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ABSTRACT OF THE DISSERTATION

Disparity Estimation and Enhancement for Stereo Panoramic and Multi-array
Image/Video

by

Zucheul Lee

Doctor of Philosophy in Electrical Engineering (Communication Theory and Systems)

University of California, San Diego, 2014

Professor Truong Q. Nguyen, Chair

Stereo matching involves finding corresponding pixels on other images from

stereo or multiple views. Disparity estimation (stereo matching) is an essential step of

3D depth-based processing and application.

In this dissertation, we present an accurate and efficient method of one-pass

local disparity estimation for stereo images. The proposed disparity method is extended

to the video domain by using motion information as well as imposing spatio-temporal

consistency. In the local disparity method, matching accuracy depends on precise cost

measures and proper cost aggregation. To ensure the accuracy of cost measures, we

propose a novel three-moded cross census transform with a noise buffer that is robust

to image noises in homogeneous areas. It is revealed that the cross-square census and

xvi



combination metric of the three cost measures achieve more reliable cost measures in a

variety of image regions. We further increase the aggregation accuracy by adopting the

advanced support weight and incorporating motion flow.

Stereo panoramic images have advantages over regular images, such as wide

field of view and high resolution. However, the large size makes the stereo matching

problem challenging. In this dissertation, an effective method of multi-resolution depth

processing for large panoramic images is presented. We propose an adaptive dispar-

ity search range based on the combined local structure. The adaptive range value can

propagate the smoothness properties from the low-resolution level to the high-resolution

level while preserving fine details and reducing undesirable errors. To reduce disparity

quantization error in a hierarchical manner, we propose a reliable multiple fitting algo-

rithm. The spatial-multi-resolution Total Variation (TV) method is employed to enforce

consistency in both the spatial and scaling dimensions. The proposed algorithm is able

to produce high-quality depth maps by effectively combining individual multi-scale dis-

parities.

Multi-array camera systems have greater potential for 3D depth-based applica-

tion development than stereo camera systems. However, few studies have been con-

ducted on multi-array-based disparity estimation, due to a lack of data. In this disserta-

tion, we propose an alternate use of local and global fusion of multi-array disparities to

maximize disparity enhancement in array camera systems. We propose a new cascade

regularization-based approach that can restore diagonal structures better than conven-

tional approaches. The detailed analyses and simulation results demonstrate that the

cascade approach better regularizes diagonal variations and in turn yields better image

enhancement. We adapt a cascade TV regularization to the multi-array camera system in

order to globally combine multiple disparities. A local multiple cross-filling algorithm

is proposed to achieve cross consistency between array disparity estimates by effectively

filling the mismatches. Experimental results show that the proposed multi-array dispar-

ity enhancement algorithm improves the accuracy of initial array disparity estimates up

to 65% while alleviating memory limitations.

xvii



Chapter 1

Introduction

1.1 Motivation

Disparity estimation provides fundamental information for a wide range of depth-

based applications, such as 3D-TV, multi-view synthesis, 3D surgery, automatic nav-

igation, and 3D panorama. The goal of this dissertation is to propose an effective

disparity-estimation and -enhancement algorithm for various stereo and multiple views

using stereo and array cameras, respectively.

Disparity estimation methods are categorized as either local or global. Local

stereo methods are structurally simple and very efficient in real-time processing even

though they produce relatively poor-quality estimations in homogeneous areas and noisy

environments. It would be desirable to obtain disparity quality comparable with that of

global methods in such areas while preserving simplicity and efficiency. The accuracy

of local disparity estimation depends on two main functions: similarity measures and

support window selection. The associated challenges are as follows.

• Homogeneous areas do not always provide sufficient texture information for sim-

ilarity measures. Moreover, noises in these areas make the matching problem

difficult. On the contrary, densely textured areas often increase matching ambigu-

ities, because complicated textures are likely to be regarded as repetitive patterns.

• Most local disparity methods use a support window where each matching cost is

aggregated according to the assumption of the same disparity. We encounter a

1
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dilemma when determining the support window size. The window size should

be large enough to get more local information in homogeneous areas and small

enough to avoid crossing disparity discontinuities. The ideal support window con-

tains only pixels with the same disparity.

For the first issue, image texture characteristics are shift-variant for every support win-

dow. Therefore, each similarity measure might perform differently, depending on the

different texture types. To obtain a reliable cost function in various regions, the simi-

larity function must be selected optimally. In addition, the noisy environment scenario

must be taken into account in similarity measures. For the second issue, it is practically

impossible to build the ideal support window composed of only pixels with the same

depth. However, the optimal segmentation for the support window can be achieved by

using as many meaningful cues as possible.

As an additional issue, the direct extension of image disparity estimation to the

video domain is undesirable, because it causes flickering artifacts. Therefore, some

treatments enforcing temporal consistency are required. There is also the difficulty of

dealing with the edges of fast-moving objects in video disparity estimation. In this case,

optical flow can be an important cue in the support window construction, as color is a

crucial cue in image disparity estimation.

Customers prefer large stereo panoramic images, as they provide a wide field of

view as well as high resolution. However, the large size complicates the stereo match-

ing problem, requiring high computational complexity. A multi-resolution (hierarchical)

scheme is one possible solution to handling large panoramic views that are dozens of

times larger than regular views. However, hierarchical processing leads to side issues,

such as error propagation and blurring at object boundaries. In large panorama pro-

cessing, it is challenging to obtain high quality and high-resolution panoramic disparity

maps while suppressing error propagation as well as unexpected errors.

To reduce error propagation from coarse level to fine level, disparities at the next

level need to be carefully determined by fully searching the maximum disparity range.

On the other hand, to suppress the unexpected errors often resulting from high-scale

estimation, disparity should be estimated within a minimized search range so that the

desirable initial disparity can be preserved. Therefore, the optimal search range might
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be position-variant. The way in which the optimal disparity search range is determined

at each pixel point is central in multi-resolution depth processing.

The upsampling/downsampling processes are necessary in the pyramid scheme,

but they cause scale dimensional inconsistency, as objects in the world appear differ-

ently, depending on the scale of observation. Therefore, the scaling consistency for

multi-scale disparities can be enforced as temporal consistency is for video disparities.

For instance, some features are not visible on a certain scale disparity map. These invis-

ible features might be reconstructed by a process fusing the corresponding multi-scale

disparities. In the pyramid scheme, disparity quantization artifacts are also likely to be

observed at the low-scale estimation. The disparity quantization problem can be allevi-

ated by using sub-pixel disparity estimation.

Multi-array camera systems might be able to yield accurate disparity estimates

using redundant stereo pairs. However, there has been little research on multi-array-

based disparity estimation. In addition, there are no ground-truth disparity maps of

array images available for quantitative evaluation. If multi-array images and videos

with associated ground-truth maps were created and shared, they might invigorate the

research on multi-array disparity estimation.

In multi-array camera systems, there exist multiple stereo pairs: horizontal, ver-

tical, narrow baseline, and wide baseline pairs. The disparity estimates from several

stereo pairs show different properties according to the scan-line direction and baseline

length. These properties can be exploited to enhance initial array disparities. In addi-

tion, local and global fusion of multiple disparities can be used alternately to maximize

disparity enhancement.

Corresponding multiple disparity estimates are supposed to be the same along

the array dimension. However, they show inconsistency. A cross-filling approach based

on a Left-Right Consistency (LRC) check may be considered to locally replace crossly

mismatched values with valid ones. However, the LRC using only two views would not

be proper to use directly in multiple views.

Most image-restoration methods are used for image-denoising applications. It

has been demonstrated that the method can be extended to disparity refinement by re-

ducing disparity outliers. Typically, the image-restoration problem is an inverse and
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ill-posed problem. To obtain a meaningful and stable solution to the inverse problem,

regularization is required. In conventional regularization problems over multiple di-

mensions (2D, 3D), simultaneous regularization is always used. A new and different

regularization approach can be sought to better restore complicated image structures

while alleviating memory issues on the increased dimension.

1.2 Contributions

We propose an accurate and efficient local disparity algorithm for stereo im-

ages/videos and a multi-resolution disparity processing technique for large panoramic

views. In addition, we propose a disparity enhancement algorithm for multi-array cam-

era systems. Our contributions to these applications are as follows:

1. We propose a three-moded census transform with a noise buffer for reliable simi-

larity measures. The adaptive noise buffer promotes the tolerance of image noise

in homogeneous areas. We investigate the cross-square census to obtain more

spatial information while reducing exposure to the occlusion area.

2. To model an advanced support weight window, we define conditional and corre-

lated relations between Gestalt principles. For video disparity, we propose incor-

porating optical flow in order to reduce spatial ambiguities by utilizing temporally

consistent information. The proposed support weight computation improves dis-

parity quality near moving object boundaries.

3. We propose an effective method of multi-resolution depth processing and fusion

for large panoramic images. The proposed method consists of three main func-

tions: the adaptive pixel-wise disparity search range based on local structures of

both the image and disparity map, reliable multiple fitting for sub-pixel disparity,

and spatial-multi-resolution TV to enforce scaling consistency as well as spatial

consistency.

4. We investigate the fusion effect of multi-scale disparity estimates. The adaptive

disparity search range propagates desirable initial estimates into the high-scale
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direction, and the spatial-multi-resolution TV fuses multi-scale disparity results

by combining their complementary information.

5. For multi-array camera systems, we investigate the advantage of a new cascade

regularization approach for image restoration, including disparity refinement. It is

proved by showing both detailed analyses and simulation results. We also demon-

strate that the proposed cascade regularization approach and multiple cross-filling

method can be used for multi-array camera disparity enhancement as global and

local optimization methods, respectively. They are used alternately to maximize

disparity enhancement.

6. We create synthetic multi-array images and videos with associated ground-truth

disparity maps so that other researchers can use them for performance compar-

isons. The dataset is available on the website - http://videoprocessing.ucsd.edu/

∼zucheul/multi-array.html.

1.3 Organization

The organization of this dissertation is as follows:

Chapter 2 introduces background materials on computational stereo matching.

We start with fundamental matching potential for two view geometry, followed by sim-

ilarity measures, Gestalt theory, support weight window, and disparity conversion from

3D rendering software.

Chapter 3 presents an efficient disparity algorithm that is used for stereo images

and is able to be extended for stereo videos and large panoramic views. A novel three-

moded cross census and combination metric of three similarity measures are presented.

An advanced support weight and an occlusion filling algorithm are proposed. Finally,

comparison results with other methods are provided.

Chapter 4 presents a video disparity algorithm that incorporates optical flow

to alleviate the spatial ambiguity problem by using temporally consistent information.

Spatial consistency and temporal consistency for video disparities are discussed, and

quantitative and qualitative evaluations are performed.
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Chapter 5 presents a multi-resolution depth processing and fusion algorithm that

is effective for large panoramic views and promotes the fusion effect of multi-scale

disparity estimates. The adaptive pixel-wise disparity search range and reliable sub-

pixel algorithm are introduced. Moreover, the spatial-multi-resolution TV algorithm for

scaling consistency is adapted. Quantitative and qualitative simulation results are then

demonstrated.

Chapter 6 discusses the difference and advantage of a new cascade regulariza-

tion approach against conventional simultaneous approaches. Detailed analyses and

simulation results demonstrate that the cascade approach achieves better restoration of

complicated image structures than conventional approaches. A local multiple cross-

filling method extended from the traditional region voting technique is presented. It is

demonstrated that the proposed twofold disparity enhancement algorithm for multi-array

cameras achieves a performance gain of 65% compared to initial disparities.

Chapter 7 concludes with a brief summary and remarks, and future work is dis-

cussed.



Chapter 2

Background

This chapter provides the necessary background knowledge on stereo correspon-

dence matching.

2.1 Computational Stereo Matching

A computational visual system is composed of two cameras and a computer,

somewhat like the human visual system, which consists of two eyes and a brain. Slightly

displaced cameras replace the human eyes, taking two views (left and right). We con-

sider two view geometry with two calibrated cameras, as shown in Fig. 2.1. The left

camera and the right camera are centered at o1 and o2, respectively. PL and PR are the

left and right image planes respectively, where a 3D point p is projected. The exact

matching point of x1 projected on the left plane becomes x2 on the right plane, and

xi is one of the correspondence candidates. The line passing through the two centers

is called the baseline. Two vectors, e1 and e2, are the epipoles representing the points

where the baseline passes through the image planes. The lines l1 and l2 are called the

epipolar lines. The plane spanned by o1, o2, and p is the epipolar plane. The matrix R is

the rotation matrix and the vector T is the translation vector. We find a relation between

point vector x1 and its corresponding point vector x2 as

λ2x2 = λ1Rx1 + T (2.1)

7
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Figure 2.1: Two view geometry.

where λ1 and λ2 are unknown depth values [5]. We take the cross product of both sides

with T and then take the inner product with x2. The relationship between two points is

given as

xT2 T̂Rx1 = xT2Ex1 = 0 (2.2)

where xT denotes the vector transpose of x and T̂ is the matrix representation of the

cross product with T [5]. E is called the essential matrix, which encodes the relative

camera pose. Equation (2.2) is the epipolar constraint, which indicates that if a point

is observed on one image plane, its position on the other image plane is constrained to

lie on the line defined as the epipolar line. This is very useful, because it can reduce

the correspondence matching problem to a 1D search instead of a 2D search. To further

simplify the matching problem, we rectify the stereo images so that the epipolar lines

are horizontal and thus points in one image plane map to the horizontal scan line with

the same y coordinate on the other image plane. To rectify two images, a transformation

process to project them onto a common plane is necessary [6].

Stereo matching (correspondence matching or disparity estimation) refers to

finding the pair (x1 = xL,x2 = xR) of projections of the same 3D point. Once

the corresponding point is found, we can compute the disparity (xL − xR), which is the

difference in the x-coordinates of the corresponding points. Disparity and depth are in-
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versely proportional. However, disparity is used synonymously with depth since depth

can be directly converted from disparity, given camera parameters. Disparity estimation

methods are typically categorized as either local or global. Global methods compute all

disparities of the image simultaneously by optimizing the global energy function. They

produce accurate disparity maps, but they are usually complicated and computationally

expensive. On the other hand, local methods calculate the disparity of each pixel based

on window cost aggregation. They have a simpler structure and show better process-

ing efficiency in terms of computational complexity compared to global methods. We

will discuss how to improve disparity accuracy with local methods while preserving

simplicity. Two essential parts of local methods are similarity (cost) measures and sup-

port weight (aggregation) window selection, which will be introduced in the following

section.

2.2 Similarity Measures

Similarity measures also called cost functions calculate how correlated the cor-

responding pixels or windows are. The lowest cost implies the best match, and the

highest cost implies the worst match. In general, window (block)-based similarity mea-

sures are used rather than pixel-based measures due to the robustness of the former. The

well-known window similarity measures are as follows.

• Sum of Absolute Differences (SAD):∑
p∈WL,pd∈WR

|IL(p)− IR(pd)| (2.3)

where WL is the left window and IL(p) denotes the intensity at pixel p in the left

image. pd in the right window is the corresponding pixel of p in the left window.

• Sum of Squared Differences (SSD)∑
p∈WL,pd∈WR

(IL(p)− IR(pd))
2 (2.4)

• Normalized Cross Correlation (NCC):∑
p∈WL,pd∈WR

IL(p)IR(pd)√∑
p∈WL

IL(p)2
∑

pd∈WR
IR(pd)2

(2.5)
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• The census transform [7] encodes the pixel intensity into a bitstream as

T =
⊗
p∈W

ξ(Ic, Ip)

ξ(x, y) =

1 if y > x

0 otherwise

(2.6)

where
⊗

denotes concatenation and Ic represents the center pixel intensity in the

window. W denotes the census window.

• The rank transform [7] is similar to the census transform, being defined as the

number of pixels in the local window whose intensity is less than that of the center

pixel.

The similarity (correlation or cost) measure is an important part of local stereo match-

ing. Choosing an appropriate similarity measure leads to more reliable initial disparity

estimates. We will discuss this in detail in Chapter 3.

2.3 Gestalt Theory

According to Gestalt principles, human observers are able to group visual ob-

jects that share certain common characteristics [8], as shown in Fig. 2.2. The best-

known grouping laws are proximity (objects that are close to each other are grouped

together), similarity (objects that have similar color are grouped together), and common

fate (objects that move at the same speed in the same direction are grouped together)

[9]. Common fate is closely related to motion flow, which can be denoted as “motion”

for simplicity. Whenever objects have characteristics in common, they are grouped and

formed into a larger visual object, known as a gestalt [8].

From these observations, we can assume that human observers can group pixels

in a scene based on how close two pixels are spatially, how similar their colors are, and

how similar their velocities are. Thus, we can define the strength of grouping, which

should be proportional to the probability that two pixels have the same disparity: the

closer two pixels are in proximity, color, and motion flow, the larger their strength of

grouping. These three observations may be treated in an integrated manner to obtain
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Figure 2.2: Gestalt principles.

better grouping. Each grouping law can compensate for the others when they fail in

specific cases. For instance, the motion cue helps viewers distinguish figures when the

object color or outlines are not clear. Therefore, it would be beneficial to model the

human visual system and segment objects by using Gestalt principles in an integrated

way. We analyze each principle and their relationships to find an effective integration

method for stereo images and video.

2.4 Support Weight Window

Support window selection is the crux of local stereo matching. In local stereo

matching, we assume that all pixels in the support window have the same disparity,

which is known as the smoothness assumption. This assumption always fails at object

boundaries, causing smearing artifacts. Optimal support windows are small enough

to avoid crossing depth discontinuities and large enough to include sufficient intensity

variation in homogeneous areas for reliable matching [10]. In addition, they have an

arbitrary shape rather than a fixed shape, such as a rectangle. To satisfy these two

requirements, Local Adaptive Support Weight (LASW) [3] assigns an adaptive weight

to each pixel in the fixed support window based on the color difference and spatial

distance with respect to the center pixel. The idea originates from the Gestalt principles
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Figure 2.3: Comparison of two support windows. (a) Ground-truth disparity map. (b)
Disparity map from the rectangular window. (c) Disparity map from the adaptive sup-
port weight window.

of color similarity and proximity. Assigning different (adaptive) weights to each pixel

in the support window creates an effect similar to changing the support window size and

shape adaptively. Fig. 2.3 illustrates a comparison of two support window types. The

support weight window based on Gestalt principles has an arbitrary shape according

to the object boundary, as shown in Fig. 2.3(c). It illustrates that adaptively changing

the support weight window size and shape improves overall disparity estimation and

reduces the smearing effect.

Once the similarity measure and support weight are calculated, the final match-

ing cost is aggregated by taking the weighted average of similarity costs within a support

window.

2.5 Disparity Conversion from 3D Rendering Software

Array image/video datasets are not available for simulation. Moreover, there are

no available array disparity ground-truth maps, whereas various stereo disparity ground-

truth maps are provided on the Middlebury benchmarking site [11]. 3DS MAX is a 3D

modeling and rendering software program that is able to render a synthetic image in a
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Figure 2.4: Synthesis environment of 3DS MAX.

virtual environment [12].

The synthesized scene is composed of 3D meshes with polygon modeling. Vir-

tual array cameras can be placed in arbitrary positions, as shown in Fig. 2.4. A pair of

array color images and Z-depth maps is produced by 3DS MAX. The Z-depth (Zdepth)

map cannot be directly used as a ground-truth disparity map, since it is encoded by 3DS

MAX as

Zdepth =
Zmax − Zobj
Zmax − Zmin

× 255 (2.7)

where Zmax and Zmin are the maximum and minimum distances (mm) in the rendering

process, respectively. Zobj is the real distance between the object and the camera. 3DS

MAX provides two parameter values: focal length (Fm) and aperture width (Am) (in

mm). However, to obtain a disparity value in pixel units from the real distance (Zobj),

the focal length (Fp) in pixel units is required. It can be calculated by

Fp =
WpFm
Am

(2.8)

where Wp is the image width in pixel units. The disparity value (d) is converted from

the real distance (Zobj) as

d =
BFp
Zobj

(2.9)

where B is the baseline (in mm) between two cameras. Finally, the ground-truth dispar-

ity map can be obtained from the Z-depth map encoded by 3DS MAX.



Chapter 3

Disparity Estimation for Stereo Image

This chapter presents an efficient local disparity algorithm that can be directly

applied to stereo images. It can be effectively extended for stereo videos and large

panoramic views.

We propose a three-moded census transform with a noise buffer to increase tol-

erance of image noise in homogeneous areas and a cross-square census to increase the

reliability of the census measure. We investigate the effect of a combination metric of

three cost measures (census, color, and gradient) that have different characteristics on

stereo matching. The combination metric is able to obtain a more accurate cost mea-

sure in a variety of image regions. These three new ideas can be utilized in both stereo

images and videos in the same form. To further improve the original support weight,

we define the conditional relation between similarity and proximity by analyzing the

Gestalt principles. Simulation results show that the proposed local disparity method is

the best-performing local method on the Middlebury stereo benchmark test [11].

This chapter is organized as follows. We discuss related works in Section 3.1.

The proposed disparity algorithm is presented in Section 3.2 where we show the system

structure, the new similarity measure, and details of the advanced support weight for

stereo images. The disparity computation algorithm and occlusion-filling algorithm are

then presented. Section 3.3 shows experimental results and discusses their significance.

Section 3.4 summarizes the proposed local disparity method.

14
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3.1 Related Work

Two main concerns associated with the local disparity method are the accuracy

of the similarity measure and the proper choice of support window. Matching accuracy

depends on these two factors.

Common similarity measures are SAD, SSD, NCC, and non-parametric trans-

forms such as rank and census, as introduced in Section 2.2. The rank and census

transforms are robust to radiometric distortion, because they yield relative ordering of

the pixel intensity rather than the intensity values themselves. Therefore, for image re-

gions with similar colors, non-parametric transforms may cope better with the chromatic

matching ambiguities using structural information, while for image regions with similar

local structures, the color differences (SAD and SSD) may cope better with the struc-

tural matching ambiguities. According to the evaluation of similarity measures [13], the

census transform achieves the best overall performance throughout all experiments with

simulated and real radiometric differences, except in the presence of strong image noise.

Another important research topic in the area of local methods is how to select

the proper support window for each pixel. In early local approaches, a simple rectan-

gular window with a fixed window size is used to find corresponding pixels in a pair of

left and right images. However, this results in the foreground smearing problem near

depth discontinuities due to the assumption that all pixels in the window have the same

disparity. To solve this problem, the adaptive-window method [10] finds an optimal

window based on the local variation of intensity and disparity. This method still uses

a rectangular window, which is not suitable for arbitrarily shaped depth discontinuities.

The multiple-window method [14] calculates the correlation with nine pre-defined win-

dows and selects the disparity with the smallest matching cost. This method also has

the limitation of window shape. To obtain more accurate results at depth discontinu-

ities, the LASW approach [3] adjusts the support weights of the pixels in the window

by using the photometric and geometric distance with respect to the center pixel. This

method deals with the pixels near depth discontinuities more effectively than the two

methods mentioned above. Segment support [15] improves the reliability of adaptive

support aggregation by adding an additional segmentation process. Disparity calibra-

tion [16] increases the matching process to two steps by adding disparity calibration,
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Figure 3.1: Block diagram of the proposed disparity estimation method.

while the traditional local methods use a one-step process. PatchMatch [17], the best

local method of all the local methods on the Middlebury benchmark test [11], uses ad-

ditional processes such as iteration, slanted plane, and propagation schemes to obtain

better results. However, these three methods are computationally expensive. CostFilter

[4], which is one of the best local methods, obtains consistent edge-preserving results

by using a guided filter. It is worth noting that LASW and CostFilter do not use any

iteration or additional step that could make the algorithm more complex. LASW and

CostFilter are good edge-preserving methods, but they do not provide a reliable solution

for disparity estimation in textureless areas that have different characteristics from the

edges.

3.2 Proposed Method

The proposed method is an efficient one-pass local method applicable to both

stereo images and videos with no iteration. The main goal is to improve the accuracy

of the similarity measure and enhance the support weight function in order to achieve

a high-quality disparity map. The block diagram of the overall system is shown in

Fig. 3.1. It consists of four main components: a similarity measure, support weight, dis-

parity computation, and occlusion filling. The core blocks for the accuracy of disparity

estimation are the similarity measure and support weight block, which will be discussed
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Figure 3.2: Three census windows. (a) 5× 5. (b) 9× 9. (c) Cross-square.

in detail.

3.2.1 Three-moded cross census and combination metric of similar-

ity measures

The census transform encodes the pixel value into the bitstream representing the

relative ordering of the neighboring pixels. To achieve a more precise census similarity

measure, we need to obtain a larger spatial structure by increasing the size of the census

window. However, the error probability might increase as the window size increases

over a certain value. The larger the census window size is, the more likely occluded

pixels are to be included in the transformed bitstream. There is a trade-off between

the amount of spatial information and the accuracy of the estimate. Fig. 3.2 illustrates

that the large square census window in Fig. 3.2(b) is more likely to be affected by the

occlusion area (gray colored area) than the window in Fig. 3.2(a), and therefore its trans-

formed information will be severely distorted. To alleviate this problem, we propose the

cross-square shape census window, which can contain more spatial information while

being less exposed to the occlusion area, as shown in Fig. 3.2(c).

The census transform is robust to radiometric distortions, and it achieves the best

overall performance in both local and global methods. However, it experiences difficul-

ties in finding the correct correspondences in homogeneous areas, as most methods do.

This difficulty is due to the fact that the census matching cost is extremely sensitive to

even small image noise in homogeneous areas, since all pixels have similar intensity

values, and then the left and right census can be encoded differently due to the noises.
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Figure 3.3: Comparison of the original census and three-moded census in homogeneous
areas. (a) Original census without noise. (b) Original census with noise. (c) Three-
moded census with noise.

In practice, most stereo images are distorted due to camera noises except for synthetic

stereo images. To reduce the mismatch due to the distortion from the left and right

cameras, we propose a three-moded census transform with a noise buffer. The original

census has two modes where a bit is set to 1 if the neighboring pixel in the census win-

dow has a higher intensity than the center pixel and 0 otherwise. On the other hand, our

three-moded census uses two bits to implement three modes, and it is defined as

T =
⊗
q∈W

ξ(Ic, Iq)

ξ(x, y) =


10 if y > x+ α

01 if y < x− α

00 otherwise

(3.1)

where
⊗

denotes concatenation and W represents the census window. Ic represents

the intensity at the center pixel c, and α is the noise buffer threshold. Camera noise is

intensity-dependent, and the noise variance is proportional to intensity [18, 19]. The

noise buffer should be increased to get consistent results as the noise variance increases.

Therefore, we can define α as a function of intensity:

α = [
Ic
β

] (3.2)

where [·] denotes the nearest integer operator, and empirically reasonable values for β

are 500 and 50 for synthetic and real-world images, respectively.

Fig. 3.3 shows how the three-moded census works under a noisy environment.

In homogeneous areas, the neighboring pixels show the same intensity as shown in
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Figure 3.4: Example of three-moded census transform with α = 2 and three similarity
measures.

Fig. 3.3(a). Under a noisy environment, the original census transform yields a very

different bitstream from the noiseless case, as shown in Fig. 3.3(b), while the three-

moded census transform produces a consistent bitstream, as shown in Fig. 3.3(c). Note

that we do not define the census transform at the center pixel because it is always 0.

Fig. 3.4 shows examples of the left and right bitstreams resulting from the three-

moded cross census transform, which are used in the calculation of Hamming distance

(∆H). To further improve the matching accuracy, we incorporate the color distance

(∆I) and gradient distance (∆G) between the two center pixels, as shown in Fig. 3.4. In

other words, we use the census transform to compare the spatial structure of two census

windows, while we use the color and gradient distance to compare the two center pixels.

The Hamming distance of two census transforms is defined as

∆H = d(TL, TR) = TL ⊕ TR (3.3)

where TL represents the left transformed bitstream and ⊕ denotes the bitwise XOR
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Figure 3.5: Disparity maps on ”Laundry” computed by different similarity measures.
(a) Left image. (b) Color. (c) Combination of color and census. (d) Combination of
color, census, and gradient.

operation. The color distance between IL = (IrL, I
g
L, I

b
L) and IR = (IrR, I

g
R, I

b
R) in the

RGB vector space is defined as

∆I = d(IL, IR) =

√ ∑
j=r,g,b

(IjL − I
j
R)2. (3.4)

The gradient G = (Gx, Gy) is composed of two components, which are partial deriva-

tives along the x-axis and y-axis, respectively. The partial derivativeGx can be expressed

as (Gr
x, G

g
x, G

b
x) in the RGB space. The gradient distance between GL = (GLx, GLy)

and GR = (GRx, GRy) is defined as

∆G = d(GL, GR) =
√
d(GLx, GRx)2 + d(GLy, GRy)2

d(GLx, GRx) =

√ ∑
j=r,g,b

(Gj
Lx −G

j
Rx)

2
(3.5)

where Gj
Lx represents the partial derivative along the x-axis in the j color domain of the

left image.

We propose the combination of three distances, which is simple and very ef-

fective. It yields a more reliable similarity measure, as the three distances compensate

for one another. Fig. 3.5 illustrates how each similarity measure improves the accu-

racy of disparity estimation. Fig. 3.5(b) is computed by using color distance, which

is commonly used, and it shows many errors in the similar color area (green box). In

Fig. 3.5(c), some errors are recovered by combining the Census Hamming distance.

However, incorrect matches in densely textured regions with high-frequency conditions

(red box) still exist. As shown in Fig. 3.5(d), combining three cost measures leads to
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Figure 3.6: Left support window and right support window

the best overall disparity map, recovering different types of errors. Note that there are

many similarity measures with different characteristics, and it is important to choose

proper measures and integrate them properly to improve matching performance. For the

combination metric of three similarity measures, we use a robust cost function including

three distances:

C0(q, qd) = 3− exp

(
−∆Hqqd

γH

)
− exp

(
−∆Iqqd

γI

)
− exp

(
−∆Gqqd

γG

)
(3.6)

where ∆Hqqd , ∆Iqqd and ∆Gqqd are the Hamming distance, color distance, and gradient

distance, respectively, between pixel q and pixel qd as shown in Fig. 3.6. γH , γI and γG
are empirical parameters.

3.2.2 Conditional adaptive support weight

The ideal support window is an arbitrarily shaped window that consists of only

pixels with the same depth. It is very difficult to accurately determine which pixels be-

long to the same object. We consider the adaptive support weight window based on two

Gestalt grouping laws (color similarity and proximity) that can be used together to group

objects as in [3]. To obtain an advanced support weight, we analyze color spaces and

the relationship between similarity and proximity, which helps in deciding how to inte-

grate the two properties. For the color space, previous works have used the Euclidean

distance in the CIELab color space. The CIELab color space is perceptually uniform,
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Figure 3.7: Comparison of RGB and CIELab color difference. (a) Support window. (b)
RGB color difference. (c) CIELab color difference.

and its Euclidean distance corresponds to the perceptual color difference between two

colors. However, the use of the CIELab color space makes the color distance less se-

lective for the pixels, which are chromatically close. Fig. 3.7 illustrates a comparison

of two color spaces in the area where each pixel has a chromatically similar color. In

Fig. 3.7(a), the center pixel Ic =[80 80 80] and the neighboring pixel Iq =[79 79 79]

in the RGB space are converted to [34.029 0.002 -0.004] and [33.603 0.002 -0.004]

in the CIELab space, respectively. The RGB and CIELab color differences are 1.7321

and 0.4260, respectively. The ratio ( ∆IRGB
∆ICIELab

) in the similar color region (Ic and Iq) is

4.0657. On the other hand, the ratio in the distinct color region (Ic and Ip=[200 80 80])

is 2.1321. Hence, there is a higher ratio in the similar color region than the distinct color

region. Fig. 3.7(b) and (c) show the color difference at each pixel with respect to the

center pixel in the RGB and CIELab spaces. The RGB space produces a more selective

distance than the CIELab space in a similar color region. Additionally, the L∗a∗b∗ met-

rics are particularly sensitive to errors in low RGB signals [20]. The color space should

provide a good distance metric for areas with similar colors as well as with distinct col-

ors. To this end, we use the RGB space for color similarity. The RGB color difference

(∆scq) between the center pixel and the neighboring pixel is calculated as in (3.4). The

spatial distance (proximity) is calculated as the Euclidean distance.

The adaptive support weight is based on the strength of grouping by similarity

and proximity. The strength of grouping by similarity is defined using a Laplacian kernel

as

gγs(∆scq) = exp

(
−∆scq

γs

)
(3.7)
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Figure 3.8: Comparison of the original support and proposed conditional support on
“Tsukuba”. (a) Left image. (b) Original support. (c) Conditional support.

with γs being an empirical similarity parameter. The strength of grouping by proximity

is defined as it is in (3.7). The weights based on the spatial proximity with respect to the

center pixel are constant for every shifted window, while the weights based on the color

similarity vary for each shifted window. Hence, the spatially fixed kernel might yield

negative consequences in the specific area, such as the disparity discontinuity area with

similar colors, because it is blindly aggregated according to the distance and, thereby, it

causes incorrect matches near the disparity discontinuity. To alleviate this problem, we

suggest the conditional adaptive support weight as

w(c, q) =

gγs(∆scq) if∆scq ≤ η

gγs(∆scq)gγp(∆pcq) otherwise
(3.8)

where ∆pcq is the spatial distance between pixel c and pixel q and η is a color difference

threshold determining the similarity between two pixels.

Fig. 3.8 depicts the process where the conditional support weight improves the

disparity map. Fig. 3.8 shows the left image and two disparity maps. Fig. 3.8(b) depicts

the estimates using the original support always including proximity, while Fig. 3.8(c)

shows the estimates using the conditional support measure. At the border of the dispar-

ity discontinuity area with a similar color in the foreground and background (red box),

the spatial proximity kernel may produce many wrong disparities due to the blind aggre-

gation by the close spatial distance, as shown in Fig. 3.8(b). In this case, we exclude the

proximity term to avoid the blurring support at the edge of the disparity and exploit only

the color similarity to determine the correct support according to even slight color differ-

ences. Therefore, our conditional support recovers many errors, as shown in Fig. 3.8(c).
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This is precisely the goal of the conditional adaptive support weight in (3.8).

3.2.3 Disparity computation

Once the support weights are calculated, the aggregated cost is computed by

aggregating the raw similarity measures, scaled by the support weights in the window. If

we consider only the left support window, the cost computation may be erroneous, since

the right support window may have pixels from different disparity levels. To reduce

such errors, the aggregated cost is computed by combining the weights of both support

windows as in [3]. The aggregated matching cost between pixel c and pixel cd in Fig. 3.6

is given in the weighted mean form:

A(c, cd) =

∑
q∈Wc,qd∈Wcd

w(c, q)w(cd, qd)C0(q, qd)∑
q∈Wc,qd∈Wcd

w(c, q)w(cd, qd)
(3.9)

where Wc and Wcd represent the left and right support windows, respectively, and the

function w(cd, qd) is the support weight of pixel qd in the right window.

After the aggregated matching costs have been computed within the disparity

range, the disparity map is constructed by determining the disparity dp of each pixel p

through the Winner-Takes-All (WTA) algorithm:

dp = argmin
d∈S

A(c, cd) (3.10)

where S represents the set of all possible disparities.

3.2.4 Occlusion filling

To ensure that both left and right disparities are spatially consistent, we perform

a LRC check to detect unreliable pixels (i.e., those having different disparities on the

left and right images). Fig. 3.9 illustrates an example of occlusion handling. In Fig. 3.9,

for each unreliable pixel (x, y), the cross-based aggregation method [21] generates a

neighborhood for (x+s, y), as shown for the yellow region in Fig. 3.9, where (x+s, y) is

the left most reliable pixel. The white region indicates the unreliable (occluded) region,

the dark gray region is the background, and the light gray region is the foreground.

All reliable pixels within the neighborhood vote for the candidate disparity value at
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Figure 3.9: Illustration of the occlusion filling process

(x, y). The unreliable pixel at (x, y) is filled with the majority of the reliable pixels in

the voting region. By this method, the center pixel is not automatically selected as the

center pixel for occlusion handling. Instead, a first non-occluded pixel is selected to

define the neighborhood. In Fig. 3.9, a left disparity map is used as an example, where

occlusion pixels (white) appear at the right side of the background and the left side of

the foreground if the disparity is positive. (In the right image, occlusion pixels would

appear at the left side of the background and the right side of the foreground). Only the

occlusion pixels are selected and need to be processed. For an arbitrary occlusion pixel

(x, y), the method starts at its left neighboring pixel to determine whether it is a non-

occluded pixel. If it is occluded, the process continues to the left. If it is non-occluded,

the procedure stops. In Fig. 3.9, for the pixel at (x, y), the process goes to the left for

s pixels. A neighborhood is constructed based on the cross-based aggregation method

on pixel (x + s, y). Every non-occluded pixel within that region votes. The majority of

disparity values in that region are assigned to occlusion pixel (x, y). Fig. 3.9 presents an

ideal situation where the majority is obviously the background, and consequently, the

white region will be filled with the background.

Prior window-based voting methods [22] have been based on (x, y) instead of

(x + s, y). The number of non-occlusion pixels in the window constructed based on

(x, y) will be significantly smaller than that in the window constructed based on (x +

s, y). Therefore, such methods are much more sensitive to outliers due to fewer votes,



26

Figure 3.10: Errors (Bad pixels) rate versus census window size. (a) “Venus”. (b)
“Teddy”.

and thus yield inaccurate result.

Other methods, such as plane fitting [23] for multiple disparity planes, are very

computationally expensive. It is an iterative process that treats the occlusion pixel as

outliers and finds the plane that minimizes the error for non-occlusion regions, and fills

the occlusion pixel as if it is on the plane. On the other hand, the proposed occlusion

method is non-iterative and thus more efficient.

3.3 Results

We perform quantitative and qualitative experiments on the Middlebury datasets

in order to verify that the proposed method improves the quality and reliability of dis-

parity estimates. In addition, sensitivity to the parameters is examined.

3.3.1 Cross-square census

To evaluate how the sizes of the original and proposed cross-square census win-

dow affect the disparity performance, we use two Middlebury datasets (“Venus” and

“Teddy”). As shown in Fig. 3.10(a), the error rate of original census (green) decreases

sharply as the window size increases from 3 to 7. That is when the census-transformed

data contains more spatial structure information, and therefore the similarity measure is

more accurate. However, the error rate increases as the window size increases from 7 to
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Figure 3.11: Comparison of the original census (2 mode) and the three-moded census
with a noise buffer on ”Computer”. (a) Left image. (b) Original census. (c) Three-
moded census. (d) Original census on noise added image. (e) Three-moded census on
noise added image.

15. This is due to the fact that a larger census window would include more pixels from

occlusion areas as well as more noises, which deteriorate the accuracy of the similarity

measure. The cross census window has four wings (up, down, left, and right) as shown

in Fig. 3.2, and each wing is composed of three pixels in the experiment. It is worth not-

ing that the proposed cross-square window outperforms the original square one while

using a smaller window size, as shown in Fig. 3.10.

3.3.2 Three-moded census transform

We implement the three-moded census transform with a noise buffer for robust-

ness to image noise in homogeneous areas. Fig. 3.11 illustrates that the three-moded

census with a noise buffer performs better than the original census in homogeneous ar-

eas. To simulate noise in homogeneous areas, we add Gaussian noise, distributed as

N (0, 10−4), to the original image. For the noise buffer α, the parameter β is set to 50.

First, we perform the experiment on the original image, where the three-moded census

reduces some errors in the homogeneous area, as shown in Fig. 3.11(c), compared to the

original census. Second, we perform the experiment on the noise-added image. In this

case, it is verified that the proposed noise buffer works more effectively, as it reduces
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Table 3.1: Performance evaluation of local methods on Middlebury (bad pixel percent-
age with threshold of 1)

Methods Rank Avg.Err.(%)
Err. non-occluded pixels(%)

Tsukuba Venus Teddy Cones
Proposed 13 5.12 2.10 0.12 5.46 2.12
PatchMatch [17] 15 4.59 2.09 0.21 2.99 2.47
CostFilter [4] 20 5.55 1.51 0.20 6.16 2.71
InfoPermeable 21 5.51 1.06 0.32 5.60 2.65
GeoSup [24] 28 5.80 1.45 0.14 6.88 2.94
AdaptDisCalib [16] 37 6.10 1.19 0.23 7.80 3.62
SegmentSupport [15] 53 6.44 1.25 0.25 8.43 3.77
AdaptWeight [3] 67 6.67 1.38 0.71 7.88 3.97

errors much more, as shown in Fig. 3.11(e), compared to the original census. We also

verify that the three-moded census shows better overall performance in terms of bad

pixel rate than the original census does.

3.3.3 Quantitative and qualitative evaluation

The performance evaluation is made on the Middlebury datasets with ground-

truth disparity maps provided by the benchmark site [11]. The parameters are set to

constant values: γs = 33, γp = 20, γH = 29, γI = 45, γG = 14 and η = 3. The

size of the support window is 35× 35 (the same size as the LASW [3]), and the size of

the cross-square census window is 5 × 5 for square with three pixels for a wing. Table

3.1 summarizes the quantitative results taken from the Middlebury database for local

methods. The bad pixel (error) rate is expressed as

B(%) =
100

|Ω|
∑
p∈Ω

I(|Dp − dp| > θ) (3.11)

where |Ω| represents the number of pixel in whole image and I denotes the indica-

tor function. Dp represents the true disparity at pixel p and θ represents the bad pixel

threshold.

Our method achieves excellent results, ranking 13th out of about 130 methods,

and is the best performing local method at the time of the submission. Our method is

an efficient one-pass method with no iteration or post-processing. It outperforms the
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Figure 3.12: Disparity maps for “Tsukuba”, “Venus”, “Teddy” and “Cones”. Centered
column shows ground-truth disparity map and right-most column shows the disparity
map from the proposed algorithm.

original local method (LASW ranking 67th), using efficient algorithms and structures.

Fig. 3.12 shows left images (in the first column), ground-truth disparity maps (in the

second column), and our disparity maps (in the third column). The proposed method

produces accurate dense disparity maps, as shown in Fig. 3.12. Our method ranks 1st on

“Cones” in both non-occlusion and discontinuity areas.

In the proposed method, it takes about 12s to compute the disparity map on

“Tsukuba” using a Central Processing Unit (CPU). It has been presented in [25] that the

LASW [3] can be adopted into a real-time application by using a Graphics Processing

Unit (GPU). Our initial implementation on GPU shows approximately 10 frames/sec on

Quarter Video Graphics Array (QVGA)-size video frames.
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Figure 3.13: Sensitivity to the window size and 5 parameters on four stereo images. (a)
Changing the window size. (b) Changing γs. (c) Changing γp. (d) Changing γH . (e)
Changing γI . (f) Changing γG while the other parameters are kept constant.

3.3.4 Sensitivity to the parameters

The robustness of the proposed method when changing the parameters is exam-

ined. Fig. 3.13(a) shows the performance evaluation of different support window size

for four Middlebury stereo images. It illustrates that the proposed method is fairly insen-

sitive to the support window size when the size is larger than 15× 15. This implies that

the advanced support weight can segment the same depth region well, and thus that out-

liers do not increase even though the window size increases. Fig. 3.13(b) and (c) show

the performance according to changing the similarity parameter (γs) and the proximity

parameter (γp). They also illustrate that the proposed method is robust to the different

parameter setting when they are larger than a certain value. As shown in Fig. 3.13(d),

(e), and (f), the performance is also insensitive to the three cost measure parameters (γH ,

γI , and γG, respectively). Consequently, the five parameter values are not critical for the

performance of the proposed method since they are used in the effectively integrated

form, as in (3.6) and (3.8).
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3.4 Summary

In the local stereo matching, the accuracy of disparity estimate depends on the

similarity measure and the support weight computation. We propose a novel three-

moded census with a noise buffer to increase robustness to image noise in homogeneous

areas and investigate cross-square census for the accuracy of similarity measure. It is

verified that RGB color space provides a better distance metric at object boundaries with

similar color than CIELab space does. We demonstrate that the combination of three

similarity measures yields more reliable cost measures in a variety of image regions.

To obtain a more precise support weight and avoid the blind aggregation, a conditional

support model is introduced. Simulation results verify that the proposed method outper-

forms the other state-of-the-art local methods. Moreover, the proposed method is not

sensitive to the parameter values.
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Chapter 4

Disparity Estimation for Stereo Video

This chapter is an extension of the previous chapter for video disparity estima-

tion. Stereo video disparity estimation is at an early stage while stereo image disparity

estimation is mature. This is the consequence of two factors. First, it is due to lack

of stereo video datasets with ground-truth disparity maps. Second, it is due to tempo-

ral inconsistency problems, such as flickering, resulting from the simple application of

current state-of-the-art image-based algorithms to video frames. In video processing,

motion is a crucial factor and, generally, moving objects tend to have a higher degree of

saliency. However, most disparity methods may have difficulty (ambiguity) in dealing

with fast moving edges in video scenes.

We incorporate optical flow for enhanced support weight computation within

the localized window. This approach is the first use and helps to determine the spatial

ambiguities by utilizing temporally consistent information. We define the correlated

relation between similarity and motion by analyzing Gestalt principles. We enforce

temporal consistency by refining our video disparity estimates with the spatio-temporal

consistency algorithm described in [1]. Meaningful results are achieved by incorporat-

ing optical flow near moving edges.

This chapter is organized as follows. We discuss related works in Section 4.1.

The proposed video disparity algorithm is presented in Section 4.2 in detail. Section 4.3

shows simulation results and discusses their significance. Finally, section 4.4 summa-

rizes the proposed video disparity method.

32
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4.1 Related Work

To solve the temporal inconsistency problem in video disparity estimation, [26]

uses median filtering along flow vectors computed by the Horn and Schunck method

[27]. However, the results are of moderate quality. The spatio-temporal method [28]

adds time as an extra dimension so that matching cost is aggregated over a 3D spatio-

temporal support window. It can integrate temporal coherence but requires additional

memory. The spatial-temporal TV method [1] shows impressive results by treating the

video disparity as a spatio-temporal volume to improve spatial and temporal consistency.

Moreover, it presents the possibility of directly extending current image-based disparity

algorithms to the video domain.

4.2 Proposed Method

Fig. 4.1 shows the block diagram of the proposed video disparity estimation

method. Optical flow and TV refinement algorithm are added to promote disambigua-

tion near moving edges and reduce temporal noise, respectively. Correlated support

weight incorporating optical flow replaces the conditional support weight used in Chap-

ter 3.

Figure 4.1: Block diagram of the proposed video disparity estimation method.
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Figure 4.2: Disparity maps for “Car” in the upper row and “Skydiving” in the lower
row. (a) and (f) Left view. (b) and (g) Optical flow. (c) and (h) using only proximity.
(d) and (i) using proximity and similarity. (e) and (j) using proximity, similarity, and
motion.

4.2.1 Benefits of a motion cue

Although motion is a key factor in video processing, it has not been investi-

gated for support weight computation within a localized window. Fig. 4.2 illustrates

the benefits of using motion cues. For the evaluation, we use the LASW method [3],

in which proximity and similarity are exploited in an independent manner. We ex-

tend it to examine how the motion term affects video disparity quality. As the local

methods require pixel-based computation, we use the classic optical flow method with

a weighted non-local term [29], which is one of state-of-the-art optical flow methods.

We use the motion information in the independently integrated support weight form.

The “car” and “skydiving” video frames are processed at a resolution of 480×270 and

480×276, respectively. The parameters used are fixed throughout the experiment. In

Fig. 4.2, the selected left view (Fig. 4.2(a) and (f)) and its optical flow (Fig. 4.2(b) and

(g)) are shown. Fig. 4.2(c) and (h) are obtained by using only the proximity term for

the support weight; Fig. 4.2(d) and (i) are computed by adding the similarity term; and

Fig. 4.2(e) and (j) are obtained by adding the motion term. As shown in Fig. 4.2(a), it

is challenging to discover the outline of the car since it is visually highly ambiguous.

In Fig. 4.2(c), many errors are observed at the edges of the moving car (red circle). In

Fig. 4.2(d), some errors are recovered by using the color cue; however, edges are not pre-

served. In Fig. 4.2(e), incorporating the motion term preserves the edges, even though
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they are visually ambiguous. We believe that this is due to the preserved background

flow as shown in Fig. 4.2(b). Although there is ambiguity in the stereo correspondence,

motion between a pair of successive video frames is much more consistent, especially

in a localized window in background regions. There are large forward motions in the

“skydiving” video, as shown in Fig. 4.2(g). Generally, moving objects tend to have a

higher degree of saliency, and viewers will fixate on the skydiver’s rapid fall forward

as shown in Fig. 4.2(f). Therefore, accurate disparity estimation is required at these

moving edges. The dotted red line in Fig. 4.2(f) represents the real moving edge of the

skydiver. In Fig. 4.2(h) and (i), a large smearing problem is observed at the edges, while

in Fig. 4.2(j), the problem is much alleviated by incorporating the motion cue for the

improved support weight. Note that the left edge of the foreground is compared since

the occlusion appears at the right side of the foreground due to the negative disparity

in Fig. 4.2(f). Disparity is estimating spatial correspondences, while motion estimates

temporal correspondences, so the additional temporal information promotes spatial dis-

ambiguation. Consequently, the results in Fig. 4.2 imply that the support weight inte-

grating the motion cue yields disparity estimates that are more accurate, especially near

the edges of moving objects.

4.2.2 Correlated adaptive support weight

The effectiveness of using motion cue for support weight computation was ver-

ified in the previous section. The conditional relation between similarity and proximity

has been defined in Section 3.2.2. We discuss issues on motion flow estimation and

then analyze the relationship between similarity and motion in order to investigate how

the motion term should be integrated. The motion difference between two pixels is cal-

culated by using a measure of optical flow. There are two types of motion difference

computation: absolute flow Endpoint Difference (ED) and Angular Difference (AD)

[30]. We use ED because AD penalizes errors in larger flows less than errors in small

ones [30], which is undesirable. Letmc = (uc, vc) andmq = (uq, vq) be the flow vectors

of pixel c and pixel q, respectively. We suggest the truncated motion difference:

∆mcq = min

(√
(uc − uq)2 + (vc − vq)2, τ

)
(4.1)
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where τ is a truncation value. Such a model reduces the influence of flow outliers just

as the truncated matching cost limits the influence of wrong matches [24]. It must be

kept in mind that the optical flow is an estimated value and cannot be completely error

free. The strength of grouping by motion is defined using a Laplacian kernel as

gγm(∆mcq) = exp

(
−∆mcq

γm

)
(4.2)

with γm being an empirical motion parameter. The support weight based on the three

Gestalt grouping principles (proximity, similarity, and motion) should be redefined for

video disparity estimation. We suggest a correlated model, in which the conditional

property should be inherited for the integrated support weight as

w(c, q) =

gγm(∆mcq)
∆scq
γs gγs(∆scq) if∆scq ≤ η

gγm(∆mcq)
∆scq
γs gγs(∆scq)gγp(∆pcq) otherwise.

(4.3)

This model originates from the intuition that color similarity and motion tend to correlate

with each other in general. For example, the center pixel and its neighboring pixel have

a high likelihood of having different motion vectors if they also differ significantly in

color, as expected near object edges. When this occurs, the correlated model decreases

the overall support weight as compared with the independent model, since the Laplacian

kernel is raised to a power based on the large color difference. Additionally, the two

pixels are likely to have similar motions if they also have the same color, as in the

homogeneous areas of an object surface. In this case, we can also expect to find a

positive correlation between the two metrics. Therefore, the support weight will increase

in reference to the independent model. However, while color is an observed quantity,

motion is an estimated value. Therefore, color should take precedence over motion

when there is a discrepancy between them and the correlation assumption fails. This is

precisely what the model in (4.3) enforces. For example, if there is a large difference in

color but a small difference in motion, then the value for the correlated support weight

is decreased. As a result, the support weight depends on the color cue more than it

does the motion cue. In contrast, the independent model always treats all of the Gestalt

principles equally. In summary, we define conditional relation between similarity and

proximity and correlated relation between similarity and motion.
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Table 4.1: Performance comparison of methods on five stereo videos (bad pixel per-
centage with threshold of 1)

Video/ # of frames LASW CostFilter Proposed method
Tunnel/ 99 1.435 % 2.157 % 0.997 %
Book/ 40 5.933 % 4.919 % 3.601 %
Temple/ 99 10.145 % 10.700 % 10.362 %
Street/ 99 9.978 % 7.305 % 7.246 %
Tanks/ 99 5.714 % 4.826 % 4.811 %

4.3 Results

Both qualitative and quantitative experiments are performed on both synthetic

and real-world videos. In addition, we examine parameter sensitivity to performance.

4.3.1 Quantitative and qualitative evaluation

To quantitatively evaluate the performance of the proposed method on stereo

videos, we use five synthetic stereo videos (400×300, 64 disparity range) with ground-

truth disparity map [28]. We compare three methods (LASW, CostFilter, and proposed

method) without occlusion filling to compare their pure performance. The LASW

method ranks 67th and the CostFilter, which is one of the best performing local methods,

ranks 20th on the Middlebury benchmark test. All three methods are efficient one-pass

local methods, having similar structure. Table 4.1 shows the average percentage of bad

pixels (threshold of 1) over all frames. We ignore borders when computing statistics

since they lack correspondences. Table 4.1 illustrates that the proposed method incor-

porating temporal correspondence information has the best performance.

To subjectively evaluate the performance of the proposed method, we perform

experiments on real-world video scenes, “Jamie1” and “Ilkay,” from the Microsoft i2i

database (320 × 240, 64 disparity range). The Jamie1 video is more challenging than

Ilkay because it contains large homogeneous areas and repetitive patterns, as shown in

Fig. 4.3. Fig. 4.3(b) shows the disparity maps produced by LASW, Fig. 4.3(c) depicts the

disparity maps yielded by CostFilter, and Fig. 4.3(d) shows the disparity maps obtained

by the proposed method. Fig. 4.3 illustrates that the proposed method obtains the best
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Figure 4.3: Disparity maps for “Jamie1” and “Ilkay”. (a) Left frames. (b) LASW. (c)
CostFilter. (d) Proposed method. (e) After occlusion filling. (f) After TV [1].

quality of disparity map among three local disparity methods. LASW yields the worst

quality and CostFilter produces many errors in homogeneous and repetitive areas. In ad-

dition, Fig. 4.3(e) shows the disparity maps where the occlusion areas in Fig. 4.3(d) are

filled by valid values, using the occlusion filling mentioned in Section 3.2.4. Fig. 4.3(f)

depicts the disparity maps refined with spatial-temporal TV algorithm [1], which re-

duces errors such as spatial noise and temporal inconsistencies in the background.
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Figure 4.4: Performance evaluation according to parameter γm on five stereo videos
while the other parameters are kept constant.

4.3.2 Sensitivity to the parameter

The robustness of the proposed method to changing the motion parameter γm
is examined as done in Section 3.3.4. Fig. 4.4 shows the performance for different γm
values on five stereo videos. It illustrates that the proposed method achieves almost

constant performance according to the motion parameter values. The motion parameter

value is not critical in the performance of the proposed method because the motion term

is effectively integrated into the support weight computation, as in (4.3).

4.4 Summary

We propose to extend the proposed stereo image disparity method to stereo video

domain. Optical flow is utilized to improve the support weight computation. The tem-

poral consistent information promotes spatial disambiguation at motion boundaries with

similar color. We impose spatio-temporal consistency to smooth spatial errors and re-

duce flickering effects. Simulation results verify that the proposed method produces

high-quality video disparity maps. Moreover, the proposed method is not sensitive to
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the motion parameter value.
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Chapter 5

Multi-resolution Depth Processing and

Fusion for Large Stereo Panoramic

View

This chapter presents a multi-resolution depth processing and fusion algorithm

for large stereo panoramic images.

5.1 Introduction

Multiple images are photographed and combined in stitching software to build

large-size panoramic images. This process is repeated at the left and right eye position

for stereo pair [31]. Large stereo panoramic images have advantages over regular images

such as wide field of view and high resolution. If it is seen on a virtual reality (VR)

display, it becomes more favorable to customers. However, large-sized stereo panoramas

pose a challenging problem for many computer vision tasks.

Multi-resolution or hierarchical (coarse-to-fine) depth schemes can efficiently

process large stereo images by reducing matching ambiguity and computational com-

plexity. However, it is difficult to achieve high accuracy and reduce complexity at the

same time.

41
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5.1.1 Related work

In stereo matching, local methods [32, 33] based on block matching, and global

methods [34, 35, 36, 37] based on belief propagation, have utilized the hierarchical

framework. In fact, the multi-resolution scheme helps to avoid local minima in cor-

respondence matching, but it has limitations such as error propagation from coarse to

fine levels and blurring at disparity discontinuity boundaries. These limitations cannot

guarantee that overall matching accuracy will be improved. Therefore, most hierarchi-

cal methods focus on reducing computational complexity at the expense of accuracy.

Two hierarchical stereo algorithms [38] and [39] have used a reduced disparity search

range to speed up processing at the next level in the hierarchy. However, the reduced

search range, which is spatially constant, may propagate error. The hierarchical stereo

method with thin structure [40] emphasizes the importance of search range shifted by

the disparity of the corresponding coarse point. However, there is no discussion as to

how to find the optimal disparity search range, which can suppress error propagation.

The hierarchical segment-based matching scheme [33] and adaptive windowing

scheme [38, 41] have been presented to reduce blurring at disparity boundaries. How-

ever, the former is not efficient because color segmentation and plane fitting are known

to have high complexity, and they are required at every stage. The latter is not able to ef-

fectively segment object boundaries with rectangular windows because real 3D objects

have an arbitrary shape. The boundary blurring and smearing artifacts are inherent in the

hierarchical scheme. Therefore, an additional sophisticated edge-preserving refinement

is required.

To better propagate the coarse results, the disparity surface, referred to as the

spatio-disparity space, is introduced in [42]. It represents the quality of each possible

match that corresponds to the matching correlation value. The final disparity is detected

based on the disparity surface enhanced by a non-linear filter that suppresses noise and

eliminates ambiguities. An adaptive scale selection mechanism [43] is presented to

determine the most favorable scale level at which the surface is salient when performing

hierarchical stereo matching. All of the multi-resolution methods mentioned above deal

with small images, such as the Middlebury datasets [11]. In this chapter, we are dealing

with panoramic stereo images about twenty times larger than those of the Middlebury
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datasets. As image size increases, so does the importance of mitigating the limitations

of hierarchical disparity schemes. Another challenging factor arising in the large-sized

image will be discussed in Section 5.2.

In the coarse-to-fine scheme, a coarse disparity map serves as initial estimate for

the next level estimation. The more reliable the initial estimate is, the more accurate the

disparity result at the next level will be. In general, the coarse disparity map suffers from

staircase artifacts due to disparity quantization from integer disparity estimation as well

as edge-smearing artifacts. Moreover, the coarse disparity map needs to be upsampled

in order to be used for the next level initialization. The upsampling process makes the

artifacts more noticeable. Therefore, sub-pixel disparity estimation that can minimize

the quantization artifacts is required for hierarchical methods.

Typically, real-world images and videos are susceptible to various noise factors.

Disparity estimates computed in different scales and times tend to show inconsistency.

Therefore, a consistency function should be integrated in the disparity estimation pro-

cess. For instance, temporal consistency should be taken into account in video disparity

estimation over time. Similarly, scaling consistency needs to be considered in multi-

scale disparity processing, where results at different scales suffer from different error

types. To the best of our knowledge, the disparity scaling consistency issue has not been

investigated.

5.1.2 Contributions

In this chapter, the main contribution is the adaptively determined pixel-wise

disparity search range, which is based on the local structure of image and initial dis-

parity map. The optimal adaptive search range helps to propagate smoothness in the

homogeneous areas and suppress the error appearing in the fine level estimation. It also

contributes to computational speed by reducing the search complexity.

We propose a reliable multiple parabola fitting technique for sub-pixel disparity

estimation, which extends the conventional fitting method. The proposed multiple fit-

ting is not only efficient to implement but also improves the disparity accuracy while

alleviating the drawback of the conventional method.

We investigate the spatial-multi-resolution TV to enforce spatial and scaling con-
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Figure 5.1: Depth maps in hierarchical framework. (a) Left panorama. (b) Coarsest
level depth map (downsampled). (c) Finest level depth map.

sistency. The adaptive disparity search range and spatial-multi-resolution TV play a role

in fusing multi-scale disparity results by combining their complementary information.

We evaluate the advantages and effectiveness of the proposed multi-resolution

depth processing quantitatively, using the Middlebury datasets with the ground-truth

depth, and then demonstrate that the proposed algorithm also achieves high quality of

depth map on large panoramic views.

5.1.3 Organization

This chapter is organized as follows. Section 5.2 describes the problem that we

are solving. The details of our proposed method are presented in Section 5.3. Section 5.4

shows experimental results and discusses their significance. Section 5.5 summarizes the

proposed method with some remarks.

5.2 Problem Statement

Our goal is to obtain high quality and high-resolution depth maps from large-size

stereo panoramas (8, 192×4, 096), while using the proposed local disparity method [2].

For large-size data processing, we consider a multi-resolution approach and partitioning-

stitching scheme similar to panoramic view construction. Fig. 5.1 demonstrates the

problem addressed in this chapter. Fig. 5.1(a) shows the left panoramic view. Fig. 5.1(b)

and (c) depict the corresponding depth maps for the low-resolution image and high-

resolution image, respectively. At the coarse level, overall information and prominent

features are present in the smooth form; however, details and sharp edges are lost, as

shown in the red boxes in Fig. 5.1(b). In contrast, most details and edges are preserved
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Figure 5.2: Diagram of system framework.

at the fine level; however, many errors appear in the low and high-textured areas, as

shown in the green boxes in Fig. 5.1(c). It can be observed that fine detail is too small

to detect at the coarse level. At the fine level with larger scale, homogeneous areas tend

to increase. For instance, the local structure in the low-textured area becomes more

ambiguous as image resolution increases, and the structures in high-textured areas tend

to look like repetitive patterns. Such matching ambiguities cause disparity errors. The

challenging problem is how to fuse only beneficial characteristics at the coarse level

and fine details/edges well preserved at the finer level while suppressing undesirable

errors. Finally, we seek an algorithm that increases disparity accuracy while reducing

computational complexity.

5.3 Proposed Method

5.3.1 System framework

Fig. 5.2 illustrates the proposed multi-stage framework, which consists of four

main blocks: sub-pixel disparity estimation, adaptive search offset map, disparity up-

sampling with refinement, and spatial-multi-resolution TV. First, we build a stereo pair
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Figure 5.3: Illustration of disparity search range.

of Gaussian pyramids with k levels, and then estimate an initial sub-pixel disparity. Us-

ing the initial sub-pixel disparity and image intensity, the adaptive search offset map is

constructed, which guides the next level disparity estimation and controls the weight

when the initial disparity map is upsampled and refined simultaneously. The refined

disparities are incorporated with the adaptive search offsets for guiding the next level

disparity estimation and are combined for multi-resolution disparity fusion. The shaded

box in Fig. 5.2 indicates an iterative module. The final disparity map is obtained by

applying the spatial-multi-resolution TV to the refined disparity maps.

5.3.2 Adaptive search range based on eigenvalues of structure ten-

sor

Most single-resolution disparity methods attempt to find the best matching point

by searching the entire disparity range. In the hierarchical scheme, we can take ad-

vantage of given initial priors to adaptively minimize the search range without loss of

accuracy. The reduced disparity search range (rk) for the next level k can be defined as

2dk−1 −∆d ≤ rk < 2dk−1 + ∆d (5.1)

where dk−1 is the disparity estimate at level k − 1, and ∆d is the local disparity search

offset. Fig. 5.3 illustrates the disparity search offset (∆d) and full search range (L).

The search offset (∆d) should be properly determined at each pixel location so that it

prevents the next level estimate from being trapped in a local minimum of the matching

cost function. It is very important to choose the optimal ∆d because a small ∆d at

a certain point reduces matching ambiguity and increases speed, while a larger ∆d at

a different point is able to resolve complex object boundaries more effectively [40].

Therefore, the estimation quality and speed directly depend on d0 and ∆d.
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In general, image structure is closely related to disparity estimation. Ambiguous

or complicated image structures cause disparity error. Disparity discontinuities occur

at the object border, where there is mostly distinct structure. Therefore, we investigate

a structure-based search offset approach. We take into account the structure tensor,

known as the second-moment matrix, which is based on the summation of the outer

product components of the local gradient from a neighborhood [44]. We consider a

local neighborhood because it provides reliable structure and orientation information

about image features, even in the presence of noise. We propose to adaptively determine

∆d according to the structure tensor information. Two-dimensional features of an image

I can be detected by 2D structure tensor:

J =
∑
∇I∇IT =

( ∑
I2
x

∑
IxIy∑

IxIy
∑
I2
y

)
. (5.2)

J is a symmetric positive semi-definite matrix with two non-negative eigenvalues: λmax
and λmin. The eigenvalues of J can be analytically derived as

λmax =
ΣI2

x + ΣI2
y +

√
(ΣI2

x − ΣI2
y )2 + 4(ΣIxIy)2

2

λmin =
ΣI2

x + ΣI2
y −

√
(ΣI2

x − ΣI2
y )2 + 4(ΣIxIy)2

2
.

(5.3)

There are three distinct cases for the relative values of these two eigenvalues in (5.3)

[45]:

• λmax ≈ λmin ≈ 0: low-textured area with almost no structure where both partial

derivatives (Ix and Iy) are small.

• λmax � 0, λmin ≈ 0: one dominant orientation, like edges where both derivatives

are large (diagonal edge) or only one of them is large (horizontal or vertical edge).

• λmax � 0, λmin � 0: high-textured area with ambiguous orientation elsewhere.

We exploit both image intensity and initial disparity map as a prior for the local structure

acquisition because they may reveal different but complementary structure characteris-

tics. We make the following observations, which justify our combination of image and

disparity to determine local structure:
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• Matching ambiguities tend to occur in both low and high-textured areas.

• Disparity jumps occur in real disparity edges, which generally match the corre-

sponding image edges.

• Image edge structure might not be noticeable at some disparity boundaries where

the image gradient is small.

• Initial disparity estimates tend to be unreliable along disparity edges due to occlu-

sion and lack of texture details.

The first observation indicates that ∆d should be small enough to reduce the ambiguity

at the next level. A small ∆d leads to a small search range, which in turn propagates the

desirable smoothness property of the coarse disparity estimates. The other observations

indicate that ∆d should be large enough to detect big disparity changes and, thereby,

recover the initial error. For the second and third observations, we note that the image

(appearance) edges do not always match the real disparity edges. There are two cases:

(1) image edge structure exists without disparity edge and (2) disparity edge structure

exists without image edge. The former is not critical because the image edges from

significant textures in the flat region do not cause matching errors. On the other hand,

the latter implies that structure information from an image is not sufficient for obtaining

accurate structures. For the second case, the initial disparity map can be utilized as com-

plementary information. However, the initial disparity estimate is likely to be unreliable

near object boundaries as in the last observation. The combination of two priors will be

a good solution. We can define a function of eigenvalue of the matrix J satisfying the

two main observations (first and second) as

f(λmax, λmin) =
λmin + ε

λmax + ε
(5.4)

where ε is used to increase the robustness near zero eigenvalue. The extremely small

value of ε makes the function sensitive to eigenvalues. A reasonable value of ε is 0.1,

which is found empirically. The function f outputs approximately “1” in case of both

low (λmax ≈ λmin ≈ 0) and high-texture (λmax � 0, λmin � 0) and approximately

“0” around edges (λmax � 0, λmin ≈ 0). In the ellipsoidal representation of the matrix
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J , two eigenvalues indicate scaling in each orthogonal direction. Note that two eigen-

vectors of the matrix J are orthogonal since J is symmetric [46]. Let JI and JD be

the matrices from the image intensity and initial disparity, respectively. We have four

eigenvalues from two matrices: two maximum eigenvalues (λImax, λDmax) and two min-

imum eigenvalues (λImin, λDmin). In most areas of the disparity map, zero eigenvalues

representing no local structure (λDmax ≈ λDmin ≈ 0) are observed due to the homoge-

neous characteristic of disparity maps except at disparity edges. At the disparity edges,

it shows the same dominant orientation as that of the image. This implies that corre-

sponding eigenvectors from JI and JD have the same direction except in homogeneous

areas of the disparity map, where zero eigenvalues are obtained. Therefore, the eigen-

values can be linearly combined as λmax = λImax + λDmax and λmin = λImin + λDmin.

Note that the eigenvalue computation is performed on the normalized image intensity

and disparity map for direct linear combination. An exponential function based on the

combined eigenvalues at the pixel p can be defined as

g(p) = e−fp(λmax,λmin) (5.5)

For simplicity, we define this function as a local edge strength function, which produces

a high value along the edges and a low value on the low- and high-textured area.

Fig. 5.4 depicts the Teddy image, initial disparity, and ground-truth disparity

including three local edge strength maps, which motivate the reason for combining two

strength maps. Fig. 5.4(d) and (e) show the local edge strength map from the image

intensity and initial disparity map, respectively. Some image edge structures do not

appear at the real object boundary in the green box, as shown in Fig. 5.4(d), while

they are present in Fig. 5.4(e). This corresponds to the third observation above. The

wrong and very weak edge structures are shown in the red box in Fig. 5.4(e), while

the true and strong edge structures are present in Fig. 5.4(d). This corresponds to the

fourth observation. Therefore, we need to combine the two structures by adding their

eigenvalues so that the structure lost in either edge strength map is recovered, as shown

in Fig. 5.4(f).

Finally, the search offset ∆d is adaptively determined according to four eigen-
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Figure 5.4: Examples of the local edge strength map. (a) Left image. (b) Initial dispar-
ity. (c) Ground truth. (d) Local edge strength of (a). (e) Local edge strength of (b). (f)
Local edge strength of the combined local structure using (5.5).

values of two structure tensors as

∆d = [g(p)× L

2
] (5.6)

where [·] represents nearest integer operator, and L is the full disparity search range,

as shown in Fig. 5.3. The different ∆d at each pixel point forms an adaptive disparity

search offset map, and then the search range, rk, is calculated from initial disparity value

dk−1 and offset ∆d. The adaptive disparity search offset will be used in both next-level

estimation and depth refinement as a core function of the proposed algorithm.

5.3.3 Sub-pixel disparity

For the sub-pixel disparity estimation, we extend the local disparity method [2].

The local method provides an accurate cost function by effectively combining three cost

measures: census, color, and gradient. However, it can handle only integer disparity.

Therefore, a sub-pixel algorithm is needed to integrate with the integer disparity method

in order to increase matching precision and, in turn, provide better multi-scale dispari-

ties for fusion. One of most popular algorithms is the quadratic polynomial interpolation

known as parabolic fitting. It finds the fractional minimum point by fitting a parabolic
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function to three discrete matching costs: an initial minimum cost (center point) and two

adjacent costs. Thus, the performance of parabolic fitting directly depends on the cost

function. In addition, such a fitting method is simply applicable to various local dis-

parity methods as well as reduces the disparity discontinuity caused by the quantization

[47, 48]. However, it results in the drawback known as the pixel-locking effect, which

represents systematic bias toward the minimum integer point [49]. This bias corresponds

to an erroneous ripple in 3D reconstruction [50].

A simple and efficient way to reduce the pixel locking effect by taking advantage

of the accurate cost measure provided in [2] is to investigate more cost points for en-

hanced fitting. However, we observe that the brute-force extension performs worse than

the original parabolic fitting does. This is because the reliability of the cost function

sharply decreases as additional points grow further from the minimum integer point. To

increase the sub-pixel accuracy as well as alleviate the locking effect, we propose us-

ing a multiple fitting method with reliability check. The key of the proposed algorithm

is to check the reliability of the additional cost points. We assume that matching cost

increases at least linearly as the matching window slides from the center point. This as-

sumption is justified by the fact that the matching cost is aggregated over a 2D window.

For the fitting operation, the cost function can be approximated as a piece-wise quadratic

function. Five integer disparity points d−−, d−, d0, d+, and d++ are considered, where

d+ = d0 + 1 and d++ = d0 + 2. The quadratic cost function can be expressed as

A(d) = ad2 + bd+ c (5.7)

where d is a continuous disparity value, and a, b, c are the parabolic parameters to be

estimated. The minimum point dm of the quadratic cost function passing three disparity

points (d−, d0, and d+) is estimated to sub-pixel precision:

dm = d0 −
A(d+)− A(d−)

2A(d+)− 4A(d0) + 2A(d−)
. (5.8)

The algorithm is as follows:

Algorithm 1: Multiple fitting for sub-pixel disparity
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1: Define three cost functions: A1(d−−, d0, d+),

A2(d−, d0, d+) and A3(d−, d0, d++) as in (5.7)

2: Find three minima: dm1, dm2 and dm3 using (5.8)

3: if slope(d−−, d0) ≥ slope(d−, d0) &&

slope(d++, d0) ≥ slope(d+, d0) then

dm = 2dm1+3dm2+2dm3

7

4: elseif slope(d−−, d0) ≥ slope(d−, d0) then

dm = 2dm1+3dm2

5

5: elseif slope(d++, d0) ≥ slope(d+, d0) then

dm = 3dm2+2dm3

5

6: else then

dm = dm2

7: endif

The final sub-pixel disparity dm is computed by taking the weighted mean of those

satisfying the reliability condition out of minimum points (dm1, dm2, dm3).

To evaluate the pixel locking effect, sub-pixel disparity estimation is performed

on the planar region (red box) in Fig. 5.5(a). The conventional parabolic fitting produces

many peaks with a bias toward integer disparity, as shown in Fig. 5.5(c), while the

proposed multiple fitting spreads out and reduces the pixel locking effect, as shown in

Fig. 5.5(d). It is worth noting that the proposed multiple fitting method is also applicable

to various local disparity methods. The fitting technique becomes most effective when

it is integrated into the disparity method providing accurate cost function, since it is cost

function-dependent.

5.3.4 Disparity refinement with upsampling

In general, smearing (blurring) error at disparity boundaries shows big devia-

tion from the ground-truth disparity. This error is critical for multi-resolution scheme
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Figure 5.5: Histograms of sub-pixel disparities for a planar region on Venus. (a) Left
image. (b) Ground-truth. (c) Parabolic fitting. (d) Our approach (Multiple fitting).

where upsampling process is required. Traditional upsampling methods, such as bilin-

ear and bicubic interpolation, result in the blurring of sharp edges. The Joint Bilateral

Upsampling (JBU) [51], based on the edge-preserving bilateral filter [52], upsamples

and enhances the low-resolution range map with a high-resolution color image. How-

ever, JBU method causes two artifacts: texture copying on object surface with noticeable

texture and blurring in the edge area with similar color. To overcome these problems,

the Pixel Weighted Average Strategy (PWAS) [53] extends JBU with an additional fac-

tor, credibility map. The credibility map is obtained from the absolute gradient of the

low-resolution disparity map. It controls the contribution of the weighted averaging by

assigning a lower weight to disparity edge pixels. The texture copying artifacts fre-

quently occur when a noisy Time-Of-Flight (TOF) range map is upsampled. This is

because noises in the flat depth area cause textures from the color image to be trans-

ferred into geometry patterns of the upsampled range map [54]. The texture copying

does not appear in our stereo matching method using two views since stereo matching

approaches are not likely to produce errors on the object surface with textures.

We propose reuse of two functions (the support weight and local edge strength
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already computed) in order to refine the smearing error, similar to the PWAS. The ad-

vanced support weight function [2] has been used to put a reasonable weight on each

pixel cost for cost aggregation. It can be hereby reused as a sort of bilateral filter func-

tion:

w(p, q) =

e
−∆spq

γs if ∆spq ≤ τ

e−
∆spq
γs e

−∆ppq
γp otherwise

(5.9)

where ∆spq and ∆ppq are the color and the spatial distance between pixel p and pixel

q, respectively, and τ is a color threshold determining color similarity between two

pixels. γs and γp are photometric and geometric scaling parameters that are determined

empirically. The support weight w(p, q) is functionally similar to two Gaussian kernels

(spatial and range) in PWAS except that it uses Laplacian kernel and incorporating a

condition to minimize blurring at edges with similar colors. The spatial term is not

considered if the color difference is less than the threshold. This is because the spatial

term will worsen blurring at edges with similar colors by blind aggregation. The local

edge strength map g(p) in (5.5) and the credibility map in PWAS share the similar goal of

providing edge structure. The difference is that g(p) is based on the combined structure

tensor of both image intensity and initial disparity, while the credibility map is based on

the gradient of the initial disparity. To reduce the influence of errors near an edge and

then refine the edge blurring, local edge weakness is taken into account. The local edge

weakness function is inversely proportional to the normalized edge strength function. It

can be defined as

h(p) = 1− g(p). (5.10)

In the refinement process with upsampling, both support weightw(p, q) and edge

weakness h(q) are used to put each different weight on the initial disparity value. The

initial disparity value is replaced by the weighted average of a neighborhood. The dis-

parity refinement is defined as

dr(p) =

∑
q∈W w(p, q)h(q)d0(q)∑

q∈W w(p, q)h(q)
(5.11)



55

where W represents the window patch and d0(q) is the low-resolution disparity value at

pixel q. A small h(q) along the edge implies that the corresponding disparity value is

not reliable, and thus does not have as much influence on refinement.

5.3.5 Scaling consistency and multi-resolution fusion

The multi-resolution scheme is well known to be advantageous in terms of speed

and memory usage. However, scale dimensional inconsistency can occur due to the fre-

quent upsampling/downsampling process, especially for real-world images. This incon-

sistency is related to the fact that objects in the world appear in different ways, depend-

ing on the scale of observation [55]. To alleviate the scaling inconsistency as well as

the spatial inconsistency at the same time, we investigate TV regularization algorithm

over spatial and multi-resolution dimensions. The spatial-multi-resolution TV is based

on the augmented Lagrangian method for image restoration presented in [56], which

enforces the spatial-temporal consistency for video disparity maps. We adapt it for scale

consistency where disparity estimates at several scales are used, instead of temporal

consistency where several frames of video disparity estimate are used. We assume that

typically, disparity value varies smoothly in both spatial and scaling dimension except at

3D boundaries. We treat a sequence of multi-resolution disparity maps as a scale-space

volume: a 3D function f(x, y, s) with the spatial coordinate (x, y) and the scale dimen-

sional coordinate s. The multi-resolution disparity maps must be scaled to the same size

so that it can be regarded as one volume. To reduce spatial and scale dimensional noise

while preserving sharp edges, we solve the following TV regularized l1 minimization

problem:

minimize
f

µ||f− g||1 + ||Df||TV (5.12)

where the vector f is the unknown disparity map, the vector g is the multi-resolution

disparity map, and the operator D = [βxDT
x , βyD

T
y , βsD

T
s ]T denotes the forward differ-

ence operators along the horizontal, vertical, and scaling directions. The parameter µ is

the regularization constant that controls the relative emphasis of the objective and reg-

ularization terms. The parameters (βx, βy, βs) also control the relative emphases of the

spatial and scale dimensional terms. This minimization problem is solved by using an

iterative method based on the augmented Lagrangian and alternating direction method,
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as in [56].

Using the spatial-multi-resolution TV, we can fuse complementary disparities at

different scale resolution while maintaining spatial-scaling consistency. It is meaningful

that it can recover disparity features that are not visible in a certain scale disparity map.

We will demonstrate that this approach for multi-resolution disparity estimation can

be a new and effective extension of TV image restoration application. Additionally,

the adaptive search range mentioned in Section 5.3.2 plays a role in fusing the initial

disparity to the high-scale direction by guiding the next level estimation.

5.4 Results

We have proposed a multi-resolution depth processing and fusion approach for

large panoramic views. First, we evaluate the proposed scheme quantitatively using

the Middlebury datasets with ground-truth depths available. Second, we present the

performance of the proposed method on large real-world panoramic views compared to

conventional methods.

5.4.1 Overall performance of the multi-resolution scheme

We apply the proposed hierarchical scheme to the Middlebury datasets. All pa-

rameters are fixed throughout the experiment. The sub-pixel disparity estimation pa-

rameters are the same as those used in [2]. For the disparity upsampling/refinement, the

support window size is 9×9, and the other parameters for the spatial and range term are

reduced proportionally (γp = 6 and γs = 9).

Fig. 5.6 shows intermediate results from the proposed multi-resolution scheme

on the Middlebury datasets. Fig. 5.6(b) shows initial disparity maps at level 0, where

images are downsampled by a factor of 2. Fig. 5.6(c) depicts the local edge strength

function g(p) defined in (5.5), which is computed from the structure tensors of image

intensity and initial disparity. This map will form the adaptive search offset (∆d) map,

using (5.6). Fig. 5.6(d) shows the upsampled/refined disparity map from the initial dis-

parity map, incorporating the edge weakness function h(p) defined in (5.10). Fig. 5.6(e)

depicts the final disparity map guided by the adaptive search offset map. As shown in
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Figure 5.6: Intermediate results from our multi-resolution (2-level) disparity processing
on the Middlebury datasets. (a) Left image. (b) Initial disparity at the level 0. (c) Local
edge strength map g(p). (d) Upsampled/refined disparity. (e) Final disparity.

Table 5.1: Performance comparison of three methods on the Middlebury benchmark test
(bad pixel (error) rates (nonocc/all/disc) with threshold of 1 and search range percentage
which denotes the average percentage of the shaded area in Fig. 5.3)

Dataset
Single-res. Classical multi-res. Proposed multi-res.
Full-search Fixed-search Initial Refined Fixed-search Adaptive-search

error (%) range error(%) range error (%) error (%) error (%) range error (%) range
Tsukuba 2.30/2.82/8.37 100% 2.21/2.76/8.82 50% 5.10/6.10/20.1 5.04/5.84/19.9 2.39/2.91/9.59 50% 2.24/2.76/8.86 50%
Venus 0.13/0.43/1.67 100% 0.19/0.52/2.35 50% 0.95/1.77/9.87 0.64/1.39/6.71 0.14/0.47/1.91 50% 0.12/0.43/1.67 46%
Teddy 5.11/11.1/13.9 100% 5.57/11.5/14.2 50% 7.97/14.7/21.9 7.64/14.6/20.6 5.10/11.0/13.8 50% 5.07/11.0/13.8 47%
Cones 1.83/7.55/5.45 100% 1.93/7.61/5.67 50% 5.87/12.3/16.6 5.58/11.7/15.5 2.03/7.79/6.07 50% 1.91/7.67/5.70 48%

Fig. 5.6, the guided disparity map achieves the best quality, preserving fine detail as well

as a smooth surface.
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We conduct experiments to quantitatively evaluate the proposed multi-resolution

scheme on Middlebury datasets. Table 5.1 shows performance comparisons of three

schemes: single-resolution, conventional, and the proposed multi-resolution. Moreover,

it depicts how disparity search range determination affects disparity performance. The

single-resolution method is performed with full search range, while the multi-resolution

schemes are done with reduced search range (fixed and adaptive). The initial disparity

errors in the proposed multi-resolution scheme are moderately reduced by the upsam-

pling/refinement process on three kinds of statistics (non-occlusion, all, discontinuity).

The large discontinuity error reduction (from 9.87 to 6.71) on Venus implies that the

refinement process works well along edges. Both the conventional and proposed multi-

resolution with reduced fixed-search range perform worse than the single-resolution

method. This demonstrates that a proper choice for search range is crucial for the hier-

archical scheme because the fixed-search range can propagate errors. On the other hand,

the proposed adaptive-search scheme achieves overall better performance than the other

schemes, while reducing disparity search range. However, the full-search single resolu-

tion approach shows better results on the Cones image containing the most complicated

structures. This implies that larger search range might be required for stereo images

with high structure complexity. However, larger disparity search range directly leads to

high computational complexity.

To reduce computational complexity, hierarchical schemes typically focus on

search range reduction. The complexity of the single-resolution disparity estimation [2]

is O(NWr), where N and W are the size of image and support window, respectively,

and r is the disparity search range. In case of 2-level multi-resolution scheme, the total

complexity of the hierarchical disparity estimation is reduced to 5
8
O(NWr) if the search

range is reduced by 50%. As a result, the proposed multi-resolution scheme is able to

have complexity gain of approximately 3
8
O(NWr). It is feasible to further decrease

the complexity by applying higher scale pyramid scheme. For Middlebury datasets, this

is undesirable because their image size is too small to apply three levels or more. For

the Tsukuba image in the three-level pyramid, the coarsest image size becomes 96× 72

while the support window size for stereo matching is fixed to 35× 35 along scale levels.

Moreover, the disparity range (0 ∼ 4) becomes indistinguishable. For the proposed
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Table 5.2: Robustness of the proposed mutli-resolution scheme to other initial local
disparity methods

Dataset
LASW error rates (%) - nonocc/all/disc CostFIlter error rates (%) - nonocc/all/disc

Single-res. Proposed multi-res. Single-res. Proposed multi-res.
Full-search Initial Refined Adapt.-search Full-search Initial Refined Adapt.-search

Tsukuba 2.94/4.82/9.50 14.9/16.7/25.7 14.3/16.1/26.0 2.65/4.54/9.85 2.52/3.30/8.74 13.7/14.5/26.7 14.8/15.4/24.6 2.36/3.00/8.78
Venus 3.98/5.55/15.1 6.38/7.97/20.2 2.89/4.51/18.5 3.26/4.84/14.7 2.04/3.19/16.1 4.05/5.06/19.5 2.54/3.50/16.3 1.85/2.95/15.5
Teddy 14.3/22.9/24.4 23.2/31.0/37.6 20.7/28.8/35.0 13.8/22.5/24.5 8.47/17.0/19.0 14.5/21.4/29.0 13.1/20.4/26.2 8.14/16.5/18.5
Cones 9.43/19.5/17.2 23.0/31.5/38.2 20.3/29.1/34.4 9.28/19.4/17.0 3.62/12.6/9.62 14.2/20.9/28.6 15.1/21.5/27.3 3.74/12.5/10.0

scheme, there are two additional steps: the adaptive search offset (∆d) construction and

disparity upsampling/refinement (dr(p)) process compared to the conventional scheme.

Their additional computation load is negligible. For the Tsukuba image, it takes about

12s to complete disparity estimation as in [2], while it takes about 0.1s and 0.4s to

compute ∆d and dr(p), respectively, using a Central Processing Unit (CPU). The local

disparity method used in the proposed scheme is suitable for real-time processing using

a Graphics Processing Unit (GPU) [2]. The parallel computation using GPU would

decrease the final processing time significantly. Run-time efficiency in local methods

depends on how many computations in an algorithm can be run in parallel processors.

Note that for Middlebury datasets ideally acquired in the laboratory, spatial and scaling

consistency enforcement is not necessary.

We evaluate how robust the proposed multi-resolution scheme is to other initial

disparity algorithms. For experiment, we select two algorithms: LASW [3] and Cost-

Filter [4], which are well-known local algorithms. Experiments are performed without

filling process since the left-right filling is not obviously discussed in [3], while the lo-

cal method [2] includes a region-voting algorithm for occlusion filling. Table 5.2 shows

the performance comparison of the single and proposed multi-resolution method imple-

mented with different initial disparity algorithms. Similar to Table 5.1, it shows that the

proposed multi-resolution scheme achieves better overall performance while reducing

complexity compared to the single-resolution scheme. This verifies that the proposed

hierarchical scheme does not depend on initial results and is robust to a variety of local

algorithms.

Table 5.3 shows the performance comparison of hierarchical methods including

global methods. Letters G and L in the first column denote global and local method,

respectively. In fact, most of high ranked methods on Middlebury benchmark site are
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Table 5.3: Comparison of hierarchical methods (bad pixel rate with threshold of 1)

Methods /Type
Error rate(%) - nonocc/all/disc

Tsukuba Venus Teddy Cones
DoubleBP [35] /G 0.88/1.29/4.76 0.13/0.45/1.87 3.53/8.30/9.63 2.90/8.78/7.79
Proposed /L 2.24/2.76/8.86 0.12/0.43/1.67 5.07/11.0/13.8 1.91/7.67/5.70
RealtimeBP [36] /G 1.49/3.40/7.87 0.77/1.90/9.00 8.72/13.2/17.2 4.61/11.6/12.4
AdaptiveScale [43] /L 2.37/4.05/9.91 1.50/2.49/10.0 10.2/17.0/21.5 4.44/12.3/10.3
HBpStereoGPU [37] /G 3.37/5.34/13.6 1.12/2.06/14.1 12.2/19.0/27.2 6.29/14.2/16.4
StereoBoundary [38] /L 10.2/11.5/20.3 4.58/5.22/14.2 8.39/13.7/20.0 5.03/10.8/13.9
HstereoSeg [33] /L - - 13.3/21.7/24.8 9.10/17.5/21.3

global methods while local methods are efficient to real-time process because many as-

sociated computations can be run in parallel. Due to their different characteristics, they

are not directly compared. Nevertheless, there is only one global method (DoubleBP)

that performs better than the proposed method on the Middlebury benchmark site. The

proposed scheme outperforms other local methods and even some global methods, as

shown in Table 5.3.

5.4.2 Sub-pixel results

Sub-pixel disparity method can increase the matching precision and significantly

reduce the quantization error (staircase error) on the disparity map. In the proposed

entire system, it contributes to providing more precise multi-scale disparities that will be

combined for fusion. Fig. 5.7 illustrates that the proposed sub-pixel estimation reduces

the disparity quantization error. The integer disparity yields many ripples, as shown in

Fig. 5.7(c), while the proposed multiple fitting produces a smooth disparity surface, as

shown in Fig. 5.7(d).

Sub-pixel algorithm should show robustness to various surface types. Therefore,

we perform the experiment on specific areas, such as a slanted area and areas with

different curvatures. Fig. 5.8 shows the sub-pixel disparity results and specific regions

for the additional experiment. For the slanted region, the proposed method is slightly

better than the parabolic fitting, as shown in Fig. 5.8(d) and (e). This is why the constant

slope in such a slanted area does not provide the multiple fitting algorithm with more

information.

Table 5.4 demonstrates that the proposed method shows overall better quantita-
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Figure 5.7: Integer vs. sub-pixel disparity. (a) Left image. (b) Ground truth. (c) Close-
up of integer disparity. (d) Close-up of the Proposed.

Figure 5.8: Specific areas and zoomed-in disparity maps (a) Left image including a
slanted area (red box). (b) Ground truth. (c) Integer disparity. (d) Parabolic fitting. (e)
Proposed multiple fitting. (f) Area with large curvature. (g) Area with small curvature.
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Table 5.4: Sub-pixel performance evaluation (bad pixel (error) percentage in the non-
occlusion area)

Dataset Threshold Integer Parabolic Multiple

Tsukuba
0.75 22.7% 12.8% 12.6%
0.5 22.7% 22.5% 20.2%

Venus
0.75 0.44% 0.17% 0.22%
0.5 5.42% 0.77% 0.65%

Teddy
0.75 6.52% 5.92% 5.93%
0.5 11.4% 8.17% 8.07%

Cones
0.75 3.01% 2.28% 2.25%
0.5 7.17% 3.88% 3.72%

Slanted in Fig. 5.8(a)
0.75 46.5% 42.3% 41.9%
0.5 66.1% 61.7% 61.6%

Rounded in Fig. 5.8(f)
0.75 0.569% 0.085% 0.076%
0.5 11.4% 3.35% 2.46%

Rounded in Fig. 5.8(g)
0.75 5.01% 2.95% 2.67%
0.5 14.3% 6.94% 6.73%

tive performance on each image and surface type than do either the conventional sub-

pixel or the integer method. Especially, the proposed method obtains noticeable perfor-

mance gain (27% in threshold of 0.5) on the rounded surface area in Fig. 5.8(f) against

the conventional one. It demonstrates that the proposed multiple fitting is more effective

on disparity surface with various curvatures. We note that performance comparison with

other sub-pixel algorithms is limited since the quality of the sub-pixel algorithms based

on cost function depends mainly on how accurate the cost function is.

5.4.3 Stereo panoramic results and fusion effects

For the stereo panorama disparity estimation, we apply a multi-resolution scheme

with a four-level pyramid, including the spatial-multi-resolution TV. The coarsest image

size is 1024×512, which becomes basic size for partitioning. From level 1, we partition

panoramic images and the partitioned images are overlapped by disparity range to avoid

lack of correspondence at border areas. The partitioned disparity results are stitched for

the original size disparity map. Throughout the experiment, the spatial-multi-resolution

parameters are set to constant values: µ = 1 and (βx, βy, βs) = (1, 1, 2.5).

First, we examine the effectiveness of the disparity refinement reusing already-

computed functions. Fig. 5.9 shows disparity maps before and after the refinement. As
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Figure 5.9: Disparity refinement results. (a) Left image 1. (b) Zoomed-in initial dispar-
ity map. (c) Zoomed-in refined disparity map. (d) Left image 2. (e) Zoomed-in initial
disparity map. (f) Zoomed-in refined disparity map.

shown in Fig. 5.9(b) and (c), the blurring of sharp edges is reduced, and the wiggle

edge is also recovered to be sharp after the refinement. The better-refined disparity near

erroneous edges yields better guidance of the next level disparity estimation. Similarly,

the erroneous thin structures, such as strings and poles, are refined with the aid of the

color image and local edge weakness function h(p), as shown in Fig. 5.9(f). However,

large smearing errors in the red circle, which are likely to occur at thin structure with

similar color background, cannot be refined completely. Note that the process of refining

large and consistent disparity errors makes the refined result look blurred. In fact, such a

blurring effect is equivalent to incomplete error reduction by attempts to reduce the large

smearing errors. It is not an unwanted edge blurring from general upsampling process.

Fig. 5.10 illustrates how the proposed scheme improves the quality of disparity

map for large panoramic views. Fig. 5.10(b) and (c) show the coarsest and finest level

disparity maps from a single-resolution scheme, respectively. Fig. 5.10(d) depicts the

initial sub-pixel disparity map where the surface is much smoother than Fig. 5.10(b).
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Figure 5.10: Intermediate disparity results. (a) Left panoramic image. (b) Coarsest
integer disparity. (c) Finest integer disparity. (d) Initial sub-pixel disparity. (e) Local
edge strength. (f) Guided finest sub-pixel disparity. (g) Final disparity fused by spatial-
multi-resolution TV.

However, there are still some staircase disparity errors and poor details. Fig. 5.10(e)

shows the local edge strength map, and Fig. 5.10(f) depicts the finest-scale disparity

map guided by the refined disparity and search offset. As shown in Fig. 5.10(g), the

final results show a significant improvement in disparity quality. Spatial and scaling
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Figure 5.11: Fusion process. (a) Left image 1. (b) Initial disparity from multi-
resolution. (c) Single-resolution disparity. (d) Final disparity. (e) Left image 2. (f) Initial
disparity from multi-resolution. (g) Single-resolution disparity. (h) Final disparity.

errors are recovered by applying the spatial-multi-resolution TV, while fine details are

preserved. This is a result of fusion from individual 4-level disparity maps including

Fig. 5.10(d) and (f).

Fig. 5.11 illustrates the process of the fusion driven by the adaptive search offset

and spatial-multi-resolution TV. Fig. 5.11(b) and (d) show the initial disparity and final

disparity guided by the adaptive search offset ∆d, respectively. Fig. 5.11(c) depicts
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the disparity result from single-resolution scheme. In the red box, the smoothness of

the initial disparity is propagated into the next level estimate by the adaptive search

offset which should be small enough here, while the single-resolution scheme yields

errors due to the matching ambiguities in these repetitive and homogeneous regions,

as shown in Fig. 5.11(c). In the green box, the errors and lost details present in the

initial disparity are recovered without the error propagation, with the aid of the adaptive

search offset, which should be large enough. These are important achievements of the

adaptive search offset. However, there is a limitation as shown in the black box where

the initial disparity error propagates. It occurs only when the edge structure cannot be

detected from both initial disparity and image intensity and at the thin structure, which

is typically difficult to detect. From our observations, such cases are rare and highly

dependent on the scene. The precise thin structure reconstruction in disparity estimation

is still a difficult problem.

For real-world images, the spatial-multi-resolution TV, which is one of two fu-

sion functions in the proposed scheme, is applied to enforce scaling consistency. Sim-

ilarly, Fig. 5.11(h) shows the final disparity guided by the offset and then combined by

the spatial-multi-resolution TV. The error suppression in the red box is more significant,

and the recovery of lost details in the green box is also achieved. As a result, it is verified

that the adaptive search offset and spatial-multi-resolution TV contribute to fusing the

advantages taken from both coarse and fine level estimate.

Fig. 5.12 depicts final disparity maps of three hierarchical schemes on panoramic

images: (1) RealtimeBP [36], which is a well-known global hierarchical method, (2)

conventional hierarchical scheme using the local method [2], and (3) proposed hierar-

chical scheme. The RealtimeBP has a memory warning on such a large image test, as

with most methods. We partition the large images up to half of the basic size we use.

The RealtimeBP produces very noisy disparity maps that may result from the propaga-

tion failure during the global optimization process. The conventional scheme still shows

a lot of errors along object boundaries and staircase errors on the surface. On the other

hand, the proposed scheme shows the best quality of disparity map compared to the

others.
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Figure 5.12: Disparity results on large images. (a) RealtimeBP. (b) Conventional hier-
archical scheme. (c) Proposed.

5.5 Summary

It is challenging to estimate disparity for large stereo panoramas and moreover,

achieve better accuracy and reduce complexity at the same time. To obtain high quality

and high-resolution disparity maps from large-sized images, we propose an adaptively

determined pixel-wise disparity search range, which is based on the combined eigenval-

ues of structure tensor matrices of image intensity and initial disparity. For the sub-pixel

disparity, the multiple fitting algorithm extending the parabolic fitting is proposed to bet-

ter represent rounded surfaces while alleviating the pixel locking effect. To enforce the

spatial and scaling consistency, we use the spatial-multi-resolution TV method. Simu-

lation results verify that the proposed method fuses the multi-resolution disparity maps

effectively and, thereby, produces high quality disparity maps for large stereo panora-

mas. It will be an interesting research to extend the proposed algorithm to cylindrical or

spherical panoramic views.
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Chapter 6

Multi-array Camera Disparity

Enhancement

In the previous chapters, we deal with disparity estimation for stereo image,

video, and panoramic view. This chapter presents a disparity enhancement algorithm

for multi-array camera system, which is applicable to any standard binocular stereo

matching methods.

6.1 Introduction

Multiple array cameras have been recently developed with many features such

as refocusing after taking the photo, focusing on multiple objects, and combining the

multiple images over stereo camera. In particular, it might be able to provide accurate

depth information of the captured scene, which is fundamental information for a wide

range of 3D applications.

Multi-array camera systems have greater potential for 3D depth-based applica-

tion development compared to stereo camera systems. However, there are very few

research results on multi-array-based disparity estimation, due to lack of data. We pro-

vide synthetic multi-array images and videos created by 3DS MAX software as well as

associated ground-truth disparity maps. In this chapter, we propose alternate use of local

and global fusion of multi-array disparities to maximize the disparity enhancement in

array camera system.

69
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Figure 6.1: A 3×3 array camera model.

Fig. 6.1 shows a planar multi-array camera model with 3×3 array configuration

as a basic setup. The array camera produces nine captured images (Top Left (TL), Top

Middle (TM), etc.) which are rectified horizontally and vertically as shown in Fig. 6.1.

In this camera setup, we can obtain four different disparity estimates for TL image: two

horizontal disparity maps with narrow baseline (D HN) and wide baseline (D HW) and

two vertical disparity maps with narrow baseline (D VN) and wide baseline (D VW). To

enhance disparity accuracy in multi-array camera systems where there are multiple dis-

parity estimates, fusion processes will be required, such as locally replacing unreliable

pixels by valid pixels and globally optimizing multiple estimates over multi-dimension.

6.1.1 Related work

A stereo matching method using multiple stereo pairs is presented in [57, 58].

However, these methods are limited to a 1D array camera model in which cameras are

displaced only in the horizontal direction. A multi-view stereo reconstruction algorithm

is proposed for planar camera arrays, which can be 2×2 and larger [59]. This focuses

on 3D surface reconstruction using a unique layered depth image. Various multi-array

camera applications are introduced in [60], where various capabilities of a large number
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of inexpensive cameras, such as high-dynamic range, high-resolution, high-speed video,

and wide synthetic aperture, are presented.

An LRC check is introduced to detect invalid pixels on disparity maps based on

a stereo image pair [61, 62]. The method has been applied to numerous stereo matching

algorithms to ensure that both left and right disparities are consistent. This can be cate-

gorized as post-processing of disparity estimation, which fills occlusion error and mis-

match with a valid value within a horizontal neighborhood. However, this simple filling

strategy causes horizontal streaks [24]. To avoid the horizontal streaks and achieve bet-

ter filling strategy, a local region voting approach, in which all reliable pixels within

a neighborhood vote for the most reliable disparity candidate, is used in [63, 21, 22].

The unreliable pixel is replaced by the majority of the reliable pixels in voting region.

However, this advanced filling strategy based on high-confidence voting is designed for

refining only stereo disparity pair. Therefore, it should be extended to enhance multiple

disparity pairs in array camera systems.

Image restoration such as denoising and deblurring is an inverse problem. Re-

covering an original image from a noisy image via an inverting process is ill posed since

it does not have a unique solution and the solution is very sensitive to noise. To obtain a

meaningful and stable solution, regularization is introduced. Two well-known regular-

ization techniques are the Tikhonov regularization [64, 65, 66, 67, 68] and TV regular-

ization [69, 70, 71, 72]. Tikhonov regularization tends to make images overly smooth

[71], and TV regularization is known to be an advanced variational method. An aug-

mented Lagrangian method with TV regularization [56] is proposed to enhance initial

video disparity maps by combining them temporally and spatially. It results in enforcing

spatio-temporal consistency on video disparity maps, which demonstrates that the TV

regularization method is a good solution for refining multiple disparity maps. However,

the method is memory intensive due to 3D regularization treating the video disparity as

a space-time volume. In a multi-array camera system, there exists one more dimension,

the “multi-array dimension,” which comes from camera geometric difference. It is ob-

vious that the memory problem will be worsened as the number of dimensions under

consideration increases.
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6.1.2 Contributions

The main contribution of this chapter is a new cascade regularization approach,

which can better restore diagonal structures by further regularizing diagonal variations.

Detailed analyses and experimental results are presented to verify the advantages of the

cascade regularization against conventional approaches on images.

For multi-array camera disparity enhancement, a cascade TV regularization is

proposed to globally combine complementary multiple disparities along array dimen-

sion and, thereby, achieve high performance gain.

We propose a multiple cross-filling algorithm to further obtain cross consistency

between multiple estimates by locally replacing mismatched values by valid ones.

Synthetic multi-array images and video are created for simulation. In addition,

the associated ground-truth disparity maps can be used for quantitative evaluation. Vari-

ous experiment results show that the proposed twofold algorithm can enhance the initial

disparity map up to about 50%, and possibly more, on poor initial disparity estimates.

6.1.3 Organization

This chapter is organized as follows. Section 6.2 describes the problem obser-

vations that we make. The details of our proposed method are presented in Section 6.3.

Section 6.4 shows simulation results and discusses their significance. Section 6.5 con-

cludes with some remarks.

6.2 Problem Observation

In a planar multi-array camera system, multiple cameras are displaced horizon-

tally and vertically with narrow and wide baseline as shown in Fig. 6.1. For simulation,

multi-array datasets (image, video, and disparity ground-truth map) are created by a 3D

modeling and rendering software (e.g. 3DS MAX) since no ground-truth depth map

from array camera is available. The array setup allows us to compute multiple disparity

maps for one view with different scan-line directions and baseline lengths, using stan-

dard binocular stereo algorithms. For an n×n array camera system, 2×(n−1) disparity
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Figure 6.2: Three different disparity maps. (a) Top Left image. (b) Horizontal-wide
baseline (D HW). (c) Vertical-narrow baseline (D VN). (d) Horizontal-narrow baseline
(D HN).

maps can be estimated individually as shown in Fig. 6.1.

Fig. 6.2 depicts a left image (Top Left) and three different estimates (D HW,

D VN, and D HN) calculated by the local stereo method “LM3C” [2]. The initially

computed disparity maps reveal different characteristics according to the baseline and

scan-line type. First, the narrow-baseline disparity in Fig. 6.2(d) shows fewer border

errors (yellow box) and fewer occlusion errors (green box), comparing to wide-baseline

disparity in Fig. 6.2(b). However, it shows poor thin structure representation (brown

box) and noticeable staircase errors on the slanted surface (red box). Consequently, there

are advantages and disadvantages. The advantages come from fewer corresponding

pixel shifts and smaller occluded regions due to small displacement of two cameras.

The disadvantages are due to low disparity precision. Disparity value (di) at pixel i is
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defined as

di =
BF

Zi
(6.1)

where F is the camera focal length and Zi is the real distance between camera and

object. B is the baseline, which is the distance between two cameras. For the same

object, the disparity range (precision) is proportional to only B since F is assumed to

be fixed in the multi-array camera system. The narrow baseline makes the tracking

of feature easier but less precise, whereas the wide baseline makes the matching more

precise but there is greater possibility of false match due to the larger search area [57].

Second, we investigate how the horizontal and vertical scan-line matching affect the

disparity result. The former causes vertical border and occlusion errors (yellow and

black box in Fig. 6.2(d), respectively), whereas the latter results in horizontal border

and occlusion errors, as shown in Fig. 6.2(c). They show very different error types

(purple boxes) as in real world, structures on the same object look different at different

view angles.

To summarize, multiple disparity estimates calculated individually contain com-

plementary information with different type of errors that can be eliminated by utilizing

the baseline and scan-line properties. It is necessary to fuse the complementary multi-

ple estimates to enhance the initial disparities. A strategy of stereo matching on each

pair followed by refinement process is inspired by these observations. In addition, such

a separate process scheme gives us more flexibility for camera array extension than a

combined process. Our goal is to develop an algorithm that effectively fuses multiple

estimates while reducing the initial disparity errors as much as possible.

6.3 Proposed Method

6.3.1 Overall algorithm

Fig. 6.3 illustrates the proposed multi-array disparity enhancement algorithm

based on a basic array model (3 × 3), which consists of two main functions: local fu-

sion (multiple cross-filling) and global fusion (cascade TV regularization). After the

binocular stereo matching algorithm is performed on each camera pair, the multiple
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Figure 6.3: Functional diagram of proposed algorithm.

cross-filling is applied to the initial disparity estimates. To enforce array camera geo-

metrical and spatial consistency, the cascade TV regularization is applied to the cross-

filled disparity maps (FD HN, FD VN, etc.). To obtain further cross consistency, the

multiple cross-filling is repeated on the TV-refined estimates (TFD HN, TFD VN, etc.).

Alternately applying the local and global fusion is able to extend disparity enhancement

limit that can be maximally achieved by the individual fusion. Two final disparity maps

with low and high-precision, respectively, are constructed by a simple average function.

The proposed algorithm can be easily extended to n × n array camera system and is

applicable to any binocular stereo method.

6.3.2 Cascade regularization

TV regularization also known as TV denoising, is one of the most advanced

variational methods for noise removal [69]. Based on the observation that noises with

spurious detail have high total variation, the algorithm minimizes noise by reducing

total variation while preserving important structures such as edges. In other words, it

maximizes consistency over spatial dimension by reducing total variation along x and

y directions, except for edges. The isotropic TV regularization problem is defined as in
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[69]

minimize
f

1

2

∑
i,j

(fi,j − gi,j)2

+ λ
∑
i,j

√
|fi+1,j − fi,j|2 + |fi,j+1 − fi,j|2

(6.2)

where fi,j and gi,j are the unknown and observed 2D signal at pixel location (i, j),

respectively. λ is the regularization parameter that controls the relative emphasis. The

solution (f ) is obtained by minimizing the first discrete term (objective) and second

discrete term (regularization) at the same time. It can be rewritten in the vector form for

simple notation:

minimize
f

1

2
||(f− g)||22 + λ||Dx,yf||TV (6.3)

where operator Dx,y is defined as a collection of suboperators Dx,y = [DT
x DT

y ]T . Dx

and Dy are the first-order forward finite-difference operators along x-axis and y-axis,

respectively. Since the traditional regularization always considers 2D (x, y) variations

simultaneously, as in (6.2), the algorithm can be referred to as simultaneous regulariza-

tion.

We utilize a cascade approach in which x-directional regularization is followed

by one in the y direction. This setup also prepares the overall algorithm for the mem-

ory efficiency issue expected in the multi-array camera system. Note that such a mini-

mization problem is not separable, unlike 2D Gaussian convolution, which is separable.

Convolving along the x-axis and then y-axis yields exactly same solution as that of the

2D simultaneous convolution. The new approach might produce a different solution.

Therefore, we need to verify the difference and advantage against the conventional (si-

multaneous) approach.

We analyze how the cascade regularization approach affects the result of image

restoration. The Tikhonov regularization is used since the L-2 norm of the Tikhonov

regularization has a closed-form solution [69, 73] whereas the L1 and TV norm do not.

It is straightforward to generalize from 2D to 3D and for general case as well. A 2D

Tikhonov regularized least square problem is set up as

minimize
f

||(f− g)||22 + λ||Dx,yf||22. (6.4)
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To solve this problem, we take the derivative and set it to 0:

2(f− g) + 2λ(DT
x,yDx,yf) = 0. (6.5)

The Pseudo-inverse solution is:

f̂ = [I + λ(DT
xDx + DT

y Dy)]
−1g. (6.6)

On the other hand, a new approach with cascade regularization consists of two mini-

mization problems:

minimize
f̄

||(̄f− g)||22 + λ||Dxf̄||22

minimize
f

||(f− f̄)||22 + λ||Dyf||22
(6.7)

where the solution of the first problem is used as initial value for the second problem

in order to find a final solution. The intermediate solution (̄f) is found similarly to (6.5)

and (6.6)

f̄ = [I + λDT
xDx]

−1g. (6.8)

The final solution is

f̂ = [I + λ(DT
xDx + DT

y Dy) + λ2DT
y DyDT

xDx]
−1g. (6.9)

The difference between the proposed and conventional approaches can be examined by

comparing (6.6) and (6.9). If λ2 is taken out from the brackets in two solutions, the

only difference becomes DT
y DyDT

xDx added in the cascade solution. We analyze the

difference from two different perspectives as follows.

Fourier transform perspective

The forward difference operators can be expressed as convolutions:

Dxf = [1− 1] ∗ f

Dyf = [1− 1]
′ ∗ f

(6.10)

where ′ and ∗ denote vector transpose and convolution, respectively. Convolution is a

linear operation, so it can be expressed by circulant matrix, which can be diagonalized
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using Discrete Fourier Transform (DFT) matrices [74, 75]:

Dxf = WTΛxWf

DT
xDxf = WTΛ2

xWf

DT
y DyDT

xDxf = WTΛ2
yΛ

2
xWf

(6.11)

where W and Λx are DFT matrix and a diagonal matrix having the Fourier coefficients

of Dx, respectively. The first equation in (6.11) can be interpreted as follows. The last

term (Wf) represents the Fourier transform of f. The second term (Λx) operates as a

scaling matrix that scales signals showing characteristics similar to the horizontal dif-

ference operator Dx. The first term (WT ) represents the inverse Fourier transform. Con-

sequently, WTΛxWf amplifies the signals with horizontal variation in f by the amount

of corresponding component of Λx. The solution of the conventional regularization in

(6.6) can be rewritten in the Fourier transform using (6.11) as

f̂ = WT [I + λ(Λ2
x + Λ2

y)]−1Wg. (6.12)

The solution of the cascade regularization in (6.9) can be rewritten as

f̂ = WT [I + λ(Λ2
x + Λ2

y) + λ2(ΛyΛx)2]−1Wg. (6.13)

The new term (ΛyΛx)2 is added in the inverse function, compared to (6.12). It reduces

diagonal variation similar to the operations of Λ2
x and Λ2

y on horizontal and vertical vari-

ations, respectively. As a result, the cascade approach is able to regularize the diagonal

variations better than the conventional approach due to the new term ((ΛyΛx)2) added

in the inverse function.

Filtering perspective

The first-order difference operators in (6.10) can be extended to high-order dif-

ference operators as follows:

DT
xDxf = [−1 2 −1] ∗ f

DT
y DyDT

xDxf =


1 −2 1

−2 4 −2

1 −2 1

 ∗ f (6.14)
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where DT
xDx operates as the second-order difference filter along horizontal direction.

DT
y DyDT

xDx operates as a high-pass filter along diagonal direction. The inverse term

in (6.6) represents combination of three filters: identity (I), second-order horizontal

(DT
xDx), and second-order vertical filter (DT

y Dy). On the other hand, the inverse term in

the cascade solution in (6.9) also includes a high-pass filter (DT
y DyDT

xDx) along diagonal

direction. Since the term is inverted, signals with diagonal variation can be further

filtered out in the cascade approach.

To solve large-scale Tikhonov minimization problem, we use an iterative method

based on the augmented Lagrangian method [71, 72] and Alternating Direction Method

(ADM) [76, 77]. We introduce intermediate variables u and transform problem (6.4)

into an equivalent constrained problem:

minimize
f,u

||(f− g)||22 + λ||u||22

subject to u = Dx,yf.
(6.15)

The augmented Lagrangian of problem (6.15) is:

L(f,u, y) =||f− g||22 + λ||u||22
− yT (u− Dx,yf) +

ρr
2
||u− Dx,yf||22

(6.16)

where y is the Lagrangian multiplier associated with the constraint u = Dx,yf and ρr
is a regularization parameter associated with the quadratic penalty term ||u − Dx,yf||22.

ADM is used to find the minimum of L(f,u, y). The following subproblems are solved

iteratively:

fk+1 = argmin
f

||(f− g)||22

− yTk (uk − Dx,yf) +
ρr
2
||uk − Dx,yf||22

uk+1 = argmin
u

λ||u||22

− yTk (u− Dx,yfk+1) +
ρr
2
||u− Dx,yfk+1||22

yk+1 = yk − ρr(uk+1 − Dx,yfk+1).

(6.17)

The first and second problems are solved similarly to (6.5) and (6.6). The multiplier y

is updated as in (6.17).
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Figure 6.4: Conventional vs. cascade regularization on synthetic images. (First column)
Original. (Second column) Blurred. (Third column) Conventional. (Fourth column)
Cascade. (a) Diagonal streak. (b) Vertical streak.

To verify that the cascade approach regularizes the diagonal variation better,

we perform experiments on synthetic and real-world images. In the simulation, the

parameters (λ = 0.001, ρr = 2) are fixed and images are blurred by a Gaussian blur

kernel of size 9 × 9 and σ = 2. Gaussian noise, distributed as N (0, 10−5) is added to

the images. The blurred and noisy images are restored by the conventional and cascade

Tikhonov regularization method individually, defined in (6.4) and (6.7), respectively.

Fig. 6.4 depicts the restored results of two synthetic images with Peak Signal-to-

Noise Ratio (PSNR) and Structural SIMilarity (SSIM) index. For the Diagonal streak

image, the cascade regularization approach exhibits much better PSNR and SSIM than

the conventional approach. On the other hand, for the Vertical streak image, the two

approaches achieve the same PSNR and SSIM results. These experimental results

demonstrate that the cascade approach can handle diagonal structures better than the

conventional one. Consequently, the proposed approach achieves better restoration per-

formance on diagonal structures while showing the same performance on vertical and

horizontal structures. These simulation results agree with the analysis discussed previ-

ously. To confirm the advantage of the cascade approach, we perform the same experi-

ment on real-world images (Barbara, Salesman). As shown in Fig. 6.5, the cascade reg-

ularization performs better than the conventional regularization, especially on the grid

texture area (red box). However, note that the performance gain might depend on the

scene structure. We will show more experimental results on this issue in Section 6.4.4.



81

Figure 6.5: Conventional vs. cascade regularization on real-world images. (First col-
umn) Original. (Second column) Blurred. (Third column) Conventional. (Fourth col-
umn) Cascade. (a) Barbara. (b) Salesman.

Figure 6.6: Regularization parameter sensitivity. (a) PSNR. (b) SSIM.

The influence of the regularization parameter λ on two approaches is examined.

Fig. 6.6 illustrates that the cascade regularization approach achieves consistently better

performance than the conventional one in terms of both quality metrics (PSNR, SSIM)

regardless of parameter (λ). However, the performance gain is different on each in-

put image. On the Barbara image, it shows almost the same performance, while large

difference is shown on the Diagonal streak image.

Table 6.1 shows complexity evaluation of the two regularizations. Overall, the
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Table 6.1: Complexity evaluation of two regularizations. Complexity is the ratio of
computation time of the cascade approach to that of the conventional one.

Dataset Conventional Cascade Complexity
Diagonal 1.576s 2.172s 1.38
Vertical 0.648s 0.621s 0.96
Barbara 0.805s 0.987s 1.23

Salesman 1.015s 1.236s 1.22

Figure 6.7: Dimension coupling. (a) (x,m). (b) (y,m).

cascade approach is slower than the conventional one because it consists of two mini-

mization problems. However, the computation time is not double - it is at most ×1.38

since the cascade approach uses simple 1D regularization instead of 2D regularization.

It is meaningful to note that it is even faster on the Vertical streak image. In addition,

it is evident that the cascade approach has better memory efficiency by considering just

1D variation.

We adapt a cascade TV regularization to multi-array camera system for dispar-

ity enhancement along multi-array dimension as well as spatial dimension. We have

demonstrated that the spatial cascade regularization reconstructs complicated structures

better. In the multi-array model, the additional array dimension is too small to be treated

as an independent dimension. For instance, there are only six points (estimates) along

multi-array dimension in a 4 × 4 array camera system. Because of these factors, we

couple the horizontal (x) and vertical dimension (y) with the array dimension (m) as

(x,m) and (y,m) shown in Fig. 6.7. In the cascade regularization, (x,m) and (y,m)

are each treated as a single volume.
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The cascade TV minimization problem for multi-array camera system is defined

as

minimize
f̄

µ||(̄f− g)||1 + ||Dx,mf̄||TV

minimize
f

µ||(f− f̄)||1 + ||Dy,mf||TV
(6.18)

where µ is a regularization parameter. A new parameter (µ) is introduced to avoid con-

fusion since λ is associated with the Tikhonov minimization problem. Analogously,

the intermediate solution (̄f) is fed back to the next minimization problem. For rea-

sons why TV regularized L1 minimization is used for disparity refinement, the reader

can refer to [56]. The first-order horizontal forward difference operator is defined as

Dxf = vec(f(x + 1,m) − f(x,m)) where vec(·) denotes the vectorization operator.

Generally, it can be justified as a regularization factor, based on the assumption that

disparity varies smoothly along horizontal and vertical direction since disparity is a

piecewise constant function, except for sharp edges [56]. However, multiple dispar-

ity estimates along array dimension (m) are supposed to be the same even though they

come from different geometric matchings. Thus, the multi-array difference operator

(Dm) should be redefined as

Dmf = vec(
∑
m∗ 6=m

f(x,m∗)− f(x,m)). (6.19)

Total difference over array dimension is used instead of the forward difference (Dx or

Dy).

6.3.3 Multiple cross-filling

In the previous section, we propose fusion of multiple disparity estimates by

solving the cascade regularization minimization problem. To maximize disparity en-

hancement, we perform a multiple cross-filling before and after the cascade regulariza-

tion. The first cross-filling provides the cascade regularization processor with multi-

ple estimates that are more cross-consistent. The second cross-filling further enforces

the cross consistency on the TV-refined disparity estimates. The multiple cross-filling

achieves cross consistency in the manner of locally replacing pixels, whereas the cascade
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TV regularization achieves consistency by globally optimizing variation along spatially

coupled array dimensions.

First, it is important to detect invalid pixels having different disparities on the

multiple disparity maps. We perform multiple cross-checks to detect invalid pixels,

comparing the other corresponding array estimates. The invalid pixel is determined

by a majority decision, and then an invalid pixel index map is constructed. Once an

invalid pixel is detected, the algorithm searches in four directions (up, down, left, and

right) in order to find valid pixels (pu, pd, pl, and pr) and generates a valid pixel set.

The most valid pixel in the valid pixel set is selected under two conditions: (1) high

color similarity between the invalid pixel under consideration and valid pixel, and (2)

the smallest disparity based on the fact that background pixels are occluded. There

are three differences from the conventional region voting method: (1) multiple cross-

checking, (2) four-directional search for finding valid pixels, and (3) color similarity

condition. The algorithm procedure is as follows:

Algorithm:

1: Multiple cross-check for invalid pixel set PI .

2: if pixel p ∈ PI do

3: Generate a valid pixel set PV = {pu, pd, pl, pr}.

4: Select a pixel (ps) in PV which has similar color to p

and has minimum disparity value.

5: Construct a neibhborhood for ps based on the cross-

based aggregation method [21].

6: Vote and the majority value is filled

7: endif
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Table 6.2: Overall performance evaluation of the proposed algorithm on multi-array
images with bad pixel % (threshold of 1 on all regions).

Dataset Initial 1st MCF CTV 2nd MCF Avg. Enhance.
Room 22.0833 18.2604 15.1582 10.2650 10.2585 53%
Cones 22.5700 19.3480 14.9958 13.0755 13.0729 42%
Bike 29.7653 26.3929 21.6810 20.1058 20.1016 32%

6.4 Results

For simulation, we create three multi-array images and video using 3DS MAX.

For a quantitative evaluation, we provide a disparity ground-truth map converted from

depth information encoded by 3DS MAX for each synthetic image. To simulate a real

camera environment, we add camera noise which is known to be dependent on the pixel

intensity level and whose variance is proportional to intensity [18, 19]. As a basic binoc-

ular stereo matching algorithm, we use LM3C [2]. We will show the robustness of the

proposed algorithm to other disparity methods. There is no multi-array disparity algo-

rithm available for performance comparison.

6.4.1 Overall performance on multi-array camera system

We apply the proposed multi-array disparity enhancement algorithm to the 3×3

camera system. Fig. 6.8 shows three multi-array images and one video created at

the top left camera position. The multi-array dataset with associated disparity maps

are available on our project website (http://videoprocessing.ucsd.edu/∼zucheul/multi-

array.html) so that other researchers can use them for comparison. The proposed al-

gorithm consists of three main steps: 1st Multiple Cross-Filling (MCF), Cascade TV

(CTV), and 2nd MCF, as shown in Fig. 6.3. By evaluating each process individually, we

show the step-by-step performance enhancement result. The regularization parameter µ

in (6.18) is set to 1. Table 6.2 shows that the bad pixel rate decreases consistently as each

step is performed. For the Room array image, we obtain the performance gain of 53%

compared to the initial disparity estimates. The initial disparity estimates are computed

by LM3C [2], which is among top local methods. It is meaningful that the high gain is
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Figure 6.8: Multi-array images and video (at Top Left (TL) position). (a) Room. (b)
Cones. (c) Bike. (d) Cars video.

Figure 6.9: Performance graph of the proposed algorithm.

further achieved from the reasonable initial disparity estimates.

Fig. 6.9 illustrates performance improvement of each step in the proposed al-

gorithm. This graph demonstrates that main functions for disparity enhancement are

MCF and CTV. The average function is a simple step to make a representative dispar-
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Figure 6.10: Multi-array image disparity maps (First row) Room. (Second row) Cones.
(Third row) Bike. (a) Ground truth. (b) Initial. (c) Enhanced disparity maps.

ity map for low and high-precision results, as shown in Fig. 6.3. It does not contribute

significantly to performance improvement.

Fig. 6.10 shows ground-truth, initial, and enhanced disparity maps. Disparity

error reduction is significant, as shown in Fig. 6.10(b) and (c). However, there are two

limitations. The first limitation (as indicated in the red box) is the fused error, where

multiple estimates are fused, with a majority of the estimates containing large error.

This is likely to occur on the thin structures with homogeneous texture. The second

limitation (indicated by the green box) is caused by a transparent object, such as glass,

which poses a challenging problem in stereo matching research.

Fig. 6.11 shows ground-truth, initial, and enhanced disparity maps on 5 consec-

utive array video frames. The initial video disparity quality is enhanced noticeably by

the proposed algorithm. The initial disparity estimate at a certain point varies along
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Figure 6.11: Multi-array video disparity results on five consecutive frames. (a) Ground
truth. (b) Initial. (c) Enhanced.

the time axis, as shown in the red boxes in Fig. 6.11 (flickering), whereas the enhanced

disparity estimate does not. This demonstrates that the proposed algorithm is able to

achieve temporal consistency for the array video disparities. For temporal consistency

in multi-array video system, the cascade TV regularization is defined similarly to (6.18):

minimize
f̄

µ||(f− g)||1 + ||Dx,tf||TV

minimize
f

µ||(f− f̄)||1 + ||Dy,tf||TV
(6.20)

where subscript t represents time domain and (x, t) and (y, t) are coupled.

6.4.2 Algorithm robustness

To evaluate algorithm robustness, we use two well-known local disparity meth-

ods: LASW [3] and CostFilter [4] for acquiring multi-array initial disparity estimates.

Tables 6.3 and 6.4 show performance evaluation results using LASW and CostFilter,

respectively. We obtain performance enhancement gain of about 50% regardless of the

choice of disparity methods. It is important to note that the proposed algorithm performs

better on poor initial disparity estimates (performance gain of 65% on the Room image

in Table 6.3).



89

Table 6.3: Performance evaluation using LASW [3] with bad pixel % (threshold of 1 on
all region).

Dataset Initial 1st MCF CTV 2nd MCF Avg. Enhance.
Room 32.4056 18.7337 15.1156 11.2150 10.2210 65%
Cones 27.6618 18.5322 14.9561 13.4255 13.4160 51%
Bike 40.9941 27.0120 23.5850 21.8451 21.8239 47%

Table 6.4: Performance evaluation using CostFilter [4] with bad pixel % (threshold of
1 on all regions).

Dataset Initial 1st MCF CTV 2nd MCF Avg. Enhance.
Room 35.9323 22.4186 18.7507 15.0537 15.0573 58%
Cones 32.5374 23.8333 17.9440 16.5778 16.5827 49%
Bike 42.6782 31.1995 24.5876 24.1462 24.1429 43%

6.4.3 Multiple cross-filling performance

The comparison of the conventional region voting [21] and proposed multiple-

cross filling are performed. Table 6.5 demonstrates that the proposed filling algorithm

outperforms the conventional region voting on all multi-array dataset. The local multiple

cross-filling algorithm is simple and effective. In Table 6.4, the first filling process

achieves high performance gain of 27% on the Cones image.

6.4.4 Simultaneous vs. cascade TV regularization

We presented a comparison of 2D simultaneous and cascade Tikhonov regular-

ization in Section 6.3.2. Here, we extend the Tikhonov to TV regularization for 3D as

well as 2D. 3D regularization is taken into account in multi-array systems, while 2D reg-

ularization is done in stereo systems. First, to evaluate the effectiveness of the cascade

TV regularization on a single disparity map for stereo systems, we use the stereo dataset

provided by Middlebury benchmark site [11]. Gaussian noise distributed asN (0, 10−3)

is added to the ground-truth disparity maps. We solve the minimization problem by us-

ing two regularization approaches: (1) simultaneous TV and (2) proposed cascade TV.
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Table 6.5: Conventional regions voting vs. proposed multiple filling with bad pixel %
(threshold of 1 on all regions).

Dataset Initial Conventional Proposed
Room 22.0833 19.7441 18.2604
Cones 22.5700 20.4541 19.3480
Bike 29.7653 26.5420 26.3929

Table 6.6: Simultaneous vs. cascade TV regularization on Middlebury dataset (bad
pixel rates (on all regions) with threshold of 1)

Dataset Measurement Input Simul. TV
Cascade TV

Intermediate Final

Tsukuba
Bad Pixel(%) 1.16 0.43 0.15 0.08
PSNR (dB) 30.44 39.30 37.48 41.25

Venus
Bad Pixel(%) 29.2 0.28 1.09 0.11
PSNR (dB) 30.12 45.67 38.25 45.45

Teddy
Bad Pixel(%) 57.7 4.75 13.9 4.22
PSNR (dB) 30.03 37.34 36.90 37.98

Cones
Bad Pixel(%) 57.5 5.46 16.4 4.91
PSNR (dB) 30.08 37.34 36.39 37.85

The cascade TV regularization problem for single disparity map is expressed as

minimize
f̄

µ||(̄f− g)||1 + ||Dxf̄||TV

minimize
f

µ||(f− f̄)||1 + ||Dyf||TV
(6.21)

where µ is set to a medium value of the parameter range recommended in [56] and

||Dyf||TV is equivalent to ||Dyf||1. Table 6.6 demonstrates that the cascade TV regular-

ization shows overall better performance in terms of bad pixel rate and PSNR.

We extend the comparison to 3D regularization so that multi-array disparities

can be handled. The simultaneous one can be expressed as

minimize
f

µ||(f− g)||1 + ||Dx,y,mf||TV (6.22)

whereas the cascade method is defined in (6.18). For multiple initial disparity estimates,

we use two binocular stereo matching methods: (1) LM3C [2], producing relatively

smooth disparity surface and (2) LASW [3], producing relatively noisy disparity surface.
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Figure 6.12: Simultaneous vs. cascade TV regularization for 3 dimensions. (First
column) initial. (Second column) Simultaneous. (Third column) Cascade. (a) Using
LM3C [2]. (b) Using LASW [3].

Fig. 6.12 shows initial and refined disparity maps. The cascade TV regularization shows

better refinement on the noisy initial disparity surface while the simultaneous TV shows

a slightly better bad pixel rate on the smooth initial disparity map. The performance of

two approaches might be scene-dependent, as mentioned above. However, the proposed

approach is more effective on poor initial and complicated disparity maps.

6.5 Summary

In conventional regularization problems, simultaneous regularization has always

been used. In this chapter, a cascade regularization approach is proposed, and its advan-

tages are investigated by detailed analyses and simulation results. To effectively fuse

the multiple disparity estimates in multi-array camera system, we propose the cascade

TV regularization, which can better reconstruct complicated structures by globally op-

timizing diagonal variations while reducing memory limitation. A multiple cross-filling

algorithm is proposed to locally refine the initial disparities by achieving cross con-

sistency between array disparity estimates. Simulation results show that the proposed
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algorithm can enhance the initial disparities up to 65%.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this dissertation, we present an accurate and efficient local disparity estima-

tion algorithm, which can be used for stereo image and be extended for stereo video

and large panoramic view. We focus on local stereo matching rather than global stereo

matching because the local method has simple structure and more efficiency in real-

time processing. However, it shows some drawbacks compared to the global method.

We propose a novel algorithm to tackle each drawback. In addition, we present an algo-

rithm to enhance the initial disparities computed by various binocular stereo matching

methods. The enhancement algorithm, performed on the multi-array camera systems,

achieves remarkable performance gain.

In Chapter 3, a new three-moded census with a noise buffer is proposed to in-

crease robustness to image noise in homogeneous area. Moreover, we find that the

cross-square census and combination of three similarity measures achieve more reliable

similarity cost in a variety of image regions. To obtain more precise support weight win-

dow, we first define the relation among Gestalt principles and then model the advanced

support weight computation function. Simulation results demonstrate that the proposed

method is the best-performing local method on the Middlebury benchmark test.

In Chapter 4, we present a stereo video disparity algorithm by incorporating mo-

tion information as well as imposing temporal consistency. To reduce spatial ambigui-

ties near moving edges, we propose to utilize optical flow, which can provide temporally

93
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consistent information. Incorporating motion cue leads to further improving the reliabil-

ity of the support aggregation. The experimental results show that the proposed method

produces better video disparity estimates compared to other methods.

In Chapter 5, we present an effective multi-resolution depth processing and fu-

sion for large panoramic images. We propose the adaptive disparity search range based

on the combined local structure from image intensity and initial disparity. The adap-

tive range value can propagate the smoothness property at the low-resolution to the

high-resolution while suppressing undesirable errors and preserving fine details. To re-

duce the disparity quantization error in the hierarchical scheme, we propose a reliable

multiple fitting algorithm based on the conventional sub-pixel estimation. The spatial-

multi-resolution TV method is employed to enforce consistency in both spatial and scal-

ing dimensions. The experimental results on real-world panoramic images demonstrate

that the proposed multi-resolution scheme produces high quality and high-resolution

panoramic depth map by fusing individual multi-scale depth maps effectively. More-

over, it is performed with reduced complexity.

In Chapter 6, we present a new cascade regularization-based approach, which

can restore diagonal structures better than conventional techniques. The detailed anal-

yses and experimental results verify that the cascade approach better regularizes the

diagonal variations and, in turn, achieves better image enhancement. We adapt the

cascade TV regularization to the multi-array camera system in order to globally com-

bine multiple disparity estimates. A local multiple cross-filling algorithm is proposed

to achieve cross consistency between array disparity estimates by effectively filling the

mismatches. Experimental results show that the proposed multi-array disparity enhance-

ment algorithm can improve the accuracy of the initial array disparity estimates up to

65% while alleviating memory limitation. Moreover, the proposed algorithm is applica-

ble to any binocular disparity methods.

7.2 Future Work

For future research directions, we have the following suggestions.

• We demonstrated that the advanced local support weight based on three Gestalt



95

principles is able to segment the same depth region well at various image reso-

lutions. However, as the image resolution becomes extremely larger or smaller,

the optimal window size should vary for the best performance. In these cases,

the adaptive window size in addition to the adaptive support weight would help

further increase the accuracy of disparity estimation.

• In the coarse-to-fine scheme, the proposed adaptive search range based on the

combined local structure from image intensity and initial disparity is able to re-

duce error propagation as well as computational complexity. However, there are

a few exceptions, such as specific areas where the local edge structure is not de-

tected from both image intensity and initial disparity and where there are many

thin structures.

• The multi-resolution depth fusion algorithm is performed on planar panoramic

views. We think that it will be an interesting research topic to extend the proposed

algorithm to cylindrical or spherical panoramic views.

• We have developed the disparity enhancement algorithm for multi-array camera

system. In this dissertation, the basic array camera configuration is 3 × 3. The

proposed algorithm can be theoretically extended to n × n array camera but it is

not proved in real environment. In addition, simulations have been performed on

only synthetic multi-array images. Therefore, it will be meaningful to apply the

proposed algorithm to various real multi-array camera systems and then observe

how much performance gain is achieved.



Bibliography

[1] R. Khoshabeh, S. Chan, and T. Nguyen, “Spatio-temporal consistency in video
disparity estimation,” in Proc. IEEE ICASSP, pp. 885–888, 2011.

[2] Z. Lee, J. Juang, and N. T.Q., “Local disparity estimation with three-moded cross
census and advanced support weight,” IEEE Trans. Multimedia, vol. 15, no. 4,
pp. 1855–1864, 2013.

[3] K. Yoon and I. Kweon, “Adaptive support weight approach for correspondence
search,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, pp. 650–
656, Apr. 2006.

[4] C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz, “Fast cost-volume
filtering for visual correspondence and beyond,” in Proc. IEEE CVPR, pp. 3017–
3024, 2011.

[5] M. YI, S. Soatto, J. Kosecka, and S. S. Sastry, An invitation to 3-D Vision From
Images to Geometric Models. Verlag: Springer, 2003.

[6] M. Pollefeys, R. Koch, and L. Van Gool, “A simple and efficient rectification
method for general motion,” in Proc. IEEE ICCV, vol. 1, pp. 496–501, 1999.

[7] R. Zabih and J. Ll, “Non-parametric local transforms for computing visual corre-
spondence,” in ECCV, pp. 151–158, 1994.

[8] D. Angens, From Gestalt theory to image analysis : a Probabilistic approach. NY:
Springer, 2008.

[9] G. Papari and N. Petkov, “Adaptive pseudo dilation for gestalt edge grouping and
contour detection,” IEEE Trans. Image Processing, vol. 17, no. 10, pp. 1950–1962,
2008.

[10] T. Kanade and M. Okutomi, “A stereo matching algorithm with an adaptive win-
dow: theory and experiment,” IEEE Trans. Pattern Analysis and Machine Intelli-
gence, vol. 16, no. 9, pp. 920–932, 1994.

[11] D. Scharstein and R. Szelisk, “Middlebury stereo evaluation version 2,”
http://vision.middlebury.edu/stereo/eval, 2010.

96



97

[12] Autodesk, “3dx max,” http://www.autodesk.com/products/autodesk-3ds-
max/overview, 2013.

[13] H. Hirschmuller and D. Scharstein, “Evaluation of stereo matching costs on im-
ages with radiometric differences,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 31, no. 9, pp. 1582–1599, 2009.

[14] A. Fusiello, V. Roberto, and E. Trucco, “Efficient stereo with multiple windowing,”
in Proc. IEEE CVPR, pp. 858–863, 1997.

[15] S. Mattoccia, F. Tombari, and L. Stefano, “Segmentation-based adaptive support
for accurate stereo correspondence,” in Proc. PSIVT, pp. 427–438, 2007.

[16] Y. Liu, Z. Gu, X. Xu, and Q. Zhang, “Local stereo matching with adaptive support-
weight, rank transform and disparity calibration,” in Pattern Recognition Letters
29, pp. 1230–1235, 2008.

[17] C. Rhemann, M. Bleyer, and C. Rother, “Patchmatch stereo - stereo matching with
slanted support windows,” in Proc. BMVC, 2011.

[18] C. Liu, W. Freeman, R. Szeliski, and S. B. Kang, “Noise estimation from a single
image,” in Proc. IEEE CVPR, pp. 901 – 908, 2006.

[19] L. Zhang, S. Vaddadi, H. Jin, and S. Nayar, “Multiple view image denoising,” in
Proc. IEEE CVPR, pp. 1542 – 1549, 2009.

[20] C. Connolly and T. Fleiss, “A study of efficiency and accuracy in the transforma-
tion from rgb to cielab color space,” IEEE Trans. Image Processing, vol. 6, no. 7,
pp. 1046–1048, 1997.

[21] K. Zhang, J. Lu, and G. Lafruit, “Cross-based local stereo matching using orthog-
onal integral images,” IEEE Trans. Circuits and Systems for Video Technology,
vol. 19, no. 7, pp. 1073–1079, 2009.

[22] X. Mei, X. Sun, M. Zhou, S. Jiao, H. Wang, and X. Zhang, “On building an accu-
rate stereo matching system on graphics hardware,” in Proc. IEEE ICCV, pp. 467–
474, 2011.

[23] H. Tao and H. Sawhney, “Global matching criterion and color segmentation based
stereo,” in Proc. IEEE WACV, pp. 246–253, 2000.

[24] A. Hosni, M. Bleyer, M. Gelautz, and C. Rhemann, “Local stereo matching using
geodesic support weights,” in Proc. IEEE ICIP, pp. 2093 – 2096, 2009.

[25] L. Wang, M. Gong, R. Yang, and M. Gong, “A performance study on different cost
aggregation approaches used in real-time stereo matching,” in Proc. IJCV, vol. 75,
pp. 283–296, 2007.



98

[26] M. Bleyer and M. Gelautz, “Temporally consistent disparity maps from uncali-
brated stereo videos,” in Proc. ISPA, pp. 383–387, 2009.

[27] B. Horn and B. Schunck, “Determining optical flow,” Artificial Intelligence,
pp. 185–203, 1981.

[28] C. Richardt, D. Orr, A. Davies, I. Criminisi, and N. A. Dodgson, “Realtime spa-
tiotemporal stereo matching using the dual-cross-bilateral grid,” in Proc. ECCV,
2010.

[29] D. Sun, S. Roth, and M. Black, “Secrets of optical flow estimation and their prin-
ciples,” in Proc. IEEE CVPR, pp. 2432–2439, 2010.

[30] S. Baker, S. Roth, D. Scharstein, M. Black, J. P. Lewis, and R. Szeliski, “A database
and evaluation methodology for optical flow,” in Proc. IEEE ICCV, pp. 1–8, 2007.

[31] R. Ainsworth, D. Sandin, A. Prudhomme, J. Schulze, and T. DeFanti, “Acquisition
of stereo panoramas for display in vr environments,” SPIE Electronic Imaging, The
Engineering Reality of Virtual Reality, 2011.

[32] M. Accame, F. De Natale, and D. Giusto, “Hierarchical block matching for dis-
parity estimation in stereo sequences,” in Proc. IEEE ICIP, vol. 2, pp. 374–377,
1995.

[33] T. Kudo, K. Shirai, and M. Ikehara, “Hierarchical stereo matching via color seg-
mentation,” in Proc. IEEE DSP/SPE, pp. 522–525, 2006.

[34] P. Felzenszwalb and D. Huttenlocher, “Efficient belief propagation for early vi-
sion,” in Proc. IEEE CVPR, pp. 261–268, 2004.

[35] Q. Yang, L. Wang, R. Yang, H. Stewenius, and D. Nister, “Stereo matching with
color-weighted correlation, hierarchical belief propagation, and occlusion han-
dling,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 31, no. 3,
pp. 492–504, 2009.

[36] Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao, and D. Nister, “Real-time global
stereo matching using hierarchical belief propagation,” in Proc. BMVC, 2006.

[37] S. Grauer-Gray and C. Kambhamettu, “Hierarchical belief propagation to reduce
search space using cuda for stereo and motion estimation,” in Proc. IEEE WACV,
pp. 1–8, 2009.

[38] M. Sizintsev and R. Wildes, “Efficient stereo with accurate 3-d boundaries,” in
Proc. BMVC, 2006.

[39] G. Van Meerbergen, M. Vergauwen, M. Pollefeys, and L. Van Gool, “A hierarchi-
cal stereo algorithm using dynamic programming,” in Proc. IEEE SMBV, pp. 166–
174, 2001.



99

[40] M. Sizintsev, “Hierarchical stereo with thin structures and transparency,” in Proc.
CRV, pp. 97 –104, may 2008.

[41] M. Sizintsev and R. Wildes, “Coarse-to-fine stereo vision with accurate 3d bound-
aries,” Image and Vision Computing (IVC), vol. 28, pp. 352–366, 2010.

[42] Y. Yang and A. Yuille, “Multi-level enhancement and detection of stereo disparity
surfaces,” Artificial Intelligence, vol. 78, pp. 121–145, 1995.

[43] Y. Jen, E. Dunn, P. Gite-Georgel, and J. Frahm, “Adaptive scale selection for hier-
archical stereo,” in Proc. BMVC, pp. 95.1–95.10, 2011.

[44] B. Jahne, Digital Image Processing. Springer, Jan. 2006.

[45] T. Brox, F. Boomgaard, F. Lauze, J. Weijer, F. Weickert, and P. Kornprobst, Adap-
tive Structure Tensors and their Applications. Visualization and Processing of
Tensor Fields, Springer Berlin Heidelberg, 2006.

[46] G. Strang, Linear Algebra and Its Applications, 3rd ed. Harcourt Brace Jo-
vanovich, 1988.

[47] Q. Yang, R. Yang, J. Davis, and D. Nister, “Spatial-depth super resolution for range
images,” in Proc. IEEE CVPR, pp. 1–8, 2007.

[48] Z. Zhang, X. Ai, N. Canagarajah, and N. Dahnoun, “Local stereo disparity estima-
tion with novel cost aggregation for sub-pixel accuracy improvement in automotive
applications,” in Proc. IEEE IVS, pp. 99–104, 2012.

[49] M. Shimizu and M. Okutomi, “Precise sub-pixel estimation on area-based match-
ing,” in Proc. IEEE ICCV, vol. 1, pp. 90–97, 2001.

[50] A. Stein, A. Huertas, and L. Matthies, “Attenuating stereo pixel-locking via affine
window adaptation,” in Proc. IEEE ICRA, pp. 914–921, 2006.

[51] J. Kopf, M. Cohen, D. Lischinski, and M. Uyttendaele, “Joint bilateral upsam-
pling,” ACM SIGGRAPH, p. 96, 2007.

[52] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in
Proc. IEEE ICCV, pp. 839–846, 1998.

[53] F. Garcia, B. Mirbach, B. Ottersten, F. Grandidier, and A. Cuesta, “Pixel weighted
average strategy for depth sensor data fusion,” in Proc. IEEE ICIP, pp. 2805 –2808,
sept. 2010.

[54] D. Chan, H. Buisman, C. Theobalt, and S. Thrun, “A noiseaware filter for real-time
depth upsampling,” in Workshop on Multi-camera and Multi-modal Sensor Fusion
Algorithms and Applications, 2008.



100

[55] T. Lindeberg, Scale-Space Theory in Computer Vision, vol. 256. Springer, 1994.

[56] S. Chan, R. Khoshabeh, K. Gibson, P. Gill, and T. Nguyen, “An augmented la-
grangian method for total variation video restoration,” IEEE Trans. Image Pro-
cessing, vol. 20, pp. 3097 –3111, nov. 2011.

[57] M. Okutomi and T. Kanade, “A multiple-baseline stereo,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 15, pp. 353 – 363, 1993.

[58] K. Yamada, T. Ichikawa, T. Naemura, and K. Aizawa, “Generation of a disparity
panorama using a 3-camera capturing system,” in Proc. IEEE ICIP, pp. 772 – 775,
2000.

[59] M. Maitre, Y. Shinagawa, and M. Do, “Symmetric multi-view stereo reconstruc-
tion from planar camera arrays,” in Proc. IEEE CVPR, pp. 1 – 8, 2008.

[60] B. Wilburn, N. Joshi, V. Vaish, E. Talvala, and E. Antunez, “High performance
imaging using large camera arrays,” ACM Trans. Grpahics, vol. 24, pp. 765 – 776,
2005.

[61] S. D. Cochran and G. Medioni, “3-d surface description from binocular stereo,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 14, pp. 981 – 994,
1992.

[62] P. Fua, “A parallel stereo algorithm that produces dense depth maps and preserves
image features,” Machine Vision and Applications, vol. 6, pp. 35 – 49, Winter
1993.

[63] J. Lu, G. Lafruit, and F. Catthoor, “Anisotropic local high-confidence voting for ac-
curate stereo correspondence,” in Proc. SPIE-IS&T Electron. Imaging, vol. 6812,
p. 68120, Jan. 2008.

[64] D. Geman, “Constrained restoration and the recovery of discontinuities,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 14, pp. 367 – 383, 1992.

[65] P. Hansen, “Analysis of discrete ill-posed problems by means of the l-curve,” SIAM
Review, vol. 14, pp. 561 – 580, 1992.

[66] M. Bertero and P. Boccacci, Introduction to inverse problems in imaging. IOP
Publishing Ltd, 1998.

[67] C. R. Vogel, Computational Methods for Inverse Problems. SIAM Frontiers in
Applied Mathematics, 2002.

[68] A. Beck and A. Ben-Tal, “On the solution of the tikhonov regularization of the
total least squares problem,” SIAM Journal on Optimization, vol. 17, pp. 98 – 118,
2006.



101

[69] L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal
algorithms,” Phys. D, vol. 60, pp. 259 – 268, Nov. 1992.

[70] T. Chan, G. Golub, and P. Mulet, “A nonlinear primal-dual method for total
variation-based image restoration,” SIAM Journal on Scientific Computing, vol. 20,
pp. 1964 – 1977, Nov. 1999.

[71] Y. Wang, J. Yang, W. Yin, and Y. Zhang, An efficient TVL1 algorithm for deblur-
ring multichannel images corrupted by impulsive noise. CAAM, Rice Univ., Sep.
2008.

[72] M. Afonso, J. Bioucas-Dias, and M. Figueiredo, “Fast image recovery using vari-
able splitting and constrained optimization,” IEEE Trans. Image Process, vol. 19,
pp. 2345 – 2356, Sep. 2010.

[73] E. Shechtman, Y. Caspi, and M. Irani, “Space-time super-resolution,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 27, pp. 531 – 545, apr. 2005.

[74] G. Golub and C. Van Loan, Matrix Computation, 2nd ed. Baltimore, MD: Johns
Hopkins Univ. Press,, 1989.

[75] P. J. Davis, Circulant Matrices, 2nd ed. New York: Chelsea, 1994.

[76] W. Yin, S. Osher, D. Goldfarb, and J. Darbon, “Bregman iterative algorithms for l1-
minimization with applications to compressed sensing,” SIAM J. Imag. Sci., vol. 1,
no. 1, pp. 143 –168, 2008.

[77] A. Szlam, G. Zhaohui, and S. Osher, “A split bregman method for non-negative
sparsity penalized least squares with applications to hyperspectral demixing,” in
Proc. IEEE ICIP, pp. 1917 – 1920, 2010.




