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Abstract

The Identification and Characterization of Alterations to DNA and RNA in

Cancer Using Next-Generation Sequencing Data

by

Amie J. Radenbaugh

Much of our current understanding of cancer has come from investigating how

normal cells are transformed into malignant cancers through the stepwise acquisition of

somatic genomic abnormalities. These abnormalities include single nucleotide variants

(SNVs), insertions and deletions (INDELs), chromosomal rearrangements, and copy

number aberrations. The detection of SNVs is a crucial component to the character-

ization of the cancer genome. They assist in identifying key genes as possible drug

targets, diagnostic markers for early detection, and prognostic markers for monitoring a

patient’s response to therapy. Variant calling algorithms thus far have focused on com-

paring the normal and tumor genomes from the same individual. In recent years, it has

become routine for projects like The Cancer Genome Atlas (TCGA) to also sequence

the tumor RNA. A novel computational method called RADIA (RNA and DNA Inte-

grated Analysis) that combines the patient-matched normal and tumor DNA with the

tumor RNA to detect SNVs is presented here. RADIA has detected somatic mutations

for nearly 4,500 patients across 22 different cancers, and including the RNA provided a

2-7% increase in sensitivity.
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RNA editing is an additional epigenetic mechanism involved in cancer devel-

opment and progression. RNA editing of the AZIN1 gene has been identified as a driver

in the pathogenesis of hepatocellular carcinoma and may be a potential driver for other

human cancers as well. An investigation of AZIN1 RNA editing in data collected from

nearly 5,000 patients across 12 cancers has been performed. Higher editing frequencies

significantly correlated with clinical data such as larger tumor sizes, greater lymph node

involvement, the presence of metastases, and higher tumor grades. They were also asso-

ciated with subtypes that often have the worst prognosis. Over-editing in many cancers

is correlated with poor overall and recurrence free survival.

With projects like TCGA providing sequencing data for both DNA and RNA

from the same patients across multiple cancers, it is now possible to characterize germline

variants, somatic mutations, and RNA editing events on a genome-wide scale. The iden-

tification of SNVs that occur in specific genes across multiple cancers provides a powerful

way to discover genes that are important to these diseases.
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Chapter 1

Introduction

Cancer is a group of diseases characterized by uncontrolled cell growth with

the potential to spread to other tissues in the body. According to the American Cancer

Society (ACS), nearly 600,000 Americans, or more than 1,600 people a day, are expected

to die of cancer in 2015, and an estimated 1.7 million new cancer cases are expected to

be diagnosed [5]. In the US, approximately one in two men and one in three women

will develop cancer in their lifetime, with the leading tissues of origin being prostate,

lung, and colon for men and breast, lung, and colon for women [5]. The chance of an

individual developing cancer is based on both controllable and uncontrollable risk factors

[29]. Controllable factors include tobacco use, heavy alcohol consumption, unhealthy

diets, physical inactivity, infectious organisms, and exposure to sunlight or harmful

environmental pollutants [5, 29]. Uncontrollable factors include germline mutations

inherited from one’s parents, hormones, and immune conditions [5].

Since the 1990s, the death rates for most cancers have experienced a gradual
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decline. This decline is primarily due to behavioral changes, early detection, and ad-

vances in cancer treatment. A reduction in smoking rates has lowered the lung cancer

death rate by approximately 30% [5]. Cancers caused by infectious agents such as hu-

man papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV), human

immunodeficiency virus (HIV), and Helicobacter pylori (H. pylori) have been reduced

due to vaccinations and the treatment of infections [5]. Early detection of cervical can-

cer through the Papanicolaou test (Pap test), prostate cancer from the prostate-specific

antigen (PSA) test, and colon cancer by a colonoscopy, has helped prevent and reduce

death rates for these cancers. Lastly, advancements in treatment, such as the discovery

of Gleevac to treat chronic myeloid leukemia (CML) and Herceptin to treat Human

Epidermal growth factor Receptor 2-positive (HER2+) breast cancer, have drastically

improved the survival rates of patients with these specific types of cancer. Despite all

of these advancements, there is a great need for a better understanding of the biological

mechanisms that play a role in cancer.

There are ten ”hallmarks of cancer” that are generally accepted to be the un-

derlying rules for the transformation of normal cells into malignant cancers [46, 47].

They are 1) sustaining proliferative signaling, 2) evading growth suppressors, 3) avoid-

ing immune destruction, 4) enabling replicative immortality, 5) tumor-promoting in-

flammation, 6) activating invasion and metastasis, 7) inducing angiogenesis, 8) genome

instability and mutation, 9) resisting cell death, and 10) deregulating cellular energetics

(Figure 1.1) [46, 47].

Transforming a normal human cell into a malignant, immortal cancer cell line
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Figure 1.1: The ten hallmarks of cancer that are thought to be the underlying rules for
the transformation of normal cells into malignant cancers. Figure from [47].

requires an estimated five to seven genetic alterations in key genes and pathways [46].

Normal cell growth is strictly regulated, and many normal cells need signals such as

growth factors to initiate cell division. Normal cells also communicate with nearby cells

to determine if it is acceptable for them to divide. Cancer cells, on the other hand,

grow uncontrollably. They no longer need special signals from growth factors to divide,

and along the way they gain additional abilities to survive and grow in an environment

that would normally not tolerate such growth. Not surprisingly, much research has been

devoted to determining how cancer cells are able to acquire their abilities through the

accumulation of somatic mutations.

In order to identify somatic alterations that are essential for cancer detection,
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development, and treatment, researchers have focused on determining the genomic dif-

ferences between tumor cells and normal cells in the same individuals. The Cancer

Genome Atlas (TCGA) project has produced exome-wide data from thousands of tu-

mors and patient-matched normal tissues. With the development of RNA Sequenc-

ing (RNA-Seq) [139], TCGA began providing an additional high-throughput tumor

sequence dataset. These three datasets consisting of tumor and patient-matched nor-

mal DNA and tumor RNA have become a new standard in cancer genomics. RNA-Seq

enables one to investigate the consequences of genomic changes in the RNA transcripts

they encode to better characterize 1) germline variants, 2) somatic mutations, and 3)

variants in the RNA that are not found in the DNA that could be the result of RNA

editing [43].

With the cost of sequencing steadily decreasing, many more whole-genome

and whole-exome DNA and RNA-Seq BAM (the binary version of (SAM) Sequence

Alignment/Map [84]) files will become available. TCGA has collected over 10,000 tissue

samples from more than 20 types of cancer. There is a clear need for an efficient method

for the combined analysis of patient-matched tumor DNA, normal DNA, and tumor

RNA. Here, a novel method called RADIA (RNA and DNA Integrated Analysis) has

been developed to identify and characterize Single Nucleotide Variants (SNVs) in cancer

using DNA and RNA obtained by high-throughput sequencing data. Traditional somatic

mutation calling algorithms use the patient-matched pairs of tumor and normal DNA.

The inclusion of the RNA in RADIA increases the power to detect somatic mutations

that are typically missed by traditional algorithms. RADIA identifies mutations in the
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most significantly mutated genes that are missed by other algorithms. This increase in

sensitivity is essential for the complete characterization of a patient’s tumor and assists

in grouping patients into subtypes that are partially defined by the presence or absence

of mutations in key genes.

Finally, RADIA has been used to identify RNA editing events that have re-

cently been linked to cancer development and progression. An RNA editing event in

the AZIN1 gene has been identified as a possible driver of hepatocellular carcinoma

and may be involved in the pathogenesis of other human cancers as well. An in-depth

study of AZIN1 editing was performed on 12 different cancers, and 10 of the 12 cancers

exhibted significant over-editing in the AZIN1 gene. Over-editing of the AZIN1 gene

leads to the overexpression of cyclin D1 protein and an increase in cell proliferation. A

particular focus on the luminal subtypes of breast cancer, known for overexpression of

cyclin D1 will be given. Higher AZIN1 editing frequencies significantly correlated with

many of the clinical variables that represent more aggressive and advanced characteris-

tics of tumorigenesis, and patients with over-editing of AZIN1 often have a poor overall

or recurrence free survival.
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Chapter 2

Background

This chapter provides background information about Single Nucleotide Vari-

ants (SNVs) specifically germline variants, somatic mutations, and RNA editing events.

SNVs describe variations at a single nucleotide position of a DNA or RNA sequence.

Germline SNVs are present in the DNA of a parent and inherited by their offspring,

somatic SNVs accumulate in the DNA of an individual during their lifetime, and RNA

editing SNVs are modifications to the RNA sequence that are not present in the genomic

DNA.

SNVs can have both benign or severe effects on the resulting protein that in

return can have neutral or drastic effects on an individual. SNVs that occur in the coding

regions can cause: 1) silent mutations, also known as synonymous mutations, resulting

in a different codon for the same amino acid, 2) missense mutations, or nonsynonymous

mutations, resulting in a different amino acid and/or leading to the readthrough of a

stop codon resulting in an elongated protein, 3) nonsense mutations that code for a
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premature stop codon resulting in a truncated protein. SNVs in splice sites can affect

alternative splicing by creating new splice sites or causing a read-through of existing

splice sites.

Germline variants can lead to an increase in risk of developing cancer earlier in

life. There are many instances of somatic SNVs that can activate oncogenes or inactivate

tumor suppressors. A deregulation of RNA editing can promote oncogenic activity or

knock out tumor suppressors.

2.1 Germline Variants

There are several factors that influence whether an individual will develop

cancer or not, including the environment, life-style, and set of genomic sequence variants

that the person is born with. These so called “germline” variants can influence one’s

susceptibility to cancer in a number of ways, including altering the growth of the tumor,

the mutation rate in somatic cells, or the metabolism of carcinogens [130].

Recurring mutations are observed in the germline of multiple cancer patients,

indicating that these mutations may be contributing factors to an individual’s suscepti-

bility to cancer. For example, women who have germline mutations in the BRCA1 and

BRCA2 genes are more likely to develop breast or ovarian cancer by age 70 [131]. These

germline mutations are thought to affect the cell’s ability to repair double-stranded

breaks and ultimately lead to the inactivation of the tumor suppressor, PTEN [122].
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2.2 Somatic Mutations

Somatic mutations occur in the genomes of normal somatic (non-sex) cells

during cell division. The rate of accumulation and the types of mutations that occur

varies. Although somatic mutations are thought to arise randomly, some mutations

called “driver mutations” occur by chance in key genes called “cancer genes”. Driver

mutations permit the cell to avoid the normal control of cell proliferation, differentiation,

and death [130]. After a driver mutation is acquired, passenger mutations accumulate.

Passenger mutations are neither particularly helpful nor harmful to cancer cells. They

are neutral mutations that accumulate during the clonal expansion of a cell [130].

A number of driver mutations and cancer genes have already been identified.

An assumption is made that passenger mutations are randomly distributed throughout

the genome while driver mutations are concentrated in cancer genes. By searching

through a large number of samples for a specific type of cancer, genes that have a

higher mutation rate than expected by chance, contain possible driver mutations [130].

Roughly 400 somatically mutated cancer genes for multiple types of cancer have been

identified [130]. Cancer genes are classified as either dominant or recessive. A common

analogy to describe oncogenes (dominant) and tumor suppressors (recessive) is to use

the brake and gas pedals in a car. Mutations that transform a gene into an oncogene are

like cars with a jammed gas pedal; they increase cell division. Mutations that inactivate

tumor suppressors are like cars with defective breaks; the cells divide uncontrollably.
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2.2.1 Oncogenes

Oncogenes only require one of the parental alleles to be mutated, and the

mutation typically leads to activation of the encoded protein, also known as gain-of-

function mutations. Several dominant cancer genes such as BRAF, EGFR, ERBB2,

PIK3CA, IDH1, IDH2, KRAS, and JAK2 have been identified [130].

2.2.2 Tumor Suppressors

Tumor suppressors, on the other hand, require both of the parental alleles to be

mutated, and the mutation normally leads to inactivation of the encoded protein provid-

ing a loss-of-function. One of the most well known tumor suppressors, TP53, is mutated

in nearly all cancers, demonstrating its general importance to cancer. Other common

tumor suppressors are PTEN, STK11, AZI, SETD2, KDM6A, KDM5C, PBRM1, BAP1,

ARID1A, DNMT3A, GATA3, and MLL2

Cancer cells find many ways to acquire the abilities that they need to grow and

survive in an otherwise well-regulated environment. Some mutations resulting in the

activation of BCL2, inactivation of APAF1 or TP53, and alterations to the PI3K-AKT

signaling pathway, allow cells to avoid cell death (apoptosis) [105]. Other mutations

can lead to over-amplification of cancer genes that promote tumor cell growth such as

EGFR or disrupt the regulation of angiogenesis via VEGF [142].

9



2.3 RNA Editing

RNA editing can be broadly defined as any alteration to a specific nucleotide

in an RNA sequence that is unexpected given the corresponding DNA template. The

central dogma of biology as defined by Francis Crick in 1958 [32] states that genetic

information is transferred from DNA to RNA through a process called transcription and

from RNA to three-dimensional proteins through a process called translation. Since

then, many additional post-transcriptional processes such as splicing, 5’ capping, and 3’

polyadenylation have been identified as necessary for the conversion of precursor RNA

to mature RNA.

RNA editing is an epigenetic post-transcriptional event that results in the con-

version (or substitution) of one type of nucleotide into another. These alterations to the

RNA can lead to an increase in transcriptome diversity. The consequences of RNA edit-

ing are similar to those of other single nucleotide variants. They main functional effects

include: 1) synonymous mutations resulting in a different codon for the same amino

acid, 2) nonsynonymous mutations that lead to amino acid changes in the final protein

and/or cause a read through of existing stop codons resulting in elongated proteins,

3) nonsense mutations that lead to premature stop codons and truncated proteins. In

addition, RNA editing can affect other post-transcriptional processes such as splicing,

translation, RNA degradation, RNA interference, and protection from transposons while

RNA editing in the 5’ and 3’ Untranslated Regions (UTRs) and microRNAs (miRNAs)

themselves can affect miRNA targeting and the overall stability of the mRNA [106].
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RNA editing has been observed in plants, animals, and both vertebrate and

invertebrate species and can occur in a variety of types of RNAs including messen-

gerRNAs, transferRNAs, ribosomalRNAs, microRNAs and non-coding RNAs [43]. Al-

though all 12 types of base substitutions are theoretically possible and have been ob-

served in various studies, the underlying biological mechanisms for most of them are

largely unknown. The most well-studied types of RNA editing, resulting in base sub-

stitution, are Adenosine-to-Inosine (A-to-I), Cytidine-to-Uridine (C-to-U), and Uridine-

to-Cytidine (U-to-C). The mechanisms behind these types of RNA editing are believed

to be deamination for A-to-I and C-to-U and amination for U-to-C [22, 43, 99, 121, 126].

2.3.1 A-to-I Editing Mechanism

The most common type of RNA editing is called A-to-I editing where an adeno-

sine is converted into inosine by hydrolytic deamination at the C6 position of the purine

ring (Figure 2.1) [43, 93, 111, 119, 141]. A-to-I substitutions are also known as A-to-G

substitutions, because inosine preferentially base pairs with cytidine and is interpreted

as guanine by the splicing and translational machineries. A-to-G editing is typically

identified by comparing genomic DNA with cDNA. Since inosine can base pair with

cytosine, it is replaced by guanosine during reverse transcription and Polymerase Chain

Reaction (PCR) amplification during cDNA synthesis.

Previous studies attempting to characterize A-to-I editing discovered that in-

stead of targeting specific nucleotide sequences, adenosine deaminases were largely di-

rected toward double-stranded RNA (dsRNA) [34, 42, 43, 50]. Several studies showed
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Figure 2.1: The mechanism of RNA editing for cytidine to uridine (C-to-U) and adeno-
sine to inosine (A-to-I) is hydrolytic deamination. Figure from [43].

that either a perfect or imperfect inverted repeat in the RNA was necessary for most

A-to-I editing as shown in Figure 2.2 [18, 34, 43, 50, 95, 120]. The repeat element is

thought to form a duplex RNA structure that has single-stranded bulges and loops that

are necessary for RNA editing site specificity. The dsRNA can be created in transcripts

by base-pairing between exons and introns, especially with UTRs where there are many

repetitive regions. Since A-to-I editing occurs in the introns of pre-mRNAs, researchers

believe that A-to-I editing happens before splicing [43, 50, 119, 120] and can affect

splicing.

An enzyme that had the necessary characteristics for A-to-I editing was bio-

chemically purified, and the cloned cDNA showed that the enzyme (later named adenosine

deaminase that acts on RNA 1 (ADAR1)) contained a nuclear localization signal (NLS),
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Figure 2.2: Schematic of A-to-I editing with adenosine deaminases acting on RNA
(ADARs). a) A pre-mRNA containing two Alu repeats on opposite strands, one that
overlaps with an exon. b) The two Alu repeats on opposite strands base pair with
each other to form a dsRNA duplex. c) An ADAR enzyme deaminates some of the
adenosines in the dsRNA duplex into inosines. Figure from [80].

dsRNA-binding motifs, and regions that were homologous to the catalytic domain of

other known deaminases [43, 52, 73, 103, 104]. It was shown that ADAR1 was able

to edit many specific sites but not all of the possible editing sites could be modi-

fied by this enzyme alone. Homology studies quickly identified two other enzymes

with dsRNA-binding domains and a catalytic deaminase domain called ADAR2 and

ADAR3. [43, 91, 92]. This family of enzymes called adenosine deaminases that act on

RNA (ADARs) along with their main functional domains are shown in Figure 2.3.

The exact characteristics of the RNA that are needed for an adenosine to be

selectively modified are still unknown. ADAR1 prefers to deaminate adenosines where
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Figure 2.3: The size and main functional domains of the ADAR family members. The
red boxes indicate the location of the nuclear localization signal (NLS), the purple boxes
represent the double-stranded binding domains, the yellow boxes indicate the location
of the deaminase domain. The asterisks represent conserved amino acids in all three
domains that are thought to be critical for active-site zinc coordination. Figure from
[43].

the 5’ neighboring base is either A, U, or C. It also disfavors adenosines near the 3’

end of the duplex [43, 109]. ADAR1 and ADAR2 have both overlapping and unique

specificities [43, 92]. Using ADAR1 and ADAR2 knockout mice, researchers [115] were

able to characterize sites that are targeted by only ADAR1 or ADAR2 and sites that

are targeted to varying degrees by both. It was hypothesized that ADAR1 and ADAR2

may also have some regulatory affects on each other. Not much is known about specific

sites that ADAR3 may target. ADAR3 is able to bind dsRNA, but it is distinct from

ADAR1 and ADAR2 in that it is also able to bind single-stranded DNA [23]. It was also

shown in vitro that ADAR3 was able to inhibit RNA editing by ADAR1 and ADAR2

suggesting that ADAR3 may also play a regulatory role in RNA editing [23].

2.3.2 A-to-I Editing in Alu sequences

Much of the early research on A-to-I editing focused on non-coding regions,

especially within Alu elements. Alu elements are repetitive sequences roughly 300 bp in
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length and consist of two monomers that are joined by an A-rich region. They are found

in various regions throughout the human genome, and 75% of known genes have them

within their introns and UTRs [71]. Multiple A-to-I editing events were discovered in

the repeat regions of introns and 3’ UTRs in human brain RNAs [94] which prompted

researchers to investigate RNA editing in repeat regions on a global scale [71]. An

abundance of A-to-I editing within the embedded Alu sequences in transcripts of >30

tissue sources were found [71]. Experimental evidence for RNA editing in liver, lung,

kidney, prostrate, and colon was shown for the first time. For most genes, the same

editing was found in all of the tissues at a varying rate, and most often the unedited

signal dominated the edited signal [80].

In 2009, a study identified A-to-I RNA editing sites that were not in repetitive

regions on a genome-wide scale [85]. Until then, there were only 13 known genes that

did not have obvious repetitive regions but still had evidence of RNA editing [85].

The study identified over 700 edited sites, with nearly 250 occurring in coding regions.

Although they were not in repetitive regions, many of the gene sequences could form

dsRNA structures suitable for A-to-I editing by the ADAR family.

The amount of A-to-I editing that occurs per transcript can vary greatly. Some

transcripts may only have a single A-to-I event, while others can have more than 50%

of the adenosines edited [43, 121]. It is hypothesized that there are at least two different

underlying mechanisms behind A-to-I editing. Much of the focus has been on A-to-I

hyperediting in areas where there are either perfect or imperfect repeats that can form

double-stranded RNA (dsRNA). On the other hand, the exact mechanism for A-to-I
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editing in areas without such obvious repeats is yet to be discovered.

2.3.3 A-to-I Editing in Diseases

Proteins that are able to edit nucleotides must be very well regulated in order

to avoid potentially dangerous scenarios. RNA editing is essential for normal brain

function and normal central nervous system functions. Mice that lack the enzymes that

are responsible for A-to-I editing are embryonic lethal, indicating that A-to-I editing

is required for normal development. In mammals, most of the edited transcripts are

expressed in the central nervous system (CNS) [39]. It is not known if the variety of

proteins generated by editing are required by the CNS or if they are simply more toler-

ated since it is an immune-privileged system. Diseases of the CNS such as depression,

epilepsy, schizophrenia and amyotrophic lateral sclerosis (ALS) have been reported to

have a deregulation of RNA editing [39, 65, 89].

Although the editing process of ADARs is very well regulated in vivo [19, 21,

39, 78], it is unclear what the regulation factors are. It has been shown that ADARs

can form homo- and hetero-dimers [39, 40, 112, 134] which has a significant impact on

the editing activity [39, 40].

2.3.4 A-to-I Editing in Cancer

The relationship between RNA editing and cancer is just beginning to unravel.

The most significant differences in editing between normal and tumor tissues until now

have been found in brain and liver samples, but alterations in editing levels have also
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been shown for other types of cancer as well. Researchers are beginning to provide

evidence that alterations to RNA editing in cancer-related genes may be relevant to the

initiation and progression of cancer. An increase in the expression of oncogenes or a

decrease in the expression of tumor suppressors due to RNA editing is emerging. An

analysis of RNA editing for multiple cancers will help reveal the relationship between

RNA editing and cancer. It may unveil possible drug targets or identify new diagnostic

and prognostic markers that may lead to early detection, assistance in monitoring a

patient’s response to therapy, or aid in the detection of residual parts of the disease

after treatment.

2.3.4.1 A-to-I Hypoediting in Brain Cancers

A global A-to-I hypoediting of Alu elements was discovered primarily in brain

tumors but also in other tumor tissues including prostate, kidney, lung, and testis

[106]. A correlation between a decrease in ADAR expression and the grade of tumor

malignancy, where the expression levels were lowest in higher grade brain tumors was

shown. This was the first strong evidence for a connection between the deregulation

of ADARs and cancer progression. A reduction in expression levels for all three of the

ADAR enzymes in brain tumors was found (Figure 2.4). This included a 99% decrease

in ADAR2 expression, which is only expressed in the brain, for glioblastoma multiforme

(GBM), the most aggressive brain tumor [106]. This finding suggests that the overall

decrease in editing activity could be due to a decrease in ADAR expression [106]. In

addition, a decrease in the proliferation of a GBM cell line due to the over-expression
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of the ADAR enzymes suggests that A-to-I editing in brain tumors is involved in the

progression of cancer [106].

Figure 2.4: Reduced levels of mRNA expression of the ADAR family of enzymes
in various brain cancers. (A) Reduction of ADAR1 expression, (B) Reduction of
ADAR2 expression, (C) Reduction of ADAR3 expression. LAG=Low-Grade Astro-
cytomas, AA=anaplastic astrocytomas, GBM, glioblastomas multiforme, Oligo, oligo-
dendrogliomas. Figure from [106].

Defects in ADAR2 activity have been directly linked to GBM [39, 49, 90]. In

GBM patients, there is a decrease in RNA editing at the Q/R site of the GluR-B gene

which is exclusively edited by ADAR2. Due to the fact that tumors show significant

alterations in many biological pathways, it is still unknown if the decrease in editing is a

consequence or cause of tumor progression. A previous study showed that the Q/R site
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of GluR-B is essential for suppressing migration in vivo and alterations may contribute

to the aggressive growth of GBMs through the ATK pathway activation [39, 56, 57].

Although there is not much information about RNA editing in children, a

correlation between a decrease in ADAR2 editing activity and the grade of tumor ma-

lignancy in pediatric astrocytomas has been shown [21, 39]. There was little to no

ADAR2 editing activity detected in both astrocytoma tissues and cell lines, but the

cell malignant behavior can be significantly reduced by restoring the normal ADAR2

activity [21, 39]. The elevation of ADAR1 expression levels appears to interfere with

ADAR2 activity, suggesting that the balancing of ADAR activity is essential and could

be at the origin of cell transformation [21, 39].

2.3.4.2 A-to-I Hypoediting and Hyperediting of Cancer Specific Genes

A more complex picture emerges when evaluating specific cancer-related genes

[106]. Some genes (BRCA1 and BLCAP) were found to be edited more in tumors vs.

normal tissues while others (MED13, FLNA and CYFIP2 ) were edited less [106]. For

BRCA1, a breast cancer tumor suppressor gene, editing in tumors was significantly

higher than in normal samples [106]. For the BLCAP (bladder cancer-associated pro-

tein) gene, the trend was the same but less significant, with an average editing level in

normal tissues of 16% while tumors had an average of 21% [106]. The MED13 (thyroid

hormone receptor associated protein 1) gene is known to be in a genomic location that

is amplified in breast cancer, and the normal samples had higher average editing levels

than the tumor tissues [106]. The FLNA (filamin A, alpha (actin binding protein 280))
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gene down-regulates activity of the androgen receptor that is associated with prostate

cancer, and normal brain samples had an average of 21.5% editing, while the tumor

samples had an average of 8.5% editing [106]. The CYFIP2 (cytoplasmic FMR1 in-

teracting protein 2) gene is down-regulated by the well-known tumor suppressor TP53,

and has an average editing level of 52% in normal brain tissues vs. 22% in brain tumors

[106].

Figure 2.5: RNA editing in COG3 and SRP3. Sanger sequencing chromatograms vali-
dating the RNA editing for each gene. The arrow marks the editing site. Figure from
[125].

An important A-to-I editing event in Acute Myeloid Leukemia (AML) was

identified in the protein tyrosine phosphatase PTPN6 gene [14]. The PTPN6 gene

is recognized as a tumor suppressor gene and is important for the down-regulation of

growth-promoting receptors. The A-to-I conversion causes the splicing mechanism to

ignore a splice junction, leading to a non-functional PTPN6 protein via the inclusion

of an intron in the mature RNA transcript. In addition, A-to-I editing at this position
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was lower in patients who were in remission [14]. The authors emphasized that this

abnormal A-to-I editing that was only found in tumor samples could be at the origin of

AML [14], but this is still an open question.

Two A-to-I editing events that alter the amino acid sequence in the SRP3 and

COG3 genes were identified by next-generation sequencing of both the genome and

transcriptome of an estrogen-receptor-α-positive metastatic lobular breast cancer [125].

SRP3 and COG3, were highly edited and resulted in non-synonymous changes that

created variant protein sequences as shown in Figure 2.5. In addition to identifying the

specific editing events and sites, one of the ADAR enzymes was in the top 5% of genes

that were expressed.

We are just beginning to gain insight on the role of A-to-I editing in cancer. An

understanding of how A-to-I editing is regulated in vivo has begun, and it is important

to determine the link between ADARs and cancer and other diseases. It has been

shown that both ADAR1 and ADAR2 are co-expressed in a cell, and ADAR homo-

and hetro-dimers are found in different cell types [39]. While it seems that there is a

general decrease in ADAR activity for brain tumors, a complex pattern of hypo- and

hyper-editing of individual genes is emerging in other cancers [21, 39, 106, 90]. This

thesis will focus on hyperediting of the AZIN1 gene in multiple cancers.

2.3.4.3 Hyperediting of AZIN1 in Liver Cancer

Over-editing of the AZIN1 gene in hepatocellular carcinoma (HCC) was as-

sociated with gain-of-function phenotypes such as tumor initiation, accelerated growth
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rates, and increased invasive capabilities both in vitro and in vivo [24]. The edited

AZIN1 protein neutralizes antizyme mediated degradation of orinthine decarboxylase

(ODC) and cyclin D1 (CCND1) leading to increased cell proliferation [24]. Until now,

a thorough investigation of AZIN1 editing in other cancers has not been performed.

2.3.4.4 Role of Cyclin D1 in Cancer

The retinoblastoma gene (RB) is a tumor suppressor gene and a key regulator

of cell cycle progression [140]. The Rb protein is responsible for preventing excessive

cell growth by inhibiting progression of the cell cycle from the G1 (first gap phase) to S

(synthesis phase) phase until a cell is ready to divide [140]. Rb binds to and inhibits the

E2F transcription factor family that can trigger a cell’s entry into S phase [140]. When

a cell is ready to divide, Rb is phosphorylated by cyclins and cyclin-dependent kinases

(CDKs) [64, 88, 140]. The initial phosphorylation is done by the cyclin D-CDK4-CDK6

complex [64, 88, 140]. Rb is inactivate when it is phosphorylated, allowing E2F to

activate other cyclins and CDKs to continue the cell cycle [64, 88, 140].

Given that many cancers occur due to errors in cell cycle regulation and the

role of cyclin D in activating cell cycle progression by inactivating Rb, cyclin D is

considered to be a possible oncogene. Uncontrolled production of cyclin D allows more

cyclinD-CDK4-CDK6 complexes to form, driving cell cycle progression.
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2.4 Conclusion

Identifying and characterizing germline variants, somatic mutations, and RNA

editing events is important to cancer research in many ways. It provides critical infor-

mation about cancer development and progression. It also determines potential cancer

genes that can be used for drug development, diagnosis, and treatment. Many cancer

genes that have been discovered thus far have been successfully targeted by anticancer

drugs, making the identification of new cancer genes one of the most important contri-

butions to cancer research. With the enormous costs involved in drug development, it is

important to characterize cancer genes as thoroughly and accurately as possible. Char-

acterizing both the DNA and RNA of a mutation is crucial in the identification of good

candidate genes for drug targets. With the influx of high-throughput sequencing data

for both the DNA and RNA across multiple cancers, it is now possible to characterize

genetic variants, somatic mutations, and RNA editing events on a genome-wide scale.
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Chapter 3

RADIA: A Method to Identify and

Characterize SNVs in Cancer Using

Both DNA and RNA

Somatic mutation calling is traditionally performed on patient-matched pairs

of tumor and normal genomes/exomes [25, 44, 74, 75, 79, 123]. The ability to accurately

detect somatic mutations is hindered by both biological and technical artifacts that

make it difficult to obtain both high sensitivity and high specificity. Different mutation

calling algorithms often disagree about putative mutations in the same source data, and

frequently have discernible systematic differences due to the trade-off between sensitivity

and specificity [116]. This is especially true for somatic mutations with low variant allele

frequencies (VAFs). By creating an algorithm that utilizes both DNA and RNA, the

power to detect somatic mutations is greater, especially at low variant allele frequencies.
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RADIA combines patient-matched tumor and normal DNA with the tumor

RNA to detect somatic mutations. The DNA Only Method (DOM) (Figure 3.1) uses

just the tumor/normal pairs of DNA (ignoring the RNA), while the Triple BAM Method

(TBM) (Figure 3.1) uses all three datasets from the same patient to detect somatic mu-

tations. The mutations from the TBM are further categorized into two sub-groups:

RNA Confirmation and RNA Rescue mutations (Figure A.1). RNA Confirmation mu-

tations are those that are made by both the DOM and the TBM due to the strong

variant read support in both the DNA and RNA. RNA Rescue mutations are those that

had very little DNA support, hence not called by the DOM, but strong RNA support,

and thus called by the TBM. RNA Rescue mutations are typically missed by traditional

methods that only interrogate the DNA.

RADIA operates on two or more BAM files, producing somatic mutation calls

through a series of steps outlined in Figure 3.1. Each step in this process is described in

detail, beginning with the initial selection of sites for further processing and ending with

a description of filters used to eliminate false positives while maintaining true positives.

3.1 Variant Detection with RADIA

RADIA is typically run on three BAM [84] files consisting of a pair of patient-

matched tumor and normal genomes and a tumor transcriptome and outputs germline

(inherited) variants, somatic mutations, and RNA editing events. The DOM is run on

the pairs of tumor and matched-normal DNA while the TBM is applied to the DNA
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and RNA triplets. After the DOM and TBM specific filters, the results are merged and

run through a final read support filter (Figure 3.1). If RNA-Seq data is not available,

RADIA can utilize paired tumor and normal DNA genomes using the DOM to detect

germline variants and somatic mutations.

Figure 3.1: Overview of the RADIA work-flow for identifying SNVs. The normal DNA,
tumor DNA, and tumor RNA BAMs are processed in parallel and initial low-level
variants are identified. The variants are filtered by the DNA Only Method using the
pairs of normal and tumor DNA and by the Triple BAM Method using all three datasets.
The variants from the two methods are merged and output in VCF format.

Internally, RADIA uses the samtools [84] mpileup command (version 0.1.18) to
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examine the pileups of bases in each sample in parallel. A heuristic algorithm determines

the existence and type of variant at any given position based on the user-configurable

minimum thresholds for overall depth, variant depth, Base Alignment Quality (BAQ)

[82], and mapping quality. Initially, RADIA requires a minimum overall depth of four

bases, minimum variant depth of two bases, minimum phred BAQ of 10, and minimum

phred mapping quality of 10. These initial calls are lenient in coverage and provide a

good baseline set of calls for further filtering.

RADIA scans pileups of reads across the reference genome and outputs vari-

ants in Variant Call Format (VCF) (https://github.com/samtools/hts-specs). For each

position, summary information such as the overall depth, allele specific depth and fre-

quency, average BAQ base quality, average mapping quality, and the fraction of reads

on the plus strand are calculated for both the DNA and RNA. All of this information

is used during the filtering process.

3.2 Variant Filtering

After the initial variants are detected, a number of filters are applied to remove

false positive variants that result from biological and technical artifacts. Each filter is

described here in detail.

3.2.1 Filtering Around INDELs

Many current mutation calling algorithms have a pre-processing step to ac-

count for misaligned reads around INDELs. This realignment step is computationally

27



expensive and relies on accurately predicting the location of INDELs which itself is not

a trivial problem. Base Alignment Quality (BAQ) is an alternative option for dealing

with alignment ambiguity around INDELs. It calculates the probability that a base

has been misaligned and returns the minimum of the original base quality and the base

alignment quality. BAQ is run by default when executing a samtools mpileup command

and has been shown to improve SNP calling accuracy [82]. The extended version of

BAQ (option –E) that is activated by default in the latest version of samtools (0.1.19)

for increased sensitivity and slightly lower specificity is used [84].

3.2.2 1000 Genomes Blacklist Filter

The 1000 Genomes Project coined the term “accessible genome” to be the

part of the reference genome that is reliable for accurate variant calling after removing

ambiguous or highly repetitive regions [30]. Since the reference genome is incomplete,

repetitive in places, and does not represent human genetic variation comprehensively,

reads often get mapped incorrectly in locations outside the accessible genome (inacces-

sible sites), leading to false positive variant calls. Over 97% of inaccessible sites are due

to high copy repeats or segmental duplications. In the pilot, the 1000 Genomes Project

determined that 85% of the reference sequence and 93% of the coding region was ac-

cessible. Due to longer read lengths (75-100 bp) and improvements to both paired end

protocols and sequence alignment algorithms, the accessible genome increased in Phase

I to 94% of the reference and 98% of the coding region [31]. Variants that are not in

the accessible genome using the Phase I mapping quality and depth blacklists (ftp://ftp-
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trace.ncbi.nih.gov/1000genomes/ftp/phase1/analysis results/supporting/accessible gen

ome masks/) are filtered.

3.2.3 Strand-Bias Filter

It has been shown that variant allele reads that occur exclusively on one strand

are largely associated with false positives [79]. In order to account for this technical

artifact, RADIA filters based on the variant allele strand bias. If there are at least four

total reads supporting the variant allele, then the strand bias filter is applied if more

than 90% of the reads are on the forward strand or more than 90% are on the reverse

strand.

3.2.4 Filtering by mpileup Support

RADIA can be executed on patient-matched pairs of tumor and normal DNA

samples using the DOM to identify germline variants and somatic mutations. The

matched normal DNA is first compared to the human reference genome. The normal

DNA must pass the mpileup support filters described in Table 3.1 for all germline

variants.

If no germline variant is found, the tumor DNA is compared to the matched

normal DNA and the reference genome to search for somatic mutations. The normal

DNA and tumor DNA must pass the mpileup support filters shown in Table 3.1 for all

somatic variants. To ensure that there is adequate power to detect a possible germline

variant at this site, the germline DNA depth must be 10 or more.
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Table 3.1: DNA Only Method (DOM) mpileup Support Filters. The germline variants
and somatic mutations from the DOM are filtered according to the parameters described
here. The minimum average alternative read BAQ filter uses the phred scale. The
maximum other percent restricts the percentage of reads that are allowed to support
an additional alternative allele.

The Triple BAM Method is used to augment the somatic mutation calls using

both the pairs of DNA and the RNA-Seq data. The normal DNA, tumor DNA, and

tumor RNA must pass the mpileup support filters shown in Table 3.2 for all somatic

mutations. At least one read with a minimum BAQ phred score of 15 in the tumor DNA

is required. To rule out possible germline variants, the normal DNA depth must again

be 10 or more. In addition, calls that overlap with common SNPs that are not flagged

as clinically relevant and found in at least one percent of the samples in dbSNP [127] are

filtered out. This subset of dbSNP was downloaded from the “Common SNPs” track
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on the UCSC human genome browser [63, 68]. Many false positive variants overlapped

with earlier versions of dbSNP. These variants were due to technical artifacts and were

removed from subsequent versions of dbSNP [98]. Therefore, all variants that overlap

with dbSNP versions 130, 132 or 135 (ftp://ftp.ncbi.nih.gov/snp/) are filtered out. The

TBM calls are subjected to further filtering procedures as shown in Figure 3.1 and

described below.

Table 3.2: Triple BAM Method (TBM) mpileup Support Filters. The somatic mutations
from the TBM are filtered according to the parameters shown here. The minimum
average alternative read BAQ filter uses the phred scale. The maximum other percent
restricts the percentage of reads that are allowed to support an additional alternative
allele.
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3.2.5 Pseudogene Filter

An observation was made that many of the putative TBM mutations over-

lapped with predicted pseudogenes. Although expressed pseudogenes have recently

been reported to be significant contributors to the transcriptional landscape and shown

to play a role in cancer progression [60], mutations that overlap with predicted pseu-

dogenes have a high false positive rate. Sequence similarity of pseudogene copies to

their parent genes leads to uncertainty in alignment within these regions. Because of

these technical artifacts, TBM mutations that overlap with pseudogenes annotated in

GENCODE by the ENCODE project (version 19) [48] and predicted by RetroFinder

(version 5) [48, 13] are removed. The pseudogene annotations were downloaded from

the following tracks on the UCSC human genome browser [68, 118]: Gene Annotations

from ENCODE/GENCODE and Retroposed Genes. The predicted pseudogenes occupy

1.5% of the total genome.

3.2.6 Highly Variable Genes Filter

TBM mutations that overlap with families of genes that have high sequence

similarity are removed. Some examples of these gene families are Human Leukocyte

Antigens (HLAs), Ribosomal Proteins (RPLs), and immunoglobulins. While mutations

in these genes may exist, special processing would be needed to distinguish them from

false positive calls due to misaligned reads. The mutations are annotated using SnpEff

[26], and mutations landing in the following five gene families are removed: RPLs,

RP11s, HLAs, IGHVs and IGHCs.
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3.2.7 Positional Bias Filter

False positive calls are associated with misaligned reads where the alternative

allele is consistently within a certain distance from the start or end of the read. The

positional bias filter is applied when 95% or more of the reads that have an alternative

allele are such that the alternate allele falls in the first third or last third of the read.

3.2.8 BLAT Filter

Multiple instances were observed where RNA-Seq reads appeared to be incor-

rectly mapped due to the added difficulties in aligning RNA-Seq data, such as dealing

with hard to identify splice junctions and multiple gene isoforms. To guarantee that

the RNA-Seq reads that support a variant do not map better to another location in the

genome, a BLAT filter was created. All of the RNA-Seq reads that support a variant

are extracted from the BAM file and aligned to the human genome using BLAT [67]. If

the read maps to another location with a better score, the read is rejected. After using

BLAT on each read, at least four valid reads that support the variant and a minimum

of 10% or more of the reads that support the variant are required.

3.2.9 Read Support Filter

The calls from the DOM and the TBM are merged and one final filter is

applied. Each somatic mutation must be supported by at least four “perfect” reads. A

perfect read is defined as follows:

1. Minimum mapping quality of read is 10
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2. Minimum base quality of alternative allele in read is 10

3. Minimum base qualities of the five bases up- and down-stream of the alternative

allele are 10

4. Read is properly paired

5. Read has fewer than four mismatches across its entirety when compared to the

reference

6. Read does not require an insertion or deletion to be mapped

After determining the number of perfect reads that support the reference and

the alternative alleles at a coordinate, the strand bias filter is re-applied to guarantee

that no more than 90% of the total perfect reads are from one strand.
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Chapter 4

Somatic Mutations

RADIA has been applied to data derived from nearly 4,500 patients repre-

senting 22 different cancer types from TCGA (Table A.9). Overall, the RNA Rescue

mutations that are made possible by the incorporation of the RNA-Seq data provide a

two to seven percent increase in somatic mutations compared to the DOM (Table A.9).

Many of these mutations were new discoveries that were not previously found by other

mutation calling algorithms in TCGA. Of these new discoveries, some mutations were

found in well-known cancer genes that were heavily mutated in a specific cohort. Mu-

tations in new samples where the same gene had already been identified as harboring

mutations in other samples from the cohort were also found. When these RNA Rescue

mutations are added to the DNA Only mutations, these genes achieve a statistically

significant overall mutation rate for the cohort.

The primary focus here is on results from 177 endometrial carcinoma [62] and

230 lung adenocarcinoma [11] patients from TCGA. To demonstrate the increase in
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sensitivity from including the tumor RNA-Seq dataset, artificial mutations were spiked

into the tumor DNA and tumor RNA of a breast cancer patient using bamsurgeon

(https://github.com/adamewing/bamsurgeon). Sensitivity and precision was evaluated

on the endometrial carcinoma and lung adenocarcinoma data using validation data that

was generated by TCGA. All patients in this study provided written informed consent

to genomic studies in accordance with local Institutional Review Boards and the policies

and guidelines outlined by the Ethics, Law and Policy Group from TCGA. All patient

data is anonymous and was originally collected for routine therapeutic purposes. RNA

Rescue mutations found by the TBM in tumor suppressor genes such as TP53, STK11,

and CDKN2A in lung adenocarcinoma are highlighted.

4.0.10 Sensitivity on Simulation Data

In order to evaluate sensitivity and demonstrate the increase in power from

including the RNA-Seq data, somatic mutations were simulated starting from patient

data. Mutations were spiked into a pair of breast cancer tumor DNA and tumor RNA

samples using bamsurgeon (https://github.com/adamewing/bamsurgeon), a tool devel-

oped to generate simulation data that closely mimics actual experimental data from

high-throughput sequencing datasets. Bamsurgeon first determines the loci that have

an appropriate DNA and RNA depth to spike in mutations. It then extracts the reads

at the loci, adjusts the VAF according to the user-defined VAF distribution, and then

re-maps the reads (Figure A.2). This simulation strategy is more sophisticated than

simply generating simulated reads from a reference genome, as it retains the biological
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and technical artifacts that are inherently present in next generation sequencing data.

Two spike-in experiments were performed: one varying the DNA VAF while holding

the RNA VAF constant, and one varying the RNA VAF while holding the DNA VAF

to 10% or less.

4.0.10.1 Sensitivity on Variable DNA-Constant RNA Simulation Data

To evaluate the sensitivity of RADIA, 1,594 mutations were spiked into the

tumor DNA sequence with a variant allele frequency ranging from 1-50% and to the

tumor RNA sequence at a constant frequency of 25%. The overall sensitivity rate

averaged across all VAFs is 85% consisting of 1,351 out of 1,594 spiked in mutations

(Figure 4.1A). Of the 243 calls that were filtered out, over 50% were removed because

they failed to meet the minimum variant allele frequency, more than 20% landed in

blacklist regions that the method ignored, and nearly 20% were discarded due to the

BLAT filter. The number of mutations that were rejected by the full list of filters can

be found in Figure A.3.

4.0.10.2 Sensitivity on Low Frequency DNA-Variable RNA Simulation Data

To demonstrate the ability of the TBM to rescue calls at low DNA VAFs, 1,761

mutations were spiked into the tumor RNA sequence with a variant allele frequency

ranging from 1-50% and to the tumor DNA sequence at a frequency of 10% or less.

Most of the mutations by the DOM were filtered out due to the low allelic frequency in

the DNA (Figure A.4). For the mutations that had sufficient read support in the RNA,
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Figure 4.1: Sensitivity of RADIA on simulation data. Artificial mutations were spiked
into the tumor DNA and RNA BAM files of a breast cancer patient using bamsurgeon.
(A) Mutations were spiked into the DNA at variant allele frequencies distributed from
1-50% and into the RNA at a constant 25%. The overall sensitivity of RADIA was
85%. RNA Rescue calls from the Triple BAM method detected the mutations that had
a DNA VAF less than 10%. (B) Mutations were spiked into the DNA at 10% or less and
into the RNA distributed from 1-50%. Most of the DOM mutations were filtered due
to the low DNA allelic frequency. The mutations that had adequate RNA read support
were rescued back at these low DNA allelic frequencies.
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these low DNA VAFs were rescued back (Figure 4.1B).

4.0.11 Precision and Sensitivity on Patient Data

Somatic mutation calls were made on 177 non-hypermutated TCGA endome-

trial carcinoma samples [62]. All 177 tumor and matched normal whole exome se-

quencing and RNA-Seq alignments in BAM [84] format were downloaded from TCGA

at the Cancer Genomics Hub (CGHub, https://cghub.ucsc.edu). The exomes were se-

quenced using the Illumina Genome Analyzer II, and the paired-end sequencing reads

were aligned by BWA [83]. The RNA was sequenced using the Illumina Genome Ana-

lyzer II, and the single-end sequencing reads were aligned by MapSplice (V2) [136].

4.0.11.1 RADIA Precision on Endometrial Carcinoma Patient Data

For the study on endometrial carcinoma by TCGA [62], mutations were sub-

mitted by three independent TCGA Genomic Data Analysis Centers (GDACs). These

mutations were merged and targeted for custom recapture and resequencing using new

cDNA libraries from the tumor and normal DNA samples [62]. The validation BAMs

containing the results of the hybrid capture and resequencing of targeted mutations

were downloaded from CGHub (https://cghub.ucsc.edu). The identical validation cri-

teria used by the TCGA Endometrial Analysis Working Group was utilized to validate

the somatic mutations detected by RADIA [62]. For each somatic mutation, the patient-

matched tumor and normal validation data was queried. At least 10 reads in both the

tumor and normal data were required in order to determine if a call validated, otherwise
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it was classified as ambiguous. If the variant was present at low levels in both datasets,

it was also classified as ambiguous. Otherwise, a mutation validated as germline/LOH,

somatic, or neither according to Table 4.1. In addition, any RNA Rescue call in the

“Not Validated” group that overlapped with a COSMIC (Catalogue of Somatic Muta-

tions in Cancer) somatic mutation that was confirmed in another study was considered

as validated.

Table 4.1: Validation criteria for endometrial carcinoma data. Validation BAMs were
used to determine the validation status for somatic mutations as shown here. A mutation
is considered validated in the Somatic Low, Med, or High groups (blue), not validated
in the Not Validated (green) and Germline/LOH groups (red), and Ambiguous when
there was low read depth (<10 reads) or low VAFs in both the normal (<3%) and tumor
(<8%) validation BAMs (orange).

A total of 27,900 somatic mutation calls over 177 endometrial samples were

detected, of which the DOM and TBM made 27,390 and 6,325 calls respectively. Of

the 6,325 TBM calls, there were 5,815 RNA Confirmation mutations that were made

by both the DOM and TBM signifying high DNA and RNA support, and importantly,

a total of 510 RNA Rescue mutations that were missed by the DOM.

Using the validation strategy described above, the overall precision for RADIA
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Figure 4.2: Precision and sensitivity of RADIA on 177 non-hypermutated endometrial
carcinoma samples. Mutations were considered validated in the Somatic Low, Med,
or High groups (blue), not validated in the Not Validated (green) and Germline/LOH
(red) groups, and Ambiguous (orange) when there was low read depth (<10 reads) or
ambiguity in the validation data. (A) An overall precision of 98% was demonstrated.
RNA Confirmation mutations with strong DNA and RNA support validated over 99%.
RNA Rescue mutations validated at 74%. (B) The union of all mutations submitted
by TCGA GDACs that validated as somatic was considered as the truth set. RADIA
demonstrated an overall sensitivity rate of 84%. Of the mutations that were missed,
33% occurred at low variant allele frequencies (<8%) and 23% occurred in blacklist
regions that were ignored.
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is 98% (Figure 4.2A). Due to lack of coverage or uncertainty in the tumor and normal

validation BAMs, a total of 1,825 calls were considered to be ambiguous. Of the re-

maining 26,075 mutations called by RADIA, 25,520 validated as somatic, 271 validated

as germline/LOH variants and 284 did not validate. The precision of calls made by

the DOM and the TBM was 98% and 98.5% respectively. For the RNA Confirmation

mutations made by both the DOM and the TBM, the precision was 99.3%. There were

510 RNA Rescue mutations made only by the TBM, and even though most of these

calls were not targeted for validation, the precision was 74%. For the 510 RNA Rescue

calls, 251 were classified as ambiguous, 6 validated as Germline/LOH, and 61 did not

validate. Of the remaining 192 RNA Rescue mutations that validated, 178 (93%) were

verified using the validation BAMs and 14 (7%) were confirmed as somatic mutations

in COSMIC.

The precision of the DOM with varying RNA-Seq reads supporting the variant

allele was examined as well as the precision of RNA Rescue mutations with differing

levels of DNA supporting reads. Sixty-two percent of the DOM mutations were covered

by reads in the RNA-Seq data, and 29% had at least 10 RNA-Seq reads covering the

mutation. Nearly half (44%) had at least one RNA read supporting the DNA variant

allele, while 25% of the DOM mutations had at least four supporting RNA reads. The

precision of the DOM is lowest (92%) with no RNA-Seq support, increases to 95% with

weak RNA-Seq support (at least one but less than five supporting reads), and increases

to 99.3% for RNA Confirmation mutations. Overall, mutations that are detected by

the DOM validate above 92%, regardless of the RNA-Seq support, and the precision
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increases as the RNA-Seq support increases.

On the other hand, RNA Rescue mutations weakly supported by the DNA

validate at low levels. For RNA Rescue mutations, at least one variant supporting read

in the DNA is required in order to distinguish between RNA Rescue mutations and

possible RNA editing events. The precision of RNA Rescue mutations with only one

read supporting the variant in the DNA was 11%, with two supporting reads in the DNA

23%, with three supporting reads in the DNA 43%, and with four or more supporting

reads in the DNA 94%.

4.0.11.2 RADIA Sensitivity on Endometrial Carcinoma Patient Data

In order to measure the sensitivity of RADIA, the union of all mutations

submitted by TCGA GDACs that validated as somatic were considered as our truth set.

There were 30,239 mutations that validated as somatic from TCGA. A comparison of

RADIA somatic mutations and this truth set demonstrated an overall sensitivity of 84%

(Figure 4.2B, Figure A.5). Of the 4,751 calls that were missed, 1,539 (33%) were filtered

by RADIA because they had a variant allele frequency less than 8% (Figure A.6). In

addition, 1,072 (23%) landed in blacklist regions that were not considered (Figure A.6).

4.0.11.3 RADIA Precision on Lung Adenocarcinoma Patient Data

Finally, RADIA somatic mutations were analyzed during the course of our

group’s participation in the TCGA Lung Adenocarcinoma Analysis Working Group [11].

RADIA was executed on 230 TCGA lung adenocarcinoma triplets that were downloaded
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from CGHub (https://cghub.ucsc.edu). The exomes were sequenced using the Illumina

HiSeq platform, and the paired-end sequencing reads were aligned by BWA [83]. The

RNA was sequenced using the Illumina HiSeq platform, and the paired-end sequencing

reads were aligned by MapSplice (V2) [136]. Validation was performed by the Broad

Institute on 74 genes of interest along with an additional 1,150 somatic SNVs. Validation

was attempted on 2,404 RADIA somatic mutations and 2,395 (99.63%) were verified.

From the DOM, 2,336 of the 2,345 mutations (99.62%) validated. Importantly, 469/469

(100%) of the TBM mutations consisting of 410 RNA Confirmation and 59 RNA Rescue

mutations validated.

4.0.12 Somatic Mutations in Specific Lung Adenocarcinoma Genes

Mutations in the tumor suppressor gene TP53 are common in the majority

of human cancers. Most of the mutations occur in the DNA-Binding Domain (DBD)

and are considered change-of-function mutations that alter activity of TP53, sometimes

acting in a dominant negative manner to sequester wildtype tp53 protein in trans [38].

As such, many p53 mutant proteins endow cells with oncogenic characteristics by pro-

moting cell proliferation, survival, and metastasis [96].

RADIA was executed on the 230 TCGA lung adenocarcinoma triplets [11]

and two non-synonymous TP53 mutations that were below the detection threshold for

other mutation calling algorithms used by TCGA were discovered (Table 4.2). Both of

the mutations were validated by the deep-sequencing validation data and confirmed as

somatic in COSMIC by other studies. One of the mutations (G266E) was confirmed
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Table 4.2: RNA Rescue mutations in lung adenocarcinoma not detected by other meth-
ods in TCGA. These mutations were below the detection threshold for other mutation
calling algorithms used by TCGA. The ratio of reads supporting the mutations along
with the variant allele frequencies (VAFs) are shown for both the DNA and RNA. Val-
idation was done on four of the mutations, and the resulting validation DNA variant
allele frequencies are shown.

as somatic in another lung cancer study [61] as well as in prostate [86], pancreas [16],

urinary tract [45], and hematopoietic and lymphoid [1] cancer studies. The G266E mu-

tation occurs in the TP53 DBD mutation hotspot frequently resulting in pathological

effects [3, 37, 108]. This mutation has also been described as a gain-of-function muta-

tion in a melanoma cell line [41]. The other TP53 mutation (G199V) was confirmed

as somatic in breast [9], ovarian [59], and medulloblastoma [117] studies. It is a known

anti-apoptotic gain-of-function mutation that promotes cell survival through the Sig-

nal Transducer and Activator of Transcription-3 (STAT3) pathway [72]. Knockdown

experiments of G199V p53 mutants demonstrated a level of anti-tumor activity simi-
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lar to high doses of chemotherapeutic agents, suggesting that inhibition of G199V p53

mutants may be beneficial for cancer treatment [72].

Additionally, mutations were found in other well-known tumor suppressor

genes such as STK11 and CDKN2A. In the lung adenocarcinoma manuscript from

TCGA, mutations in STK11 and CDKN2A were reported in 17% and 4% of all pa-

tients, respectively [11]. STK11 was the fourth most mutated gene and CDKN2A was

the sixteenth [11]. The proximal-proliferative subtype in lung adenocarcinoma is char-

acterized by an enrichment of mutations in KRAS along with inactivation mutations in

STK11 [11]. In the STK11 gene, a nonsense mutation was discovered at W239* in the

structurally conserved protein kinase domain that was below the detection threshold

for other mutation algorithms used by TCGA. This mutation introduces an early stop

codon in exon five (of ten) leading to a truncated protein. This site is in COSMIC and

was previously reported to be part of a 398 nucleotide deletion in a lung cancer study

[33].

In the CDKN2A gene, one nonsense mutation was found at R122*, R163* and

one missense mutation was found at R131H, R80H. Both mutations were validated by

TCGA and found in COSMIC. CDKN2A is silenced in many CpG island methylator

phenotype-high (CIMP-High) tumors by DNA methylation [11], but mutations and

deletions in CDKN2A also result in loss of function. The nonsense mutation at R122*,

R163* results in an early stop codon in exon two (of three or four, isoform dependent)

leading to a truncated protein. Previous lung cancer studies [6, 17, 53] have reported

frameshifts and deletions at this site. The missense mutation at R131H was also found
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in colon cancer [8], clear cell sarcoma [132], and chronic myeloid leukemia [100] and

confirmed as somatic in biliary tract cancer [133].

4.1 Discussion

Identifying single nucleotide variants is a key step in characterizing the cancer

genome. Until now, algorithms for SNV detection have concentrated on comparing just

the normal and tumor genomes within the same individual. In the past few years, it

has become common to also sequence the tumor transcriptome using RNA-Seq tech-

nologies. Large genomics studies, such as those conducted by TCGA, primarily use the

RNA-Seq data for gene expression, gene fusion, and splicing analyses. With the cost

of sequencing steadily decreasing and the wealth of information that can by obtained

from RNA-Seq data, the sequencing of the tumor RNA will continue to be routine in

large cancer profiling projects. A novel method called RADIA that combines the nor-

mal DNA, tumor DNA, and tumor RNA from the same individual has been developed

to increase sensitivity when detecting somatic mutations without compromising speci-

ficity. The primary focus so far has been on the ability of RADIA to detect germline

variants, somatic single nucleotide variants, and RNA editing events. In the future,

other classes of somatic mutations such as small insertions and deletions (INDELs) and

loss of heterozygosity events (LOHs) will be included.

The accurate detection of SNVs is complicated by biological and technical

artifacts such as tumor purity and subclonality, varying allele frequencies, sequencing
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depths, and copy-number variation. There is a trade-off between high sensitivity and

high specificity, such that it is difficult to achieve both. By including an additional

dataset, there is an increase in the ability to reliably detect mutations, especially at low

variant allele frequencies (Figure A.7) where the signal to noise ratio becomes unfavor-

able.

Many widely used mutation calling algorithms see a large decrease in preci-

sion as the DNA variant allele frequency declines [25, 74, 75, 79, 116]. For RADIA,

a DNA VAF of 10% provides the best balance between sensitivity and precision. To

demonstrate this point, the DNA VAF was lowered to 5% and RADIA was rerun on

the endometrial carcinoma data from Section 4.0.11. The same validation strategy as

described in Section 4.0.11 was utilized and the results were compared to the ones with

a DNA VAF of 10%. A slight 1% increase in overall sensitivity from 84% (at 10% VAF)

to 85% (at 5% VAF) was gained but an 8% decrease in overall precision from 97% (at

10% VAF) to 89% (at 5% VAF) was lost.

By combining the RNA with the DNA, the expression of a mutation can be con-

firmed, providing insight into its likely functional effect. Confirming mutations through

RNA-Seq is also advantageous for large genomic studies in providing a means for weak

validation for mutations without costly resequencing for validation (Figure A.8). Over

99% of mutations that have both strong DNA and RNA support validate upon rese-

quencing, suggesting that if one is not using mutations in clinical practice but rather

estimating overall frequencies of specific mutations in a research cohort, the extreme ex-

pense in validating every mutation may not be warranted. While the integration of RNA
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and DNA provides an important but limited use as a DNA variant validation technique,

studying the impacts on gene expression levels may lead to a deeper understanding of

the functional impact of DNA-originating variants.

Some of the strengths of RADIA have been outlined here, but approaches that

use RNA-Seq for detecting variants have clear limitations [27, 76]. Only expressed alleles

can be evaluated, which reduces the number of genes that can be assessed. In addition,

several classes of mutations, such as the introduction of premature stop codons that lead

to nonsense mediated decay, cannot be verified. Expression levels can also confound the

ability to detect an imbalance in the genomic VAF as influences due to feedback control

to rebalance gene dosage are currently unknown.

RADIA is able to detect mutations in important cancer genes such as TP53

that were previously not identified by other algorithms because the signal was lost in the

noise. Somatic mutations are commonly used to group patients into subtypes that are

critical for diagnosis and treatment of the disease. The ability to rescue back mutations

for individual patients will assist in correctly identifying each patient’s specific subtype

and consequently their treatment options.
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Chapter 5

RNA Editing

RNA editing of the AZIN1 gene is a driver in the pathogenesis of hepato-

cellular carcinoma (HCC) and may be a potential driver for other human cancers as

well. Over-editing of the AZIN1 gene leads to the overexpression of cyclin D1 protein

and an increase in cell proliferation. An investigation of AZIN1 RNA editing in data

collected from nearly 5,000 TCGA patients across 12 cancers has been performed. A

particular focus on the luminal subtypes of breast cancer, known for overexpression of

cyclin D1 is given. Increased editing of AZIN1 appears to be an alternative to cyclin

D1 gene amplification for increased cyclin D1 protein expression in the breast cancer

luminal subtypes. In 44 samples with high cyclin D1 protein levels, devoid of cyclin

D1 amplification, 19 (30%) were over-edited. Over-editing was significant in 10 out of

the 12 cancers studied. Higher editing frequencies significantly correlated with clini-

cal data such as larger tumor sizes, lymph node involvement, presence of metastases,

and higher tumor grades. They were also associated with subtypes that often have the
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worst prognosis. In addition, over-editing in many cancers correlated with a poor overall

and recurrence free survival. These results establish that increased AZIN1 editing is a

general mechanism for promoting cell proliferation in human cancers.

5.1 Introduction

An introduction to the fundamentals of RNA editing is given, along with

specifics about the tumorigenic consequences of RNA editing in the AZIN1 gene. The

importance of cyclin D1 protein overexpression in cancer is illuminated, and a possible

mechanism for this overexpression is provided. A computational investigation of this

mechanism on data collected from nearly 5,000 patients across 12 different cancers is

performed.

5.1.1 RNA Editing

RNA editing is a post-transcriptional modification of the precursor mRNA and

microRNA. The most common type of RNA editing in mammals is A-to-I editing where

an adenosine is deaminated into an inosine by the ADAR (adenosine deaminases acting

on RNA) family of enzymes [77]. Since inosine preferentially base pairs with cytidine, it

is interpreted as guanine during protein synthesis and reverse transcription. The ADAR

family of enzymes binds to double-stranded RNA that occurs when single-stranded RNA

folds back onto itself through perfect or imperfect base-pairing [135]. RNA editing in

different regions of the gene can have various functional effects: non-synonymous protein

coding substitutions, alternative splicing by either the creation of new splice sites or the
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read through of existing splice sites, an influence on translation from RNA editing in

5’UTRs, and an alteration to RNA stability, transport, and regulation from RNA editing

in 3’UTRs and microRNAs [101]. RNA editing of some adenosine sites is highly selective

while other sites are constitutively edited often occurring in clusters of edits [102, 110].

In mammals, ADAR1 is ubiquitously expressed, ADAR2 is primarily active

in the brain, and ADAR3 is exclusively found in the brain. Well known functional

consequences of A-to-I editing include amino acid substitutions in the glutamate and

serotonin receptors [20, 124], mRNA retention in the nucleus [113], changes in RNA sta-

bility [2], modifications to both microRNA and microRNA target sequences in 3’UTRs

[87], heterochromatin formation [138], and protection against viral RNA [144]. Although

the most well-studied A-to-I editing sites are in coding sequences that lead to amino acid

changes, the majority of known A-to-I editing sites occur within Alu elements primarily

located in introns and 3’UTRs [7, 70, 81].

ADAR knock-out mice are embryonic lethal, suggesting that A-to-I editing is

required for normal development [137]. A-to-I editing is essential for normal brain

function and normal central nervous system function. Abnormal RNA editing has

been linked to many diseases such as epilepsy, amyotrophic lateral sclerosis (ALS),

schizophrenia, depression, inflammation, and cancer. There have been isolated cases of

RNA editing events reported in oncogenes and tumor suppressor genes [125]. In Acute

Myeloid Leukemia (AML), an A-to-I editing event was found in the branch site of an

intron between the third and fourth exons in the PTPN6 tumor suppressor gene causing

the splicing machinery to ignore the splice site leading to an elongated, non-functional

52



Figure 5.1: AZIN1 editing is associated with HCC pathogenesis. (A) AZIN1 editing
differences between normal and tumor RNA from 135 and 46 HCC patients from the
Guangzhou (GZ) and Shanghai (SH) cohorts, respectively (paired Students t-test). (B)
A dot plot of AZIN1 editing levels in PBMCs (n=10), healthy liver tissues (n=20),
and adjacent normal liver samples (n=135). Tumor samples were divided into groups
according to the presence or absence of cirrhosis and tumor recurrence. (C) Kaplan-
Meier plot for disease free survival of HCC patients with or without over-editing. Figure
from [24].
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PTPN6 protein [15]. In brain cancer, A-to-I hypo-editing and a correlation between a

decrease in ADAR1 and ADAR2 expression levels with the grade of tumor malignancy

were discovered [107]. A 99% decrease in ADAR2 expression in glioblastoma multiforne

(GBM) tumors was found compared to normal expression levels [107]. Recently, an

A-to-I editing event in the antizyme inhibitor 1 (AZIN1 ) gene has been linked to hepa-

tocellular carcinoma tumor initiation and development [24]. This thesis focuses on the

A-to-I RNA editing modification reported in the AZIN1 gene that causes an amino acid

change in the final protein and the implications of this editing event in other cancers.

Figure 5.2: AZIN1 RNA editing causes enhanced tumorigenicity in liver cancer cell
lines. The growth rates of liver cancer cell lines with the edited form of AZIN1 and the
wild-type (A). Quantification of foci formation (B). Quantification of soft agar colonies
induced by cell lines (C). Quantification of cells that invaded through Matrigel-coated
membrane (D). Figure from [24].

5.1.2 A-to-I Editing of AZIN1 in Liver Cancer

An A-to-I RNA editing event at chr8:103,841,636 in the AZIN1 gene that

leads to a Ser->Gly amino acid change (S367G) was identified in two separate hepa-
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Figure 5.3: AZIN1 RNA editing contributes to augmented tumor-initiating potential
and enhanced in vivo tumorigenic ability. Xenograft studies in mice showed that the
incidence of tumors from AZIN1 edited cells was higher than wild-type or control cells
(A). Seventy percent of mice injected with edt/AZI cells formed tumors within 1 week
while 10% of mice injected with wt/AZI cells formed tumors after 4 weeks (A-B). Tumors
induced by edt/AZI cells grew significantly faster (C). Mice injected with edt/AZI cells
formed more liver nodules (D). Figure from [24].
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tocellular carcinoma (HCC) cohorts [24]. Approximately 50% of the patients in each

cohort had AZIN1 over-editing which was defined as an increase of at least 10% (Fig-

ure 5.1A) [24]. There is a close link between AZIN1 over-editing and HCC pathogenesis.

The mean editing frequencies (EFs) were lowest in peripheral blood mononuclear cells

(PBMCs) and normal liver samples and slightly increased in adjacent non-tumor tissues

(Figure 5.1B). The EFs were significantly higher in HCC patients and highest in HCC

patients with cirrhosis or recurrent tumors (Figure 5.1B). In addition, patients with

over-editing had a significantly worse disease free survival (Figure 5.1C). ADAR1 is re-

sponsible for AZIN1 RNA editing in human cancers [24]. Cell lines with expression con-

structs of the edited version of AZIN1 showed accelerated growth rates (Figure 5.2A),

higher frequencies of focus and colony formation (Figure 5.2B-C) and increased invasive

capability (Figure 5.2D) compared to the wild-type [24]. Xenograft studies showed that

mice that were injected with the edited form of AZIN1 grew more tumors than the

wild-type or control (Figure 5.3A-B). In addition, the tumors grew significantly faster

and were larger compared to the wild-type (Figure 5.3A-D) [24].

Antizyme (AZ1 or OAZ1) is a tumor suppressor that regulates cell growth by

binding to and inducing degradation of growth-promoting proteins such as ornithine

decarboxylase (ODC) and cyclin D1 (CCND1) [24]. The antizyme-ODC/antizyme-

CCND1 interaction leads to a conformational change of ODC/CCND1, inducing an

ubiquitin-independent proteasomal degradation of ODC/CCND1 [24]. AZIN1 is a ho-

molog to ODC that binds to antizyme with greater affinity than ODC, and the edited

form of AZIN1 has an even higher binding affinity to antizyme than the wild-type
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[24]. AZIN1 sequesters antizyme and prevents the degradation of ODC and CCND1,

thus stimulating Retinoblastoma (Rb) phosphorylation and cell-cycle entry, leading to

increased cell proliferation (Figure 5.4) [24].

5.1.3 Role of Cyclin D1 in Cancer

Several oncogenic activities due to the overexpression of cyclin D1 such as

a decrease in the duration of the G1 phase, perturbation of the expression of other

cellular growth-related genes including c-myc, c-jun, and cyclin A, and abnormalities in

growth control have been described [58, 97]. The overexpression of cyclin D1 has been

associated with aggressive tumorigenic characteristics such as a greater extent of lymph

node involvement, metastasis, and a poorer prognosis for many cancers [69].

Overexpression of cyclin D can occur in many ways: gene amplification, chro-

mosomal translocation, or impaired protein degradation. The human cyclin D1 gene

is located on chromosome 11q13, an area known for DNA amplification and rearrange-

ment in many human cancers including esophageal, breast, lung, larynx, head and neck,

thyroid, bladder, and hepatocellular carcinoma (HCC) [129, 143]. However, for many

tumors, cyclin D1 protein overexpression occurs even in cases where no CCND1 ampli-

fication or rearrangement is present [35, 69, 129, 143].

An investigation of RNA editing in the AZIN1 gene was performed on data

collected from a total of 12 cancers and nearly 5,000 patients by TCGA. Significant

over-editing was evaluated for each cancer and correlations with clinical features and

overall and recurrence free survival were examined. Significant associations with clinical
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Figure 5.4: Edited AZIN1 sequesters the tumor suppressor, antizyme, preventing the
proteasomal degradation of ODC and CCND1, leading to increased cell proliferation.
Figure from [24].
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data such as the tumor size, lymph node involvement, presence of metastases, tumor

stage and tumor grade were calculated. The tumor EFs also correlated with cancer

specific subtypes.

5.1.4 A-to-I Editing of AZIN1 in Breast Cancer

Cylin D1 amplification and high protein expression are common oncogenic

events in breast cancer, especially in the Estrogen Receptor (ER) positive (i.e. luminal)

subtype, most-notably in the luminal B subtype [9, 35, 51]. Patients with the basal

subtype showed infrequent CCND1 amplification and cyclin D1 protein overexpression

[35]. The overexpression of cyclin D1 mRNA is associated with increased risk of relapse,

local recurrence, metastasis, and death in patients with ER positive tumors [66]. Al-

though the luminal subtype is prognostically favorable compared to other breast cancer

subtypes, overexpression of cyclin D1 and CCND1 amplification are associated with

poorer prognosis and treatment failure [51].

In the TCGA comprehensive molecular study of breast cancer, 53% of luminal

A and 54% of luminal B tumors had higher than average cyclin D1 protein expression

levels. Many, but not all, of the high protein levels are associated with amplification

of cyclin D1. This is consistent with findings in previous breast cancer studies [35].

A hypothesis for the high cyclin D1 protein levels for the remaining tumors is that

edited AZIN1 sequesters the tumor suppressor gene, antizyme, and interferes with the

proteasomal degradation of cyclin D1.

An investigation of RNA editing in the AZIN1 gene was performed on data
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collected from 1,129 breast cancer patients by TCGA. Significant correlations between

the normal and tumor EFs and the luminal A and luminal B subtypes were found.

As was the case in previous studies [24], AZIN1 editing was strongly associated with

ADAR1 expression and cyclin D1 protein expression.

5.2 Materials and Methods

5.2.1 TCGA Samples

The sequencing of tumor RNA has become common in large cancer projects

such as those conducted by TCGA. The retrieval of adjacent normal tissue, on the other

hand, is less common, and only a subset of samples has adjacent normal RNA-Seq data

available. Patients with DNA and RNA from both the tumor and matched normal

samples were termed quadruplets. Patients with DNA from the tumor and matched

normal samples and RNA only from the tumor were called triplets. All patients provided

written informed consent for genomic studies in accordance with local institutional

review boards. All samples were approved by the policies and guidelines outlined by

the Ethics, Law and Policy Group from TCGA.

5.2.1.1 Quadruplets

DNA whole-exome sequencing (DNA-WES) and RNA-Seq BAM [84] files from

the tumor and matched normal samples from 568 patients across 12 different cancer

types were downloaded from the Cancer Genomics Hub (CGHub, https://cghub.ucsc.edu).
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Each cancer had a minimum of 20 quadruplets with at least 10 quadruplets having an

editing frequency difference of 5% or more. The 568 quadruplets were distributed across

the 12 cancers ranging from 21 quadruplets in bladder cancer to 114 in breast cancer.

The full table with the number of quadruplets for each cancer type is outlined in Supple-

mentary Table B.1. RNA editing events in the tumor and normal RNA were identified

by RADIA (RNA and DNA Integrated Analysis) [114], a method that interrogates high-

throughput sequencing data to detect germline variants, somatic mutations, and RNA

editing events. The frequencies and raw read counts were quantified for each sample.

5.2.1.2 Triplets

DNA whole-exome sequencing (DNA-WES) BAM [84] files from the tumor and

matched normal samples and RNA-Seq from the tumor samples were downloaded from

CGHub. Adding the triplets to the quadruplets resulted in a distribution of total patient

samples from 32 in colon adenocarcinoma to 1,129 in breast cancer (Supplementary

Table B.1). RNA editing events in the tumor RNA were identified by RADIA [114].

5.2.1.3 Clinical Data

All clinical data was downloaded from the TCGA Data Access Portal at

https://tcga-data.nci.nih.gov/tcga/. All clinical features were analyzed for statistical

significance. All follow-up data was used for recurrence-free and overall survival analy-

sis.
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5.2.2 Computational Analyses

5.2.2.1 RNA Editing Detection

RNA editing events in the AZIN1 gene at position chr8:103,841,636 were iden-

tified by RADIA (https://github.com/aradenbaugh/radia/, v1.1.1) [114]. RADIA pro-

cesses the four BAM files from the quadruplets or the three BAM files from the triplets

in parallel to detect germline variants, somatic mutations, and RNA editing events.

RNA editing in the normal samples was determined by comparing the normal DNA

and RNA to the reference genome. RNA editing in the tumor samples was determined

by comparing the normal and tumor DNA along with the tumor RNA to the reference

genome. The RNA editing event must be supported by at least 10 total reads with base

and mapping qualities of 10 or more (phred score) where a minimum of 4 reads are

required to support the editing event. In addition, the RNA editing alternative allele

can only occur in less than two percent of the total DNA reads.

5.2.2.2 Statistical Analyses

The R project for statistical computing (version 3.1.2) and Microsoft Excel

2000 were used for data analysis. The AZIN1 editing frequencies in tumors and matched

normals were compared using the paired Student’s t test. The statistical significance of

the clinical and pathological data features and the editing frequencies were calculated

using the Analysis Of Variance (ANOVA) test. The recurrence-free-survival and overall-

survival analyses were performed using the Kaplan-Meier method. A p-value less than
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0.05 was considered statistically significant.

5.3 Results

5.3.1 AZIN1 Editing in Human Cancers

The AZIN1 chr8:103,841,636 site is significantly over-edited in multiple can-

cers. An analysis of RNA editing in AZIN1 was performed on the DNA whole-exome

sequencing (DNA-WES) and RNA-Seq from the tumor and matched normal (when

available) samples from 4,741 patients (568 quadruplets and 4,173 triplets) across 12

different cancers. A comparison of the editing frequency differences between the normal

and tumor samples showed a statistical significance (p < 0.05) in ten (breast, head

and neck, lung adenocarcinoma, colon adenocarcinoma, thyroid, bladder, endometrial,

stomach, lung squamous, and liver) of the 12 cancer types (Figure 5.5A). The increase

in AZIN1 RNA editing was most significant (p < 0.0003) in six cancers: breast, lung

adenocarcinoma, head and neck squamous cell, colon adenocarcinoma, thyroid, and

uterine corpus endometriod carcinoma. The mean editing differences between the tu-

mor RNA EFs ranges from six percent in kidney renal papillary to 18% in liver cancer

(Figure 5.5B).

High AZIN1 EFs are often significantly correlated with pathological and clin-

ical data such as larger tumor sizes, lymph node involvement, presence of metastases,

and advanced staging classifications. They are also associated with higher tumor grades,

cancer specific subtypes, and poor overall and recurrence free survival.
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Figure 5.5: AZIN1 editing frequencies for all 12 cancers. (A) A comparison of AZIN1
editing in tumor and matched normals for 568 quadruplets from 12 cancers. The
P values were calculated using the paired Students t-test. (B) The distribution of
tumor RNA editing frequencies from 4,741 patients (quadruplets plus triplets) from
12 cancers. KIRP=Kidney Renal Papillary, PRAD=Prostate, COAD=Colon Ade-
nocarcinoma, THCA=Thyroid, HNSC=Head and Neck Squamous, BLCA=Bladder,
LUSC=Lung Squamous, UCEC=Endometrial, STAD=Stomach, LUAD=Lung Adeno-
carcinoma, BRCA=Breast, LIHC=Liver.
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5.3.1.1 AZIN1 Editing Associations with Staging Classifications

Pathologists and clinicians categorize tumors using the TNM Classification of

Malignant Tumors staging system [54]. The staging classifications describe the severity

of a person’s cancer based on the size of their tumor (T), the degree of regional lymph

node involvement (N), and the presence of distant metastases (M). TX, NX, and MX are

used when no evaluation can be made. T0, N0, and M0 denote no tumor, no lymph node

involvement, and no metastases present respectively. T1-T4 describe the size or extent

of the primary tumor. The N1 classification is used when a tumor has spread to a small

number or nearby lymph nodes, N3 designates a tumor has spread to numerous lymph

nodes or more distant lymph nodes, and N2 is used when the lymph node involvement

is between N1 and N3. The M1 classification is denoted when metastasis to distant

organs has occurred. The TNM classifications are used to describe the overall stage

of the cancer. The statistical correlation of AZIN1 editing frequencies and the TNM

classifications for each cancer was performed.

In thyroid cancer, the pathologist tumor size (T) classification was significantly

correlated (p=5.27e-8) with higher AZIN1 EFs for both T3 and T4 (Figure 5.6A). In

kidney renal papillary cell carcinomas, the pathologist T3 score was significantly asso-

ciated (p=0.004) with higher EFs (Supplementary Figure B.2A). In bladder cancer, the

pathologist T2 and T3 classifications had elevated AZIN1 EFs (p=0.006, Supplemen-

tary Figure B.2B). In head and neck cancer, the pathologist T scores and clinical T

scores steadily increased from T1 to T4 (p=0.03, p=0.03, Supplementary Figure B.2C-
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D). In prostate cancer, both the pathologist and clinical tumor size (T) classification

significantly correlated to higher AZIN1 EFs (p=0.03, p=0.03, Supplementary Fig-

ure B.2E-F).

AZIN1 EFs significantly correlate with higher regional lymph node involve-

ment classifications. In kidney renal papillary cancer, the AZIN1 EFs steadily increased

from no lymph node involvement (N0) to N1 and N2 (p=0.03, Figure 5.6B). In head and

neck cancer, the EFs for N2 and N3 were higher than in N1 (p=0.03, Supplementary

Figure B.3A). In addition, lymph nodes were examined to determine if they had only

a few cancer cells in them (microscopic), many cancer cells (gross or macroscopic), or

if the cancer had spread outside the wall of the node (extracapsular). Higher AZIN1

EFs were associated with microscopic and gross extension (p=0.03, Supplementary Fig-

ure B.3B). In prostate cancer, higher AZIN1 EFs correlated with the presence of lymph

node involvement (p=0.02, Supplementary Figure B.3C).

High AZIN1 EFs significantly correlate with distant metastases classifications.

In kidney renal papillary cancer, the mean editing frequencies nearly doubled from

no distant metastases (MO) to the presence of distant metastases (M1) (p=0.03, Fig-

ure 5.6C). Perineural invasion is when cancer cells are seen surrounding or tracking a

nerve fiber and can be an indication that cancer has spread outside the tissue of origin

[36]. In colon adenocarcinoma and head and neck cancer, higher EFs correlated with

the presence of perineural invasion (p=0.0015 and p=0.0068 respectively, Supplemen-

tary Figure B.4A-B).

In thyroid cancer, the overall pathologist tumor stages significantly correlated
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Figure 5.6: Higher AZIN1 editing frequencies correlate with larger tumor sizes (A), a
larger degree of lymph node involvement (B), and the presence of distant metastases
(C). Higher AZIN1 editing frequencies therefore also correlate to later tumor stages
(D). Higher AZIN1 editing frequencies also significantly correlate to the grade of the
tumor (E).
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(p=2.23e-5) with higher AZIN1 EFs (Figure 5.6D). In head and neck cancer, the EFs

steadily increased from stage 1 to stage 4 (p=0.001, Supplementary Figure B.5A). In

kidney renal papillary cancer, the overall clinical stages 3 and especially 4 were associ-

ated with higher EFs (p=0.01, Supplementary Figure B.5B). Finally, in bladder cancer,

the AZIN1 EFs were elevated in stages 2-4 (p=0.04, Supplementary Figure B.5C).

5.3.1.2 Tumor Grade

The tumor grade describes how abnormal the tumor cells look under a micro-

scope and is an indicator for how fast the tumor may grow and spread to other organs

[55]. A pathologist examines the tissue from a biopsy to determine if it is benign or

malignant. A grade of GX means that the grade could not be assessed. Grades 1-4 de-

scribe how differentiated the tumor cells are. Lower grades describe well-differentiated

tumor cells that look similar to normal cells and will grow or spread slowly. Higher

grades denote poorly differentiated or undifferentiated abnormal cells that will grow or

spread faster than lower grades.

In prostate cancer, the gleason score is used to grade tumors. Pathologists as-

sign a grade for both the primary and secondary patterns of tissue organization. Each

pattern is given a grade from 1-5 where 1 denotes the tissue looking similar to nor-

mal prostate tissue and 5 denotes the most abnormal tissue [54]. The primary and

secondary grades are added together to determine the gleason score. The Gleason X

score means that a gleason score could not be determined. Gleason scores 2-6 describe

normal (well-differentiated) looking tumor tissues. The gleason 7 score is used for mod-
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erately differentiated tissues while gleason scores 8-10 are for tumors that are poorly

differentiated or undifferentiated.

In endometrial cancer, higher AZIN1 EFs significantly correlated with Grade

3 tumors (p=0.0036, Figure 5.6E). In bladder cancer, higher AZIN1 EFs were associ-

ated with “High Grade” histological grades (p=0.045, Supplementary Figure B.6A) In

prostate cancer, the AZIN1 EFs were highest for the worst overall gleason scores (8-

10) (p=1.88e-5, Supplementary Figure B.6B). Both the primary and secondary patterns

were also significantly correlated (p=8.73e-4 and p=0.01 respectively, Figure B.6C-D)

where the most poorly differentiated or undifferentiated tumors had the highest AZIN1

EFs.

5.3.1.3 Other Clinical Associations

Extra-thyroidal extension is the spread of the primary tumor beyond the tumor

to areas such as the trachea, larynx, vasculature, and esophagus [28]. It is a well-

known prognostic factor for patients with thyroid cancer [28]. It is associated with high

mortality and high tumor recurrence [28]. The moderate/advanced category of extra-

thyroidal extension significantly correlated with the highest AZIN1 EFs (p=2.23e-5,

Supplementary Figure B.7A) in the TCGA thyroid patients.

In bladder cancer, the T1 category indicates that the tumor has grown into the

surrounding connective tissue, T2 represents that the tumor has grown into the muscle

tissue, T3 illustrates that the tumor has grown into the fatty tissue that surrounds

it, and T4 specifies that the tumor has spread to nearby organs such as the prostate,
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uterus, vagina, pelvic wall, or abdominal wall [128]. In the study on bladder cancer

from TCGA [10], concomitant prostate tumor classification was given. Patients with

bladder cancer that had spread to the prostate with size T3 had the highest AZIN1

EFs (p=0.006, Supplementary Figure B.7B).

5.3.1.4 Subtypes

AZIN1 editing frequencies significantly correlate with cancer specific subtypes,

especially those with poorer prognosis. An exception to this is the association of the

luminal breast cancer subtypes with high EFs discussed below. Although the breast

cancer luminal subtype is prognostically favorable compared to other subtypes, the

overexpression of cyclin D1 and CCND1 amplification are associated with poorer prog-

nosis [51, 66].

In endometrial cancer, high AZIN1 EFs were mostly associated with the copy-

number high (serous-like) integrative cluster subtype (p=0.023, Figure 5.7A) as defined

by the integrated genomic characterization of endometrial cancer from TCGA [62]. The

copy-number high integrative cluster had the worst Progressive Free Survival (PFS) of

all of the integrated clusters and consisted entirely of patients from the copy number

cluster 4, and primarily of patients with serous histology types and grade 3 tumors, all

which were independently significantly correlated with high AZIN1 EFs (p=9.28e-06,

Supplementary Figure B.8A; p=2.1e-04, Supplementary Figure B.8B; p=0.0036, Fig-

ure 5.6E). Copy-number cluster 4 also contains most of the serous and a subset of the

grade 3 endometrioid tumors and has the worst PFS of the copy-number clusters [62].

70



Figure 5.7: Higher AZIN1 editing frequencies correlate with specific cancer subtypes,
often those with a poor prognosis.
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In thyroid cancer, the tall cell subtype significantly correlated with high AZIN1

EFs (p=7.88e-07, Figure 5.7B). The tall cell subtype had the highest frequency of BRAF

(V600E) mutations and the least differentiated tumors [12]. It was deemed clinically

relevant due to its association with more advanced stage and high risk tumors [12].

In lung adenocarcinoma, high AZIN1 EFs (p=2.82e-03, Figure 5.7C) signifi-

cantly correlated mainly to the proximal inflammatory (PI) subtype and partially to the

proximal proliferative (PP) subtype. In comparison to the terminal respiratory subtype

(TRU), the PP and PI subtypes had worse overall survival with PI having the worst

overall survival [11].

Figure 5.8: A minimum of 5% over-editing of AZIN1 leads to a poorer Overall Survival
(OS) in head and neck cancer.
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5.3.1.5 Survival

Patients with over-editing of the AZIN1 gene have a poorer overall and recur-

rence free survival. The poorer survival may only be applicable for a particular subtype,

and the amount of over-editing necessary may vary from cancer to cancer. An attempt

at calculating survival curves for all cancers was made, but due to the small number of

samples with both normal RNA and survival data for some cancers, the p-values are

often not significant. The Overall Survival (OS) curves were calculated for samples with

more than 5% over-editing for head and neck (Figure 5.8), endometrial, kidney papillary,

and thyroid (Supplementary Figure B.9A-C) and with a minimum of 10% over-editing

for lung adenocarcinoma (Supplementary Figure B.9D). The Recurrence Free Survival

(RFS) curves were calculated for samples with more than 5% over-editing for lung

squamous, colon, and bladder (Supplementary Figure B.10A-C) and a minimum of 18%

over-editing for lung adenocarcinoma and liver (Supplementary Figure B.10D-E). In all

cases, samples with over-editing had a worse overall and recurrence free survival.

5.3.2 AZIN1 Editing in TCGA Primary Breast Cancer Tumors

The most significant AZIN1 editing difference between tumors and normals

in the 12 cancers studied here occurred in breast cancer (p=7.13e-18). A detailed

analysis on 114 quadruplets (WES and RNA-Seq data for tumor and adjacent normal

tissue) and an additional 1015 triplets (lacking RNA-Seq from adjacent normal tissue) in

breast cancer was performed. For the 114 quadruplets, the editing difference between the

normal RNA and tumor RNA were analyzed (Figure 5.9A). The editing differences were
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statistically significant in the luminal A, luminal B, and basal subtypes (Figure 5.9A).

For an additional 1015 breast cancer patients, tumor RNA was available. RNA editing

frequencies in the tumor RNA were calculated on the entire cohort of 1129 breast cancer

patients. The tumor RNA editing frequencies significantly correlated with the luminal

A and luminal B subtypes (Figure 5.9B).

In a study of AZIN1 RNA editing in liver cancer [24], the term “over-editing”

was defined as a 10% increase in editing from the normal to the tumor. In order to

include some of the 1015 TCGA patients where no adjacent normal data was available

in the analysis, the normal EFs from the 114 TCGA patients with adjacent normal

data were used as a proxy. The normal RNA EFs in the 114 patients ranged from <

1% to 17% with a mean normal editing frequency of 5% (the maximum normal RNA

editing frequency of 17% was an outlier by 5%, with the second highest maximum at

12%). To be conservative, all samples with no normal RNA-Seq data available and a

tumor editing frequency ≥15% and <27% were ignored. This resulted in 812 samples

that were further analyzed.

Similar to the 114 quadruplets, the editing differences for all 812 patients were

highest in the luminal A and luminal B subtypes. As expected, AZIN1 over-editing

in breast cancer is significantly correlated with ADAR1 expression (Figure 5.10A-B),

especially for the luminal A and luminal B subtypes (Figure 5.10C-D).

AZIN1 over-editing in luminal A and especially luminal B is significantly corre-

lated with higher cyclin D1 protein levels (Figure 5.11A-C). For the luminal B subtype,

there were 60 samples that had cyclin D1 RPPA data, SNP6 copy number data, and
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Figure 5.9: Elevated AZIN1 RNA editing frequencies significantly correlated to the
luminal A and luminal B breast cancer subtypes. (A) A comparison of AZIN1 editing
in tumor and matched normals for 114 quadruplets from breast cancer. The p-values
were calculated using the paired Students t-test. (B) The distribution of tumor RNA
editing frequencies from 1129 breast cancer patients.
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Figure 5.10: AZIN1 over-editing is strongly associated with higher ADAR mRNA ex-
pression. (A) Correlation between AZIN1 editing and ADAR mRNA expression by
subtype. (B) Over-editing of AZIN1 and ADAR mRNA expression for all subtypes.
Over-editing of AZIN1 and ADAR mRNA for the luminal A (C) and luminal B (D)
subtypes.
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RNA editing of AZIN1. Thirty-seven samples have high cyclin D1 protein levels, and

28 of them have cyclin D1 amplification. For the remaining 10 samples with high cyclin

D1 protein levels and no cyclin D1 amplification, four (40%) are over-edited (Table 5.1).

For the luminal A subtype, there were 73 samples with high cyclin D1 protein expres-

sion, of which 39 have cyclin D1 amplification. Of the remaining 34 samples, nine (26%)

are over-edited (Table 5.1).

Figure 5.11: AZIN1 over-editing in the luminal A and luminal B subtypes is associated
with higher cyclin D1 protein expression. (A) Correlation between AZIN1 editing and
cyclin D1 protein expression by subtype. Over-editing of AZIN1 and cyclin D1 protein
expression for the luminal A (B) and luminal B (C) subtypes.
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Table 5.1: TCGA breast cancer samples where AZIN1 editing may be driving higher
cyclin D1 protein levels. These samples have higher than average cyclin D1 protein ex-
pression, no cyclin D1 amplification, and are over-edited (the editing difference between
the normal and tumor samples is at least 10%).

In summary, ADAR1 over-expression results in an increase in A-to-I RNA

editing in AZIN1. The edited AZIN1 protein sequesters the tumor suppressor antizyme

leading to an increase in cyclin D1 protein expression. Over-editing occurs in 40% of

luminal B and 26% of luminal A breast cancer patients with high cyclin D1 protein
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expression and little to no cyclin D1 amplification.

5.4 Discussion

RNA editing of AZIN1 has been shown to be a potential driver in tumor

initiation and progression in the pathogenesis of hepatocellular carcinoma (HCC). An

important target of AZIN1 is the cyclin D1 oncogene. Over-editing of AZIN1 leads to a

higher binding affinity to antizyme, a tumor suppressor that regulates cell growth. The

edited form of AZIN1 sequesters antizyme and inhibits the degradation of cyclin D1.

This leads to overexpression of cyclin D1, stimulating Rb phosphorylation and resulting

in a deregulation of cell cycle progression.

Here, an investigation of AZIN1 RNA editing in 12 cancers with extensive ge-

nomic characterization by TCGA was performed. Strong correlations between increased

AZIN1 editing and clinical features associated with more advanced disease were found.

Ten of the twelve cancers examined showed significantly higher tumor AZIN1 EFs than

the matched normal tissues.

Breast cancer had the highest editing differences, particularly in the luminal

subtypes. As CCND1 is a known oncogenic driver of breast cancers, additional analysis

of the relationship between AZIN1 editing, ADAR1 expression, and cyclin D1 protein

expression levels was performed. Over-editing of the AZIN1 gene by the ADAR1 enzyme

was found in luminal breast cancers. Cyclin D1 protein levels were highest in the luminal

subtypes and significantly correlated with over-editing of AZIN1. In 4 out of 10 (40%)
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luminal B samples and 9 out of 34 (26%) luminal A samples with high cyclin D1 protein

levels and no cyclin D1 amplification, over-editing of AZIN1 was present, suggesting that

AZIN1 editing is a possible mechanism for the increase in cyclin D1 protein expression.

AZIN1 has been shown to be a driver for liver cancer and has been proposed

as a driver for other human cancers. An analysis of AZIN1 editing in 12 cancers showed

that AZIN1 over-editing is indeed prevalent in many cancers. The highest tumor EFs

were significantly associated with the most severe clinical variables such as larger tumor

sizes, greater lymph node involvement, the presence of metastases, and more advanced

tumor stages and tumor grades. Cancer specific subtypes, often those with the worst

survival, correlated with the highest EFs. Finally, a poor overall and recurrence free

survival correlated with over-editing in many cancers. In summary, AZIN1 editing is

wide-spread in many cancers and associated with increased cyclin D1 protein levels.

These results suggest that AZIN1 editing promotes cancer by acting as a driver of cell

proliferation through the deregulation of cell cycle progression.
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Chapter 6

Conclusion

Cancer is the second most common cause of death in the US, with heart disease

being the leading cause (American Cancer Society (ACS) [4]). Nearly a quarter of all

deaths in the US are due to cancer. There are a number of factors that influence

whether an individual will develop cancer including the germline variants that they are

born with and somatic mutations that occur randomly in normal cells during the course

of a lifetime. Several important germline variants such as those in BRCA1 and BRCA2

and somatic mutations found in BRAF, EGFR, ERBB2, VEGF, and TP53 that are

implicated in cancer have already been discovered.

The accurate and comprehensive identification and characterization of single

nucleotide variants is crucial to cancer research in many ways, including determining

potential cancer genes for drug development, diagnosis, and prognosis. With the accu-

mulation of high-throughput sequencing datasets for both the DNA and RNA from the

same patients across multiple cancers, it is possible to thoroughly characterize single
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nucleotide variants on a genome-wide scale for many cancers. The inclusion of the RNA

in variant detection allows one to assess whether a variant is being expressed and also

provides a boost in power for variant detection. RADIA has been used to detect muta-

tions for nearly 4,500 patients across 22 different cancers, and the inclusion of the RNA

provided a 2-7% increase in sensitivity. TCGA researchers have focused on identifying

the most significantly mutated genes for each cancer studied. These mutational patterns

help to divide patients into subtypes with the same molecular characteristics. These

subtypes are important for determining the best treatment options for a particular

patient.

RNA editing has been identified as an additional mechanism relevant to cancer

development and progression. Alterations to RNA editing have been linked to diseases

such as depression, epilepsy, schizophrenia, ALS, and various types of cancer. Previous

studies [106] discovered a global hypoediting of Alu elements in brain tumors, and a

correlation between editing levels, ADAR expression, and the grade of tumor malignancy

[106]. Other studies identified a more complex pattern of hypo- and hyper-editing of

specific genes that are relevant to various types of cancer such as an event discovered in

the AZIN1 gene linked to tumor initiation and progression in liver cancer. This thesis

focused on characterizing RNA editing of the AZIN1 gene in nearly 5,000 patients

across 12 different cancers. An over-editing of AZIN1 was discovered in 10 of the

12 cancers, and this over-editing was often significantly correlated to advanced and

aggressive characteristics of tumorigenesis.

With projects like TCGA providing sequencing data for both DNA and RNA
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from the same patients across multiple cancers, it is now possible to characterize germline

variants, somatic mutations, and RNA editing events on a genome-wide scale. The iden-

tification of single nucleotide variants that occur in specific genes across multiple cancers

provides a powerful way to discover genes that are important to these diseases.
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Appendix A

RADIA Supplementary Figures
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Figure A.1: Schematic of the types of calls made by the RADIA DNA Only Method
(DOM) and Triple BAM Method (TBM). In the first and middle columns, there is
enough DNA read support for the DOM and other algorithms examining DNA pairs to
make a call. In the middle and last columns, there is enough RNA read support for the
TBM to make a call. The middle column illustrates “RNA Confirmation” calls that are
detected by both the DOM and the TBM due to high read support in both the DNA
and RNA. The last column represents the “RNA Rescue” calls that have some support
in the DNA and strong evidence in the RNA.
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Figure A.2: Diagram of bamsurgeon methodology. Mutations are spiked into BAM
files by selecting locations with adequate coverage, extracting the reads, and adjusting
the VAF according to the desirable VAF distribution. Once the bases in the reads are
changed, the reads are remapped to the genome, replacing the reads in the original
BAM file.
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Figure A.3: Filters applied in the bamsurgeon simulation experiment where the DNA
variant allele frequencies were distributed from 1-50% and the RNA was held constant
at 25%. Most of the DOM mutations were filtered because of the low variant allele
frequency and tumor strand bias. In the TBM, most of the mutations were filtered due
to the minimum number of alternative alleles required to make a call (n=4) and strand
bias in the tumor DNA and RNA.
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Figure A.4: Filters applied in the bamsurgeon simulation experiment where the RNA
variant allele frequencies were distributed from 1-50% and the DNA was held at 10% or
less. Most of the DOM mutations were filtered because of the low DNA variant allele
frequency and tumor strand bias. In the TBM, most of the mutations were filtered due
to the minimum number of alternative alleles required to make a call (n=4) and the low
RNA variant allele frequency.
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Figure A.5: The distribution of the overlaps between RADIA and the validated somatic
mutations from the TCGA endometrial MAF file.
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Figure A.6: Filters applied to the RADIA mutations that validated as somatic in the
endometrial MAF file. Thirty-three percent of the mutations had a DNA VAF of 8%
or less while 23% landed in blacklist regions that were not considered.
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Figure A.7: RNA Rescue calls are primarily found at low DNA variant allele frequencies,
but they are also found at higher frequencies where the call was originally filtered due
to non-depth related artifacts (e.g. strand-bias).
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Figure A.8: The total number of mutations (blue) that are covered by at least one
RNA read (yellow), one RNA read supporting the mutant allele (orange), and RNA
Confirmation mutations with high support in both the DNA and RNA (purple).
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Figure A.9: Summary of TCGA samples analyzed for somatic mutation detection. RA-
DIA has been run on nearly 4,500 TCGA patients across 22 different cancer types. The
RNA Rescue calls make up 2-7% of the total somatic mutation calls across the 22 types
of cancer. Variant Call Format (VCF) and Mutation Annotation Format (MAF) files
can be downloaded from the TCGA Data Portal (https://tcga-data.nci.nih.gov/tcga/).
Open-access somatic MAFs can be visualized and downloaded via the UCSC Cancer
Browser (https://genomecancer.ucsc.edu/).
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Appendix B

RNA Editing Supplementary Figures

Figure B.1: Summary information on the number of quadruplets, triplets, and total
number of samples included in this study by cancer. BRCA=Breast, HNSC=Head
and Neck Squamous, LUSC=Lung Squamous, THCA=Thyroid, BLCA=Bladder,
STAD=Stomach, PRAD=Prostate, COAD=Colon Adenocarcinoma, LUAD=Lung
Adenocarcinoma, LIHC=Liver, KIRP=Kidney Renal Papillary, UCEC=Endometrial.
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Figure B.2: Higher AZIN1 EFs are associated with larger pathologist and/or clini-
cal primary tumor size (T) classifications in (A) kidney renal papillary, (B) bladder
urothelial carcinoma, (C-D) head and neck, and (E-F) prostate.
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Figure B.3: In head and neck cancer, higher AZIN1 EFs correlate with (A) greater
pathologist regional lymph node involvement (N) classifications and (B) the presence of
extracapsular spread. In addition, higher AZIN1 EFs are associated with (C) greater
pathologist regional lymph node involvement in prostate.
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Figure B.4: Higher AZIN1 EFs correlate with the presence of perineural invasion in
(A) colon and (B) head and neck cancers.

Figure B.5: Higher AZIN1 EFs are associated with more advanced pathological and
clinical stage classifications in (A) head and neck, (B) kidney renal papillary, and (C)
bladder cancers.
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Figure B.6: Higher AZIN1 EFs correlate with the “High Grade” histological grade in
bladder cancer (A). In prostate cancer, higher AZIN1 EFs are associated with the worst
overall Gleason score (B) along with the largest primary (C) and secondary pattern
scores (D).

98



Figure B.7: Higher AZIN1 EFs correlate with extra-thyroidal extension in thyroid
cancer (A) and larger concomitant prostate tumor (T) size classifications in bladder
cancer (B).

Figure B.8: Higher AZIN1 EFs are associated with copy number aberration subtypes
(A) and the serous histology types (B) in endometrial cancer.
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Figure B.9: Patients with at least 5% over-editing in (A) endometrial and (B) kidney,
and more than 5% over-editing in (C) thyroid, and a minimum of 10% over-editing in
(D) lung adenocarcinoma have a worse Overall Survival (OS).
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Figure B.10: Patients with at least 5% over-editing in (A) lung squamous, (B) colon,
and (C) bladder, and a minimum of 18% over-editing in (D) liver, and (E) lung adeno-
carcinoma have a worse Recurrence Free Survival (RFS).
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