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Chapter 1

Standard Model

1.1 Standard Model

The Standard Model of Particle Physics (SM) is currently the most complete theory of par-

ticle physics, describing all known fundamental particles and their interactions. Developed

throughout the 1960’s and 1970’s, the Standard Model proved its merit as the predicted par-

ticles were discovered at various experiments, with the most recent being the confirmation of

a Higgs Boson in 2012 by both ATLAS and CMS collaborations [1][2]. The Standard Model

consists of 12 spin 1/2 particles called fermions, and 5 integer spin (1 or 0) particles called

bosons. These groups can be broken down further, with fermions consisting of 6 integer

charge leptons and 6 fractional charge quarks, and bosons being a combination of four spin

1 vector bosons and one spin 0 scalar boson. Both leptons and quarks come in 3 generations

or families, with two particles paired off in each family. Leptons are paired such that each

charged particle has a corresponding neutral particle called a neutrino, i.e. the electron and

electron neutrino. Quarks are paired such that there is one 1/3 charge particle and one 2/3

charge particle in each family, i.e. up and down quark. These family pairs have the same
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Figure 1.1: The layout of the Standard Model. On the left are fermions, split into their
respective groups of leptons and quarks, both of which have three families. On the right,
the gauge bosons, as well as the Higgs boson. Within each box the particle’s mass, spin, and
charge are listed [3].

quantum numbers, and only vary in mass. A graphical representation of the Standard Model

is given in Figure 1.1.

The mathematical formulation of the Standard Model is based on three gauge sym-

metries, each of which corresponds to a physical force and the particles that interact via

that force. These symmetries represent some type of gauge invariance, and results in a

conserved quantity. For instance, assume a naive Lagrangian for electromagnetism L =

(∂µφ(x))
†(∂µφ(x)) − V φ(x)†φ(x) with φ(x) the waveform for a lepton and V the potential.
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This Lagrangian should be invariant under the global symmetry transformation φ(x) →

eiαφ(x), which will only be true if ∂µj
µ = ∂µ(i(∂

µφ†φ − φ†∂µφ)) = 0. The quantity jµ is

a therefore a conserved quantity, which is associated to charge conservation. If it is then

assumed the Lagrangian is invariant under a local transformation φ(x) → eiα(x)Qφ(x), it can

be shown that there is a need to replace ∂µ with the covariant derivative Dµ = ∂µ − ieAµ,

where Aµ is defined as the photon field. It can be shown similarly with the weak and strong

forces that global symmetries indicate a conserved quantity, while local symmetries provide

the need for a gauge field. The symmetries in the Standard Model are represented by some

set of unitary matrices (U(N)) or special unitary matrices (SU(N)), where N is the dimen-

sions of the matrices. The three symmetries are U(1) describing the electromagnetic force,

SU(2) describing the weak force, and SU(3) describing the strong force. Each of the SU(N)

symmetries has N2 − 1 generators while the U(N) has N2 generators, or gauge bosons, that

arise from the gauge fields discussed previously. For the electromagnetic force, there is only

the photon. In the weak force, there are the W+,W−, and Z bosons. Finally, the strong

force has 8 massless gluons. The strong force will be discussed in more depth in Section 1.3.

The finally component of the Standard Model is the Higgs boson, a spin 0 massive particle

which allows the other particles to have mass. Therefore, any massive particle interacts with

the Higgs field, while those that are massless do not.

1.1.1 Higgs

Before the introduction of the Higgs mechanism, it was not possible to have mass terms in

the Lagrangian for vector bosons or fermions. In both cases, a mass term would violate

gauge invariance. For vector bosons, the field transforms in a particular manner to allow

local symmetry, however this transform does not remain invariant with the addition of a

mass term. For fermions it is due to the fact that they are doublets of two helicity states,

left-handed and right-handed, which transform differently under gauge transformation. The
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Higgs mechanism can supply mass to both by assuming there is an additional scalar particle

that has a non-zero expectation value and is charged under U(1), which breaks local gauge

symmetry.

The Standard Model assumes a complex Higgs doublet φ = (φ+, φ0) = (φ1+iφ2, φ3+iφ4),

with only the φ3 component traditionally being referred to as the Higgs Boson. The Higgs

Boson is able to provide mass to the vector bosons by breaking the combined SU(2)×U(1)

electroweak symmetry (Section 1.1.2) into U(1)EM , or the detectable weak and electromag-

netic forces. This comes from the unique nature of the Higgs field, in that it has a vacuum

expectation value (vev), which is non-zero. The fact that the Higgs is charged under elec-

troweak theory yet it’s field is has some non-zero energy implies that the electroweak theory

is not consistent globally, meaning the symmetry is broken. Usually this is said as “the

Higgs acquired a vev”, meaning at the energy scale where electroweak theory is unified, all

components of the Higgs doublet are equally combined, however the Standard Model Higgs

can acquire energy and choose a state, therefore breaking symmetry.

1.1.2 Electroweak symmetry breaking

To delve a bit deeper into the symmetry breaking mentioned above, known as Electroweak

Symmetry Breaking, it’s important to step back to the electromagnetic and weak forces. As

mentioned before, the weak and electromagnetic force are unified at higher energies into the

electroweak force, which is the true SU(2) × U(1) symmetry. The gauge boson for U(1) is

the B boson, and the gauge bosons for SU(2) are the W1,W2,W3 bosons. The W+ and W-

bosons are actually linear combinations of the W1 and W2 bosons (W± = 1√
2
(W1 ±W2)),

while the photon and Z bosons are combinations of W3 and B, B cos θW +W3 sin θW and

−B sin θW +W3 cos θW respectively. As all bosons of the electroweak theory are massless,

all of these linear combinations are still lacking mass, which is where the Higgs becomes an
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integral part of the theory. An important effect of symmetry breaking is described by the

Goldstone theorem [4][5][6], which states that there must be an equivalent number of massless

spin-0 particles as there are broken generators. These massless Goldstone bosons are the

remaining three components of the Higgs boson (φ1, φ2, and φ4) mentioned in Section 1.1.1.

These Goldstone bosons are “eaten” by the combined Ws and B bosons to produce the

massive W± and Z bosons. More technically, the W and Z bosons have two transverse

polarization states, and each of the Goldstone bosons have one scalar degree of freedom. To

have a mass, a third longitudinal polarization state must be added to the gauge bosons, which

comes from combining with the Goldstone boson. The photon does not “eat” a Goldstone

boson, and therefore remains massless.

1.1.3 Problems with the Standard Model

However accurate and elegant the Standard Model is, there are still plenty of unexplained

phenomena. This is the foundation for the Exotic Searches at the LHC, including this

analysis, as there appears to be more to fundamental physics than the SM predicts.

Gravity

One of the most glaring omissions from the Standard Model is the fourth known fundamental

force, gravity. It is predicted that there exists a spin-2 Graviton however there has been no

evidence. A leading theory to account for its lack of detection is that gravity extends to

extra dimensions. There can be multiple flat dimensions, as in the ADD model [7][8], or a

single extra warped dimension, as in the Randall Sundrum (RS) model [9]. The current scale

of gravitational forces exists at the Planck scale Mpl, but the addition of extra dimensions

may dilute the scale of gravity to within the TeV range, which is within the energy scope of

the LHC.
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Hierarchy Problem

The extreme difference between the Higgs mass (125 GeV) and and the Planck mass (1019

GeV) is another troubling piece of the Standard Model. With such an enormous difference

in energy, the mass of the Higgs Boson should be much higher than its measured value.

The only way to have a mass as low as measured is for cancellations of higher order loop

corrections to the Higgs mass. While it is possible this happens naturally, its extremely

improbable that the universe exhibits such fine tuning. A solution to this problem is to

introduce new physics at TeV energy scales. Theories of gravity involving extra dimensions

as mentioned in Section 1.1.3 lower the energy scales of gravity to allow for a more cohesive

scale across all forces. Another solution is supersymmetry (SUSY), where the introduction

of supersymmetric partners with masses in the GeV-TeV scale will cancel loop diagrams of

SM particles, resulting in the Higgs mass that is measured.

Dark Matter

The Standard Model also fails to include dark matter (DM). Though hints of dark matter

had been around for decades [10], confirmation of its existence took off in the 1930’s with

a series of astronomers noticing discrepancies in the mass to light ratio of galaxies [10].

There is not much known about dark matter, besides it interacts gravitationally but not

electromagnetically, as well as its relative amount in the universe. Although its not known

whether dark matter interacts with the weak force or strong force, a leading theory is that

dark matter is a weakly interacting massive particle, or WIMP [10]. Large support for this

theory comes from the WIMP miracle, which notes a particle of similar mass and cross

section to that of the weak gauge bosons would produce the proper relic density of dark

matter. With WIMPS being in the 100 GeV - TeV mass range, they are within reach of the

LHC.
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Standard Model Extensions

The overall structure of the SM is also rather arbitrary. That there are three families of

leptons with seemingly random differences in mass hints that there may be some more un-

derlying structure to make sense of such differences and structure. There may be extensions

to the SM as well, such as additional symmetries or heavier particles that would have been

out of reach of previous lower energy detectors. Of particular interest that comes in the form

of additional symmetries is creating a grand unified theory (GUT). Similar to the combi-

nation of the weak and electromagnetic forces into the electroweak force (Section 1.1.2), it

is theorized that all fundamental forces, including gravity, may be pieces of a overarching

symmetry at high energies. The leading theories for the unification of the strong force with

the electroweak force are a unified SU(5) or SO(10), each of which could manifest themselves

at the LHC in the form of new gauge bosons.

1.2 New Physics

As can be seen, there is a need for new particles or interactions, or in general “new physics”,

to exist, and there are many models that can be probed at the LHC. The theories presented

here will be those that are specifically searched for by the dijet resonance analysis.

1.2.1 Quantum Black Holes

Gravity can be probed at the ATLAS detector in several ways, and one of these is searching

for Quantum Black Holes. As mentioned in Section 1.1.3, if gravity does exist in extra

dimensions, this would lower the scale of gravity to some modified gravity scale MD that

is closer to that of the other fundamental forces. The hoop conjecture [11] suggests that if
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the impact parameter of two incoming partons is less than that of a Schwarzschild radius

r for the combined mass of the two partons, that these two partons can create a Quantum

Black Hole (QBH). If this threshold mass is approximately at the order of the modified

gravity scale MD, the QBH will decay into SM particles following quantum conservation

laws, rather than classical conservation laws followed by classical black holes [12][13][14].

The QBH will mostly decays to dijets when MD ∼Mth, meaning it can be probed with the

dijet analysis.

1.2.2 Dark Matter Mediator

A new model that could link SM particles and DM particles is the addition of another U(1)

symmetry in the Standard Model. This addition would predict a new particle Z ′ that can

mediate between SM and DM particles [15][16][17]. If this is the case, the two colliding

partons may create this Z ′, which can then decay back into quarks or into two dark matter

particles. In the case of a decay to quarks, the dijet analysis can search for the Z ′ resonance.

This model has become the new standard for DM searches at ATLAS, as results can be

combined across many searches including multiple dijet analyses, missing energy plus initial

state radiation, and dilepton searches [18].

1.2.3 Compositeness

Another new physics model searched for in the dijet analysis is quark compositeness. This

seeks to test for more fundamental particles, by assuming that quarks are composite particles,

and therefore an excitation of the quarks may become visible at higher energies. This new

quark could decay through q∗ → qg, creating a resonance at the q∗ mass [19][20].
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1.2.4 Heavy Gauge Bosons

In the several theories of GUT mentioned in Section 1.1.3, a decomposition of these higher

order symmetries introduces a new SU(2), and with that comes the addition new gauge

bosons. The existence of a number of heavy bosons can be probed in the dijet analysis,

however as a benchmark model this analysis searches for a Sequential Standard Model (SSM)

W ′, which has the same couplings as the SMW boson but varies in mass [21][22]. The decay

to quarks can be searched for in the dijet analysis, while its decay to leptons, or its decay to

WZ, are searched for with complimentary exotic analyses.

1.2.5 Excited Chiral Bosons

A specific modification to the SM can be the existence of some SU(3)W × U(1)W exten-

sion of the electroweak group, that can spontaneously break down to the Standard Model

electroweak symmetries. A weak doublet is then associated with the doublet component of

the SU(3)W group, resulting in new excited weak bosons ±W ∗ and Z∗ [23][24]. This group

of theories is often used to solve the hierarchy problem by predicting the lightness of the

Standard Model Higgs, and would also provide evidence that the W boson is a composite

particle. W ∗ can be generated at different mixing angles, sin θX , which predicts either lep-

tophobic or leptophilic final W ∗, where the dijet analysis uses the leptophobic (sin(θX) = 0)

signal model.

1.3 Quantum Chromodynamics

This section is adapted from information in Ref [25]. Quantum Chromodynamics (QCD) is

the theory of the strong force. The only fundamental particles to feel the strong force are
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quarks, and the gauge bosons of the strong force are gluons. Quarks have charges in fractions

of 1/3 (as can be seen in Figure 1.1) and come in 3 different flavors, red, green, and blue.

These colors have nothing to do with optics, but are rather an equivalent charge for the

strong force. Quarks form either pairs or triplets of colorless and integer charge composite

particles called hadrons. For example, a red up quark and anti-red anti-up quark, or a red

up quark, blue up quark, and green down quark. The combinations of two quarks are called

mesons, while combinations of 3 are called baryons. The cross section calculation in QCD is

similar to other Standard Model processes, but due to color charge now includes summation

(outgoing) or a mean (incoming) over color charge.

There are 8 gluons, representative of the 8 color combinations of quarks that a gluon

can propagate between. Similarly it is related to the dimensions of the SU(3) symmetry

by N2
C − 1 = 8. Due to the non-abelian nature of QCD, extra terms pertaining to the

mediator particle are added to the Lagrangian. This results in the production of 3 and 4

gluon interactions, which no other mediator particle has. The full Lagrangian is given in

Eq. 1.1

LQCD = ψ̄if (iγ
µ)(Dµ)ijψ

j
f −mf ψ̄

i
fδijψ

j
f −

1

4
F a
µνF

aµν (1.1)

where FA
µν is a tensor given by

F a
µν = ∂µA

a
ν − ∂νA

a
µ − gsfabcA

b
µA

b
ν (1.2)

and Dµ is the covariant derivative given by

(Dµ)ij = δij∂µ − igst
a
ijA

a
µ (1.3)

The quark spinors are represented by ψ with some flavor index f = 1, 2, 3, and the gluon

fields by Aαµ, where α runs from 1 to N2
C − 1 = 8. This Lagrangian can be broken down into

five parts:

• quark mass ψ̄ifmfδijψ
j
f , where δij is a Dirac delta function

• quark propogator ψ̄if iγ
µδij∂µψ

j
f
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• quark-gluon interactions ψ̄ifgst
c
ijA

c
µψ

j
f , where t

c
ij are the SU(3) generators, one of eight

3x3 matrices related to the Gell-Mann matrics by tαij =
1
2
λαij.

• 3 and 4 point gluon interactions from 1
4
F a
µνF

aµν , where fabc is related to the field

generators by [ta, tb] = ifabct
c

1.3.1 Renormalization

QCD cross sections contain divergences, which are unphysical. To mend this, many QCD

quantities are renormalized; split into perturbative and non-perturbative pieces and sepa-

rated by an energy scale µ. The coupling constant gs in Eq. 1.1 is one such quantity, and is

related to the strong coupling αs by g
2
s = 4παs. Renormalizing the strong coupling creates

a running coupling, where the coupling is dependent on the logarithm of the energy scale of

the interaction Q2 by dαs

dlnQ2 = β(αs). That is, the coupling dependence on the energy scale

follows a renormalization group equation (RGE) given by Eq. 1.4

β(αs) = −(b0α
2
s + b1α

3
s + b2α

4
s + ...) , (1.4)

where the LO and NLO coefficients are given by

b0 = (11CA − 4nfTR)/(12π)

b1 = (17CA − 4nfTR(10CA + 6CF ))/(24π
2)

(1.5)

In these equations, nf is the number of quark flavors present at that energy scale, and

CF , CA, TR are color constants associated with specific QCD processes. It is clear from

the negative in Eq. 1.4 that as momentum transfer Q2 increases, the coupling becomes

weaker. Plotting αs as a function of the scale Q2 Fig. 1.2 shows that at high scales, the

coupling remains approximately constant and small, something called asymptotic freedom.

This means at high energy, or small distances, the coupling becomes so small that quarks and

gluons decouple, and can be treated as independent particles. This is an important effect in

fragmentation theory, which will be discussed later in this section. Taking the coupling to
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low energies, it can be seen that the coupling quickly diverges. A cutoff scale, denoted ΛQCD

is therefore required to combat this divergence, removing all non-perturbative calculations

which exist below ΛQCD from the perturbative calculations above it, and is calculated to

be 200 MeV . This low energy or conversely long distance scale divergence results in a

phenomena called confinement, in which any quark beyond a distance 1/ΛQCD will never

be found alone, but always in a colorless pair. This will be discussed in more depth in

Section 1.3.2. By solving equation 1.4 directly, it can be shown that the strong coupling

can be computed at any energy scale in conjunction with a specific energy scale, usually

Q2 =M2
Z , where MZ is the mass of the Z boson. This reduces the strong coupling to a more

manageable formula given by Eq 1.6.

αs(Q
2) = αs(M

2
Z)

1

1 + b0αs(M2
Z)ln

Q2

M2
Z
+O(α2

s)
(1.6)

1.3.2 Confinement

Similar to a rubber band, as the separation of two quarks increases, the strong coupling

increases, until it reaches a point where it requires less energy to pair produce quarks that

will pair with the original quarks than it does to keep the two quarks together. This pair

production energy comes from energy converted from the strong force holding the two quarks

together. The combination of quarks in pairs or triplets to form hadrons and mesons is due

to confinement, and confinement also has a large part to play in the creation of jets.

This running coupling has many implications for LHC physics, such as high pT jets

producing less radiation and therefore a more narrow jet than low pT , and that cross sections

for high pT jets can be calculated directly with perturbative QCD, but low energy collisions

such as underlying events (UE) and pileup must rely on non-perturbative calculations.
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Figure 1.2: Measurements of strong coupling αS as a function of energy scale Q, with a
smooth fit overlaid [26].
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1.3.3 Parton Distribution Functions

A second renormalization scheme appears in fragmentation theory [27], which states that

non-perturbative hadron cross sections can be fragmented into two independent pieces, non-

perturbative and perturbative. The hadron-hadron cross section can then be broken down

as follows

dσh1,h2 =
∑
ij

∫ 1

0

dxi

∫ 1

0

dxj
∑
f

dΦffi/h1(xi, µ
2
F )fj/h2(xj, µ

2
F )

dσij→f

dxidxjdΦf

(1.7)

where f is the Parton Distribution Function (PDF), a non-perturbative estimate of the

distribution of partons within the proton, and
dσij→f

dxidxjdΦf
is the partonic cross section, which

is independent of the hadron and perturbative. This is summed over all possible parton

combinations in each hadron, integrated over all possible occurrences of the two partons

i, j to some final state f , and integrated over the possible incoming energy of each parton

xi and xj. All divergences are then grouped into the PDF, which then depends on a user

defined factorization scale µf . This factorization scale should be at the energy scale in which

perturbative calculations are no longer viable. Cross sections can be broken up in this way

due to confinement - free quarks will ever exist on their own on timescales less than 1/ΛQCD,

however the time duration of a collision is of the order 1/Q << 1/ΛQCD. This means that

for colliding hadrons, their makeup is frozen in the eyes of the incoming particle. This allows

the cross sections of parton-parton collisions to simply be weighted by the probability that

that parton existed at the time of collision in the hadron, which is the PDF.

PDFs are estimated from data measurements. There are currently three different groups

combining experimental results to produce a set of PDFs at various orders; MSTW2008[28],

CT10 [29], and NNPDF2.3 [30]. All of these collaborations have different forms of the PDF

and different tunes, or treatment and values of parameters impacting the PDF, such as the

factorization scale. All use the renormalization group equation DGLAP (Eq. 1.8)[31], which

provides a series of equations that allows the evolution of a PDF from one scale to another.

This means that a PDF does not have to be derived at every user set scale, but can be
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inferred. The DGLAP equation depends on splitting functions, listed below in Eq 1.9, which

perturbatively define the probability Pab of any parton collinearly radiating another parton,

resulting in two partons a and b with fraction z and (1− z) of the initial parton energy.

µ2 ∂

∂µ2
fi(z, µ

2) =
∑
j

∫ 1

x

dz

z

αs
2π
Pij(z)fj(x/z, µ

2)

∂qi(x, µ
2)

∂logµ2
=
αs
2π

∫ 1

x

dz

z
[Pqiqj(z, αs)qj(

x

z
, µ2) + Pqig(z, αs)g(

x

z
, µ2)]

∂qi(x, µ
2)

∂logµ2
=
αs
2π

∫ 1

x

dz

z
[Pgqi(z, αs)qj(

x

z
, µ2) + Pgg(z, αs)g(

x

z
, µ2)]

(1.8)

Pqq(z) = CF

[
1 + z2

(1− x)+

]
+ 2δ(1− x)

Pqg(z) = TR[z
2 + (1− z)2]

Pgq(z) = CF

[
1 + (1− z)2

z

]
Pgg(z) = 2CA

[
z

(1− z)+
+

1− z

z
+ z(1− z)

]
+ δ(1− z)

[
(11CA − 4nfTR)

6

]
(1.9)

For dijet events, the possible final states are all 2 → 2 scattering amplitudes from

partons to quarks or gluons. The cross section for dijet production from parton-parton

collisions is given by Eq. 1.12. At leading order, these matrix elements can be computed

through Feynman rules.

1.3.4 Feynman diagrams

All cross sections of SM processes are computed through an S-matrix, in which each element

gives the probability amplitude of a specific SM process occurring. If there are multiple

processes that give the same initial to final state, those amplitudes must be summed to

give the correct contributions to the cross section. Feynman diagrams are a pictorial tool

and a set of rules which aids in leading order calculations of cross sections. Each matrix
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element given from a Feynman diagram has a quantity related to the incoming particles,

the propagator, the interaction points, and the outgoing particles. The final cross section is

then summed over all possible incoming and outgoing particles, i.e. over all possible quark

colors. A simple example that is relevant for this analysis is quark t-channel scattering.

The Feynman diagram representing this process is shown in Figure 1.3, with looped lines

indicating gluons, and straight lines representing quarks. The matrix elements are created

from the following set of rules:

• incoming quark uqf (p) where p is the quark momentum and qf is the flavor

• incoming anti-quark vqf (p) where p is the quark momentum and qf is the flavor

• incoming gluon eµ

• quark propogator δik
i(/p+m)

/p−m2−iε

• gluon propogator δab−ig
µν

q2
where q is the momentum, and a, b are color indices

• quark-quark-gluon vertex −1
2
igsλ

a
jiγ

µ where i, j is the color indices or the quarks

• outgoing gluon eµ∗

• outgoing quark ūqf (p) where p is the quark momentum and qf is the flavor

• outgoing anti-quark v̄qf (p) where p is the quark momentum and qf is the flavor

The matrix element M can be calculated from the above rules as Eq. 1.10.

−iM = [ūq1(p3)(−
1

2
igsλ

a
jiγ

µ)uq2(p1)]
−igµν
q2

δab[ūd(p4)(−
1

2
igsλ

b
lkγ

ν)uq3(p2)] (1.10)

where the Kronecker delta function (δab) enforces the allowable color states (color-anticolor

pairs), which then reduces to Eq. 1.11. The next step is to average over all possible color

combinations of the quarks by |M |2 = 1
NC

1
NC

∑3
i,j,k,l=1 |M(ij → kl)|2, where i, j, k, l are
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Figure 1.3: Feynman diagram of a qq scattering event [32].

allowable color combinations. Finally, for each incoming (ūq1 and uq2) and outgoing combi-

nation of quark (ūq3 and uq4) flavors, there is similarly an additional matrix element, all of

which will be summed together. At first order this is how cross sections are computed.

M = −g
2
s

4
λajiλ

a
lkgµν [ūq1(p3)γ

µuq2(p1)][ūd(p4)γ
νuq3(p2)] (1.11)

1.3.5 NLO corrections

At next to leading order, loop diagram and initial and final state radiation (ISR/FSR)

must be taken into account, with several examples shown in Figure 1.4. The addition of

higher order terms results in a diverging cross section in two ways. The first is ultraviolet

(UV) divergences which are a result of virtual loop diagrams. The second is infrared (IR)

divergences, which includes collinear and soft radiation. Regularization is a way to group

these divergent terms and remove the section of phase space most effected, and does so by the

introduction of a user defined scale. UV divergences are regularized with the regularization

scale µR included in the running coupling. This cuts off the summation of infinitely low

energy loops. IR divergences are regularized in PDFs through the factorization scale µF ,

resulting in the absorption of any soft radiation into the PDF. For the dijet analysis, per
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Figure 1.4: Feynman diagrams of next-to-leading order qq scattering events, with the top
diagram being an example of initial state radiation and the bottom an example of a loop
correction [32].

ATLAS recommendation, the renormalization and factorization scales are set to the average

of the two leading jet pT , µR = µF = (pT1 + pT2)/2.

d3σ

dy3dy4dp2T
=

1

16πs2

∑
a,b,c,d=q,q̄,g

fa/A(xa, µ
2)

xa

fb/B(xb, µ
2)

xb
×
∑

|M(ab→ cd)|2 1

1 + δcd
(1.12)

Two IR divergences have large consequences in LHC physics - collinear and infrared.

Collinear divergence comes from collinear ISR or FSR, where a gluon is emitted parallel to

its parent particle. The distinction between a single particle of the sum of energy of the

gluon and parent particle and the split version is meaningless, and causes a divergence in the

cross section. Infrared divergences result from soft radiation, as cross section calculations

are ill defined for energies approaching zero. In cross section calculations, the KLN [33]

theory states that as long as cross sections are inclusive, as in they include all radiation and

loops, these divergences should cancel each other. These divergences may still play a part

if other observables used in the analysis are sensitive to IR or collinear radiation however.
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It is therefore important to use IR and collinear safe variables, which are unchanged by the

inclusion or removal of these forms of radiation. This will play an important role in the

choice of jet algorithms in Section 3.1.1.

1.4 Collision events

The final cross section between the two colliding hadrons is given in Eq 1.13, where fj/J(xj)

is once again the PDFs and the cross section is summed over all possible partons in the

hadron (a, b). The resulting particles of the collision, or in the case of a dijet event, the two

scattered partons, are what determine the defined “event”. A majority of collisions result in

t-channel scattering, where the two incoming quarks exchange a gluon with relatively small

energy transfer, and continue is slightly modified trajectories. This fact will come into play

in event selections in the dijet analysis.

σAB→X =
∑
a,b

∫
dxadxbfa/A(xa)fb/B(xb)xdσ̂ab→X(αS(µ

2
R), µ

2) (1.13)

In order to properly explain the collision events, its important to note some terminology:

Hard Scatter: The hard scatter event is taken as the highest energy collision between

two partons in a bunch crossing. This is shown as a red disk in Figure 1.5

Underlying Event: Underlying events (UE) are lower energy parton collisions that

occur within the proton. Being of low energy, these cross sections are included in the PDF

portion of the total cross section. This is shown in purple in Figure 1.5

Pileup: Pileup can be hard or soft collisions either from other proton collisions in the

bunch crossing, or from collisions with remnants left from previous bunch crossings. Pileup

needs to be removed from the overall event, and is discussed in section 3.1.3.
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1.4.1 Parton Shower

Once the partons collide, any resulting partons will accelerate into the detector, resulting in

the radiation of gluons, which will then split into quarks and other gluons. The modeling of

this is called a parton shower, and is described by the same splitting functions used in PDFs.

The splitting functions are combined to give the probability of a parton splitting at a time t

and no other splitting occurred up to that point, and is given in Eq. 1.14. Partons are split

until their energies are low enough for confinement effects to take over. This is shown in red

in Figure 1.5.

dPa
dt

= (
∑
b,c

Ia→bc(t))exp(−
∫ t

t0

dt′
∑
b,c

Ia→bc(t
′)) (1.14)

1.4.2 Hadronization

Now that the partons have reached a sufficiently low energy, they will pair up to create

hadrons and mesons. Many of these are unstable, immediately decaying into a combination of

other hadrons and leptons, and continuing to create a spray of particles as seen in Figure 1.5.

Different Monte Carlo generators use different schemes, however the two most common are

cluster [34] and string [34][35] models. These both step through pairing nearby quarks into

final stable hadrons.
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Figure 1.5: Schematic drawing of parton showering and hadronization. The hard scatter
is the red disk. Purple disk is secondary hard scatter. Red and purple lines are the cor-
responding parton shower. Hadronization is in green, with parton groupings to hadrons in
light green disks, dark green disks are hadron decays, and yellow is photon radiation [36].
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Chapter 2

The ATLAS Detector

2.1 CERN and the LHC

2.1.1 CERN

The Center for European Nuclear Research (Conseil Europen pour la Recherche Nuclaire) or

CERN is a nuclear and particle physics research lab in Meyrin, Switzerland that was founded

in 1954. At its creation, the collaboration consisted of 12 European countries, and has since

grown to 22 member nations, with countless other countries involved in research at CERN.

Although there has been a variety of experiments run at CERN, it has always been a leading

institute in particle accelerators. The first accelerator at CERN was the Sychrocylcetron,

followed shortly by the Proton Synchrotron and then the Super Proton Synchrotron in the

1960’s and 1970’s. Next came the Large Electron-Positron Collider, or LEP, at the end of

the 1980’s, which was built in the same tunnel used by the Large Hadron Collider today.
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2.1.2 The Large Hadron Collider

The Large Hadron Collider (LHC) is a 26 km round proton proton collider at CERN, and

is thoroughly explained in Ref. [37]. Protons are first collected from Hydrogen atoms into

bunches of approximately 1.15 × 1011 protons. These bunches of protons are accelerated

through three separate synchrotrons built off the main ring to a small fraction of their

final energy. The bunches are then injected into the beam pipe in 25ns bunch spaces and

continually accelerated and compacted until reaching the desired 7 TeV energy. A series

of magnets bend the protons around the ring, with extra layers of magnets used to correct

protons at various distances in the bunch. The two beams of protons are crossed at four

points along the ring to create collisions at the corresponding LHC experiments: ATLAS,

CMS, ALICE, and LHCb (Figure 2.1).

The LHC was built for a maximum center of mass (COM) energy of 14 TeV, bunch

spacing of 25ns, and an instantaneous luminosity of 1034cm−2s−1. At full running conditions,

this equates to 1e6 collisions per second. Due to some difficulties at the start of the LHC

in 2010, the LHC was started at half of the full spec running, having a COM energy of

7 TeV and 50ns bunch crossings, resulting in half the expected luminosity for Run I. The

COM was increased to 8 TeV in the middle of Run I, but bunch spacing was kept at 50ns.

Collectively, this resulted in 26fb−1 integrated luminosity. Run I ended in 2012, where the

detector was shut down for upgrades until summer of 2015. After this first Long Shut Down,

the LHC started back up at 13 TeV COM energy and bunch spacing at 25ns. This analysis,

the second dijet paper of Run II, is the full luminosity of Run II, equating to a total of 37

fb−1 integrated luminosity. During Run II, it is expected to increase to full COM energy

of 14 TeV, and expected luminosity by the end of Run II in 2018 is 150fb−1 [39], although

current condition suggest its possible to reach 300fb−1. The LHC will then go through its

second long shut down of 2 years, and start up for Run III in 2020 for 3 years. Finally, after

a two and a half year long shutdown with major improvements, the High Luminosity LHC
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Figure 2.1: The LHC layout with all four detectors, ALICE, CMS, LHCb, and ATLAS, as
well as acceleration rings [38].
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will be operational, and run with a peak luminosity more than double then that of the first

three runs. This will continue for the remainder of the LHC lifetime, until 2035.

2.1.3 Luminosity

The components of the beams and detector size are all factors in determining the final

luminosity and center of mass energy allowed at the LHC, with luminosity and COM energy

having the largest impact in the possible new particles accessible at the LHC. Beam quantities

such as number of protons in each beam N , the rate of bunch crossings f , and cross sectional

area A are related to the instantaneous luminosity L by L = N2f
A

. This instantaneous

luminosity is what determines the number of events of some interaction, with the rate of

interactions given by R = Lσ, with σ being the cross section of that event. The center of

mass energy directly relates to energy available for new particle production. The LHC is

therefore expected to probe new physics at the GeV-TeV energy scales, and one detector

built to measure these new particles is the ATLAS detector.

2.2 ATLAS Detector

The ATLAS detector is one of two general purpose detectors along the LHC, with its design

outlined in Ref. [40]. Its a 46 m long by 25 m diameter cylinder detector consisting of 6

subdetector systems located under Point 1 on the LHC ring. It consists of 4 magnets - a

solenoid which is situated outside of the inner detector, used to bend particles through the

inner detector to get an estimate of charge and momentum, and 3 toroidal magnets outside

the calorimeters to accelerate particles through the muon system. A sketch of the layout of

the detector can be found in Figure 2.2.

Running is broken up into run blocks and luminosity blocks. Run blocks contain the same
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Figure 2.2: An overview of the ATLAS detector with the three inner detectors, Pixel detector,
semiconductor tracker, and transition radiation tracker, as well as the central LAr electro-
magnetic calorimeters and tile calorimeters. It also displays the location of the calorimeter
end caps or the LAr hadronic end-cap and forward calorimeter, as well as the muon spec-
trometer and the inner detector solenoid magnet and the muon spectrometer toroid magnet
[40].
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Figure 2.3: Integrated luminosity per day shown in (a) and running total of luminosity shown
in (b) for 2017, where (b) is the cumulative sum of (a) [41].

proton bunches, continually colliding until the bunches have lost approximately 50% of their

luminosity, typically 12-24 hours later. Luminosity blocks are the smallest interval of time

within a run block where the instantaneous luminosity can be accurately calculated. This

integrated luminosity per day is shown in Figure 2.3. All running conditions are assumed

to be constant during this period. A good runs list (GRL) is a collaboration wide set of

what are deemed “good runs” blocks, i.e. with all parts of the detector working correctly,

and because of this only runs in the GRL are used for physics analysis. The total integrated

luminosity is also recorded, with the total luminosity collected in 2017 shown in Figure 2.3.

In Cartesian coordinates, the ATLAS detector is laid out such that the z-axis is along

the beam pipe, the x-axis points radially inward to the center of the ring from the detector,

and the y-axis points directly upwards. A more obvious choice of coordinates for the detector

is a cylindrical coordinate system, and is whats used in analyses. In this system, the z-axis

remains the same, the azimuthal angle φ is in the x-y plane parallel to the end caps of the

detector, with φ = 0 pointing in the positive x direction, and the azimuthal angle θ is in the

y-z plane with θ = 0 in the positive z direction. A layout can be see in Figure 2.4. Often,

pseudorapidity, or η is used in place of θ, and is given by η = − ln[tan(θ/2)] which can also
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Figure 2.4: ATLAS detector coordinate system. The z-axis is along the beam pipe, the
x-axis points radially inward to the center of the LHC ring, and the y-axis points directly
upwards. In cylindrical coordinates, the azimuthal angle φ is in the x-y plane parallel to the
end caps of the detector, and the azimuthal angle θ is in the y-z plane [40].

be expressed in terms of momentum by η = 1
2
ln( |p|−pz|p|−pz ). This produces a Lorentz invariant

quantity that directly translates to the COM frame of the collisions. A representation of

values of η are shown in Figure 2.5, with increasing η pointing more towards the beam pipe.

2.2.1 Detector Layout

The detector is built to determine the types of particles and their energy and momentum. It’s

broken down into three layers - inner tracking detectors, calorimeters, and a muon spectrom-

eter. The inner detectors measure momentum, charge, and precision tracking of any charged

particle. The calorimeters measure energy of electromagnetic particles and hadrons. Finally,

muons will have minimal interaction with either calorimeter, as they are minimally ionizing

particles, so a dedicated muon spectrometer will measure muon momentum. Neutrinos will

not interact with any part of the detector, and therefore will pass through undetected. Their
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Figure 2.5: Representation of pseudorapidity η in the x-y plane of the detector [42].

presence in collisions can be determined by the amount of missing momentum, usually called

missing transverse energy (MET or ET ). A cross sectional view of the detector with examples

of which particles will be detected in each piece of the detector is shown in Figure 2.6.

2.2.2 Inner detector

The inner most region of the detector, used to measure impact parameters, momentum, and

charge, has three main components. There are two precision trackers, the pixel detector

and semiconductor tracker (SCT), with the main purpose to resolve impact parameters and

vertex position, as well as identify b-quarks. The third component of the inner detector is

the transition radiation tracker (TRT), which allows for longer tracks and therefore better

momentum resolution. Throughout all pieces of the inner detector, the readout electronics

must be fast enough to keep hits from each bunch crossing separate. Finally, the inner

detector is surrounded by a superconducting solenoid field of 2T, which allows for momentum

calculation and particle identification. The layout can be seen in Figure 2.7. Information in
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Figure 2.6: A cross sectional view of the ATLAS. Neutral particles such as neutrons and
photons do not leave tracks in the inner detector, while charge particles are bent with the
solenoid field. Electromagnetic particles such as electrons and photon deposit their energy in
the electromagnetic calorimeter, while hadrons deposit energy in the hadronic calorimeter.
Muons are detected in the inner detector due to their charge, but are minimally ionizing
through the calorimeters, and gets detected in the muon spectrometer. Neutrinos escape
undetected. Image under CERN copyright.

30



Figure 2.7: The ATLAS inner detector with barrel and endcap pieces of the pixel detector,
semiconductor tracker, and transition radiation tracker [40].

this section is borrowed from the inner detector technical design report [43].

Pixel Detector

The pixel detector measures 50.5 - 150mm radially and covers the range of 0 < |η| < 2.5. It

consists of three barrel layers and six disks, with three disks on each end cap, as can be seen

in Figures 2.9. This allows for 3 hits per particle, which are read out if above some noise

threshold. The detector is made of modules, where each module is 6x2cm and consists of ∼

45000 pixels, where each pixel is 50×400 microns in φ−z. Each module is pitched in φ about

20 degrees and slightly overlapping to have complete coverage in φ as seen is Figure 2.8. The

endcap modules are also pitched about 20 degrees, but modules are laid out radially from the

beam pipe, with modules on both sides of the disk and slightly offset from each other. Each

31



Figure 2.8: The Pixel detector module layout, where modules are placed in concentric cycles
and pitched at 20 degrees [44].

module has these silicon sensors, 16 front end chips, and a module controller chip. All details

presented here and more can be found in the pixel detector technical design report [44]. To

protect the first layer of the pixel detector from getting too much damage from radiation,

an additional pixel detector as inserted between it and the beam pipe in the first long shut

down [45]. The insertable b-layer (IBL) is 33mm out from the center of the detector, and

covers out to |η| < 3. It has a reduced pixel size and its proximity to the collision make it

better at impact parameter measurements, and therefore better at detecting b-quarks.

Semiconductor Tracker

The SCT sits at 288-560mm, covering out to η < 2.5. It is similar in design to the pixel

detector, but uses silicon strips rather than pixels to gather tracking information. It consists

of 4 barrels, and 9 disks on each endcap, once again as seen in Figures 2.9. Two silicon strips
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Figure 2.9: All components of the ATLAS inner detector laid out radially (top) and longi-
tudinally (bottom) with radial depth information of each component [46].
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Figure 2.10: SCT module with silicon strips placed back to back at a tilt of 40mrad, as can
be seen in the slight offset of the silicon sensors [46].

are connected on one side of each module, and two others are places on the backside, tilted

at 40 mrad from the front, as seen in Fig. 2.10. This assures particles will hit at least 8 strips

to produce 4 space point measurements. The front layer strips are parallel to the solenoid

field and beam axis, which allows measurement of R− φ, while the stereo angle of the back

allows for measurements in z. Each strip is 80 microns x 12 cm, and pitched at 80 microns,

and in total there are 768 such strips. The end cap is similar to the barrel, however strips

radiate out from the beam pipe rather than being parallel.

Transition Radiation Tracker

The final layer of the Inner Detector is the TRT. It sits farthest out at 563-1066mm, and

covers a smaller range in η out to |η| < 2. The TRT has 3 cylindrical layers in the barrel and

9 wheels in each endcap, both of which are filled with drift tubes that are 4mm in diameter

(Figures 2.9). These are parallel to the beam axis in the barrel, and radial in the end

caps. The straws are filled with a gas mixture of xenon, CO2, and O2, with polypropylene

fibers in between in the barrel, and polypropylene foil in the end caps. The change in this
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material causes the transition radiation, which is used to discriminate between pions and

electrons. On top of particle discrimination, the TRT greatly aids in the determination of the

momentum of particles. Particles hit on average 30 straws and extends farther out, giving a

longer track length for which to calculate the momentum.

2.2.3 Calorimeters

There are two calorimeters in the ATLAS detector, the liquid argon (LAr) and hadronic

(Figure 2.11). Both calorimeters are sampling calorimeters, layering passive materials that

facilitates the showering of particles with active material that is used to measure the energy

deposited. In these calorimeters, active material will be liquid argon or plastic scintillators,

while passive layers are lead or tungsten. Interwoven with the active material will be a read

out method that passes an analog signal proportional to the resulting radiation to front end

electronics. The LAr calorimeter was built to contain the full shower of electrons and photons,

while hadronic showers will continue to extend through to the hadronic calorimeter. Much

of the technical information in these sections can be found in the technical design reports,

Ref. [47] and Ref. [48].

EM Calorimeter

The EM calorimeter is the inner most calorimeter, bordering the inner detector. It has LAr

as the active material and lead as the passive material, with these layers being folded in an

accordion shape radially for azimuthal symmetry. There are three main components to the

LAr calorimeter, a barrel (EMB) extending out to |η| < 1.475, and two end caps (EMEC),

covering the region 1.375 < |η| < 3.2. The EMB extends radially out between 1.15 - 2.25 m,

and has three sampling layers. The first sampling layer, closest to the ID, has a granularity

of 0.003 x 0.1 in η−φ and an interaction length of 4.3 X0. This layer has a higher granularity
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Figure 2.11: A sketch of the EM and Hadronic calorimeters [49].

in η then the rest the calorimeter to distinguish between photons and π0, while elongating

through φ to keep the number of channels low. The bulk of the calorimeter (16 X0) consists

of square cells of 0.025 x 0.025 in η − φ, and make up the second sampling layer, and the

third sampling layer contains strips of 0.025 x 0.05 in η − φ with a radiation length of 2

X0. A slice of the EMB can be seen in Figure 2.12. The EMEC are of a similar layout,

with three sampling layers of varying granularities (Table 2.1). Finally, there is a presampler

layer, which consists of only an active LAr layer to recover and correct for energy lost in

dead material before the calorimeters. This layer exists between both the barrel and end

caps, and covers a range of η < 1.475 in the barrel and 1.5 < η < 1.8 of the end cap. Beyond

η > 1.8 the higher energies and smaller amounts of dead material make the presampler layer

unnecessary.

As charged particles pass through the lead layers, they interact with nuclei in two ways

- through bremsstrahlung radiation, where an electron radiates a photon, or pair production

of ee−. This creates a shower of particles that continue on into the LAr. Copper electrodes

are run through the liquid argon, and as the particles ionize the argon, the resulting electrons

move to the electrodes by an applied magnetic field. The number of electrons is proportional
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Sampling Barrel Granularity Endcap Granularity
(∆η ×∆φ) (∆η ×∆φ)

Presampler 0.025 x 0.1, |η| < 1.52 0.025 x 0.1, 1.5 < |η| < 1.8
Sampling 1 0.003 x 0.1, |η| < 1.475 0.025 x 0.1, 1.375 < |η| < 1.5

0.003 x 0.1, 1.5 < |η| < 1.8
0.004 x 0.1, 1.8 < |η| < 2.0
0.006 x 0.1, 2.0 < |η| < 2.5
0.1 x 0.1, 2.5 < |η| < 3.2

Sampling 2 0.025 x 0.025, |η| < 1.475 0.025 x 0.025, 1.375 < |η| < 1.5
0.1 x 0.1, 2.5 < |η| < 3.2

Sampling 3 0.05 x 0.025, |η| < 1.475 0.05 x 0.025, 1.5 < |η| < 2.5

Table 2.1: Sampling layers of the EM calorimeter, showing the part of the detector in η
covered by each layer, and the granularity of each layer.

to the energy deposited, and creates a triangle shaped pulse that is fed to readout electronics

[50]. This pulse is then shaped using a bipolar filter, sampled at 4 points that are 25ns apart,

and stored in analog form until the Level 1 trigger decision (Section 2.3). If the event is

accepted, it is passed through an analog to digital converter and stored.

2.2.4 Hadronic Calorimeter

The hadronic calorimeter is built to contain the energy of hadronic showers. While approx-

imately 2/3 of the hadron shower’s energy is deposited in the LAr calorimeter, showers still

extend past the 2 nuclear interaction lengths in the LAr calorimeter. The hadronic calorime-

ter extends to 10 interaction lengths, enough to contain a large majority of showers. The

hadronic interaction length is longer than the EM interaction length, resulting in the design

of the HCAL being denser and deeper than the LAr calorimeter, with a depth approximately

twice as long as the LAr calorimeter at 2.3-4.8m. Similar to the EM calorimeter, there is a

central and end cap piece of the calorimeter. The Tile calorimeter, or central calorimeter,

consists of the barrel (|η < 0.8) and extended barrel (0.8 < η < 1.7). They are composed of

plastic scintillator tiles layered with steel absorbers pieced together in wedges that surround

the beam pipe. The Tile calorimeter also contains three sampling layers, ranging in interac-
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Figure 2.12: A slice of the EM barrel calorimeter, showing granularity and radiation lengths
of the sampling layers [47].

tion length and granularity, as seen in Table 2.2 [51]. In the active phase, incoming particles

will excite molecules within the scintillator material, which will in turn emit UV light upon

de-excitation. This light is then reabsorbed by a secondary material and re-emitted at a

lower wavelength, which will then be sent through optical fibers to photomultiplier tubes

(PMTs) outside the calorimeter. The light produced will be proportional to the energy of

the incoming particle - the resulting analog pulse from the PMTs with have an amplitude

proportional to the energy. This pulse is then passed to a shaper and compressor, and digi-

tized. This signal is sampled 7 times and sent to read out electronics for further use. In the

passive layers, the steel showers electromagnetic particles produced from hadronic showers

in the same way the lead layers of the LAr calorimeter did. Strongly interacting particles in

the shower will deposit energy through ionization, nuclear breakup, nuclear recoil, neutron

generation, and photon generation. In the more forward region of |η| > 1.5, the hadronic

end caps (HEC) replace the barrel, with LAr used in place of scintillator tiles and copper

plates are layered in between, perpendicular to the z-direction.
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Sampling Barrel Granularity Endcap Granularity
(∆η ×∆φ) (∆η ×∆φ)

Barrel Sampling 1 0.1 x 0.1, |η| < 1.0 0.1 x 0.1, 0.8 < |η| < 1.7
Barrel Sampling 2 0.1 x 0.1, |η| < 1.0 0.1 x 0.1, 0.8 < |η| < 1.7
Barrel Sampling 3 0.2 x 0.1, |η| < 1.0 0.2 x 0.1, 0.8 < |η| < 1.7

Endcaps Sampling 1-4 - - 0.1 x 0.1, 1.5 < |η| < 2.5
0.2 x 0.2, 2.5 < |η| < 3.2

Table 2.2: Sampling layers of the hadronic calorimeter, showing the part of the detector in
η covered by each layer, and the granularity of each layer.

Sampling Barrel Granularity Endcap Granularity
(∆η ×∆φ) (∆η ×∆φ)

Sampling 1-3 - - 0.2 x 0.2, 3.1 < |η| < 4.9

Table 2.3: Sampling layers of the forward calorimeter, showing the part of the detector in η
covered by each layer, and the granularity of each layer.

Finally, there is a forward calorimeter (FCAL) [52] to cover the most forward region

of the detector, from 3.1 < |η| < 4.9, built to handle large amounts of radiation from the

high flux of particles in the forward region. There are three layers to handle electromagnetic

and hadronic showers; the first layer is composed of copper absorbers, and the second two

composted of tungsten, all 45cm thick. Because of the onslaught of particles, the FCAL

must be extremely dense to capture all radiation, so LAr is used as the active material and

is placed in channels parallel to the z-axis cut into the passive material. A rod is placed in

the middle of each channel and is held at high voltage, and a small layer of space between the

rod and the passive material is used as the active gap. A layout can be seen in Figure 2.13,

and the schematics are shown in Table 2.3.

2.2.5 Muon spectrometer

The outer most region of the ATLAS detector is the muon spectrometer (MS) [53][54], build

to exclusively measure muon momentum and position. The MS is split into a central region

composed of three concentric cylinders at radii of 5m, 8m, and 10m, and covering the range
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Figure 2.13: Layout of the FCAL, with rods surrounded by a layer of LAr, then a gap,
interwoven in a dense passive material around the beam pipe [47].

|η| < 1.4, and two end caps made of four wheels each covering the region from 1.4 < |η| < 2.7.

The muon chamber is split into two functions, triggering and tracking. Monitored drift tubes

(MDT)[55] are the main tracking mechanism, providing precision tracking information for

momentum measurements. It is composed of 3 cm diameter drift tubes containing a mixture

of argon and CO2, and a tungsten-rhenium wire to measure drift time of ionization charge

produced by muons. MDTs are used in the barrel and the three outer wheels of the end

caps, out to |η| < 2. In the more forward region, in the inner most end cap wheel, cathode

strip chambers (CSC)[56] are used for tracking, as there is a need for higher precision to

combat the higher background. The CSC is a multi-wire proportional chamber[57], with

anode wires that run radially out and cathode strips parallel to the beam pipe, surrounded

by a gas mixture of Ar and CO2. The inner most wheel is composed of 8 small and 8 large

overlapping wedges of CSC.

The time for precision readings from the tracking components can take upwards of 700

ns, far longer than the bunch spacing. There is therefore a need for fast measurements, which
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are collected by the trigger components of the MS. The resistive plate chamber (RPC) [58]

is used for finer spatial measurements, and is layered in the middle and outer cylinders of

the barrel out to η < 1.05. Parallel electrode plates filled with a gas mixture, in which any

charged particle crossing through the gas will create electron cascades. In the end caps thin

gap chambers (TGC) replace the RPCs for tracking. TGCs are also multi-wire proportional

chambers[57], with graphite cathode strips and a gas mixture of CO2 and n − C5H12. All

components can be seen in Figure 2.14.

The MS has three toroidal magnets, one around the barrel and one for each end cap.

These magnets provide an average magnetic field of 0.5 T. The bending of the muons through

these fields allows for measurement of the momentum. Three hits in the tracker create an

arc, and the sagitta is directly proportional to the muon momentum. In the end caps, the

direction between the interaction point and the inner layer is compared to that of the middle

and outer layer to get momentum measurements.

2.3 Trigger

Not all collisions can be saved, and even then all information from “good” collisions cannot

be saved. Therefore, a system of hardware and software was constructed to quickly save

only interesting data, while discarding all other events. The level 1 trigger (hardware)[59]

accepts reduce the rate from 40MHz to 100 kHz, and is built for speed. It performs a low

resolution search for physics objects, such as jets, MET, and leptons, and quickly computes

the total energy deposited for that object, using information from the calorimeters and muon

spectrometer. The triggered object must pass some unique selection, or trigger item, such

as at least one jet with ET > 50 GeV. Muons are chosen from a coincidence of hits in

several layers of the MS, while other particles are determined through construction of trigger

towers. Trigger towers are the analog summation of cells within 0.1 x 0.1 (or larger, in
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Figure 2.14: Layout of the muon spectrometer [54].

forward regions) η − φ slices of the detector, that extend radially to the full length of the

shower (Fig. 2.15). Sliding bunches of 4x4 trigger towers are used to determine if a particle of

interest is present. Electron and photon triggers sum all 1x2 or 2x1 pairs of trigger towers in

the center of this 4x4 window. If the ET threshold is large enough to pass the trigger criteria,

the shower does not extend into the hadronic calorimeter, and the shower is isolated, meaning

the 12 cells surrounding the 2x2 core have a sufficiently low energy deposit, the trigger is

considered passed. Taus and hadrons are triggered similarly, however these 1x2 or 2x1 pairs

are then added to the 2x2 core of trigger towers in the hadronic calorimeter.

Wherever an object is detected in the Level 1 trigger it is defined as a region of interest

(ROI)[60], which is used to seed level 2 trigger reconstruction. If the unique combination

of physics object and kinematic selection are not met, the event is discarded. If the event

is selected, it is relayed to the front end electronics to read out the digitized collected in-

formation. This information is then passed to the software based high level trigger (HLT)
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Figure 2.15: Trigger tower layout, where each trigger tower is a 0.1× 0.1 block in η and φ.
The trigger region of interest is surrounded by a 4× 4 window of trigger towers [59].
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[61], that saves events at a rate of 1 kHz. The HLT iteratively attempts to reconstruct the

event, pulling more information from the ROI and read out electronics as it goes if it is

determined the object is worth keeping. Due to improvements in triggering in Run II, high

level jet triggers now make use of the entire calorimeter. Jets are constructed using the

anti-kT algorithm [62], the same algorithm used for offline jet reconstruction (Section 3.1.1),

and take topological clusters as inputs. Topological clusters start from a seed cell that has a

signal to noise ratio (S/N) above 4 [63]. Any cells surrounding the seed cell with a S/N > 2

are added into the cluster, and finally the next closest cells are added in.

At the HLT, the particle may be required to pass an even higher energy threshold to

be kept. These unique trigger requirements from both level 1 and the HLT form a trigger

chain, and each analysis uses at least one such trigger chain to reduce their dataset [64].

For example, the dijet analysis uses the trigger HLT j380 seeded with the L1 j100 trigger,

meaning events where there was at least one jet with ET > 100 GeV in the L1 trigger and at

least one jet with ET > 380 GeV recorded in the HLT are kept. Most events are written to

the “main” steam, but some that may take longer to reconstruct are written to the “debug”

stream to be processed later.

Even after the trigger system reduces the amount of saved events, this still doesn’t

reduce the collected data to a storable amount. For instance, jets are produced with such

abundance that saving all lower momentum jets would still crowd the bandwidth. Therefore,

each unique trigger may also be assigned a prescale (p), where every 1/p events are saved.

The lowest unprescaled trigger is then the lowest in ET a trigger can go without being

prescaled.
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2.4 Monte Carlo

A prediction of SM physics is needed for many stages of ATLAS analyses. It is used in

background predictions, as signal model templates, for calibration purposes, and as a test

set for analysis decisions, so as to remain unbiased with real data. ATLAS uses Monte

Carlo (MC) simulators to predict the physics events seen at the detector, using probability

distributions at discrete steps to produce the entirety of the collision. This analysis uses

Pythia 8.186 [65] with leading-order PDF set NNPDF2.3 LO [30]. Pythia uses the

DGLAP splitting functions as described in Section 1.3 to model parton showers, and the

Lund string fragmentation model [31] as its hadronization model. Pythia steps through an

event in three generalized steps. The first is the hard process, calculating matrix elements

perturbatively. The next step includes all other parton level activity, from ISR/FSR, to

multiple parton interactions and beam remnants. Finally, hadronization and the subsequent

decay of unstable particles is modeled, both of which are non-perturbative in nature. As

mentioned in section 1.3, there are many parameters in PDF and MC generations that must

be tuned to real data, and have the ability to change even within PDF and MC generators.

The tune used for this analysis is the A14 tune [66], which is based on data collected in the

earlier runs of ATLAS data taking at
√
s = 7 TeV.

Besides modeling the physics processes, simulations should also include detector re-

sponse effects to accurately model the collected data. This is done with GEANT4 [67][68].

GEANT4 has a collection of data from many collaborations and experiments to help model

everything from particle interaction in detector material, to particles in electromagnetic

fields, to the physics processes governing all particle interactions. At this stage, both MC

and data are run through the same reconstruction software package called ATHENA [69].
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2.4.1 Signal Models

The new physics models searched for in this analysis have dedicated MC production of their

own. Excited quark and W’ are produced similarly in Pythia 8 with the same tunes and

PDF sets as listed above. For the excited quark model, all possible final states (gq, qγ, qW ,

qZ) are allowed, and production of the q∗ are allowed from both light flavors and b quarks.

The compositeness scale is set to the q∗ mass, and all couplings are assumed to be the same

as SM quarks. MC templates for mass points from 2 TeV to 7 TeV in steps of 500 GeV

are simulated. The Z ′ model samples are produced at various Z ′ masses (mZ′= 1500, 2000,

2500, 3000, 3500) and couplings to quarks (gq=0.1, 0.2, 0.3, 0.4, 0.5) using both MadGraph

[70] and Pythia. The dark matter mass is fixed to 10 TeV, and the coupling to dark matter

is fixed at gDM = 1.5. W ′ is restricted to decay to only qq pairs for all six quark flavors, and

is assumed to have SM couplings. W ′ samples are generated at (1, 1.2, 1.5, 1.7, 2, 2.5, 3, 3.5,

4, 4.5, 5, 5.5, 6, and 6.5) TeV masses. QBH models use the generator BlackMax [14] with

PDF set CTEQ6L1 [71] to produce QBH at MD energy thresholds of (4, 5, 5.5, 6, 6.5, 7,

7.5, 8, 8.5, 9, 9.5, and 10 TeV) with an ADD model with n=6 extra dimensions. Finally, W ∗

samples are generated with the CalcHEP 3.6 generator [72] with NNPDF2.3 nlo PDF,

and passed to Pythia 8 for hadronization. Leptophobic W ∗ of masses 1.8 - 4 TeV in steps

of 200 GeV were produced.
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Chapter 3

Jet calibration

3.1 Jet calibration

Quarks and gluons form jets, a spray of particles from hadronization and parton showers

that must be grouped together and calibrated to get the correct energy, momentum, and

direction of the initial quark or gluon. The process starts with the formation of a jet through

clustering particles together, then goes through a series of energy calibrations.

3.1.1 Jet algorithms

As discussed in Section 2.3, topological clusters are the building blocks for jets, and are an

attempt to represent individual particles that shower through the calorimeter. To combine

them into a jet, a clustering algorithm must be used. The requirements of a clustering al-

gorithms are that they be infrared and collinear safe, meaning algorithms should give the

same jet regardless of the hadronization process. The clustering algorithms cluster topoclus-

ters based on distance between the topocluster and pseudo jet (dij), and the topocluster
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and beam (diB), where the pseudo jet is the clustered jet up until step. These are given by

dij = min(k2pti , k
2p
tj )

∆2
ij

R2 and diB = k2pti , where ∆ij = (yi−yj)2−(φi−φj), and kti, yi, and φi are

the transverse momentum, rapidity, and azimuthal angle of particle i, and R is some chosen

radius of the jet, usually 0.4 or 0.6. p = 1 corresponds to the kT algorithm [73], p = 0 the

Cambridge/Aachen (C/A) algorithm [74], and p = −1 to the anti-kt algorithm [62], which is

currently used. After each topocluster is added the momentum and position of the pseudo

jet is recalculated. The algorithm compares dij and diB; if dij is the smallest of the two, the

topocluster is added into the jet, and if diB is the smallest, the topocluster i is considered a

jet and removed from further computations. The kT algorithm clusters soft particles together

first, building from lowest pT topoclusters to highest pT . This causes an irregular shape in

the jet area, as soft particles can be scattered around the center of the jet. The p = 0 C/A

algorithm has no relation to the particle pT , and so only clusters based on proximity. This

results in close particles being clustered first, and also an irregular shape in the final jet

area. By having p = −1, the anti-kt algorithm clusters soft particles to hard particles first,

resulting in a circular shape jet area, as the particles cluster around a central hard particle.

Therefore if a hard particle has no neighboring hard particles within ∆12 < 2R, a perfectly

conical jet centered around the hard particle is formed. If a second hard particle is within

R < ∆12 < 2R, there will be two jets with uneven boundaries. And finally, if two hard

particles exist within the same radius ∆12 < R, the two will be clustered together to form

one jet, with the cone of the jet being some combination of the cones around each particle.

The anti-kT algorithm has the advantage of being circular, and while not required of a jet,

makes the jet easier to calibrate, as jet shape does not have to be taken into account.
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3.1.2 Truth Jets, Track Jets, Calorimeter Jets, Reconstructed

Jets

The purpose of calibrating jets is to get the reconstructed energy as close to the truth energy

as possible, and for parts of the calibration truth jets are used as the reference object to

compare to.

Truth jets are formed from anti-kt clustering stable, final state particles from MC.

These particles must have a lifetime of cτ > 10mm and excludes muons and neutrinos. In

order to accurately compare MC and data, truth jets will have the same calibration applied

as that applied to data.

Track jets are formed from charged particle tracks in the ID that originate from the

primary vertex. These tracks must pass a series of quality criteria to be considered, including

pT and η requirements (ptrackT > 500MeV and |η| < 2.5), impact parameter selections to

ensure the track originated from the primary vertex, and a criteria on the number of hits

in both the pixel and SCT detectors. To use as a comparison tool, these jets are similarly

clustered using anti-kt. As these jets are not sensitive to pileup, they are used in pileup

calibration of calorimeter jets, and there are no corrections applied to these measurements.

Reconstructed jets (or reco jets) are jets built from topoclusters, and go through the

full calibration procedure. The steps below explain the calibration procedure of these jets.

3.1.3 EM+JES calibration

Jet energies are calculated at the EM scale, meaning there are no corrections for hadronic

loses that cause lower response to hadrons then EM particles (non-compensation). A pT and

η dependent scaling based off a comparison of truth jets in MC to reconstructed jets coverts
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the EM calibration to a hadronic scale [75]. There are several areas where energy is lost or

miscalculated that needs to be taken into account in this calibration sequence. One area is in

the clustering of the jet itself, where energy can be left outside of the final clustered object.

Or, there can be a deficit of energy from energy deposits below the noise threshold, resulting

in them being left off the topocluster. Another area of loss is the calorimeter, where energy

can be lost to dead material such as malfunctioning modules or cracks, or energy can leak

out of the edges of the calorimeter or into the muon spectrometer. Particles can also lose

energy in the inner detector, or other upstream material. Finally, energy measurements are

disrupted by pileup, that must be estimated and removed from the jet [76].

Local Cluster Weighting

Local Cluster Weighting (LCW) is an alternative initial step in jet calibration, applying

corrections to topoclusters rather than the entire jet, bringing topoclusters to the hadronic

energy level [77]. This more accurately corrects jets as calibrations are applied at a finer

resolution. Things like energy deposits outside of the jet are now calculated on a cluster level,

as well as the response of the calorimeter and dead modules. These jets still go through the

same calibration procedure, with the following methods being applied to both EM and LCW

jets. A comparison of the energy response between LCW and EM jets before any calibration

is shown in Figure 3.1, where it can be seen that the energy response is more uniform in

LCW due to the corrections applied at topocluster level.

Origin Correction

The calorimeters only measure energy, so when 4-vectors are assigned to a topocluster or

trigger tower, it is assigned to point to the center of the detector until the full event is

reconstructed. There then must be a correction to point the jet back to its creation point,
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Figure 3.1: Energy response of EM jets (a) and LCW jets (b) before any calibration. As
LCW calibration hasn’t been done at 13 TeV, this presents these quantities as simply a
comparison at 8 TeV [76].

or the primary vertex, and this is done as the first step of the calibration. The energy is

kept the same, but the 4-vector is modified to point to the hard scatter vertex.

Pileup Suppression

The energy of the jet must be corrected for any pileup that may have deposited energy in

or around the jet. The first step is to measure an “ambient” pileup energy ρ, which is an

estimate of the soft elements of pileup [78][79]. This is assumed to be distributed evenly

throughout the detector, so an area correction is applied as pcorrT = pjetT − ρ × A where A

is the area of the jet. ρ is the median pT density of jets in the region |η < 2, that are

clustered with the kT algorithm instead of anti-kT, as this clusters soft radiation together

first (see Section 3.1.1). A residual correction is applied based on the number of primary

vertices (NPV ), also known as in time pile up, and pileup from older collisions, or out of

time pileup (µ) as some correlation between the two remains [78]. The full correction is then

pcorrT = prefT −α× (NPV − 1)−β×µ, where α and β are the coefficients relating the residual

pT dependence to NPV and µ respectively. These corrections are shown in Figure 3.2.
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Figure 3.2: The pT dependence on out of time (a) and in time (b) pileup corrections as
a function of |η| before any corrections, after area based corrections, and after residual
corrections [80].

To handle hard QCD pileup, a second approach is taken. The Jet Vertex Tagger (JVT)

[81] combines several variables in a likelihood estimation to decide if a jet is pileup or not.

These variables contain track momentum information (P trk
T ), which can discriminate if the

jet came from the hard scatter of the primary vertex (PV0) or a secondary vertex (PVn).

corrJV T and RpT are the two variables used in the JVT calculation, and are described in

Eq. 3.1. JV F is applied to jets only up to 60 GeV, as hard pileup only manifests at this

lower energy range.

corrJV F =

∑
k P

trkk
T (PV0)∑

k P
trkl
T (PV0) +

∑
n≥1

∑
l P

trkk
T (PVn)

k.nPU
trk

RpT =

∑
k P

trkk
T (PV0)

P jet
T

(3.1)

52



Figure 3.3: The energy response (R = Ereco/Etruth) as a function of |ηdet|. The calibration
constant applied to the jet energy is then 1/R for each (Etruth

T , |ηdet|) bin [80].

MC JES

The next step adjusts the jet 4-vector to particle level using MC truth information to calibrate

energy across pT and η, where η biases mostly come from different detector geometry having

varying response [75]. Truth jets have pile up and origin corrections applied, to bring them

to the same calibration of reconstructed jets. Reconstructed jets are matched to truth

jets geometrically in R = 0.3 cones, where only isolated jets are matched. To calculate

the calibration scale, a Gaussian is fit to the energy response R = Ereco/Etruth in bins of

(Etrue
T , ηdet), where ηdet is the η position in the detector, rather than the η of the jet, so it

is consistent across all jets. The response is now a function of ptruthT , and must go through

the process of numerical inversion to obtain the response as a function of precoT . For every

ptruthT point, the corresponding precoT can be calculated by precoT = ptruthT × R, shifting each

response value down to the reconstructed momentum. Therefore, response 1/R is applied

to reconstructed jets as a function of Ereco as a correction. Some bias is still seen in the

forward region, so a separate η calibration is derived. ηreco − ηtruth is parameterized as a

function of Etruth and ηdet, where the same numerical inversion technique is applied to get

this correction as a function of Ereco. The jet is then said to be at the EM+JES calibration.
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3.1.4 GSC

The initial particle, either quark or gluon, results in a different energy distribution and width

of the jet. Quarks tend to produce jets with fewer and harder hadrons, while gluons will

have softer hadrons, creating a wider jet which travels a shorter distance in the calorimeter.

The calorimeter response and therefore jet reconstruction are shown to still depend on these

quantities of the jet, so a further calibration is done to smooth out these dependencies while

still maintaining the overall jet energy. This calibration is called the Global Sequential

Calibration (GSC) [82][75]. The quantities used in this correction are the fraction of jet

energy measured in the first layer of the hadronic calorimeter fTile0, the fraction of jet energy

measured in the final layer of the EM calorimeter fLAr3, the number of tracks associated to

the jet with pT > 1 GeV ntrk, the pT weighted transverse distance between jet axis and tracks

with pT > 1 GeV Wtrk, and finally the number of muon segment hits associated with the jet

nsegments. It can be seen that all of these variables have to do with measuring width and depth

of the jet, as well as number of hard hadrons, all which highlight the differences between

gluon and quark jets. These corrections are once again applied by measuring the response as

a function of each variable in bins of (ptruthT , ηdet) and applying the inverted response to the

reco jet 4-momentum, in a similar method to the MC JES corrections. An example response

is shown in Figure 3.4. These are applied iteratively, applying the correction of a variable

before deriving the response for the next.

Punch through correction

The energy of the jet must also account for such high energy particles that they “punch

through” the calorimeter and into the muon spectrometer. Here, the number of muon seg-

ments behind the jet are matched to the jet through geometric matching. The energy of the

jet is then corrected by applying the jet response (precoT /ptruthT ) as a function of the number
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Figure 3.4: One variable used in the global sequential calibration. Jet momentum response
as a function of the fraction of jet energy deposited in the first layer of the tile calorimeter.
The calibration constant applied to jet momentum is then the inverse of the pT response for
each ptruthT and |ηdet| bin [80].

of muon segments hit.

3.1.5 In-situ technique

The final stage of calibration is used to correct for data and MC differences [75]. MC can

never be written to exactly mirror the chaotic collisions and imperfections of the detector,

so a method is devised to account for these discrepancies. This is done by balancing a well

measured object with a jet, and comparing the ratio of reference object and jet pT in both

data and MC, using this double ratio in Eq. 3.2 as the response. The correction is once

again derived as a function of pT and η. The full momentum range is divided up into 3

reference objects - a Z boson for low pT jets, photon for mid pT jets, and multijets for high

pT jets. There is also a single particle response calculated for the very highest pT range,

above 2 TeV. These uncertainties are combined in-situ to provide a smooth response across
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pT . A similar response is calculated to smooth out deviations in η, where a well measured

central jet is the reference object and is compared to a forward probed jet. The propagation

of uncertainties from the reference object to the probed jet also provides a total uncertainty

on the jet energy scale measurement.

preco,refT /preco,jetT

pMC,ref
T /pM,jet

T

(3.2)

η-intercalibration

This calibration corrects for the differences in detector resolution in the central (η < 0.8) and

forward region (0.8 < |η| < 4.5) [83]. Dijet events that are back to back in φ are chosen, with

the reference jet being central and the probe jet being in the forward region. This method is

called the central reference method. To better use all data available and increase statistical

precision, a second method can be used, called the matrix method. Here, many reference

regions are compared to the forward region, and the response for each is calculated. Instead

of a probe and reference jet, there is instead a right and left jet defined by ηleft < ηright.

The response relative to the central region is then determined by a set of linear equations

for each jet η and pavgT bin. This means any dijet event, rather than those with one central

and one forward jet, can be used. Although both method provide similar results, the matrix

method is used for final response estimates while the central reference method is used for

validation. Any difference in jet pT across η is attributed to the varying calorimeter response.

To quantize this difference in pT , the asymmetry given by A =
pprobeT −prefT

pavgT
is used, where pavgT

is the average of the reference and probe jet pT . Similarly to what is done in the EM+JES

calibration, this asymmetry quantity is fit with a Gaussian in bins of pavgT . This then leads

to an estimation of the average response being 〈p
probe
T

prefT

〉 ≈ 2+〈A〉
2−〈A〉 where 〈A〉 is the mean of

the Gaussian fit. This response in data is then divided by the equivalent response in MC

to find a calibration constant. The η-intercalibration is applied before any further in-situ
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Figure 3.5: η-intercalibration correction as a function of ηdet [80].

calibrations.

The η-intercalibration comes with several uncertainties. The MC modeling uncertainty

comes from the difference in smoothed response of two generators, Pythia+Powheg and

Sherpa. The systematic uncertainties come from changes in selections, such as varying the

∆φ separation of the two jets and requiring a veto on third jets, and then recalculating

the response. There is also a statistical uncertainty and finally a non-closure uncertainty,

which comes from an observed non-closure in the range 2 < |ηdet| < 2.6 and estimated as

the difference between data and nominal MC generator after applying the η-intercalibration

correction to data. The response with total uncertainties can be seen in Figure 3.5.

Z+jet

The lowest pT jet range of the in-situ calibration is covered by Z+jet balance [84]. Events

with a Z boson decaying leptonically back to back with a jet are used to calibrate jets up to

500 GeV. Leptonically decaying Z bosons are excellent calibration objects, as the combination

of tracking information for electrons and muons and the small contained showers of electrons

results in much more precisely measured objects than jets, and therefore have relatively small
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uncertainties. The balance between jet and Z boson is determined through the Missing ET

Projection Fraction (MPF), where the total hadronic recoil is used to balance the Z boson.

The response uses the missing transverse energy from all topoclusters along the direction of

the Z and compares it to the Z momentum RMPF = 〈1 + n̂ref · ~Emiss
T

prefT

〉. Since MPF uses the

full hadronic recoil instead of a reconstructed jet, its not sensitive to characteristics of the

jet, such as radius and out-of-cone radiation. Once again the response is plotted in bins of

prefT , but is fit with a modified Poisson distribution that extends to non-integer values, and

the mean of the Poisson is taken as the average response. To get a response as a function

of pjetT , the average jet pT in each prefT bin is used. This response is computed for both data

and MC, with the ratio of the two taken as a calibration factor.

The uncertainties from this analysis are broken down to MC uncertainty, statistical

uncertainty, topological selections, and uncertainty on lepton measurements. The MC un-

certainty is done the same as for η-intercalibration, where two MC generators are used,

and the difference in response between the two is used as an uncertainty. The topological

selections include varying the second jet pT and ∆φ selection, and well as the JVT cut.

Finally, uncertainties on electron energy scale and resolution, as well as muon momentum

scale and resolution are taken from independent studies of Z → ee and Z → µµ events.

The ±1σ uncertainties are propagated through to the calibration ratio. A final out of cone

uncertainty is calculated via the direct balance method, which is described in Section 3.1.5.

Although MPF doesn’t use a jet definition, the uncertainty on the estimate of jet radiation

not included in the jet cone is still applied as an estimate for the reconstructed jet topology.

γ+jet

For a higher range of jet pT , a photon is used in place of a Z boson, and covers the range of

50 < pT < 950 GeV [84]. The overlap in pT range with the Z + jet analysis is combined and

smoothed out in the final stage of the in-situ analysis (section 3.1.5). The concept behind

58



this balance is the same at the Z+jet, however the response is calculated differently. Here,

the Direct Balance (DB) method is used. Rather than using the full hadronic shower, DB

uses a more conventional approach, by taking the jet calibrated up to η-intercalibration and

balancing the photon momentum along the direction of the jet prefT = pγT ×cos(∆φjet,γ). The

response is then taken to be the usual pjetT /prefT . In the same manner as Z+jet, the response

is calculated in bins of prefT and a Poisson distribution is fit to this distribution, with the

mean of the Poisson distribution taken as the response for the average pjetT within that prefT

bin. The statistical, MC, out-of-cone, and topological uncertainties are calculated the same

as in Z+jet. The γ+jet analysis however does not have to take into account electron and

muon uncertainties, but does need to included photon uncertainties. This comes in the form

of a purity uncertainty, accounting for jets misidentified as photons, which is derived from

relaxing photon identification criteria.

Multijet balance

To calibrate high pT jets, the jet is balanced off a collection of lower pT jets, as there is

no single particle balance available [83]. These lower pT jets are already fully calibrated,

meaning the corrections due to η-intercalibration and V+jets (Z and γ+jets) is already

applied. The highest pT jet is taken as the single jet, and the 4-vectors of all other jets are

combined into a single recoil object. These events must have all jets besides the leading with

pT below the calibrated range of 950 GeV. The response is then 〈p
leading
T

precoilT
〉. MJB covers the

momentum range of 300 < pT < 2000 GeV. The distribution is initially binned in precoilT ,

then as with the V+jet analyses is rebinned it terms of pleadingT after taking the mean pleadingT

in each precoilT bin.

The MC uncertainty is similar to V+jets, but the comparison is with the nominalPythia

generator and Herwig++. There are several event selections that produce an uncertainty.

The first being an asymmetry requirement on the subleading and recoil system’s pT , so that
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the subleading jet doesn’t account for more than 80% of the total recoil pT , removing dijet

events. The azimuthal angle between leading jet and recoil system (αMJB) must also be close

to back to back. Finally, the azimuthal angle between leading jet and the next closest jet

with pT > 0.25×pleadingT (βMJB) must be also be sufficiently large, as to not contaminate the

leading jet. These selections are varied to give a 1σ variation. All 1σ uncertainties from the

previous calibrations, V+jet and η-intercalibration, are propogated through as uncertainties

on the subleading jets. Finally, EM+JES uncertainties related to pile-up, punch-through,

flavor composition, and flavor response from the GSC are also propogated through to the

MJB.

in-situ Combination

The final step of the in-situ calibration is combining Z+jets, γ+jet, and multijet balance into

one smooth calibration across jet pT [85]. First, a fine pT binning is introduced, and each

in-situ method is interpolated using second order polynomial splines. Next, the calibration

factor in each large pT bin is determined from the weighted average of the interpolated

contributions from the various methods. Weights are obtained by a χ2 minimization of

the response ratios and their uncertainties in each small pT bin, and is therefore inversely

proportional to the square of the uncertainties. These weights therefore favor the most precise

measurement in each bin. To reduce statistical fluctuations, a sliding Gaussian kernel is used

to smooth the distribution. Finally, to account for any tension between in-situ methods in

a bin, if
√
χ2/DoF > 1 then each uncertainty is scaled by

√
χ2/DoF . The inverse of the

final calibration factor is then applied to data to complete the calibration.

Each uncertainty for a given in-situ method are treated as fully correlated across pT

and η bins, but uncertainties between different in-situ methods are treated as independent.

Each uncertainty in each method is shifted by 1σ, and the interpolation and combination are

then repeated. The difference between the calibration factor when the uncertainty is shifted
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Figure 3.6: Total JES in-situ calibration factor and uncertainty. Error bars show com-
bined systematic uncertainties and statistical uncertainties on each measurement, with the
combined total and statistical uncertainties shown in green and blue bands, respectively [80].

compared to the nominal is then taken as the 1σ variation for that uncertainty. The χ2/DoF

smoothing procedure is also applied to the uncertainties. The calibration as a function of

pT with uncertainties is shown in Figure 3.6.

E/p

To reach the highest ranges of jet pT , beyond 2 TeV, yet another method must be used

[86][87][88]. This method looks at responses of single hadrons and compares the energy of the

hadron measured in the calorimeter to the track pT measured in the ID. E/p measurements

capitalize on the fine momentum resolution of the ID to determine the calorimeter response.

To reduce contamination of other hadrons, only isolated tracks are used. A cone starting

from the extrapolated entrance point to the EM calorimeter from the exit point in the ID and

extending out to the hadronic calorimeter is used to encapsulate the energy of the hadron.

Topological clusters calculated at the EM scale that fall within this cone are summed to

provide a final energy estimate. A cone size of 0.2 is used to minimize shower and background
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Figure 3.7: E/p response and uncertainties as a function of pT for η < 0.6. As this hasn’t
been repeated for 13 TeV data, this result is shown for 8 TeV [88].

contamination. The final mean estimation of E/p is corrected for background contamination

and compared to MC for various bins of η and pT , as shown in Figure 3.7.

To calculate an uncertainty, simulated dijet events are selected with good separation,

and the jet is decomposed into its individual hadrons. The E/p uncertainties for each hadron

are then combined to give an estimate of the JES uncertainty. To calculate this uncertainty

numerically, a set of MC pseudo-experiments are used. For each pseudo-experiment, the

energy response of one hadron is shifted randomly within its E/p uncertainty, and the JES

is recalculated. The final JES uncertainty is then the width of the resolution distribution

of all the pseudo-experiments. The summed energy measurements of individual hadrons

with uncertainty is then compared to the energy of the jet. The uncertainties from E/p

measurements are propogated through to the final JES response.
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3.1.6 Systematic uncertainties

A final set of 88 uncertainty terms come out of the combination, with groupings of these

uncertainties shown in Table 3.1, with a break down of uncertainties as a function of pT

and η shown in Figure 3.8. 88 uncertainties are too many for each analysis to evaluate

and implement separately, and reduced sets of nuisance parameters (NP) are provided as

a final recommendation. To determine these sets, the correlation between all uncertainties

is evaluated using Pearsons correlation coefficient (Eq. 3.3). The full correlation matrix is

shown in Figure 3.9. It can be seen that there are regions of higher correlation, corresponding

to the various ranges of the in-situ analyses. The first step to this reduction of NPs is an

eigen-decomposition [85] on the 75 in-situ uncertainties, where the seven most dominant

eigenvectors are kept, and the remaining are summed in quadrature, reducing to only 8 NPs.

There are still 13 untouched uncertainties - 9 listed in the baseline 88, and 4 more from flavor

composition, flavor response, b-jets, and punch through jets. A second iteration proceeds

to reduce these remaining 13 NPs with the initially reduced 8 NPs to sets of 3 strongly

correlated NPs [89], where once again weakly correlated NPs are quadratically combined

into one NP. An additional NP was added for η-intercalibration nonclosure, making it a

group of 4 strongly reduced NP. This results in four possible sets of reduced NP with 4 NP

in each. All four sets of reduced NP were tested in the dijet analysis and gave similar results,

so the ATLAS recommended first reduced set of NP was used for this analysis.

C(pT , η1, pT , η2) =
Cov(pT , η1, pT , η2)√

Cov(pT , η1, pT , η1)× Cov(pT , η1, pT , η2)
(3.3)

3.1.7 JER

Jet energy resolution (JER) is the measure of how precise jet energy is calibrated. JER is

parameterized by Eq. 3.4, where N parameterizes pileup and electronic noise, S parameterizes

63



Name Description
Z+jet
Electron scale Uncertainty in the electron energy scale
Electron resolution Uncertainty in the electron energy resolution
Muon scale Uncertainty in muon momentum scale
Muon resolution (ID) Uncertainty in muon momentum resolution in the ID
Muon resolution (MS) Uncertainty in muon momentum resolution in the MS
MC generator Difference between MC event generators
JVT Jet vertex tagger uncertainty
∆φ Variation of ∆φ between the jet and Z boson
2nd jet veto Radiation suppression through second-jet veto
Out-of-cone Contribution of particles outside the jet cone
Statistical Statistical uncertainty over 14 regions of jet pT
γ+jet
Photon scale Uncertainty in the photon energy scale
Photon resolution Uncertainty in the photon energy resolution
MC generator Difference beween MC event generators
JVT Jet vertex tagger uncertainty
∆φ Variation of ∆φ between the jet and photon
2nd jet veto Radiation suppression through second-jet veto
Out-of-cone Contribution of particles outside the jet cone
Photon purity Purity of the sample in γ+jet balance
Statistical Statistical uncertainty over 15 regions of jet pT
Multijet balance
αMJB selection Angle between leading jet and recoil system
βMJB selection Angle between leading jet and closest subleading jet
MC generator Difference between MC event generators
pasymmetryT selection Second jet’s pT contribution to the recoil system
Jet pT threshold Jet pT threshold
Statistical components Statistical uncertainty over 16 regions of pleadingT
η-intercalibration
Physics mismodeling Envelope of the MC, pile-up, and event topology variations
Non-closure Non-closure of the method in the 2.0 < |ηdet| < 2.6 region
Statistical component Statistical uncertainty over 25 regions of pleadingT
Pile-up
µ offset Uncertainty of the µ modeling in the MC simulation
NPV offset Uncertainty of the NPV modeling in the MC simulation
ρ topology Uncertainty of the per-event pT density modeling in the MC simulation
pT dependence Uncertainty in the residual pT dependence
Jet flavor
Flavor composition Uncertainty in the jet composition between quarks and gluons
Flavor response Uncertainty in the jet response of gluon-initiated jets
b-jet Uncertainty in the jet response of b-quark-initiated jets
Punch-through Uncertainty in GSC punch-through correction
AFII non-closure Difference in the absolute JES calibration using AFII
Single-particle response High-pT jet uncertainty from single-particle and test-beam measurements

Table 3.1: Descriptions of uncertainties included in the final jet energy scale uncertainty
measurements.
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Figure 3.8: Total jet energy scale uncertainties across jet pT and η [80].

Figure 3.9: Correlation matrix between JES uncertainties over jet pT [80].
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the stochastic effect from sampling of the calorimeters, and C is a constant. JER is similar

to JES measurement in that the resolution is determined from several in-situ analyses to

cover the entire range of jet pT . At the low to mid pT range, Z+jet and γ+jet analyses are

used as before. In the high pT region, a dijet balance is used. The resolution for Z+jet and

γ+jet is taken as the variance of the fitted Gaussians on the distributions of response. The

JER is then computed as a function of pT and η, and Eq. 3.4 is fit to these results.

σ(pT )

pT
=
N

pT
⊕ S

√
pT

⊕ C (3.4)

For JER computed from dijet events, there are two methods. The first is the Dijet

Balance method, where back to back dijet events are selected, and the asymmetry (Eq. 3.5)

in the transverse momentum of the two jets is computed [90]. A Gaussian is then fit to the

asymmetry distribution, and the pT resolution is taken as σA of the Gaussian, resulting in a

relationship between σA and the relative jet resolution as given in Eq. 3.6.

A =
pT,1 − pT,2
pT,1 + pT,2

(3.5)

σA =

√
(σ(pT,1))2 + (σ(pT,2))2

〈pT,1 + pT,2〉
' σpT√

2pT
(3.6)

The second method is called the Bisector Technique, and is what’s currently used [90].

Once again dijet events are selected, however their imbalance is now characterized by the

vector ~PT , which is the sum of the momentum vectors of the dijet event. This vector is then

projected onto a traverse plane (ψ, η), where η is perpendicular to ∆φ of the two jets. The

assumption taken here is that the resolution in both the ψ and η direction at truth level are

equivalent, and any discrepancy is taken as an uncertainty. This leads to the jet resolution as

being defined as Eq 3.7, where the variation σψ and ση are taken from Gaussian fits to PT,ψ
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and PT,η. Once again, these are produced in bins of pT and fit with Eq 3.4 to get constraints

on the fit parameters.

σ(pT )

pT
=

√
(σcaloψ )2 − (σcaloη )2

√
2pT

√
〈cos∆φ12〉

(3.7)

The noise term is determined outside of the in-situ methods, as it dominates in the

low pT region, below the reach of in-situ analyses. This noise term is then kept constant

in the various in-situ fits. The first method for estimating N is the zero cone method. A

random cone selection on minimum bias samples is performed, where a random cone in η−φ

is chosen and the energy within that cone is assigned to be the sum of all energy clusters

within [76]. Another cone opposite in φ and within the same η slice is similarly determined.

The difference in energy of the two cones is assumed to be noise, and is therefore measured as

a function of η. For each η bin, the width of the distribution is taken as the 68% confidence

interval of a Poisson fit.

A second method of predicting the noise term is also performed. The Soft Jet Momenta

method uses the jet energy density ρ as defined in Section 3.1.3. The distribution of r =

(pT −ρA)/
√
A is then expected to be Poisson in nature. The 68% CI is once again computed

for this distribution to give a final estimate of σ = σρ
√
A. The difference in estimation of

N between these two methods is taken as a systematic uncertainty, as well as the degree of

non-closure.

To get a better handle on noise from electronics and threshold effects, MC resolution

at µ = 0 is fit with the parameterization Eq. 3.4. The total noise term is then quoted as

the quadratic summation of the noise term due to pile up (zero cone method) and the noise

term in a no pile up sample (MC).
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Figure 3.10: JER correction and uncertainty as a function of pT for η < 0.8. The total
uncertaintyon the combined results is shown in green, and the statistical uncertainty shown
in blue. As this hasn’t been repeated for 13 TeV data, this result is shown for 8 TeV [76].

3.1.8 Jet Cleaning

By the recommendation of the JetEtMiss group [91], if any jet in the event is considered

“bad”, the entire event should be rejected. There are two versions of jet cleaning, “tight”

and “loose”. Tight cleaning has more stringent selections and is used for analysis that

are sensitive to more non-collision backgrounds, and so as recommended the loose cleaning

was applied here. The selections used to determine a bad jet are there to protect against

sporadic noise, hardware issues, cosmic muon showers, and beam induced backgrounds. The

quantities used are described here:

• fHEC (fEM): Fraction of jet energy deposited in the HEC (EM) calorimeter. Very high

or very low values are indicative of bad jets

• fmax: the fraction of jet energy deposited in the calorimeter layer with the maximum

energy fraction. Very high values point to a hardware malfunction.

• 〈Q〉: the average of the quadratic difference between observed and expected LAr cell
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pulse (QLAr
cell ) over the entire jet. High values correspond to electronic or pileup noise.

• fHECQ (fLArQ ): Fraction of energy in HEC (LAr) calorimeter cells of a jet with QLAr
cell >

4000.

• Eneg: Sum of energy in cells with negative energy. Noisy cells can sporadically deposit

large amounts of negative energy.

A jet is considered BadLoose if any of the following are true:

• fHEC > 0.5 and |fHECQ | > 0.5 and 〈Q〉 > 0.8.

• |Eneg| > 60 GeV

• fEM > 0.95 and fLArQ > 0.8 and 〈Q〉 > 0.8 and |η| < 2.8

• fmax > 0.99 and |η| < 2

• fEM < 0.05 and fch < 0.05 and |η| < 2

• fEM < 0.05 and |η| ≥ 2

3.1.9 Trigger

The trigger used in this analysis is the lowest unprescaled single jet trigger. This is the

HLT j380 trigger, as detailed in Section 2.3. Turn on curves show the trigger efficiency, or

number of events that pass selection divided by the number of events without the selection,

as a function of jet pT , and depends on the resolution of pT/ET . Trigger turn on curves are

made to determine at what jet pT and therefore what mjj the trigger becomes at least 99.5%

efficient. As shown in Figure 3.11, this is a jet pT of 420 GeV and an mjj selection of 1100

GeV, where these are applied as analysis selections.
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Figure 3.11: Trigger turn on cruves for HLT j360 for pT and mjj. The efficiency shown in
defined as the number of jets passing the trigger over the number of jets in that pT bin [92].
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Chapter 4

Resonant Dijet Analysis

4.1 Introduction

The resonant dijet analysis looks for a localized excess in the dijet mass spectrum as a sign

of new particle production. The background is dominated by QCD scattering events, which

produce a smoothly falling distribution over mass. The event selection to optimize signal

production is given below.

4.2 Event selection

• Good Run List (GRL)

• LAr: LAr error rejected

• Tile: Tile error rejected

• SCT: SCT single events rejected
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• Core: Incomplete event build rejected

• Primary Vertex: PV has at least two tracks associated with it

• all jets have pT > 60 GeV and pass cleaning cuts [91]

• Trigger is HLT j380

• Leading jet pT > 440 GeV

• mjj > 1100 GeV

• |y∗| < 0.6

• W ∗: |y∗| < 1.2, mjj > 1717 GeV

The first several selections are cleaning criteria based on ATLAS recommendations. The

trigger selection and the leading jet and mjj selections are detailed in Section 3.1.9. The |y∗|

selection results from the fact that background QCD events are mainly t-channel scattering,

which tend to be in the forward region, while new physics is s-channel scattering, which tends

to be more central. QCD production is proportional to (1− cos θ∗)−2 while q∗ production is

flat in cos θ∗, where θ∗ is the polar scattering angle in the COM frame [93]. Based on this,

the q∗ signal is used to optimize the |y∗| cut by looking at the signal significance (S
√
B) as

a function of |y∗| selections. Finally, the event selections are re-optimized for the W ∗ signal.

This leads to the |y∗| selection increasing to |y∗| < 1.2 due to the W ∗ having an additional

cos2 θ dependence that reduces production in the central region. This change in |y∗| selection

also increases the mass selection, with the trigger becoming fully efficient past mjj > 1600

GeV, and the mjj cut used being the next closest bin in the mass distribution.
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4.3 Binning

The mass binning must find balance between the detector resolution and signal widths. To

prevent any smearing of events across bins, the bins must be wider than the detector mass

resolution, given by the standard deviation of mreco
jj /mtruth

jj in bins of mreco
jj [94]. To get a

smooth resolution R across all mjj, a 6th order polynomial is fit to the binned resolution.

The bins must also not be too wide, as signals must be present over multiple bins to be

statistically significant. After a series of tests [95], the goal was set to maximize the number

of bins, which corresponds to selecting bins as close to detector resolution as possible. An

iterative process was done to determine the final binning, and is outlined as follows:

• Taking an initial bin boundary minitial, guess the bin center to be mcenter = minitial ×

R(minitial)

• Calculated the bin width for a bin centered at mcenter as width = mcenter ×R(mcenter)

• Check if mlow = mcenter − 1
2
(mcenter) ×mcenter is in agreement with minitial - does the

upper boundary of bin i and lower boundary of bin i+ 1 agree within 0.1%?

• if mlow > minitial, shift minitial by -0.01 GeV and go back to step 2

• if mlow < minitial, shift minitial by 0.01 GeV and go back to step 2

• if |mlow−minitial| < 0.001, round mupper = mcenter+
1
2
(mcenter)×mcenter to the nearest

1 GeV

• Repeat with mupper as the new minital

Beyond the available MC up to approximately 8 TeV, it appears the dijet mass resolution

becomes constant, and so the binning is extended out to 13 TeV based on the width of the

last calculable bin. QCD MC was used to validate these studies.
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4.4 Background estimation

The dominant and therefore only relevant background to model for the dijet search is QCD

events. These events are predominately t-channel scattering events, where the two quarks

within each proton exchange a gluon and continue on. As noted by Section 4.2, these events

tend to have small scattering angles, resulting in more events in the forward region. Even

after the y∗ section, there is still a large amount of these events in the search phase. The

resulting mass spectrum is a smoothly falling distribution, extending out to very high mass.

Due to the complexity of QCD, it has been shown that MC estimates of these events do not

perform well enough to use in the analysis. Also, with the increasing luminosity of the LHC,

to get the statistical power from MC that is equivalent to data would require an enormous

amount of time and space. Therefore, for many iterations this analysis has used a polynomial

fitting function to extract a background estimate from data [96][97][98][99][100][101]. The fit

function models the general structure of the desired background, and over the years the set of

usable functions has grown as more terms are added to achieve a better fit. As data collection

has continued, however, the statistical uncertainty on the data grows smaller, meaning even

more features previously hidden by error bars start to show. To address this, the current

fit function approach would need to add even more terms to fit these details, growing even

more complex. For this reason, an alternative but related approach was used to provide a

background estimate.

4.4.1 SWiFt

A Sliding Window Fit (SWiFt) was instead used as a background estimate. SWiFt breaks

the mass distribution up into windows, fits a function to the data in that window, and finally

pieces together a full background estimate. This allows some flexibility to the polynomial fit

functions to better express the features within each window. SWiFt uses a four parameter
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fit function Eq. 4.1 in each window, the same dijet fit function used to fit the entire spectrum

in the previous iteration of the analysis [94]. The fitting is done using Minuit minimizer

[102], where the negative log Poisson likelihood is minimized. The fit result in the middle

bin of the window is used as the background estimate for that bin. The optimal window size

was determined to be 30 bins to the left of the bin and 20 bins to the right. For the low mass

end, bins without 30 bins to the left are filled in with an extended background estimate from

the the last window that does allow the full window size. This same method is done in the

high mass region, with bins within 20 bins from the right most edge of the mass spectrum

being filled in from the last available window. The only deviation from this procedure is for

the W ∗ version of this analysis, in which the window size was re-optimized to instead be 15

bins to the left and 10 bins to the right. Tests for the development of SWiFt are found in

[92].

f(x) = θ1(1− x)θ2xθ3+θ4lnx (4.1)

4.5 Search Phase

The dijet analysis can be broken down into two parts, the first being a generic search,

scanning the mass spectrum for any signs of an excess, and the second setting limits on

specific signal models. The first piece, often called the search phase, uses BumpHunter

[103] to search for excesses in the data, and simultaneously gives an estimate to how well the

background describes the data. Many typically goodness of fits tests are done in this analysis,

including a χ2 and negative log likelihood (NLL) test. These tests do provide insight into

how well the background agrees with the data, however both methods fail when looking to

quantify discrepancies the dijet analysis would be looking for - mainly several adjacent bins

fluctuating up together. Goodness of fits likes χ2 and NLL only account for differences in
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individual bins, not sets of bins. For this, the BumpHunter algorithm was devised.

4.5.1 BumpHunter

The BumpHunter algorithm compares the data to background in varying windows, ranging

from two bins wide to half the mass spectrum. In each window, the log likelihood between

the summed data across all bins in the window, d, and the summed background estimate,

b, are computed. For each window, the Poisson likelihood between these two quantities is

calculated as listed in Eq 4.2, where Eq 4.2 can be written in terms of Gamma functions as

shown in Eq. 4.3. The final BumpHunter test statistic, describing the agreement of the

whole spectrum, is then the log of the smallest likelihood across all windows, t0 = − log tmin.

This method is therefore a theory agnostic search for any signal like excess. The window

corresponding the t0 is then considered the most discrepant region.

t =


∑d

n=0
bn

n!
e−b for d < b∑∞

n=d
bn

n!
e−b for d ≥ d

(4.2)

t =


1− γ(d+ 1, b) for d < b

γ(d, b) for d ≥ d

(4.3)

The look elsewhere effect is something the plagues all LHC analyses. If an experiment is

repeated a large number of times, there is always some probability that statistical fluctuations

can cause signal like excesses. If one is not careful when the dealing of this possibility, it

can lead to false claims of discovery. BumpHunter combats this with its search across all

possible window sizes and locations, as well as its p-value calculation which will be discussed

here [104].
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Given any test statistic, a p-value can be calculated that quantifies the disagreement

between two datasets on a range of 0-1. For hypothesis testing, the p-value states the

probability of getting a result at least as extreme as the one seen, given the null hypothesis.

This means a value of 0 equates to there being no possibility of getting the result given the

null hypothesis is true, and therefore the alternate hypothesis is the better descriptor of the

data.

To estimate a p-value using BumpHunter, pseudo data is produced from the back-

ground estimate - in each bin, the pseudo data is a draw from a Poisson distribution with

expected value equal to the background estimate in that bin. For each pseudo data esti-

mate, the BumpHunter test statistic is calculated between the pseudo data and the original

background estimate. This ensemble of test statistics is then compared to the test statistic

between data and background estimate (observed test statistic), with the final p-value being

the fraction of test statistics which are greater than the observed test statistic. This is based

off the frequentist notion of probability, in which if a hypothesis is true, the probability of

getting a result is the fraction of true results out of an ensemble of repeated experiments.

The distribution of test statistics and the visual representation of the p-value is shown in

Figure 4.1. As seen in the figure, the p-value obtained is 0.83. A p-value of less than 0.05

would indicate that there is a 2σ deviation, and therefore evidence that there is significant

deviation in data from the background estimate, which is not the case here.

4.5.2 Results

The final fit overlaid with data is shown in Figure 4.2, with the most discrepant window

as determined by BumpHunter highlighted with blue vertical lines. The middle panel

is the bin by bin significance [105]. Significance is the number of standard deviations of

the difference between estimate and observation, assuming Poisson distributed data in a
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Figure 4.1: Distribution of BumpHunter test statistics from the fit to 10000 pseudo
datasets. The Bump Hunter test statistic from the nominal background fit to data is shown
as a red arrow. The p-value is then quoted as the fraction of test statistics below the data
test statistic [92].
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Gaussian approximation. In each bin, the Poisson p-value is calculated (Eq. 4.2). The p-value

can be converted to a z-value, or significance, which is the number of standard deviations

of a standard Gaussian that would correspond to the same probability given by the p-value,

and is given in Eq. 4.4. As defined, values less than 0 correspond to no interest and those at

3σ equate to somewhat significant deviation. When plotting the z-values however, it is more

intuitive to assign a sign to the value, with negative values corresponding to the case when

expected is above observed, and positive values when observed is greater than expected.

Therefore, any z-value less than zero is drawn at zero to state there is no disagreement

within the bin, and any z-value above 0 is given a sign based on its observed to expected

comparison. Finally, the relative difference between data and QCD MC simulation with JES

uncertainty bands is shown in the bottom panel. The MC is not used in any other portion

of the analysis, and is simply used for a visual reference.

p =

∫ ∞

zvalue

1√
2π
e−

x2

2 dx (4.4)

4.6 Background Uncertainties

SWiFt uses the same process of background uncertainty estimate as has been done in previous

dijet searches. The background uncertainty is broken down into two pieces, the first being an

uncertainty on the fit function parameters, and the second being the choice in fit function.

4.6.1 Fit parameter uncertainty

The fit parameter uncertainty is a measure of how accurate the fit is. This uncertainty

would ideally be a confidence interval that is determined by the covariance matrix of the

fitted parameters. Using Migrad algorithm within Minuit [102] in the fitting procedure,
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Figure 4.2: The SWiFt background fit to data in red with two q∗ signals overlaid. The most
discrepant window as determined by BumpHunter is highlighted with blue vertical lines,
and gives a p-value of 0.63. The middle panel is the bin by bin significance, and the bottom
panel shows the difference between data and MC with JES uncertainty bands, as comparison
only [106].
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however, the covariance matrix will not be accurately calculated for parameters that are

strongly correlated or a poorly behaved log likelihood function. Therefore, an estimate of a

1σ band is calculated via pseudo experiments. 10000 pseudo experiments are generated by

adding Poisson noise in each bin of the nominal SWiFt background estimate, similarly to

what was done to calculate the BumpHunter p-value in Section 4.5.1. This set of pseudo

data is then refit via the SWiFt fitting procedure, starting with the same initial conditions

as the fit to data. The error is then quoted as the RMS of the fit values on all pseudo

experiments for that bin.

4.6.2 Fit Choice uncertainty

Another uncertainty comes from the fact that the fit function used was a choice, and several

other functions could have been used in its place. To provide an estimate on how much the

background would differ with another fit function, the SWiFt background fitting procedure

is done with a fit function of one degree more than the nominal fit function, in this case the

5 parameter fit function (Eq. 4.5). To get a 1σ uncertainty, a similar procedure to the fit

parameter uncertainty is done. Pseudo data thrown from the nominal background fit is then

refitted with both the 4 and 5 parameter fit function. The RMS of the difference between

the two fits for each pseudo experiment is then taken as the uncertainty in that bin. This

uncertainty is kept as a single sided uncertainty, where the difference between the two is

always taken in the direction of nominal minus alternate fit. The background uncertainties

can be seen in Figure 4.3.

f(x) = θ1(1− x)θ2xθ3+θ4 lnx+θ5(lnx)
2

(4.5)
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Figure 4.3: Uncertainties on the background fit. The background fit is in red, with the
light blue band representing the uncertainty on the fit function choice and the dark blue
representing the uncertainty on the fit parameters [92].
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4.7 Uncertainties

The fit function choice and fit function parameters are the only two uncertainties on the

background, but there are several that effect the signal. All of these uncertainties must be

taken into consideration in the limit setting phase.

4.7.1 JES

The strongly reduced set of JES nuisance parameters from Section 3.1.6 are used as un-

certainty on the signal templates. As discussed, there was found to be little difference in

limit results when each reduced set of NP was used, so the first set was chosen as the final

uncertainty.

4.7.2 Luminosity

The procedure for determining luminosity uncertainty is detailed in Ref. [107]. The lumi-

nosity can be quantified in terms of several parameters (Eq. 4.6), where fr is the revolution

frequency of the bunches, nb is the number of bunches, σvis is the visible cross section, and

µvis is the visible bunch rate per crossing. fr and nb are known quantities, but µvis and σvis

are measured quantities that depend on run conditions and choices in algorithms. σvis is

measured during van der Meer scans [108], the last of which was in 2016, then assumed to

be constant for the remainder of the data taking period. µvis is determined during data-

taking via various detectors. The sources of uncertainty on luminosity come from both the

calibration of σvis and µvis. These include the assumption that these are valid for the entire

data-taking period, as well quantities such as pileup and background estimations. Combined,
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these given a total uncertainty of 2.1%.

L =
frnbµvis
σvis

(4.6)

4.7.3 PDF

PDF uncertainties arise from the choice of one PDF set over another. To estimate this

uncertainty, the NNPDF set used is compared to two other sets, MSTW and CDF. The

differences in PDFs can cause two effects on the signal - the first being a change in acceptance,

which would change the normalization of the signal, and second is a change in shape. It has

been determined that the shape changing component is not viable to include, and is therefore

not ATLAS policy to use it. The shape changing uncertainty is included, and produces only

a flat 1% uncertainty.

4.8 Limits

The limit setting procedure is when specific models are tested. Given a new physics model,

we seek to understand what the probability of that model existing is given the data available.

To do this, normalized histogram templates of the new physics models at evenly spaced mass

points are created by MC, as given in Section 2.4.1. An additional parameter, the signal

strength ν, is introduced, and is the scale of the normalized histogram. The signal strength

is directly related to the maximum number of signal events (Nsignal) that can fit in the data,

producing an upper bound on the cross section (σ) by Nsignal = Lσ, where L is luminosity.

The final limit is then stated as the mass at which the theory predicted cross section intersects

the maximum allowed cross section based on the observations. The limits in this analysis

are produced and interpreted through a Bayesian framework.

84



4.8.1 Bayesian Framework

Bayesian probabilities follows Bayes theorem, which states that any probability can be broken

down as shown in Eq. 4.7, where P (B|A) is the likelihood, P (A|B) is the posterior, and

P (A) is the prior. Priors are the cornerstone of Bayesian statistics, containing some prior

belief in the probability distribution of A. To extend this to a more robust explanation,

the posterior is the probability that a hypothesis is true, given the data. The likelihood is

therefore the probability of getting the data, given the hypothesis, and the prior is some

previous believe of what the probability distribution for the hypothesis is. There are several

expansions that need to be made to this equation to be accurately implemented in the dijet

analysis. First, as all probabilities must be less than 1, P (B) is simply a normalization

constant, and can therefore be replaced with Eq. 4.8. Second, there can be many parameters

in a hypothesis model, and in general there is only one of interest, while the rest are called

nuisance parameters. If the parameters are all independent, there needs to be a prior for each

separate parameter. Finally, the posterior will need to be evaluated only on the parameter

of interest to get limits on that parameter. This then leads to the final equation used in this

analysis Eq. 4.9, where θ are the nuisance parameters, ν is the parameter of interest, and

L(x|ν,θ) is the likelihood, written as standard notation. The integration over the nuisance

parameters is called marginalization [109], so that the final posterior is only with respect the

the parameter of interest.

P (A|B) =
P (B|A)P (A)

PB
(4.7)

P (B) =

∫
P (B|A′)P (A′)dA′ (4.8)
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p(ν|x) ∼
∫
L(x|v, θ)π(ν)

∏
i

π(θi)dθ (4.9)

In the case of the dijet analysis, ν is the signal strength parameter, θ are parameters

related to the uncertainties, and the likelihood is a Poisson likelihood between the observed

data and the background plus signal template. The prior used for the signal strength, π(ν)

is set to be a uniform prior given by Eq. 4.10. This means that any signal strength is

equally probable, making for easier interpretations. To get a meaningful result, the 95% CL

is calculated. In the Bayesian framework, it is interpreted as there is a 95% probability that

the true signal strength value lies below the upper limit. The 95% probability is then the

posterior integrated over the credibility interval [110], which is from 0 signal strength to the

upper limit as seen in Eq. 4.11.

π(ν) =1/νmax for x in [0, νmax]

0 else

(4.10)

0.95 =

∫ µup

0

p(ν|x)dν (4.11)

This upper limit is calculated for each mass point that was simulated with MC, and

limits are interpolated linearly between mass points. This is also done for expected limits.

Expected limits provide insight into what the limits would be given a perfectly null hypoth-

esis, and allow some idea as to how much the observed limits can fluctuate due to statistical

uncertainties before being incompatible with the null hypothesis. Expected limits are there-

fore determined from pseudo data thrown from the nominal background fit, with the signal

strength set to 0. 1σ and 2σ bands are then the quantiles of the collection of upper limits

from the pseudo data at each mass point.

To machinery used to calculate the limits is called the Bayesian Analysis Toolkit (BAT)
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[111]. BAT takes as inputs a likelihood function and priors for all parameters. The likelihood

function passed into BAT is a Poisson likelihood (Eq. 4.12), where di is the number of data

events in bin i, and bi is the number of background events in bin i. It then uses a Markov

Chain Monte Carlo (MCMC) for numerical integration, and for each parameter marginalizes

out all others, returning a posterior distribution for each parameter. MCMC works in a way

that for each step in parameter space, the new parameter value depends only on the step

before it. The particular MCMC algorithm used in BAT is Metropolis [112]. It chooses the

next point in parameter space off a jumping algorithm, which is dependent only on the step

number and current parameter value. If the new values are an improvement in probability,

the new values are accepted. If not, they are rejected with some probability. The MCMC

is initiated with 10000 chains, and when the chains all coverage to the same values, the

integration finishes.

L(θ|x) =
∏
i

bdii e
−bi

di!
(4.12)

4.8.2 Limit background

The SWiFt background for limit setting is slightly different than the nominal background

fit. Instead, for each signal template, a background plus signal fit is performed on the data.

The background used in the limit setting is then the background only component of this fit.

The uncertainties are recalculated as they are done in the search phase.

4.8.3 Uncertainties

The systematic uncertainties are broken down into three categories, which must be applied in

order. These are template uncertainties, which are mass dependent changes; shape shifting,

87



which change the overall shape of the mass spectrum; and scale changing, which change the

overall normalization of the distribution.

Template uncertainties are the fit function uncertainties. The fit function choice and fit

function parameter uncertainties are recalculated in 0.5σ shifts between −3.5σ and 3.5σ to

allow for a linear interpolation of the nuisance parameter between significances. For each

uncertainty, the nominal histogram is normalized to one, and the varied histograms are

adjusted accordingly. The adjustment for each bin in the nominal histogram is then in terms

of the negatively shifted template and positively shifted template. The final uncertainty

histogram for the combination of these two uncertainties is the nominal histogram plus

adjusted histograms for each uncertainty.

Shape changing systematics are the JES systematics. For this, a set of transfer matrices

is determined, where each transfer matrix corresponds to a JES reduced nuisance parameter

and a significance. The significances are in steps of every 0.5σ from [−3.5σ, 3.5σ]. These

transfer matrices relate events in the nominal histogram to those in the shifted, where each

entry [i, j] is the fraction of events in bin i that transfered to bin j. The content in each

bin is linearly interpolated, just as the template based systematics. To apply multiple shape

changing systematics, the matrices are multiplied together and applied to the initial vector

of bin contents.

Scale changing systematics are applied last. Luminosity and PDF uncertainties fall in

this category. This is the simplest implementation of uncertainties, as only the percentage

uncertainty across the whole spectrum is needed, and represent the 1σ change in θ. Therefore,

the combined change on the bin content due to both luminosity and PDF uncertainties is

the product of the percent values times the nominal bin content.
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Model Observed [TeV] Expected [TeV]
q* 6 5.8
W’ 3.6 3.7
W* 3.4 3.6

3.77 - 3.85
QBH 8.9 8.9

Table 4.1: Lower limits on mass of four benchmark models at 95% CL. When an additional
range is included, as in the W ∗ model, the masses between those points are also excluded
[106].

4.8.4 Results

The limits for each signal model are shown in Figure 4.4. The observed and expected limit

on each model are quoted as the crossing point of the theory line with observed and expected

limits lines, and are listed in table 4.1. Limits between mass points are interpolated linearly.

The Z ′ limits are presented differently, as there are two free parameters in the model.

The limits are instead shown in a 2D grid of mass of the Z ′ and coupling to quarks shown

in Figure 4.5. Each (mZ′ , gq) point is run through the standard limit setting procedure,

however the plot now indicates exclusion as the direction of the dashed line, as cross section

rises with increased coupling. The limits are interpolated in g2q and then in mZ′ to give a

smooth limit curve. As this model is a standard for dark matter searches at ATLAS, these

limits can be combined with the limits of other analyses, and is shown in Figure 4.6.

4.9 Gaussian Limits

A useful study, particularly for theorists, is to set limits on a generic signal shape. For this

analysis, a Gaussian is used for this shape. Five Gaussian signals of various widths are used,

from an infinitely narrow (σ/m = 0) to σ/m = 15%. A new procedure is used to evaluate the

limits of a Gaussian signal at particle level, separating out detector effects from the signal.
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Figure 4.4: The 95% CL upper limits on cross section times acceptance times branching
ratio, σ × A×B, on the four benchmark models with the top left q∗, top right W ′, bottom
left quantum black holes, and bottom right W ∗. Limits are interpolated linearly between
simulated mass points [106].
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Figure 4.5: 95% CL exclusion limits on Z ′ mass, mZ′ , and couplings to quarks, gq, with mass
of the dark matter particle MDM and coupling to dark matter gDM kept fixed at 10 GeV
and 1.5, respectively. Cross section increases as gq increases, resulting in exclusions above
the lines being excluded, as indicated by the dashed lines. A smooth curve is drawn between
simulated points by interpolated in g2q then mZ′ [106].
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Figure 4.6: Combined 95% CL exclusion limits on Z ′ mass, mZ′ , and couplings to quarks,
gq, across multiple analyses. The dijet plus initial state radiation of a jet or photon covers
the lowest mass region [113], the low mass dijet trigger level analysis covers the mid mass
region [114], and this analyses covers the high mass region. MDM and gDM are kept fixed at
10 GeV and 1.5, respectively.
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This provides phenomenologists with the ability to directly use the limits provided, without

the need for information on detector response. Any new theory would then in principle only

need to apply fiducial selections and non-perturbative corrections, and choose the folded

Gaussian width and mass that most closely resembles the new particle [92].

4.9.1 Jet Energy Folding

First, events that pass both the fiducial selection at truth level and the corresponding se-

lection at reco level fill a 2D distribution Nmatched
ij . This can then be normalized to produce

a folding matrix (Eq. 4.13), which gives the probability of an event in a truth bin i to be

reconstructed in a reco bin j. In each truth (reco) bin, a truth (reco) efficiency defined as the

fraction of events that pass both the truth and reco selections can be constructed as Eq 4.14

(Eq 4.15). The folding relationship between truth distribution f(mT
jj) and reconstructed

level distribution F (mR
jj), is then given in Eq 4.16, where Ãij is the global transfer matrix,

which takes into account matching inefficiencies caused by detector effects.

Amatchedij =
Nmatched
ij∑

kN
matched
ik

(4.13)

εTi =

∑
kN

matched
ik∑

kN
matched
ik +N truthonly

i

(4.14)

εRi =

∑
kN

matched
ik∑

kN
matched
ik +N recoonly

i

(4.15)

fi 7→ Fj =
∑
i

fi × εTi × Aij/ε
R
j ≡

∑
i

fi × Ãij (4.16)

For signal samples, such as the Gaussian shapes, the global folding matrix is computed
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using QCD MC. The Gaussian is then folded with the detector effects indicated in the

folding matrix. When the resolution is small, the effects of folding are more noticeable, as

detector effects are not perfectly Gaussian, and a perfect Gaussian was being used in the

reco Gaussian limits. At larger resolution, this effect fades as the Gaussian width is much

larger then the effect of the detector resolution. To improve limits, an approximation of a

Gaussian resolution effect and a finer truth binning is used in the computation of the global

folding matrix.

4.9.2 Results

The final limits are presented in Figure 4.7, where the observed limits for various widths

of the Gaussian signal are shown in different colored lines, and the expected limit for the

σ/M = 0 Gaussian is shown as a black dashed line, with 1σ and 2σ uncertainty on the

expected limit shown as green and yellow bands. The limits are shown on σ × A × BR for

a hypothetical Gaussian shaped signal with cross section σ and unspecified branching ratio

(BR) to jets.
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Figure 4.7: The 95% CL upper limits on cross-section times acceptance times branching
ratio to two jets, σ×A×BR, for a hypothetical signal with a cross-section σG that produces
a Gaussian contribution to the particle-level mjj distribution, as a function of the mean of
the Gaussian mass distribution mG. Observed limits are obtained for five different widths,
from a narrow width to 15% of mG. The expected limit and the corresponding ±1σ and
±2σ bands are also indicated for a narrow-width resonance [106].
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Chapter 5

Gaussian Processes

5.1 Gaussian Process Approach

As mentioned in Section 4.4, the polynomial fit to data will no longer be a viable option for

a background estimation as more data is collected. As a more stable alternative to SWiFt,

Gaussian Processes were tested as a new background fitting procedure. A Gaussian Process

is defined as “a collection of random variables, any finite number of which have a joint

Gaussian distribution” [115, 116]. Conceptually, Gaussian Processes provide generalization

of the background fit f(x) that is not tied to a particular functional form with a fixed

number of parameters. Instead, the number of events at x is modeled as a Gaussian and

the relationship between the intensity at different points is encoded in the covariance kernel

Σ(x, x′). In this way, GPs allow for the description of a much broader set of functions (see

Fig. 5.1) and provide a natural way to incorporate auxiliary information and prior knowledge.
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Figure 5.1: Schematic of the relationship between an ad-hoc function and the GP. An ex-
ample toy dataset is shown (left) with samples from the posterior for an ad-hoc 1-parameter
function (red) and a GP (green). Each posterior sample is an entire curve f(x), which
corresponds to a particular point in the (center) plane of f(xA) vs. f(xB). The red dots
for the ad-hoc 1-parameter function trace out a 1-dimensional curve, which reveals how the
function is overly-rigid. In contrast, the green dots from the GP relax the assumptions and
fill a correlated multivariate Gaussian (with covariance indicated by the black ellipse). The
covariance kernel Σ(x, x′) for the GP is shown (right) with Σ(xA, xB) corresponding to the
black ellipse of the center panel.

5.1.1 Gaussian Process Formulation

In an ideal case of background fitting, the background intensity f(x) as a function of ob-

servable x would be known exactly. In this scenario, the expected total number of events

is ν ≡
∫
f(x)dx and the probability density p(x) ≡ f(x)/ν, which leads to the unbinned

extended maximum likelihood for a dataset D = {x1, . . . , xN} with N observed events

p(D) = Pois(N |ν)
N∏
i=1

p(xi) . (5.1)

In the dijet analysis, this intensity f(x) is a background model such as the four parameter

polynomial fit function discussed in Section 4.4. This can be represented as some functional

form with free parameters θ, given by f(x|θ). For the studies presented here, the functional

form will be the 3 parameter fit function given in Eq. 5.7, as it was the fit function used in

the Run I dijet analysis [94], which is used here as it was the most recent publicly available

dataset at the time of this work. In the dijet case, the parameters θ are only constrained

by the data D; but more generally some auxiliary information a (eg calibration measure-

97



ments, theoretical considerations, etc) may be used to constrain the parameters through an

additional constraint term leading to the likelihood

p(D, a|θ) = Pois(N |ν(θ))
N∏
e=1

p(xe|θ) · pconstr.(a|θ) . (5.2)

f(x|θ) = θ0(1− x)θ1xθ2xθ3 log x (5.3)

In addition to constraint terms in the likelihood corresponding to auxiliary measurements

a, it can be useful to incorporate terms in the likelihood that reflect prior knowledge; in the

dijet case, this could be uncertainties on cross section measurements or JES.

In situations with many events, the likelihood can be approximated with a binned likeli-

hood where the Poisson counts in each bin yi are accurately approximated with a Gaussian

distribution. In that case, the likelihood of Eq. 5.2 can be approximated as

p(y, a|θ) =
∏n

i=1 Pois(yi|f̄(xi|θ)) · pconstr.(a|θ) (5.4)

≈ Gaus(y|f̄(x|θ), σ2) ·Gaus(f̄(x|θ)|µ,Σ) ,

where x are the bin centers, y are the observed bin counts, and f̄(x|θ) are the expected

bin counts from averaging f(x|θ) within the corresponding bin. The first term of Eq. 5.5 is

the per-bin Poisson statistical fluctuation, while the second term is an n × n multivariate

Gaussian distribution that approximates the effect of pconstr.(a|θ) propagated to the expected

bin counts f̄(x|θ).

Gaussian Processes provide a natural way to expand around the overly restricted parametrized

model and fill in the full space of possibilities. Instead of providing a parametric form, the

mean is modeled directly as (µ) and covariance functions (Σ) of the Gaussian process defined
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as

µ(x) = E[f(x)] (5.5)

Σ(x, x′) = E[(f(x)− µ(x))(f(x′)− µ(x′))] . (5.6)

This covariance kernel Σ is then augmented with the diagonal (uncorrelated) statistical

component σ2(x)I to provide the likelihood for the observed bin counts y.

To use a GP for high-energy physics, the kernel should directly encode our understanding

of the underlying physics, which is manifest as covariance among the bin counts.

5.1.2 Covariance Structures from Physical Quantities

One such physical quantity that can be encoded into the kernel is JES. As seen in Sec-

tion 3.1.6, the ATLAS JES uncertainty is only a few percent for jets with pT of around 1

TeV where data are plentiful, while the the limited size of observed examples for higher-pT

jets requires an alternate approach to estimating the JES. The resulting JES uncertainty

therefore grows rapidly with mjj and has an impact of at most 15% [88]. To illustrate

the covariance due to the JES uncertainty, consider a simplified two-parameter model for

the impact on the mjj distribution: J(z, θ) = 1 + 15% θ1z
4 + 5% θ2(1 − z), where z is the

true dijet invariant mass and zmax = 7 TeV. The best fit 3-parameter fit to data (as shown

in Figure 5.2)is used as a proxy for f(z) and a smearing is applied to mimick real data

with W (x|z, θ) = Gaus(x|z J(z/zmax, θ), σx), where σx = 2%z is the dijet invariant mass

resolution [106].

By assuming a uniform prior and an appropriate scaling for θ, samples can be drawn from

the posterior Gaus(θ1|0, 1)Gaus(θ2|0, 1) and propagate the uncertainty in θ through to the
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Figure 5.2: Invariant mass of dijet pairs reported by ATLAS [94] in proton-proton collisions
at

√
s = 13 TeV with integrated luminosity of 3.6 fb−1. The blue line is a fit using the first

three terms of Eq. 5.7. The bottom pane shows the significance of the residual between the
data and the fit.

predicted bin counts f̄(x|θ) as in Eqs. 5.4 and 5.5. This allows the covariance matrix Σ to be

built using the simulation shown in Fig. 5.3. As expected, there is roughly a block-diagonal

structure defined by low and high mass regions.

Similarly, the uncertainty in the theoretical distribution arising from PDF uncertainty

can be added to the kernel, such as that in the ATLAS 7 TeV analysis [117, 118]. Figure 5.3

corresponds to the PDF uncertainties described in Ref. [119] for NLO calculations from

POWHEG-BOX [120, 121] using the Sno-jet PDF sets provided in NNPDF3.0 [122]. In this case,

sum rules in the PDFs lead to anti-correlation between low- and high-mass regions.

5.1.3 Implicit covariance in current background models

It is also instructive to examine the effective covariance implied by current approaches: the 3

parameter fit and the SWiFt. Again this is studied through the relationship of Eqs. 5.4 and

100



Figure 5.3: Correlation coefficients between pairs of mass bins due to variations in the jet
energy scale (left) or parton distribution functions (right). These demonstrate the broad but
smoothly varying influence of these effects on the mass spectrum.

5.5. In the case of the 3 parameter fit function of Eq. 5.7, the posterior can be constructed

for p given the ATLAS data shown in Fig. 5.2 and a uniform prior on p. The posterior is

sampled using emcee [123], a Python implementation of the affine-invariant ensemble sampler

for Markov Chain Monte Carlo (MCMC) [124]. From the posterior samples of p ∼ p(θ|y)

the covariance matrix Σ can be built, and is shown in Fig. 5.4. The global structure of the

covariance resembles those arising from PDF uncertainties, but recall that the model only

sweeps out a 3-dimensional subspace in the much larger space of functions with this same

covariance.

f(x) = p1(1− x)p2xp3 (5.7)

In the case of the SWiFt approach, the covariance is estimated from a table of f(xi)

values, but instead of posterior samples, a single fit for each of 50 mass windows is performed.

For the kth window, if the bin is outside the window the fit recorded is 0, otherwise f(xi|p̂k)

is recorded, where p̂k is the best fit value of p for the fit restricted to the window. The

covariance is calculated from these recorded values. This method should create a covariance

structure which is limited to the diagonal band, as each fit includes only a small portion

of the distribution – indeed this is what is seen in Figure 5.4. While the SWiFt approach

101



Figure 5.4: Correlation coefficients between pairs of mass bins from many samples of the
global ad-hoc fit (left) and the sliding window fit (right). The plot of the global fit reveals
non-physical pivot points where the ad-hoc function is less flexible. The sliding window fit
has a strictly limited correlation, by construction.

provides more flexibility and better scaling to high luminosities than a global fit, the piecewise

approach to background modeling complicates the downstream statistical analysis.

5.1.4 Kernel construction

This kernel describes a maximal covariance with amplitude A that falls off with a length-

scale l. If |x − x′| � l, then the covariance is very small. The parameters of the kernel are

traditionally referred to as hyperparameters, and the values of the hyperparameters can be fit

either a priori (eg by considering simulated or control samples), or to the data simultaneously

with the hypothesis test itself.

For the dijet analysis, it is clear that a varying length scale is needed. For this reason,

we start with the Gibbs kernel [115, 125], which has a non-constant length scale l(x). In this

case, a length scale which increases with mass is used to describe the tightening smooth-

ness requirements in the low-statistics tail, and to accommodate the dijet mass data from

ATLAS, which has bins whose width increases with mass. For this reason, the length scale

function used is linear with mass, given by l(x) = (bx + c). The definition of the length
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scale is critical, as it defines the smoothness of the GP description, which prevents the back-

ground model from accommodating the localized deviations from smoothness which are the

resonance signals. Finally, an amplitude term is used to model the variance with a falling

exponential term. The final kernel is:

Σ(x, x′) = Ae
−(x+x′)+d

2a

√
2l(x)l(x′)

l(x)2 + l(x′)2
e
− (x−x′)2

l(x)2+l(x′)2 (5.8)

The parameters of the kernel (A, a, b, c, d) become the hyperparameters of the GP, and

will be determined during the fit to the data, described below.

5.1.5 Mean function

It is common to use µ(x) = 0 for the mean of a GP, partially because once conditioned

on the observations y, the posterior mean usually adapts to this offset remarkably well.

However, the background fit is very large, which would make modeling the background

as fluctuations around a zero mean would be quite difficult. Also, there already exists a

reasonable background estimate in the three-parameter fit function, so there is no reason

not to use it. Therefore, the three parameter fit function is used as the mean µ(x) of the GP,

which contributes an additional three hyper-parameters, (θ0, θ1, θ2). The results are very

robust to the choice of the mean, as the key to the performance is really in the choice of the

kernel.. Rather, the mean only needs to roughly correspond to the underlying structure of

the distribution, while the covariance function encodes the smoothness.

In the case of signal-plus-background hypothesis testing with a known signal model

fs(x|θs), the mean function also includes the signal contribution. Due to the linear relation-

ship between y and µ(x) in the Gaussian, this is numerically equivalent to subtracting the

signal expectation from the observation and modeling the residuals with the background-only
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GP.

5.1.6 Incorporating GPs into the statistical procedure

GPs are most commonly presented in a Bayesian formalism where the mean and covariance

kernel are interpreted as a prior distribution over the space of functions. Then given the

observations y the GP is updated to represent a posterior distribution over the space of

functions. Because both the prior and the posterior are Gaussians there are explicit formula

for the posterior mean and covariance that rely on basic linear algebra [115]. In particular

µ(x∗|y) = µ(x∗) + Σ(x∗,x)[Σ(x,x) + σ2(x)I]−1(y− µ(x)) (5.9)

and

Σ(x∗,x
′
∗) = Σ(x∗,x

′
∗) (5.10)

− Σ(x∗,x
′)[Σ(x,x′) + σ2(x)I]−1Σ(x,x′

∗) ,

where x∗ are the values where the posterior GP is being evaluated and x are the values being

conditioned on. In a typical binned analysis x and x∗ would both be the the bin centers. In

addition, fitting the hyperparameters of a GP is usually based on maximizing the marginal

likelihood, which has the explicit form

logL = −1

2
log |Σ| − (y− µ(x))TΣ−1(y− µ(x))− n

2
log 2π . (5.11)

In order to take advantage of the closed form solutions above and fast linear algebra imple-

mentations, the statistical fluctuations are typically approximated as σ2(x) = y instead of

the more accurate Poisson mean.
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5.1.7 Fitting Procedure

In the studies below the marginal likelihood of Eq. 5.11 is used for fitting the hyperparame-

ters, which are optimized using Minuit [102]. In later studies, a another approach is used.

This is a two-step process where one first calculates the posterior mean of Eq. 5.9 and then

uses µ(x) as the intensity for the Poisson likelihood of Eq. 5.1 or its corresponding binned

version. The background model can be conditioned on the signal hypothesis being tested,

since the signal’s parameters are present in the prior mean function.

The software package george [126] is used for the GP regression, which has been

extended by implementing the custom kernel.

The posterior mean and posterior correlation matrix from fitting the GP to the ATLAS

dataset are shown in Figs. 5.5 and 5.6. By visual inspection, the mean function fits the

data well and the correlation is constrained near the diagonal, with the off diagonal dying

off quickly. This structure reflects the locality of the GP, where nearby bins are closely

connected but bins far from each other in mass are uncorrelated.

5.2 Performance studies

Figures 5.5 and 5.6 demonstrate the fit (posterior mean) of the GP to a single dataset

collected by ATLAS in proton-proton collisions at
√
s = 13 TeV with integrated luminosity

of 3.6 fb−1 [94]. More important is the characterization the GP approach from fits to an

ensemble of datasets with independent statistical fluctuations and increasing luminosity. Toy

samples are constructed by smoothing the ATLAS data, scaling it to the desired luminosity,

and generating independent samples by adding Poisson noise to each bin.

Below, the performance of the GP approach in these datasets is presented under two
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Figure 5.5: Invariant mass of dijet pairs reported by ATLAS [94] in proton-proton collisions
at

√
s = 13 TeV with integrated luminosity of 3.6 fb−1. The green line shows the resulting

Gaussian process background model. The bottom pane shows the significance of the residual
between the data and the GP model.

Figure 5.6: Correlation between pairs of mass bins from the GP fit, which shows the largely
diagonal nature, with increasing length scale at higher mass.
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aspects of hypothesis testing:

• Background-only tests: these studies test whether the GP has sufficient flexibility to

describe the typical background spectrum, assuming no signal.

• Signal-plus-background tests: these studies combine a GP background with a specific

signal model and tests the power of a hypothesis test based on the GP background.

This requires that the GP model not be so flexible that it can absorb the localized

signal into the background model.

5.2.1 Background only tests

The performance of the GP background model is evaluated in the toy datasets described

above. For each toy dataset, the GP is fit to the dataset, the posterior mean from Eq. 5.9 is

extracted, and a χ2 quantity from
∑

i(yi − µ(xi|y))2/µ(xi|y) is evaluated; note that in this

test the posterior covariance matrix of Eq. 5.10 is not incorporated. Figure 5.7 shows the

±1σ about the average µ(x|y) from these toys, with the ATLAS data to guide the eye, and

the ad-hoc fit for comparison. The GP based on the kernel in Eq. 5.8 has more flexibility at

high mass, but also provides a superior fit, as measured by the χ2/dof statistic. The number

of degrees of freedom for the ad-hoc fit is 3, while the GP has 8 hyperparameters (3 from the

mean function and 5 from the kernel). Figure 5.8 shows the distribution of χ2/dof, which

peaks near χ2/dof = 1 for the GP model and is significantly larger than unity for the ad-hoc

function.

A critical test of the Gaussian process model is its robustness with increasing luminosity,

where the ad-hoc approach has failed in collider data [94, 106]. In Figure 5.9, the mean and

standard deviation of the χ2/d.o.f. are shown as a function of integrated luminosity in the

toy data, demonstrating the robustness of the GP approach.
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Figure 5.7: Tests of the Gaussian process and three-parameter ad-hoc function in toy data
generated from the ATLAS data. Shown are the ±1σ band about the mean background
models, with the ATLAS data overlaid for reference.

Figure 5.8: The distribution of χ2 per degree of freedom in toy data generated from the
ATLAS data at luminosity of 3.6 fb−1. While the goodness of fit for the ad-hoc function
degrades with more data, the GP is robust.
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Figure 5.9: Mean and standard deviation of the χ2/d.o.f. measure in toy data generated
from ATLAS collisions, as a function of integrated luminosity, for the ad-hoc fit and the
Gaussian process.

5.2.2 Background plus signal fits

Adding more flexibility to the background model guarantees a better fit to background-

only toys; however, this generally comes at the loss of power in a search for a signal. A

background model that is flexible enough to incorporate a signal contribution will have no

discovery power.

Here, the GP model’s performance is tested in the toy data constructed as described

earlier, but with signal injected as well.

A generic Gaussian resonance is used as the injected signal, and performed tests with

various values for the signal mass, width and amplitude. The hyperparameters of the GP

(both for the background mean and kernel functions) are fixed from the fit to the ATLAS

dataset; in a realistic application, these would be fixed from fits to simulated samples. Only

the three parameters (amplitude, mass, and width) of the Gaussian signal are fit. For the

parametric fit, all six parameters are fit: the three fit function parameters and three signal

parameters. An example of this background-plus-signal fit is shown with an injected 2.5 TeV

Gaussian signal shape in the top panel of Fig. 5.10.

This single example is illustrative and qualitative, but the statistical test for the presence
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Figure 5.10: Invariant mass of dijet pairs reported by ATLAS [94] in proton-proton collisions
at

√
s = 13 TeV with integrated luminosity of 3.6 fb−1 with a false signal injected atmjj = 2.5

TeV. The green line is the Gaussian process background-only model; the red line is the signal-
plus-background model. The central pane shows the significance of the residual between the
data and the background fit; the bottom-pane shows the significance of the residual between
the data and the background-plus-signal fit.

110



of a signal in observed data relies on the likelihood ratio Λ between the background-only and

the signal-plus-background hypotheses. The likelihood ratio between the two hypotheses in

cases background-only toy data as well as background-plus-signal toy data is calculated. This

involves the use of Eq. 5.9 twice, as the posterior mean background prediction is different

for the background-only and signal-plus-background fits. This is analogous to the profile

likelihood ratio where there are two fits and the conditional maximum likelihood estimate

of the background in the background-only case is generally different from the background

estimate in the signal-plus-background fit.

The distribution of −2 log Λ is shown in Figure 5.11 for background-only toys for both

the 3-parameter ad-hoc function and the GP. In these fits the signal mass and width were

fixed and the signal strength was treated as the parameter of interest. In the parametric

case, Wilks’ theorem can be invoked, which says this distribution should follow a chi-square

distribution if the true distribution generating the data corresponds to some point in the

parameter space of the background model [127]. However, in this case, the background-

only toys were not generated from the ad-hoc function, instead they were generated from

a smoothed version of the ATLAS data. Nevertheless, the distribution closely tracks a

chi-square distribution.

In the case of the GP, there is an issue in that the likelihood of Eq. 5.1 only reflects the

Poisson fluctuations, while the constraint terms the kernel encodes are not reflected in this

likelihood. In this case there is not significant tension between the data and the covariance

kernel so the likelihood ratio distribution also tracks a chi-square distribution. In general,

this will need to be checked explicitly.

Next the power of the search is addressed by considering the distribution of −2 log Λ for

signal-plus-background toys with signals of various masses. Figure 5.12 shows the mean of

the −2 log Λ distribution for the ad-hoc function and the GP model. The added flexibility of

the GP does not degrade the power of the search – in fact, the GP has more sensitivity to a
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Figure 5.11: Distribution of −2 log(Λ), where Λ is the likelihood ratio between the
background-only and the background-plus-signal hypotheses, for toy data with no signal
present, shown for both the ad-hoc fit (top) and the Gaussian process background model
(bottom). Overlaid in red is a χ2 distribution with one degree of freedom.

Figure 5.12: Mean log likelihood ratio (Λ) between the background-only and the background-
plus-signal hypotheses, shown both for the of Gaussian process model and the ad-hoc fit,
in 1000 toy data sets for varying injected signal mass. Solid and dashed lines indicate the
threshold for 3σ significance and for an α-level of 0.05.
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signal at low mass, while the two methods are comparable at high mass. This gain in power

is logically possible because the distribution used to true generate the background (which is

normally unknown) does not correspond to the ad-hoc function exactly. In this case the GP

background model is able to more accurately follow the true background (generated from

smeared ATLAS data) than the ad-hoc function.

If a signal is detected, it is also vital to be able to extract the signal parameters. For

a two choices of signal mass (mjj = 3 and 5 TeV), fits to signal-plus-background toys are

performed by fitting the mass, width, and signal strength. Figure 5.13 shows that the

extracted signal width and yield are reliable estimators of the true values.

5.3 Modeling generic localized signals

The search for specific resonances above a smooth background is only one type of search

strategy. More broadly, a background fitting procedure should be sensitive to localized de-

viations that take different, potentially unanticipated shapes. For instance, a cascade decay

can lead to triangular distributions with a sharp endpoint [128], though helicity correlations

can modify this shape in detail. Searches like this require balancing a small number of tests of

the background-only model using generic properties of a signal and a larger number of tests of

the background-only model using more specific signal properties. A single number-counting

search using the full mass range is very generic, but has very little power. Conversely, an

enormous scan over specific hypothesized signals individually have more power, but this

strategy suffers from a large look-elsewhere effect.

Historically, the search for generic signals over a background model usesBumpHunter [103],

as done in the dijet analysis. This approach imposes only minimal structure on the signal:

that it is a localized, contiguous excess. This approach can be effective, but it has signifi-
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Figure 5.13: Extracted signal parameters versus true parameters for an injected Gaussian
signals with mjj = 3 TeV (top) and mjj = 5.5 TeV (bottom). Left: the extracted signal
width (σ) for a fixed signal yield. Right: the extracted signal yield (N) for a fixed signal
width (σ = 250 GeV). Results are shown for both the Gaussian Process background model
(green) and the ad-hoc fit function (blue).

114



cant practical drawbacks as it contains many ad-hoc algorithmic elements. For example, in

common usage BumpHunter requires that the excess be localized to at least two bins, and

at most half of the bins. This algorithmic characterization of the signal is effective, but it is

difficult to interpret and characterize statistically. Secondly, to address the look-elsewhere

effect, this approach explicitly accounts for multiple testing and calibrates the distribution of

the test statistic by applying the entire procedure to background-only toys. This requires a

global background-only prediction, which is complicated when relying on the data to help fit

the background model. In particular, if a signal is present in the data, it is unclear how this

impacts the background estimate. Thus far, the main strategy has been an iterative back-

ground estimation procedure that defines a signal region and extrapolates the background

fit into this region. This approach introduces a coupling of algorithmic decisions with the

statistical considerations. Similarly, in the context of a sliding window background model,

the procedure is further complicated by the fact that there is not a single global background

prediction, but a set of correlated background predictions specific to the signal window under

consideration.

In this section, an alternative approach is considered, which uses a GP to model a

generic localized signal. In this case, the basic physical requirement of the localized signal

can be encoded directly in the kernel of the signal GP, rather indirectly through ad-hoc

algorithmic choices. This approach allows signal-plus-background fits where the signal GP

absorbs the localized excess and the background GP accounts for the background. The

background component from such a fit can provide global background estimate to be used

in the context of a BumpHunter approach even when a signal is present in the data. More

importantly, this approach enables hypothesis tests of the background-only model against

a weakly specified signal-plus-background model directly based on the likelihood ratio or

Bayes factor.

The study of this approach is initiated with a specific signal GP described by the following
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Figure 5.14: Top, an example fit with both a GP background and signal model to toy data
with injected triangular signal. The panes below show the significance of residuals between
the toy data and the background model, the toy data and the background-and-signal model.
Bottom, the residuals between the toy data and the background model, overlaid with the
injected signal and the fitted GP signal.

kernel

Σ(x, x′) = Ae−
1
2
(x−x′)2/l2e−

1
2
((x−m)2+(x′−m)2)/t2 , (5.12)

which has three main terms. The first term A is an overall amplitude for the signal. The

second term is the standard exponential-squared kernel with length scale l. The third term

is an envelope that localizes the signal around a mass m with a width t, which is analogous

to the mass window.

To demonstrate the flexibility of this kernel, signal-plus-background fits for a variety of

signal shapes were performed. Figure 5.14 shows the background extraction on both a linear

piecewise triangular signal and Figure 5.15 shows a square signal; both have been smeared

to model detector jet energy resolution effects. These studies indicate the GP signal is able

to accommodate a wide variety of signal shapes leaving the background model responsible

for for the smoother background-only component.
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Figure 5.15: Top, an example fit with both a GP background and signal model to toy data
with injected square signal. The panes below show the significance of residuals between the
toy data and the background model, the toy data and the background-and-signal model.
Bottom, the residuals between the toy data and the background model, overlaid with the
injected signal and the fitted GP signal.

5.3.1 Look-elsewhere effect

This approach does not eliminate the look-elsewhere effect that arises from considering multi-

ple signal hypotheses. Instead of a finite number of search windows or signal hypotheses, the

GP describes a continuous family of signal hypotheses. This is not fundamentally different

than the look-elsewhere effect that arises from considering a signal model with an unknown

mass or width, though it is in a non-parametric setting. While both GP and the the simple

example of an unknown mass correspond to an infinite number of signal hypotheses, they

are highly correlated and the effective trials factor is finite [104, 129].

Fundamentally, the fact that some parameters of the signal model (eg mass and width)

have no effect in the background only-case (in statistics jargon, they are not identified under

the null [130]) means that the conditions necessary for Wilks’s theorem are not satisfied and

the log likelihood ratio distribution will not take on the chi-square form. While there are
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approaches to estimate the asymptotic distribution of the likelihood ratio test statistic for

signal models with one or a few parameters [104, 129], we are not aware of an asymptotic

theory in the case of GPs. The lack of an asymptotic theory has little practical impact since

even in the case of signal models with a few parameters, the asymptotic distributions are

only accurate for very significant (& 4σ) excesses, and background-only toys are usually used

in the interesting region of 2− 5σ.

The effective trials factor will depend on the specific background model and the kernel

used for the signal GP. To illustrate this, the log-likelihood ratio distribution for an ensemble

of background-only toys is evaluated, similar to what was done in Fig. 5.11. In this case the

mass hyperparameter m is fit in the range 2-5 TeV and the hyperparameter t = 600 GeV is

fixed, which specifies that the signal is localized roughly to a 600 GeV region. Naively, the

trials factor from allowing the mass to float (range over width) to be about 6. In addition

two different values for the length scale are considered: l = t and l = t/3. Smaller values for

l allow the signal GP more flexibility within the effective mass resolution, and thus further

increase the trials factor. Figure 5.16 shows the log-likelihood ratio distribution from these

tests, confirms the intuition that smaller values of l imply a larger look-elsewhere effect,

and demonstrates that it is straight forward to directly calculate the global p-value from

background-only toy Monte Carlo.

5.4 Conclusion

This analysis presented results of the resonant dijet analysis with Run II data, totally 37fb−1.

Improved limits were set on the mass of four new physics signal models, as well as limits on

mass and coupling of a dark matter model. Also, a new folding procedure was implemented

to allow for more interpretable limits on generic Gaussian signal models. Finally, a new

background fitting procedure was designed and tested. This Gaussian Process Regression
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Figure 5.16: Distribution of −2 log(Λ), where Λ is the likelihood ratio between the
background-only and the background-plus-signal hypotheses, for toy data with no signal
present. The deviation from the χ2

1 distribution is due to the look-elsewhere effect. The top
plot corresponds to a signal GP with l = t/3, which has more flexibility and a larger trials
factor than the bottom plot with l = t.
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demonstrated it’s potential to replace current background estimation techniques by consis-

tently outperforming the standard dijet fit function. In future analyses, Gaussian Processes

will be thoroughly vetted as a background estimation, and will hopefully be able to replace

the current approach and become the standard background estimation procedure.
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[38] C. Lefèvre, “The CERN accelerator complex. Complexe des accélérateurs du CERN.”
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