardware first executes op2 under an updated active
mask, which is now set to the active threads of the then clause. When the hardware executes the
pop.stack operation, it discards the currently executing warp subset and picks the next warp
subset on the top of the stack (else clause). When execution reaches the next pop.stack
operation, it pops the PC for the reconvergence point. If all threads follow the same then or
else path at the branch, the warp hasn’t diverged, so no thread subset is pushed on the stack,
and the only pop.stack operation pops the PC for the reconvergence point. Divergence and
reconvergence nest hierarchically through the divergence stack.

The reconvergence point of a loop is the immediate post-dominator of all loop exits. Since
there is only one exit in the example shown in Figure 2.10b, the exit block is the reconvergence
point. The compiler similarly pushes the reconvergence point onto the stack and sequences the
loop until all threads have exited the loop. All exited threads will pop a token off the stack, until
eventually the reconverged PC with the original mask at the loop entry is recovered.

Software Divergence Management. NVIDIA GPUs with divergence stacks also provide sup-
port to manage divergence in software. The hardware provides predicate registers, native instruc-
tions with guard predicates, and consensual branches [92], where the branch is only taken when
all threads in a warp have the same predicate value. Figure 2.11 shows how the compiler could
manage divergence on NVIDIA hardware. Conditional execution is expressed with predicates, and
consensual branches (cbranch.ifnone instruction) can be added to jump around unnecessary
work (see Figure 2.11a), and also sequence a loop until all threads have exited (see Figure 2.11b).

Although consensual branches are implemented in current NVIDIA GPUs, they have not been
publicly described except for in an issued US patent [92]. NVIDIA’s thread-level predication and
consensual branches are isomorphic to vector predication and the scalar branches on popcount
values used in vector processors. This scheme is only used in a very limited fashion by the cur-
rent NVIDIA backend compiler. The compiler selects candidate if-then-else regions using pattern

CHAPTER 2. BACKGROUND 23

matching, and employs a simple heuristic to determine if predication will be advantageous com-
pared to using the divergence stack.

2.4 Background Summary
This chapter provides background on data-parallel programming models, assembly programming
models and divergence management architectures of a wide range of data-parallel architectures
(such as packed-SIMD, GPU/SIMT, traditional vector [109, 13], vector-thread [66, 21, 71]), and
establishes the common terminology that this thesis relies on for the rest of the chapters.

Chapters 3–5 present the overheads of the popular SPMD programming model, and propose
how to alleviate these overheads with compiler technology. Based on these observations, Chap-
ters 6–9 propose the new Hwacha vector-fetch data-parallel architecture. Chapter 10 concludes
this thesis.

24

Chapter 3

Scalarizing Compilers

Over the past decade, the SPMD programming model has gained popularity among programmers
over autovectorization. The recent proliferation of SPMD programming models is mainly linked
to the rise of GPUs that provide teraflops of compute at a cheap price point thanks to the com-
moditized graphics cards market—programmers must use the SPMD programming model to tap
into the cheap compute available on a GPU. A GPU architecture is able to substantially reduce the
program counter and instruction fetch overheads of multithreading, but many hidden overheads
of the SPMD programming model remain. Writing kernel code for a single thread is simple for
the programmer and improves productivity, but with a conventional compiler this model can cre-
ate a substantial amount of redundant work across threads. Also, a lot of burden is put on the
underlying architecture to support the complex control flow found in SPMD programs, which ex-
tends beyond simple if-then-else clauses to nested loops and function calls. Section 3.1 first shows
how a scalarizing compiler can alleviate them, before outlining the scalarization and predication
compiler algorithms that constitute a scalarizing compiler in Sections 3.2 and 3.3, respectively.

3.1 Overheads of SPMD
The SPMD programming model may be accessible to the programmer, however, certain overheads
of the programming model still remain even after the GPU architecture is able to amortize instruc-
tion fetch overhead by grouping threads and executing them in SIMD fashion. Using motivating
examples, Section 3.2 points out redundancy across threads as one of the key inefficiencies of
the SPMD programming model, while Section 3.3 describes the overhead of supporting complex
control flow constructs in SPMD programming models.

This thesis proposes to alleviate these overheads with a scalarizing compiler. Figure 3.1 con-
trasts scalarizing compilers to vectorizing compilers. Vectorizing compilers automatically pick out
parts that can execute in parallel from single-threaded code, and efficiently map them down to the
data-parallel unit. While doing so, it leaves bookkeeping, address calculation, shared data on the
scalar processor. Conversely, scalarizing compilers find the most efficient mapping of explicitly
parallel programs (e.g., SPMD programs) down to the scalar processor and the data-parallel unit.

CHAPTER 3. SCALARIZING COMPILERS 25

Single-Threaded Code Parallel Code

Scalar Processor Data-Parallel Unit

Vectorizing
Compilers

Scalarizing
Compilers

Figure 3.1: Vectorizing Compilers and Scalarizing Compilers – Single-threaded code examples
include nested for loops, while parallel code examples include explicitly parallel SPMD programs.

This thesis focuses on scalarization and predication among many things a scalarizing compiler
can do. The scalarization compiler pass statically analyzes SPMD programs to pick out redundant
operands and instructions, and generates code with shared scalar registers and scalar instructions.
Chapter 4 details the compiler foundation for scalarization, and presents our implementation and
evaluation results. The predication compiler pass maps complex control flow found in SPMD
programs down to predicated vector instructions with consensual branches. With predication, the
underlying hardware does not need to rely on complicated hardware structures such as the diver-
gence stack to manage control flow, and therefore can be simplified. Chapter 5 details the compiler
foundation for predication, and presents our implementation and evaluation results.

3.2 Scalarization
Consider the simple FIR filter example shown in Figure 3.2a in which each thread computes

one output element by convolving a range of flen input elements with an array of flen coef-
ficients. The compiled SPMD code is shown in Figure 3.2b. Each thread maintains both a loop
iteration count (r7) and a loop end count (r3) in registers and uses counter increment (line 21)
and conditional branch instructions (line 25) to execute the loop. Thus, each thread executes a
substantial amount of bookkeeping overhead in addition to the actual multiply-adds that perform
useful work. Furthermore, most of the bookkeeping overhead is entirely redundant across threads.
Each thread maintains identical loop counts, calculates the same branch conditions, replicates the
same base addresses, and performs similar address math to retrieve data from structured arrays.

In addition to bookkeeping overheads, a SPMD program often has redundancy in the actual data
operands accessed and computation performed by individual threads. The kernel code executed by
each thread can be viewed as one iteration of an inner loop. A single-threaded encoding of the
kernel often has “outer loop” data that could be accessed or computed once and then used many
times. However in the SPMD program encoding, factoring out this redundant work is not as
straightforward for a programmer or compiler. For example, in Figure 3.2b, each thread loads the
same coefficients redundantly (lines 18, 23) and replicates their storage in private registers (r5).

CHAPTER 3. SCALARIZING COMPILERS 26

1 fir_spmd<<<n>>>(...);
2

3 void fir_spmd(float* samples, float* coeffs, int flen, float* results)
4 {
5 float result = 0;
6 for (int i=0; i<flen; i++)
7 result += (coeffs[i] * samples[tid.x+i]);
8 results[tid.x] = result;
9 }

(a) SPMD Program

1 fir_spmd_conventional:
2 BB_1:
3 mov r9, r1; # tid.x
4 ld.u64 r1, [4096]; # samples
5 ld.u64 r2, [4104]; # coeffs
6 ld.u32 r3, [4112]; # flen
7 ld.u64 r4, [4120]; # results
8 iset.s32.gt r5, r3, 0;
9 mov r6, 0; # init result
10 @r5 bra BB_3;
11 BB_2:
12 bra BB_5;
13 BB_3:
14 shl r5, r9, 2; # tidx * 4
15 iadd r1, r1, r5; # sample addr gen
16 mov r7, 0;
17 BB_4:
18 ld.f32 r5, [r2]; # load coeff
19 ld.f32 r8, [r1]; # load sample
20 fma.f32 r6, r5, r8, r6; # fp mul add
21 iadd r7, r7, 1; # loop bookkeeping
22 iadd r1, r1, 4; # samples bookkeeping
23 iadd r2, r2, 4; # coeffs bookkeeping
24 iset.s32.lt r5, r7, r3; # test loop break
25 @r5 bra BB_4;
26 BB_5:
27 shl r5, r9, 2; # tidx * 4
28 iadd r4, r4, r5; # result addr gen
29 st.f32 [r4], r6; # store result
30 exit;

(b) Conventional Compiler Output

1 fir_spmd_scalarized:
2 BB_1:
3
4 @s ld.u64 s1, [4096]; # samples
5 @s ld.u64 s2, [4104]; # coeffs
6 @s ld.u32 s3, [4112]; # flen
7 @s ld.u64 s4, [4120]; # results
8 @s iset.s32.gt s5, s3, 0;
9 mov r6, 0; # init result
10 @s @s5 bra BB_3;
11 BB_2:
12 @s bra BB_5;
13 BB_3:
14
15
16 @s mov s7, 0;
17 BB_4:
18 @s ld.f32 s5, [s2]; # load coeff
19 ldvec.f32 r8, [s1]; # load sample
20 fma.f32 r6, s5, r8, r6; # fp mul add
21 @s iadd s7, s7, 1; # loop bookkeeping
22 @s iadd s1, s1, 4; # samples bookkeeping
23 @s iadd s2, s2, 4; # coeffs bookkeeping
24 @s iset.s32.lt s5, s7, s3; # test loop break
25 @s @s5 bra BB_4;
26 BB_5:
27
28
29 stvec.f32 [s4], r6; # store result
30 exit;

(c) Scalarizing Compiler Output

Figure 3.2: Simplified FIR Filter Code Example – (a) kernel code, (b) conventional compiler
output, (c) scalarizing compiler output. Assume the number of threads launched (n) is a multiple
of the warp size for simplicity. In the scalarized code, register specifiers which begin with s are
scalar registers and @s is used to annotate scalar instructions. Register numbers are preserved
between the conventional code and the scalarized code for clarity.

CHAPTER 3. SCALARIZING COMPILERS 27

As another example shown in Figure 2.1c, a straightforward SPMD coding of matrix-multiply has
each thread compute the dot-product of a shared vector (a row of the first matrix) with a private
vector (a column of the second matrix). In this formulation, the load operations of the shared vector
(A[tid.y][k]) are redundant across all threads.

Redundancy across threads is one of the key inefficiencies that a scalarizing compiler targets.
Figure 3.2c shows the scalarized version of the same program. We describe the compiler algorithm
required to generate this code in Chapter 4.

Our scalarization algorithm statically maps replicated operands to shared scalar registers. If we
consider a single 32-thread warp executing the example in Figure 3.2, the conventionally compiled
code would use 9 registers per thread. The scalarized code in comparison uses 2 private registers
per thread and 6 shared registers per warp, 76% fewer registers per warp (70 vs. 288). In terms
of dynamic register operands accessed, the conventionally compiled code reads 11 operands and
writes 7 operands per thread per loop iteration. The scalarized code in comparison reads 2 private
and 9 scalar operands per iteration and writes 2 private and 5 scalar operands per iteration. Since
the scalar reads and writes only need to be performed once per warp, a 32-thread warp would read
79% fewer source operands (73 vs. 352) and write 69% fewer destination operands in total (69 vs.
224).

The scalarizing compiler algorithm also converts redundant instructions to scalar instructions.
As described above, while conventional SIMT architectures factor out instruction fetch overheads
across a warp, each thread still executes each operation. In Figure 3.2, the conventionally compiled
code executes 8 operations per thread per loop iteration. The scalarized code executes only 7 scalar
(including ldvec and stvec) operations and 1 regular thread operation per iteration. Since
the scalar operations only execute once per warp, a 32-thread warp would execute 85% fewer
operations with the scalarized code (39 vs. 256).

The scalarizing compiler algorithm also generates vector loads and stores for the input and out-
put data that is accessed with unit-stride addressing across threads. These accesses are coalesced
statically by the compiler, eliminating the need for dynamic coalescing. In the conventionally
compiled code, a total of 64 unique addresses are generated per warp per loop iteration, compared
to only 2 addresses per warp for the scalarized code.

In Chapter 4, we detail our compiler algorithm that scalarizes both thread registers and instruc-
tions, such that there is only one per warp (or wavefront) instead of one per thread. Our compiler
uses two interlinked analyses to enable scalarization. The first, convergence analysis statically de-
termines program points where the threads in a warp are guaranteed to be converged (i.e. no thread
is following a divergent control-flow path). Convergence analysis is critical for scalarization, since
the compiler can only scalarize regions that it can prove to be convergent. The second is variance
analysis, which statically determines which program variables are guaranteed to have the same (or
thread-invariant) value across the threads in a warp. In Section 4.1, we construct an intuitive ar-
gument for something that was not immediately apparent when we began this work: convergence
and variance information can be usefully analyzed together in the same pass. In fact the two are in-
separable in our implementation. We present an algorithm that iteratively analyzes and propagates
convergence and variance information over a kernel’s control dependence graph (CDG) [43, 133,
89]. Scalarization then uses this analysis to convert private thread registers into scalar registers

CHAPTER 3. SCALARIZING COMPILERS 28

shared across the threads in a warp, and also converts thread instructions into scalar instructions
that execute one operation per warp instead of one operation per thread. Using affine analysis,
our compiler also generates vector loads and stores when the threads in a warp access sequential
(unit-stride) data in memory. For example, a single vector load instruction can fetch a word from
memory on behalf of each of the threads in the warp, placing the result in the same-named private
register belonging to each thread.

In Section 4.2, we implement these compiler algorithms in an NVIDIA production compiler,
and run the compiled code on our in-house simulator to get a detailed breakdown of microarchi-
tectural events. Section 4.3 characterizes 23 benchmarks and finds that the compiler is able to
keep warps converged for 66% of the total thread execution time on average. When augmented
with simple dynamic convergence preservation, convergent execution can be maintained for up to
97% of total execution time. Scalarization reduces thread register usage by 20–33% on average
depending on warp size, making it possible to either support more threads or reduce the register file
size. Furthermore, 24–31% of dynamic instruction operands are scalars. On average our compiler
scalarizes 23–29% of dynamically dispatched instructions, reduces memory address generation
counts by 37–47%, and eliminates data access counts by 30–38%. These savings can provide
proportional energy and performance gains.

Section 4.4 describes how compiler convergence analysis and scalarization are generally appli-
cable to a variety of data-parallel architectures. We also discuss promising areas of future work in
Section 4.5.

3.3 Predication
The SPMD programming model allows programmers to write arbitrary complex control flow.

Figure 3.3 shows a code example with nested if-statements, a virtual function call, and a goto
statement. A vectorizing compiler on a vector machine can always give up and run the complex
control flow shown in Figure 3.3a on the scalar control processor. On the other hand, supporting
complex control flow shown in Figure 3.3b for SPMD compilers is a functional requirement rather
than an optional performance optimization, as the programming model is explicitly parallel—
there is no equivalent fallback that allows running it sequentially on the scalar control processor.
This is one of the reasons why GPU architectures end up implementing complicated divergence
management schemes in hardware.

The overheads of the hardware divergence management scheme is the other key inefficiency
that a scalarizing compiler targets. We describe the compiler algorithm required to map the com-
plex control flow found in SPMD programs down to simple vector predication, therefore simplify-
ing the underlying hardware in Chapter 5.

NVIDIA GPUs support the SPMD model directly in hardware (see Section 2.3 for more details)
with a thread-level hardware ISA that includes thread-level branch instructions [81, 45]. This
approach allows the compiler to use a fairly conventional thread compilation model, while pushing
most of the divergence management burden onto hardware. Threads are grouped into warps, and
when threads in a warp branch in different directions, the hardware chooses one path to continue

CHAPTER 3. SCALARIZING COMPILERS 29

1 void complex_ctrlflow(...)
2 {
3 for (int i = 0; i < 32; ++i) {
4 if (a[i] < b[i]) {
5 if (f[i]) {
6 c[i]->vfunc();
7 goto SKIP;
8 }
9 d[i] = op;

10 }
11 SKIP:
12 }
13 }

(a) Vectorizable Loop

1 complex_ctrlflow_spmd<<<32>>>(...);
2

3 void complex_ctrlflow_spmd(...)
4 {
5 if (a[tid.x] < b[tid.x]) {
6 if (f[tid.x]) {
7 c[tid.x]->vfunc();
8 goto SKIP;
9 }

10 d[tid.x] = op;
11 }
12 SKIP:
13 }

(b) SPMD Model

Figure 3.3: Code Example with Complex Control Flow – (a) vectorizable loop, and (b) SPMD
model. The loop body has a nested if-statement, a virtual function call, and a goto statement, which
can execute in parallel.

executing while deferring the other path by pushing its program counter and thread mask onto a
specialized divergence stack. Reconvergence is also managed through tokens pushed and popped
on this stack by the compiler.

Vector-style architectures with a scalar+vector ISA employ a compiler-driven approach to di-
vergence management [2, 101, 115, 112, 61, 60]. In this model, the vector unit cannot execute
branch instructions. Instead, the compiler must explicitly use scalar branches to sequence through
the various control paths for the elements or threads in a vector, while using vector predication to
selectively enable or disable vector elements.

Although a wide range of software and hardware SPMD divergence management schemes
are implemented in the field, software divergence management in particular has received rela-
tively little attention from the academic research community. At first glance the topic may seem
like a recasting of classic vectorization and predication issues, but the challenges are unique in
the context of modern architecture for several reasons: (1) Unlike traditional vectorization, the
parallelization of arbitrary thread programs is a functional requirement rather than an optional
performance optimization; (2) The divergence management architecture must not only partially
sequence all execution paths for correctness, but also reconverge threads from different execution
paths for efficiency; (3) Traditional compiler algorithms for predication in serial processors are
thread-agnostic, as they only need to consider optimizing the control flow for a single thread of
execution. A data-parallel architecture on the other hand requires different thread-aware perfor-
mance considerations; (4) GPUs and other multithreaded processors with a shared register pool are
particularly sensitive to register pressure, as register count determines the number of threads that
can execute concurrently. This constraint results in unique tradeoffs and optimization opportunities
for the divergence management architecture. Finally (5), in SPMD programs, uniform control and

CHAPTER 3. SCALARIZING COMPILERS 30

data operations can be scalarized to improve efficiency, a challenge that is related to but different
than vectorization [74, 33, 61].

In Chapter 5, we further describe and analyze the design-space, tradeoffs, and unique chal-
lenges of SPMD divergence management architectures. In Section 5.1 we detail our thread-aware
predication compiler algorithm for SPMD divergence management. We have developed optimiza-
tions including a static branch-uniformity optimization and a compiler-instigated runtime branch-
uniformity optimization that eliminates unnecessary fetch and issue of predicate-false instructions.
As described in Section 5.2, we use these algorithms to modify an NVIDIA production compiler to
only use predication and uniform branches, eliminating all use of the hardware divergence stack.

In Section 5.3, we first characterize the control flow of a wide range of data-parallel applica-
tions. We then compare and analyze in detail the performance characteristics of software-based
and hardware-based divergence management architectures on production GPU silicon. We de-
scribe conditions where software predication performs better, and other conditions where the hard-
ware divergence stack performs better. We then discuss the tradeoffs in Section 5.4, and suggest
promising areas of future work for further optimization of our software divergence management
implementation in Section 5.5.

31

Chapter 4

Scalarization

This chapter discusses the details of the scalarization compiler algorithm. We assume a SPMD
programming language that approximates NVIDIA’s CUDA programming language and a SIMT
architecture that closely resembles an NVIDIA GPU as the basis for the discussion. However,
our compiler algorithms are applicable to other SPMD programming languages and data-parallel
architectures with scalar execution resources such as the traditional vector machine. The compiler
algorithm statically analyzes the program and scalarizes both thread registers and instructions, such
that there is only one per warp instead of one per thread. We describe our compiler foundation in
Section 4.1, discuss issues related to implementing our compiler algorithm within the NVIDIA
production CUDA compiler in Section 4.2, and present evaluation results in Section 4.3. We then
discuss how scalarization is generally applicable to other data-parallel architectures in Section 4.4,
outline future research directions in Section 4.5, before summarizing in Section 4.6.

4.1 Compiler Foundation
To identify redundancy across multiple threads, the compiler must prove that a variable has a
uniform value across all of the threads in a group. This process requires two key analyses. First,
convergence analysis proves that the threads are in a converged state, meaning that all of the threads
in the group are in the same point in the control-flow graph at the same time. This analysis builds
on the CUDA kernel invocation model in which threads are launched in an initial convergent state.
It also assumes convergence at syncthreads() (i.e. barrier synchronization) calls, which are
in effect programmer supplied assertions that threads are converged.

Second, variance analysis determines which variables in the converged threads have the same
(uniform) value across all threads. This analysis builds on the semantics that kernel function call
arguments are thread-invariant. Variance across threads originates with use of thread indices (e.g.
tid.x in CUDA) and with volatile and atomic memory accesses. Our compiler uses data-flow
and control-dependence analysis to determine which variables are not dependent on thread-specific
values. Such variables can be converted safely from per-thread variables to per-warp scalar vari-
ables.

CHAPTER 4. SCALARIZATION 32

We implement the algorithms in the context of a production CUDA compiler, based on the
LLVM infrastructure [69]. Our compiler algorithms are agnostic to the divergent execution models
described in Section 2.3, and are generally applicable to data-parallel architectures with scalar
execution resources.

Convergence Analysis
A program point is considered convergent if and only if a thread-group barrier placed at that point
can never fail. This property implies that either all threads in the group will arrive at the bar-
rier, or none of the threads will. Note that reconvergence points found by an immediate post-
dominator scheme may not be considered convergent, since our definition of convergent implies
that all threads are fully converged rather than a subset being partially converged. Convergence
may be defined with respect to a particular group size such as CTAs or warps.

To perform convergence analysis, we leverage two data structures common to compilers. First,
the control flow graph (CFG) represents the program as a graph of basic blocks (BBs) connected
via control flow (branch, jump) edges [106]. Instructions unrelated to control are encapsulated
within the basic blocks. Figure 4.1a shows an example CFG containing conditional branch points,
loops, and merges. Second, we leverage a standard global data-flow representation such as static
single assignment form (SSA) [34] and the control dependence graph (CDG) [43, 133] to identify
basic blocks that are obviously convergent and determine a starting point for convergence analysis.
Ferrante et al. [43] define control dependence as follows:

Definition: If X and Y are basic blocks in a CFG, Y is control dependent on X (written
X ≺ Y) iff

1. there exists a directed path P from X to Y with any Z in P (excluding X and Y)
post-dominated by Y and

2. X is not post-dominated by Y.

Figure 4.1b shows the control-dependence relations in the CFG from Figure 4.1a.
The simplest approach to convergence analysis is to use the control flow structure of the ker-

nel. Entry and exit blocks of a single-entry-single-exit (SESE) region have the same convergence
properties. If the entry of an SESE region R is convergent then so is its exit. We then use the no-
tion of regions and its characterization as described in [19], where two blocks of a CFG are in the
same region if both nodes have identical control-dependence predecessors. Such nodes are termed
control-equivalent. Since all threads of a warp (and a thread block) are convergent at the entry
block to the kernel, all blocks that are control-equivalent to the entry block must be convergent
since they execute under the same control condition. Because the entry block where all threads
in the kernel start has no control-dependence predecessor, all basic blocks with no control depen-
dence predecessors are marked as convergent. Using this simple notion of convergence, it is easy
to see from Figure 4.1b that blocks N1, N2, N2′, N6, and N7 have no predecessors and therefore
must be convergent.

CHAPTER 4. SCALARIZATION 33

N1

N2

N2'

N3 N8

N3' N8'

N4

N6

N4'

N5

N5'

N7

(a) Control Flow Graph (CFG)

N1 N2 N2'

N3 N3'

N8

N8'

N4

N4'

N5

N5'

N6 N7

(b) Control Dependence Graph (CDG)

Figure 4.1: Example Control Flow and Dependence Graphs – (a) control flow graph, (b) control
dependence graph.

CHAPTER 4. SCALARIZATION 34

Combined Convergence and Variance Analysis
Leveraging variance analysis [120], we extend the simple convergence analysis above to identify
when basic blocks across the threads are guaranteed to depend on the same condition. The key
insight is that a basic block is convergent if and only if it is transitively control dependent only
on convergent blocks whose branch condition is thread-invariant (written Tinv(block) below) and
that the entry block of the kernel is always convergent. Any result of a thread-invariant instruction
is uniform and is a candidate for scalarization.

∀b b ≺ x : convergent(b) ∧ Tinv(b)⇒ convergent(x)

Alternatively, a basic block is divergent if it is transitively control dependent on a divergent
block or it is transitively control dependent on a block with a thread-variant branch condition
(written Tvariant(block)).

∃b b ≺ x : divergent(b) ∨ Tvariant(b)⇒ divergent(x)

Our algorithm exploits the latter characterization to mark blocks as divergent after initially
assuming, optimistically, that all blocks are convergent. This approach fits well with our combined
variance and convergence analysis which starts with optimistic assumptions about thread-variance.

Figure 4.2 describes our optimistic algorithm for variance and convergence analysis. The first
step performs initializations as follows (Figure 4.2a):

1. Optimistically mark every basic block of the kernel as convergent.

2. Optimistically mark every instruction as thread-invariant.

3. Initialize a worklist of instructions with those that read the thread id register, perform an
atomic action on shared memory, or access volatile memory.

The worklist always consists of currently known thread-variant instructions and is seeded with
those instructions that cannot be proven to be thread-invariant. The second step performs a fixed-
point loop in which each step removes an instruction from the worklist and performs the following
actions until the worklist is empty (Figure 4.2b):

1. Mark the chosen instruction, i, as thread-variant, and

2. Add every thread-invariant data-flow successor instruction of i in the SSA graph to the work-
list.

3. If instruction i is a conditional branch instruction, propagate divergence to all convergent
blocks that are iteratively control dependent on i but do not contain a barrier instruction.
Add every instruction in blocks that are newly marked as divergent to the worklist.

When the algorithm terminates, any blocks that are marked convergent must be so; and any in-
structions not visited and marked as thread invariant must be so as well.

CHAPTER 4. SCALARIZATION 35

worklist← ∅
for bb ∈ blocks(kernel) do

Conv(bb)← True
for instr ∈ instructions(bb) do

Invariant(instr)← True
if instr reads thread id then

worklist← worklist ∪ {instr}
end if
if instr is an atomic instruction then

worklist← worklist ∪ {instr}
end if
if instr accesses volatile memory then

worklist← worklist ∪ {instr}
end if

end for
end for

(a) Initialization.

while worklist 6= ∅ do
instr← POP (worklist)
Invariant(instr)← False
for s ∈ DataF lowSucc(instr) do

if Invariant(s) = True then
worklist← worklist ∪ {s}

end if
end for
if instr is a conditional branch instruction then

for bb ∈ IteratedControlDependenceSucc(instr) do
if bb doesn′t have a syncthreads() call then

if Conv(bb) = True then
Conv(bb)← False
for i ∈ instructions(bb) do

worklist← worklist ∪ {i}
end for

end if
end if

end for
end if

end while

(b) Analysis and propagation.

Figure 4.2: Combined Convergence and Variance Analysis – (a) initialization, and (b) analysis
and propagation.

CHAPTER 4. SCALARIZATION 36

Analysis Example
To illustrate the algorithm, we use the flowgraph in Figure 4.1a. This example assumes that the
branch condition in the basic block N4′ is thread-variant. The corresponding control dependencies
are reflected in Figure 4.1b with dotted lines. Note that the IteratedControlDependenceSucc
of instructions in N4′ is {N4′, N4}. The algorithm in Figure 4.2 will propagate divergence to
the targets of these control dependencies transitively, illustrated in Figure 4.1b by marking dark
divergent blocks N4′ and N4.

After the algorithm terminates, all the blocks which are not marked as divergent (not colored
in Figure 4.1) are convergent. Block N5 is inferred as convergent simply because N5 is control
independent of N4′ (in the control dependence graph), which means that all diverged threads must
pass through N5.

Convergence of Warps that Exit Early
In many CUDA applications, threads in a CTA may exit early based on tests that check for the
thread index. In the following, all threads with tid.x greater than 3 return and wait at the kernel
exit for the rest of the warp to arrive.

kernel_spmd<<<n>>>(...);

void kernel_spmd(...)
{

if (tid.x <= 3) {
S1;

}
}

The compiler can safely assume that S1 is convergent since the remaining threads are at the exit,
and any scalar registers which are otherwise holding thread-invariant values are safe to initialize
in statement S1. We extended our convergence analysis algorithm to not propagate divergence
information across control-dependent successors of conditionals if the exit block of the kernel is
control dependent on the variant condition.

Affine Analysis
Affine analysis is used to determine if thread-variant address operands of load and store instructions
can be converted to vector load and store instructions. Vector load and store instructions access
memory with a unit-stride address across successive threads. For example, given a load instruction
ld.type Rx,[addr], the compiler leverages both variance and scalar evolution analyses to
determine if addr can be expressed as a simple linear expression of the following form base
+ bitwidth(type) * tid.x. Such load instructions can be transformed into a vector load

CHAPTER 4. SCALARIZATION 37

instruction ldvec.type Rx,[base], in which register Rx in each thread of the warp is written
with the respective value in the loaded vector corresponding to the thread’s index.

Related Work
Our convergence analysis is based on the variance analysis described by Stratton et al. [120]. Their
work identifies data accesses that are thread-invariant or will give the same value across the threads
of a CTA. Their basic variance analysis was used to optimize CUDA programs when compiled to
multicore CPUs. We extend their basic variance analysis algorithm to track not just thread-variant
data, but also control divergence. We make optimistic assumptions about convergence and thread-
invariant data and then track thread-variant information and divergent information together.

Coutinho et al. [33] describe what they call divergence analysis, which is also an extension of
the approach of [120]. Their analysis finds divergent values, by first converting SSA information
into gated single assignment [98], and then replacing control-flow merges with a predicate select
operator. Their end algorithm is relatively simple because it can use data-flow analysis to propagate
divergence information, but it requires a change of representation. However their divergent values
are similar to thread-variant values as described in [120].

Collange [31] presents work with goals similar to ours, but uses an approach like that described
in [33]. Collange does not use a gated representation but instead performs a symbolic analysis on
a lattice of tags, which encodes and tracks alignment of various instruction operands. Coutinho et
al. [33] and Collange [31] do not perform convergence analysis, which is important for exploiting
scalar code generation.

Karrenberg and Hack [61] describe an analysis based on a data-flow lattice approach which is
similar to our affine analysis. However, their analysis is geared towards vectorization, rather than
scalarization. Also, their analysis does not use control dependence information, which is useful in
our case to perform convergence analysis.

The ISPC language includes explicit uniform data types that allow a program to indicate scalar
values in source code [103]. While this approach may be well matched to tightly coupled SIMD
architectures, our approach relieves the programmer from this burden and uses the compiler to
discover uniform values that a programmer may not be able to specify. Furthermore ISPC does not
have any explicit notion of convergence.

Kerr et al. [63] implement a thread-invariant expression elimination pass, also based on [120].
The focus of their optimization pass is different than ours; they use common subexpression elimi-
nation on invariants after vectorization, whereas we allocate invariants to scalar register.

4.2 Implementation
We have implemented our compiler algorithms described in the previous section in a production
CUDA LLVM compiler. We have modified the backend to target our own in-house simulator, since
the actual GPU does not have any scalar execution resources.

CHAPTER 4. SCALARIZATION 38

The modified CUDA LLVM compiler first generates PTX instructions annotated with conver-
gence information for each basic block, as well as variance and affine information for all registers.
The PTX source code is processed by our backend compiler to target the RISC-like machine ISA
shown in Figure 3.2. The convergence, variance, and affine information is used by the backend
compiler to map invariant values to scalar registers, and to mark redundant instructions as scalar
instructions. Instruction scheduling and register allocation are also performed in the backend.

We run the compiled code on our in-house simulator to get a detailed breakdown of instructions
issued, operations executed, register reads and writes, memory address counts and data access
counts. Our simulator runs one kernel (i.e. one grid invocation) at a time. We execute PTX source
code on Ocelot [36] to obtain reference memory dumps before and after each kernel launch. The
initial memory dump is used to populate the initial memory state of the simulator, and the post-
kernel launch memory dump is used to verify the kernel execution. Each benchmark’s composite
kernel runs are summed together for all results presented in this chapter.

4.3 Evaluation
We evaluate our compiler using CUDA benchmarks from Rodinia [30] and Parboil [121]. Bench-
marks in these two suites cover compute-intensive scientific domains including bioinformatics, im-
age processing, medical imaging, graph algorithms, data mining, physical simulation, and pattern
recognition. We reduced the input dataset sizes in some cases to make simulation time manage-
able. We also modified the source code to change texture references into global memory references,
since our target abstract architecture lacks texture caches.

Convergence Analysis Results
The quality of convergence analysis is critical for scalarization, as the compiler can only scalarize
regions that it can prove are convergent. Convergence analysis is also important for managing re-
convergence in a stackless SIMT architecture later discussed in Section 4.5. Figure 4.3 shows the
effectiveness of our compiler analyses. The benchmarks on the X-axis are sorted left-to-right in
decreasing effectiveness of compiler convergence analysis. The Y-axis represents the total instruc-
tions dynamically dispatched for execution by the microarchitecture. For each benchmark, the left
bar shows the breakdown of instructions proven convergent by different variants of the compiler.
The right bar shows the fraction of instructions that could be proven convergent by a dynamic
oracle. The fraction of the bars labeled Diverged could not be proven convergent at compile time.

Simple convergence analysis, which only looks at the shape of the control flow graph, can
only keep thread execution convergent 32% of the time on average. By coupling convergence
analysis with variance analysis, the compiler is able to determine cases where branch conditions
are invariant across threads, increasing convergent execution to 57%. The exit optimization further
increases convergence to 66%. We also show results for dynamic convergence preservation, a
simple hardware mechanism that prevents warps from diverging when threads dynamically branch
in the same direction (note that this mechanism does not imply a hardware divergence stack). The

CHAPTER 4. SCALARIZATION 39

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Simple CA CA/VA CA/VA + Exit opt CA/VA + Exit opt + Dynamic convergence preservation Oracle Diverged

Figure 4.3: Effectiveness of Convergence Analysis with Warp Size of 4 Threads – The X-axis
is sorted by the effectiveness of convergence analysis done by the compiler. CA=Convergence
Analysis, VA=Variance Analysis.

dynamic convergence preservation statistics highlight the limits of the static compiler analysis by
capturing the dynamic convergence behavior of the warps. Figure 4.3 shows that this hardware
and software approach improves convergent execution to 97% on average with warp size of 4
threads. With a wider warp size, convergence identified by the compiler will remain the same,
while convergence imposed by dynamic convergence preservation will tend to decrease because
the likelihood of a warp to diverge increases with more threads.

We also performed a limit study where we use oracle knowledge to maximize convergence.
Optimal alignment of convergent blocks and instructions can be reduced to the Multiple Longest
Common Sequence (MLCS) problem [85]. We reduced the complexity of our MLCS implemen-
tation by leveraging the compiler’s convergence analysis and only analyzing divergent regions.
Oracle convergence analysis based on the dynamic instruction trace shows that the best possible
schedule can keep thread execution convergent 97% of the time on average. Overall, oracular
analysis is no better than the combination of our convergence/variance analysis with dynamic con-
vergence preservation.

Scalarization Results
Figure 4.4a shows the breakdown of static instructions into scalarized and unscalarized (labeled
thread), normalized to a baseline without scalarization (left bar in each group). On average, the
compiler scalarizes 29% of static instructions. The total static instruction count increases by 2%,
primarily due to instructions generated to calculate the base address of warp-sequential memory
operations. Figure 4.4b shows the breakdown of register accesses into the same categories, relative

CHAPTER 4. SCALARIZATION 40

0.0
0.2
0.4
0.6
0.8
1.0
1.2

(a
) I

ns
tr

uc
tio

ns

Baseline without scalarization Scalar Thread

0.0
0.2
0.4
0.6
0.8
1.0
1.2

(b
) R

eg
ist

er
s

Series1 Series2 Series3

Figure 4.4: Static Scalarization Metrics – (a) instructions, (b) registers. Each group shows
results for warp sizes of 4, 8, 16, and 32.

to the same baseline (left bar in each group), for warp sizes of 4, 8, 16, and 32. Scalarization
reduces total register requirements by 20% with a warp size of 4, and up to 33% with a warp size
of 32, as wider warp sizes amortize more redundancy from scalarized operations.

Figure 4.5 shows how scalarization affects dynamic instruction, register, and memory activity
counts. In each graph, the left bar in each benchmark group is the baseline without scalarization,
while the remaining bars show warp widths of 4, 8, 16, and 32 threads. We differentiate between
the number of issued instructions (Figure 4.5a) and executed thread operations (Figure 4.5b), and
each of these counts are broken down by source: scalars, statically converged warps, warps con-
verged through dynamic convergence preservation, or diverged threads. Note that only one instruc-
tion is issued for all the threads in a warp when it is converged. Operations executed counts the
total number of individual thread operations, regardless of convergence. Scalarization is subject
to the effectiveness of convergence analysis (Figure 4.3), which is why benchmarks towards the
left of Figure 4.5 have more scalar and statically converged warp instructions, and the benchmarks
towards the right have more dynamically converged warp instructions.

In general, wider warp sizes decrease the instruction and operation counts because an instruc-
tion only issues once for all threads in a converged warp, and because scalar operations are only
issued and executed once per warp. However, the number of diverged thread instructions increases
with wider warps mainly because the likelihood of divergence increases with larger groupings of
threads. This effect is apparent for nw, hotspot, lbm, and stencil. Still, since each converged
warp instruction represents 4–32× more operations than a diverged thread instruction (following
the warp size), the total operation count is always lower with scalarization than without. The
savings range from 23–29% depending on warp size.

As expected, the other statistics of register read counts, register write counts, memory address
lookups, and memory data accesses (Figures 4.5c-f) have roughly the same shape as the executed

CHAPTER 4. SCALARIZATION 41

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

(a
) I

ns
tr

uc
tio

ns
 is

su
ed

Baseline without scalarization (warpsize of 4) Scalar Converged warp (static) Converged warp (dynamic) Diverged thread

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(b
) O

ps
 ex

ec
ut

ed

Series2 Series3 Series4 Series5 Series1

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(c
) R

eg
 r

ea
ds

Baseline without scalarization Scalar Thread

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(d
) R

eg
 w

ri
te

s

Baseline Scalar Register Reads/Writes Thread Private Registers Reads/Writes

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(e
) M

em
 a

dd
r'

s

Baseline without scalarization Scalar Warp-sequential Thread

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(f
) M

em
 d

at
a

Baseline Scalar Addresses/Data Warp-Sequential Addresses/Data Thread Private Addresses/Data

Figure 4.5: Dynamic Scalarization Metrics – (a) instructions issued, (b) operations executed,
(c) register reads, (d) register writes, (e) memory addresses, (f) memory data. Each group shows
results for warp sizes of 4, 8, 16, and 32.

CHAPTER 4. SCALARIZATION 42

thread operations. With a warp size of 4, register reads and writes are reduced by 24%, memory
address counts going to the innermost cache are reduced by 37%, and the number of memory data
elements accessed is reduced by 30%. With wider warp sizes, scalar register accesses and scalar
memory operations are more effectively amortized, and warp-sequential memory address activity
similarly decreases (though the data counts stay constant). With a warp size of 32, register reads
and writes are reduced by 31%, memory address counts are reduced by 47%, and data access
counts go down by 38%.

4.4 Discussion
Compile-time convergence analysis and scalarization can improve efficiency and performance in
various contexts. The algorithms in this thesis apply to existing processors, and they may also
enable new hardware microarchitectures.

Scalarization in Data-Parallel Microarchitectures
Figure 4.6 shows a range of data-parallel microarchitectures extended with scalarization support.
The same instruction-set architecture that we target in Section 4.1 applies to all of these microarchi-
tectures, as do the microarchitecture-neutral results in Section 4.3. Figure 4.6a shows a traditional
vector microarchitecture extended with a scalar unit on the left. A warp is mapped across the vector
lanes with one thread per lane. In contrast to the wide vector unit, the scalar unit has a 1-wide dat-
apath with a scalar register file and resources to execute scalar instructions. Scalarization reduces
overall register file capacity by eliminating redundant operand storage, or alternatively allows a
register file of a given size to map more threads. Scalar instructions improve performance as they
allow regular vector instructions to execute in parallel, and they reduce energy by eliminating repli-
cated work. Figure 4.6b shows an alternative microarchitecture which executes scalar instructions
on a single lane instead of a separate unit, thus avoiding the area overhead when scalarization is
not used. This architecture still reduces energy by only activating one lane when executing scalar
instructions, but it would not reduce register pressure or improve performance.

Scalarization may also help enable new microarchitectures with better divergent-thread perfor-
mance. In a spatial vector microarchitecture, divergence can be a performance bottleneck since
throughput and efficiency are halved each time the threads in a warp diverge [18]. With complete
divergence, only one of the warp’s threads executes instructions at a time. A potential solution
is a temporal vector microarchitecture, as shown in Figure 4.6c. In temporal vector lanes fetch
and execute instructions independently. A warp is mapped to a single lane, and the threads in
a converged warp dispatch an instruction one after the other over successive cycles. In this way
the temporal vector lane amortizes instruction overheads similar to a 1-lane vector machine [109].
When threads are diverged, on the other hand, instructions simply dispatch for a single cycle and
the independent lanes essentially operate as a traditional multithreaded MIMD processor.

A temporal vector microarchitecture is a particularly good match for efficient scalarization. As
shown in Figure 4.6c, the register file mappings are configured to allocate a set of scalar registers

CHAPTER 4. SCALARIZATION 43

R:W0/T0
R:W1/T0
R:W2/T0
R:W3/T0

…

…

R:W0/T1
R:W1/T1
R:W2/T1
R:W3/T1

…

R:W0/T2
R:W1/T2
R:W2/T2
R:W3/T2

…
R:W0/T31
R:W1/T31
R:W2/T31
R:W3/T31

…

S:W0
S:W1
S:W2
S:W3

…

(a) Spatial Vector with Scalar Unit

……

R:W0/T0
S:W0
R:W1/T0
S:W1

…

…

R:W0/T1

R:W1/T1

…

R:W0/T2

R:W1/T2

…

R:W0/T31

R:W1/T31

(b) Spatial Vector with Scalar Units in Lane 0

R:W0/T1

R:W0/T3
S:W0

…

…
R:W0/T2

R:W0/T0
R:W1/T1

R:W1/T3
S:W1

…

R:W1/T2

R:W1/T0
R:W2/T1

R:W2/T3
S:W2

…

R:W2/T2

R:W2/T0
R:W31/T1

R:W31/T3
S:W31

…

R:W31/T2

R:W31/T0

(c) Temporal Vector with Scalar Units in Each Lane

Figure 4.6: Data-Parallel Microarchitectures with Scalarization Support – (a) spatial vector
with scalar unit, (b) spatial vector with scalar units in lane 0, and (c) temporal vector with scalar
units in each lane.

CHAPTER 4. SCALARIZATION 44

for each warp. No physical partitioning of the register file is necessary (as in Figure 4.6a), and no
register file slots are wasted (as in Figure 4.6b). Regular thread instructions can directly source
operands from scalar registers instead of their usual private registers. The register file is only read
once as the first thread dispatches, and the scalar operand is then held in a pipeline register as other
threads dispatch. When a scalar instruction executes on a temporal vector architecture, it simply
dispatches once for the warp instead once per thread. Note that there will be no additional ports
added to the register file or the instruction cache if the microarchitecture continues to issue one in-
struction per cycle. Scalarization on a temporal vector architecture will improve both performance
and energy, while requiring only minimal hardware modification and no separate scalar execution
resources.

4.5 Future Research Directions
This section briefly describes some possible directions for future improvements with respect to
scalarization.

Partial Scalarization. The compiler algorithm described in Section 4.1 only looks for uniform
values across threads that are fully converged. This constraint makes the algorithm agnostic to
how the underlying data-parallel architecture supports control flow—the only requirement is to
keep all threads converged in regions where the compiler can statically prove so. We can augment
the compiler algorithm with specific knowledge on how the underlying hardware handles control
flow to enable partial scalarization, in which thread operations and register accesses across subsets
of warps are scalarized. Assuming convergence in warps that exit early is a specific example of
partial scalarization.

Dynamic Scalarization. Currently the compiler algorithm described in Section 4.1 can only
scalarize parts that the compiler can statically prove thread-invariant. However, during runtime the
thread operations or register accesses may happen to be uniform across a warp. We can architect
a machine in which the operands are dynamically checked for their uniformity, and the resulting
information is taken into consideration to reduce certain microarchitecture events. Kim et al. [64]
takes advantage of not only the uniform values across a warp but also affine values to optimize the
execution of arithmetic, branch, and memory instructions during runtime. Gilani et al. [47] adds a
comparison stage to the execution units in order to detect uniform values, and when detected, the
uniform value is sent to the scalar processor with separate execution resources.

Stackless SIMT. The divergence stacks used in current GPUs (Section 2.3) have several draw-
backs. First, as mentioned above, execution efficiency drops each time the threads in a warp di-
verge. The warp itself executes all of its composite thread code paths serially, so no parallelism is
possible between diverged threads in the same warp. Secondly, in current GPU compilers, achiev-
ing correct execution in the presence of unstructured control flow is a major challenge [134]. Fi-
nally, the divergence stack creates a pitfall where the SPMD model can break down: since the

CHAPTER 4. SCALARIZATION 45

“threads” in a warp do not truly execute asynchronously. Threads can only synchronize at warp (or
CTA) granularity, and threads in the same warp are only able to communicate when their execution
is convergent [94].

These drawbacks of SIMT could all be addressed by mapping SPMD kernels to a future stack-
less temporal-SIMT architecture. Similar to MIMD, such an architecture would provision a hard-
ware PC per thread and allow diverged threads to truly execute independently. Compiler con-
vergence analysis is an important enabler for this form of stackless SIMT since, without a stack,
hardware has no way to reconverge diverged warps. To enable compiler-managed reconvergence,
the architecture can provide a syncwarp instruction that acts as a barrier for currently executing
threads. The compiler simply places a syncwarp in blocks it identifies as convergent, and as long
as all threads make progress, the warp will eventually reconverge at this instruction. However, plac-
ing a syncwarp in every convergent block incurs an overhead that is often not necessary. We can
place these synchronization operations only at those convergent blocks that have at least one diver-
gent predecessor, thus ensuring that scalar registers are only written in convergent blocks guarded
by syncwarp instructions. In the example shown in Figure 4.1a, node N5 must be guarded by a
syncwarp.

4.6 Scalarization Summary
This chapter presents new compiler algorithms for thread convergence and variable variance anal-
ysis that elides redundant instructions and register accesses in threaded code through a technique
called scalarization. Our compiler algorithms are extremely effective at identifying convergent
execution even in programs with arbitrary control flow, identifying two thirds of the instructions
captured by a dynamic oracle. Simple hardware mechanisms can boost this to 100%. The compile-
time analysis leads to a reduction in operations executed and register accesses of 23–31% depend-
ing on warp size.

We anticipate additional optimizations, such as scalarizing across subsets of warps and dynamic
scalarization where the microarchitecture scalarizes instructions and operands without compiler
guidance, will provide even greater benefits.

46

Chapter 5

Predication

This chapter discusses the details of the predication compiler algorithm. Similar to the previous
chapter, we assume a SPMD programming language that approximates NVIDIA’s CUDA pro-
gramming language and a SIMT architecture that closely resembles an NVIDIA GPU as the basis
for the discussion. However, our compiler algorithm is applicable to other SPMD programming
languages and data-parallel architectures that support vector predication and reduction operations
on predicates. The compiler algorithm maps complex control flow found in SPMD programs
down to predicated vector instructions with consensual branches, where the branch is only taken
when all threads in a warp have the same predicate value. We describe our compiler foundation
in Section 5.1, discuss issues related to implementing our compiler algorithm within the NVIDIA
production CUDA compiler in Section 5.2, and present evaluation results in Section 5.3. We then
discuss advantages of software divergence management in Section 5.4, outline future research di-
rections on how to improve our software divergence management scheme in Section 5.5, before
summarizing in Section 5.6.

5.1 Compiler Foundation
This section describes algorithms that allow a compiler to systematically map divergence present
in SPMD programming models down to data-parallel hardware, unlike the heuristic algorithm
used to opportunistically predicate control flow in the backend NVIDIA compiler. The proposed
compiler algorithms remove all control flow by predicating and linearizing different execution
paths. These algorithms are applicable to data-parallel architectures that can partially execute
instructions and support consensual branches. For the discussion, without any loss of generality, we
assume predication and consensual branches as the underlying mechanisms. Our general approach
to predication is similar to if-conversion described by Mahlke et al. [84], which is a variant of
the RK algorithm described in Park and Schlansker [101]. Because predicating compilers are
well-studied and have been used effectively on a variety of platforms, this section focuses only on
aspects of compilation most relevant to thread-aware predication. We also discuss optimizations
to make predication more efficient.

CHAPTER 5. PREDICATION 47

1:BLOCK

2:IFTHENELSE

3:BLOCK

4:IFTHENELSE

N1

N2

N4

N3

N6 N5

N8

N7

(a) Control Flow Graph (CFG)

N1 N8 N2

P1 !P1

N4 N7 N3

P2 !P2

N6 N5

(b) Control Dependence Graph (CDG)

Figure 5.1: Thread-Aware Predication Code Example with Nested If-Then-Else Statements
– (a) control flow graph, and (b) control dependence graph.

Thread-Aware Control Dependence Graphs
The control dependence graph (CDG) is the foundation upon which our predication algorithms
rely [43, 133, 89]. A CDG relates nodes in a control flow graph (CFG) by their control depen-
dencies. For example, Figure 5.1b shows a labeled CDG for the CFG in Figure 5.1a [133]. In our
labeled CDG, we insert predicate nodes (sometimes called region nodes) between dependent basic
blocks. The predicate nodes provide an explicit relationship between basic blocks and the predi-
cates that guard their execution. For example, consider the if-then-else region N4, N5, and N6.
The corresponding CDG has a predicate node P2 (and its negation !P2) controlling N6 and N5.
As a practical matter, the compiler sets a predicate’s value using the same test a branch would use.

CHAPTER 5. PREDICATION 48

1:BLOCK

2:ACYCLIC

3:LOOP

N1

N2

N3

N12 N4

N10

N5

N6 N7

N8

N9

N11

(a) Control Flow Graph (CFG)

N1 N3

P1 !P1

N12

N10

N2 N11

N4 N5

P2 !P2

N7 N6 N8

P3!P3

N9

(b) Control Dependence Graph (CDG)

N1 N3

P1 !P1

N12

N10

N2 N11

N4 L1

N5

P2|E1 !P2

N7 N6 N8

P3 !P3|E2

N9

(c) Thread-aware Control Dependence Graph

Figure 5.2: Thread-Aware Predication Code Example with a Loop with Two Exits – (a) con-
trol flow graph, (b) control dependence graph, (c) modified control dependence graph with loop
masks and exit masks.

CHAPTER 5. PREDICATION 49

Using the CDG, the compiler can simply trace a path from the entry node of a region to determine
how to guard the execution of a basic block with predication. For instance, in 5.1b we see that
N5’s instructions should only execute when P1 is true and P2 is false.

Figure 5.2b shows that a CDG’s utility extends well beyond simple if-then-else regions, and
can handle a variety of complex control flow such as the loop and unstructured control flow shown
in the CFG in Figure 5.2a.

While the CDG as presented thus far applies to scalar processors, we can extend it to match
the semantics of data-parallel architectures. With predication, when a group of threads execute the
same loop simultaneously, the group must be sequenced until all the threads have exited the loop.
We augment the CDG’s basic structure with loop masks to track which threads are still actively
executing the loop, continue masks to track which threads are in the current iteration of the loop,
and exit masks to track which threads exited via specific loop exit blocks.

Figure 5.2c, which extends Figure 5.2b with these masks, serves as an example in the following
description. In the example,N4 is the loop’s landing pad,N5 is the loop header, and the exit paths
are through predicates P2 and !P3. A loop mask represents the threads that are active in the loop
body. The compiler initializes a loop mask in the loop’s landing pad (N4) with a runtime value
that represents the active threads at the loop’s entrance. For our example, the compiler introduces
a loop mask, L1, which guards the execution of the loop body. Exit masks, on the other hand,
represent threads exiting the loop (through predicate nodes P2 and !P3 in our example). Exit
masks are initialized to false in the loop’s landing pad.

The compiler inserts instructions at the loop exits to keep the loop masks and exit masks up-
to-date. For loop masks, the compiler inserts predicate and instructions to mask off threads that
exit the loop. A consensual branch is added to all loop exits to check whether the loop mask is null
(i.e., all threads are done executing the loop body). For exit masks, the compiler inserts predicate
or instructions to aggregate the threads that have exited (e.g., P2|E1 and !P3|E2).

While a continue mask is unnecessary for our example, we use them to optimize for the case
where all threads in the current iteration execute a continue statement to move to the next iteration.
The continue mask is added to the loop header block (N5), is initialized to the loop mask of the
current iteration, and is iteratively and-ed at every continue and exit block with the negated mask
of threads that leave the current loop iteration. A consensual branch is added to every continue
block to jump to the loop header when the continue mask turns out to be null.

Because the resultant CDG is still valid, downstream predication algorithms can obliviously
handle cyclic regions. Karrenberg and Hack [61] use similar loop masks and exit masks to vector-
ize loops. However, they do not use a CDG formulation to systematically generate predicates, and
do not optimize for loop continues.

Static Branch-Uniformity Optimization
If the compiler can prove that a branch condition is thread invariant, meaning that all active threads
simultaneously have the same value, the compiler can replace the branch with a consensual branch
and forgo predicating the region. Consensual branches do not affect the hardware’s divergence
management as all active threads are guaranteed to branch in the same direction. This compile-

CHAPTER 5. PREDICATION 50

time static branch-uniformity optimization can avoid unnecessary work and also reduce register
pressure. For example, in Figure 2.11a, if the compiler proves that p0 is thread invariant, the
compiler can safely remove the p0 and !p0 predicate guards for op2 and op3. In more com-
plex regions, removing the predicate guards can shorten the live range of the associated predicate,
thereby reducing register pressure.

We use a modified version of variance analysis described in Chapter 4 to select thread-invariant
predicates. A basic block is convergent if it is only control dependent on thread-invariant predi-
cates. For convergent basic blocks, all threads that execute simultaneously will either enter with
a full mask or not enter at all. Therefore, rather than predicating and linearizing convergent basic
blocks, we omit the guard predicate and preserve the original control flow. We ignore the thread-
invariant predicates in the CDG when generating guard predicates for other basic blocks. If the
loop header is convergent, all threads will enter, execute, and exit the loop convergently; hence the
CDG does not need to be transformed with loop, continue, and exit masks. Certain control edges
must be preserved, otherwise the linearized basic block might execute incorrectly, as convergent
basic blocks omit their guard predicates. The rule is to preserve outgoing edges of a convergent
basic block if there is only one outgoing edge or when the branch condition of the convergent basic
block is proven to be thread invariant.

We modified the variance analysis algorithm to work with the labeled CDG so that we could
add an additional rule: if a basic block is controlled by a thread-variant predicate (i.e., proven to be
non-convergent), mark all predicates controlling that basic block as thread variant. This constraint
is added so that non-convergent basic blocks will have no preserved control edges coming in. For
example, in Figure 5.2b, if predicate P3 is thread variant, then mark P1 as thread variant, as N10
is control dependent on both P1 and !P3. Otherwise, the compiler will insert a consensual branch
at N3 since predicate P1 is invariant, and assuming the execution went down N12 and N10, there
will be an uninitialized guard predicate representing threads from the N9–N10 control edge.

To see how this analysis works in practice, assume in Figures 5.1a/5.1b that the compiler can
prove that P1 is thread invariant but cannot do the same for P2. As basic block N2 is convergent,
the predicate generation algorithm can ignore predicate nodes P1 and !P1, and only consider pred-
icate nodes P2 and !P2. As a result, basic blocks N4, N7, and N3 do not have guard predicates,
while N6 and N5 are guarded by P2 and !P2 respectively. Control flow edges N2–N4 and N2–
N3 are preserved asN2 is convergent and P1 is thread invariant. N7–N8 are also preserved asN7
is convergent and only has one outgoing edge. Similarly N3–N8 is preserved as N3 is convergent
and only has one outgoing edge. As a result of this static branch-uniformity optimization, only
N4–N6–N5–N7 are predicated. If all the predicates turn out to be thread invariant, all control
flow will be preserved. On the other hand, if they are all thread variant, then all control flow will
be predicated.

Runtime Branch-Uniformity Optimization
For branch conditions that the compiler cannot prove as thread invariant, the compiler can still
optimize the control flow by inserting dynamic predicate uniformity tests that consensually branch

CHAPTER 5. PREDICATION 51

around whole regions when the active threads all agree. We refer to this as compiler-instigated
runtime branch-uniformity optimization.

This optimization is guided by structural analysis to uncover control-flow structures of in-
terest [111]. Structural analysis allows us to reconstruct control flow structure from a standard
CFG. For example, Figure 5.1a overlays a structural analysis of a CFG with nested if-then-else
structures. The structural analysis recursively discovers that blocks N4, N5, and N6 form an if-
then-else region. This region is then compressed into an IFTHENELSE block and the algorithm
repeats. Likewise, in Figure 5.2a structural analysis identifies a LOOP (N5, N6, and N8) and an
ACYCLIC structure (N3, N4, N7, N9, N10, N12, and the loop).

We consider adding runtime checks to single-entry single-exit (SESE) substructures of IFTHEN-
ELSE and IFTHEN flow structures. A simple heuristic algorithm decides to put a runtime unifor-
mity check around the SESE region of the substructure when there are more than three instructions
or more than two basic blocks in the SESE region. If the optimization is selected, the compiler
adds a header block and a tail block around the SESE region. A consensual branch is added to
the header block that branches to the tail block when the predicate guarding the region is uniform.
One interesting ramification of this approach is that the inserted branches form scheduling barriers
that constrain instruction scheduling.

As an example, assume in Figures 5.1a/5.1b that a runtime branch-uniformity check is added to
substructures of 4:IFTHENELSE. A header block and a tail block are added around both N6 and
N5. Consensual branches are added to both header blocks checking whether P2 and !P2 are false,
respectively. If the respective predicates are false, instructions in N6 and N5 are neither fetched
nor executed. As Figure 5.2a has no IFTHENELSE structures, no runtime uniformity checks are
inserted.

Shin [112] describes a similar dynamic branch-uniformity optimization called BOSCC (branches-
on-superword-condition-codes), but relies on predicate hierarchy graphs to nest regions that are
covered by BOSCC to reduce runtime overhead of checking the uniformity of branch conditions.
In contrast, we utilize the structural analysis to pick candidate SESE regions for runtime checks.

Linearizing the Control Flow
For predicated execution, basic block ordering is clearly important. Consider an if-then-else region
for which the compiler has inserted runtime branch-uniformity checks. For cases in which the
branches are not uniform, execution will fall through in a predicated fashion from the header,
through both paths of control flow, and finally exit.

A simple approach to basic block ordering that topologically sorts the loop tree of the CFG as
in [61] only works when all control flow will be predicated. As we have seen, this assumption is not
valid for our solution, because our optimizations intentionally preserve some parts of the original
control flow graph. To avoid inserting extraneous branches, which would defeat the purpose of our
work, the basic blocks from a predicated region have to be placed contiguously. We refer to this
placement problem as linearizing the control flow.

We again turn to structural analysis to achieve a linearized schedule. In addition to the IFTHEN
and IFTHENELSE structures, our analysis also discovers BLOCK, LOOP, ACYCLIC, and OTHER

CHAPTER 5. PREDICATION 52

structures [111]. The OTHER structure is a catch-all category that represents regions we do not at-
tempt to predicate and schedule. For these, we fall back to a low-performance escape hatch where
we put sequencing code at the entry block and the exit block to sequence active threads through the
structure one-by-one. Note that irreducible loops will be part of a single-entry single-exit OTHER
structure. For the purposes of this thesis, the detailed form of the structures is not important. What
is important is that the structures discovered in the analysis hierarchically group together basic
blocks that need to be contiguous in a predicated execution model.

Once structural analysis reports the control-flow structures, we reverse the direction of all edges
in the CFG, and then perform a depth-first post-order traversal from the exit node to generate a valid
schedule. We reference the result of the structural analysis to pick which children to visit first to
obtain a contiguous schedule of basic blocks from the same control-flow structure. The rule is to
first pick children that are from the same innermost structure. To correctly schedule all structures
in a loop, we remove backedges that connect loop tails to loop headers and make all edges from
the outside point to the loop tail.

Karrenberg and Hack [60] describe a similar static branch-uniformity optimization to reduce
register pressure while vectorizing OpenCL kernels for packed-SIMD units in x86 processors. Re-
ducing register pressure is especially important on an x86 processor, as it has a limited number of
scalar and vector registers. While their motivation is similar to ours, they use a different formu-
lation. Uniform branches are identified with a dataflow lattice approach, while we use variance
analysis that uses control dependence information to do so. To linearize basic blocks, they utilize
a region analysis based on a depth-first search with post-dominator information to identify region
exits, while we use structural analysis, which can identify irreducible regions more easily.

5.2 Implementation
As NVIDIA GPUs support both hardware-managed and software-managed divergence, we can
compare these schemes by implementing our compiler algorithms in the production NVIDIA
CUDA toolchain and running real workloads on existing hardware.

The CUDA compiler takes a CUDA program and translates it to native SASS instructions [93]
through a two-step process. The CUDA LLVM compiler first takes a CUDA program and gen-
erates PTX instructions with virtual registers and simple branches to represent data and control
dependencies. The ptxas backend compiler then generates native SASS instructions from the
PTX code by allocating hardware registers, inserting instructions that sequence the divergence
stack, and performing a very limited version of if-conversion with simple heuristics discussed in
Section 2.3. When using our predication algorithms, our modified compiler disables passes that
insert divergence stack instructions and perform if-conversion.

We implement our compiler algorithms described in Section 5.1 in the CUDA LLVM com-
piler. The LLVM compiler uses a static single assignment (SSA) based internal representation.
SSA form is inherently incompatible with the conditional update semantics of predication. The
production compiler toolchain in which we prototype these techniques is sufficiently rigid to pre-
clude implementation of the predicate-aware techniques such as [38, 119]. Instead, to interop-

CHAPTER 5. PREDICATION 53

erate with LLVM’s internal representation and built-in passes, during our predication pass we
embed a throw-away instruction in each basic block to hold its guard predicate, ordering, and lin-
earization information. The metadata held by the throw-away instruction survives various LLVM
passes including the instruction DAG selection pass. We modify ptxas to accept the intermedi-
ate form with the throw-away instruction mapped to a pseudo-PTX instruction to deliver metadata
needed for predication. The throw-away instruction withstands another set of optimization passes
in ptxas, and is discarded in a late phase once the compiler predicates all instructions with the
respective guard predicate and rewires the basic blocks with consensual branches to adhere to the
ordering generated by our LLVM predication pass. The resulting binary can be executed on both
Kepler and Fermi GPUs without modifications to the CUDA driver.

Limitations
While most SASS instructions accept a guard predicate, the shared memory atomic operations,
which are implemented with a load-lock and store-unlock instruction sequence, do not. To support
programs with conditional execution of shared atomic instructions, we modify ptxas to guard the
lock/unlock sequence with a divergent branch and handle reconvergence through the divergence
stack. Only 4 out of 28 benchmarks are programmed with shared memory atomic operations (SA
column of Table 5.1 and 5.2).

Integer division and remainder instructions are expanded into a loop with conditional branches
by ptxas, invalidating the ordering information generated by our LLVM predication pass. To
avoid this problem, we call the “Expand Integer Division” pass to legalize integer division and
remainder operations in the LLVM compiler before we call our predication pass. We also add this
pass to the baseline compiler, which only uses the divergence stack to handle control flow, for a
clearer comparison against thread-aware predication. Only 4 out of 28 benchmarks use an integer
division or a remainder operation (DR column of Table 5.1 and 5.2).

5.3 Evaluation
Our study uses 11 benchmarks from Parboil [121] and 11 benchmarks from Rodinia [30], which
cover compute-intensive domains including linear algebra, image processing, medical imaging,
biomolecular simulation, physics simulation, fluid dynamics, data mining, and astronomy. We
also added 6 benchmarks we wrote to characterize our thread-aware predication CUDA compiler,
including a control-flow heavy N-queens benchmark and several FFT benchmarks with different
radices. We characterize our thread-aware predication approach on an NVIDIA Tesla K20c GPU
(Kepler GK110) and compare performance results with baseline runs that only use the divergence
stack to handle control flow. To draw a clearer comparison between hardware and software diver-
gence management schemes, we disable the limited if-conversion heuristic in the baseline compiler
so that the baseline solely uses the divergence stack to handle the control flow, and therefore clearly
delineate contributions of predication.

C
H

A
PT

E
R

5.
PR

E
D

IC
A

T
IO

N
54

Table 5.1: Benchmark Statistics Compiled for Kepler and Run on Tesla K20c (GK110)

Compile-time Statistics Runtime Statistics

Application Kernel Structures Inst. Stack Inst. CBranch Inst. Registers Pred Regs. Br Uni. Occup. Runtime (ms) Speedup

BB R L Br SA DR Push Pop SBU RBU LC S P PS PSR S P PS PSR U D S PSR S PSR

p-bfs BFS 17 12 2 10 1 0 5 10 0 5 2 20 20 20 20 2 4 4 4 0.18 0.82 0.75 0.75 0.44 0.46 0.96×
BFS in GPU 28 18 4 16 1 0 7 13 0 4 5 31 43 42 42 2 7 5 5 0.38 0.62 0.75 0.50 2.71 3.10 0.90×

BFS multi blk 46 32 7 28 1 0 13 24 0 11 7 39 62 62 62 4 7 6 6 0.16 0.66 0.75 0.50 5.31 5.54 0.93×
p-cutcp lattice6overlap 30 24 4 17 0 0 9 17 2 8 6 28 43 33 30 1 7 4 3 0.47 0.53 0.69 0.69 4.94 4.48 1.10×
p-histo main 31 30 4 21 2 0 11 23 1 11 4 23 34 34 30 7 7 7 7 1.00 0.00 0.75 0.75 0.34 0.40 0.86×

final 10 6 3 6 0 0 2 2 0 0 3 38 42 42 42 1 2 2 2 1.00 0.00 0.75 0.50 0.06 0.06 1.00×
prescan 46 25 6 25 0 1 11 20 4 11 6 14 16 14 14 2 5 5 5 0.52 0.09 1.00 1.00 0.03 0.03 0.95×

intermediates 353 208 64 208 0 0 143 174 0 80 64 22 24 24 24 3 5 5 5 0.46 0.54 1.00 1.00 0.21 0.23 0.94×
p-lbm StreamCollide 3 1 0 1 0 0 1 2 0 1 0 34 41 41 42 1 1 1 1 0.00 1.00 0.75 0.63 2.13 2.12 1.01×
p-mri-gridding uniformAdd 7 3 0 3 0 0 2 4 0 3 0 6 8 8 6 1 2 2 1 0.64 0.36 1.00 1.00 0.12 0.12 1.00×

gridding 38 33 7 23 0 3 13 20 11 5 7 62 70 61 58 3 7 4 3 0.00 1.00 0.50 0.50 149.58 155.79 0.96×
binning 6 3 0 3 0 0 1 3 0 2 0 8 11 11 8 1 4 4 3 0.00 1.00 1.00 1.00 1.94 1.94 1.00×
reorder 3 1 0 1 0 0 0 0 0 1 0 14 14 14 14 1 1 1 1 0.33 0.67 1.00 1.00 2.55 2.55 1.00×

scan L1 20 11 2 11 0 0 6 12 2 3 2 17 16 16 16 2 6 4 4 0.55 0.45 1.00 1.00 0.81 0.81 0.99×
splitRearrange 10 4 1 5 0 0 3 6 0 3 2 22 25 25 21 2 3 3 3 0.67 0.33 1.00 1.00 1.49 1.65 0.91×

scan inter1 5 3 1 3 0 0 1 2 1 1 1 16 15 15 15 1 3 1 1 0.67 0.33 0.61 0.61 0.01 0.01 1.05×
scan inter2 5 3 1 3 0 0 1 2 1 1 1 15 16 15 15 1 3 1 1 0.00 1.00 0.61 0.61 0.01 0.01 1.01×

splitSort 21 12 3 12 4 0 10 16 2 5 3 43 48 41 41 3 7 4 4 0.31 0.69 0.63 0.63 4.35 4.28 1.02×
p-mri-q ComputeQ 5 3 1 3 0 0 0 0 2 0 1 21 22 22 22 1 3 1 1 1.00 0.00 1.00 1.00 1.60 1.56 1.03×

ComputePhiMag 3 1 0 1 0 0 0 0 0 1 0 10 10 10 10 1 1 1 1 1.00 0.00 1.00 1.00 0.00 0.00 1.04×
p-sad mb calc 27 18 5 17 0 0 9 12 0 8 5 49 62 62 62 3 6 6 6 0.67 0.33 0.50 0.50 8.90 8.31 1.05×

larger calc 8 6 3 1 3 0 0 2 3 0 1 1 26 24 24 24 1 2 2 2 0.50 0.50 1.00 1.00 2.92 2.85 1.03×
larger calc 16 4 2 1 2 0 0 1 1 0 0 1 26 24 24 24 1 2 2 2 0.63 0.38 0.25 0.25 0.57 0.61 0.96×

p-sgemm mysgemmNT 6 3 2 3 0 0 0 0 1 0 2 45 38 49 49 1 4 1 1 1.00 0.00 0.63 0.56 2.01 1.87 1.04×
p-spmv spmv jds 7 4 1 4 0 0 3 4 0 2 1 19 22 22 20 1 5 5 6 0.75 0.25 0.48 0.48 0.11 0.11 0.98×
p-stencil block2D hybrid 34 14 1 14 0 0 12 24 1 12 1 31 42 40 37 7 7 7 7 0.71 0.29 1.00 0.75 0.66 0.68 0.98×
p-tpacf gen hists 56 37 5 30 1 0 22 40 4 21 5 29 36 31 31 4 7 4 4 0.59 0.41 0.38 0.38 2040.31 2143.03 0.95×

Note: p=Parboil for application names. Kernel names are abbreviated. BB=Basic Blocks, R=Regions, L=Loops, Br=Branches, SA=Shared Atomics,
DR=Integer Division/Remainder, SBU=Static Branch-Uniformity optimization, RBU=Runtime Branch-Uniformity optimization, LC=Consensual
Branches for Loops, S=Compiled with divergence stack, P=Compiled with thread-aware predication, PS=P+SBU, PSR=P+SBU+RBU, Br
Uni.=Branch Uniformity, U=Uniform, D=Divergent, Occup=Occupancy.

C
H

A
PT

E
R

5.
PR

E
D

IC
A

T
IO

N
55

Table 5.2: Benchmark Statistics Compiled for Kepler and Run on Tesla K20c (GK110) Cont’d

Compile-time Statistics Runtime Statistics

Application Kernel Structures Inst. Stack Inst. CBranch Inst. Registers Pred Regs. Br Uni. Occup. Runtime (ms) Speedup

BB R L Br SA DR Push Pop SBU RBU LC S P PS PSR S P PS PSR U D S PSR S PSR

r-b+tree findK 12 8 1 7 0 0 2 6 1 3 1 20 24 23 23 1 4 2 2 0.18 0.64 1.00 1.00 1.50 1.52 0.99×
findRangeK 18 13 1 11 0 0 4 12 1 7 1 27 38 32 32 1 4 2 2 0.29 0.57 1.00 0.75 1.35 1.74 0.77×

r-backprop layerforward 20 14 3 11 0 1 4 7 1 5 3 21 33 31 31 2 7 6 6 0.40 0.60 1.00 1.00 0.38 0.39 0.96×
adjust weights 3 1 0 1 0 0 0 0 0 1 0 19 19 19 19 1 2 2 2 0.00 1.00 1.00 1.00 0.34 0.34 1.00×

r-bfs Kernel 8 6 1 5 0 0 1 2 0 3 1 16 18 18 18 1 2 2 2 0.40 0.60 1.00 1.00 0.43 0.44 0.95×
Kernel2 4 2 0 2 0 0 0 0 0 2 0 11 11 11 11 1 2 2 2 0.50 0.50 1.00 1.00 0.05 0.05 0.94×

r-gaussian Fan1 3 1 0 1 0 0 0 0 0 1 0 11 11 11 11 1 1 1 1 0.00 1.00 1.00 1.00 0.01 0.01 1.01×
Fan2 5 3 0 3 0 0 0 0 0 3 0 12 15 15 12 1 2 2 2 0.00 1.00 0.25 0.25 0.25 0.26 0.90×

r-hotspot calculate temp 14 7 1 8 0 0 3 7 1 4 2 33 35 35 34 3 6 4 3 0.38 0.63 0.75 0.75 0.11 0.11 0.97×
r-lud lud diagonal 28 21 7 18 0 0 2 3 0 0 7 44 74 73 73 2 7 7 7 0.83 0.17 0.25 0.25 0.06 0.07 0.90×

lud internal 1 0 0 0 0 0 0 0 0 0 0 17 17 17 17 0 0 0 0 – – 1.00 1.00 0.01 0.01 1.01×
lud perimeter 35 27 8 21 0 0 2 3 0 4 8 42 49 49 42 3 7 7 7 0.80 0.20 0.25 0.25 0.08 0.10 0.85×

r-nn euclid 3 1 0 1 0 0 0 0 0 1 0 8 8 8 8 1 1 1 1 0.00 1.00 1.00 1.00 0.01 0.01 1.01×
r-pathfinder dynproc 13 6 1 7 0 0 3 6 1 3 2 17 18 17 18 3 4 3 3 0.43 0.57 1.00 1.00 0.15 0.13 1.16×
r-srad-v1 srad 15 8 2 8 0 2 6 13 0 3 2 22 20 20 26 2 5 5 5 0.62 0.15 1.00 1.00 0.09 0.10 0.87×

srad2 13 7 2 7 0 2 4 4 0 3 2 20 20 20 32 2 5 5 5 0.67 0.33 1.00 1.00 0.07 0.09 0.86×
reduce 66 43 4 35 0 1 25 46 3 25 4 26 38 36 36 2 7 5 5 0.17 0.43 1.00 0.75 0.08 0.09 0.88×
extract 3 1 0 1 0 0 0 0 0 1 0 4 4 4 4 1 1 1 1 0.00 1.00 1.00 1.00 0.01 0.01 1.00×

prepare 3 1 0 1 0 0 0 0 0 1 0 10 10 10 10 1 1 1 1 0.00 1.00 1.00 1.00 0.02 0.02 1.01×
compress 3 1 0 1 0 0 0 0 0 1 0 4 4 4 4 1 1 1 1 0.50 0.50 1.00 1.00 0.01 0.01 1.01×

r-srad-v2 srad cuda 1 28 18 0 14 0 0 5 24 4 13 0 23 26 26 26 5 7 7 7 0.36 0.64 1.00 1.00 0.98 1.04 0.95×
srad cuda 2 11 5 0 5 0 0 3 8 2 4 0 20 22 22 20 3 5 5 4 0.40 0.60 1.00 1.00 1.01 1.02 1.00×

r-streamcluster compute cost 7 4 1 4 0 0 0 0 0 3 1 18 15 15 15 1 4 4 4 0.75 0.25 1.00 1.00 0.52 0.59 0.86×
nqueens nqueens 47 44 13 32 0 0 11 16 4 7 14 27 54 54 57 2 7 7 7 0.58 0.42 1.00 0.50 55.06 56.05 0.98×
radix2fft mp radix2 6 3 1 3 0 0 0 0 2 0 1 35 37 35 35 1 3 1 1 1.00 0.00 0.50 0.50 0.01 0.01 1.01×

sp radix2 3 2 1 2 0 0 0 0 1 0 1 22 26 22 22 1 2 1 1 1.00 0.00 0.50 0.50 0.01 0.01 1.04×
radix3fft radix3fftd 4 2 1 2 0 0 0 0 1 0 1 34 43 33 33 1 2 1 1 1.00 0.00 0.75 0.75 0.01 0.01 0.99×
radix4fft radix4fftd 3 2 1 2 0 0 0 0 1 0 1 36 40 36 36 1 2 1 1 1.00 0.00 0.25 0.25 0.01 0.01 0.98×
radix5fft radix5fftd 4 2 1 2 0 0 0 0 1 0 1 44 48 44 44 1 2 1 1 1.00 0.00 0.25 0.25 0.01 0.01 0.99×
radix6fft radix6fftd 4 2 1 2 0 0 0 0 1 0 1 44 53 45 45 1 2 1 1 1.00 0.00 0.25 0.25 0.01 0.01 1.00×

Note: r=Rodinia for application names. FFT benchmark results are reported as one benchmark result. For abbreviations reference Table 5.1’s notes.

CHAPTER 5. PREDICATION 56

Benchmark Characterization
Table 5.1 and 5.2 report compile-time and runtime statistics of the different kernels of the 28
benchmarks. The BB, R, and L columns of the table, which count the number of basic blocks,
regions, and loops of each kernel, show that the benchmarks are composed of a non-trivial num-
ber of control-flow structures. The Br column of the table counts the total number of conditional
branches in each kernel. The push and pop of stack instructions columns count the number of
baseline compiler generated instructions that sequence the divergence stack. The CBranch instruc-
tion columns count the number of consensual branches inserted by the thread-aware predication
compiler. The SBU column counts the number of branches that are proved to be non-divergent
by the static branch-uniformity optimization. The RBU column reports the number of consensual
branches that were added by the runtime branch-uniformity optimization. Unlike the if-then-else
statements, consensual branches are required to implement loop constructs correctly. The LC col-
umn counts these branches.

We have developed a SASS instrumentation tool, which injects instrumentation code before
all conditional branches at the final pass of ptxas [118]; we use this tool to collect the runtime
uniformity statistics and record them in the Br Uniformity columns. Figure 5.3a visualizes the clas-
sification of compile-time and runtime branches statistics. On average, the compiler proved 11%
of branches to be non-divergent (SBU), added dynamic checks for 53% of the branches (RBU),
turned 22% of the branches into consensual branches for loops (Loop), and removed the remaining
with predication (Predicated). At runtime, 50% of the branches turned out to be uniform, and 48%
to be divergent. The remaining 2% of the branches were not executed. In general, the predication
compiler is doing a good job optimizing for branch uniformity. However, there are certain bench-
marks such as r-lud where the compiler can improve, as the runtime-uniform bar is 17× taller
the SBU+RBU bar.

The S column of both register sections counts the number of data registers and predicate reg-
isters used by the baseline compiler, which only uses the divergence stack to handle control flow.
The P column captures the number of registers used by the thread-aware predication compiler.
The PS and PSR columns count the number of registers used by the compiler when the static and
runtime branch-uniformity optimizations are enabled respectively. Figure 5.3b shows the register
usage normalized to the baseline register count. The general trend is that predication increases
register pressure, since a conservative register allocator cannot reuse registers for both sides of a
branch. Normally with branches, a register allocator can easily reuse the same register on differ-
ent sides of the branch. With predication, the allocator would have to prove that certain predicate
conditions are disjoint to do so. For some branches, the static branch-uniformity optimization can
prove that a branch is non-divergent so that the compiler can safely remove the predicates from
both sides of the branches, make register allocation easier, and alleviate register pressure. Run-
time branch-uniformity tends to further reduce register pressure by preventing the compiler from
blending instructions from both sides of the branches, hence reducing the live ranges of values.

Register pressure affects occupancy (the number of threads that can execute simultaneously) as
the threads share a common pool of physical registers. Figure 5.3c shows the average occupancy
of kernels reported in the occupancy column of the benchmark statistics table, normalized to the

CHAPTER 5. PREDICATION 57

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SBU RBU Loop Predicated Runtime-Uniform Runtime-Divergent Runtime-Not Executed

(a) Branch Classification

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Baseline using Divergence Stack Thread-Aware Predication Thread-Aware Predication+SBU Thread-Aware Predication+SBU+RBU

(b) Register Pressure

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Baseline using Divergence Stack Thread-Aware Predication Thread-Aware Predication+SBU Thread-Aware Predication+SBU+RBU

(c) Occupancy

Figure 5.3: Benchmark Characterization with Thread-Aware (TA) Predication – (a) branch
classification, (b) register pressure, (c) occupancy. SBU=Static Branch-Uniformity optimization,
RBU=Runtime Branch-Uniformity optimization. In (b), register usage for nqueens (outside figure)
is 2× for TA-predication and +SBU data points and 2.1× for the TA+SBU+RBU.

CHAPTER 5. PREDICATION 58

maximum occupancy of the processor. Occupancy decreases for those applications that experience
increased register pressure: p-bfs, p-histo, p-lbm, p-sgemm, p-stencil, r-b+tree,
r-srad-v1, and nqueens. The static branch-uniformity optimization recoups occupancy lost
by the baseline predication algorithm for p-cutcp, p-stencil, r-backprop, and fft. As
discussed in the next section, occupancy has a strong influence on performance and is a critical
metric for compiler optimizations in throughput processors.

Performance Analysis
Figure 5.4 shows the performance of all benchmarks normalized to the performance using the
divergence stack. Table 5.1 and 5.2 have runtime and speedup numbers of all kernels that comprise
these benchmarks for the baseline compiler and the thread-aware predication compiler with both
branch-uniformity optimizations enabled.

The performance of the thread-aware predication compiler targeting the Kepler GPU only with
predication and consensual branches is competitive with the baseline compiler using the divergence
stack. The thread-aware predication compiler with both branch-uniformity optimizations generates
code that is only 2.7% slower on average than the baseline compiler. Without any optimizations,
the thread-aware predication compiler is 11.3% slower than the baseline. Static branch-uniformity
optimization boosts performance by 4.7%, and the runtime branch-uniformity optimization adds
an additional 3.9%. Runtime branch-uniformity optimizations harm performance in some cases,
especially when the branch conditions are truly unbiased. In such cases, consensual branches
added for runtime uniformity checks are pure overhead. Adaptive optimization could use online
profiles and recompilation to elide unnecessary uniformity checks. By manually picking the best-
performing cases, the thread-aware predication compiler is only 0.6% slower.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

Sp
ee
du
p

Baseline with divergence stack Thread-Aware Predication Thread-Aware Predication+SBU Thread-Aware Predication+SBU+RBU

Figure 5.4: Speedup of Thread-Aware Predication Against Divergence Stack on NVIDIA
Tesla K20c – SBU=Static Branch-Uniformity optimization, RBU=Runtime Branch-Uniformity
optimization.

CHAPTER 5. PREDICATION 59

The static branch-uniformity optimization tends to increase performance, as this optimization
reduces register pressure. The only exception is p-tpacf, where performance decreases mono-
tonically with each additional branch-uniformity optimization. Upon inspection the compiler gen-
erates a better instruction schedule when both optimizations are disabled by intermixing more
parallel execution paths. When both optimizations are disabled, the compiler uses 3 more predi-
cate registers (Table 5.1 and 5.2), and has more freedom with instruction scheduling because more
than 80% of the branches are predicated (Figure 5.3a).

The runtime branch-uniformity optimization increases performance for 11 out of 24 bench-
marks by skipping regions with a null guard predicate. Among those 11 benchmarks, p-histo,
p-gridding, p-spmv, and p-stencil benefit from these runtime checks by 26%, 21%,
14%, and 25% respectively. However, runtime checks can also reduce performance. The worst
of the nine benchmarks that performed worse with this runtime optimization is p-cutcp, which
dropped by 39%. For this benchmark, we found that the compiler is able to schedule multiple
fused-multiply-add instructions from multiple execution paths simultaneously when the dynamic
checks are not included.

Nine benchmarks performed better with the thread-aware predication compiler than the base-
line compiler and 17(19) benchmarks performed within 0.95×(0.90×) of the performance of the
baseline compiler respectively. Of the five benchmarks that see a performance loss of more than
10%, p-bfs, r-b+tree, and r-srad-v1 exhibit reduced occupancy (Figure 5.3c). Table 5.1
shows that the two kernels with reduced occupancy in p-bfs use 11 and 23 additional registers re-
spectively. Likewise, offending kernels r-b+tree and r-srad-v1 use 5 and 10 more registers,
respectively. For each of these cases, the additional registers per thread are enough to limit the par-
allelism that the processor can exploit. As mitigating register pressure is critical to obtaining per-
formance in throughput processors, Section 5.5 discusses options for improving register allocation
for predicated code. For the remaining two benchmarks r-lud and r-scluster, the compiler
is not able to optimize for all branch uniformity exhibited during runtime (the runtime-uniform
bar is much larger than the SBU+RBU bar in Figure 5.3a). We discuss options for improving
branch-uniformity checks in Section 5.5.

Although not shown in the graph, the limited if-conversion heuristic implemented in the NVIDIA
production compiler only makes 6 out of 24 benchmarks run faster when compared to the base-
line compiler. Eleven benchmarks run slower with the if-conversion heuristic, while the remaining
7 benchmarks run at them same speed. The average performance does not change with the if-
conversion heuristic. Out of those 6 benchmarks that run faster with the limited if-conversion
heuristic, only 3 benchmarks are 1%, 2%, and 3% faster than code generated from our thread-
aware predication compiler respectively.

Discussion on Area, Power, and Energy
Quantifying the impact of software divergence management on area, power, and energy is challeng-
ing, since we ran CUDA workloads on GPU silicon to obtain performance numbers and benchmark
statistics. The primary motivation to remove the divergence stack is to reduce hardware design
complexity and associated verification costs. We estimate that area and power savings from elim-

CHAPTER 5. PREDICATION 60

inating the divergence stack are not significant, so performance would serve as a good proxy for
power and energy consumption. The performance of code generated by the thread-aware predi-
cation compiler is competitive to the one generated by the baseline compiler using the divergence
stack. For that reason, we believe that the power and energy consumption of the software diver-
gence management scheme is on par with the hardware scheme. With improvements proposed
in Section 5.5, software divergence management has potential to outperform hardware divergence
management schemes in terms of performance, and therefore power and energy efficiency as well.

5.4 Discussion
The risks and benefits of predication on latency-oriented architectures such as traditional CPUs
are well understood. In that context, branch predictability and instruction path length play a major
role [84, 83]. The tradeoffs associated with predication on throughput-oriented architectures with
a divergence stack are less studied and less intuitive. This section discusses some of the reasons
that extremely aggressive predication is effective on such architectures. We also discuss ways in
which we can potentially co-design future throughput-oriented architectures to make predication
even more effective.

Advantages of Software Divergence Management
In theory, the predicated code should perform as well as code that uses the divergence stack, since
the underlying mechanism to handle divergent execution is fundamentally the same. With predica-
tion, the compiler is explicitly scheduling the operations in the same way a divergence stack would
do implicitly. The reconvergence point when using a divergence stack is known to be the immedi-
ate post-dominator in a CFG for if-then-else statements [45]. For loops, the reconvergence point is
the immediate post-dominator of all exit blocks, which is the post-tail block of a loop. The algo-
rithms in Section 5.1 will find the same reconvergence points and put a predicate with reconverged
threads rather than setting up a reconvergence point with a push.stack instruction. Whereas
the hardware stack has to spill to DRAM if there is too much divergence, the predicating compiler
correspondingly manages excessive divergence through explicit predicate register spills. Hence,
the main benefit of software divergence management is reducing hardware complexity by eliminat-
ing hardware structures used for divergence management without altering the programmer’s view
of the machine.

There are additional advantages of managing divergence explicitly in software. Figure 5.5a
shows a CFG for a simple short-circuit code segment. Following the reconvergence rule discussed
above, when threads diverge at basic blocksN2 andN3, they will reconverge atN5 where parallel
execution will resume. Basic block N4 can be a partial reconvergence point; however, with a
divergence stack, threads will execute N4 serially. Using predication with the CDG shown in
Figure 5.5b, diverged threads from N2 and N3 will join at N4 to execute in parallel.

Managing divergence explicitly by the compiler provides more control over irregularly struc-
tured code than the divergence stack mechanism can. The order of execution, under divergence

CHAPTER 5. PREDICATION 61

N1

N2

N6 N3

N4 N7

N5

(a) Control Flow Graph (CFG)

N1 N2

P1 !P1

N5

N6

N4

N3

P2!P2

N7

(b) Control Dependence Graph (CDG)

Figure 5.5: Short-Circuit Example Showing Limitations of the Divergence Stack – (a) control
flow graph, (b) control dependence graph.

stack control, is nondeterministic; the hardware can choose to execute either side of the branch
first. This nondeterminism puts a limit on what the compiler can guarantee when analyzing the
control flow. For example, the variance analysis used for the static branch-uniformity optimization
can make stronger guarantees when divergence is managed by the compiler as it can analyze haz-
ards between different execution paths with a known execution order. Better variance analysis not
only results in faster performance with fewer registers, but also opens up more opportunities for
scalarizing SPMD code on data-parallel architectures [74].

Function Calls
Predicated function calls can be supported by a straightforward calling convention. The convention
designates one predicate register (e.g., p0 register) as the entrance mask to hold a mask of threads
that are active at function entrance. The compiler then guards via predication all instructions in the
function with the entrance mask. If the entrance mask is live across a function call, the compiler
should move it to a callee-saved register or spill it to the stack before calling the function.

Predicated virtual function calls can be supported with a simple instruction added to the hard-
ware. Figure 5.6b shows the predicated version of Figure 5.6a. The new find unique instruc-
tion will return a unique value of a vector register (namely an address for the function) and a
predicate mask of active threads that holds the unique value. Following the calling convention,
we save the resulting predicate mask in p0 and then jump to the unique program counter. When
control from the function returns, we mask off the threads that executed the function, and check

CHAPTER 5. PREDICATION 62

1 # function pointer PC stored in r3
2 # predicate register p2 holds the active threads
3 @p2 jalr r3

(a) With a Divergence Stack.
1 loop:
2 p0, r4 = find_unique p2, r3
3 @p0 jalr r4 # known to be unique
4 p2 = p2 and !p0
5 cbranch.ifany p2, loop

(b) With Predication.

Figure 5.6: Supporting Virtual Function Calls with Predication – (a) divergence stack, (b)
predication.

whether any active threads still remain. If so, we loop back and repeat with a new program counter
until all active threads are sequenced.

5.5 Future Research Directions
Although our experimental thread-aware predication compiler is competitive in performance to
a well-tuned production compiler that uses the divergence stack, we expect that we can make
software divergence management even more effective with the following software and hardware
improvements.

Tuning our compiler. Our heuristics for deciding when to enable the runtime branch-uniformity
optimization have not been extensively tuned. More importantly, many of the downstream compiler
passes have not been tuned with our optimizations in mind. In fact, some downstream compiler
optimizations are not predicate-aware, rendering them ineffective. Some effort globally tuning the
compiler and implementing common predicate-aware analyses and transformations could provide
performance boosts.

Predication-aware register allocation. Register count affects occupancy, which has a strong
influence on performance. Several studies [48, 39] look into techniques to reduce register pressure
under predication for superscalar and VLIW architectures. We can apply similar techniques to
reduce register count, and hence increase occupancy.

Better branch-uniformity optimizations. As shown in Figure 5.4, the compiler is only able to
capture a small fraction of the runtime branch uniformity. The current variance analysis used in
static branch-uniformity optimization only considers convergent basic blocks, where all threads

CHAPTER 5. PREDICATION 63

will enter with a full mask or not. The compiler does not analyze the case where a subset of the
warp has the same branch condition. With the execution order of divergent regions understood by
the compiler, we can extend the analysis to report scalar branch conditions across a subset of the
warp. We spotted some cases where the structural analysis was not reporting all regions of interest
to add runtime branch-uniformity checks. Other algorithms should also be considered to determine
where and when to add these runtime checks.

Branch if any instruction. The current hardware only supports cbranch.ifnone or cbranch
.ifall instructions. To emulate a cbranch.ifany instruction, we need two branches in a row,
a cbranch.ifnone followed by an unconditional jump. A new instruction would improve per-
formance as it would decrease instruction count and make unrolling easier by eliminating a branch
instruction from the middle of an unrolled region.

Adaptive optimization. As shown in our performance results, static branch-uniformity opti-
mization and runtime branch-uniformity optimization can sometimes reduce performance. Adap-
tive optimization in a just-in-time compilation scheme (such as implemented in the NVIDIA
CUDA driver) could profile branch behaviors and generate code that selects the best optimiza-
tions on a per-branch basis. Feedback-directed optimization could similarly improve our results.

5.6 Predication Summary
Trading complexity back and forth between software and hardware is a classic debate in computer
architecture. Divergence management is a prime target for these tradeoffs, with a wide range of
software, hardware, and hybrid schemes implemented in the field. However, while hardware diver-
gence management schemes have received a lot of attention from the academic research commu-
nity, the benefits and drawbacks of software divergence management on data-parallel architectures
have been less explored.

Hardware divergence management has its advantages. It enables a fairly conventional thread
compilation model, makes register allocation easier, and simplifies the task of supporting complex
irreducible control flow. However, in doing so the hardware takes on the burden of implementing
fairly complex divergence management structures. By trading the complexity with the compiler
to manage some or all divergence explicitly in software, we can potentially simplify the hardware
without sacrificing programmability.

In this chapter, we present new compiler algorithms to systematically map arbitrarily nested
control flow present in SPMD programs down to data-parallel architectures with predicates and
consensual branches. We implement these compiler algorithms in a production CUDA compiler,
and use it to run real workloads and gather runtime statistics on existing hardware. Our detailed
performance analysis on an NVIDIA Tesla K20c show that software divergence management ar-
chitectures can be competitive to hardware divergence management architectures. We anticipate
that with our suggested software and hardware improvements, software divergence management
schemes can be even more effective.

64

Chapter 6

The Hwacha Vector-Fetch Architecture

Our claim is that with a scalarizing compiler, traditional vector-like architectures can maintain the
same level of programmability as other data-parallel architectures while being highly performant,
efficient, yet a favorable compiler target. The Hwacha vector-fetch architecture is our attempt
to construct a vector-like data-parallel machine that is even more efficient than a traditional vector
machine. The vector-fetch instruction decouples the vector instruction stream into a separate thread
in order to enable light-weight access-execute decoupling of the vector data stream. The Hwacha
architecture also takes into account what we have learned from the previous chapters, and adds
scalar execution resources and support for vector predication with consensual branches. All vector
instructions, including vector gather and scatter operations, can be predicated. Virtual memory is
supported with restartable exceptions. The architecture presents a clean assembly interface that
enables dense packing of mixed-precision values in the vector register file as well as efficient
subword parallelism for mixed-precision operations.

This chapter discusses the Hwacha architecture in detail. Section 6.1 describes the Hwacha
assembly programming model, and Section 6.2 walks through the important Hwacha architectural
features. We have developed the Hwacha architecture with multiple tapeouts on the ST 28 nm FD-
SOI technology [136, 80, 135] and the IBM 45 nm SOI technology [78, 122]. Section 6.3 outlines
the lineage and history of the Hwacha vector-fetch architecture. Chapter 7 details the Hwacha
instruction set architecture, which has been developed as a non-standard extension to the RISC-
V instruction set architecture [131, 132, 130, 129]. Chapter 8 describes the Hwacha decoupled
vector microarchitecture. Chapter 9 discusses the implementation and evaluation of the Hwacha
architecture with our custom LLVM-based scalarizing compiler using OpenCL microbenchmarks.

6.1 Hwacha Vector-Fetch Assembly Programming Model
The Hwacha vector-fetch assembly programming model builds on the traditional vector assembly
programming model, with a key difference: the vector operations have been hoisted out of the
control thread and placed in a separate worker thread. The control thread is in charge of the
execution and is responsible for application setup, configuration, and stripmining the vectorized

CHAPTER 6. THE HWACHA VECTOR-FETCH ARCHITECTURE 65

loop. The control thread points to the worker thread with a vector-fetch instruction, and therefore
the worker thread is often called the vector-fetch block. In the Hwacha assembly programming
model, the control thread completes the stripmining loop faster and is able to continue doing useful
work, while the worker thread is independently executing vector instructions.

User-Visible Register State
Figure 6.1 shows the Hwacha user-visible register state. Like the traditional vector machine,
Hwacha has vector data registers (vv0–255) and vector predicate registers (vp0–15), but it also
has two flavors of scalar registers. These are the vector shared registers (vs0–63, vs0 is hardwired
to constant 0), which can be read and written within a vector-fetch block, and vector address reg-
isters (va0–31), which are read-only within a vector-fetch block. This distinction supports non-
speculative light-weight access-execute decoupling and is further described in Chapter 8, which
details the Hwacha microarchitecture.

Vector data and shared registers may hold 8-, 16-, 32-, and 64-bit integer values and half-,
single-, and double-precision floating-point values. Vector predicate registers are 1-bit wide, and
hold boolean values that mask vector operations. Vector address registers hold 64-bit pointer val-
ues, and serve as the base and stride of unit-strided and constant-strided vector memory instruc-
tions.

In addition, the vector configuration register vcfg, which keeps the configuration state of
the vector unit, and the vector length register vlen, which stores the maximum hardware vector
length, are also visible to the user. The configuration state is described in Section 7.1. The maxi-
mum hardware vector length is configurable based on how many registers of each type a program
uses. Regardless of how many registers are used, a hardware vector length of 8 is guaranteed. The
vector length register (vlen) can be set to zero, in such case, all vector instructions will not be
executed.

Assembly Programming Model
Figure 6.2 shows the CSAXPY kernel (the source is shown in Figure 2.2) mapped to the

Hwacha assembly programming model. The structure of the stripmine loop in the control thread
(line 1–16) is similar to the traditional vector code shown in Figure 2.5, however, all vector oper-
ations in the stripmine loop have been hoisted out into their own worker thread (line 18–25). The
control thread first executes the vsetcfg instruction (line 2), which adjusts the maximum hard-
ware vector length by taking the register usage (number of 64-, 32-, 16-bit vector data registers
and vector predicate registers) into account. vmcs (line 3) moves the value of a scalar register
from the control thread to a vector shared (vs) register. The stripmine loop sets the vector length
with a vsetvl instruction (line 5), moves the array pointers to the vector address (va) registers
with vmca instructions (line 6–8), then executes a vector-fetch (vf) instruction (line 9) causing
the Hwacha unit to execute the vector-fetch block. The code in the vector-fetch block is equivalent
to the vector code in Figure 2.5, with the addition of a vstop instruction, signifying the end of the

CHAPTER 6. THE HWACHA VECTOR-FETCH ARCHITECTURE 66

va0
va1
va2

vs0/zero
vs1
vs2
vs3
vs4
vs5

vv0
vv1
vv2
vv3
vv4
vv5
vv6
vv7
vv8
vv9
vv10
vv11
vv12
vv13

vv255

...

[0] [1] [2] [3] ... [vlen-1]

vs6
vs7
vs8
vs9
vs10
vs11
vs12
vs13

vs63

...

va3
va4
va5
va6

va31

...
vp0
vp1
vp2

vp15

...

[0] [1] [2] [3] ... [vlen-1]

Vector Address Registers

Vector Shared Registers Vector Data Registers

Vector Predicate Registers

vcfg vlen
Vector Configuration Register Vector Length Register

Figure 6.1: Hwacha User-Visible Register State – vector data registers (vv0–255), vector predi-
cate registers (vp0–15), vector shared registers (vs0–63), vector address registers (va0–31), vec-
tor configuration register (vcfg), vector length register (vlen).

CHAPTER 6. THE HWACHA VECTOR-FETCH ARCHITECTURE 67

1 csaxpy_control_thread:
2 vsetcfg #v64, #v32, #v16, #vp
3 vmcs vs1, a2
4 stripmine_loop:
5 vsetvl t0, a0
6 vmca va0, a1
7 vmca va1, a3
8 vmca va2, a4
9 vf csaxpy_worker_thread

10 add a1, a1, t0
11 slli t1, t0, 2
12 add a3, a3, t1
13 add a4, a4, t1
14 sub a0, a0, t0
15 bnez a0, stripmine_loop
16 ret
17

18 csaxpy_worker_thread:
19 vlb vv0, (va0)
20 vcmpez vp0, vv0
21 !vp0 vlw vv0, (va1)
22 !vp0 vlw vv1, (va2)
23 !vp0 vfma vv0, vv0, vs1, vv1
24 !vp0 vsw vv0, (va2)
25 vstop

Figure 6.2: CSAXPY Kernel Mapped to the Hwacha Assembly Programming Model – Fig-
ure 2.2 shows the source code of the CSAXPY kernel. Register a0 holds variable n, a1 holds
pointer cond, a2 holds scalar a, a3 holds pointer x, and a4 holds pointer y. Contrast the Hwacha
assembly programming model to the traditional vector assembly programming model shown in
Figure 2.5.

CHAPTER 6. THE HWACHA VECTOR-FETCH ARCHITECTURE 68

block. The address bookkeeping is amortized across the entire vector and done once on the control
thread (lines 10–13).

The combination of vsetcfg and vsetvl makes the Hwacha assembly code backward and
forward compatible with different microarchitecture implementations. For example, the same code
can run on wider vector machines with additional vector lanes. The end result of running the
Hwacha assembly code on such a machine would be executing vector instructions with a longer
hardware vector length.

For the CSAXPY example, factoring the vector code out of the stripmine loop reduces the
scalar instruction count by 15%. However, for more complex loops with more vector instructions,
the fraction of saved scalar instruction fetches per stripmine loop will increase (due to the Hwacha
vector-fetch programming model). This allows the control thread to run ahead further, enabling a
higher degree of access-execute decoupling.

6.2 Architectural Features
This section introduces the high-level design decisions of the Hwacha vector-fetch architecture:
how the architecture hides memory latency, supports scalarization, predication, virtual memory,
reconfigurable hardware vector length, and mixed-precision.

Hiding Memory Latency with Access-Execute Decoupling
With the processor-memory performance gap growing exponentially, high performance processors
are architected to tolerate long memory latencies. There are generally four techniques to tolerate
memory latency: static scheduling, dynamic scheduling, prefetching, and multithreading.

VLIW machines are built around static scheduling in which the compiler statically finds useful
work to do while a load is in flight. Out-of-order processors exploit dynamic scheduling in which
the microarchitecture dynamically exploits instruction-level parallelism by picking useful work to
do from a wide range of instructions uncovered with branch speculation.

GPUs hide memory latency with multithreading [27]; while a thread is waiting for the load data
to return, the machine switches threads to find useful work to do. This choice naturally falls out
of the SPMD programming model, where the application kernel is expressed as highly threaded
code. The GPU execution model reduces the program counter and instruction fetch overheads of
multithreading, but significant overheads of the highly threaded code remains—the thread state.
A thread has to park all of its state on the chip while waiting for the load data to return. For this
reason, GPUs often have a very large register file built out of SRAM macros.

However, when the address stream is well known ahead of time, we can exploit prefetching
rather than multithreading to minimize the on-chip buffer space needed to hide memory latency.
The key insight is that prefetching only uses on-chip buffer space to hold the prefetched data,
while multithreading requires the entire thread state to be present on the chip (every register except
the destination register to hold the load data is overhead). Decoupled access-execute computer
architectures [114] are a classic example that exploits prefetching. The access processor runs

CHAPTER 6. THE HWACHA VECTOR-FETCH ARCHITECTURE 69

ahead and prefetches the load data into a queue, while the execute processor catches up consuming
the load data from the queue later on. Runahead processors [90, 29] also exploit prefetching with a
scout thread. When a thread is stalled waiting for the load data to return, the processor checkpoints
the architectural state, then switches to the runahead mode, where the scout thread continues to
execute instructions from the stalled thread, prefetching data into caches long before it is needed.
When the load data returns from memory, the processor resumes normal execution after restoring
architectural state from the recent checkpoint.

The Hwacha vector-fetch architecture takes advantage of access-execute decoupling between
the vector runahead unit (access processor) and the vector execution unit (execute processor), sim-
ilar to schemes introduced by Batten et al. [22] and Espasa and Valero [41]. The key difference is
that both units fetch vector instructions from the same vector-fetch block simplifying the assem-
bly programming model; the access processor runs ahead and fetches vector memory instructions,
which reference vector address registers (va0–31), and issues prefetch operations long before
the data is needed by the execute processor. Unlike the original decoupled access-execute archi-
tecture [114], the Hwacha vector-fetch architecture has no risk of deadlocking, since the vector
runahead unit does not rely on the vector execution unit to make any decisions. Note, this vector
access-execute decoupling scheme is greatly simplified by disallowing the worker thread to write
the vector address registers. Chapter 8 has more details on how the access-execute decoupling is
implemented in the Hwacha microarchitecture.

Exploit Operand Uniformity with Scalarization
Chapter 4 shows that a simple compiler algorithm is able to statically scalarize one-third of the
executed operations and register accesses. The Hwacha vector-fetch architecture takes advantage
of these scalar values by putting them into vector shared registers (vs0–63) and using them across
the entire vector. Scalar instructions (both scalar computational instructions and scalar memory
access instructions) that read and write vector shared registers are allowed in the vector-fetch block.
Vector instructions can source operands from vector shared registers. The control thread is also
allowed to write a vector shared register via a vmcs instruction.

Early vector machines such as the Cray-1 [109], Fujitsu VP100/200 [123], NEC SX [128], Hi-
tachi S820 [40] had scalar registers, scalar functional units, and datapath to forward scalar operands
to vector functional units. Packed-SIMD extensions such as the Intel MMX [102], SSE [105],
AVX [82], ARM NEON [10], SPARC VIS [126], MIPS MDMX [51], and PowerPC AltiVec [37]
lacked support for vector-scalar operations, and therefore had to splat a scalar value to a vector
register. Recent AMD GPUs [5, 7] added scalar registers to the architecture, however, the scalar
registers are primarily used to manage divergence.

Handle Control Flow Efficiently with Predication
Chapter 5 shows that simple vector predication in conjunction with consensual branches is able
to efficiently handle complex control flow (if-then-else statements, loops, function calls including
virtual calls) found in parallel programming languages. The Hwacha vector-fetch architecture

CHAPTER 6. THE HWACHA VECTOR-FETCH ARCHITECTURE 70

stores predicates in vector predicate registers (vp0–15) and allows all vector instructions (including
both vector computational instructions and vector memory access instructions) to be predicated.
Consensual branches are also supported in a vector-fetch block with the following conditions:
ifnone, ifall, and ifany. Logical operations on vector predicates are supported with an
instruction that takes three input predicates and an 8-entry lookup table that encodes the logic
function. Vector predicate memory access instructions can spill and refill contents of the vector
predicate register to and from memory.

Early vector machines supported vector predication. The Cray-1 had one vector mask regis-
ter on which vector instructions were implicitly predicated [109]. The Fujitsu VP100/200 [123],
NEC SX [128], and Hitachi S820 [40] had a separate set of vector predicate registers, vector in-
structions that were explicitly predicated, and separate predicate logic operations that manipulated
the vector predicates. The packed-SIMD extensions generally lack predication support, however,
the recent Intel AVX-512 packed-SIMD extension adds predication support with vector predicate
registers (k0–7) [56], but is only available on its Xeon line of server processors and Xeon Phi co-
processors [57] as of 2015. As discussed in Section 2.3, NVIDIA GPUs provide vector predicate
registers and vector instructions that can be explicitly predicated, while AMD GPUs provide spe-
cial predicate registers to hold vector comparison results and vector masks that implicitly predicate
the vector instructions.

Virtual Memory Support with Restartable Exceptions
The Hwacha vector-fetch architecture is built on a framework for OS-friendly accelerators, suitable
for use with multi-programmed applications running on a general-purpose operating system [127].
All addresses referenced in a vector-fetch block are virtual, and therefore need to be translated.
Address translation on the vector unit can fail for various reasons, so we augment the Hwacha ma-
chine to handle restartable exceptions by providing a mechanism to save and restore the microar-
chitectural state of the vector unit. This mechanism is also used by the operating system to stop
and reschedule a process that is in use of the Hwacha vector unit. We also define additional fence
semantics that order the memory operations between the control thread and the worker thread.

Early vector machines such as the Cray-1 [109] required all pages it accessed to be pinned
in physical memory, due to the difficulty of implementing precise exceptions or restartable ex-
ceptions. The IBM Vector Facility supported restartable exceptions by limiting the machine to
only execute one vector instruction at a time [26]. Asanović [13] proposed a decoupled vector
pipeline design that issues vector instructions to the vector datapath only when all addresses from
previous vector memory instructions are known to not cause an exception. Espasa et al. [42] and
Kozyrakis [65] renamed vector destination registers to implement precise exceptions. Once a vec-
tor instruction faults, the destination registers of all subsequent vector instructions are rolled back
to the previous mapping to maintain preciseness. Since the Hwacha vector machine eschews vec-
tor register renaming, it must allow partial completion of more than one vector instruction, at the
expense of larger architectural state.

Hampton [52] presented software restart markers as a foundation to handle exceptions in paral-
lel architectures. The compiler is responsible for delimiting the program into idempotent regions.

CHAPTER 6. THE HWACHA VECTOR-FETCH ARCHITECTURE 71

Once an exception occurs, the operating system will simply resume execution from the beginning
of the faulting region. Although this approach has very low implementation overhead, it is con-
strained by the ability of the compiler to statically determine the idempotency of a region, and can
hence have large execution overheads on some codes.

Our proposal is most similar to the DEC Vector VAX [24] design, which provided the OS with
an opaque microarchitectural state save and restore mechanism, and also provided fence instruc-
tions to synchronize vector unit execution with the scalar processor.

Reconfigurable Hardware Vector Length
As the requirements for the vector length and number of vector registers vary from one kernel to
another, the Hwacha vector-fetch architecture lets the vector register file and the hardware vector
length to be dynamically reconfigured to maximize utilization. As a result, the Hwacha vector-
fetch architecture is able to efficiently handle kernels on the both ends of vector register usage.
For kernels that use a large number of vector registers, the Hwacha architecture can avoid spilling
vector registers by allowing a large number of vector registers in the instruction encoding. For
kernels that use a small number of vector registers, the Hwacha architecture can still maintain
efficiency by trading less register usage with longer vector lengths.

Figure 6.3 demonstrates how we can dynamically reconfigure the vector register file and adjust
the maximum hardware vector length. Assume we have a vector register file with 10 entries.
For a kernel that uses 4 vector registers, the maximum hardware vector length is set to 2 (see

vv0[0]
vv0[1]
vv1[0]
vv1[1]
vv2[0]
vv2[1]
vv3[0]
vv3[1]

(a) vsetcfg 4
HVL = 2

vv0[0]
vv0[1]
vv0[2]
vv0[3]

vv1[0]
vv1[1]
vv1[2]
vv1[3]

vv0[4]

vv1[4]

(b) vsetcfg 2
HVL = 5

vv0[0]
vv0[1]
vv0[2]
vv0[3]

vv1[0]vv1[1]

vv0[4]

vv1[2]vv1[3]
vv1[4]vv1[5]

vv0[5]

(c) vsetcfg 1,1
HVL = 6

Figure 6.3: Reconfigurable Vector Register File – The vsetcfg instruction reconfigures the
64-bit vector register file and the hardware vector length to reflect the following register usage in a
kernel: (a) four 64-bit vector registers, (b) two 64-bit vector registers, (c) one 64-bit vector register
and one 32-bit vector register. HVL = hardware vector length.

CHAPTER 6. THE HWACHA VECTOR-FETCH ARCHITECTURE 72

Figure 6.3a). When the number of used vector registers halves to 2, the maximum hardware vector
length is adjusted to 5 (see Figure 6.3b).

This register reconfiguration is similar to that in the early Fujitsu VP100/200 machines, but
is more flexible, as neither the number of registers nor the vector length have to be a power of
two. NVIDIA GPUs also adjust the number of warps that are scheduled to an individual streaming
multiprocessor depending on the register usage of a kernel. This coarse-grain quantization at the
warp level, however, is often known to result in pathological cases in which the occupancy drops
dramatically with a slight change in register usage [73]. The Hwacha vector-fetch architecture is
less sensitive to this problem as the configuration is done at a finer granularity.

Mixed-Precision Support
Many applications exhibit a broad variation in data value widths. Fixed-function accelerators attain
significantly better energy efficiency and performance by exploiting minimal and heterogeneous
word widths in their custom datapaths. By contrast, processors must support a range of conven-
tional datatype widths to fulfill a general-purpose role. Thus, the datapath is typically fixed at
the maximum precision potentially employed by any application. For certain applications (e.g.,
multimedia and signal processing) that do not require the highest available precision, unnecessary
energy is expended obtaining an equivalent result.

Rarely is one global precision optimal throughout all stages of computation; for example, the
widths of addresses and integer data often differ, and in widening arithmetic operations such as a
fused multiply-add (FMA), the product of n-bit values is added to a 2n-bit accumulator without in-
termediate rounding. For versatility, a processor should be able to simultaneously intermix several
reduced-precision modes according to application-specific conditions.

The Hwacha vector-fetch architecture supports mixed-precision computation. Due to the intrin-
sic data independence, the wide datapath is naturally partitioned into multiple narrower elements.
Compaction improves the utilization of vector register file accesses and interconnection fabric for
operand communication, and additional vector functional units can be introduced to leverage sub-
word parallelism with relatively small area cost. Most importantly, increased throughput enables
faster race-to-halt into a low power state. Moreover, denser storage of elements lessens memory
pressure and allows for longer vectors with the same register file capacity. The expanded buffering
assists with decoupled execution in more effectively hiding memory latency.

The vsetcfg instruction is modified to also take into account the number of vector registers
with narrower precision. Figure 6.3c depicts the case in which the programmer requested one 64-
bit vector register and one 32-bit vector register. Assuming the vector register file has 10 entries,
the maximum hardware vector length will be set to 6 instead of 5 (the case depicted in Figure 6.3b
in which the programmer requested two 64-bit vector registers).

Asanović [13] and Kozyrakis [65] similarly describe how a vector machine can be treated as an
array of virtual processors whose datapath widths are set collectively through a virtual processor
width (VPW) register. However, the precision of an individual vector register cannot be configured
independently, restricting fine-grain mixing of different data types.

CHAPTER 6. THE HWACHA VECTOR-FETCH ARCHITECTURE 73

Packed-SIMD extensions naturally support mixed-precision values within vector registers that
are uniformly fixed in size. Consequently, the number of elements per vector register varies at
different precisions. For example, a 512-bit AVX register can store 8 double-precision, 16 single-
precision, and 32 half-precision floating-point numbers. However, this makes it difficult for the
vector microarchitecture to chain mixed-precision operations. Equalizing vector lengths might
involve splitting a vector across several architectural registers, depleting register encoding space as
a result.

Some GPUs and microcontrollers implement limited support for variable precision by stor-
ing wider datatypes across several narrower architectural registers. For example, double-precision
floating-point values might occupy pairs of 32-bit registers and be referenced solely through even
register specifiers, effectively halving the available register set. Newer generation GPUs such as the
NVIDIA Tegra X1 [95], AMD GCN3 [6], ARM Mali Midgard architecture [116, 11], and Imagina-
tion PowerVR Rogue architecture [117] have added native support for half-precision floating-point
operations. However, these new GPU architectures expose half-precision floating-point operations
as packed-SIMD instructions, making the assembly code less compatible across different genera-
tions.

Ou’s master thesis [99] has more details on how the Hwacha vector-fetch architecture supports
mixed-precision values and operations.

6.3 History
The Hwacha vector-fetch architecture builds on several earlier projects: T0, Scale, Maven, and
earlier versions of Hwacha. This section outlines the lineage and history of vector machines that
influenced the current Hwacha vector-fetch architecture design.

Lineage
The T0 (Torrent-0) vector microprocessor project at UC Berkeley and ICSI begun in 1992 with
Krste Asanović as the lead architect and RTL designer, and Brian Kingsbury and Bertrand Irrisou
as main VLSI designers [14, 16, 12, 13]. T0 was a vector processor based on the MIPS-II ISA,
implemented in Hewlett-Packard’s CMOS26G 1.0 um CMOS process with 2 metal layers. The
resulting 16.75×16.75mm2 chip operated at a maximum frequency of 45 MHz at 5 V and con-
sumed less than 12 W. The T0 vector machine had a custom-designed 5-read-3-write register file
that contained 16 vector registers, each holding 32×32-bit elements, split across 8 vector lanes
each with two dynamically reconfigurable vector arithmetic pipelines, and interfaced with external
SRAM as main memory.

The Scale (Software-Controlled Architecture for Low Energy) vector-thread architecture project
at MIT begun in 2000 with Ronny Krashinsky and Christopher Batten as lead architects [68, 22,
66, 67]. The Scale vector processor had an SMIPS control processor (SMIPS stands for Scale
MIPS, a subset of MIPS without the branch delay slot), and a vector-thread unit with 4 lanes each
with 4 clusters that featured different types of execution resources. The instructions that ran on the

CHAPTER 6. THE HWACHA VECTOR-FETCH ARCHITECTURE 74

vector-thread unit were grouped into an atomic instruction block (AIB). All instructions in an AIB
were executed before moving on to the next element in the vector. Scale included a do-across net-
work for efficient cross-element communication, which were particularly useful when vectorizing
loops with loop-carried dependencies. Scale implemented a cache refill-access decoupling scheme
to hide memory latency. Scale did not support floating-point operations in hardware. The Scale
chip was implemented in TSMC CL018G 180 nm CMOS process with 6 metal layers. The result-
ing 23.14mm2 chip operated at a maximum frequency of 260 MHz at 1.8 V consuming 0.4–1.1 W,
depending on the workload.

The Maven (Malleable Array of Vector-thread ENgines) vector-thread architecture project at
UC Berkeley and MIT begun in 2007 with Christopher Batten as the lead architect, and Yunsup
Lee and Rimas Avizienis as main designers of the Maven vector-thread unit and scalar units, re-
spectively [21, 72, 70, 71]. The goal of the Maven project was to explore the programmability
and efficiency of a wide range of data-parallel accelerators including the MIMD, traditional vec-
tor, and the newly proposed Maven vector-thread architecture. The group designed a flexible RTL
framework that instantiated all designs, which was then pushed through the VLSI flow to obtain
accurate area, performance, and power/energy numbers to compare. The Maven design was never
fabricated, however, many VLSI layouts were produced using the TSMC 65GPLUS 65 nm CMOS
process with 9 metal layers. The sizes of the resulting accelerators were around 4–6.3mm2, and
operated at a maximum frequency of 680–763 MHz at 1 V consuming 111–331 mW. The Maven
vector-thread unit was configurable to have 1, 2, or 4 lanes, each with a vector register file that was
optionally banked 1, 2, or 4 ways. Vector arithmetic instructions were packed into separate vector-
fetch blocks to let the vector memory instructions run ahead and prefetch the needed vector data.
Branch instructions were allowed in vector-fetch blocks to support kernels with irregular control
flow, and were implicitly handled by the hardware (meaning that the hardware was responsible
for the bookkeeping the divergence state). Explicit predication was not supported. Floating-point
operations were supported in hardware.

Earlier versions of Hwacha
The Hwacha project started right after the Maven project in 2011. The first version of Hwacha had
a similar assembly programming model as Maven, where the vector memory instructions were kept
in the control processor’s instruction stream, and the vector arithmetic instructions were hoisted
out into a separate vector-fetch block. Branches were not allowed in vector-fetch blocks, and
predication was not supported. Conditional move instructions were the only way to write data-
dependent execution. The Hwacha project used the 64-bit RISC-V ISA [131, 129] as its base ISA,
moving away from the Maven ISA. The vector microarchitecture changed significantly, where the
vector lane was mainly redesigned to work with a banked vector register file that was split into
8 banks of area-efficient 1-read-1-write SRAM macros. The RTL was written from scratch in
Verilog.

The second version of Hwacha was rewritten from scratch in an early version of Chisel [17],
and mainly added support for virtual memory and restartable exceptions [127]. The vector runa-
head unit was rearchitected to prefetch vector data into the nearest cache as a result.

CHAPTER 6. THE HWACHA VECTOR-FETCH ARCHITECTURE 75

The third version of Hwacha was rewritten from scratch in Chisel. This was a result of design-
ers learning better ways to express hardware designs in Chisel. The control logic and the vector
memory unit were mostly rewritten in a cleaner way. The vector memory unit interfaced with the
L2 cache directly rather than the L1 data cache.

Current version of Hwacha
This thesis documents the fourth version of the Hwacha vector-fetch architecture. The assembly
programming model has changed to put all vector instructions into the vector-fetch block. This ver-
sion supports full predication on all vector instructions and consensual branches. The RTL for the
entire machine has been rewritten from scratch in Chisel. The vector lane has been rearchitected
to use four 128-bit SRAM macros as opposed to eight 64-bit macros that were used in the previ-
ous versions to double the functional-unit throughput. Reduction operations, and variable latency
operations such as floating-point divide and square root, integer divide and remainder operations
are also supported in hardware.

76

Chapter 7

Hwacha Instruction Set Architecture

This chapter introduces the Hwacha instruction set architecture (ISA), developed as a non-standard
extension to the free and open RISC-V ISA [131, 132, 130, 129]. The Hwacha ISA is a vector load-
store architecture; to perform a compute operation, operands must be read and written to registers.
The Hwacha ISA defines instructions for the control thread and the worker thread. The control
thread is mapped to the control processor and is responsible for configuring the Hwacha vector
unit, kicking off work to the Hwacha vector unit, and interacting with the operating system. The
control thread instructions are 32 bits in length and are a greenfield extension in the CUSTOM
major opcode space (i.e., overlaid on top of normal RISC-V instructions). The worker thread is
mapped to the Hwacha vector unit and consists of vector, vector-scalar, and scalar instructions
that carry out the actual data-parallel computation. The worker thread instructions are 64 bits in
length and respect the variable-length RISC-V encoding. Section 7.1 and 7.2 lists the Hwacha
instructions for the control thread and worker thread, respectively. Section 7.3 outlines future
research directions.

7.1 Control Thread Instructions
There are three types of Hwacha control thread instructions—vector configuration, vector move,
and vector-fetch instructions. Vector configuration instructions configure the Hwacha vector unit,
vector move instructions transfer scalar values from the control thread to the worker thread, and
the vector-fetch instruction kicks off a sequence of worker thread instructions. Control thread
instructions follow the standard RoCC (Rocket Custom Coprocessor) instruction format shown in
Figure 7.1.

31 25 24 20 19 15 14 13 12 11 7 6 0

funct7 rs2 rs1 xd xs1 xs2 rd opcode
7 5 5 1 1 1 5 7

roccinst[6:0] src2 src1 dest custom-0/1/2/3

Figure 7.1: RoCC Instruction Format – The Hwacha control thread instruction format follows
the standard RoCC instruction format.

CHAPTER 7. HWACHA INSTRUCTION SET ARCHITECTURE 77

Instruction Opcode Meaning

vsetcfg rs1, imm[11:0] custom-0 Set maximum hardware vector length
vsetvl rd, rs1 custom-0 Set hardware vector length
vgetcfg rd custom-0 Get vector unit configuration
vgetvl rd custom-0 Get hardware vector length
vuncfg custom-0 Unconfigure vector unit

vmcs srd, rs1 custom-1 Move value to vector shared register (vs0–63)
vmca ard, rs1 custom-1 Move value to vector address register (va0–31)

vf rs1, imm[11:0] custom-1 Execute a block of worker thread instructions

Table 7.1: Listing of Hwacha Control Thread Instructions – The instructions are organized into
3 groups starting from the top: vector configuration instructions, vector move instructions, and the
vector-fetch instruction.

Table 7.1 summarizes the instruction format, opcode, and the meaning of vector configuration
instructions, vector move instructions, and the vector-fetch instruction. We omit the encoding de-
tails for the control thread instructions in this thesis for brevity; the actual control thread instruction
encodings can be found in the Hwacha vector-fetch architecture manual [77].

Vector Configuration Instructions
VSETCFG configures the vector unit with a 64 bit constant built with the top 52 bits of the source
register rs1 combined with the 12 bit immediate value at the lowest 12 bits. The 64 bit configuration
register vcfg layout is shown in Figure 7.2.

The assembler will take VSETCFG #v64, #pred2:0, or VSETCFG #v64, #pred, #v32, #v16,
which will also generate sequence of instructions to build the corresponding 64 bit configuration
object. #v64 and #pred denotes the number of 64-bit vector and predicate registers used in the
program, respectively. For further optimization, the number of 32-, 16-bit vector registers may be
specified in the #v32, and #v16 fields, respectively. These values can range from 0 to 256 for the
number of vector data (vv) registers and 0 to 16 for the number of vector predicate (vp) registers.
Once the vector unit is reconfigured, the maximum hardware vector length may be adjusted, and the
vector length register is reset to 0. VSETVL sets the vector length register by taking the minimum

63 32 31 23 22 14 13 9 8 0

0 #v16 #v32 #pred #v64
32 9 9 5 9

Figure 7.2: Layout of the vcfg Configuration Register – #v64, #v32, #v16, and #pred fields
denote the number of 64-, 32-, and 16-bit vector data registers (vv0–255) and vector predicate
registers (vp0–15), respectively.

CHAPTER 7. HWACHA INSTRUCTION SET ARCHITECTURE 78

of the requested vector length in register rs1 and the maximum hardware vector length, and writes
the set vector length to register rd.

VGETCFG writes the content of the vector configuration register (vcfg) to register rd. Simi-
larly, VGETVL writes the content of the vector length register (vlen) to register rd.

VUNCFG clears the vector configuration register and sets the vector unit as unused. The
vector unit must be configured before any subsequent vector instructions are issued. The vector
unit begins operation in this unconfigured state. If the machine has not been configured since reset
or the most recent VUNCFG, then any RoCC control thread instruction other than VSETCFG will
trigger an accelerator disabled exception.

Vector Move Instructions
VMCS (Vector Move Control to Scalar) moves the value in register rs1 to vector shared (vs)
register srd. VMCA (Vector Move Control to Address) moves the value in register rs1 to vector
address (va) register ard.

Vector Fetch Instruction
The VF instruction executes a block of worker thread instructions in a vector-fetch block that
resides at the target address (vpc), which is obtained by adding the 12-bit signed immediate to
register rs1. The vector-fetch block contains vector instructions, vector-scalar instructions, and
scalar instructions that operate on vector data (vv) registers, vector predicate (vp) registers, vector
shared (vs) registers, and vector address (va) registers. The worker thread instructions are listed
in the next section.

7.2 Worker Thread Instructions
The worker thread instructions are grouped into vector-fetch blocks. The first instruction of a
vector-fetch block is pointed to by a vector-fetch instruction, which lives in the control thread’s
instruction stream.

Figure 7.3 depicts the four core instruction formats (VJ/VU/VI/VR) for the Hwacha worker
thread instructions. The VR4 format extends the VR format with a third register specifier rs3 for
floating-point fused-multiply-add instructions. All worker thread instructions are 64 bits in length
and must be aligned on a eight-byte boundary in memory. An instruction address misaligned
exception is generated if the vpc is not eight-byte aligned on an instruction fetch. Following the
RISC-V instruction format, the source register specifiers (rs1 and rs2), destination register specifier
(rd), and the predicate register specifier (p) are kept at the same position for all instruction formats
to simplify decoding. Immediates are left aligned.

When the d flag (bit 63) is set, register rd is interpreted as a vector data register (vd). When it is
cleared, register rd is interpreted as a vector shared register (sd). Similarly, the 1 flag (bit 62), the 2
flag (bit 61), and the 3 flag (bit 60) indicates whether rs1, rs2, and rs3 refers to vector data register

CHAPTER 7. HWACHA INSTRUCTION SET ARCHITECTURE 79

63 62 61 60 59 53 52 50 49 48 41 40 35 34 33 32 31 24 23 16 15 12 11 0

imm[31:3] c2 n rs1 rd p opcode VJ-type

imm[31:0] funct8 rd funct4 opcode VU-type

imm[31:0] rs1 rd funct4 opcode VI-type

d 1 2 f funct7 funct3 funct9 rs2 n rs1 rd p opcode VR-type

d 1 2 3 funct7 funct3 f rs3 rs2 n rs1 rd p opcode VR4-type

Figure 7.3: Hwacha Worker Thread Instruction Formats – There are four core instruction
formats for the 64-bit Hwacha worker thread instructions, with the VR4 format extending the VR
format with a third register specifier rs3.

inst[9:7] 000 001 010 011 100 101 110 111
inst[11:10]

00 LOAD LOAD-FP custom-0 MISC-MEM OP-IMM AUIPC OP-IMM-32 reserved
01 STORE STORE-FP custom-1 AMO OP LUI OP-32 reserved
10 MADD MSUB NMSUB NMADD OP-FP custom-5 custom-2/rv128 reserved
11 CTRL JALR custom-4 JAL SYSTEM custom-6 custom-3/rv128 reserved

Table 7.2: Hwacha Worker Thread Instruction Opcode Map – Hwacha worker thread instruc-
tions are 64 bits in length and respects the variable-length RISC-V encoding (inst[6:0]=0111111).

specifiers (vs1, vs2, and vs3) or vector shared register specifiers (ss1, ss2, and ss3) respectively.
Certain instructions index vector address registers instead, in which case use as1 and as2 register
specifiers. Note, the ad register specifier should never show up in worker thread instructions, since
the vector address registers cannot be written by the worker thread.

An instruction with all source and destination operands marked as vector shared registers is
considered a scalar instruction (with a @s prefix in the assembly), and therefore does not need
to execute in vector fashion. An instruction with any operand marked as a vector data register is
considered a vector instruction, and will execute for vlen elements. The vlen register is set by
the VSETVL control thread instruction or cleared by the VSETCFG control thread instruction.
The p field (bits 12–15) designates a predicate register that masks the vector instruction. The n
flag (bit 32) negates the condition of the appointed predicate. Instructions that are not masked on
a predicate are given the @all prefix in assembly.

Table 7.2 shows the major opcode allocation for the worker thread instructions. Major opcodes
are given 12 bits, however, the lower 7 bits are fixed to 0111111 to respect the RISC-V variable-
length encoding for 64 bit instructions. This leaves 5 bits or 32 major opcodes to use. The worker
thread instructions consume 21 of these 32 major opcodes, and roughly follow the RISC-V major
opcode allocation. We also omit the encoding details for the worker thread instructions in this

CHAPTER 7. HWACHA INSTRUCTION SET ARCHITECTURE 80

thesis for brevity; the actual worker thread instruction encodings can be found in the Hwacha
vector-fetch architecture manual [77].

Vector Unit-Strided, Constant-Strided Memory Instructions
Vector unit-strided and constant-strided load and store instructions transfer values between vector
data (vv) registers and memory. Unit-strided vector memory instructions transfer vectors whose
elements are held in contiguous locations in memory. Constant-strided vector memory instructions
transfer vectors whose elements are held in memory addresses that form an arithmetic progression.
Table 7.3 lists all vector unit-strided and constant-strided memory instructions.

Instruction Format Meaning

@[!]p vlb vd, as1 VR Vector unit-strided load byte, signed
@[!]p vlbu vd, as1 VR Vector unit-strided load byte, unsigned
@[!]p vlh vd, as1 VR Vector unit-strided load half-word, signed
@[!]p vlhu vd, as1 VR Vector unit-strided load half-word, unsigned
@[!]p vlw vd, as1 VR Vector unit-strided load word, signed
@[!]p vlwu vd, as1 VR Vector unit-strided load word, unsigned
@[!]p vld vd, as1 VR Vector unit-strided load double-word

@[!]p vsb vd, as1 VR Vector unit-strided store byte
@[!]p vsh vd, as1 VR Vector unit-strided store half-word
@[!]p vsw vd, as1 VR Vector unit-strided store word
@[!]p vsd vd, as1 VR Vector unit-strided store double-word

@[!]p vlstb vd, as1, as2 VR Vector constant-strided load byte, signed
@[!]p vlstbu vd, as1, as2 VR Vector constant-strided load byte, unsigned
@[!]p vlsth vd, as1, as2 VR Vector constant-strided load half-word, signed
@[!]p vlsthu vd, as1, as2 VR Vector constant-strided load half-word, unsigned
@[!]p vlstw vd, as1, as2 VR Vector constant-strided load word, signed
@[!]p vlstwu vd, as1, as2 VR Vector constant-strided load word, unsigned
@[!]p vlstd vd, as1, as2 VR Vector constant-strided load double-word

@[!]p vsstb vd, as1, as2 VR Vector constant-strided store byte
@[!]p vssth vd, as1, as2 VR Vector constant-strided store half-word
@[!]p vsstw vd, as1, as2 VR Vector constant-strided store word
@[!]p vsstd vd, as1, as2 VR Vector constant-strided store double-word

Table 7.3: Listing of Vector Unit-Strided, Constant-Strided Memory Instructions – The base
address is stored in vector address register as1 and the constant stride is stored in vector address
register as2. Vector load instructions copy values from memory into vector data register vd, while
vector store instructions copy values in vector data registers vd to memory.

CHAPTER 7. HWACHA INSTRUCTION SET ARCHITECTURE 81

The vector predicate register p in conjunction with the n flag masks the vector memory instruc-
tion. Vector load instructions copy a vector of values from memory to vector register vd. Vector
store instructions copy a vector of values in vector register vd to memory. The base address for
the memory transfer is taken from vector address register as1. Vector address register as2 holds
the stride for the constant-stride vector memory operations. Following the RISC-V ISA, the vector
memory instructions support four data widths (byte, half-word, word, and double-word) and two
flavors of load instructions: one that sign-extends the load results and the other that zero-extends
the load results.

Vector Indexed Memory Instructions
Vector indexed load and store instructions transfer vectors whose elements are located at offsets
from a base address, with the offsets specified by the values of an index vector. The effective ad-
dress of each element is the base address plus the offset register. These instructions are traditionally
known as vector gathers and scatters. Table 7.4 lists all vector indexed memory instructions.

The base address for the indexed memory operation is taken from vector shared register ss1,
while the offset from the base address is taken from vector data register vs2. The vector indexed
memory operations are masked with vector predicate register p and the n flag, and support four
data widths and two types of sign-extension for loads (same as strided vector memory operations).

Instruction Format Meaning

@[!]p vlxb vd, ss1, vs2 VR Vector indexed load byte, signed
@[!]p vlxbu vd, ss1, vs2 VR Vector indexed load byte, unsigned
@[!]p vlxh vd, ss1, vs2 VR Vector indexed load half-word, signed
@[!]p vlxhu vd, ss1, vs2 VR Vector indexed load half-word, unsigned
@[!]p vlxw vd, ss1, vs2 VR Vector indexed load word, signed
@[!]p vlxwu vd, ss1, vs2 VR Vector indexed load word, unsigned
@[!]p vlxd vd, ss1, vs2 VR Vector indexed load double-word

@[!]p vsxb vd, ss1, vs2 VR Vector indexed store byte
@[!]p vsxh vd, ss1, vs2 VR Vector indexed store half-word
@[!]p vsxw vd, ss1, vs2 VR Vector indexed store word
@[!]p vsxd vd, ss1, vs2 VR Vector indexed store double-word

Table 7.4: Listing of Vector Indexed Memory Instructions – The base address is stored in
vector shared register ss1 and the offset from the base address is stored in vector data register vs2.
Vector load instructions copy values from memory into vector data register vd, while vector store
instructions copy values in vector data registers vd to memory.

CHAPTER 7. HWACHA INSTRUCTION SET ARCHITECTURE 82

Vector Atomic Memory Instructions
Vector atomic memory operation (AMO) instructions perform a vector of read-modify-write oper-
ations. Table 7.5 lists all vector AMO instructions.

Similar to AMO operations defined by the RISC-V ISA, the vector AMO instructions atomi-
cally load data values from addresses in register rs1, place the value into vector data register vd,
apply the binary operator to loaded values and values in register rs2, then store the result back
to addresses in register rs1. Both register specifiers rs1 and rs2 refer to vector data registers vs1
and vs2 or vector shared registers ss1 and ss2 depending on whether the 1 flag and the 2 flag are
set, respectively. When ss1 is used for the address, the AMO operation is preformed vlen times
on the same address. Similarly, when ss2 is used for the AMO operand, the AMO operation is
performed vlen times with the same data. The result is always stored in vector data register vd.
The vector AMO instruction is masked with vector predicate register p and the n flag.

Following the RISC-V ISA, instructions with the w suffix operate on words, while instructions
with the d suffix operate on double-words. The supported AMO operations are swap, integer add,
logical AND, logical OR, logical XOR, and signed and unsigned integer minimum and maximum.
The vector AMO instructions optionally provide release consistency semantics at the vector in-
struction granularity with the aq bit and the rl bit. The “A” standard extension chapter of the
RISC-V user-level ISA specification [131] has more details on the release consistency semantics.

Instruction Format Meaning

@[!]p vamoswap.{w|d} vd, (rs1), rs2 VR Vector atomic swap
@[!]p vamoadd.{w|d} vd, (rs1), rs2 VR Vector atomic addition
@[!]p vamoand.{w|d} vd, (rs1), rs2 VR Vector atomic bitwise AND
@[!]p vamoor.{w|d} vd, (rs1), rs2 VR Vector atomic bitwise OR
@[!]p vamoxor.{w|d} vd, (rs1), rs2 VR Vector atomic bitwise XOR
@[!]p vamomin.{w|d} vd, (rs1), rs2 VR Vector atomic 2’s comp. minimum
@[!]p vamomax.{w|d} vd, (rs1), rs2 VR Vector atomic 2’s comp. maximum
@[!]p vamominu.{w|d} vd, (rs1), rs2 VR Vector atomic unsigned minimum
@[!]p vamomaxu.{w|d} vd, (rs1), rs2 VR Vector atomic unsigned maximum

Table 7.5: Listing of Vector Atomic Memory Instructions – The address is stored in register rs1
(vector data register vs1 or vector shared register ss1) and the value sent to the memory is stored
in register rs2 (vs2 or ss2). The result of the atomic memory operation (AMO) is stored in vector
data register vd.

Vector Integer Compute Instructions
Vector integer compute instructions take two input operands and produce one output operand.
Table 7.6 lists all vector integer compute instructions. The vector integer compute instructions are
vector versions of RV64IM instructions, therefore follow the same RISC-V instruction semantics.

CHAPTER 7. HWACHA INSTRUCTION SET ARCHITECTURE 83

Instruction Format Meaning

@[!]p veidx vd, rs1 VR Vector return element index
@[!]p vadd rd, rs1, rs2 VR Vector add registers
@[!]p vsub rd, rs1, rs2 VR Vector subtract registers
@[!]p vsll rd, rs1, rs2 VR Vector shift left logical by register
@[!]p vsrl rd, rs1, rs2 VR Vector shift right logical by register
@[!]p vsra rd, rs1, rs2 VR Vector shift right arithmetic by register
@[!]p vand rd, rs1, rs2 VR Vector bitwise AND by register
@[!]p vor rd, rs1, rs2 VR Vector bitwise OR by register
@[!]p vxor rd, rs1, rs2 VR Vector bitwise XOR by register
@[!]p vslt rd, rs1, rs2 VR Vector set if less than, 2’s comp
@[!]p vsltu rd, rs1, rs2 VR Vector set if less than, unsigned
@[!]p vmul rd, rs1, rs2 VR Vector multiply, return lower bits
@[!]p vmulh rd, rs1, rs2 VR Vector multiply signed, return upper bits
@[!]p vmulhu rd, rs1, rs2 VR Vector multiply unsigned, return upper bits
@[!]p vmulhsu rd, rs1, rs2 VR Vector multiply signed-unsigned, return upper bits
@[!]p vdiv rd, rs1, rs2 VR Vector signed division
@[!]p vdivu rd, rs1, rs2 VR Vector unsigned division
@[!]p vrem rd, rs1, rs2 VR Vector signed remainder
@[!]p vremu rd, rs1, rs2 VR Vector unsigned remainder

@[!]p vaddw rd, rs1, rs2 VR Vector add registers, 32-bit
@[!]p vsubw rd, rs1, rs2 VR Vector subtract registers, 32-bit
@[!]p vsllw rd, rs1, rs2 VR Vector shift left logical by registers, 32-bit
@[!]p vsrlw rd, rs1, rs2 VR Vector shift right logical by registers, 32-bit
@[!]p vsraw rd, rs1, rs2 VR Vector shift right arithmetic by registers, 32-bit
@[!]p vmulw rd, rs1, rs2 VR Vector multiply, 32-bit
@[!]p vdivw rd, rs1, rs2 VR Vector signed division, 32-bit
@[!]p vdivuw rd, rs1, rs2 VR Vector unsigned division, 32-bit
@[!]p vremw rd, rs1, rs2 VR Vector signed remainder, 32-bit
@[!]p vremuw rd, rs1, rs2 VR Vector unsigned remainder, 32-bit

Table 7.6: Listing of Vector Integer Compute Instructions – These instructions carry out the
integer computation by taking one or two input operands from register rs1 (vector data register vs1
or vector shared register ss1) and register rs2 (vs2 or ss2), and storing the result in register rd (vd
or sd).

CHAPTER 7. HWACHA INSTRUCTION SET ARCHITECTURE 84

The only exception is the vector element index instruction (veidx), which takes one input operand
and returns the element index left shifted by the value from the second input operand.

The vector predicate register p in conjunction with the n flag masks the vector instruction. Flags
d, 1, and 2 indicate whether registers rd, rs1, and rs2 should be taken from vector data (vv) registers
(if set) or vector shared (vs) registers (if cleared). When all source and destination operands are
marked to use vector shared registers, the instruction is decoded as a scalar instruction. For this
case, the p register should be set to zero and the n field should be cleared, otherwise, an illegal
instruction exception will be raised.

Vector Reduction Instructions
Vector reduction instructions perform a reduction operation on the vector input operand and pro-
duce one scalar output operand. Table 7.7 lists the only vector reduction operation that is defined.

The vector first instruction (vfirst) finds the first value of vector data register vs1 that is
not masked off under vector predicate p (negated if flag n is set) and writes the result in vector
shared register sd. If the predicate register is entirely empty, the result of the reduction is zero.
This instruction can be used in conjunction with a vector compare instruction to iterate through all
distinct values in a vector data register.

Instruction Format Meaning

@[!]p vfirst sd, vs1 VR Vector return first active element

Table 7.7: Listing of Vector Reduction Instructions – The VFIRST instruction returns the value
of the first active element of vector predicate mask p. Returns zero when no elements are active.

Vector Floating-Point Compute Instructions
Vector floating-point compute instructions take one, two, or three input operands and produce
one output operand. Table 7.8 and 7.9 list all vector floating-point compute instructions. These
instructions use either the VR-type format or the VR4-type format depending on the number of
input operands. The vector floating-point compute instructions are vector versions of RV64FD
instructions, therefore follow the same RISC-V instruction semantics. On top of the single- and
double-precision vector floating-point operations, half-precision versions of the vector floating-
point compute instructions are also available. Since the integer and floating-point values are stored
in the same vector data (vv) registers, vector versions of the fmv instructions, which move values
between RISC-V x registers and RISC-V f registers, are omitted.

Similar to vector integer compute instructions, flags d, 1, 2, and 3 indicate whether operands
should be taken from vector data (vv) registers or vector shared (vs) registers. The instruction is
decoded as a scalar instruction when all input and output operands are marked to use vector shared
registers. Otherwise, the instruction is decoded as a vector instruction, and is masked under vector
predicate register p and the n flag.

CHAPTER 7. HWACHA INSTRUCTION SET ARCHITECTURE 85

Instruction Format Meaning

@[!]p vfadd.{d|s|h} rd, rs1, rs2 VR Vector FP add registers
@[!]p vfsub.{d|s|h} rd, rs1, rs2 VR Vector FP subtract registers
@[!]p vfmul.{d|s|h} rd, rs1, rs2 VR Vector FP multiply registers
@[!]p vfdiv.{d|s|h} rd, rs1, rs2 VR Vector FP divide registers
@[!]p vfsqrt.{d|s|h} rd, rs1 VR Vector FP square root

@[!]p vfmadd.{d|s|h} rd, rs1, rs2, rs3 VR4 Vector FP rs1×rs2+rs3
@[!]p vfmadd.{d|s|h} rd, rs1, rs2, rs3 VR4 Vector FP rs1×rs2+rs3
@[!]p vfnmsub.{d|s|h} rd, rs1, rs2, rs3 VR4 Vector FP −(rs1×rs2−rs3)
@[!]p vfnmsub.{d|s|h} rd, rs1, rs2, rs3 VR4 Vector FP −(rs1×rs2−rs3)

@[!]p vfsgnj.{d|s|h} rd, rs1, rs2 VR Vector FP inject sign
@[!]p vfsgnjn.{d|s|h} rd, rs1, rs2 VR Vector FP inject comp of sign
@[!]p vfsgnjx.{d|s|h} rd, rs1, rs2 VR Vector FP multiply signs

@[!]p vfmin.{d|s|h} rd, rs1, rs2 VR Vector FP select minimum
@[!]p vfmax.{d|s|h} rd, rs1, rs2 VR Vector FP select maximum

@[!]p vfclass.{d|s|h} rd, rs1 VR Vector FP classify value

Table 7.8: Listing of Vector Floating-Point Compute Instructions – These instructions carry
out the floating-point computation by taking one, two, or three input operands from register rs1
(vector data register vs1 or vector shared register ss1), register rs2 (vs2 or ss2), register rs3 (vs3
or ss3), and storing the result in register rd (vd or sd). Optionally, a static rounding mode can be
specified as the last operand of the instruction.

Instruction Format Meaning

@[!]p vfcvt.d.{s|h} rd, rs1 VR Vector FP convert to double
@[!]p vfcvt.s.{d|h} rd, rs1 VR Vector FP convert to single
@[!]p vfcvt.h.{d|s} rd, rs1 VR Vector FP convert to half

@[!]p vfcvt.w[u].{d|s|h} rd, rs1 VR Vector FP convert to [un]signed 32-bit int
@[!]p vfcvt.{d|s|h}.w[u] rd, rs1 VR Vector FP convert from [un]signed 32-bit int
@[!]p vfcvt.l[u].{d|s|h} rd, rs1 VR Vector FP convert to [un]signed 64-bit int
@[!]p vfcvt.{d|s|h}.l[u] rd, rs1 VR Vector FP convert from [un]signed 64-bit int

Table 7.9: Listing of Vector Floating-Point Convert Instructions – These instructions carry out
floating-point conversion by taking the input operand from register rs1 (vector data register vs1
or vector shared register ss1), and storing the result in register rd (vd or sd). Optionally, a static
rounding mode can be specified as the last operand of the instruction.

CHAPTER 7. HWACHA INSTRUCTION SET ARCHITECTURE 86

The rounding mode is either defined statically as part of the worker thread instruction, or con-
trolled by the dynamic rounding mode held in the frm register. The dynamic rounding mode of
the worker thread is inherited from the dynamic rounding mode of the control thread at vector-
fetch issuance. Floating point exceptions generated by the worker thread are accrued in the control
thread’s fflags register. Once the control thread reads this register it sees the accrued exceptions
in program order. The worker thread is unable to read and write the dynamic rounding mode and
the exception flags.

Vector Compare Instructions
Vector compare instructions compare two registers and store the resulting flag into a predicate
register. Table 7.10 lists all vector compare instructions.

The vector compare instruction is masked under vector predicate register p and the n flag, takes
two input operands from either vector data registers (vs1 and vs2) or vector shared registers (ss1,
and stores the result in vector predicate register pd.

The supported integer comparisons are set if equal, less than, less than unsigned. Instructions
that produce opposite results are omitted, as all vector instructions can take the negated predicate
condition as an input by setting the n flag. In addition to integer comparisons, a set of floating-
point comparisons (if equal, less than, and less than or equal) are supported in different precisions.
The vector floating-point comparison instructions are vector versions of RISC-V floating-point
comparison instructions, therefore follow the same RISC-V instruction semantics.

Instruction Format Meaning

@[!]p vcmpeq pd, rs1, rs2 VR Vector set if equal
@[!]p vcmplt pd, rs1, rs2 VR Vector set if less than, 2’s comp
@[!]p vcmpltu pd, rs1, rs2 VR Vector set if less than, unsigned

@[!]p vcmpfeq.{d|s|h} pd, rs1, rs2 VR Vector FP set if equal
@[!]p vcmpflt.{d|s|h} pd, rs1, rs2 VR Vector FP set if less than
@[!]p vcmpfle.{d|s|h} pd, rs1, rs2 VR Vector FP set if less than or equal

Table 7.10: Listing of Vector Compare Instructions – These instructions compare two values in
register rs1 (vector data register vs1 or vector shared register ss1) and register rs2 (vs2 or ss2), and
store the result in vector predicate register pd.

Vector Predicate Memory Instructions
Vector predicate memory instructions spill and refill contents of the predicate register to and from
memory. Table 7.11 lists all vector predicate memory instructions.

These instructions are not predicated, meaning that they always execute under a full mask.
The vector predicate load instruction restores the predicate mask from memory, while the store
instruction spills the content of the predicate mask to memory. VPS stores out each predicate as a

CHAPTER 7. HWACHA INSTRUCTION SET ARCHITECTURE 87

sign-extended byte, while VPL loads each predicate from the least significant bit of every byte. In
both cases, the base address for the memory transfers are taken from vector address register as1.

Instruction Format Meaning

@all vpl pd, as1 VR Vector load predicate

@all vps pd, as1 VR Vector store predicate

Table 7.11: Listing of Vector Predicate Memory Instructions – Each predicate interfaces with
a byte of memory.

Vector Predicate Compute Instructions
Vector predicate compute instructions perform a logic operation on three input predicates and
produce an output predicate. Table 7.12 lists all vector predicate compute instructions.

Following the vector predicate memory instructions, vector predicate compute instructions al-
ways execute under a full mask (note the @all prefix). The VPOP instruction takes an 8 entry truth
table that serves as a lookup table for a three-input logic function to build arbitrary logic functions.
A handful of well-known logic operations are defined as pseudo instructions in the assembler.

Instruction Format Meaning

@all vpop pd, ps1, ps2, ps3, tt VR Vector predicate operation

@all vpclear pd VR pd = false
@all vpset pd VR pd = true
@all vpxorxor pd, ps1, ps2, ps3 VR pd = (ps1 ˆ ps2) ˆ ps3
@all vpxoror pd, ps1, ps2, ps3 VR pd = (ps1 ˆ ps2) | ps3
@all vpxorand pd, ps1, ps2, ps3 VR pd = (ps1 ˆ ps2) & ps3
@all vporxor pd, ps1, ps2, ps3 VR pd = (ps1 | ps2) ˆ ps3
@all vporor pd, ps1, ps2, ps3 VR pd = (ps1 | ps2) | ps3
@all vporand pd, ps1, ps2, ps3 VR pd = (ps1 | ps2) & ps3
@all vpandxor pd, ps1, ps2, ps3 VR pd = (ps1 & ps2) ˆ ps3
@all vpandor pd, ps1, ps2, ps3 VR pd = (ps1 & ps2) | ps3
@all vpandand pd, ps1, ps2, ps3 VR pd = (ps1 & ps2) & ps3

Table 7.12: Listing of Vector Predicate Compute Instructions – The generic vpop instruction
takes an 8 entry truth table (tt) that serves as a lookup table for a three-input logic function. The
instructions that are listed below are pseudo instructions with the truth table set up to implement
the given logic function.

CHAPTER 7. HWACHA INSTRUCTION SET ARCHITECTURE 88

Scalar Memory Instructions
Scalar memory instructions transfer values between vector shared (vs) registers and memory. Ta-
ble 7.13 lists all scalar memory instructions.

Scalar load instructions copy the value from memory to vector shared register sd. Scalar store
instructions copy the value in vector shared register ss2 to memory. The effective address is ob-
tained from either address register as1 or shared register ss1 depending on the instruction type.
Scalar memory instructions support four data widths and two types of sign-extensions for load
operations (same as vector memory operations).

Instruction Format Meaning

@s vlab sd, as1 VR Scalar load byte from, signed, addr
@s vlabu sd, as1 VR Scalar load byte from, unsigned, addr
@s vlah sd, as1 VR Scalar load half-word from, signed, addr
@s vlahu sd, as1 VR Scalar load half-word from, unsigned, addr
@s vlaw sd, as1 VR Scalar load word from, signed, addr
@s vlawu sd, as1 VR Scalar load word from, unsigned, addr
@s vlad sd, as1 VR Scalar load double-word from, signed, addr

@s vsab as1, ss2 VR Scalar store byte from, addr
@s vsah as1, ss2 VR Scalar store half-word from, addr
@s vsaw as1, ss2 VR Scalar store word from, addr
@s vsad as1, ss2 VR Scalar store double-word from, addr

@s vlsb sd, ss1 VR Scalar load byte from, signed, shared
@s vlsbu sd, ss1 VR Scalar load byte from, unsigned, shared
@s vlsh sd, ss1 VR Scalar load half-word from, signed, shared
@s vlshu sd, ss1 VR Scalar load half-word from, unsigned, shared
@s vlsw sd, ss1 VR Scalar load word from, signed, shared
@s vlswu sd, ss1 VR Scalar load word from, unsigned, shared
@s vlsd sd, ss1 VR Scalar load double-word from, signed, shared

@s vssb ss1, ss2 VR Scalar store byte from, shared
@s vssh ss1, ss2 VR Scalar store half-word from, shared
@s vssw ss1, ss2 VR Scalar store word from, shared
@s vssd ss1, ss2 VR Scalar store double-word from, shared

Table 7.13: Listing of Scalar Memory Instructions – There are two types of scalar memory
instructions: one that gets the address from vector address register as1, the other that gets the
address from vector shared register ss1.

CHAPTER 7. HWACHA INSTRUCTION SET ARCHITECTURE 89

Scalar Compute Instructions
In addition to scalar compute instructions with all register operands marked to use vector shared
(vs) registers, we also define scalar compute instructions that take immediate operands using the
VI-type format and the VU-type format. Table 7.14 lists all scalar compute instructions that take a
32 bit immediate operand.

Following the RISC-V ISA, VADDI, VSLTI, VANDI, VORI, VXORI, VSLTI, and VSLTIU
instructions operate on the sign-extended 32-bit immediate and the value stored in vector shared
register ss1, and writes the result vector shared register sd. We follow the same RISC-V instruction
semantics, and ignore the arithmetic overflow and simply take the low 64 bits of the result. The
same holds for VSLLI, VSLRI, and VSRAI operations. The 6-bit shamt value is held in the lower
bits of the 32-bit immediate. Instructions that produce a 32 bit result (denoted with the w suffix)
sign-extends the 32 bit result to 64 bits.

The VLUI instruction loads the 32-bit immediate into the upper 32 bits of vector shared register
sd and fills the lower 32 bits with all zeros. A sequence of VLUI and VADDI can be used to
generate a 64 bit constant, for both integer and floating-point values. The VAUIPC instruction
forms a 64 bit constant by shifting the 32 bit immediate to the upper 32 bits, filling in the lower
32 bits with zeros, and then adding the current vpc to this value. The resulting 64 bit constant is
written to vector shared register sd.

Instruction Format Meaning

@s vaddi sd, ss1, imm[31:0] VI Add imm
@s vslli sd, ss1, shamt[5:0] VI Shift left logical by imm
@s vsrli sd, ss1, shamt[5:0] VI Shift right logical by imm
@s vsrai sd, ss1, shamt[5:0] VI Shift right arithmetic by imm
@s vandi sd, ss1, imm[31:0] VI Bitwise AND by imm
@s vori sd, ss1, imm[31:0] VI Bitwise OR by imm
@s vxori sd, ss1, imm[31:0] VI Bitwise XOR imm
@s vslti sd, ss1, imm[31:0] VI Set if less than imm, 2’s comp
@s vsltiu sd, ss1, imm[31:0] VI Set if less than imm, unsigned
@s vaddiw sd, ss1, imm[31:0] VI Add imm, 32-bit
@s vslliw sd, ss1, shamt[4:0] VI Shift left logical by imm, 32-bit
@s vsrliw sd, ss1, shamt[4:0] VI Shift right logical by imm, 32-bit
@s vsraiw sd, ss1, shamt[4:0] VI Shift right arithmetic by imm, 32-bit

@s vlui sd, imm[31:0] VU Load upper imm
@s vauipc sd, imm[31:0] VU Add upper imm to vpc

Table 7.14: Listing of Scalar Compute Instructions – These scalar compute instructions with
immediate operands complement the scalar compute instructions with all register operands marked
to use vector shared (vs) registers.

CHAPTER 7. HWACHA INSTRUCTION SET ARCHITECTURE 90

Control Flow Instructions
There are three types of control flow instructions—stop, fence, and consensual jumps. Table 7.15
lists all control flow instructions.

The VSTOP instruction halts the execution of the current vector-fetch block. The VFENCE
instruction orders all memory accesses before and after the fence instruction so that all threads
observe any memory operation preceding the fence before they observe any memory operation
following the fence.

The vector consensual jump and link (VCJAL) instruction and the vector consensual jump and
link register (VCJALR) instruction both use the VJ-type format with a 29-bit immediate, which
encodes a signed offset in multiple of 8 bytes. When the consensual condition is met (ALL bits
in vector predicate register p are set, or ANY bit in vector predicate register p is set), the VC-
JAL instruction stores the address of the instruction following the jump (vpc+8) in vector shared
register sd, and jumps to the target address, which is computed by adding the sign-extended imme-
diate to vpc. The indirect consensual jump instruction VCJALR calculates the target address by
adding the sign-extended immediate to vector shared register ss1, then setting the lowest three bits
of the result to zero. Similar to VCJAL, when the consensual condition is met, the address of the
instruction following the jump is stored into vector shared register sd, and the jump is taken.

Instruction Format Meaning

@all vstop VJ Halt vector-fetch block

@all vfence VJ Memory ordering fence

@[!]p vcjal.{all|any} sd, imm[31:3] VJ Jump and link
@[!]p vcjalr.{all|any} sd, ss1, imm[31:3] VJ Jump and link register

Table 7.15: Listing of Control Flow Instructions – Consensual branch instructions jump to the
target address computed by adding the sign-extended immediate value to either the current vpc or
address in vector shared register ss1, and writes vpc+8 into vector shared register sd.

Exceptions
The worker thread can generate two types of exceptions—misaligned exceptions and illegal in-
struction exceptions. If the address of a load or store is not aligned with its data width, a mis-
aligned load or store exception will be generated, respectively. If the worker thread instructions
are not aligned to an 8 byte boundary, an instruction misaligned exception will be generated.

Illegal instruction exceptions are generated for several reasons. If an instruction is marked to
use a vector shared register for its destination register while any of its source registers refer to
vector data registers, an illegal instruction exception will be generated. When a vector data register
is configured with a precision that is smaller than the specified precision of the instruction, an
illegal instruction will be generated. If an instruction attempts to reference a vector register (data

CHAPTER 7. HWACHA INSTRUCTION SET ARCHITECTURE 91

or predicate) that is out of range with respect to the vector register set currently configured by
VSETCFG, an illegal instruction exception will be generated.

7.3 Future Research Directions
This section briefly describes some possible directions for future improvements with respect to the
Hwacha instruction set architecture.

Polymorphic Instruction Set. The current practice is to assign a distinct opcode for each sup-
ported data type, as is the convention in general-purpose ISAs. For example, there are separate
instructions VFMADD.D, VFMADD.S, and VFMADD.H to denote double-, single-, and half-
precision fused multiply-adds, respectively. For a polymorphic instruction set, the input and out-
put precisions of an operation would instead be determined by the source and destination register
specifiers in conjunction with the register width configuration from vcfg. Orthogonality in the
instruction set could therefore be achieved without excessive consumption of opcode space or en-
coding complexity. However, these advantages must be weighed against the vector registers losing
the ability to hold values narrower than their configured width, which may constrain register reuse
by a compiler.

The RISC-V “V” Standard Extension for Vectors. In a traditional vector instruction set archi-
tecture, vector instructions are intermingled within the control thread’s instruction stream. Shared
registers are simply overlaid on top of the control thread’s state, and scalar instructions are exe-
cuted as control thread instructions. Contrast this to the Hwacha instruction set design, in which a
separate set of vector shared registers are defined alongside the control thread’s state, and a sepa-
rate instruction stream for the worker thread is present. There are benefits to this Hwacha approach
(see Chapter 8), however, we plan to define a traditional vector like instruction set to serve as
the standard “V” extension for RISC-V. The vector instructions will be 32 bits in length to ease
decoding and to enable simple implementations that will be competitive to packed-SIMD vector
machines such as Intel AVX [56] and ARM NEON [10]. RISC-V’s x and f registers will serve as
scalar registers that are shared across the entire vector.

92

Chapter 8

Hwacha Decoupled Vector
Microarchitecture

This chapter details the Hwacha decoupled vector microarchitecture that executes the Hwacha in-
struction set architecture described in Chapter 7. In Section 8.1, we first discuss how we modified
the open-source Rocket Chip SoC generator to provide a system architecture that is comparable to
the commercially available data-parallel accelerators. We take advantage of the RTL libraries that
come with the generator, including the Rocket in-order core that executes the RISC-V instruction
set, multiple levels of coherent caches, and the standardized RoCC accelerator interface that is
used to attach the Hwacha vector accelerator. We present the overall machine organization in Sec-
tion 8.2, and describe the details of the vector frontend in Section 8.3, vector runahead unit (VRU)
in Section 8.4, vector execution unit (VXU) in Section 8.5, and the vector memory unit (VMU)
in Section 8.6. The design space for the Hwacha vector accelerator is described in Section 8.7,
including issues that arise with the multi-lane configuration.

8.1 System Architecture
Figure 8.1 illustrates the overall system architecture of the Hwacha vector microprocessor. We
use the open-source Rocket Chip SoC generator to elaborate our design [79]. The generator con-
sists of highly parameterized RTL libraries written in Chisel [17]. In this section, we discuss the
salient capabilities of the generator that allows us to integrate the Hwacha vector accelerator pro-
ductively within a modern SoC environment while being efficient and providing a simple assembly
programming model.

A tile consists of a Rocket control processor and a RoCC (Rocket Custom Coprocessor) socket.
Rocket is a five-stage in-order RISC-V scalar core that interface with its private blocking L1 in-
struction cache and non-blocking L1 data cache [78]. The RoCC socket provides standardized
interfaces for issuing commands to a custom accelerator, and interacting with the memory system.
The Hwacha decoupled vector accelerator and its blocking vector instruction cache are designed
to fit within the RoCC socket. The control thread and the worker thread of the Hwacha assembly

CHAPTER 8. HWACHA DECOUPLED VECTOR MICROARCHITECTURE 93

T
ile

M
em

 S
ys

te
m

D
Si

m
2

Rocket
Control

Processor

L1I$ L1D$

RoCC Socket
Hwacha Vector

Accelerator

L2$
Bank 0

L2$
Bank 1

L2$
Bank 2

L2$
Bank N

AXI4 Crossbar

LPDDR3
Channel 0

LPDDR3
Channel 1

L1VI$

L1-to-L2 TileLink Crossbar

…

LPDDR3
Channel N…

TL/AXI4 …TL/AXI4 TL/AXI4 TL/AXI4

Uncached TileLink IO

Cached TileLink IO

AXI4 IO

Figure 8.1: System Architecture Provided by the Rocket Chip SoC Generator – The tile
consists of the Rocket control processor and the Hwacha vector accelerator that fits within the
RoCC (Rocket Custom Coprocessor) socket. The tile is connected to a shared banked L2 cache,
which talks to a bank of simulated multi-channel LPDDR3 memory interfaces.

programming model (see Chapter 6.1) are mapped to the Rocket control processor and Hwacha
vector accelerator, respectively.

The shared L2 cache is banked, set-associative, and fully inclusive of the L1 caches. Addresses
are interleaved at cache line granularity across banks. The tile and L2 cache banks are connected
through an on-chip network that implements the TileLink cache coherence protocol [32]. There are
two flavors of TileLink IO: cached and uncached. The cached TileLink interface is used by clients
that create private copies of cache blocks such as the L1 data cache and L2 cache banks. These
cache blocks are kept coherent throughout the memory system. The uncached TileLink interface is

CHAPTER 8. HWACHA DECOUPLED VECTOR MICROARCHITECTURE 94

used for clients that do not keep private copies, such as the Hwacha vector unit. Note, instruction
caches use uncached TileLink IO, as the cache-coherence protocol does not keep the content of
instruction caches coherent with respect to the data stream. The L2 cache banks are coherence
master endpoints that implement a cache-coherence protocol, which is selected during elaboration.
There is also an option to accelerate the protocol using directory bits that live in the L2 cache tag
array.

TileLink offers several capabilities in support of the Hwacha vector accelerator. Cache coher-
ence between the L1 data cache and the vector accelerator preserves the shared memory abstraction
between the control processor and vector accelerator. This keeps the assembly programming model
simple. There is no need to keep two separate address spaces—one for host memory and the other
for accelerator’s target memory. When the vector accelerator makes a read request to a cache line,
the L2 cache bank looks up the directory bit to quickly determine whether the cache line resides in
the L1 data cache. If so, the L2 cache bank will then take appropriate steps to guarantee that the L1
data cache does not hold any dirty data. The cache-coherence protocol dictates how the L2 cache
bank enforces that invariant. If the cache line has an exclusive state, the L2 cache bank will send a
message to the L1 data cache requesting the line to be downgraded to a shared state. If the cache
line is already in a shared state, no action is taken. When the vector accelerator makes a write re-
quest, the L2 cache bank checks whether the cache line is in a shared or exclusive state, and sends
a message to the L1 data cache asking it to drop the line, if necessary. Sub-cache-block accesses to
words within a cache line reduce memory bandwidth for vector gathers and scatters. Data prefetch
requests help the system overlap data transfer and computation to achieve better bandwidth uti-
lization. These prefetches are efficiently merged with subsequent sub-block accesses. Atomic
memory operations, which are performed by ALUs inside each L2 cache bank, offload the work
of reduction computations.

The refill ports of the L2 cache banks are connected to a bank of cached- TileLink-IO-to-AXI4
converters. The AXI4 interfaces are then routed to the appropriate LPDDR3 channels through the
AXI4 crossbars. The LPDDR3 memory channels are implemented in the testbench, where the
DRAM timing is simulated using DRAMSim2 [107].

The memory system parameters, such as the cache size, associativity, cache-coherence proto-
col, and the number of L2 cache banks and memory channels are set from a configuration object
during elaboration. The configuration object also holds design parameters for the Rocket control
processor and the Hwacha vector accelerator.

The Hwacha vector accelerator is influenced by several system-level decisions inherent to the
Rocket Chip SoC generator. In mapping the control thread to the Rocket scalar core, we exploit
vector-fetch decoupling to push the limits of in-order processors. The unified and coherent virtual
address space enables restartable exceptions for the Hwacha vector accelerator. By connecting the
accelerators to the L2 cache instead of the L1 data cache, we have traded off longer average access
latency for substantially higher bandwidth to the cache. However, this decision makes memory
access coalescing a more important design feature for the accelerator. Exploiting these built-in
SoC generator features allowed us to substantially improve the capabilities of the Hwacha vector
accelerator while simultaneously making it simple to apply as much parameter tuning as possible
to balance the memory system and the vector accelerator design.

C
H

A
PT

E
R

8.
H

W
A

C
H

A
D

E
C

O
U

PL
E

D
V

E
C

TO
R

M
IC

R
O

A
R

C
H

IT
E

C
T

U
R

E
95

Decoupled Vector
Accelerator Scalar Unit

Scalar
Execution

Unit (SXU)
Vector Lane 0

Vector Execution
Unit (VXU)
Sequencer/
Expander

v p

Vector Memory
Unit (VMU)

Vector Lane N

Vector Execution
Unit (VXU)

v p

Vector Memory
Unit (VMU)

Vector Lane 1

Vector Execution
Unit (VXU)

v p

Vector Memory
Unit (VMU)

…

Master Sequencer

Sequencer/
Expander

Sequencer/
Expander

Rocket
Control

Processor

Scalar
Memory

Unit
(SMU)

s

a

Vector
Runahead

Unit (VRU)

a

4 KB
L1 VI$

L1-to-L2 TileLink Crossbar

VCMDQ
FPREQQ

FPRESPQ

VRCMDQ

Vector Lane 2

Vector Execution
Unit (VXU)

v p

Vector Memory
Unit (VMU)

Sequencer/
Expander

Figure 8.2: Block Diagram of the Hwacha Decoupled Vector Accelerator – The Hwacha decoupled vector accelerator
consists of a RoCC unit, scalar unit, vector runahead unit (VRU), master sequencer, multiple vector lanes, each with a vector
execution unit (VXU) and a vector memory unit (VMU). VCMDQ = vector command queue, VRCMDQ = vector runahead
command queue, FPREQQ = floating-point request queue, FPRESPQ = floating-point response queue.

CHAPTER 8. HWACHA DECOUPLED VECTOR MICROARCHITECTURE 96

8.2 Machine Organization
The Hwacha decoupled vector microarchitecture combines ideas from access-execute decoupling [114],
decoupled vector architectures [41], and cache refill-access decoupling [22] in order to decouple
the data access stream from the execute stream to efficiently hide memory latency, but applies them
to work within a cache-coherent memory system with no risk of deadlocking. Extensive decou-
pling enables the microarchitecture to effectively tolerate long and variable memory latencies with
an in-order design.

Figure 8.2 presents the high-level anatomy of the Hwacha vector accelerator. Hwacha is sit-
uated as a discrete accelerator with its own independent frontend, which consists of the RoCC
unit, scalar unit, vector runahead unit (VRU), and an L1 vector instruction cache. The RoCC unit
distributes the control thread instructions coming from the Rocket control processor to the scalar
unit and the VRU. The scalar unit receives all instructions including the vector configuration in-
structions (vsetcfg and vsetvl), vector move instructions for both vector shared registers and
vector address registers (vmcs and vmca), and vector-fetch instructions (vf) through the vec-
tor command queue (VCMDQ). Since the VRU only needs to decode the constant-strided vector
memory instructions from the vector-fetch instruction stream to issue prefetches into the mem-
ory system, the RoCC unit only sends certain instructions through the vector runahead command
queue (VRCMDQ) such as the vector configuration, vmca, and vf instructions. The scalar unit
and the VRU both have ports into the L1 vector instruction cache. This property allows the VRU
to also prefetch instructions for the scalar unit. This vector-fetch decoupling relieves the Rocket
control processor to resolve address calculations for upcoming vector-fetch blocks, among other
bookkeeping actions, well in advance of the vector accelerator.

The scalar unit goes ahead and fetches instructions from a given vector-fetch block, execut-
ing scalar compute and scalar memory instructions on the unit itself, while pushing vector com-
pute and vector memory operations to the master sequencer. The scalar unit interfaces with the
floating-point request and response queues (FPREQQ and FPRESPQ) to execute scalar floating-
point compute instructions on the floating-point functional units shared with the Rocket control
processor. A scalar memory unit (SMU) talks to the L2 cache directly to carry out scalar memory
instructions.

Hwacha consists of one or more replicated vector lanes assisted by the master sequencer. In-
ternally, the vector lane is bifurcated into two major components: the vector execution unit (VXU)
and the vector memory unit (VMU). The VXU encompasses the vector register file, predicate reg-
ister file, and various functional units. The VMU coordinates data movement between the VXU
and the memory system. The master sequencer interfaces with lane sequencers and VMUs of all
vector lanes to coordinate the execution of in-flight vector instructions. The master sequencer dis-
tributes work to individual vector lanes, keeps track of progress, and retires fully-executed vector
instructions. Unlike traditional vector machines, in which the control logic keeps all vector lanes
in lock-step, Hwacha keeps all vector lanes executing in a decoupled fashion. This means that each
lane will need its own sequencing logic to step through vector operations, but can better tolerate ir-
regular memory access patterns, since the vector lanes will naturally slip its execution and adapt to
the memory system’s behavior. However, the master sequencer will sync up all vector lanes when

CHAPTER 8. HWACHA DECOUPLED VECTOR MICROARCHITECTURE 97

executing a vector reduction operation (such as consensual branch instructions and the vfirst
instruction) before sending the result back to the scalar unit.

Hwacha also features a VRU that exploits the inherent regularity of constant-strided vector
memory accesses for aggressive yet extremely accurate prefetching. Unlike out-of-order cores with
SIMD extensions that rely on reorder buffers and GPUs that rely on multithreading to hide memory
latency, the Hwacha decoupled vector microarchitecture is particularly amenable to prefetching
without requiring a large amount of state.

8.3 Vector Frontend: RoCC Unit and Scalar Unit
The vector frontend includes the RoCC unit, scalar unit, an L1 vector instruction cache, and two
sets of vector command queues that connect the Rocket control processor with the Hwacha vector
accelerator.

The RoCC unit, shown in Figure 8.3, is responsible for interfacing with the Hwacha control
thread instructions that are coming from the Rocket control processor. This unit routes the con-
trol thread instructions to respective vector command queues, calculates the maximum hardware
vector length given the register usage (vsetcfg instruction), adjusts the vector length given the
application vector length (vsetvl instruction), responds to other vector configuration instructions
(vgetcfg, vgetvl, and vuncfg instructions). Table 8.1 summarizes the actions taken by the
RoCC unit in response to the Hwacha control thread instructions described in Section 7.1. This
table also shows which control thread instructions get routed to which vector command queue.
Note, the vmcs instruction does not get enqueued into the vector runahead command queue, since
the VRU only decodes constant-strided vector memory instructions that access vector address reg-
isters.

RoCC
Unit

VRCMDQ

VCMDQ
Scalar
Unit

VRU

RoCC
Request

Hwacha Decoupled
Vector Accelerator

Rocket
Control

Processor RoCC
Response

Figure 8.3: Block Diagram of the RoCC Unit – The RoCC unit interfaces with the Rocket
control processor’s RoCC port and vector command queues connected to the scalar unit and the
vector runahead unit (VRU).

CHAPTER 8. HWACHA DECOUPLED VECTOR MICROARCHITECTURE 98

Control Thread VCMDQ VRCMDQ RoCC
Instruction Enqueue? Enqueue? Response?

vsetcfg Y Y N
vsetvl Y Y Y
vgetcfg N N Y
vgetvl N N Y
vuncfg N N N

vmcs Y N N
vmca Y Y N

vf Y Y N

Table 8.1: Actions Taken by the RoCC Unit for Each Hwacha Control Thread Instruction –
VCDMQ = vector command queue, VRCMDQ = vector runahead command queue.

The scalar unit includes the vector shared register file and the vector address register file, and
possesses a fairly conventional single-issue, in-order, four-stage pipeline (see Figure 8.4). The
scalar unit receives Hwacha control thread instructions through the VCMDQ. The vsetcfg in-
struction zeros out the internal vector length register, while the vsetvl instruction sets the internal
vector length register. The vmcs and vcma instructions directly write the accompanied value into
the vector shared register file and the vector address register file, respectively. Upon encountering
a vf instruction, the scalar unit begins fetching Hwacha worker thread instructions at the accom-
panying PC from the 4 KB two-way set-associative L1 vector instruction cache, continuing until it
reaches a vstop instruction in the vector-fetch block.

Table 8.2 summarizes the actions taken by the scalar unit for each type of worker thread in-
structions described in Section 7.2. Among the worker thread instructions that are fetched, the

PC
Gen. VI$

Access

ITLB
Int.EX Write

BackDecode

Int.RF

Rocket FPU

Scalar Mul/Div
SMU

Master Sequencer

Figure 8.4: Pipeline Diagram of the Scalar Unit – The scalar unit is a fairly conventional single-
issue, in-order, four-stage pipeline fetches that executes Hwacha worker thread instructions. SMU
= scalar memory unit.

CHAPTER 8. HWACHA DECOUPLED VECTOR MICROARCHITECTURE 99

Worker Thread Scalar Scalar Scalar Rocket Master Set
Instruction Group Pipe Mul/Div Memory Unit FPU Sequencer SB?

Scalar INT Compute Y N N N N N
Scalar INT Mul/Div N Y N N N Y
Scalar Memory N N Y N N Y
Scalar FP Compute N N N Y N Y

Vector N N N N Y N
Vector Reduction N N N N Y Y

Table 8.2: Actions Taken by the Scalar Unit For Each Hwacha Worker Thread Instruction
Group – Scalar integer compute instructions exclude multiply and divide instructions, and vector
instructions exclude vector reduction instructions. INT = integer, FP = floating-point, FPU =
floating-point unit, SB = scoreboard.

scalar unit handles the scalar integer computation instructions locally on the pipeline (excluding
the integer multiply and divide instructions). For other instructions, the scalar unit steers the op-
eration to other units on the Hwacha vector accelerator in the decode stage. Integer multiply and
divide instructions are steered to a decoupled functional unit on the scalar unit; scalar memory
instructions are sent to the SMU; the scalar floating-point instructions interface with the FPREQQ
and FPRESPQ to use the shared floating-point functional units on the Rocket FPU. For these in-
structions, the control logic sets the scoreboard bit to interlock on the destination register until the
result is sent back to the scalar unit. Vector instructions are sent to the master sequencer. The
scoreboard bit is set for a vector reduction operation to prevent the scalar unit from accessing the
result before it is sent back from the vector lanes.

8.4 Vector Runahead Unit
The vector runahead unit (VRU), shown in Figure 8.5, takes advantage of the decoupled nature
of the Hwacha vector-fetch architecture to hide memory latency and maximize functional unit
utilization.

The VRU has a separate VRCMDQ between the Hwacha accelerator and the Rocket control
processor. It receives vsetvl, vmca, and vf instructions through the VRCMDQ. The vsetvl
instruction sets the current vector length. The vmca instruction sends over the addressing infor-
mation, which is written into a separate vector address register file that resides on the VRU. Upon
receiving a vf instruction, the VRU fetches instructions from the L1 vector instruction cache and
decodes unit-strided load and store instructions. Using the previously collected address informa-
tion along with the vector length, the VRU issues prefetching commands directly to the L2, in
anticipation of loads and stores issued by the vector lanes. Unlike other machines, these prefetches
are in most cases non-speculative. Since the address registers and vector length cannot be changed

CHAPTER 8. HWACHA DECOUPLED VECTOR MICROARCHITECTURE 100

by the worker thread, the VRU is certain what data will be touched for each vector load and store
instruction.

Efficiently using L2 tracking resources and managing the runahead distance are critical to bal-
ancing latency-hiding with allowing the rest of the machine to make forward-progress at a reason-
able pace. We limit the VRU to using at most one-third of the outstanding access trackers in the L2
cache, since in the unit strided case, the VRU’s prefetch blocks are twice as large as the execution
unit’s loads and stores.

In managing the runahead-distance of the VRU, the controller must avoid two extremes. A
VRU that runs too close to real-time execution risks invoking a performance penalty. This penalty
arises not only from the obvious inability to hide latency, but also because the VRU wastes L2
tracking resources and creates a hotspot around one bank of the L2 cache. A VRU that runs too far
ahead of real-time execution has the potential to remove cache lines from the L2 that are in-use or
that have been prefetched but not yet used.

VF Block Fetch/Decode

From RoCC Unit

From Master Sequencer
VF Completion Ack

Prefetch
Queue

VF Block Load/
Store Byte
 Counter

To/From
VI$

Control Thread Instruction Decode

Throttle
Queue

Global Run-
ahead Counter

Next GRC
Prefetch

Issue

Outstanding
Req. Counter

Throttle Manager

Request Ack

Throttle

To/From L2$

VRCMDQ

Figure 8.5: Block Diagram of the Vector Runahead Unit (VRU) – VRCMDQ = vector runa-
head command queue, VF = vector fetch, VI$ = vector instruction cache, GRC = global runahead
counter.

CHAPTER 8. HWACHA DECOUPLED VECTOR MICROARCHITECTURE 101

To prevent the VRU from running too close to the execution units, we ignore a small number of
vector-fetch blocks at startup. We observe that sacrificing the prefetch of the vector loads and stores
from one or two initial vector-fetch blocks greatly increases the ability of the VRU to runahead
in a steady state. To prevent the VRU from running too far ahead of the execution units, we
implement a throttling scheme that keeps track of the outstanding memory loads and stores in
terms of bytes that have been decoded by the VRU but have not yet been consumed by the execution
units. However, for the Hwacha vector accelerator, this scheme is hindered by predicated vector
memory operations and consensual branches. Our scheme ensures that the bookkeeping in the
VRU’s throttle mechanism is synchronized at the end of each vector-fetch block, regardless of the
presence of unexecuted vector memory operations due to predication and consensual branches. In
our scheme, the VRU maintains a queue containing individual load/store byte counters for each
vector-fetch block that the VRU has seen, but that has not been acknowledged by the vector lanes.
A global counter is also incremented by this per-block byte count whenever the VRU finishes
decoding a vector-fetch block. When the vector lanes complete the execution of a vector-fetch
block, an acknowledgement is sent to the VRU, which pops an entry off of the byte count queue,
and decrements the global byte counter by the appropriate amount. This global counter is then
used to throttle the runahead distance of the VRU.

8.5 Vector Execution Unit
The vector execution unit (VXU), depicted in Figure 8.6, is broadly organized around four banks.
Each bank contains a 256×128-bit 1-read-1-write (1R1W) 8T SRAM that forms a portion of the
vector register file (VRF), and a 256×2-bit 5-read-1-write (5R1W) predicate register file (PRF).
Operand latches buffer up operands to emulate a multi-ported register file using an SRAM-based
1R1W register file. A crossbar connects the banks to the long-latency functional units, grouped
into clusters whose members share the same operand, predicate, and result lines. Also private to
each bank are a local integer arithmetic logic unit (ALU) and predicate logic unit (PLU).

Figure 8.7 depicts the systolic bank execution scheme of the VXU. The entire Hwacha vector
machine is built around this stall-free systolic schedule that sustains n operands per cycle to the
shared functional units after an initial n-cycle latency. The figure shows the simplified VXU struc-
ture with four banks, each with an 1R1W register file (big square) and two operand latches (two
small rectangles next to the big square). Each operand latches can present their values to a global
operand line, which feeds into the shared functional unit at the bottom. The result is fanned out
to all banks. Several micro-ops (µops) are defined that carry out a specific task within the systolic
array, such as the read-rf µop (read register file), write-rf µop (write register file), opl-top µop
(write register file read result to top operand latch), opl-bottom µop (write register file read result
to bottom operand latch), xbar µop (present operand latches to crossbar), and the fop µop (perform
operation on shared functional unit). These µops are presented to the first bank on the top, and se-
quentially traverse to the next bank every cycle. At cycle 0, read-rf and opl-top µops are executed
on the first bank. At cycle 1, these two µops are executed on the second bank, while a new set of
read-rf and opl-bottom µops are presented to the first bank. At cycle 2, the xbar µop is executed

CHAPTER 8. HWACHA DECOUPLED VECTOR MICROARCHITECTURE 102

O
pe

ra
nd

 X
ba

r

Pr
ed

 X
ba

r

Operand
Latches

Predicate
Latch

A
LU

PL
U

PL
U

Bank0

Bank1

Bank2

Bank3

BRQ

BWQ

BPQ

Scalar
Operands

Bank µops

Bank0
Ctrl

Bank1
Ctrl

Bank2
Ctrl

Bank3
Ctrl

R W Fn
Expander

To VFU0, VFU1

From Master
Sequencer

LRQ

LPQ

FMA0
FConv

IMul

FMA1
FCmp

VFU0

VFU1

VFU2

VGU

VSU

VLU

VVAQ VSDQ VLDQ

V
P
U

To
VMU

Operands
Predicates

Sequencer

From Expander

FDiv/FSqrt
IDiv

Reduce

To/From Master Sequencer

VPQ

PRF

VRF

Lane

LRQ
LPQ

A
LU

Figure 8.6: Block Diagram of the Vector Execution Unit (VXU) – VRF = vector register file,
PRF = predicate register file, ALU = arithmetic logic unit, PLU = predicate logic unit, BRQ =
bank operand read queue, BWQ = bank operand write queue, BPQ = bank predicate read queue,
LRQ = lane operand read queue, LPQ = lane predicate read queue, VFU = vector functional unit,
FP = floating-point, FMA = FP fused multiply add unit, FConv = FP conversion unit, FCmp =
FP compare unit, FDiv/FSqrt = FP divide/square-root unit, IMul = integer multiply unit, IDiv =
integer divide unit, VPU = vector predicate unit, VGU = vector address generation unit, VSU =
vector store-data unit, VLU = vector load-data unit, VPQ = vector predicate queue, VVAQ = vector
virtual address queue, VSDQ = vector store-data queue, VLDQ = vector load-data queue.

CHAPTER 8. HWACHA DECOUPLED VECTOR MICROARCHITECTURE 103

R R

R R

R

W

R

R

R

W

R

R

R

W

Clock cycles
Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Figure 8.7: Systolic Bank Execution Diagram – In this example, after a 2-cycle initial startup
latency, the banked register file is effectively able to read out 2 operands per cycle.

on the first bank, while the fop µop fires up the shared functional unit. At cycle 3, the write-rf µop
writes back the result into the first bank. At cycle 4 and 5, the result is written back to the second
bank and the third bank, respectively, while new read-rf and opl µops enter the system to read out
the next batch of elements to the shared functional unit.

The VXU in Figure 8.6 executes the vector instructions in a similar fashion, however, has to
cope with variable-latency functional units such as the memory system, integer divide unit, and
the floating-point divide and square root unit. Additionally, the VXU deals with data hazards,
structural hazards, and bank hazards to correctly carry out the vector computation. The sequencer
(see Figure 8.8) picks a hazard-free vector operation every cycle that will execute on the systolic
bank structure, and sends it to the expander (see Figure 8.9) to break the vector operation into bank
µops that the systolic bank datapath understands.

Sequencer
Figure 8.8 details the sequencer logic for n vector lanes and m sequencer slots, which monitors the
progress of every active vector operation within the Hwacha vector accelerator. The sequencer is
split into two portions: the master sequencer and the per-lane sequencers. The master sequencer
is shared among all vector lanes, and holds the common dependency information and other static
state. Each lane has its own lane sequencer, which keeps track of progress within that particular
lane. Due to these per-lane sequencers, the vector lanes can naturally slip in execution with respect
to other vector lanes and adapt to the system behavior.

CHAPTER 8. HWACHA DECOUPLED VECTOR MICROARCHITECTURE 104

valid

base-rs1
base-p

base-rs2
base-rs3

scalar-rs1
scalar-rs2
scalar-rs3

operation

func

hazard-raw
hazard-war
hazard-waw

phys-rs1
phys-p

phys-rs2
phys-rs3
vlen
eidx
age

misc

M
as

te
r

Se
qu

en
ce

r
L

an
e

0
Se

qu
en

ce
r

base-rd

valid

base-rs1
base-p

base-rs2
base-rs3

scalar-rs1
scalar-rs2
scalar-rs3

operation

func

hazard-raw
hazard-war
hazard-waw

phys-rs1
phys-p

phys-rs2
phys-rs3
vlen
eidx
age

misc

base-rd

valid

base-rs1
base-p

base-rs2
base-rs3

scalar-rs1
scalar-rs2
scalar-rs3

operation

func

hazard-raw
hazard-war
hazard-waw

phys-rs1
phys-p

phys-rs2
phys-rs3
vlen
eidx
age

misc

base-rd
…

…

Slot 0 Slot 1 Slot m
From Scalar Unit

Lane 0 Scheduler

valid

base-rs1
base-p

base-rs2
base-rs3

scalar-rs1
scalar-rs2
scalar-rs3

operation

func

hazard-raw
hazard-war
hazard-waw

phys-rs1
phys-p

phys-rs2
phys-rs3
vlen
eidx
age

misc

base-rd

phys-rs1
phys-p

phys-rs2
phys-rs3
vlen
eidx
age

phys-rs1
phys-p

phys-rs2
phys-rs3
vlen
eidx
age

phys-rs1
phys-p

phys-rs2
phys-rs3
vlen
eidx
age

…

Lane n Scheduler

phys-rs1
phys-p

phys-rs2
phys-rs3
vlen
eidx
age

Slot 2

To
Lane 0
Expander

To
Lane n
Expander

L
an

e
n

Se
qu

en
ce

r

Figure 8.8: Block Diagram of the Sequencer – The sequencer is split into the master sequencer,
which is shared among all vector lanes, and per-lane sequencers, which are replicated per vector
lane.

CHAPTER 8. HWACHA DECOUPLED VECTOR MICROARCHITECTURE 105

The master sequencer slot has a valid bit, and keeps track of the sequencer operation type
(operation field), base register specifier information (base-p, base-rs1, base-rs2, base-rs3, base-
rd fields) to detect data hazards against future vector operations that have not been issued yet,
scalar operands (scalar-rs1, scalar-rs2, scalar-rs3 fields), miscellaneous information (func and
misc fields), and data hazard information (hazard-raw, hazard-war, hazard-waw fields) with re-
spect to previous sequencer operations that have already been issued. The lane sequencer slot
keeps track of physical register specifier information (phys-p, phys-rs1, phys-rs2, phys-rs3 fields),
number of pending vector elements (vlen field), element index (eidx field), and age information
(age field).

The scalar unit fetches, decodes, and issues a vector instruction to the master sequencer and all
lane sequencers simultaneously. When a vector instruction is issued, the valid bit is set, the vlen
field is loaded with the current vector length stored in the vlen register, and the data hazard fields
(hazard-* fields) are dynamically calculated by comparing the vector instruction’s register usage
with the previously issued sequencer operations’ base register specifier information stored in the
master sequencer. The scalar unit will stall issuing a vector instruction if there is not enough open
sequencer slots to take the vector instruction. A sequencer slot is freed when all vector lanes have
fully executed the sequencer operation for all vector elements.

Table 8.3 lists all possible sequencer operations that occupy one sequencer slot and their as-
sociated actions. Table 8.4 summarizes the sequencer operations that are issued for each type of
worker thread instructions described in Section 7.2. Note, some vector instructions require mul-

Sequencer
Operation Sequencer Action

VIU If no hazards, sequence integer ALU operation.
VIMU If no hazards, sequence integer multiply operation.
VIPU If no hazards, sequence predicate logic operation.

VFMU If no hazards, sequence floating-point FMA operation.
VFCU If no hazards, sequence floating-point comparison operation.
VFVU If no hazards, sequence floating-point conversion operation.

VPU If space in all BPQs, sequence predicate readout to BPQs.
VSU If space in all BRQs, sequence register readout to BRQs.
VGU If space in LPQ/LRQ for VGU, sequence pred/reg readout to LPQ/LRQ.
VQU If space in LPQ/LRQ for VFU2, sequence pred/reg readout to LPQ/LRQ.

VIDU Bookkeeping operation for integer divide operation.
VFDU Bookkeeping operation for floating-point divide/square-root operation.
VCU Bookkeeping operation for VMU address translation.
VLU Bookkeeping operation for vector load writeback operation.

Table 8.3: List of Sequencer Operations – This table lists all sequencer operations and their
associated actions. All operations are sequenced in terms of strips (i.e., eight 64 bit elements).

CHAPTER 8. HWACHA DECOUPLED VECTOR MICROARCHITECTURE 106

Worker Thread Instructions V
IU

V
IM

U

V
IP

U

V
FM

U

V
FC

U

V
FV

U

V
Q

U

V
ID

U

V
FD

U

V
PU

V
G

U

V
C

U

V
SU

V
L

U

Vector Integer Compute X
Vector Integer Multiply X
Vector Integer Divide X X
Vector Integer Reduction X

Vector Predicate Compute X
Vector Predicate Reduction X

Vector Floating-Point FMA X
Vector Floating-Point Div/Sqrt X X
Vector Floating-Point Compare X
Vector Floating-Point Convert X

Vector Atomic Memory X X X X
Vector Indexed Load X X X
Vector Indexed Store X X X
Vector Constant-Strided Load X X X
Vector Constant-Strided Store X X X

Table 8.4: Sequencer Operations Issued for Each Hwacha Worker Thread Instruction Group
– The sequencer operations are described in Table 8.3. Note, some vector instructions require
multiple sequencer slots. For those instructions, the sequencer slots must be allocated in the order
presented in this table.

tiple sequencer slots. The vector atomic memory operations require four sequencer operations
(VGU, VCU, VSU, and VLU operations) to carry out the specific vector memory operation. The
VGU operation reads out the addresses from the vector register file and pushes them to the vector
virtual address queue (VVAQ). The VCU operation is a bookkeeping operation that interfaces with
the VMU and only lets the following VSU and VLU operation to proceed when the address trans-
lation has succeeded. The VSU operation reads out the vector of AMO data and pushes it out to
the bank read queue (BRQ). The data in the BRQ is swizzled and aligned by the VSU functional
unit, and pushed to the vector store data queue (VSDQ). The VLU operation is a bookkeeping
operation that keeps track of the load data that has been written back from the bank write queue
(BWQ) to the vector register file. The VLU functional unit takes the load data from the vector
load data queue (VLDQ), swizzles, aligns, and writes the load data to the respective BWQs. The
subsequent sequencer operations that use the AMO result will be blocked waiting on the vlen entry
of the VLU sequencer slot to decrement.

Execution is managed in strips that complete eight 64-bit elements worth of work, corre-
sponding to one pass through the banks. The lane sequencer acts as an out-of-order, albeit non-

CHAPTER 8. HWACHA DECOUPLED VECTOR MICROARCHITECTURE 107

speculative, issue window: hazards are continuously examined for each operation; when clear for
the next strip, an age-based arbitration scheme determines which ready operation to send to the
expander. Lane schedulers pick out one sequencer operation every cycle by taking into account the
data hazard information and resource requirements from the master sequencer, current progress
from the vlen fields, age information from the age fields, and current resource usage by peeking
into the expander. The picked sequencer operation is sent to the expander.

Expander
The expander converts a sequencer operation into its constituent µops, low-level control signals
that directly drive the systolic bank datapath. Table 8.5 lists all bank µops that are used by the
expander. These µops are inserted into shift registers with the displacement of read and write µops
coinciding exactly with the functional unit latency. The shift registers shift down every cycle, and
the µop at the end of the shift registers will be sent to the first bank of the systolic datapath. The
µops then sequentially traverse all the banks cycle by cycle.

Bank µop Bank µop Action

sram-read Read from VRF.
sram-write Select VRF writeback mux and write to VRF.

pred-read Read from PRF.
pred-write Select PRF writeback mux and write to PRF.

opl Write to operand latch.
pdl Write to predicate latch.

sreg Use given scalar operand instead.

xbar Drive crossbar with operands.

fop-alu Use ALU functional unit local to the bank.
fop-plu Use PLU functional unit local to the bank.
fop-brq Write to local BRQ.
fop-bpq Write to local BPQ.
fop-vfu0-fma0 Use FMA0 functional unit on VFU0.
fop-vfu0-imul Use IMul functional unit on VFU0.
fop-vfu0-fconv Use FConv functional unit on VFU0.
fop-vfu1-fma1 Use FMA1 functional unit on VFU1.
fop-vfu1-fcmp Use FCmp functional unit on VFU1.
fop-vfu2 Write to LPQ/LRQ for VFU2.
fop-vgu Write to LPQ/LRQ for VGU.

Table 8.5: List of Bank Micro-Operations (µops) – This table lists all bank µops used by the
expander. The expander consists of shift registers, one for each corresponding bank µop.

CHAPTER 8. HWACHA DECOUPLED VECTOR MICROARCHITECTURE 108

read 13
read 14
read 16

opl 0
opl 1
opl 2

xbar FMA0

write 13

From Lane Sequencer

sram-read opl xbar fop-vfu0-fma0 sram-write

…

other µops

Figure 8.9: Block Diagram of the Expander – The expander consists of an array of shift registers,
one for each corresponding bank µop listed in Table 8.5. These shift registers shift down every
cycle. The bank µops at the end of the shift registers are sent to bank 0.

Figure 8.9 depicts the expander logic. The figure shows an example where the lane sequencer
sends a VFMU operation to the expander. Assuming that the VFMU sequencer operation encodes
a three-input FMA operation, the expander writes three sram-read µops, three opl µops, an xbar
µop, an fop-vfu0-fma0 µop, and an sram-write µop into the shift register slots shown in the figure.
The three sram-read µops tell the banks to read three operands from physical register rows 13, 14,
and 16. The opl µops write the value read out of the vector register file into operand latches 0, 1,
and 2. The xbar µop presents the operand latches on the operand crossbar. The fop-vfu0-fma0 µop
is scheduled at the same cycle as the xbar µop to use the operands present on the crossbar. The
sram-write µop is precisely scheduled to use the 4-cycle latency FMA functional unit. The shift
registers for other bank µops are omitted for brevity.

Table 8.6 summarizes the bank µops that are scheduled in the expander for each sequencer
operation described in Table 8.3. For example, for the VFMU sequencer operation, the expander
schedules the sram-read, sram-write, pred-read, opl, pdl, sreg, xbar, fop-vfu-fma0, and fop-vfu-
fma1 bank µops accordingly. If the VFMU operation encodes a floating-point multiply then only
two sram-read and opl bank µops are scheduled. Three of each bank µops are scheduled for a
floating-point fused-multiply-add operation. If one of the operands came from the vector shared
register file, the sreg bank µop will be scheduled instead of an sram-read bank µop. Depending on
which FMA functional unit is available, either one of the fop-vfu-fma0 or fop-vfu-fma1 bank µops
will be marked in the respective shift register.

The sequencer operations that use the functional units that are local to the bank (e.g., VIU,
VIPU, VPU, and VSU) do not use the xbar bank µop. The sequencer operations that only access
the predicate register file (e.g., VIPU and VPU) do not use the sreg bank µop. Among all se-
quencer operations, the VIPU operation is the only one that writes to the predicate register file, and
hence schedule the pred-write bank µop. The sequencer operations that use the variable-latency

CHAPTER 8. HWACHA DECOUPLED VECTOR MICROARCHITECTURE 109

Seq Op sr
am

-r
ea

d

sr
am

-w
ri

te

pr
ed

-r
ea

d

pr
ed

-w
ri

te

op
l

pd
l

sr
eg

xb
ar

fo
p-

al
u

fo
p-

pl
u

fo
p-

br
q

fo
p-

bp
q

fo
p-

vf
u0

-f
m

a0

fo
p-

vf
u0

-i
m

ul

fo
p-

vf
u0

-f
co

nv

fo
p-

vf
u1

-f
m

a1

fo
p-

vf
u1

-f
cm

p

fo
p-

vf
u2

fo
p-

vg
u

VIU X X X X X X X
VIMU X X X X X X X X
VIPU X X X X

VFMU X X X X X X X X X
VFCU X X X X X X X X
VFVU X X X X X X X X

VPU X X
VSU X X X X X X
VGU X X X X X X X
VQU X X X X X X X

VIDU
VFDU
VCU
VLU

Table 8.6: Bank µops Scheduled for Each Sequencer Operation – The sequencer operations
are listed in Table 8.3, and the bank µops are listed in Table 8.5.

functional units do not explicitly schedule a sram-write bank µop. Variable-latency functional
units instead deposit results into per-bank BWQs for decoupled writes; the sequencer monitors
retirement asynchronously with the bookkeeping operations. Note, these bookkeeping sequencer
operations such as the VIDU, VFDU, VCU, and VLU operations do require any bank µops to be
sent down the systolic bank datapath, therefore are not sent to the expander.

Vector chaining arises naturally from interleaving bank µops belonging to different sequencer
operations. The lane scheduler clears all hazards before sending back-to-back sequencer operations
that are chained together; the expander simply converts them into the corresponding bank µops that
are legal to execute in an interleaved fashion.

8.6 Vector Memory Unit
The per-lane vector memory units (VMUs) are each equipped with a 128-bit interface to the shared
L2 cache. This arrangement delivers high memory bandwidth, albeit with a trade-off of increased
latency that is overcome by decoupling the VMU from the rest of the vector unit. Figure 8.10
outlines the organization of the VMU.

CHAPTER 8. HWACHA DECOUPLED VECTOR MICROARCHITECTURE 110

ABox0
address

translation

ABox1
coalescer

ABox2
metadata

generation

PBox0
address mask

generation

PBox1
store mask
generationIb

ox
 V

M
U

 Is
su

e

SBox
store

aligner

LBox
vector

load table

VPQ VVAQ VSDQ VLDQ

From VPU From VGU From VSU To VLU

VPAQ

PAQ

PPQ

MBox TileLink Attachment Interface
Request Store Data Meta Data Tag Load Data

To L2$

From Master
Sequencer

Operands
Predicates

Figure 8.10: Block Diagram of the Vector Memory Unit (VMU) – VPU = vector predicate
unit, VGU = vector address generation unit, VSU = vector store-data unit, VLU = vector load-data
unit, VPQ = vector predicate queue, VVAQ = vector virtual address queue, VSDQ = vector store-
data queue, VLDQ = vector load-data queue, VPAQ = vector physical address queue, PPQ = pipe
predicate queue, PAQ = pipe address queue.

CHAPTER 8. HWACHA DECOUPLED VECTOR MICROARCHITECTURE 111

As a memory operation is issued to the lane, the VMU command queue is populated with
the operation type, vector length, base address, and stride. Address generation for constant-stride
accesses proceeds without VXU involvement. For indexed operations such as gathers, scatters,
and AMOs, the vector address generation unit (VGU) reads offsets from the VRF into the vector
virtual address queue (VVAQ). Virtual addresses are then translated and deposited into the vector
physical address queue (VPAQ), and the progress is reported to the VXU. The departure of re-
quests is regulated by the lane sequencer via the VCU sequencer operation to facilitate restartable
exceptions.

The address pipeline is assisted by a separate predicate pipeline. Predicates must be examined
to determine whether a page fault is genuine, and are used to derive the store masks. The VMU
supports limited density-time skipping given power-of-2 runs of false predicates.

Unit strides represent a very common case for which the VMU is specifically optimized. The
initial address generation and translation occur at a page granularity to circumvent predicate la-
tency and accelerate the lane sequencer check. To more fully utilize the available memory band-
width, adjacent elements are coalesced into a single request prior to dispatch. The VMU correctly
handles edge cases with base addresses that are not 128-bit-aligned and irregular vector lengths, or
not a multiple of the packing density [115].

The vector store-data unit (VSU) multiplexes elements read from the VRF banks into the vector
store-data queue (VSDQ) using the bank read queues (BRQs). An aligner module following the
VSDQ shifts the data entries appropriately for constant-stride stores, vector scatters, and AMOs
with non-ideal alignment.

In reverse, the vector load-data unit (VLU) routes data from the vector load-data queue (VLDQ)
to their respective banks via the bank write queues (BWQs). As the memory system may arbitrarily
order responses, two VLU optimizations become crucial. The first is an opportunistic writeback
mechanism that permits the VRF to accept elements out of sequence; this reduces latency and area
compared to a reorder buffer. The VLU maintains a bit vector of retired elements, and interacts
with the VLU sequencer operation for bookkeeping. The VLU is also able to simultaneously
manage multiple operations to avoid artificial throttling of successive loads by the VMU.

8.7 Design Space
The Hwacha microarchitecture has been developed as a flexible generator to enable massive de-
sign space exploration. Table 8.7 lists a relevant subset of Hwacha design parameters that can be
adjusted to tune the Hwacha design at Chisel elaboration time. The number of various structures
are exposed as a tunable parameter, such as the number of vector lanes and sequencer entries.
The number of pipeline stages for all functional units are tunable. Various queue structures also
expose the number of entries as parameters. Options to instantiate a private FPU for the Hwacha
scalar unit exist. Finally, the VRU and the mixed-precision extensions can be optionally turned off.
Chapter 9 evaluates a baseline Hwacha design against a Hwacha design with mixed-precision sup-
port in order to see how the mixed-precision feature affects area, performance, and power/energy
consumption.

CHAPTER 8. HWACHA DECOUPLED VECTOR MICROARCHITECTURE 112

Parameter Description Default Value

HwachaNLanes Number of vector lanes 1
HwachaNSeqEntries Number of sequencer entries 8

HwachaStagesALU Number of ALU pipeline stages 1
HwachaStagesPLU Number of PLU pipeline stages 0
HwachaStagesIMul Number of IMul pipeline stages 3
HwachaStagesDFMA Number of double-precision FMA pipeline stages 4
HwachaStagesSFMA Number of single-precision FMA pipeline stages 3
HwachaStagesHFMa Number of half-precision FMA pipeline stages 3
HwachaStagesFConv Number of FConv pipeline stages 2
HwachaStagesFCmp Number of FCmp pipeline stages 1

HwachaNVVAQEntries Number of VVAQ entries 4
HwachaNVPAQEntries Number of VPAQ entries 24
HwachaNVSDQEntries Number of VSDQ entries 4
HwachaNVLDQEntries Number of VLDQ entries 4
HwachaNVLTEntries Number of Vector Load Table entries 64
HwachaNDTLB Number of data TLB entries 8
HwachaNPTLB Number of prefetch TLB entries 2

HwachaLocalScalarFPU Instantiate separate FPU for scalar unit False
HwachaBuildVRU Instantiate VRU True
HwachaConfMixedPrec Enable Mixed Precision False

Table 8.7: Tunable Hwacha Design Parameters and Default Values – This table lists the various
Hwacha design parameters, their description, and default values.

Mixed-Precision Support
Our microarchitectural changes for mixed-precision extension focus on the modules shaded in
Figure 8.6, with modifications falling into two broad categories: datapath (parallel functional units,
and subword compaction/extraction logic), and control (data hazard checking when chaining vector
operations of unequal throughput). For more details on the mixed-precision extension for Hwacha,
see Ou’s master thesis [99].

Register Mapping. To preserve control logic regularity, all elements with the same index must
reside within the same SRAM bank. This avoids structural hazards that would otherwise require
µops to be scheduled differently for distinct banks, counter to the systolic execution schedule. The
VRF banks are segmented into doubleword, word, and halfword regions. Thus, the starting phys-
ical address of a vector register can be straightfowardly calculated by the sum of the architectural
register identifier and the associated region offset, and elements in the vector are traversable by

CHAPTER 8. HWACHA DECOUPLED VECTOR MICROARCHITECTURE 113

a constant stride equal to the total number of architectural registers of that type. The size of the
SRAM arrays remain unchanged. However, the predicate register file is widened to 8 bits, such that
all predicates corresponding to a maximally packed SRAM entry of eight halfwords are accessible
through a single port in one cycle. The predicate mapping is also striped in a similar manner.

Spatial Parallelism. The overall rate of an operation is constrained by the precisions of the
source and destination registers, as well as the availability of parallel functional units for that
particular operation. Both the register precisions and operation rate are determined during decode
and recorded in the master sequencer entry. These two pieces of information, along with a subword
index in the µop, control a set of muxes interposed between the SRAM port and operand latches
that unpack and sign-extend the subwords as desired. The sign extension is necessary for producing
consistent results between an implementation that incorporates mixed-precision support and one
that omits it. Another set of muxes in front of the write port performs the inverse repacking. For
each vector lane, we instantiate two more single-precision and six more half-precision FMA units,
as well as an additional half-to-single and single-to-half conversion unit, to enable full throughput
for these operations.

Multi-Rate Vector Chaining. Chaining allows vector operations to execute in an interleaved
manner. Interim results may be consumed by subsequent operations without waiting for the entire
vector to complete. Fundamentally, newer and faster operations must be prevented from overtaking
older and slower operations when a data hazard exists. Comparing the remaining vector lengths
between active sequencer entries is a necessary but not sufficient method: As these values are up-
dated at time of sequencing rather than commit, the strip may still be partially in-flight. Although a
conservative scheme is possible by maintaining a separation greater than a strip between dependent
operations, this degrades the performance gains of chaining. Instead, the sequencer also examines
the shift registers in the expander for pending write µops that conflict. For a uniform rate, it pre-
viously sufficed to search for collisions in the physical register addresses. This logic must now be
expanded into an interval check to determine any overlaps in the strip(s) used by both operations.
The primary cost is in extra comparators.

Multilane Configuration
Hwacha is parameterized to support any power-of-2 number of identical lanes. Although the master
sequencer issues operations to all lanes synchronously, each lane executes entirely decoupled from
one another.

To achieve more uniform load-balancing, elements of a vector are striped across the lanes
by a runtime-configurable multiple of the sequencer strip size (the lane stride), as shown in Fig-
ure 8.11. This also simplifies the base calculation for memory operations of arbitrary constant
stride, enabling the VMU to reuse the existing address generation datapath as a short iterative mul-
tiplier. The striping does introduce gaps in the unit-stride operations performed by an individual
VMU, but the VMU issue unit can readily compensate by decomposing the vector into its con-

CHAPTER 8. HWACHA DECOUPLED VECTOR MICROARCHITECTURE 114

0-7
32-39
64-71
…

Vector Lane 0

8-15
40-47
72-79
…

Vector Lane 1

16-23
48-55
80-87
…

Vector Lane 2

24-31
56-63
88-95
…

Vector Lane 3

Figure 8.11: Mapping of Elements Across a Four-Lane Hwacha Vector Machine – Shows an
example element mapping for a four-lane Hwacha vector accelerator. In this example, the lane
stride is set to one times the strip size or 8 elements.

2 1 0

6 5 4 3

10 9 8 7

128 bits

Vector Lane 0

18 17 16 15

14 13 12 11

10 9 8 7

128 bits

Vector Lane 1

26 25 24 23

22 21 20 19

18 17 16 15

128 bits

Vector Lane 2

34 33 32 31

30 29 28 27

26 25 24 23

128 bits

Vector Lane 3

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

Figure 8.12: Example of Redundant Memory Requests by Adjacent Lanes – These occur when
the base address of a unit-strided vector in memory is not aligned at the memory interface width
(128 bits)—in this case, 0x???????4. Each block represents a 128 bit TileLink beat containing
four 32 bit elements. Shaded cells indicate portions of a request ignored by each lane. Note that
R2 overlaps with R3, R5 with R6, etc.

tiguous segments, while the rest of the VMU remains oblivious. Unfavorable alignment, however,
incurs a modest waste of bandwidth as adjacent lanes request the same cache line at these segment
boundaries. Figure 8.12 provides an example of such a situation.

115

Chapter 9

Hwacha Evaluation

This chapter presents Hwacha evaluation results. We first discuss the details of our evaluation
framework. Using this framework, we compare a baseline Hwacha design to a Hwacha design
with mixed-precision support to see how the mixed-precision feature affects area, performance,
and power/energy consumption. Chapter 8 details the Hwacha design space with other parameters
that can be modified. We also validate the Hwacha design against the ARM Mali-T628 MP6
GPU by running a suite of microbenchmarks compiled from the same OpenCL source code using
our custom LLVM-based scalarizing compiler and ARM’s stock OpenCL compiler on respective
hardware.

9.1 Evaluation Framework
This section outlines how we evaluate the Hwacha design, and validate our decoupled vector-
fetch architecture against a commercial GPU using compiled OpenCL kernels. Our evaluation
framework is described in Figure 9.1. The high-level objective of our framework is to compare
realistic area, performance, and power/energy numbers using detailed VLSI layouts and compiled
OpenCL kernels (as opposed to using hand-tuned assembly code).

As a first step towards that goal, we write a set of OpenCL microbenchmarks for the study
(see Section 9.2), and develop our own LLVM-based scalarizing compiler that targets the Hwacha
vector-fetch assembly programming model (see Section 9.3). These microbenchmarks are com-
piled twice with our custom compiler and ARM’s stock OpenCL compiler. Section 9.4 details our
implementation strategy. We select parameters for the Rocket Chip SoC generator to match the
Samsung Exynos 5422 SoC, which has an ARM Mali-T628 MP6 GPU. We chose that specific
SoC because it ships with the ODROID-XU3 development board that has instrumentation capabil-
ities to separately measure power consumption of the Mali GPU. Our simulated memory system
is validated against the memory system of the Exynos 5422 SoC in Section 9.5. We synthesize
and place-and-route both Hwacha designs (with and without mixed-precision support) in a com-
mercial 28 nm process resembling the 28 nm high-κ metal gate (HKMG) process that is used to
fabricate the Exynos 5422 SoC. We run compiled microbenchmarks on both gate-level simulators

CHAPTER 9. HWACHA EVALUATION 116

OpenCL Microbenchmarks

Chisel

Synthesis
Place&Route

Gate-Level
Simulator

Scalarizing
Compiler

ARM Stock
Compiler

RISC-V/Hwacha
ELF

ARM/Mali
ELF

Hwacha RTL

Verilog

Gate-Level
Model

Switching
Activity Cycles

Power/Energy
Analysis

Power/Energy

Layout

ARM Mali
T628 MP6

CyclesPower/Energy

Figure 9.1: Evaluation Framework – The Hwacha RTL is pushed through synthesis and place-
and-route to generate area numbers and a gate-level simulator that runs OpenCL microbenchmarks
and produces cycle counts and switching activities, which are later combined with the layout infor-
mation for power/energy consumption numbers. We also run the same set of OpenCL microbench-
marks on an ARM Mali T628 GPU (part of a Samsung Exynos 5422 SoC) to capture performance
and power/energy consumption numbers. The OpenCL microbenchmarks are compiled with our
custom LLVM-based scalarizing compiler as well as ARM’s stock OpenCL compiler.

CHAPTER 9. HWACHA EVALUATION 117

to obtain accurate switching activities and performance numbers. The switching activities are then
combined with the VLSI layout to generate accurate power/energy consumption numbers. Area,
performance, and energy numbers are subsequently compared against each other, but are also val-
idated against ARM Mali numbers obtained from the ODROID-XU3 board in Sections 9.6–9.8.

9.2 Microbenchmarks
For the study, we have developed four types of OpenCL kernels in four different precisions.
Table 9.1 lists all microbenchmarks, and Figure 9.2 shows the OpenCL kernels of selected mi-
crobenchmarks. The microbenchmarks are named with a prefix and a suffix. The prefix denotes
the precision of the operands: h, s and d for half-, single-, and double-precision, respectively.
sd signifies that the benchmark’s inputs and outputs are in single-precision, but the intermediate
computation is performed in double-precision. Similarly, hs signifies that the inputs and outputs
are in half-precision, but the computation is performed in single-precision.

The suffixes denote the type of the kernel: axpy for y← ax+y, a scaled vector accumulation
(see Figure 9.2a); gemm for dense matrix-matrix multiplication (see Figure 9.2b); and filter for
a Gaussian blur filter, which computes a stencil over an image. The mask versions of filter
accept an additional input array determining whether to compute that point, thus exercising predi-
cation (see Figure 9.2c). For reference, we also wrote hand-optimized versions of gemm-opt in
order to gauge the code generation quality of our custom OpenCL compiler. For C ← A × B,

Kernel Mixed-Precision Predication

{s,d}axpy
{hs,sd}axpy X

{s,d}gemm
{hs,sd}gemm X

{s,d}gemm-opt
{hs,sd}gemm-opt X

{s,d}filter
{hs,sd}filter X

mask-{s,d}filter X
mask-{hs,sd}filter X X

Table 9.1: Listing of Evaluated Microbenchmarks – The prefix denotes the precision: d for
double-precision, s for single-precision, hs for half-to-single upconvert, and sd for single-to-
double upconvert. The suffix denotes the type of microbenchmark: axpy for y ← ax + y,
gemm for dense matrix-matrix multiplication, gemm-opt for hand-optimized versions of gemm,
filter for a Gaussian blur filter, mask-filter for masked versions of gemm.

CHAPTER 9. HWACHA EVALUATION 118

1 __kernel void daxpy(__global double *src, __global double *dst, double factor)
2 {
3 long i = get_global_id(0);
4 dst[i] += src[i] * factor;
5 }

(a) daxpy

1 __kernel void dgemm(__global double *A, __global double *B, __global double *C,
2 int ldc)
3 {
4 long i = get_global_id(0);
5 long k = 4*get_global_id(1);
6 long j = 4*get_global_id(2);
7
8 #pragma unroll
9 for (long jj=j; jj<j+4; jj++) {
10 double c = C[i+jj*ldc];
11 for (long kk=k; kk<k+4; kk++) {
12 c += A[kk+jj*ldc] * B[i+kk*ldc];
13 }
14 C[i+jj*ldc] = c;
15 }
16 }

(b) dgemm

1 __kernel void mask_dfilter(__global double *src, __global double *dst, long ldc,
2 __global short *mask, // omitted in non-masked version
3 double m0, double m1, double m2,
4 double m3, double m4, double m5,
5 double m6, double m7, double m8)
6 {
7 long x = get_global_id(0);
8 long y = 2*get_global_id(1);
9
10 #pragma unroll
11 for (long yy=y; yy<y+2; yy++) {
12 if (mask[x+yy*ldc]) { // omitted in non-masked version
13 double i00 = src[(x-1)+(yy-1)*ldc]*m0;
14 double i01 = src[(x) +(yy-1)*ldc]*m1;
15 double i02 = src[(x+1)+(yy-1)*ldc]*m2;
16 double i03 = src[(x-1)+(yy) *ldc]*m3;
17 double i04 = src[(x) + yy * ldc]*m4;
18 double i05 = src[(x+1)+(yy) *ldc]*m5;
19 double i06 = src[(x-1)+(yy+1)*ldc]*m6;
20 double i07 = src[(x) +(yy+1)*ldc]*m7;
21 double i08 = src[(x+1)+(yy+1)*ldc]*m8;
22
23 dst[x+yy*ldc] = i00 + i01 + i02 + i03 + i04 + i05 + i06 + i07 + i08;
24 }
25 }
26 }

(c) mask-dfilter

Figure 9.2: OpenCL Kernels of Evaluated Microbenchmarks – (a) daxpy, (b) dgemm, and
(c) mask-dfilter. The non-masked dfilter omits the mask condition check in (c).

CHAPTER 9. HWACHA EVALUATION 119

gemm-opt loads unit-strided vectors ofC into the vector register file, keeping them in place while
striding through the A and B matrices. The values from B are unit-stride vectors; the values from
A reside in shared registers.

9.3 Scalarizing OpenCL Compiler
We have developed an OpenCL compiler as a custom LLVM [69] backend based on the PoCL
OpenCL runtime [58]. The main challenges in generating Hwacha vector code from OpenCL
kernels are moving thread-invariant values into scalar registers [120, 31, 74], identifying stylized
memory access patterns, and using predication effectively [61, 33, 73]. Thread-invariance is deter-
mined using the variance analysis presented in Chapter 4 and is performed at both the LLVM IR
level and machine instruction level. This promotion to scalar registers avoids redundant values be-
ing stored in vector registers, improving register file utilization. In addition to scalarization, thread
invariance is used to drive the promotion of loads and stores to unit-strided or constant-strided
accesses. Performing this promotion is essential for the decoupled architecture because it enables
prefetching of the vector loads and stores.

To fully support OpenCL kernel functions, the compiler must also generate predicated code for
conditionals and loops. Generating efficient predication without hardware divergence management
requires additional compiler analyses. We implement predication compiler algorithms described
in Chapter 5.

Collecting energy results on a per-kernel basis requires very detailed, hence time-consuming,
simulations. This presents a challenge for evaluating OpenCL kernels, which typically make heavy
use of the OpenCL runtime and online compilation. Fortunately, OpenCL supports offline com-
pilation, which we rely upon to avoid simulating the execution of the compiler. To obviate the
remaining runtime code, we augment our OpenCL runtime with the ability to record the inputs and
outputs of the kernel. Our runtime also generates glue code that pushes these inputs into the kernel
code, and verifies that the outputs match after the execution. The effect is that only the kernel code
of interest is simulated with great detail, substantially reducing simulation runtime.

9.4 Implementation
We implement two Hwacha designs with and without mixed-precision support and compare them
to observe the impact of our mixed-precision extensions, and to validate against the ARM Mali-
T628 MP6 GPU. We first analyze the Samsung Exynos 5422 SoC and the ARM Mali-T628 GPU
not only to understand their architecture and microarchitecture, but also to pick out parameters
for the Rocket Chip SoC generator and the Hwacha vector unit to make them as comparable as
possible. We then discuss our RTL development and VLSI flow.

CHAPTER 9. HWACHA EVALUATION 120

Functional Units

ARM Mali T628 MP6

Cortex-
A15 Quad

2MB
L2$

A15

Cortex-
A7 Quad

512KB
L2$

A7

MP Core

Reg
file

FU

Reg
file

FU

16KB Tex$

16KB D$

Scheduler

MP Core

Reg
file

FU

Reg
file

FU

16KB Tex$

16KB D$

Scheduler

128KB
L2$

64KB
L2$

CCI-400 Cache Coherent Interconnect

LPDDR3 1GB 933MHz
Channel 0

LPDDR3 1GB 933MHz
Channel 1

128-bit ALU
2xDFMA
4xSFMA
8xHFMA

32-bit
Scalar
ALU

1xSFMA

128-bit SFU
7 SFLOP/cycle

Figure 9.3: Block Diagram of the Samsung Exynos 5422 SoC Block Diagram – The SoC
contains a quad Cortex-A15 out-of-order processor complex, a quad Cortex-A7 in-order processor
complex, an ARM Mali-T628 MP6 GPU complex. All modules have private L2 caches, which
talk to the dual LPDDR3 memory channels through the CCI-400 cache coherent interconnect.

Samsung Exynos 5422 and the ARM Mali-T628 MP6 GPU
Figure 9.3 shows the block diagram of the Samsung Exynos 5422 SoC. The quad Cortex-A15 com-
plex, quad Cortex-A7 complex, and the ARM Mali-T628 MP6 are connected through the CCI-400
cache coherent interconnect that talks to two LPDDR3 channels of 1 GB running at 933 MHz [9,
54]. Table 9.2 presents the specific Rocket Chip SoC generator parameters we chose to match the
Samsung Exynos 5422 SoC.

The Mali-T628 MP6 GPU has six shader cores (termed MPs, or multiprocessors) that run at
600 MHz, exposed as two sets of OpenCL devices. Without explicitly load balancing the work
on these two devices by software, the OpenCL kernel can either only run on the two shader core
device or on the four shader core device. We first run the microbenchmarks on the device with
two shader cores, named Mali2, and again on the device with four shader cores, named Mali4.
Each shader core has four main pipes: two arithmetic pipes (128-bit wide VLIW SIMD execution
pipelines), a load/store pipe with a 16 KB data cache, and a texture pipe with a 16 KB texture cache.

CHAPTER 9. HWACHA EVALUATION 121

Component Settings

Hwacha vector unit baseline/mixed-precision, 1/2/4 lanes
Hwacha L1 vector inst cache 4 KB, 2 ways

Rocket L1 data cache 16 KB, 4 ways
Rocket L1 inst cache 16 KB, 4 ways

L2 Cache 64 KB/bank, 8 ways, 4 banks
Cache coherence MESI protocol, directory bits in L2$ tags

DRAMSim2 LPDDR3, 933 MHz, 1 GB/channel, 2 channels

Table 9.2: Used Rocket Chip SoC Generator Parameters – The parameters are configured to
make the generated Rocket Chip SoC as comparable as the Samsung Exynos 5422 SoC.

Threads are mapped to one of these four main pipes. The compiler needs to pack three instructions
per very long instruction word for the arithmetic SIMD pipelines. The three instruction slots are
a 32-bit scalar FMA (fused-multiply-add) unit, a 128-bit SIMD unit (which supports two 64-bit
FMAs, four 32-bit FMAs, or eight 16-bit FMAs), and a 128-bit SFU (special functional unit) for
dot products and transcendentals. Each shader core has an associated 32 KB of L2 cache, making
the total capacity 192 KB. Further details on the Mali architecture and how the L2 cache is split
among these two devices are sparse; an AnandTech article [116] and an ARM presentation [11] on
the Midgard GPU architecture provide some insight into the organization of Mali.

To measure power consumption of the various units, we sample the current through three sep-
arate power rails, distinguishing the power consumption of the CPU complex, the GPU, and the
memory system. We average these samples over the kernel execution, and use the average power
and kernel runtime to compute the energy consumed by the Mali GPU during kernel execution.
We examine this comparison in the next section.

One MP possesses approximately the same arithmetic throughput as one Hwacha vector lane
with mixed-precision support. The Hwacha vector lane is 128 bits wide, and has two vector func-
tional units that each support two 64-bit FMAs, four 32-bit FMAs, or eight 16-bit FMAs.

Due to time constraints, only the single-lane Hwacha configuration has been fully evaluated.
Consequently, it must be noted that the comparisons against the Mali2 and Mali4 devices are
not perfectly fair from Hwacha’s perspective, given that Mali2 and Mali4 have the advantage of
twice and quadruple the number of functional units, respectively. Nevertheless, the results are
encouraging in light of this fact, although they should be considered still preliminary, as there are
substantial opportunities that remain to tune the benchmark code for either platform.

RTL Development and VLSI Flow
The Hwacha RTL is written in Chisel [17], a domain-specific hardware description language em-
bedded in the Scala programming language. Because Chisel is embedded in Scala, hardware devel-

CHAPTER 9. HWACHA EVALUATION 122

opers can leverage features of the modern Scala programming language for increased productivity,
such as parameterized types, object-oriented programming, and functional programming. Chisel
generates both a cycle-accurate software model as well as synthesizable Verilog that can be mapped
to standard FPGA and ASIC flows. Our article on agile hardware development methodology [79]
has more details on how Chisel is used in conjunction with the VLSI tools to increase designer
productivity. We also use a custom random instruction generator tool to facilitate verification of
the Hwacha vector unit.

We use the Synopsys physical design flow (Design Compiler, IC Compiler) to map the Chisel-
generated Verilog to a standard cell library and memory-compiler-generated SRAMs in a widely-
used commercial 28 nm process technology, that resembles the 28 nm HKMG process in which
the Exynos 5422 is fabricated. We use eight layers out of ten for routing, leaving two for the top-
level power grid. The flow is highly automated to enable quick iterations through physical design
variations. When coupled with the flexibility provided by Chisel, this flow allows a tight feedback
loop between physical design and RTL implementation. The rapid feedback is vital for converging
on a decent floorplan to obtain acceptable quality of results: a week of physical design iteration
on the single-lane Hwacha design resulted in approximately 100 layouts and around a 50% faster
clock frequency.

We combine the layout information with activity factors generated via gate-level simulation of
the place-and-routed netlist to calculate power consumption. Parasitic RC constants for every wire
in the gate-level netlist are computed using the TLU+ model. Each microbenchmark is executed in
the gate-level simulator to produce an activity factor for every net in the design. The combination
of activity factors and parasitics are fed into PrimeTime PX to produce an average power number
for each benchmark. We derive energy dissipation for each benchmark by multiplying the average
power with the runtime (i.e., cycle count divided by implementation clock rate).

9.5 Memory System Validation
In order to provide reasonable DRAM model for our performance and power/energy comparisons,
we utilize DRAMsim2 [107] in our simulations. To ensure a competitive baseline for our bench-
marks, we supplied DRAMsim2 with timing parameters of a Micron LPDDR3 part matching those
of the dual-channel 933 MHz LPDDR3 on the Samsung Exynos 5422 SoC. We use ccbench to
empirically confirm that our simulated memory hierarchy is similar to that of the Exynos 5422
SoC.

The ccbench benchmarking suite [28] contains a variety of benchmarks to characterize multi-
core systems. We use ccbench’s caches benchmark, which performs a pointer chase to mea-
sure latencies of each level of the memory hierarchy. In unit-stride mode, each pointer in the array
of pointers points to the next contiguously placed pointer in memory. In cache-line stride mode,
each pointer points to another pointer cache-line size away in memory, to avoid spatial prefetching.
In random-stride mode, each pointer points to a random pointer in the array, to avoid both stride
and stream prefetching. The size of the array of pointers can be varied to exercise differing pieces
of the memory hierarchy.

CHAPTER 9. HWACHA EVALUATION 123

1 kB 2 kB 4 kB 8 kB 16 kB
32 kB

64 kB
128 kB

256 kB
512 kB

1 MB
2 MB

Array Size

1

2

4

8

16

32

64

128

256

Ti
m

e
Pe

r I
te

ra
tio

n
(n

s)

L1 D-Cache
(16 kB)

~4 cycles

L2 Cache
(256 kB)

~24 cycles

DRAM
~110 ns

RISC-V Rocket @ 1.00 GHz

Unit Stride Cache Line Stride Random Stride

1 kB 2 kB 4 kB 8 kB16 kB
32 kB

64 kB
128 kB

256 kB
512 kB

1 MB
2 MB

4 MB
8 MB

16 MB
32 MB

64 MB
128 MB

256 MB

Array Size

1

2

4

8

16

32

64

128

256

Ti
m

e
Pe

r I
te

ra
tio

n
(n

s)

L1 D-Cache
(32 kB)

~4 cycles

L2 Cache
(2 MB)

~24 cycles

DRAM
~110 ns

Samsung Exynos 5422 (ARM Cortex-A15) @ 2.00 GHz

Unit Stride Cache Line Stride Random Stride

Figure 9.4: Memory System Validation – We run the ccbench “caches” memory system
benchmark on the RISC-V Rocket processor and the ARM Cortex-A15 processor to validate the
memory system of the Rocket Chip SoC generator.

Figure 9.4 compares the performance of our cycle-accurate simulated memory hierarchy against
the Exynos 5422 SoC using the caches benchmark in ccbench. On the simulated RISC-V
Rocket core, ccbench measures cycles, which we normalize to nanoseconds by assuming the
1 GHz clock of previous silicon implementations of Rocket cores [78, 136]. On the Exynos 5422
SoC, ccbench measures wall-clock time to produce our results.

This baseline comparison highlights two important features that validate our experiments.
Firstly, while the L1 and L2 cache sizes differ between the Rocket core and the Exynos 5422
SoC, the L1 and L2 caches have similar latencies in terms of processor clock cycles. With both a
1 GHz Rocket core and a 2 GHz ARM Cortex-A15, the L1 hit latency is approximately 4 cycles and
the L2 hit latency is approximately 22 cycles. Secondly, both the simulated LPDDR3 used in our
experiments and the LPDDR3 in the Exynos 5422 SoC achieve similar latencies of approximately
110 ns.

Nevertheless, one significant difference remains in the inclusion of a streaming prefetcher
within the ARM Cortex-A15, which reduces the latency of unit-stride and non-unit-stride loads
and stores [8].

9.6 Area and Cycle-Time Comparison
Table 9.3 lists the total area numbers, cycle-times, and clock frequencies obtained for a variety of
Hwacha configurations. Recall that Mali2 is clocked at 600 MHz but contains approximately twice
the number of functional units. To attempt to match functional unit bandwidth with a single-lane
Hwacha design, we target Hwacha for a nominal frequency of 1.2 GHz. While actual frequencies
fall slightly short, they are still generally above 1 GHz. However, the aggressive physical design
does involve a trade-off in area.

CHAPTER 9. HWACHA EVALUATION 124

Hwacha Baseline Hwacha MXP

Lanes 1 1 2 4 1 1 2 4

Area (mm2) 2.23 2.11 2.60 3.59 2.32 2.21 2.82 4.04
Cycle-Time (ns) 0.95 0.90 0.93 0.93 0.98 0.94 1.02 1.08
Frequency (GHz) 1.05 1.11 1.08 1.08 1.02 1.06 0.98 0.93

PNR? X X

Table 9.3: VLSI Quality of Results – Columns not marked as PNR are results from synthesis.
MXP = Mixed-Precision.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

A
re

a
(m

m
2)

Hwacha: Functional Units

Hwacha: Banks

Hwacha: Control

Hwacha: Frontend

Hwacha: Other

Rocket + L1

L2

Figure 9.5: Area Distribution for the 1/2/4-Lane Hwacha Baseline and Hwacha MXP (Mixed-
Precision) Designs – Data for the 2-lane and 4-lane designs are from synthesis only.

CHAPTER 9. HWACHA EVALUATION 125

1.6 mm

1.
45

 m
m

Uncore

Hwacha

VRF

L1
VI$

L1D$ L1I$

Rocket

(a) Tile: Rocket and Hwacha

1.6 mm

1.
45

 m
m

Rocket
Tile

L2$
Bank0

L2$
Bank1

L2$
Bank2

L2$
Bank3

Xbar0 Xbar1

(b) Uncore: L2 Cache and Interconnect

Figure 9.6: Layout of the Single-lane Hwacha Design with Mixed-Precision Support – (a)
Tile, and (b) Uncore. VRF = vector register file, VI$ = vector instruction cache, Xbar0 = L1-to-L2
TileLink crossbar, Xbar1 = AXI4 crossbar.

CHAPTER 9. HWACHA EVALUATION 126

C0

C1

C2

C5

C4

C3

L2$

H

Figure 9.7: Annotated Die Photo of the 20 nm Samsung Exynos 5430 SoC – The total die area
is 110.18mm2, and the ARM Mali T628 MP6 GPU takes up 25mm2 of the total SoC area [44].
The ARM Mali GPU has 6 shader cores and a 512 KB L2 cache [104]. Each shader core (C0–
C5) and the L2 cache area (L2$) are highlighted in the die photo. Contrast the ARM Mali GPU
with the green H box, which is the Hwacha design in Figure 9.6 (single-lane Hwacha design with
mixed-precision support and a 256 KB L2 cache) shrunk down to 20 nm and drawn at scale.

Figure 9.5 shows the area distribution of the baseline Hwacha design and the Hwacha design
with mixed-precision support for 1-, 2-, and 4-lane configurations. As seen in the figure, the area
overhead for the mixed-precision extensions spans from 4.0% in the single-lane design to 12.5%
in the four-lane design. The additional functional units account for a large portion of the increase.
The banks also become somewhat larger from the widening of the predicate register file, as does
the control due to the non-trivial amount of comparators needed to implement the expander hazard
check in the sequencers. Area for functional units, banks, control, and the vector memory units
(part of the other bar) grows proportional to the number of lanes for the multi-lane designs.

Figure 9.6 shows the layout of the single-lane Hwacha design with mixed-precision support
and a 256 KB L2 cache. Various module hierarchies and SRAM macros are highlighted in the
layout figure.

The Samsung Exynos die photos and area breakdowns are rarely published. The 28 nm Exynos
SoC was published at the ISSCC conference in 2013 [113], however, the GPU was excluded from
the die photo. The 2015 ISSCC paper [104] had a die photo of the entire 20 nm Exynos SoC (see
Figure 9.7), however, it did not give out any area numbers. A follow-on Anandtech article [44] pro-
vides detailed area breakdown of various Exynos SoCs including the sizes of the ARM Mali GPU.

CHAPTER 9. HWACHA EVALUATION 127

According to the article, the Exynos 5420 SoC (comparable to the Exynos 5422 SoC) is about
137mm2 in total area, and the ARM Mali T628 MP6 with a 192 KB L2 cache is about 30mm2.
Using the numbers in Figure 9.5, a rough estimate of a comparable 6-lane Hwacha design with a
256 KB L2 cache comes out to be 6.2mm2 in the same 28 nm technology. Note that the Hwacha
design does not have dedicated hardware units for graphics such as SFUs (special functional units)
present in ARM Mali GPUs. Conservatively assuming that the overhead of graphics is 50%, the
Hwacha design with mixed-precision support is still 3× more area-efficient than the ARM Mali
T628 MP6 GPU.

9.7 Performance Comparison
For the set of hand-optimized assembly and OpenCL benchmarks, Figure 9.8 graphs the speedup
normalized to baseline Hwacha running the OpenCL version. Compared to Mali2, Hwacha suf-
fers from a slight disadvantage in functional unit bandwidth from being clocked closer to 1 GHz
rather than the ideal 1.2 GHz. Compared to Mali4, Hwacha has less than half the functional unit
bandwidth.

For *axpy, MXP (mixed-precision support) has a marginal effect on performance. As a
streaming kernel, it is primarily memory-constrained and therefore benefits little from the higher
arithmetic throughput offered by MXP. *axpy is also the only set of benchmarks in which Mali2
and Mali4 consistently outperforms Hwacha by a factor of 1.5 to 2. This disparity most likely indi-
cates some low-level mismatches in the outer memory systems of Mali and our simulated setup—
for example, in the memory access scheduler. We used the default parameters for the memory
access scheduler that were shipped with the DRAMSim2 project.

The benefits of MXP become clearer with *gemm as it is more compute-bound, and more op-
portunities for in-register data reuse arise. As expected for dgemm* and sdgemm*, no difference
in performance is observed between the baseline and MXP, since the two designs have the same
number of double-precision FMA units. A modest speedup is seen with sgemm-unroll, al-
though still far from the ideal factor of 2 given the single-precision FMA throughput. Curiously,
MXP achieves almost no speedup on sgemm-unroll-opt. It is possible that the matrices are
simply too undersized for the effects to be major. hgemm* and hsgemm* demonstrate the most
dramatic improvements; however, the speedup is sublinear since, with the quadrupled arithmetic
throughput, memory latency becomes more problematic per Amdahl’s law.

A significant gap is apparent between the OpenCL and hand-optimized versions of the same
benchmarks. The primary reason is that the latter liberally exploits inter-vector-fetch optimizations
whereby data is retained in the vector register file and reused across vector-fetch blocks. It is
perhaps a fundamental limitation of the programming model that prevents this behavior from being
expressed in OpenCL, resulting in redundant loads and stores at the beginning and end of each
vector-fetch block.

For all precisions of *gemm, Mali2 performs surprisingly poorly, by a factor of 3 or 4 slowdown
relative to the Hwacha baseline. Mali4 performs about 2× better than Mali2, however, is still

CHAPTER 9. HWACHA EVALUATION 128

slower than the Hwacha baseline. We speculate that the working set is simply unable to fit in
cache. Thus, this particular run should not be considered to be entirely fair.

Finally, the baseline and MXP perform about equivalently on *filter. A slight improvement
is discernible for sfilter and mask-sfilter, and a more appreciable speedup is evident
with hsfilter and mask-hsfilter. The performance of Mali2 is generally about half that
of Hwacha, and Mali4 is on par with Hwacha.

9.8 Energy Comparison
Figure 9.9 graphs the energy consumption for each benchmark, normalized once again to the base-
line Hwacha results for the OpenCL versions. Note that the Mali GPU runs on a supply voltage of
0.9 V, whereas we overdrive Hwacha with a 1 V supply to meet the 1 GHz frequency target.

For *axpy, Hwacha MXP dissipates slightly more energy than the Hwacha baseline, with
dynamic energy from the functional units comprising most of the difference. In other benchmarks
as well, the functional units account for a higher proportion of losses in Hwacha MXP, which may
indicate sub-par effectiveness of clock gating with the extra functional units. Consistent with its
performance advantage, Mali2 and Mali4 are twice as energy-efficient on *axpy than Hwacha.

The results for *gemm are much more varied. Although Hwacha MXP is less energy-efficient
than the baseline on benchmarks for which it can provide no performance advantage, such as
dgemm, it is more so on sgemm, hsgemm, and hgemm. These collectively demonstrate a consis-
tent downward trend of increasingly significant reductions in energy consumption as the precision
is lowered. Mali data points are again an outlier here, and no conclusion should be drawn.

Energy dissipation on *filter generally mirrors performance. Overall, Hwacha MXP is
slightly worse than the Hwacha baseline except on hsfilter. Mali similarly retains an advan-
tage as it does with performance, with some exceptions involving reduced-precision computation,
i.e., both masked and non-masked versions sfilter and hsfilter. On these, the energy effi-
ciency of Hwacha MXP is on par with Mali2 and worse when compared to Mali4.

C
H

A
PT

E
R

9.
H

W
A

C
H

A
E

VA
L

U
A

T
IO

N
129

0

0.5

1

1.5

2

2.5

3

da
xp

y
da

xp
y

da
xp

y
da

xp
y

sa
xp

y
sa

xp
y

sa
xp

y
sa

xp
y

sd
ax

py
sd

ax
py

sd
ax

py
sd

ax
py

hs
ax

py
hs

ax
py

hs
ax

py
hs

ax
py

dg
em

m
-u

nr
ol

l
dg

em
m

-u
nr

ol
l

dg
em

m
-u

nr
ol

l-o
pt

dg
em

m
-u

nr
ol

l-o
pt

dg
em

m
-u

nr
ol

l
dg

em
m

-u
nr

ol
l

sg
em

m
-u

nr
ol

l
sg

em
m

-u
nr

ol
l

sg
em

m
-u

nr
ol

l-o
pt

sg
em

m
-u

nr
ol

l-o
pt

sg
em

m
-u

nr
ol

l
sg

em
m

-u
nr

ol
l

sd
ge

m
m

-u
nr

ol
l

sd
ge

m
m

-u
nr

ol
l

sd
ge

m
m

-u
nr

ol
l-o

pt
sd

ge
m

m
-u

nr
ol

l-o
pt

sd
ge

m
m

-u
nr

ol
l

sd
ge

m
m

-u
nr

ol
l

hs
ge

m
m

-u
nr

ol
l

hs
ge

m
m

-u
nr

ol
l

hs
ge

m
m

-u
nr

ol
l-o

pt
hs

ge
m

m
-u

nr
ol

l-o
pt

hs
ge

m
m

-u
nr

ol
l

hs
ge

m
m

-u
nr

ol
l

hg
em

m
-u

nr
ol

l-o
pt

hg
em

m
-u

nr
ol

l-o
pt

df
ilt

er
-u

nr
ol

l
df

ilt
er

-u
nr

ol
l

df
ilt

er
-u

nr
ol

l
df

ilt
er

-u
nr

ol
l

sf
ilt

er
-u

nr
ol

l
sf

ilt
er

-u
nr

ol
l

sf
ilt

er
-u

nr
ol

l
sf

ilt
er

-u
nr

ol
l

sd
fil

te
r-

un
ro

ll
sd

fil
te

r-
un

ro
ll

sd
fil

te
r-

un
ro

ll
sd

fil
te

r-
un

ro
ll

hs
fil

te
r-

un
ro

ll
hs

fil
te

r-
un

ro
ll

hs
fil

te
r-

un
ro

ll
hs

fil
te

r-
un

ro
ll

m
as

k-
df

ilt
er

-u
nr

ol
l

m
as

k-
df

ilt
er

-u
nr

ol
l

m
as

k-
df

ilt
er

-u
nr

ol
l

m
as

k-
df

ilt
er

-u
nr

ol
l

m
as

k-
sf

ilt
er

-u
nr

ol
l

m
as

k-
sf

ilt
er

-u
nr

ol
l

m
as

k-
sf

ilt
er

-u
nr

ol
l

m
as

k-
sf

ilt
er

-u
nr

ol
l

m
as

k-
sd

fil
te

r-
un

ro
ll

m
as

k-
sd

fil
te

r-
un

ro
ll

m
as

k-
sd

fil
te

r-
un

ro
ll

m
as

k-
sd

fil
te

r-
un

ro
ll

m
as

k-
hs

fil
te

r-
un

ro
ll

m
as

k-
hs

fil
te

r-
un

ro
ll

m
as

k-
hs

fil
te

r-
un

ro
ll

m
as

k-
hs

fil
te

r-
un

ro
ll

Sp
ee

du
p

re
la

tiv
e t

o
ba

se
lin

e
H

w
ac

ha

Hwacha Baseline Hwacha MXP Hwacha Baseline Hand-Optimized Hwacha MXP Hand-Optimized Mali2 Mali4

Figure 9.8: Hwacha Performance Results – Higher is better. Due to scale, bars for certain benchmarks have been truncated.
sdgemm-unroll-opt has speedups 14.0× on the Hwacha baseline and 13.8× on Hwacha MXP. hsgemm-unroll-opt has speedups
12.0× on the Hwacha baseline and 19.0× on Hwacha MXP.

C
H

A
PT

E
R

9.
H

W
A

C
H

A
E

VA
L

U
A

T
IO

N
130

0.00

0.50

1.00

1.50

2.00

2.50

da
xp

y
da

xp
y

da
xp

y
da

xp
y

sa
xp

y
sa

xp
y

sa
xp

y
sa

xp
y

sd
ax

py
sd

ax
py

sd
ax

py
sd

ax
py

hs
ax

py
hs

ax
py

hs
ax

py
hs

ax
py

dg
em

m
-u

nr
ol

l
dg

em
m

-u
nr

ol
l

dg
em

m
-u

nr
ol

l-o
pt

dg
em

m
-u

nr
ol

l-o
pt

dg
em

m
-u

nr
ol

l
dg

em
m

-u
nr

ol
l

sg
em

m
-u

nr
ol

l
sg

em
m

-u
nr

ol
l

sg
em

m
-u

nr
ol

l-o
pt

sg
em

m
-u

nr
ol

l-o
pt

sg
em

m
-u

nr
ol

l
sg

em
m

-u
nr

ol
l

sd
ge

m
m

-u
nr

ol
l

sd
ge

m
m

-u
nr

ol
l

sd
ge

m
m

-u
nr

ol
l-

op
t

sd
ge

m
m

-u
nr

ol
l-

op
t

sd
ge

m
m

-u
nr

ol
l

sd
ge

m
m

-u
nr

ol
l

hs
ge

m
m

-u
nr

ol
l

hs
ge

m
m

-u
nr

ol
l

hs
ge

m
m

-u
nr

ol
l-

op
t

hs
ge

m
m

-u
nr

ol
l-

op
t

hs
ge

m
m

-u
nr

ol
l

hs
ge

m
m

-u
nr

ol
l

hg
em

m
-u

nr
ol

l-o
pt

hg
em

m
-u

nr
ol

l-o
pt

df
il

te
r-

un
ro

ll
df

il
te

r-
un

ro
ll

df
il

te
r-

un
ro

ll
df

il
te

r-
un

ro
ll

sf
il

te
r-

un
ro

ll
sf

il
te

r-
un

ro
ll

sf
il

te
r-

un
ro

ll
sf

il
te

r-
un

ro
ll

sd
fi

lt
er

-u
nr

ol
l

sd
fi

lt
er

-u
nr

ol
l

sd
fi

lt
er

-u
nr

ol
l

sd
fi

lt
er

-u
nr

ol
l

hs
fi

lt
er

-u
nr

ol
l

hs
fi

lt
er

-u
nr

ol
l

hs
fi

lt
er

-u
nr

ol
l

hs
fi

lt
er

-u
nr

ol
l

m
as

k-
df

il
te

r-
un

ro
ll

m
as

k-
df

il
te

r-
un

ro
ll

m
as

k-
df

il
te

r-
un

ro
ll

m
as

k-
df

il
te

r-
un

ro
ll

m
as

k-
sf

il
te

r-
un

ro
ll

m
as

k-
sf

il
te

r-
un

ro
ll

m
as

k-
sf

il
te

r-
un

ro
ll

m
as

k-
sf

il
te

r-
un

ro
ll

m
as

k-
sd

fi
lte

r-
un

ro
ll

m
as

k-
sd

fi
lte

r-
un

ro
ll

m
as

k-
sd

fi
lte

r-
un

ro
ll

m
as

k-
sd

fi
lte

r-
un

ro
ll

m
as

k-
hs

fi
lte

r-
un

ro
ll

m
as

k-
hs

fi
lte

r-
un

ro
ll

m
as

k-
hs

fi
lte

r-
un

ro
ll

m
as

k-
hs

fi
lte

r-
un

ro
ll

H HXM2M4 H HXM2M4 H HXM2M4 H HXM2M4 H HX H HXM2M4 H HX H HXM2M4 H HX H HXM2M4 H HX H HXM2M4 H HX H HXM2M4 H HXM2M4 H HXM2M4 H HXM2M4 H HXM2M4 H HXM2M4 H HXM2M4 H HXM2M4

En
er

gy
 re

la
tiv

e t
o

ba
se

lin
e

H
w

ac
ha

 (H
)

Leakage L2 Rocket + L1 Hwacha Other Banks Lane Other Functional Units Mali2 Mali4

Figure 9.9: Hwacha Energy Results – Lower is better. H = Hwacha baseline, HX = Hwacha MXP, M2 = Mali2, M4 = Mali4.

131

Chapter 10

Conclusion

In the post-Moore’s law era, computer architects are forced to incorporate custom accelerators
alongside the general-purpose processor to achieve higher performance and better energy effi-
ciency. It is up to the computer architect either to build a sea of fixed-function accelerators or to
embrace general-purpose specialization by deploying a handful of accelerators that are more flex-
ible and programmable. This thesis has explored a new approach to building a highly performant
and efficient data-parallel accelerator that maintains the same level of programmability as other
data-parallel accelerators, by pushing the burden of factoring out redundant values and predicating
the control flow found in data-parallel programs into a scalarizing compiler, therefore simplifying
the underlying vector hardware.

10.1 Thesis Summary and Contributions
This thesis began by introducing data-parallel programming languages, assembly programming
models, architectural features, and divergence management schemes of various data-parallel ar-
chitectures out in the field. We discussed the overheads and inefficiencies of these data-parallel
architectures, and proposed that a simple traditional vector-like architecture coupled with a scalar-
izing compiler is able to improve performance and energy efficiency while maintaining the same
level of programmability as other architectures. We outlined the Hwacha vector-fetch architecture,
its instruction set architecture, microarchitecture, and implementation in a modern 28 nm process
node. We validated our Hwacha design against an ARM Mali-T628 MP6 GPU also implemented
in a similar 28 nm process node, and showed that our new approach is competitive to industry-built
data-parallel architectures. These ideas and results form the key contributions of this thesis, which
are outlined below.

• Survey of Data-Parallel Architectures on their Assembly Programming Models, Ar-
chitectural Features, and Compiler Support – This thesis introduced implicit autovector-
ization and the explicit Single-Program Multiple-Data (SPMD) model as the widely used
parallel programming languages for data-parallel architectures. We outlined a wide range of
data-parallel architectures and their assembly programming models as well as architectural

CHAPTER 10. CONCLUSION 132

features to give programmers and compiler writers an idea on how code gets executed on
these machines, and how parallel programming models get mapped down to these architec-
tures. We presented divergence management schemes of these data-parallel architectures in
more detail, as they often dictate the underlying machine organization. See Chapter 2 for
more details.

• Scalarizing Compilers – This thesis established the foundation for scalarizing compilers.
They are tasked to find the most efficient mapping of explicitly parallel programs down to
the data-parallel architecture alongside scalar execution resources by automatically picking
out redundant values and operations, and breaking complex control flow down to simple
vector predication. Chapter 3 presented the overheads of the explicit SPMD programming
model, crystallized the concept of scalarizing compilers, and compared them to vectorizing
compilers that are tasked to automatically pick out parallel parts from single-threaded code
and map them onto the data-parallel architecture. Chapter 4 and 5 described the compiler
foundation, implementation in a production CUDA compiler, and evaluation results of the
scalarization and predication compiler algorithms, respectively.

• The Hwacha Vector-Fetch Architecture – This thesis proposed the Hwacha vector-fetch
architecture to show that traditional vector-like architectures coupled with a scalarizing com-
piler can maintain the same level of programmability as other data-parallel architectures
while being highly performant, efficient, yet a favorable compiler target. The Hwacha vector-
fetch architecture decouples the vector instruction stream into a separate thread with a vector-
fetch instruction in order to enable light-weight access-execute decoupling of the vector data
stream. We proposed and implemented the new Hwacha decoupled vector microarchitec-
ture that exploits the vector-fetch decoupling within a cache-coherent memory system to
efficiently tolerate long and variable memory latencies. We validated the Hwacha design
against the ARM Mali-T628 MP6 GPU by running a suite of microbenchmarks compiled
from the same OpenCL source code with our custom LLVM-based scalarizing compiler and
ARM’s stock OpenCL compiler. Chapter 6 detailed the assembly programming model and
architectural features of the Hwacha vector-fetch architecture. Chapter 7, Chapter 8, and
Chapter 9 described the Hwacha instruction set architecture, decoupled vector microarchi-
tecture, and evaluation results, respectively.

This thesis documents the long journey on the Hwacha vector-fetch architecture project. Fig-
ure 10.1 shows the timeline history for the Hwacha project and the other projects to which I
have contributed. The Maven vector-thread architecture project explored the programmability
and efficiency of a wide range of data-parallel accelerators including MIMD, traditional vector,
and the newly proposed Maven vector-thread architecture. The Hwacha vector-fetch architec-
ture was developed in four phases (see Section 6.3 for detailed history), including the two ma-
jor phases in which scalarization and predication ideas were developed. The Hwacha architec-
ture was co-developed with multiple tapeouts for the Raven project and the EOS project. The
28 nm Raven chips combined a 64 bit RISC-V processor and the Hwacha vector accelerator with
on-chip switched-capacitor DC-DC converters and adaptive clocking [136, 80, 135]. The 45 nm

CHAPTER 10. CONCLUSION 133

J
F
M
A
M
J
J
A
S
O
N
D

2009

J
F
M
A
M
J
J
A
S
O
N
D

2010

J
F
M
A
M
J
J
A
S
O
N
D

2011

J
F
M
A
M
J
J
A
S
O
N
D

2012

J
F
M
A
M
J
J
A
S
O
N
D

2013

J
F
M
A
M
J
J
A
S
O
N
D

2014

J
F
M
A
M
J
J
A
S
O
N
D

2015

R
av

en
1

R
av

en
2

R
av

en
3

R
av

en
4

EO
S1

4

EO
S1

6

EO
S1

8

EO
S2

0

EO
S2

2

EO
S2

4

sc
al

ar
iz

at
io

n
pr

ed
ic

at
io

n

ar
ch

ite
ct

ur
e

ua
rc

h
ua

rc
h

op
t

Maven
Project

Hwacha
Project

Raven
Project

EOS
Project

hw
ac

ha
 v

1
hw

ac
ha

 v
2

hw
ac

ha
 v

3
hw

ac
ha

 v
4

Figure 10.1: Thesis Timeline – We have co-developed the Hwacha vector-fetch architecture with
multiple tapeouts for the Raven project and EOS project. [79] has more details on the four 28 nm
Raven chips and the six 45 nm EOS chips we have built.

CHAPTER 10. CONCLUSION 134

EOS chips integrated a 64 bit dual-core RISC-V processor and the Hwacha vector accelerator with
monolithically-integrated silicon photonics links [78, 122]. Our IEEE Micro magazine article [79]
details our agile hardware development methodology on how we co-designed our architecture and
chips together, and how it enabled us to build industry-competitive 1 GHz–1.65 GHz RISC-V vec-
tor microprocessors with a small team. Overall, it took about 5 years to go from the initial concept
to an actual implementation that can execute compiled OpenCL benchmarks and generate perfor-
mance and energy numbers for a comparison against an industry-built GPU.

10.2 Future Work
Sections 4.5, 5.5, and 7.3 discussed specific directions for future work with respect to scalarization,
predication, and the Hwacha vector instruction set architecture. The last section of this thesis
briefly outlines more general thoughts on future work.

Open-Source the Hwacha Implementation. We plan to open-source the Hwacha golden func-
tional model, Hwacha RTL, Hwacha verification suite, and our custom LLVM-based scalarizing
compiler, which takes OpenCL programs and generates Hwacha assembly code, in the near future.
This is the actual design we have taped-out multiple times on the 28 nm and 45 nm process nodes
that achieved 1 GHz–1.65 GHz. We have been finding good design patterns to express hardware in
Chisel across four generations of Hwacha RTL that have been written from scratch every genera-
tion. We also hope that the open-source Hwacha RTL can serve as a good example for other Chisel
designers to see how modern programming language features such as object-oriented program-
ming, functional programming, parameterized types, abstract data types, operator overloading,
and type inference can improve hardware designer productivity and increase code reuse.

Execute the Vector-Fetch Block Temporally for Better Energy Efficiency. The current Hwacha
microarchitecture maintains an instruction window that keeps track of a couple of vector instruc-
tions that are in flight, and only retires the oldest vector instruction from the instruction window
once all elements in the vector are fully sequenced. This means that all vector operands are read
from and written to the SRAM-based vector register file, which is expensive to access in terms of
energy. The next step would be to explore microarchitectural ideas to alter the execution order of
all operations within the vector-fetch block to better expose temporal locality. Rather than execut-
ing the vector-fetch block for all elements at once, an alternate scheduling scheme would execute
the vector-fetch block for a strip of elements (i.e., a subset of the vector) before moving on to the
next strip. With this new scheduling scheme, the compiler will be able to exploit short definition-
use chains [89], and put these operands in a separate vector temporary register file, which would
typically be mapped to a small flip-flop-based register file to reduce operand access energy [46,
62]. The vector temporary registers will let the compiler to shrink the element state that needs to
be preserved in the SRAM-based vector register file across vector-fetch blocks, therefore increas-
ing the maximum hardware vector length, which in turn can better hide long memory latencies for
vector gather operations. The alternate scheduling scheme will also increase the likelihood of a

CHAPTER 10. CONCLUSION 135

strip having the same consensual branch condition, therefore improving performance and energy
efficiency of executing code with highly irregular control flow.

Further Evaluate the Benefits of Mixed-Precision Support. GPUs have been gradually adding
better hardware support for mixed-precision operations. The recently added half-precision opera-
tions in various GPUs are a good example of this. However, the benchmarks and applications that
we have used in this thesis do not fully take advantage of this feature yet. The next step would
be to further evaluate the benefits of the mixed-precision extension with benchmarks that are writ-
ten with first-class mixed-precision support in mind. We may also benefit from floating-point
precision-optimizing tools such as Precimonius [108] to assist programmers in writing mixed-
precision floating-point benchmarks.

Further Evaluate the Multi-Lane and Multi-Core Hwacha Decoupled Vector Accelerator.
Chapter 9 has focused on evaluating the single-lane Hwacha design point. However, the Hwacha
microarchitecture and the RTL is designed to support multi-lane and multi-core design points.
With these multi-lane and multi-core design points in mind, we should consider dialing down the
clock frequency that is used to synthesize and place-and-route the design. The next step would
be to push these additional design points through the VLSI flow to not only see the impact on
area, performance, and energy efficiency numbers, but also compare these numbers with high-end
data-parallel accelerators that have more execution resources.

Further Generalize Accelerator Support in RISC-V. The Hwacha vector-fetch architecture
was co-developed with the Rocket Chip SoC generator as the driving example on how to attach
accelerators within the generator framework. We have distilled the important interactions between
a RISC-V core and an accelerator down to the RoCC (Rocket Custom Coprocessor) interface. The
next step would be to further generalize this RoCC interface to support a wider range of accelera-
tors, and to develop software tools that generate custom compiler toolchains for new accelerators.

136

Bibliography

[1] John R. Allen and Ken Kennedy. “Automatic Loop Interchange”. In: SIGPLAN Symposium
on Compiler Construction (SIGPLAN) 19.6 (June 1984), pp. 233–246.

[2] John R. Allen, Ken Kennedy, Carrie Porterfield, and Joe Warren. “Conversion of Control
Dependence to Data Dependence”. In: ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages (POPL) (Jan. 1983), pp. 177–189.

[3] Randy Allen and Ken Kennedy. “Automatic Translation of FORTRAN Programs to Vector
Form”. In: ACM Transactions on Programming Languages and Systems (TOPLAS) 9.4
(Oct. 1987), pp. 491–542.

[4] Randy Allen and Ken Kennedy. “Vector Register Allocation”. In: IEEE Transactions on
Computers 41.10 (Oct. 1992), pp. 1290–1317.

[5] AMD. AMD Graphic Core Next Architecture. AMD Fusion Developer Summit 11. 2011.

[6] AMD. Graphics Core Next Architecture, Generation 3. AMD White Paper. 2015.

[7] AMD. Southern Islands Series Instruction Set Architecture. AMD White Paper. 2012.

[8] ARM. ARM Cortex-A15 MPCore Processor. Technical Reference Manual. 2013.

[9] ARM. big.LITTLE Technology: The Future of Mobile. ARM White Paper. 2013.

[10] ARM. Introducing NEON Development Article. ARM White Paper. 2009.

[11] ARM. Midgard GPU Architecture. Oct. 2014.

[12] Krste Asanović. Torrent Architecture Manual. Tech. rep. EECS Department, University of
California, Berkeley, Dec. 1996.

[13] Krste Asanović. “Vector Microprocessors”. PhD thesis. EECS Department, University of
California, Berkeley, 1998.

[14] Krste Asanović, James Beck, Bertrand Irissou, Brian Kingsbury, Nelson Morgan, and John
Wawrzynek. “The T0 Vector Microprocessor”. In: Symposium on High Performance Chips
(Hot Chips) (Aug. 1995).

[15] Krste Asanović, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry Hus-
bands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John Shalf, Samuel
Webb Williams, and Katherine A. Yelick. The Landscape of Parallel Computing Research:
A View from Berkeley. Tech. rep. UCB/EECS-2006-183. EECS Department, University of
California, Berkeley, Dec. 2006.

BIBLIOGRAPHY 137

[16] Krste Asanović, Brian Kingsbury, Bertrand Irissou, James Beck, and John Wawrzynek.
“T0: A Single-Chip Vector Microprocessor with Reconfigurable Pipelines”. In: European
Solid-State Circuits Conference (ESSCIRC) (Sept. 1996).

[17] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas Avižienis,
John Wawrzynek, and Krste Asanović. “Chisel: Constructing Hardware in a Scala Embed-
ded Language”. In: Design Automation Conference (DAC) (June 2012), pp. 1212–1221.

[18] Ali Bakhoda, George L. Yuan, Wilson W. L. Fung, Henry Wong, and Tor M. Aamodt. “An-
alyzing CUDA Workloads Using a Detailed GPU Simulator”. In: International Symposium
on Performance Analysis of Systems and Software (ISPASS) (Apr. 2009), pp. 163–174.

[19] Thomas Ball. “What’s in a Region?: or Computing Control Dependence Regions in Near-
linear Time for Reducible Control Flow”. In: ACM Letters on Programming Languages
and Systems (LOPLAS) 2.1-4 (Mar. 1993), pp. 1–16.

[20] Utpal Banerjee. “Data Dependence in Ordinary Programs”. MA thesis. Department of
Computer Science, University of Illinois at Urbana-Champaign, 1976.

[21] Christopher Batten. “Simplified Vector-Thread Architectures for Flexible and Efficient
Data-Parallel Accelerators”. PhD thesis. Massachusetts Institute of Technology, 2010.

[22] Christopher Batten, Ronny Krashinsky, Steve Gerding, and Krste Asanović. “Cache Re-
fill/Access Decoupling for Vector Machines”. In: International Symposium on Microarchi-
tecture (MICRO) (Dec. 2004).

[23] A.J. Bernstein. “Analysis of Programs for Parallel Processing”. In: IEEE Transactions on
Electronic Computers EC-15.5 (Oct. 1966), pp. 757–763.

[24] Dileep Bhandarkar and Richard Brunner. “VAX Vector Architecture”. In: International
Symposium on Computer Architecture (ISCA) (May 1990), pp. 204–215.

[25] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. “A Practical Auto-
matic Polyhedral Parallelizer and Locality Optimizer”. In: ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI) (June 2008), pp. 101–113.

[26] W. Buchholz. “The IBM System/370 Vector Architecture”. In: IBM Systems Journal 25.1
(1986), pp. 51–62.

[27] Gregory T. Byrd and Mark A. Holliday. “Multithreaded Processor Architectures”. In: IEEE
Spectrum 32.8 (Aug. 1995), pp. 38–46.

[28] Christopher Celio. Characterizing Multi-Core Processors Using Micro-benchmarks. UC
Berkeley Parlab Winter 2012 Retreat. 2012.

[29] Shailender Chaudhry, Robert Cypher, Magnus Ekman, Martin Karlsson, Anders Landin,
Sherman Yip, Håkan Zeffer, and Marc Tremblay. “Rock: A High-Performance Sparc CMT
Processor”. In: IEEE Micro Magazine (Mar. 2009), pp. 6–16.

BIBLIOGRAPHY 138

[30] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-Ha
Lee, and Kevin Skadron. “Rodinia: A Benchmark Suite for Heterogeneous Computing”.
In: International Symposium on Workload Characterization (IISWC) (Oct. 2009), pp. 44–
54.

[31] Sylvain Collange. Identifying Scalar Behavior in CUDA Kernels. Tech. rep. hal-00555134.
Université de Lyon, Jan. 2011.

[32] Henry M. Cook, Andrew S. Waterman, and Yunsup Lee. TileLink Cache Coherence Pro-
tocol Implementation. White Paper. 2015.

[33] Bruno Coutinho, Diogo Sampaio, Fernando Magno Quintão Pereira, and Wagner Meira Jr.
“Divergence Analysis and Optimizations”. In: International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT) (Oct. 2011), pp. 320–329.

[34] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck.
“Efficiently Computing Static Single Assignment Form and the Control Dependence Graph”.
In: ACM Transactions on Programming Languages and Systems (TOPLAS) 13 (4 Oct.
1991), pp. 451–490.

[35] Robert H. Dennard, Fritz H. Gaensslen, Hwa-Nien Yu, V. Leo Rideout, Ernest Bassous,
and Andre R. LeBlanc. “Design of Ion-Implanted MOSFET’s with Very Small Physical
Dimensions”. In: IEEE Journal of Solid-State Circuits (JSSC) 9.5 (Oct. 1974), pp. 256–
268.

[36] Gregory Frederick Diamos, Andrew Robert Kerr, Sudhakar Yalamanchili, and Nathan
Clark. “Ocelot: a Dynamic Optimization Framework for Bulk-synchronous Applications
in Heterogeneous Systems”. In: International Conference on Parallel Architectures and
Compilation Techniques (PACT) (Sept. 2010), pp. 353–364.

[37] Keith Diefendorff, Pradeep K. Dubey, Ron Hochsprung, and Hunter Scales. “AltiVec Ex-
tension to PowerPC Accelerates Media Processing”. In: IEEE Micro Magazine 20.2 (Mar.
2000), pp. 85–95.

[38] Benoı̂t Dupont de Dinechin. “Using the SSA-Form in a Code Generator”. In: International
Conference on Compiler Construction (CC) (Apr. 2014), pp. 1–17.

[39] Alexandre E. Eichenberger and Edward S. Davidson. “Register Allocation for Predicated
Code”. In: International Symposium on Microarchitecture (MICRO) (Nov. 1995), pp. 180–
191.

[40] Christopher Eoyang, Raul H. Mendez, and Olaf M. Lubeck. “The Birth of the Second
Generation: The Hitachi S-820/80”. In: International Conference on High Performance
Networking and Computing (Supercomputing) (Nov. 1988), pp. 296–303.

[41] Roger Espasa and Mateo Valero. “Decoupled Vector Architectures”. In: International Sym-
posium on High-Performance Computer Architecture (HPCA) (Feb. 1996), pp. 281–290.

[42] Roger Espasa, Mateo Valero, and James E. Smith. “Out-of-Order Vector Architectures”.
In: International Symposium on Microarchitecture (MICRO) (Dec. 1997), pp. 160–170.

BIBLIOGRAPHY 139

[43] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. “The Program Dependence Graph
and its Use in Optimization”. In: ACM Transactions on Programming Languages and Sys-
tems (TOPLAS) 9 (3 July 1987), pp. 319–349.

[44] Andrei Frumusanu. The Samsung Exynos 7420 Deep Dive - Inside A Modern 14nm SoC.
AnandTech Article. 2015.

[45] Wilson W.L. Fung, Ivan Sham, George Yuan, and Tor M. Aamodt. “Dynamic Warp Forma-
tion: Efficient MIMD Control Flow on SIMD Graphics Hardware”. In: ACM Transactions
on Architecture and Code Optimization (TACO) 6.2 (June 2009), pp. 1–35.

[46] Mark Gebhart, Daniel R. Johnson, David Tarjan, Stephen W. Keckler, William J. Dally,
Erik Lindholm, and Kevin Skadron. “A Hierarchical Thread Scheduler and Register File
for Energy-Efficient Throughput Processors”. In: ACM Transactions on Computer Systems
(TOCS) 30.2 (Apr. 2012), 8:1–8:38.

[47] Syed Zohaib Gilani, Nam Sung Kim, and Michael J. Schulte. “Power-efficient Comput-
ing for Compute-intensive GPGPU Applications”. In: International Symposium on High-
Performance Computer Architecture (HPCA) (Feb. 2013), pp. 330–341.

[48] David M. Gillies, Dz-ching Roy Ju, Richard Johnson, and Michael Schlansker. “Global
Predicate Analysis and Its Application to Register Allocation”. In: International Sympo-
sium on Microarchitecture (MICRO) (Dec. 1996), pp. 114–125.

[49] Gina Goff, Ken Kennedy, and Chau-Wen Tseng. “Practical Dependence Testing”. In: ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI)
(May 1991), pp. 15–29.

[50] Nathan Goulding-Hotta, Jack Sampson, Ganesh Venkatesh, Saturnino Garcia, Joe Auric-
chio, Po-Chao Huang, Manish Arora, Siddhartha Nath, Vikram Bhatt, Jonathan Babb,
Steven Swanson, and Michael Taylor. “The GreenDroid Mobile Application Processor:
An Architecture for Silicon’s Dark Future”. In: IEEE Micro Magazine 31.2 (Mar. 2011),
pp. 86–95.

[51] Linley Gwennap. “Digital, MIPS Add Multimedia Extensions”. In: Microprocessor Report
10.15 (Nov. 1996), pp. 1–5.

[52] Mark Hampton. “Reducing Exception Management Overhead with Software Restart Mark-
ers”. PhD thesis. Massachusetts Institute of Technology, 2008.

[53] Mark Hampton and Krste Asanović. “Compiling for Vector-Thread Architectures”. In: In-
ternational Symposium on Code Generation and Optimization (CGO) (Apr. 2008).

[54] HardKernel. ODROID-XU3 Block Diagram. HardKernel Products Wiki Page.

[55] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Ap-
proach 5th Edition. Morgan Kaufmann, 2011.

[56] Intel. Intel Architecture Instruction Set Extensions Programming Reference. Intel White
Paper. 2015.

BIBLIOGRAPHY 140

[57] Intel. Intel Xeon Phi Coprocessor Instruction Set Architecture Reference Manual. Intel
White Paper. 2012.

[58] Pekka Jääskeläinen, Carlos Sánchez de La Lama, Erik Schnetter, Kalle Raiskila, Jarmo
Takala, and Heikki Berg. “pocl: A Performance-Portable OpenCL Implementation”. In:
International Journal of Parallel Programming 43.5 (Oct. 2015), pp. 752–785.

[59] Handel Jones. Why Migration to 20nm Bulk CMOS and 16/14nm FinFETs is not Best
Approach for Semiconductor Industry. Tech. rep. IBS, Inc., Jan. 2014.

[60] Ralf Karrenberg and Sebastian Hack. “Improving Performance of OpenCL on CPUs”. In:
International Conference on Compiler Construction (CC) (Mar. 2012), pp. 1–20.

[61] Ralf Karrenberg and Sebastian Hack. “Whole-Function Vectorization”. In: International
Symposium on Code Generation and Optimization (CGO) (Apr. 2011), pp. 141–150.

[62] Stephen W. Keckler, William J. Dally, Brucek Khailany, Michael Garland, and David
Glasco. “GPUs and the Future of Parallel Computing”. In: IEEE Micro Magazine 31.5
(Sept. 2011), pp. 7–17.

[63] Andrew Kerr, Gregory Diamos, and S. Yalamanchili. “Dynamic Compilation of Data-
parallel Kernels for Vector Processors”. In: International Symposium on Code Generation
and Optimization (CGO) (Apr. 2012), pp. 23–32.

[64] Ji Kim, Christopher Torng, Shreesha Srinath, Derek Lockhart, and Christopher Batten.
“Microarchitectural Mechanisms to Exploit Value Structure in SIMT Architectures”. In:
International Symposium on Computer Architecture (ISCA) (June 2013), pp. 130–141.

[65] Christoforos Kozyrakis. “Scalable Vector Media-processors for Embedded Systems”. PhD
thesis. EECS Department, University of California, Berkeley, 2002.

[66] Ronny Krashinsky. “Vector-Thread Architecture and Implementation”. PhD thesis. Mas-
sachusetts Institute of Technology, 2007.

[67] Ronny Krashinsky, Christopher Batten, and Krste Asanović. “Implementing the Scale Vector-
Thread Processor”. In: ACM Transactions on Design Automation of Electronic Systems
(TODAES) 13.3 (July 2008).

[68] Ronny Krashinsky, Christopher Batten, Mark Hampton, Steve Gerding, Brian Pharris,
Jared Casper, and Krste Asanović. “The Vector-Thread Architecture”. In: International
Symposium on Computer Architecture (ISCA) (June 2004).

[69] Chris Lattner and Vikram Adve. “LLVM: A Compilation Framework for Lifelong Program
Analysis and Transformation”. In: International Symposium on Code Generation and Op-
timization (CGO) (Mar. 2004), pp. 75–88.

[70] Yunsup Lee. “Efficient VLSI Implementations of Vector-Thread Architectures”. MA the-
sis. EECS Department, University of California, Berkeley, 2011.

BIBLIOGRAPHY 141

[71] Yunsup Lee, Rimas Avižienis, Alex Bishara, Richard Xia, Derek Lockhart, Christopher
Batten, and Krste Asanović. “Exploring the Tradeoffs Between Programmability and Effi-
ciency in Data-Parallel Accelerators”. In: ACM Transactions on Computer Systems (TOCS)
31.3 (Aug. 2013), 6:1–6:38.

[72] Yunsup Lee, Rimas Avižienis, Alex Bishara, Richard Xia, Derek Lockhart, Christopher
Batten, and Krste Asanović. “Exploring the Tradeoffs between Programmability and Effi-
ciency in Data-Parallel Accelerators”. In: International Symposium on Computer Architec-
ture (ISCA) (June 2011), pp. 129–140.

[73] Yunsup Lee, Vinod Grover, Ronny Krashinsky, Mark Stephenson, Stephen W. Keckler,
and Krste Asanović. “Exploring the Design Space of SPMD Divergence Management on
Data-Parallel Architectures”. In: International Symposium on Microarchitecture (MICRO)
(Dec. 2014), pp. 101–113.

[74] Yunsup Lee, Ronny Krashinsky, Vinod Grover, Stephen W. Keckler, and Krste Asanović.
“Convergence and Scalarization for Data-Parallel Architectures”. In: International Sympo-
sium on Code Generation and Optimization (CGO) (Feb. 2013), pp. 1–11.

[75] Yunsup Lee, Albert Ou, Colin Schmidt, Sagar Karandikar, Howard Mao, and Krste Asanović.
The Hwacha Microarchitecture Manual, Version 3.8.1. Tech. rep. UCB/EECS-2015-263.
EECS Department, University of California, Berkeley, Dec. 2015.

[76] Yunsup Lee, Colin Schmidt, Sagar Karandikar, Daniel Dabbelt, Albert Ou, and Krste
Asanović. Hwacha Preliminary Evaluation Results, Version 3.8.1. Tech. rep. UCB/EECS-
2015-264. EECS Department, University of California, Berkeley, Dec. 2015.

[77] Yunsup Lee, Colin Schmidt, Albert Ou, Andrew Waterman, and Krste Asanović. The
Hwacha Vector-Fetch Architecture Manual, Version 3.8.1. Tech. rep. UCB/EECS-2015-
262. EECS Department, University of California, Berkeley, Dec. 2015.

[78] Yunsup Lee, Andrew Waterman, Rimas Avižienis, Henry Cook, Chen Sun, Vladimir Sto-
janović, and Krste Asanović. “A 45nm 1.3GHz 16.7 Double-Precision GFLOPS/W RISC-
V Processor with Vector Accelerators”. In: European Solid-State Circuits Conference (ES-
SCIRC) (Sept. 2014), pp. 199–202.

[79] Yunsup Lee, Andrew Waterman, Henry Cook, Brian Zimmer, Ben Keller, Alberto Puggelli,
Jaehwa Kwak, Ruzica Jevtić, Stevo Bailey, Milovan Blagojević, Pi-Feng Chiu, Rimas
Avižienis, Brian Richards, Jonathan Bachrach, David Patterson, Elad Alon, Borivoje Nikolić,
and Krste Asanović. “An Agile Approach to Building RISC-V Microprocessors”. In: IEEE
Micro Magazine (Mar. 2016).

[80] Yunsup Lee, Brian Zimmer, Andrew Waterman, Alberto Puggelli, Jaehwa Kwak, Ruzica
Jevtic, Ben Keller, Stevo Bailey, Milovan Blagojevic, Pi-Feng Chiu, Henry Cook, Rimas
Avižienis, Brian Richards, Elad Alon, Borivoje Nikolic, and Krste Asanović. “Raven: A
28nm RISC-V Vector Processor with Integrated Switched-Capacitor DC-DC Converters
and Adaptive Clocking”. In: Symposium on High Performance Chips (Hot Chips) (Aug.
2015).

BIBLIOGRAPHY 142

[81] Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym. “NVIDIA Tesla: A
Unified Graphics and Computing Architecture”. In: IEEE Micro Magazine 28.2 (Mar.
2008), pp. 39–55.

[82] Chris Lomont. Introduction to Intel Advanced Vector Extensions. Intel White Paper. 2011.

[83] Scott A. Mahlke, Richard E. Hank, James E. McCormick, David I. August, and Wen-
Mei W. Hwu. “A Comparison of Full and Partial Predicated Execution Support for ILP
Processors”. In: International Symposium on Computer Architecture (ISCA) (June 1995),
pp. 138–149.

[84] Scott A. Mahlke, David C. Lin, William Y. Chen, Richard E. Hank, and Roger A. Bring-
mann. “Effective Compiler Support for Predicated Execution Using the Hyperblock”. In:
International Symposium on Microarchitecture (MICRO) (Dec. 1992), pp. 45–54.

[85] David Maier. “The Complexity of Some Problems on Subsequences and Supersequences”.
In: Journal of the ACM (JACM) 25.2 (Apr. 1978), pp. 322–336.

[86] Rick Merritt. “ARM CTO: power surge could create ‘dark silicon’”. In: EE Times (Oct.
2009).

[87] Gordon E. Moore. “Cramming More Components onto Integrated Circuits”. In: Electronics
(Apr. 1965), pp. 114–117.

[88] Gordon E. Moore. “No Exponential is Forever: But ”Forever” Can Be Delayed!” In: Inter-
national Solid-State Circuits Conference (ISSCC) (Feb. 2003), pp. 20–23.

[89] Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufman,
1997.

[90] Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt. “Runahead Execution: An
Alternative to Very Large Instruction Windows for Out-of-Order Processors”. In: Inter-
national Symposium on High-Performance Computer Architecture (HPCA) (Feb. 2003),
pp. 129–140.

[91] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. “Scalable Parallel Pro-
gramming with CUDA”. In: ACM Queue Magazine (ACMQ) 6.2 (Mar. 2008), pp. 40–53.

[92] John Nickolls, Richard Craig Johnson, Robert Steven Glanville, and Guillermo Juan Rozas.
Unanimous Branch Instructions in a Parallel Thread Processor. US Patent 8,677,106. Mar.
2014.

[93] NVIDIA. CUDA Binary Utilities. NVIDIA Application Note. 2014.

[94] NVIDIA. NVIDIA CUDA C Programming Guide 4.2. Apr. 2012.

[95] NVIDIA. NVIDIA Tegra X1: NVIDIA’s New Mobile Superchip. Jan. 2015.

[96] NVIDIA. NVIDIA’s Next Gen CUDA Compute Architecture: Kepler GK110. NVIDIA
White Paper. 2012.

[97] NVIDIA. NVIDIA’s Next Generation CUDA Compute Architecture: Fermi. NVIDIA White
Paper. 2009.

BIBLIOGRAPHY 143

[98] Karl J. Ottenstein, Robert A. Ballance, and Arthur B. MacCabe. “The Program Depen-
dence Web: a Representation Supporting Control-, Data-, and Demand-driven Interpreta-
tion of Imperative Languages”. In: ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI) (June 1990), pp. 257–271.

[99] Albert Ou. “Mixed-Precision Vector Processors”. MA thesis. EECS Department, Univer-
sity of California, Berkeley, 2015.

[100] Albert Ou, Quan Nguyen, Yunsup Lee, and Krste Asanović. “A Case for MVPs: Mixed-
Precision Vector Processors”. In: International Workshop on Parallelism in Mobile Plat-
forms (PRISM) (June 2014).

[101] Joseph C. H. Park and Mike Schlansker. On Predicated Execution. Tech. rep. HPL-91-58.
Hewlett Packard Laboratories, May 1991.

[102] Alex Peleg and Uri Weiser. “MMX Technology Extension to the Intel Architecture”. In:
IEEE Micro Magazine 16.4 (July 1996), pp. 42–50.

[103] Matt Pharr and William R. Mark. “ispc: A SPMD Compiler for High-Performance CPU
Programming”. In: Innovative Parallel Computing (InPar) (May 2012).

[104] Jungyul Pyo, Youngmin Shin, Hoi-Jin Lee, Sung-il Bae, Min-Su Kim, Kwangil Kim, Ken
Shin, Yohan Kwon, Heungchul Oh, Jaeyoung Lim, Dong-Wook Lee, Jongho Lee, Inpyo
Hong, Kyungkuk Chae, Heon-Hee Lee, Sung-Wook Lee, Seongho Song, Chung-Hee Kim,
Jin-Soo Park, Heesoo Kim, Sunghee Yun, Uk-Rae Cho, Jae Cheol Son, and Sungho Park.
“20nm High-K Metal-Gate Heterogeneous 64b Quad-Core CPUs and Hexa-Core GPU for
High-Performance and Energy-Efficient Mobile Application Processor”. In: International
Solid-State Circuits Conference (ISSCC) (Feb. 2015), pp. 420–421.

[105] Srinivas K. Raman, Vladimir Pentkovski, and Jagannath Keshava. “Implementing Stream-
ing SIMD Extensions on the Pentium-III Processor”. In: IEEE Micro Magazine 20.4 (July
2000), pp. 47–57.

[106] John H. Reif and Harry R. Lewis. “Efficient Symbolic Analysis of Programs”. In: Journal
of Computer and System Sciences 32.3 (June 1986), pp. 280–314.

[107] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. “DRAMSim2: A Cycle Accurate
Memory System Simulator”. In: IEEE Computer Architecture Letters (CAL) 10.1 (Jan.
2011), pp. 16–19.

[108] Cindy Rubio-González, Cuong Nguyen, Hong Diep Nguyen, James Demmel, William Ka-
han, Koushik Sen, David H. Bailey, Costin Iancu, and David Hough. “Precimonious: Tun-
ing Assistant for Floating-Point Precision”. In: International Conference on High Perfor-
mance Networking and Computing (Supercomputing) (Nov. 2013), 27:1–27:12.

[109] Richard M. Russell. “The CRAY-1 Computer System”. In: Communications of the ACM
(CACM) 21.1 (Jan. 1978), pp. 63–72.

BIBLIOGRAPHY 144

[110] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Pradeep Dubey, Stephen Junk-
ins, Adam Lake, Robert Cavin, Roger Espasa, Ed Grochowski, Toni Juan, Michael Abrash,
Jeremy Sugerman, and Pat Hanrahan. “Larrabee: A Many-Core x86 Architecture for Visual
Computing”. In: IEEE Micro Magazine 29.1 (Jan. 2009), pp. 10–21.

[111] M. Sharir. “Structural Analysis: A New Approach to Flow Analysis in Optimizing Com-
pilers”. In: Computer Languages 5.3-4 (Jan. 1980), pp. 141–153.

[112] Jaewook Shin. “Introducing Control Flow into Vectorized Code”. In: International Confer-
ence on Parallel Architectures and Compilation Techniques (PACT) (Sept. 2007), pp. 280–
291.

[113] Youngmin Shin, Ken Shin, Prashant Kenkare, Rajesh Kashyap, Hoi-Jin Lee, Dongjoo Seo,
Brian Millar, Yohan Kwon, Ravi Iyengar, Min-Su Kim, Ahsan Chowdhury, Sung-il Bae,
Inpyo Hong, Wookyeong Jeong, Aaron Lindner, Ukrae Cho, Keith Hawkins, Jae Cheol
Son, and Seung Ho Hwang. “28nm High-K Metal-Gate Heterogeneous Quad-Core CPUs
for High-Performance and Energy-Efficient Mobile Application Processor”. In: Interna-
tional Solid-State Circuits Conference (ISSCC) (Feb. 2013), pp. 154–155.

[114] James E. Smith. “Decoupled Access/Execute Computer Architectures”. In: ACM Transac-
tions on Computer Systems (TOCS) (Nov. 1984), pp. 289–308.

[115] James E. Smith, Greg Faanes, and Rabin Sugumar. “Vector Instruction Set Support for
Conditional Operations”. In: International Symposium on Computer Architecture (ISCA)
(June 2000), pp. 260–269.

[116] Ryan Smith. ARM’s Mali Midgard Architecture Explored. AnandTech Article. 2014.

[117] Ryan Smith. Imagination’s PowerVR Rogue Architecture Explored. AnandTech Article.
2014.

[118] Mark Stephenson, Siva Kumar Sastry Hari, Yunsup Lee, Eiman Ebrahimi, Daniel R. John-
son, David Nellans, Mike O’Connor, and Stephen W. Keckler. “Flexible Software Profil-
ing of GPU Architectures”. In: International Symposium on Computer Architecture (ISCA)
(June 2015), pp. 185–197.

[119] Arthur Stoutchinin and Francois De Ferriere. “Efficient Static Single Assignment Form for
Predication”. In: International Symposium on Microarchitecture (MICRO) (Dec. 2001),
pp. 172–181.

[120] John A. Stratton, Vinod Grover, Jaydeep Marathe, Bastiaan Aarts, Mike Murphy, Ziang
Hu, and Wen-mei W. Hwu. “Efficient Compilation of Fine-grained SPMD-threaded Pro-
grams for Multicore CPUs”. In: International Symposium on Code Generation and Opti-
mization (CGO) (Apr. 2010), pp. 111–119.

[121] John A. Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang, Nasser
Anssari, Geng Daniel Liu, and Wen-mei W. Hwu. Parboil: A Revised Benchmark Suite for
Scientific and Commercial Throughput Computing. Tech. rep. IMPACT-12-01. University
of Illinois, Urbana-Champaign, Mar. 2012.

BIBLIOGRAPHY 145

[122] Chen Sun*, Mark T. Wade*, Yunsup Lee*, Jason S. Orcutt*, Luca Alloatti, Michael S.
Georgas, Andrew S. Waterman, Jeffrey M. Shainline, Rimas R. Avižienis, Sen Lin, Ben-
jamin R. Moss, Rajesh Kumar, Fabio Pavanello, Amir H. Atabaki, Henry M. Cook, Albert
J. Ou, Jonathan C. Leu, Yu-Hsin Chen, Krste Asanović, Rajeev J. Ram, Milos A. Popović,
and Vladimir M. Stojanović. “Single-Chip Microprocessor that Communicates Directly
Using Light”. In: Nature 528 (Dec. 2015), pp. 534–538.

[123] Hiroshi Tamura, Sachio Kamiya, and Takahiro Ishigai. “FACOM VP-100/200: Supercom-
puters with ease of use”. In: Parallel Computing 2.2 (June 1985), pp. 87–107.

[124] Michael B. Taylor. “A Landscape of the New Dark Silicon Design Regime”. In: IEEE
Micro Magazine 33.5 (Sept. 2013), pp. 8–19.

[125] The OpenCL Specification Version 1.2. Khronos OpenCL Working Group. 2011.

[126] Marc Tremblay, J. Michael O’Connor, Venkatesh Narayanan, and Liang He. “VIS Speeds
New Media Processing”. In: IEEE Micro Magazine 16.4 (July 1996), pp. 10–20.

[127] Huy Vo, Yunsup Lee, Andrew Waterman, and Krste Asanović. “A Case for OS-Friendly
Hardware Accelerators”. In: Workshop on the Interaction between Operating System and
Computer Architecture (WIVOSCA) (June 2013).

[128] Tadashi Watanabe. “Architecture and performance of NEC supercomputer SX system”. In:
Parallel Computing 5.1–2 (July 1987), pp. 247–255.

[129] Andrew Waterman. “Design of the RISC-V Instruction Set Architecture”. PhD thesis.
EECS Department, University of California, Berkeley, 2016.

[130] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanović. The RISC-V
Compressed Instruction Set Manual, Version 1.9. Tech. rep. UCB/EECS-2015-209. EECS
Department, University of California, Berkeley, Nov. 2015.

[131] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanović. The RISC-V
Instruction Set Manual, Volume I: User-Level ISA Version 2.0. Tech. rep. UCB/EECS-
2014-54. EECS Department, University of California, Berkeley, May 2014.

[132] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanović. The RISC-V In-
struction Set Manual, Volume II: Privileged Architecture Version 1.7. Tech. rep. UCB/EECS-
2015-49. EECS Department, University of California, Berkeley, May 2015.

[133] Michael Weiss. “The Transitive Closure of Control Dependence: the Iterated Join”. In:
ACM Letters on Programming Languages and Systems (LOPLAS) 1 (2 June 1992), pp. 178–
190.

[134] Haicheng Wu, Gregory Diamos, Si Li, and Sudhakar Yalamanchili. “Characterization and
Transformation of Unstructured Control Flow in Bulk Synchronous GPU Applications”.
In: International Journal of High Performance Computing Applications (IJHPCA) 26.2
(May 2012), pp. 170–185.

BIBLIOGRAPHY 146

[135] Brian Zimmer, Yunsup Lee, Alberto Puggelli, Jaehwa Kwak, Ruzica Jevtić, Ben Keller,
Stevo Bailey, Milovan Blagojević, Pi-Feng Chiu, Hanh-Phuc Le, Po-Hung Chen, Nicholas
Sutardja, Rimas Avižienis, Andrew Waterman, Brian Richards, Phillippe Flatresse, Elad
Alon, Krste Asanović, and Borivoje Nikolić. “A RISC-V Vector Processor with Simultaneous-
Switching Switched-Capacitor DC-DC Converters in 28nm FDSOI”. In: IEEE Journal of
Solid-State Circuits (JSSC) (Apr. 2016).

[136] Brian Zimmer, Yunsup Lee, Alberto Puggelli, Jaehwa Kwak, Ruzica Jevtić, Ben Keller,
Stevo Bailey, Milovan Blagojević, Pi-Feng Chiu, Hanh-Phuc Le, Po-Hung Chen, Nicholas
Sutardja, Rimas Avižienis, Andrew Waterman, Brian Richards, Phillippe Flatresse, Elad
Alon, Krste Asanović, and Borivoje Nikolić. “A RISC-V Vector Processor with Tightly-
Integrated Switched-Capacitor DC-DC Converters in 28nm FDSOI”. In: Symposium on
VLSI Circuits (June 2015), pp. C316–C317.

	Contents
	List of Figures
	List of Tables
	Introduction
	Upheaval in Computer Design
	Specialization To the Rescue
	Rise of Programmable Data-Parallel Architectures
	The Maven Project
	Thesis Contributions and Overview
	Collaboration, Previous Publications, and Funding

	Background
	Data-Parallel Programming Languages
	Assembly Programming Models of Data-Parallel Architectures
	Divergence Management Schemes of Data-Parallel Architectures
	Background Summary

	Scalarizing Compilers
	Overheads of SPMD
	Scalarization
	Predication

	Scalarization
	Compiler Foundation
	Implementation
	Evaluation
	Discussion
	Future Research Directions
	Scalarization Summary

	Predication
	Compiler Foundation
	Implementation
	Evaluation
	Discussion
	Future Research Directions
	Predication Summary

	The Hwacha Vector-Fetch Architecture
	Hwacha Vector-Fetch Assembly Programming Model
	Architectural Features
	History

	Hwacha Instruction Set Architecture
	Control Thread Instructions
	Worker Thread Instructions
	Future Research Directions

	Hwacha Decoupled Vector Microarchitecture
	System Architecture
	Machine Organization
	Vector Frontend: RoCC Unit and Scalar Unit
	Vector Runahead Unit
	Vector Execution Unit
	Vector Memory Unit
	Design Space

	Hwacha Evaluation
	Evaluation Framework
	Microbenchmarks
	Scalarizing OpenCL Compiler
	Implementation
	Memory System Validation
	Area and Cycle-Time Comparison
	Performance Comparison
	Energy Comparison

	Conclusion
	Thesis Summary and Contributions
	Future Work

