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ABSTRACT	OF	THE	DISSERTATION	
	

Examining	the	Processes	of	Microbial	Genotypic	and	Phenotypic	Adaptation	
	
by	

Tiffany	Nada	Batarseh	

Doctor	of	Philosophy	in	Biological	Sciences	

University	of	California,	Irvine,	2022	

Professor	Brandon	S.	Gaut,	Chair	

	
Adaptation	by	natural	selection	is	a	fundamental	process	in	evolution,	yet	there	is	a	

deficit	in	our	understanding	of	the	mechanisms	of	adaptation	at	the	genomic	level	and	how	

genetic	changes	translate	to	phenotypic	change.	For	my	dissertation,	I	addressed	questions	

about	evolution	using	genomic	and	experimental	data	to	better	understand	the	phenotypic	

and	genotypic	changes	underlying	adaptation	and	to	investigate	the	consequences	of	

adaptation	utilizing	bacteria	as	my	study	system.		

	In	my	first	chapter,	I	investigated	the	mechanisms	of	adaptation	that	underlie	

evolutionary	rescue	in	Escherichia	coli.	In	my	experiment,	rescue	occurred	for	9%	of	

populations,	and	I	found	that	one	mutation	in	either	the	rpoBC	(RNA	polymerase)	or	hslVU	

(heat	shock	protease)	operon	was	sufficient	for	rescue.	Overall,	this	chapter	demonstrated	

that	a	single	mutation	in	the	rpoBC	or	hslVU	operon	allowed	for	rescue	through	similar	

changes	in	gene	expression,	and	that	adaptation	by	rescue	may	be	qualitatively	different	

from	adaptation	to	non-lethal	stress.	

In	my	second	chapter,	I	studied	evolutionary	contingency	and	its	effects	on	adaptive	

potential.	To	study	contingency,	I	expanded	on	a	large	evolution	experiment	previously



 

xiii	

conducted	in	the	Gaut	lab.	In	this	experiment,	over	100	originally	identical	populations	of	E.	

coli	adapted	to	thermal	stress	(42.2°C)	through	two	distinct	pathways.	By	conducting	a	

second	evolution	experiment	in	a	novel	thermal	environment	(19.0°C),	I	contrasted	the	

evolution	of	a	subset	of	the	E.	coli	populations	descended	from	either	adaptive	pathway.	I	

found	evidence	to	suggest	that	the	adaptive	history	of	a	population	may	significantly	

influence	future	genotypic	evolution	and	even	phenotypic	outcomes	to	an	extent.			

Finally,	in	my	third	chapter,	I	investigated	the	effects	of	evolution	and	adaptation	on	

the	genome	of	the	plant	pathogen	Xylella	fastidiosa.	This	bacterium	causes	devastating	

disease	in	many	economically	important	crops	around	the	world.	Using	maximum	

likelihood	methods,	I	estimated	the	ratio	of	nonsynonymous	to	synonymous	substitutions	

(dN/dS)	in	over	5,000	core	and	accessory	genes	found	in	the	Xylella	genus.	By	screening	for	

positive	selection	using	dN/dS,	I	identified	both	core	and	accessory	genes	that	may	affect	

pathogenicity,	including	genes	involved	in	biofilm	formation.	
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INTRODUCTION	

Examining	the	processes	of	microbial	genotypic	and	phenotypic	
adaptation	

	
Adaptation	by	natural	selection	is	a	central	tenet	of	evolution.	Understanding	the	

mechanisms	of	adaptation	and	their	effects	on	phenotype	is	essential	to	the	study	of	

biology	and	all	of	its	diversity.	Adaptation	is	the	shift	of	a	population	towards	the	

phenotypes	that	are	a	better	fit	for	their	environment	through	heritable,	genetic	change.	

Historically,	adaptation	has	been	studied	through	the	observations	of	phenotype,	however	

recent	advances	in	genomic	sequencing	have	allowed	the	pairing	of	phenotype	with	

genotypic	data,	thereby	advancing	our	knowledge	of	the	processes	and	consequences	of	

adaptive	evolution	(Orr	2005).	Despite	these	innovations,	we	still	do	not	have	a	complete	

understanding	of	the	mechanisms	of	adaptation	at	the	genomic	level	and	how	those	genetic	

changes	translate	to	phenotypic	change.	In	my	dissertation	research,	I	focused	on	

identifying	and	investigating	the	genotypic	changes	that	arose	in	response	to	

environmental	challenges,	and	also	on	how	those	changes	directly	affected	phenotype	or	

evolutionary	consequences.		

Through	the	observation	of	natural	populations,	we	have	identified	clear	examples	

of	adaptation	often	by	evidence	of	convergent	evolution.	Field	studies	have	been	

instrumental	in	demonstrating	adaptive	evolution	through	the	comparison	of	distinct	

populations	that	experience	similar	environments	or	selective	pressures.	Biologists	have	

observed	that	similar	traits	can	arise	in	different	populations	experiencing	analogous	

environmental	pressures,	therefore	providing	evidence	for	adaptation.	Such	examples	

include	beak	size	and	shape	in	finches	(Grant	et	al.	2004),	limb	length	in	lizards	(Hagey	et	
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al.	2017;	Kohlsdorf	et	al.	2001),	and	spine	length	in	stickleback	fish	(McKinnon	&	Rundle	

2002).	These	studies	have	elucidated	the	repeatability	of	evolution	in	similar	populations,	

however,	we	still	have	some	deficits	in	our	knowledge	of	the	mechanisms	behind	these	

adaptations.		

With	the	advances	of	genomic	sequencing,	efforts	have	been	made	to	identify	the	

causative	unit	of	selection	behind	these	examples	of	convergent	evolution.	In	the	case	of	

stickleback	fishes,	in	which	convergent	evolution	has	occurred	in	freshwater	lakes	

colonized	by	marine	sticklebacks,	researchers	have	identified	adaptive	alleles	at	the	Eda	

locus	that	underlie	the	convergent	phenotype.	Sequencing	confirmed	that	the	adaptive	

alleles	are	present	at	low	frequency	in	ancestral	populations,	suggesting	that	convergent	

evolution	was	driven	from	standing	genetic	variation	(Colosimo	et	al.	2005).	In	regard	to	

Darwin’s	finches,	sequencing	and	phylogenetic	analyses	have	identified	the	ALX1	gene	as	

strongly	associated	with	beak	shape	diversity,	however,	it	is	likely	not	the	only	causative	

locus	(Lamichhaney	et	al.	2015).	Additionally,	extensive	gene	flow	and	hybridization	

between	finches	has	been	identified	as	a	mechanism	underlying	their	adaptive	radiations,	

therefore	similarly	implicating	standing	genetic	variation	as	an	important	component	for	

adaptive	evolution.	While	these	are	striking	examples	of	adaptation	with	both	genotypic	

and	phenotypic	evidence,	they	may	not	be	reflective	of	evolution	and	adaptation	across	all	

levels	of	life,	especially	when	standing	genetic	variation	may	not	be	available	for	selection	

or	de	novo	mutation	is	required.		

Experimental	evolution	provides	a	different	approach	to	study	adaptation	and	test	

hypotheses	by	tracking	genotypic	and	phenotypic	changes	in	response	to	a	controlled	

selection	pressure	(Long	et	al.	2015).	Evolution	experiments	using	macroorganisms,	like	



 

	
	

3	

the	fruit	fly	Drosophila	melanogaster	(Phillips	et	al.	2016;	Rose	1984),	and	microorganisms,	

like	bacteria	or	yeast	(Zeyl	2006;	Johnson	et	al.	2021;	Good	et	al.	2017),	have	allowed	for	

the	exploration	of	long-standing	questions	about	the	dynamics	and	modes	of	adaptive	

evolution.	Microorganisms,	however,	provide	at	least	three	advantages	to	study	evolution	

and	adaptation.	First,	bacteria	have	large	population	sizes	and	short	generation	times,	

which	allow	for	experimental	replication	and	the	ability	to	observe	natural	selection	in	real	

time	because	microbes	can	be	evolved	for	thousands	of	generations	(Lenski	et	al.	1991).	

Second,	bacteria	can	be	stored	in	a	non-evolving	state	(typically	by	storage	in	glycerol	at	-

50	to	-80°C),	which	allows	for	the	direct	comparison	between	derived	and	ancestral	

populations	(Howard	1956;	Wiser	&	Lenski	2015).	Finally,	bacterial	genomes	are	small	

relative	to	other	organisms,	which	allow	for	robust	chromosome	assembly	using	next-

generation	sequencing	technology	and	the	ability	to	identify	the	genetic	targets	of	selection.	

The	bacteria	Escherichia	coli	is	frequently	used	in	evolution	experiments	and	has	a	genome	

that	is	only	4.6Mb	on	average	while	the	genome	of	Saccharomyces	cerevisiae	is	more	than	

double	the	size	(12Mb)	and	the	D.	melanogaster	genome	is	more	than	35x	larger	(180Mb).	

Altogether,	bacteria	are	effective	tools	in	the	study	of	evolution	and	adaptation.			

Experimental	evolution	with	bacteria	has	greatly	expanded	our	knowledge	about	

evolutionary	trajectories	and	the	genetic	changes	associated	with	such	change.	The	Long	

Term	Evolution	Experiment	(LTEE)	started	by	Richard	Lenski	at	UC	Irvine	in	1988	

provides	a	famous	example	of	experimental	evolution	of	E.	coli	(Lenski	et	al.	1991).	The	

LTEE	consisted	of	12	initially	identical	E.	coli	populations	that	were	propagated	through	

daily	serial	transfer	at	37°C.	The	populations	have	now	experienced	over	75,000	

generations	of	evolution	and	have	been	instrumental	in	expanding	our	knowledge	about	
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the	tempo	and	mode	of	genotypic	and	phenotypic	evolution	(Good	et	al.	2017;	Tenaillon	et	

al.	2016).	Specifically,	the	LTEE	has	elucidated	general	trends	describing	the	trajectories	of	

fitness	change	over	evolutionary	time	and	have	successfully	connected	a	phenotypic	

innovation	to	the	causative	genetic	changes	(de	Visser	&	Lenski	2002;	Quandt	et	al.	2015).			

To	explore	the	breadth	of	molecular	changes	associated	with	adaptive	evolution,	

Tenaillon	et	al.	(2012)	conducted	an	experiment	consisting	of	~115	E.	coli	lines	evolved	at	

the	stressful	temperature	of	42.2°C.	This	experiment	allowed	researchers	to	investigate	

whether	independent	populations	that	adapt	to	a	fixed	environment	converge	to	a	similar	

adaptive	pathway	by	identical	mutations	or	by	alternative	genetic	pathways.	In	this	system,	

adaptation	occurred	through	two	distinct	paths	in	response	to	the	selection	pressure:	

roughly	half	of	the	evolved	lines	carried	mutations	in	rpoB,	the	gene	encoding	the	beta-

subunit	of	RNA	polymerase,	and	about	one	third	of	the	evolved	lines	carried	mutations	in	

rho,	the	transcriptional	terminator	(Tenaillon	et	al.	2012).	Individually,	mutations	in	rpoB	

and	rho	altered	gene	expression	levels	of	>1000	genes	(Rodriguez-Verdugo	et	al.	2016;	

Gonzalez-Gonzalez	et	al.	2017),	with	substantial	overlaps	in	the	altered	genes.	

Interestingly,	mutations	in	rpoB	and	rho	occurred	together	in	the	evolved	lines	less	often	

than	expected	by	chance,	possibly	owing	to	negative	epistatic	interactions.	These	results,	

along	with	studies	of	the	LTEE	lines	and	other	experimental	systems,	suggest	that	

interactions	between	mutations	are	pervasive	and	have	a	profound	effect	on	phenotypic	

outcomes	(Khan	et	al.	2011;	Kryazhimskiy	et	al.	2014).	These	observations	suggest	that	any	

understanding	of	adaptation	requires	consideration	of	potential	interactions	between	

adaptive	mutations.	They	also	suggest	that	adaptation	may	be	contingent	on	history	

because	the	effects	of	a	new	mutation	may	rely	on	its	interactions	with	existing	mutations.		
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The	foundational	knowledge	gained	from	experimental	evolution	has	only	opened	

more	research	avenues	regarding	adaptation,	its	mechanisms,	and	its	consequences	on	

future	evolution.	Advances	in	sequencing	technology	have	allowed	for	fine-scale	tracking	of	

allele	frequency	trajectories	over	evolutionary	time,	which	has	revealed	the	existence	of	

coexisting	lineages	and	the	molecular	dynamics	underscoring	phenomena	like	clonal	

interference	(Lang	et	al.	2013;	Maddamsetti	et	al.	2015).	Additionally,	by	leveraging	

sequential	evolution	experiments,	researchers	have	begun	to	address	the	effects	of	an	

organism's	evolutionary	history	on	its	future	adaptive	trajectories.	For	example,	Plucain	et	

al.	(2016)	used	a	two-phase	experimental	evolution	strategy	to	investigate	whether	history	

influenced	adaptation	in	a	new	environment	using	E.	coli.	The	first	phase	of	evolution	

consisted	of	initially	identical	populations	of	E.	coli	evolving	under	four	different	

environmental	conditions	followed	by	a	second	phase	of	evolution	in	which	the	

populations	all	evolved	under	the	same	environmental	conditions.	The	researchers	found	

that	historical	contingency	significantly	affects	phenotypic	adaptation	to	the	second	

environment,	but	they	did	not	identify	contingency	with	respect	to	genetic	changes	

(Plucain	et	al.	2016).	The	LTEE	provides	another	example	of	history	affecting	evolution.	

After	over	30,000	generations	of	evolution,	one	of	the	twelve	E.	coli	populations	evolved	

the	ability	to	utilize	citrate	which	was	always	present	in	the	media.	To	understand	if	this	

novel	trait	was	influenced	by	history,	the	researchers	repeated	the	evolution	experiment	

with	frozen	stock	of	earlier	generations.	The	authors	found	that	the	evolution	of	this	trait	

was	contingent	on	particular	genetic	changes,	suggesting	that	evolutionary	history	can	

significantly	affect	trait	evolution	(Blount	et	al.	2020,	2008).	Similarly,	in	the	case	of	

antibiotic	resistance	evolution	in	bacteria,	the	starting	genetic	background	significantly	
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influenced	the	set	of	future	adaptive	mutations	and	resistance	profile	suggesting	a	

significant	effect	of	historical	contingency	on	both	genotypic	and	phenotypic	evolution	

(Card	et	al.	2021).	In	contrast,	two-step	evolution	experiments	with	yeast	have	suggested	

that	phenotypic	changes	are	not	influenced	by	evolutionary	history	and	that	fitness	will	

follow	predictable	trajectories	and	phenotypic	convergence	is	expected	(Kryazhimskiy	et	

al.	2014).	The	contrasting	results	between	experiments	highlights	areas	in	which	our	

knowledge	of	evolution	and	adaptation	can	be	expanded.				

With	advances	in	sequencing	technology,	we	are	better	equipped	to	study	the	

genetic	signatures	of	adaptation	and	their	consequences.	Adaptive	evolution	not	only	

influences	genome	content	through	point	mutations	but	also	by	shifts	in	gene	content	and	

structural	variation.	Within	many	bacterial	species,	there	is	immense	variation	in	genome	

content	that	can	influence	how	bacteria	function	by	conferring	alternative	modes	of	

metabolism,	resistance	mechanisms,	or	virulence	factors	(Ochman	et	al.	2000).	

Investigation	of	bacterial	genomes	using	comparative	genomics	and	phylogenetic	methods	

have	elucidated	extensive	mosaicism	between	bacteria	of	the	same	species.	These	genomes	

typically	consist	of	core	genes	responsible	for	housekeeping	and	general	cellular	functions	

and	a	set	of	variable	accessory	genes	that	often	confer	virulence	functions	(Welch	et	al.	

2002;	Rasko	et	al.	2008;	Chen	et	al.	2018).	By	investigating	bacterial	genomes,	we	may	

identify	genetic	determinants	underlying	virulence	or	resistance	mechanisms	which	could	

be	targeted	for	pathogen	management.	More	generally,	understanding	how	adaptation	

shapes	bacterial	genome	content	at	all	levels	is	important	for	understanding	bacterial	

biodiversity	across	all	habitats.		
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The	goals	of	my	dissertation	are	to	investigate	the	genotypic	changes	that	underlie	

evolution	and	adaptation	and	to	understand	how	these	changes	may	affect	phenotype	or	

future	evolutionary	change.	In	my	first	chapter,	I	first	investigated	evolutionary	rescue	

which	is	the	phenomenon	by	which	adaptation	by	natural	selection	saves	a	population	

from	extinction	under	lethal	or	rapidly	deteriorating	environmental	conditions.	To	do	so,	I	

used	the	results	from	a	short-term	evolution	experiment	previously	conducted	in	my	lab	to	

study	rescue	that	resulted	in	a	set	of	rescue	populations	for	analysis.	I	isolated	single	

mutants	harboring	putative	adaptive	mutations	and	performed	fitness	assays	and	mRNA	

sequencing	to	study	the	effects	of	rescue	mutations	and	to	identify	a	mechanism	of	

adaptation.	In	my	second	chapter,	I	investigated	whether	adaptation	may	be	contingent	on	

history.	I	used	experimental	evolution	to	study	how	and	to	what	extent	previous	

evolutionary	history	affects	future	evolutionary	and	adaptive	potential	by	expanding	on	

and	conducting	a	second	phase	of	experimental	evolution	that	followed	the	evolution	

experiment	previously	conducted	and	described	in	Tenaillon	et	al.	(2012).	Finally	in	my	

third	chapter,	I	studied	genome	content	evolution	and	how	it	contributes	to	host-parasite	

interactions	by	analyzing	whole	genomes	of	the	plant	pathogen	Xylella	fastidiosa.	I	used	

comparative	genomics	and	phylogenetic	methods	to	investigate	whether	the	genomes	of	X.	

fastidiosa	exhibit	evidence	of	host	specificity	through	gene	content	variation	or	by	evidence	

of	positive	selection	in	either	core	or	accessory	genes.	Altogether,	my	dissertation	expands	

on	our	knowledge	about	bacterial	evolution,	adaptation,	and	its	consequences.		
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CHAPTER	1	
	

Genetic	Mutations	That	Drive	Evolutionary	Rescue	to	Lethal	
Temperature	in	Escherichia	coli	

	
1.1	Abstract	

Evolutionary	rescue	occurs	when	adaptation	restores	population	growth	against	a	

lethal	stressor.	Here	we	studied	evolutionary	rescue	by	conducting	experiments	with	

Escherichia	coli	at	the	lethal	temperature	of	43.0°C,	to	determine	the	adaptive	mutations	

that	drive	rescue	and	to	investigate	their	effects	on	fitness	and	gene	expression.	From	

hundreds	of	populations,	we	observed	that	~9%	were	rescued	by	genetic	adaptations.	We	

sequenced	26	populations	and	identified	29	distinct	mutations.	Of	these	populations,	21	

had	a	mutation	in	the	hslVU	or	rpoBC	operon,	suggesting	that	mutations	in	either	operon	

could	drive	rescue.	We	isolated	seven	strains	of	E.	coli	carrying	a	putative	rescue	mutation	

in	either	the	hslVU	or	rpoBC	operon	to	investigate	the	mutations’	effects.	The	single	rescue	

mutations	increased	E.	coli’s	relative	fitness	by	an	average	of	24%	at	42.2°C,	but	they	

decreased	fitness	by	3%	at	37.0°C,	illustrating	that	antagonistic	pleiotropy	likely	affected	

the	establishment	of	rescue	in	our	system.	Gene	expression	analysis	revealed	only	40	genes	

were	upregulated	across	all	seven	mutations,	and	these	were	enriched	for	functions	in	

translational	and	flagellar	production.	As	with	previous	experiments	with	high	

temperature	adaptation,	the	rescue	mutations	tended	to	restore	gene	expression	towards	

the	unstressed	state,	but	they	also	caused	a	higher	proportion	of	novel	gene	expression	

patterns.	Overall,	we	find	that	rescue	is	infrequent,	that	it	is	facilitated	by	a	limited	number	

of	mutational	targets,	and	that	rescue	mutations	may	have	qualitatively	different	effects	

than	mutations	that	arise	from	evolution	to	non-lethal	stressors.	
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1.2	Introduction	

Under	severe	environmental	stress,	a	population	will	decline	rapidly	and	may	face	

extinction.	However,	populations	can	adapt	genetically;	if	an	individual	appears	with	an	

adaptation	to	the	severe	stress,	the	population	may	recover.	This	process	of	decline	and	

recovery	results	in	a	U-shaped	pattern	of	population	dynamics	that	defines	the	

phenomenon	of	evolutionary	rescue	(Bell	2017).	It	is	important	to	understand	the	

frequency	and	dynamics	of	rescue	events,	both	because	they	affect	our	understanding	of	

species’	survival	and	also	because	they	have	practical	implications	for	medicine,	

agriculture,	and	conservation	biology.	For	example,	evolutionary	rescue	drives	some	of	the	

dynamics	of	bacterial	antibiotic	resistance.	When	exposed	to	potentially	lethal	

concentrations	of	antibiotics,	a	bacterial	population	declines,	but	a	resistance	mutation	can	

restore	population	growth	(Orr	and	Unckless	2008;	Baquero	and	Cantón	2017).	This	

evolutionary	response	often	occurs	because	antibiotics	target	a	specific	enzyme	or	

structure	(e.g.,	the	ribosome),	so	that	a	single	beneficial	mutation	inhibits	the	antibiotic’s	

mechanism	of	action	(Blair	et	al.	2015).	Similar	dynamics	contribute	to	fungicide	and	

pesticide	resistance	in	agriculture,	where	there	is	often	a	simple	genetic	basis	to	resistance	

(Délye	et	al.	2013;	Lucas	et	al.	2015).		

Sometimes	environmental	challenges	affect	more	complex	physiological	traits,	and	

this	issue	has	been	addressed	to	some	extent	in	experimental	studies	of	evolutionary	

rescue.	In	one	study,	yeast	populations	were	grown	in	a	lethal	concentration	of	salt	(Bell	

and	Gonzalez	2009).	Salt	tolerance	in	yeast	is	a	complex,	polygenic	trait	(Dhar	et	al.	2011),	

suggesting	that	evolutionary	rescue	could	result	from	mutations	in	one	of	several	genes	or	

perhaps	even	require	multiple	genic	changes.	Studies	have	shown	that	adaptive	mutations	
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can	rescue	yeast	populations	from	lethal	salt	conditions,	but	such	rescue	occurs	

infrequently,	and	the	probability	of	rescue	varies	by	population	size	(Bell	and	Gonzalez	

2009).	Similarly,	green	alga	(Chlamydomonas)	has	also	been	used	to	study	evolutionary	

rescue	to	another	complex	trait,	low-light	conditions	(Bell	2013),	showing	again	that	rescue	

is	infrequent	and	depends	on	population	characteristics.	Together,	these	studies	highlight	

that	rescue	can	alter	evolutionary	outcomes	for	complex	traits.	However,	neither	set	of	

studies	identified	the	genetic	basis	of	rescue	(Bell	and	Gonzalez	2009;	Bell	2013;	Gonzalez	

and	Bell	2013),	which	is	an	important	precursor	for	understanding	the	dynamics	of	rescue	

and	its	underlying	mechanisms.		

Here	we	study	evolutionary	rescue	in	Escherichia	coli	that	has	been	challenged	with	

a	lethal	temperature.	Temperature	is	a	complex	environmental	variable	because	it	governs	

the	rates	of	biological	reactions	that	underlie	respiration,	growth,	and	reproduction	

(Somero	1978;	Cooper	et	al.	2001).	Furthermore,	characterizing	the	evolutionary	response	

to	severe	thermal	stress	is	important	for	understanding	adaptation	to	global	climate	

change	(Holt	1990).	Previous	work	has	investigated	adaptation	to	both	non-lethal	and	

lethal	heat	stress	using	E.	coli.	As	an	example	of	non-lethal	stress,	Tenaillon	et	al.	(2012)	

subjected	E.	coli	to	a	high	but	sustainable	temperature	(42.2°C)	and	found	>1,000	

putatively	adaptive	mutations,	illustrating	the	genetic	diversity	of	adaptive	responses.	

These	mutations	occurred	within	dozens	of	genes,	but	there	were	also	clear	patterns.	

Mutations	were	especially	frequent	in	genes	that	modify	transcription,	such	as	the	RNA	

polymerase	subunit	β	(rpoB)	gene.	Some	of	these	rpoB	mutations	conveyed	a	fitness	benefit	

in	high	heat	but	fitness	trade-offs	at	lower	temperatures	(<20.0°C),	indicating	antagonistic	

pleiotropy	(Rodríguez-Verdugo	et	al.	2014).		
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Previous	work	has	also	subjected	E.	coli	to	lethal	temperatures	that	resulted	in	rare	

rescue	dynamics	(Bennett	and	Lenski	1993).	For	example,	Mongold	et	al.	(1999)	

characterized	patterns	of	evolutionary	recovery	at	44.0°C,	using	E.	coli	strains	that	had	

been	adapted	to	32.0°C,	37.0°C,	and	41.0-42.0°C	(Mongold	et	al.	1999).	They	found	that	

rescue	events	at	44.0°C	occurred	in	8%	of	populations	but	only	in	populations	derived	from	

ancestors	that	had	been	previously	adapted	to	high	temperature	(41.0-42.0°C),	suggesting	

that	pre-adaptation	contributes	to	evolutionary	rescue.	Moreover,	they	found	that	the	

rescued	populations	exhibited	a	fitness	cost	at	elevated,	but	non-lethal	temperatures,	

suggesting	that	at	least	some	rescue	mutations	were	antagonistically	pleiotropic.	Here	

again,	however,	the	underlying	adaptive	mutations	were	not	identified.		

In	this	study	we	perform	E.	coli	growth	experiments	to	better	understand	the	

dynamics,	mechanism,	and	fitness	consequences	of	evolutionary	rescue.	Beginning	with	an	

ancestor	derived	from	a	single	colony,	we	carry	out	replicated	evolution	experiments	at	

43.0°C,	which	typically	results	in	population	extinction	under	our	growth	conditions.	After	

observing	and	noting	the	frequency	of	rescue	events,	we	identify	mutations	within	the	

rescue	populations.	With	these	mutations	in	hand,	we	ask	the	following	three	sets	of	

questions.	First,	can	these	mutations	drive	evolutionary	rescue	to	lethal	temperature	in	E.	

coli?	Discriminating	between	driving	and	hitchhiking	mutations	is	a	major	challenge	in	

evolutionary	biology	(Rosenzweig	and	Sherlock	2014),	and	hence	unambiguous	

identification	of	drivers	is	an	important	goal.	Second,	what	is	the	fitness	effect	of	driver	

mutations,	and	do	they	have	trade-offs	that	affect	their	population	dynamics?	We	are	

specifically	interested	in	antagonistic	pleiotropy,	a	phenomenon	that	has	been	shown	to	be	

common	(Williams	1957;	Cooper	and	Lenski	2000;	MacLean	et	al.	2004)	but	not	universal	
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in	evolution	experiments.	Finally,	can	we	glean	any	insights	into	the	molecular	effects	and	

mechanisms	of	rescue?	To	do	so,	we	study	gene	expression	changes	introduced	by	driver	

mutations,	to	try	to	better	understand	their	downstream	effects.	We	also	assess	whether	

gene	expression	shifts	back	toward	an	unstressed	physiological	state	(Carroll	and	Marx,	

2013)	or	toward	novel	expression	patterns.		

		

1.3	Materials	and	Methods	

Evolutionary	Rescue	Experiments:	A	frozen	glycerol	stock	was	prepared	from	a	single	

colony	of	Escherichia	coli	B	strain	REL1206	possessing	a	neutral	Ara-	marker.	This	strain	

had	been	propagated	previously	at	37.0°C	for	2,000	generations	in	Davis	minimal	medium	

supplemented	with	glucose	at	25	mg/L	(DM25)	and	was	thus	adapted	to	the	growth	

medium	(Lenski	et	al.	1991).	To	isolate	the	single	colony,	REL1206	was	streaked	from	

frozen	onto	a	tetrazolium-arabinose	(TA)	plate	and	incubated	overnight	at	37.0°C.	The	

single	colony	was	inoculated	into	Luria-Bertani	medium	(LB)	and	grown	overnight.	To	

prepare	a	frozen	reference	stock,	900	μL	of	culture	was	mixed	with	900	μL	of	80%	glycerol	

and	frozen	at	-80°C.	We	term	this	REL1206	frozen	stock	the	“rescue	ancestor”	(Figure	

1.1A).	A	backup	rescue	ancestor	stock	was	prepared	from	the	same	LB	culture.	

As	is	common	practice	(Bennett	and	Lenski	1993;	Lenski	and	Travisano	1994;	

Rodríguez-Verdugo	et	al.	2014;	Hug	and	Gaut	2015),	we	first	acclimated	the	rescue	

ancestor	(REL1206)	to	mild	laboratory	conditions	to	allow	it	to	recover	from	being	frozen.	

The	rescue	ancestral	stock	was	inoculated	into	100	mL	LB	and	grown	for	eight	hours	in	an	

Infors	HT	Minitron	incubator	at	37.0°C	and	120	RPM	(Figure	1.1A).	10	μL	of	this	culture	

was	then	inoculated	into	100	mL	DM25	and	grown	for	24	hours	in	an	Infors	HT	Minitron	
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incubator	at	37.0°C	and	120	RPM.	We	inoculated	100	μL	of	the	37.0°C,	DM25	culture	into	

each	of	44	culture	tubes	containing	9.9	mL	DM25.	An	additional	four	culture	tubes	

containing	9.9	mL	DM25	were	used	as	contamination	controls	and	cell	density	blanks.	The	

total	set	of	44	tubes	were	placed	into	an	Innova	3100	water	bath	shaker	(New	Brunswick	

Scientific)	and	grown	for	24	hours	at	120	RPM	and	at	the	experimental	temperature	of	

43.0°C.	Tube	cultures	were	serially	propagated	over	the	course	of	five	days	by	inoculating	

100	μL	of	culture	into	9.9	mL	DM25	after	each	day	of	growth	(Figure	1.1A).	Note	that	the	44	

inoculated	tubes	did	not	constitute	independent	experiments,	because	they	all	derived	

from	the	same	overnight,	100	mL	DM25	culture.	However,	the	procedure	was	repeated	

independently	across	seven	weeks,	for	a	total	of	(7	weeks	x	44	=)	308	populations.	Our	

interpretations	make	use	of	both	the	independent	and	non-independent	features	of	the	

design.		

To	measure	cell	densities	from	individual	populations,	50	μL	of	each	culture	

(including	blanks)	were	inoculated	into	cuvettes	containing	9.9	mL	Isoton	II	Diluent	

(Beckman	Coulter)	on	each	of	the	five	days.	These	samples	were	analyzed	using	a	

Multisizer	3	Coulter	counter	(Beckman	Coulter)	to	determine	cell	densities	(particles/mL).	

The	average	particle	density	of	the	four	blanks	was	subtracted	from	each	sample’s	cell	

density.	Of	308	experimental	populations,	26	were	excluded	due	to	technical	failure	with	

the	Coulter	counter,	leaving	296	measured	populations.	We	defined	a	rescue	event	as	a	

population	whose	cell	density	increased	by	at	least	an	order	of	magnitude	over	the	

previous	day’s	measurements.	Following	cell	density	measurement,	rescue	populations	

were	saved	as	frozen	glycerol	stocks	on	their	initial	day	of	recovery,	as	well	as	any	

subsequent	days.	To	prepare	frozen	stocks	of	rescue	recovery	events,	900	μL	of	culture	was	
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mixed	with	900	μL	of	80%	glycerol	and	frozen	at	-80°C.	

	

DNA	Extraction	and	Population	Sequencing:	Most	samples	for	DNA	extraction	and	

sequencing	were	derived	from	day	five	of	the	experiment,	but	two	samples	(populations	#1	

and	#19)	were	derived	from	day	four.	Each	of	the	frozen	rescue	populations	was	inoculated	

into	ten	separate	culture	tubes	containing	9.9	mL	DM25	and	incubated	in	an	Innova	3100	

water	bath	shaker	(New	Brunswick	Scientific)	overnight	at	37.0°C	and	120	RPM.	Cells	from	

all	ten	tubes	were	pooled,	and	genomic	DNA	was	extracted	from	these	samples	using	

Wizard	Genomic	DNA	Purification	Kits	(Promega).	Pooling	was	employed	to	filter	new	

mutations	that	might	have	risen	during	the	process	of	recovery.	DNA	from	the	rescue	

ancestor	was	extracted	in	the	same	manner	but	pooled	from	four	tubes	rather	than	10.	

Genomic	DNA	libraries	were	prepared	using	the	TruSeq	DNA	PCR-Free	Library	Preparation	

Kit	(Illumina).	The	26	rescue	populations	were	multiplexed	and	sequenced	in	two	lanes	of	

an	Illumina	HiSeq	2500	in	rapid	mode	at	UC	Irvine’s	Genomics	High-Throughput	Facility	

(https://ghtf.biochem.uci.edu).	Two	ancestral	samples—one	working	stock	(Figure	1.1A)	

and	one	backup	stock—were	also	sequenced	on	an	Illumina	HiSeq	3000	at	the	

Bioinformatics	Core	Facility	at	the	UC	Davis	Genome	Center.	

Mutations	and	mutation	frequencies	were	called	using	breseq	(Deatherage	and	

Barrick	2014)	in	polymorphism	mode,	using	the	E.	coli	B	REL606	genome	as	a	reference,	

which	differs	from	REL1206	in	six	positions	that	were	excluded	from	our	analyses	(Barrick	

et	al.	2009;	Tenaillon	et	al.	2012).	In	theory,	breseq	provides	information	about	

duplications	and	deletions	by	reporting	novel	junctions.	No	evidence	of	novel	junctions	or	

sequencing	coverage	was	found	for	large	deletions	in	our	data	set,	but	breseq	did	provide	
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some	novel	junction	evidence	for	the	presence	of	large	duplications.	To	assess	duplications	

more	formally,	we	compared	unique	reads	(mapping	quality	>5	in	samtools	1.3)	across	10	

kb	regions	of	the	genome,	defining	duplications	as	regions	with	more	than	twice	the	

average	genome	coverage.		

	

Isolating	Single	Mutants	from	Rescue	Populations:	To	purify	isolates	carrying	a	single	

mutation	in	either	the	hslVU	or	rpoBC	operon,	we	selected	populations	that	had	a	single	

fixed	mutation	in	hslVU	or	rpoBC;	that	is,	occurring	at	a	frequency	of	85%	or	greater	as	

called	through	the	breseq	analysis.	These	populations	were	streaked	from	frozen	stock	

onto	TA	plates	and	incubated	at	37.0°C.	Multiple	single	colonies	were	picked	per	line	and	

subsequently	purified	on	new	TA	plates.	Purified	isolates	were	then	grown	in	LB	and	

incubated	at	37.0°C	and	120	RPM.	This	culture	was	used	to	prepare	frozen	glycerol	stocks	

of	the	purified	isolates.	

For	each	purified	isolate,	we	designed	PCR	primers	(https://www.idtdna.com)	for	

all	mutations	found	in	the	population	at	>10%	frequency.	We	submitted	the	PCR	products	

for	Sanger	sequencing	to	determine	mutation	presence	or	absence	for	each	screened	gene.	

From	the	PCR	and	Sanger	sequencing	results,	we	identified	putative	single	mutant	

genotypes.	Isolates	that	were	positive	for	any	non-fixed	(background)	mutations	were	

eliminated	from	further	study.	To	determine	the	validity	of	these	putative	single	mutant	

genotypes,	we	performed	whole	genome	sequencing.	Total	genomic	DNA	from	the	putative	

single	mutants	was	extracted	using	the	Promega	Wizard	Genomic	DNA	Purification	kit,	and	

DNA	concentrations	were	measured	with	Qubit	dsDNA	HS	Assay	kits.	Genomic	DNA	

libraries	were	prepared	for	sequencing	using	the	Illumina	Nextera	DNA	Flex	Library	
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Preparation	kit.	Libraries	were	multiplexed	and	sequencing	was	carried	out	on	a	single	

lane	of	Illumina	HiSeq	4000	at	the	UCI	Genomics	High-Throughput	Facility	

(https://ghtf.biochem.uci.edu).	To	call	mutations	in	these	isolates,	the	Illumina	reads	were	

mapped	against	the	reference	sequence,	REL606,	using	breseq	as	described	above	

(Deatherage	and	Barrick	2014).	

	

Relative	Fitness	Measures:	To	measure	the	relative	fitness	of	the	single	mutants,	we	

competed	populations	or	single	mutants	against	the	ancestral	line	by	growing	them	

together	in	the	same	culture	tube.	We	used	REL1207	as	the	ancestral	strain,	because	it	is	

identical	to	the	REL1206	strain	except	for	a	neutral	marker,	Ara+.	High	temperature	fitness	

assays	were	performed	at	42.2°C,	because	REL1207	does	not	survive	at	higher	

temperatures	in	our	system.		

To	perform	assays,	we	revived	REL1207	and	either	the	rescue	populations	or	single	

mutants	from	frozen	into	10	mL	LB	and	incubated	at	37.0°C	with	120	RPM.	The	next	day,	

we	diluted	the	overnight	cultures	100-fold	in	saline	and	transferred	100	μL	of	this	dilution	

into	9.9	mL	DM25	media.	This	was	then	incubated	at	37.0°C	with	120	RPM	to	acclimate	

from	frozen	conditions	(Bennett	and	Lenski	1993).	After	24	hours	of	incubation,	the	

cultures	were	transferred	to	fresh	DM25	media	and	incubated	at	42.2°C	to	acclimate	to	

high	temperature	stress.	The	following	day,	we	mixed	the	ancestral	strain	and	a	rescue	

mutant	or	population	9:1	into	sterile	DM25	media.	This	mixture	was	plated	onto	TA	solid	

media	to	count	the	initial	cell	densities	before	competition.	This	mixture	was	incubated	at	

42.2°C	with	120	RPM.	The	cells	were	left	to	compete	for	24	hours,	and	we	quantified	the	

final	cell	densities	of	the	ancestor	and	rescue	line	by	plating	on	TA	plates	and	counting	
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colonies.	To	perform	competitions	at	37.0°C,	we	began	the	competition	on	the	day	

following	the	first	acclimation	step	in	DM25	and	mixed	the	ancestral	and	rescue	lines	at	a	

1:1	ratio.	

To	quantify	relative	fitness,	wr,	we	used	the	methods	as	in	Lenski	et	al.	(1991)	and	

Tenaillon	et	al.	(2012).	The	fitness	of	a	mutant	or	population	relative	to	the	ancestor	is	

estimated	as:	wr	=	[log2(NMf/NMi)]/[log2(NAf/NAi)],	where	NMi	and	NAi	represent	the	initial	

cell	densities	of	the	mutant	(or	population)	and	the	ancestor	before	competition,	and	NMf	

and	NAf	represent	the	final	cell	densities	after	one	day	of	competition.		

	

RNA	Harvest,	Isolation	and	Sequencing:	In	order	to	harvest	cells	for	RNA	extraction,	we	

grew	the	single	mutants	to	the	mid-exponential	phase	of	their	growth	curve.	To	do	so,	we	

acclimated	the	single	mutants	from	frozen	stock	in	10	mL	LB	media	at	37.0°C	with	120	

RPM	in	an	Innova	3100	water	bath.	We	then	diluted	these	cultures	10,000-fold	into	DM25	

media	and	incubated	the	cultures	at	37.0°C	with	120	RPM.	Following	24-hours	of	

incubation,	the	cultures	were	diluted	1,000-fold	into	DM25	media	and	acclimated	to	either	

42.2°C	or	43.0°C	with	120	RPM	for	24	hours	as	is	customary	to	acclimate	cells	to	stressful	

temperatures	(Bennett	and	Lenski	1993;	Rodríguez-Verdugo	et	al.	2014).	The	following	

day	the	growth	curve	was	started	by	transferring	100	μL	of	the	culture	to	24	tubes	with	9.9	

mL	of	DM25	and	incubated	at	either	42.2°C	or	43.0°C.	Cell	density	was	measured	using	the	

Multisizer	3	Coulter	counter	(Beckman	Coulter)	in	volumetric	mode	by	diluting	50	μL	of	

cell	culture	into	9.9	mL	of	Isoton	II	diluent.	We	measured	the	cell	density	every	30	minutes	

following	the	first	five	hours	of	growth	until	the	cells	reached	the	mid-exponential	growth	

phase	based	on	the	electronic	counts.	Cells	were	concentrated	through	vacuum	filtration	of	
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150-200	mL	of	culture	onto	cellulose	nitrate	membrane	filters	with	0.2	μm	pore	size.	The	

cells	were	washed	off	from	the	filters	and	pelleted	for	storage	at	-20.0°C	in	a	mixture	of	2	

mL	of	Qiagen	RNA	Protect	Bacterial	reagent	and	DM25	media.	Three	replicates	per	single	

mutant	line	were	harvested	for	both	temperatures	(7	mutants	×	2	temperatures	×	3	

replications	=	42	samples),	and	three	replicates	of	the	ancestral	line,	REL1206,	were	

harvested	at	42.2°C,	for	a	total	of	45	RNAseq	samples.		

The	cell	pellets	were	thawed	and	treated	with	lysozyme	for	5	minutes	before	

extracting	total	RNA	using	Qiagen	RNeasy	kits.	RNA	concentrations	were	measured	with	

Qubit	RNA	HS	assay	kits	and	RNA	quality	was	assessed	by	running	an	Agilent	RNA-Nano	

chip	on	a	bioanalyzer.	We	enriched	for	mRNA	by	the	removal	of	rRNA	using	NEBNext	rRNA	

depletion	kits	for	bacteria.	We	prepared	the	RNA	for	Illumina	sequencing	using	the	NEB	

Ultra	II	Directional	RNA	Library	Prep	kit.	All	samples	were	uniquely	barcoded	and	

multiplexed	for	sequencing	with	Illumina	NovaSeq	at	the	UCI	Genomics	High	Throughput	

Facility	(https://ghtf.biochem.uci.edu).		

	

Gene	Expression	Analyses:	RNA	sequencing	reads	from	our	study	and	previously	

sequenced	reads	from	REL1206	grown	at	42.2°C	and	37°C	from	Rodríguez-Verdugo	et	al.	

(2016)	were	filtered	with	a	custom	Perl	script	to	a	quality	cut-off	of	20.	The	filtered	reads	

were	then	mapped	to	the	REL606	reference	sequence	using	BWA	version	0.7.8	with	default	

parameters	(Li	and	Durbin	2009).	Uniquely	mapping	reads	were	used	as	input	into	HTSeq,	

which	counts	the	number	of	uniquely	mapped	reads	to	annotation	features	(Anders	et	al.	

2015).	Analysis	of	the	RNAseq	counts	was	carried	out	in	R	(R	Core	Team	2019).	We	

normalized	the	RNAseq	counts	and	identified	differentially	expressed	genes	using	the	
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DESeq2	package	(Love	et	al.	2014).	We	followed	previous	studies	(Rodríguez-Verdugo	et	al.	

2016;	González-González	et	al.	2017)	by	identifying	differentially	expressed	genes	(DEGs)	

as	significant	at	padj<0.001	and	also	exhibiting	log2-fold	change	>	2	between	samples.	Gene	

ontology	enrichment	analyses	were	performed	at	the	online	website	

(http://geneontology.org)	using	E.	coli	as	the	reference	list	(Ashburner	et	al.	2000;	

The	Gene	Ontology	Consortium	2019).	

		 Because	we	used	new	and	previously	published	RNAseq	data	for	expression	

analyses,	we	were	concerned	about	the	potential	for	batch	effects.	To	assess	batch	effects,	

we	compared	analyses	comparing	single	mutants	at	42.2°C	to	previous	REL1206	data	at	

42.2°C	(n=2;	Rodríguez-Verdugo	et	al.	2016)	and	to	our	new	RNAseq	data	(n=3)	of	

REL1206	at	42.2°C.	The	new	data	resulted	in	20%	more	detected	DEGs	than	the	old	data,	

perhaps	reflecting	differences	in	power	with	different	sample	sizes	(n	=	3	vs.	2).	

Importantly,	however,	93%	of	DEGs	were	shared	between	the	two	analyses,	and	the	two	

datasets	led	to	qualitatively	identical	GO-enrichment	analyses.	Based	on	this	comparison,	

we	concluded	that	batch	effects	did	not	dramatically	alter	overall	conclusions	about	the	

types	and	direction	of	genic	shifts	in	expression.	We	therefore	combined	old	and	new	

REL1206	42.2°C	samples,	so	that	all	reported	comparisons	to	the	42.2°C	ancestor	were	

based	on	n=5	replicates.		

Once	detected,	changes	in	DEG	gene	expression	were	categorized	into	one	of	four	

directions	(restored,	reinforced,	novel,	or	unrestored)	as	previously	described	(Carroll	and	

Marx	2013;	Rodríguez-Verdugo	et	al.	2016;	González-González	et	al.	2017).	These	

directions	represent	the	change	in	gene	expression	of	a	rescue	mutant	relative	to	the	

ancestor’s	gene	expression	at	42.2°C	and	37.0°C,	where	42.2°C	represents	a	stressed	state	
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for	the	ancestor	and	37.0°C	is	an	unstressed	state	(Supplementary	Table	S1).	Briefly,	a	gene	

was	restored	if	the	ancestral	expression	level	was	significantly	different	from	itself	at	

37.0°C	and	42.2°C,	and	the	mutant	expression	level	was	significantly	different	and	in	the	

opposite	direction	to	that	of	the	ancestral	gene	expression	at	42.2°C.	A	gene	was	reinforced	

if	the	ancestral	expression	level	while	stressed	at	42.2°C	was	significantly	different	from	its	

unstressed	expression	level	at	37.0°C,	and	the	mutant’s	expression	level	of	the	gene	was	

significantly	different	and	exaggerated	in	the	same	direction	to	that	of	the	ancestral	gene	

expression	at	42.2°C.	A	gene	had	novel	expression	if	the	ancestral	expression	level	was	not	

significantly	different	from	itself	at	37.0°C	and	42.2°C,	but	the	mutant	had	significantly	

differential	expression	to	the	ancestral	expression	level	at	both	temperatures.	Finally,	a	

gene	was	unrestored	if	the	ancestral	expression	level	was	significantly	different	from	itself	

at	37.0°C	and	42.2°C,	and	the	mutant	did	not	have	a	significant	difference	in	expression	to	

the	ancestral	gene	expression	level	at	42.2°C.		

	

1.4	Results	

Mutations	associated	with	rescue	events.	We	ran	experiments	that	started	with	an	

overnight	culture	of	the	REL1206	ancestor	at	37.0°C	in	low	nutrient	DM25	media	(Figure	

1.1A).	We	then	transferred	100	μL	of	the	overnight	culture	into	44	tubes	of	fresh	DM25	

media.	These	44	cultures	represented	distinct	populations	which	we	maintained	for	five	

days	by	1:100	daily	serial	dilution	at	43.0°C	in	a	precisely	controlled	shaking	water	bath	

(Figure	1.1A).	This	experiment	was	repeated	over	seven	separate	weeks,	for	a	total	of	308	

(=	7	×	44)	experimental	populations.	Of	these,	296	populations	were	monitored	for	cell	

density	over	a	period	of	five	days	to	determine	whether	the	population	went	extinct	or	
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rebounded	to	rescue.	Altogether,	we	identified	rescue	events	in	six	of	the	seven	weeks	and	

26	populations.	Thus,	the	frequency	of	rescue	was	8.8%	of	populations	(i.e.,	26	of	296).	

Among	the	rescue	events,	three	were	detectable	on	day	three,	12	more	on	day	four,	and	the	

rest	on	day	five	(Figure	1.1B).	Neither	the	number	nor	the	timing	of	rescue	events	were	

correlated	with	initial	cell	densities	(r	=	-0.24,	p	=	0.61;	r	=	0.50,	p	=	0.32),	suggesting	that	

results	were	not	driven	by	variation	in	initial	conditions	across	weeks.		

To	characterize	the	genomic	changes	associated	with	rescue	events,	we	sequenced	

each	of	the	26	rescued	populations	and	identified	the	frequencies	of	mutations.	We	focused	

on	mutations	that	reached	near-fixation,	which	we	defined	as	>85%	frequency.	The	26	

populations	contained	1.8	fixed	mutations	on	average,	but	11	populations	had	just	one	

fixed	mutation,	making	these	genetic	changes	the	likely	drivers	of	population	recovery.	One	

rescue	population	(#2)	evolved	a	mutator	phenotype	due	to	a	small	deletion	in	the	mutT	

gene	and	contained	six	fixed	mutations,	the	most	of	any	population	in	the	experiment	

(Figure	1.1C).	Four	populations	contained	two	distinct	large	duplications	based	on	their	

sequencing	coverage	profiles;	one	duplication	included	the	groEL	and	groES	genic	region,	

and	the	second	contained	a	duplication	that	included	the	hslVU	operon.	

		 In	total,	the	26	populations	yielded	29	distinct	point	or	small	indel	mutations	within	

20	different	genic	and	intergenic	regions	(Table	1.1).	However,	three	regions	were	

particularly	notable.	The	first	was	the	clpA/serW	intergenic	region,	in	which	the	same	point	

mutation	appeared	across	four	separate	weeks	(Table	1.1).	Note,	however,	that	this	

mutation	always	appeared	with	other	fixed	mutations,	making	it	unclear	whether	it	was	

sufficient	to	drive	rescue.	The	second	was	the	rpoBC	operon,	where	four	distinct	mutations	

were	identified	across	five	of	seven	weeks	and	six	of	26	populations.	All	of	these	point	
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mutations	caused	nonsynonymous	changes,	including	one	rpoC	mutation	(W1020G)	that	

was	fixed	across	three	separate	weeks.	Two	of	the	rpoBC	mutations	(rpoB	H447L,	rpoC	

W1020G)	were	the	only	fixed	mutations	in	at	least	one	population,	suggesting	that	they	

were	sufficient	to	rescue	a	population.		

Finally,	the	most	mutations	were	observed	in	the	hslVU	operon,	which	encodes	a	

heat	shock	protease	system	(Missiakas	et	al.	1996;	Bochtler	et	al.	2000).	In	addition	to	the	

duplication	of	this	region	mentioned	previously,	for	which	both	copies	apparently	had	a	

one	bp	indel	frameshift	(Table	1.1,	population	5-21),	the	operon	had	eight	distinct	point	or	

indel	mutations	across	five	of	the	seven	weeks.	Another	fixed	mutation	altered	the	3’	

intergenic	region	of	this	operon	(Table	1.1).	Altogether,	hslVU	mutations	were	found	in	

62%	(16/26)	of	rescued	populations	and	were	the	only	fixed	mutation	in	at	least	seven	

populations.	Five	of	the	mutations	within	hslVU	caused	frameshifts,	suggesting	that	

interruption	of	function	was	adaptive.	Interestingly,	the	populations	with	fixed	rpoBC	

mutations	were	distinct	from	those	with	hslVU	mutations;	no	populations	contained	fixed	

mutations	in	both	operons,	even	though	mutations	in	both	operons	were	identified	during	

weeks	3	and	5	(Table	1.1;	Figure	1.1C).		

We	evaluated	four	additional	features	of	fixed	mutations,	focusing	on	populations	

that	contained	potential	driver	mutations	in	rpoBC	and	hslVU.	First,	because	rescue	events	

occurred	at	different	times	during	the	course	of	the	five-day	experiments,	we	assessed	

whether	the	identities	of	fixed	mutations	were	related	to	the	day	of	rescue.	We	found	no	

obvious	relationship	(Mann-Whitney	U	test	comparing	hslVU	and	rpoBC	populations:	p	=	

0.34).	Second,	we	tested	for	a	relationship	between	fixed	mutations	and	cell	densities	after	

population	recovery;	rpoBC	populations	had	significantly	higher	cell	densities	than	all	other	
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recovered	populations	on	both	day	four	and	day	five	(Mann-Whitney	U	test:	day	four	p	=	

0.0044,	day	five	p	=	3.71	×	10-4)	(Figure	1.1B).	Third,	to	assess	whether	the	fixed	mutations	

arose	as	a	consequence	of	thermal	stress,	we	also	sequenced	two	control	cultures	that	were	

maintained	at	37.0°C	in	DM25	(see	Methods).	Both	controls	were	sequenced	to	>2,000x,	

but	we	found	no	fixed	mutations	relative	to	the	REL1206	genome,	only	three	mutations	

present	at	>10%	frequency,	and	an	average	variant	frequency	of	1.3%.	Of	the	three	

mutations	at	>10%,	two	were	not	shared	with	any	of	the	rescue	populations.	The	

remaining	mutation	was	a	four-nucleotide	indel	within	the	ECB_01992	gene	which	is	likely	

to	be	hypermutable	because	it	is	part	of	a	motif	of	seven	four-nucleotide	repeats	(Tenaillon	

et	al.	2016).	The	four-nucleotide	indel	was	found	at	frequencies	of	19%	and	21%	in	the	two	

ancestral	samples	and	also	between	32%	and	34%	frequency	across	eight	of	the	26	rescue	

populations	(Supplementary	Table	S1.2).	The	fact	that	it	was	not	fixed	in	any	population	

suggests	it	was	likely	not	adaptive.		

		

Fitness	properties	of	single	mutations	in	hslVU	and	rpoBC.	Repeated	mutations	in	

rpoBC	and	hslVU	across	weeks	and	populations	suggested	that	specific	mutations	in	these	

operons	drive	evolutionary	rescue.	To	verify	this	conjecture,	we	isolated	seven	clones	

containing	single	mutations	in	either	the	rpoBC	operon	or	in	the	hslVU	operon	(Tables	1.1	

and	1.2).		

For	each	of	the	seven	single	mutants,	we	measured	their	relative	fitness	(wr)	against	

the	ancestor	using	competition	assays.	To	measure	wr	we	competed	the	ancestor	against	

each	of	the	single	mutants	at	42.2°C,	because	the	ancestor	does	not	survive	at	higher	

temperatures.	Six	of	the	seven	mutants	conferred	a	significant	advantage	(wr	>	1.0;	Figure	
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1.2A	and	Table	1.2),	and	collectively	they	had	a	24%	average	wr	increase,	(one-tailed	t-test:	

p	=	3.44	×	10-12).	The	two	rpoBC	mutants	had	values	26%	and	30%	fitness	advantages,	

while	the	hslVU	mutants	ranged	from	an	estimated	5%	to	41%	advantage.	We	note	that	wr	

increases	for	single	mutants	were	nearly	identical	to	those	based	on	wr	estimates	based	on	

competing	population	samples	against	the	ancestor	(Supplementary	Table	S1.2).	On	

average,	the	26	rescued	populations	had	a	wr	increase	of	24%	relative	to	the	ancestor,	with	

an	average	of	28%	(n=7;	range	14%	to	35%	)	and	23%	(n=16;	range	4%	to	47%)	for	

populations	that	contained	fixed	rpoBC	and	hslVU	populations,	respectively	(Figure	1.2B).		

In	contrast,	experiments	at	the	ancestral	optimum	temperature,	37.0°C,	showed	that	

the	single	mutants	had	an	average	wr	disadvantage	of	3.5%	(one-tailed	t-test:	p	=	0.0002;	

Figure	1.2A).	The	rpoB	H447L	mutant	had	a	particularly	low	wr	value	of	0.905,	and	the	

hslVU	mutations	had	wr	values	ranging	from	0.933	to	0.993	(Table	1.2).	These	single	

mutant	results	were	again	nearly	identical	to	results	based	on	population	samples,	because	

the	26	rescue	populations	had	a	fitness	decrease	of	3%	relative	to	the	ancestor,	with	14	of	

26	populations	having	relative	fitness	values	significantly	<	1.0	(one-tailed	t-test:	p	<	0.05,	

Figure	1.2B).	Populations	with	fixed	rpoBC	mutations	had	an	average	wr	decrease	of	8%	

(one-tailed	t-test:	p	=	0.0082;	n	=	7;	range	0.82	to	0.96),	which	was	significantly	lower	than	

all	other	populations	(one-tailed	t-test,	unequal	variance:	p	=	0.019).	Although	some	hslVU	

populations	had	fitness	values	significantly	<	1.0	at	37.0°C	(Supplementary	Table	S2),	hslVU	

populations	had	an	average	wr	decrease	of	1%	relative	to	the	ancestor	(n=16;	range	0.92	to	

1.03),	which	was	not	significantly	different	from	1.0	(one-tailed	t-test:	p	=	0.054).		
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Gene	expression	differences	between	rescue	mutants	and	REL1206.	To	attempt	to	

elucidate	the	molecular	mechanisms	that	lead	to	evolutionary	rescue,	we	contrasted	gene	

expression	between	REL1206	and	the	seven	rescue	mutants.	We	gathered	replicated	

RNAseq	data	for	each	mutant	at	two	temperatures:	42.2°C	and	43.0°C.	We	used	42.2°C	

because	it	allowed	a	direct	comparison	to	REL1206	under	the	same	conditions,	and	43.0°C	

because	it	is	the	experimental	temperature	at	which	rescue	occurred.	To	assess	whether	

the	difference	between	high	stress	(42.2°C)	and	rescue	(43.0°C)	conditions	mattered,	we	

performed	two	analyses.	First,	we	contrasted	gene	expression	between	the	two	

temperatures	for	each	mutant.	Six	of	seven	mutants	had	<100	significant	differentially	

expressed	genes	(DEGs;	padj	<	0.001),	and	the	hslU	frameshift	had	231	DEGs	between	

temperatures	(Supplementary	Table	S1.3).	Second,	we	compared	the	two	temperatures	for	

mutants	to	REL1206	at	42.2°C.	We	detected	491	DEGs	with	the	43.0°C	mutant	data	and	450	

DEGs	with	the	43.0°C	data,	with	75%	of	DEGs	shared	between	the	two	analyses	

(Supplementary	Table	S1.4).	Overall,	these	results	suggest	some	temperature-specific	

differences	between	high	stress	and	rescue	temperatures.	However,	comparisons	using	the	

mutant	data	at	the	two	temperatures	led	to	identical	trends	and	qualitative	conclusions	

about	functional	enrichment	and	directional	changes	in	gene	expression.	Hence,	or	

simplicity,	we	focused	on	comparisons	between	REL1206	at	42.2°C	and	the	single	mutants	

at	which	rescue	occurred	-	i.e.,	43.0°C.		

At	43.0°C,	single	mutations	in	rpoBC	or	hslVU	exhibited	from	58	to	250	upregulated	

DEGs	and	between	156	to	369	downregulated	DEGs	relative	to	REL1206	at	42.2°C.	We	

assessed	common	sets	of	DEGs	among	single	mutants	within	specific	operons.	For	example,	

the	five	hslVU	mutants	shared	127	highly	downregulated	genes	(of	294	total)	in	common,	
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and	these	exhibited	no	GO-based	enrichment	for	specific	biological	processes	(Figure	1.3A).	

Similarly,	the	two	rpoBC	mutations	shared	250	down-regulated	genes	(Figure	1.3A)	that	

were	enriched	for	transmembrane	transporters	and	catabolic	processes	(Supplementary	

Table	S1.5).	Finally,	all	seven	mutants	shared	113	downregulated	DEGs	(Figure	1.3A),	a	set	

that	could	contain	genes	critical	to	rescue.	GO	analyses	of	this	gene	set	did	not	reveal	a	

significant	enrichment	for	any	biological	processes,	leaving	it	difficult	to	infer	which	(if	

any)	of	these	genes	contributed	to	rescue	events.		

For	upregulated	genes	in	the	mutants	compared	to	the	REL1206	ancestor,	we	found	

185	DEGs	shared	by	rpoBC	mutants	(of	288	total	upregulated	genes)	and	44	for	all	five	

hslVU	mutants	(of	137	total	upregulated	genes).	Interestingly,	40	of	the	44	were	also	

upregulated	in	the	rpoBC	mutants	(Figure	1.3B).	GO	analyses	on	this	set	revealed	

enrichment	for	flagellum	assembly	and	motility	(Supplementary	Table	S1.6).	More	

specifically,	16	of	these	40	genes	were	annotated	to	be	directly	involved	in	flagellum	

regulation,	assembly,	or	motility	(Liu	and	Ochman	2007;	Kaundal	et	al.	2020).	Through	

manual	investigation	of	the	remaining	twenty-four	genes,	we	found	eleven	genes	that	were	

involved	in	membrane	transport	and	thirteen	genes	involved	in	translational	processes,	

amino	acid	synthesis,	and	nucleotide	synthesis	(Supplementary	Table	S1.7).	

	

Rescue	predominantly	restores	gene	expression.	An	ongoing	question	about	molecular	

adaptation	is	whether	it	restores	physiological	and	molecular	processes	from	a	stressed	

state	back	toward	the	unstressed,	wild-type	state	or	whether	it	instead	tends	to	drive	the	

evolution	of	novelty	(Carroll	and	Marx	2013).	Previous	studies	have	suggested	the	former,	

because	studies	have	shown	that	E.	coli	adapts	to	high	temperature	stress	(42.2°C)	by	
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restoring	both	gene	expression	(Rodríguez-Verdugo	et	al.	2016;	González-González	et	al.	

2017)	and	phenotypic	characteristics	(Hug	and	Gaut	2015)	toward	that	of	the	unstressed	

ancestor.		 	

Following	previous	studies,	we	investigated	gene	expression	among	mutants,	the	

ancestor	at	42.2°C	and	the	ancestor	at	37.0°C.	Similar	to	those	studies,	we	found	a	strong	

negative	correlation	between	ratios	that	measure	the	degree	of	gene	expression	change	in	

the	mutant	relative	to	the	two	states	of	the	ancestor.	For	example,	the	rpoB	H447L	

mutation	exhibited	a	correlation	of	-0.834	(Figure	1.4A),	illustrating	that	the	mutant	tended	

to	move	gene	expression	back	from	the	stressed	(42.2°C)	state	toward	the	wild-type	

(37.0°C)	state.	Similar	negative	correlations	were	obtained	with	the	other	seven	mutants	

(Figure	1.4B-C	and	Supplementary	Figure	S1.1),	but	the	negative	correlations	were	

generally	stronger	for	the	rpoBC	mutations	than	the	hslVU	mutations.		

We	also	counted	the	number	of	genes	that	fell	into	one	of	four	expression	

categories:	restored,	unrestored,	reinforced,	or	novel	(see	Methods).	The	predominant	

category	was	restored,	which	suggests	that	the	mutant	shifted	gene	expression	back	

toward	the	unstressed	state	(Table	1.3;	Figure	1.4).	Five	of	seven	mutants	had	>50%	of	

their	genes	in	this	category,	while	the	hslU	frameshift	mutant	and	the	hslU	G60D	mutants	

had	38%	and	40%	of	their	genes	restored,	respectively.	The	next	highest	category	was	

unrestored,	which	represented	23-53%	of	the	genes	in	the	rescue	mutants.	Perhaps	the	

most	striking	aspect	of	our	analyses	was	that	each	rescue	mutant	had	>100	genes	that	

exhibited	novel	expression	patterns.	This	category	had	far	fewer	genes	in	previous	studies;	

for	example,	high	temperature	adaptive	mutations	in	rpoB	and	rho	caused	<60	genes	to	

have	novel	expression	patterns	(Rodríguez-Verdugo	et	al.	2016;	González-González	et	al.	
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2017).	Given	this	apparent	difference,	we	compared	the	average	number	of	novel	genes	

across	all	seven	mutations	to	previous	studies	that	used	the	same	methods	(Rodríguez-

Verdugo	et	al.	2016;	González-González	et	al.	2017).	We	found	that	rescue	mutations	had	a	

significantly	different	proportion	of	genes	in	the	four	categories	to	previously	studied	rpoB	

and	rho	mutations	(p	<	2.2	×	10-16,	contingency	test;	Figure	1.4D).	A	total	of	43	genes	

displayed	novel	expression	patterns	across	all	seven	rescue	mutants;	according	to	GO	

analyses,	these	were	enriched	for	transmembrane	transporters	for	carbohydrates,	such	as	

glucose	and	mannose	(Supplementary	Table	S1.8).	

	

1.5	Discussion	

We	have	performed	experiments	to	characterize	the	genetic	mutations	that	

contribute	to	the	rescue	of	E.	coli	populations	from	an	otherwise	lethal	temperature	of	

43.0°C.	Overall,	we	have	found	that	rescue	is	infrequent,	because	it	occurred	for	only	8.8%	

(26	of	296)	of	our	experimental	populations.	Although	not	all	of	our	populations	were	

independent	(Figure	1A	and	Methods),	the	observed	rescue	frequency	is	similar	to	that	of	

Mongold	et	al.	(1999),	who	found	that	10%	of	E.	coli	populations	recovered	from	a	44.0°C	

treatment	(Mongold	et	al.	1999).	One	difference	is	that	they	observed	rescue	only	in	

populations	that	were	pre-adapted	to	thermal	stress,	whereas	our	populations	were	not	

pre-adapted.	Nonetheless,	the	two	studies	are	consistent	in	showing	that	evolutionary	

rescue	is	infrequent	but,	somewhat	paradoxically,	frequent	enough	to	be	a	potent	source	of	

evolutionary	innovation	(Bell	2017).		

We	have	studied	thermal	stress	because	it	has	complex	effects	on	a	wide	variety	of	

physiological	functions,	implying	that	rescue	adaptations	could	be	genetically	diverse.	
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Among	the	26	populations	that	exhibited	U-shaped	rescue	dynamics	(Figure	1.1B),	we	have	

identified	29	distinct	fixed	mutations	(Table	1.1).	There	were	clear	patterns	among	these	

mutations,	because	some	mutations	were	found	in	parallel	across	presumably	independent	

experiments.	For	example,	the	same	point	mutation	in	ECB_00530	was	found	in	three	

separate	weeks,	as	was	a	nonsynonymous	mutation	in	rpoC	(Table	1.1).	Other	common	

locations	of	fixed	mutations	included	the	hslVU	heat	shock	protease	operon,	the	rpoBC	RNA	

polymerase	operon,	and	an	intergenic	region	between	clpA	and	serW,	which	encode	a	

component	of	a	protease	system	similar	to	that	encoded	by	hslVU	(Kwon	et	al.	2004)	and	a	

serine-bearing	tRNA.		

Mutations	in	some	of	our	genes	have	been	identified	in	previous	experiments	of	E.	

coli	temperature	adaptation	under	non-lethal	conditions	(Tenaillon	et	al.	2012;	Deatherage	

et	al.	2017).	For	example,	mutations	in	mrdA	and	rpoBC	have	been	identified	in	numerous	

evolution	experiments,	both	in	low-nutrient	conditions	and	under	temperature	adaptation	

(Conrad	et	al.	2010;	Tenaillon	et	al.	2012;	Long	et	al.	2015;	Deatherage	et	al.	2017).	

Similarly,	multiple	mutations	in	hslVU	were	identified	in	an	experiment	that	evolved	

REL1206	for	2,000	generations	at	several	temperature	regimes,	including	37.0°C	and	

42.0°C	(Deatherage	et	al.	2017).	However,	the	hslVU	mutations	were	primarily	observed	at	

37.0°C,	not	at	the	stressful	temperature,	and	the	37.0°C	mutations	did	not	obviously	inhibit	

function	via	frameshifts	or	premature	stop	codons.	Interestingly,	mutations	in	hslVU	were	

not	found	commonly	during	evolution	at	42.2°C	by	Tenaillon	et	al.	(2012).	Of	their	115	

lines	and	>1000	mutations,	only	one	line	carried	a	nonsynonymous	mutation	in	hslU.	These	

observations	suggest	that	slight	differences	in	conditions	(i.e.,	from	stressful	to	lethal	

temperature)	may	have	large	effects	on	the	set	of	potentially	adaptive	mutations.		
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Single	mutations	drive	rescue.	Of	our	26	rescued	populations,	10	had	only	a	single	fixed	

variant,	suggesting	they	were	drivers	of	evolutionary	rescue.	To	explore	the	fitness	effects	

and	the	potential	mechanistic	basis	of	these	potential	drivers,	we	isolated	single	mutant	

genotypes	for	seven	mutations	within	the	rpoBC	and	hslVU	operons	(Table	1.2).	We	isolated	

two	nonsynonymous	mutations	in	the	former,	which	encodes	the	β	and	β’	subunits	of	RNA	

polymerase	(RNAP).	Mutations	in	RNAP	must	maintain	enzyme	function	due	to	its	central	

role	in	transcription,	but	it	is	also	known	that	nonsynonymous	mutations	in	RNAP	can	have	

numerous	effects	on	cellular	properties	like	fitness,	growth	rate,	and	patterns	of	gene	

expression	(Herring	et	al.	2006;	Rodríguez-Verdugo	et	al.	2014;	Carroll	et	al.	2015;	

Rodríguez-Verdugo	et	al.	2016).		

We	also	isolated	three	nonsynonymous	mutations	and	two	frameshifts	within	the	

hslVU	operon	(Table	1.1),	which	encodes	two	heat	shock	proteins	that	form	an	ATP-

dependent	protease	complex.	In	hslU,	one	nonsynonymous	mutation	(G60D)	is	in	the	N-

terminal	domain	that	has	ATPase	activity,	the	other	(L163R)	is	in	the	I-intermediate	

domain	that	recognizes	substrates,	and	the	frameshift	is	in	the	C-terminal	domain	that	

interacts	with	the	hslV	protein	product	(Bochtler	et	al.	2000;	Lien	et	al.	2009).	Previous	

studies	have	detailed	the	effects	of	nonsynonymous	mutations	in	the	N-	and	C-terminal	

domains	of	hslU	and	concluded	that	most	mutations	cause	the	loss	of	ATP	hydrolyzing	

ability	and	protease	activity	(Shin	et	al.	1996;	Bochtler	et	al.	2000).	Similarly,	research	has	

shown	that	nonsynonymous	mutations	throughout	the	sequence	of	hslV	causes	reduced	

protease	activity	(Yoo	et	al.	1997;	Yoo	et	al.	1998).	Taken	together,	these	studies	suggest	

that	the	hslVU	mutations	in	our	study	likely	reduce	or	completely	knock	out	their	heat	
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shock	protease	activity.		

We	assayed	the	relative	fitness	of	each	of	seven	mutations	to	confirm	that	they	can	

drive	rescue	dynamics.	Six	of	the	seven	have	wr	values	significantly	greater	than	1.0	at	high	

temperature,	with	the	last	borderline	significant	(p	=	0.073).	The	wr	estimates	range	from	a	

~6%	fitness	increase	for	hslU	G60D	to	30%	or	higher	fitness	increase	for	three	of	the	seven	

mutations	(the	hslU	frameshift,	hslU	L163R,	and	rpoB	H447L;	Table	1.2	and	Figure	1.3).	

This	range	of	wr	values	is	not	particularly	unexpected,	even	for	mutations	within	the	same	

gene	(Barrick	et	al.	2010;	Conrad	et	al.	2010;	LaCroix	et	al.	2015).	For	example,	Rodríguez-

Verdugo	et	al.	(2014)	assessed	the	fitness	of	four	adaptive	mutations	in	two	different	

codons	of	rpoB,	and	their	fitness	benefits	varied	from	17%	to	37%.	Similarly,	González-

González	et	al.	(2017)	found	that	adaptive	mutations	within	the	rho	gene	varied	in	fitness	

increases	from	8%	to	26%.	Together,	the	wr	estimates	of	our	seven	mutations,	coupled	with	

the	fact	that	each	was	the	lone	fixed	mutation	in	at	least	one	rescue	population,	clearly	

establish	that	each	mutation	is	sufficient	for	rescue.		

	

Population	dynamics	of	rescue	mutations.	There	were,	however,	at	least	two	interesting	

differences	in	the	observed	patterns	of	hslVU	and	rpoBC	mutations.	First,	fixed	mutations	in	

these	two	operons	were	not	found	together	in	the	same	population,	which	is	statistically	

improbable	given	their	respective	frequencies	across	populations	(p	<	0.02).	The	lack	of	co-

occurring	rpoBC	and	hslVU	mutations	suggests	that	clonal	competition	canalizes	the	initial	

adaptive	response.	To	the	extent	that	wr	values	at	42.2°C	reflect	fitnesses	at	43.0°C,	the	

relative	fitness	assays	suggest	that	the	two	rpoBC	mutations	would	outcompete	at	least	

three	of	the	hslVU	mutations	when	both	are	present	(Figure	1.2A).	Second,	patterns	of	
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parallelism	differed	between	hslVU	and	rpoBC	mutations.	Specific	hslVU	mutations	were	

found	across	different	weeks	and	among	non-independent	populations	within	weeks	

(Figure	1.1C).	In	contrast,	rpoBC	mutations	were	identified	across	weeks	but	typically	in	

only	a	single	population.		

What	might	drive	these	apparently	different	patterns?	To	address	this	question,	we	

first	recognize	that	evolutionary	rescue	can	act	on	standing	genetic	variation	prior	to	the	

introduction	of	the	lethal	stressor	(Bell	2013;	Bell	2017).	Indeed,	our	experiments	were	

unlikely	to	be	severely	mutation-limited	(e.g.,	Lang	et	al.	2013)	because	the	experiment	for	

each	week	began	in	an	overnight	DM25	culture	at	37.0°C	(Figure	1.1A).	We	nonetheless	

believe	two	factors	may	have	contributed	to	different	patterns	for	hslVU	and	rpoBC	rescue	

mutations.	First,	there	is	strong	constraint	on	function	for	rpoBC	mutations,	whereas	hslVU	

knockouts	are	adaptive	at	lethal	temperatures.	Hence,	we	suspect	that	there	are	more	

potential	rescue	mutations	in	hslVU	due	to	fewer	functional	constraints.	This	difference	

may	alone	explain	why	fixed	hslVU	mutations	were	more	numerous	than	rpoBC	mutations	

(Table	1.1),	but	it	does	not	fully	explain	why	hslVU	mutations	tended	to	be	more	common	

across	populations	in	one	week.		

Second,	we	suspect	that	trade-offs	contribute	to	the	pattern	across	populations	in	

one	week.	We	posit	that	fitness	costs	at	37.0°C	affect	the	frequency	of	individual	mutations	

in	the	overnight	culture,	which	in	turn	affects	the	probability	of	a	mutation	being	sampled	

into	multiple	populations	in	any	given	week	(Figure	1.1A).	We	thus	assessed	wr	for	the	

single	mutants	at	37.0°C,	the	temperature	of	the	initial	batch	cultures,	for	trade-offs.	We	

found	that	fitness	costs	are	not	a	universal	feature	of	the	rescue	mutations,	at	least	within	

the	power	of	our	experiments	to	detect	such	differences.	Only	two	of	the	seven	mutations	
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exhibited	significant	fitness	deficits:	rpoB	H447L	and	the	hslU	frameshift	mutation	(Table	

1.2).	These	observations	contribute	to	a	growing	consensus	that	trade-offs,	and	specifically	

antagonistic	pleiotropy,	are	common	but	not	universal	(Cooper	and	Lenski	2000;	MacLean	

et	al.	2004;	Rodríguez-Verdugo	et	al.	2014;	Deatherage	et	al.	2017).	The	pattern	of	trade-

offs	does	not	fully	support	our	model,	because	the	hslU	frameshift	was	common	across	

populations	in	week	3	despite	its	low	fitness	at	37.0°C	(Table	1.1).	Nonetheless,	wr	values	

based	on	populations	consistently	show	that	the	populations	with	fixed	rpoBC	mutations	

do	exhibit	trade-offs	(Figure	1.2B).	We	thus	continue	to	suspect	that	trade-offs	play	a	large	

role	in	the	population	dynamics	of	our	experiment,	because	mutations	with	trade-offs	are	

at	low(er)	frequency	in	the	37.0°C	overnight	culture	and	thus	less	likely	to	be	sampled	into	

multiple	populations.		

We	add	two	additional	points	about	the	dynamics	of	rescue	in	our	experiment.	First,	

the	fact	that	we	uncover	clear	and	repeatable	patterns	of	mutations	in	only	a	small	subset	

of	genes	and	operons	suggests	that	the	universe	of	potential	rescue	mutations	is	small,	

especially	given	that	the	experiment	should	not	have	been	severely	mutation-limited.	One	

potential	explanation	for	parallel	mutations	across	weeks	-	such	as	the	clpA/serW	mutation	

and	several	others	(Table	1.1)	-	is	that	the	experiment	selected	for	low-frequency	

mutations	that	were	present	in	the	common,	frozen	ancestral	stock	(Figure	1.1A).	However,	

this	possibility	does	not	contradict	(but	rather	reinforces)	the	conjecture	that	there	are	

only	a	few	major	mutational	targets	for	adaptive	rescue.	In	this	context,	it	is	interesting	to	

muse	whether	there	is	in	fact	a	very	small	universe	of	mutations	that	are	capable	of	rescue	

or	whether	there	is	a	large	universe	of	such	mutations	but	most	do	not	establish	in	our	

populations	because	they	have	severe	fitness	costs	at	37.0°C.	We	cannot	yet	distinguish	
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between	these	two	alternatives,	but	knowing	the	prevalence	of	trade-offs	is	important	to	

furthering	our	understanding	about	the	dynamics	of	evolutionary	rescue.	Second,	we	need	

to	mention	an	important	distinction	between	our	E.	coli	experiment	and	evolutionary	

rescue	in	natural	populations,	particularly	in	size-limited,	non-bacterial	populations	

subjected	to	stressors	like	climate	change.	The	yeast	experiment	under	lethal	salt	

conditions	is	illustrative,	because	it	showed	that	rescue	occurs	less	frequently	in	

populations	of	small	size	(Bell	and	Gonzalez	2009).	It	thus	seems	likely	that	the	frequency	

of	rescue	in	most	plant	and	animal	populations,	which	tend	to	be	relatively	small,	will	be	far	

less	than	the	8%	to	10%	estimated	for	E.	coli	under	lethal	temperature	stress.		

	

Insights	into	rescue	mechanisms	and	evolutionary	direction.	We	have	established	that	

the	seven	mutations	are	capable	of	rescue.	However,	an	overarching	question	is	about	their	

function—i.e.,	what	do	they	do	and	how	do	they	drive	rescue	events?	To	begin	to	address	

this	question,	we	generated	gene	expression	data	for	the	seven	single	rescue	mutants.	For	

each	clone	we	measured	gene	expression	at	the	exponential	phase	of	growth	at	two	

temperatures	(42.2°C	and	43.0°C)	to	compare	to	the	REL1206	ancestor	at	42.2°C	and	

37.0°C.	Our	goals	were:	i)	to	find	sets	of	DEGs	in	common	across	the	entire	set	of	mutants,	

in	the	hope	that	they	yield	clues	to	mechanisms	and	ii)	to	characterize	the	overall	direction	

of	gene	expression	changes	with	respect	to	the	stressed	and	unstressed	state	of	the	

ancestor.		

Our	first	goal	was	formulated	under	the	hypothesis	that	rescue	mutants	may	affect	

common	pathways	that	lead	to	rescue.	We	proffer	this	hypothesis	knowing	that	the	

differences	in	wr	among	mutants	reflects	the	fact	that	many	DEGs	vary	among	them	and	
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also	that	different	mutants	may	have	utilized	different	pathways	to	achieve	rescue.	

Nonetheless,	we	first	focused	on	shared	DEGs	between	the	two	rpoBC	mutants.	They	share	

a	set	of	435	DEGs	relative	to	the	ancestor	(Figure	1.3),	based	on	a	conservative	measure	of	

differential	expression	that	includes	both	adjusted	p-values	<	0.001	and	two-fold	

differences	in	log2	expression	(see	Methods).	The	high	number	of	DEGs	is	not	surprising,	

because	previous	work	has	shown	that	single	mutations	in	RNAP	can	alter	the	gene	

expression	of	~1,000	or	more	genes	(Conrad	et	al.	2010;	Carroll	et	al.	2015;	Rodríguez-

Verdugo	et	al.	2016).	The	number	of	common	DEGs	was	much	lower	for	hslVU	mutations,	at	

171	total;	the	union	between	the	two	sets	yielded	40	up-	and	113	down-regulated	genes	

(Figure	3).	

		 The	set	of	113	down-regulated	genes	provided	no	clear	patterns	with	regard	to	

function,	based	on	GO	analyses	and	manual	investigation	of	gene	annotations.	However,	the	

40	upregulated	genes	yielded	two	notable	observations.	First,	24	of	the	40	were	involved	in	

transport,	ribosomal	assembly,	and	amino	acid	and	nucleotide	pathways.	This	suggests	that	

changes	in	gene	expression	were	supporting	translation	processes,	perhaps	to	enhance	

efficiency	at	high	temperature.	Surprisingly,	GO	analyses	revealed	that	this	40	gene	set	is	

also	enriched	for	genes	involved	in	flagellar	assembly	and	motility,	a	process	that	is	known	

to	be	energetically	costly	(Soutourina	and	Bertin	2003).	We	manually	verified	that	at	least	

16	of	the	40	genes	have	functions	associated	with	flagella.	Given	this	observation,	one	must	

ask	about	the	potential	adaptive	benefit	of	flagellar	production	and	activity.	It	is	hard	to	

answer	this	question	directly,	but	it	has	been	shown	that	E.	coli	produce	flagella	in	low	

nutrient	environments	(Shi	et	al.	1992;	Sim	et	al.	2017).	Hence,	one	hypothesis	is	that	

increased	expression	of	flagella	leads	to	enhanced	motility	and	nutrient	acquisition.	It	
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seems	doubtful,	however,	that	enhanced	motility	is	an	advantage	in	our	well-mixed	system.	

Interestingly,	previous	work	has	shown	that	first-step	adaptive	mutations	also	increased	

flagellar	gene	expression,	only	to	be	attenuated	by	subsequent	compensatory	mutations	

(Rodríguez-Verdugo	et	al.	2016).	These	observations	suggest	that	flagellar	production	may	

be	a	disadvantageous	by-product	of	other	major	and	adaptive	shifts	in	physiological	

processes.	Altogether,	then,	it	is	not	clear	which—if	any—of	the	common	DEGs	contribute	

to	the	rescue	phenotype.	We	suspect,	however,	that	shifts	in	the	expression	of	translation-

related	genes	are	more	critical	for	adaptation	than	the	upregulation	of	flagella-related	

genes.	In	the	future,	proteomic	analyses	may	provide	further	insights	into	changes	

introduced	by	rescue	mutations	and	evolutionary	mechanisms.		

It	is	worth	briefly	considering	the	potential	effects	of	hslVU	mutations	separately,	

because	the	frameshift	mutations	lead	to	the	somewhat	paradoxical	conclusion	that	

knockouts	of	heat	shock-related	proteins	are	beneficial	at	lethal	temperatures.	In	this	

context,	it	is	helpful	to	know	that	the	hslVU	protein	degrades	the	σ32	factor.	In	E.	coli,	σ32	

typically	exists	as	an	RNA	with	secondary	structure	that	unfolds	under	high	temperature	to	

allow	translation,	and	then	the	σ32	protein	regulates	the	transcription	of	genes	needed	to	

carry	out	the	heat	shock	response	(Roncarati	and	Scarlato	2017).	By	degrading	σ32,	the	

hslVU	protein	indirectly	inhibits	the	production	of	other	proteins	in	the	heat	shock	cascade	

(Kanemori	et	al.	1997).	We	propose	that	the	hslVU	rescue	mutations	decrease	or	knock	out	

the	protease	function,	thereby	facilitating	an	uninhibited	heat	shock	response	through	σ32.	

One	interesting	fact	is	that	σ32	regulates	a	series	of	genes—like	dnaK,	dnaJ,	and	grpE	

(Nonaka	et	al.	2006)—that	are	also	required	for	the	control	of	flagellar	synthesis	through	

another	sigma	factor	(σ28)	(Shi	et	al.	1992),	suggesting	a	mechanistic	link	between	hslVU	
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and	flagellar	genes.	These	observations	support	our	hypothesis	that	loss	of	hslVU	activity	

enhances	some	aspects	of	the	heat	shock	response	and	strengthens	the	possibility	that	the	

upregulation	of	flagellar	genes	is	not	a	direct	feature	of	adaptation.	

In	a	second	goal,	we	used	expression	data	to	characterize	the	directional	change	for	

all	genes	(Carroll	and	Marx	2013).	The	question	is	whether	our	rescue	mutations	produce	

patterns	similar	to	previously	studied	mutations	that	contributed	to	temperature	

adaptation	(Rodríguez-Verdugo	et	al.	2016;	González-González	et	al.	2017).	The	previous	

mutations	predominantly	moved	gene	expression	from	a	stressed	physiological	condition	

toward	the	unstressed,	wild-type	condition.	Our	rescue	mutations	are	similar,	because	they	

also	predominantly	shift	expression	toward	restoring	the	unstressed	state	(Figure	1.4A-C).	

However,	there	is	an	important	difference:	the	rescue	mutations	yielded	significantly	more	

genes	with	novel	gene	expression	patterns	(Figure	1.4D),	particularly	for	transmembrane	

transporters.	This	result	is	not	dependent	on	the	43.0°C	conditions,	because	it	is	also	

evident	at	the	slightly	modified	temperature	of	42.2°C,	under	conditions	identical	to	the	

previous	experiments	(Supplementary	Figures	S1.2-3	and	Supplementary	Table	S1.9	for	

42.2°C	results).		

These	data	suggest	that	there	could	be	a	qualitative	difference	between	rescue	

mutations	and	mutations	that	contribute	to	adaptation	under	non-lethal	conditions.	This	

conclusion	is	of	course	subject	to	caveats.	For	example,	although	we	followed	procedures	

identical	to	previous	studies,	the	differences	may	nonetheless	reflect	experiment-specific	

effects,	such	as	batch	effects	in	RNAseq	data	(although	we	explicitly	examined	such	effects;	

see	Materials	and	Methods),	rather	than	differences	in	the	dynamics	of	adaptation.	We	also	

assayed	only	a	single	point	in	the	growth	phase,	which	may	not	represent	the	crucial	point	
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in	the	cell	cycle	for	rescue	adaptations.	As	a	consequence,	the	novel	expression	patterns	we	

have	observed	may	represent	noise	rather	than	changes	that	contribute	to	(or	are	

necessary	for)	adaptation.	However,	it	is	possible	that	phenotypic	novelty	is	an	important	

feature	of	evolutionary	rescue;	that	is,	when	challenged	with	a	lethal	stressor,	it	is	not	

sufficient	to	move	toward	restoring	expression	toward	the	unstressed	state.	Ours	is	only	a	

first	observation,	but	it	opens	an	interesting	question	for	future	research:	do	mutations	

that	drive	evolutionary	rescue	differ	qualitatively	from	adaptations	in	non-lethal	

environments?		
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Figures	

	
	
Figure	1.1:	Evolutionary	rescue	experimental	design	and	dynamics.	A)	Experimental	
design	for	producing	and	observing	rescue	events.	Bacteria	were	propagated	from	frozen	
through	two	flasks	to	acclimate	them	and	to	produce	enough	cells	for	experimental	
replication.	Samples	of	flask	culture	were	transferred	to	44	replicates	that	were	propagated	
through	1:100	serial	dilution	for	five	days.	This	procedure	was	repeated	across	seven	
different	weeks.	B)	Population	cell	densities	over	time.	Most	populations	went	extinct	over	
the	course	of	five	days.	A	total	of	26	rescue	events	were	observed	across	the	third,	fourth,	
and	fifth	days	of	growth.	The	timing	of	rescue	events	was	determined	by	the	day	at	which	
cell	density	increased	by	an	order	of	magnitude	over	the	previous	day.	Populations	
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possessing	rpoBC	mutations	are	indicated	by	rectangles.	The	three	populations	possessing	
duplications	are	circled.	C)	Genome-wide	distribution	of	mutations	in	rescue	populations.	
Populations	1	to	26	are	labelled	on	the	left	and	different	weeks	are	separated	into	groups	
and	labeled	at	the	right.	Mutations	are	colored	by	their	frequency	in	the	population	
according	to	the	scale	at	the	right.	Synonymous,	nonsynonymous,	indel,	and	intergenic	
mutations	are	represented	by	squares,	circles,	triangles,	and	diamonds,	respectively.	Only	
mutations	at	frequencies	>10%	are	shown.	Mutations	occurring	in	more	than	two	
populations	are	labeled	at	the	top.	
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Figure	1.2:	Relative	fitness	of	the	single	mutants	and	populations	at	42.2°C	and	37.0°C.	A)	
Relative	fitness	of	the	single	mutants	in	competition	with	the	ancestor	at	42.2°C	and	37.0°C.	
B)	Relative	fitness	of	the	26	rescue	populations	in	competition	with	the	ancestor	at	42.2°C	
and	37.0°C.	Boxplots	represent	the	relative	fitness	(wr)	values	of	all	replicates	for	each	
single	mutant	or	population	in	competition	with	the	ancestor.	A	wr	value	near	or	at	1.0	
indicates	similar	fitness	to	that	of	the	ancestor;	values	>	1.0	indicate	higher	fitness	than	the	
ancestor,	and	values	<	1.0	indicate	lower	fitness	than	the	ancestor.	
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Figure	1.3:	The	number	of	upregulated	and	downregulate	genes	in	the	single	mutants	
grown	at	43.0°C	relative	to	the	ancestor	grown	at	42.2°C.	For	the	Venn	diagrams	in	both	A	
and	B,	the	rpoBC	circle	represents	the	number	of	differentially	expressed	genes	shared	
between	the	two	rpoBC	mutants,	and	the	hslVU	circle	represents	genes	shared	among	the	
five	hslVU	mutants.	A)	The	number	of	downregulated	genes	relative	to	the	ancestor.	B)	The	
number	of	upregulated	genes	relative	to	the	ancestor.	
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Figure	1.4:	Direction	of	gene	expression	change	in	single	rescue	mutants.	A-C)	The	y-axis	
represents	the	direction	of	gene	expression	change	of	the	three	single	rescue	mutants,	(A)	
rpoB	H447L,	(B)	hslU	G60D,	and	(C)	hslV	H68P,	when	grown	at	43.0°C	compared	to	the	
ancestor	grown	at	42.2°C.	These	three	mutations	were	chosen	as	illustrative,	with	the	
remaining	four	mutations	shown	in	Supplementary	Figure	2.	The	x-axis	represents	the	
ancestral	changes	in	gene	expression	when	it	is	grown	at	42.2°C	compared	to	when	it	is	
grown	at	37.0°C.	The	black	line	represents	the	linear	regression	fitted	to	the	data	in	each	
graph.	D)	Comparison	of	the	number	of	genes	in	each	category	of	gene	expression	change	
for	the	rescue	mutants	and	for	the	rpoB	and	rho	mutants	studied	in	Rodríguez-Verdugo	et	
al.	2016	and	in	González-González	et	al.	2017.	The	rpoB	and	rho	mutations	were	adaptive	to	
high	but	non-lethal	temperatures.		
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Tables	

Table	1.1:	Fixed	mutations	in	rescued	populations	

Gene(s)1	 Week-Population2	 Position3	 Mutation4	 Mutation	type5	

arcB	 1-2	 3285997	 T-->G	 E755A	(GAA-->GCA)		

clpA/serW	
1-2,	2-6,	2-7,	3-26,	3-
16,	5-20	 942604	 A-->G	 intergenic	(+359/+339)	

ECB_00530	 3-16,	5-21,	6-24	 573246	 G-->C	 L81L	(CTC-->CTG)		

ECB_00530	 2-5	 573229	 T-->G	 N87T	(AAC-->ACC)		

ECB_02812/
ECB_02813	 1-2	 3012076	 T-->G	 intergenic	(-516/-58)	

hslU	 3-9,	3-18,	3-19	 4100115	 +C	 coding	(1116/1332	nt)	

hslU	 2-5,	2-8	 4100512	 Δ1	bp	 coding	(719/1332	nt)	

hslU	 3-11	 4101052	 C-->T	 G60D	(GGT-->GAT)		

hslU	 2-6,	2-7	 4101159	 C-->A	 K24N	(AAG-->AAT)		

hslU	 3-14	 4100743	 A-->C	 L163R	(CTG-->CGG)		

hslV	 2-4,	5-21	 4101760	 +T	 coding	(11/531	nt)	

hslV	 3-17	 4101363	 Δ2	bp	
coding	(408/531	nt	and	
409/531nt))	

hslV	 3-12,	3-13	 4101568	 T-->G	 H68P	(CAT-->CCT)		

hslV/ftsN	 1-1,	6-25	 4101844	 Δ1	bp	 intergenic	(-74/+19)	

insE-1/serX	 2-4,	2-7	 1111967	 A-->G	 intergenic	(-236/+166)	

lnt	 2-4	 671609	 A-->C	 G456G	(GGT-->GGG)		

mrdA	 1-2	 649901	 T-->G	 I301L	(ATC-->CTC)		
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mutT	 1-2	 114029	 Δ1	bp	 coding	(182/390	nt)	

pepA	 2-8	 4468692	 T-->G	 T163P	(ACC-->CCC)		

rhsE	 3-18,	6-24	 1500351	 T-->G	 G25G	(GGT-->GGG)		

rpoB	 1-3	 4162195	 A-->T	 H447L	(CAC-->CTC)		

rpoB	 1-2	 4163133	 A-->C	 N760H	(AAC-->CAC)		

rpoC	 5-20	 4165883	 A-->G	 D308G	(GAT-->GGT)		

rpoC	 3-16,	6-24,	7-26	 4168018	 T-->G	 W1020G	(TGG-->GGG)		

rtcA	 2-4	 3484800	 G-->A	 S217F	(TCC-->TTC)		

secF	 3-10	 398683	 +GGT	 coding	(756/972	nt)	

ybgG/cydA	 2-8	 751779	 T-->G	 intergenic	(+286/-561)	

yghS	 2-8	 3067389	 T-->G	 H219P	(CAC-->CCC)		

ynfL	 2-4	 1646703	 T-->A	 I29F	(ATT-->TTT)		

	
1	Gene	names	as	defined	in	the	REL606	annotation.	Bolded	names	represent	single	mutations	
isolated	for	further	study	(see	Table	2).	
2	Provides	information	about	the	week	and	population	in	which	the	mutation	was	fixed.	This	
column	shows,	for	example,	that	the	same	clpA/serW	intergenic	point	mutation	was	present	across	
four	independent	weeks	and	six	total	populations.		
3	Location	of	mutations	in	the	REL606	reference.		
4	Provides	mutation	type	from	REL1206	for	point	mutations.	+	and	Δ	represents	an	insertion	and	
deletion	relative	to	REL1206.		
5	Provides	information	about	codon	change	for	nonsynonymous	mutations.	Coding	variants	with	+	
and	Δ	represent	frameshifts.		 	
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Table	1.2:	Seven	single	mutants	and	their	relative	fitness	values		

	 Relative	Fitness	42.2°C	 Relative	Fitness	37.0°C	

Mutant	 wr	 wr	p-value	 wr	 wr	p-value	

hslU	frameshift	 1.317	 0.003	 0.933	 0.033	

hslU	G60D	 1.060	 0.073	 0.993	 0.378	

hslU	L163R	 1.419	 4.88E-05	 0.992	 0.272	

hslV	frameshift	 1.115	 0.0004	 0.967	 0.062	

hslV	H68P	 1.192	 0.011	 0.966	 0.195	

rpoB	H447L	 1.303	 0.0054	 0.905	 0.006	

rpoC	W1020G	 1.268	 0.0002	 0.993	 0.257	
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Table	1.3:	Number	of	genes	in	each	category	of	gene	expression	change	

	 Restored	
Reinforce
d	 Unrestored	Novel	 Total	

hslU	frameshif
t	 669	 8	 923	 135	 1735	

hslU	G60D	 719	 9	 872	 183	 1783	

hslU	L163R	 960	 4	 636	 121	 1721	

hslV	H68P	 947	 7	 646	 154	 1754	

hslV	frameshift	 977	 4	 619	 118	 1718	

rpoB	H447L	 1144	 7	 449	 305	 1905	

rpoC	W1020G	 1077	 3	 520	 159	 1759	
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Supplemental	Information	

	

Figure	S1.1:	Direction	of	gene	expression	change	at	43.0°C.	The	x-axis	represents	the	
ancestral	changes	in	gene	expression	when	it	is	grown	at	37.0°C	compared	to	when	it	is	
grown	at	42.2°C.	The	y-axis	represents	the	direction	of	gene	expression	change	of	4	single	
rescue	mutants,	(A)	rpoC	W1020G,	(B)	hslU	frameshift,	(C)	hslU	L163R,	and	(D)	hslV	
frameshift,	when	grown	at	43.0°C	compared	to	the	ancestor	grown	at	42.2°C.	The	black	line	
represents	the	linear	regression	fitted	to	the	data	in	each	graph.	
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Figure	S1.2:	Direction	of	gene	expression	change	at	42.2°C.	The	x-axis	represents	the	
ancestral	changes	in	gene	expression	when	it	is	grown	at	37.0°C	compared	to	when	it	is	
grown	at	42.2°C.	The	y-axis	represents	the	direction	of	gene	expression	change	of	7	single	
rescue	mutants,	(A)	rpoB	H447L,	(B)	rpoC	W1020G,	(C)	hslU	frameshift,	(D)	hslU	G60D,	(E)	
hslU	L163R,	(F)	hslV	frameshift,	and	(G)	hslV	H68P,	when	grown	at	42.2°C	compared	to	the	
ancestor	grown	at	42.2°C.	The	black	line	represents	the	linear	regression	fitted	to	the	data	
in	each	graph.		
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Figure	S1.3:	Direction	of	gene	expression	change.	Comparison	of	the	number	of	genes	in	
each	category	of	gene	expression	change	for	the	rescue	mutants	grown	at	43.0°C,	42.2°C,	
and	for	the	rpoB	and	rho	mutants	studied	in	Rodríguez-Verdugo	et	al.	2016	and	in	
González-González	et	al.	2017.	The	rpoB	and	rho	mutations	were	adaptive	to	high	but	non-
lethal	temperatures.		
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Supplemental	Tables	

Table	S1.1:	Change	in	gene	expression	direction	classification		

Category	 Anc42.2	vs	Anc37.0	 Mut43.0/42.2	vs	
Anc42.2	

Mut43.0/42.2	vs	
Anc37.0	

Restored	 Significant	upregulation	

Significant	
downregulation	

Significant	
downregulation	

Significant	upregulation	

-	

-	

Reinforced	 Significant	upregulation	

Significant	
downregulation	

Significant	upregulation	

Significant	
downregulation	

Significant	
upregulation	

Significant	
downregulation	

Unrestored	 Significant	upregulation	

Significant	
downregulation	

Non-significant	

Non-significant	

-	

-	

Novel	 Non-significant	

Non-significant	

Significant	upregulation	

Significant	
downregulation	

Significant	
upregulation	

Significant	
downregulation	

Significant:	significantly	differentially	expressed	gene	(padj	<	0.001)	
Non-significant:	not	significantly	differentially	expressed	gene	(padj	>	0.001)	
Adapted	from	Rodríguez-Vergudo	et	al.	2016	
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Table	S1.2:		Mutations	present	in	populations	at	frequencies	>10%	and	mean	fitness	
values	(𝑤")	of	populations	relative	to	their	ancestor	at	42.2°C	and	37.0°C			

Week	 Pop.	
Affected	Region	
(Frequency	in	
Population)	

𝒘"𝟒𝟐.𝟐	
(Standard	
Deviation)	

p-
valuea	

𝒘"𝟑𝟕.𝟎	
(Standar

d	
Deviatio

n)	

p-
valuea	

1	 1	
hslV/ftsN	(1),	gltJ	
(0.136),	glvBC	
(0.108)	

1.28	(0.06)	 5.24E-
05	

0.96	
(0.03)	

1.58E-
02	

1	 2	

mutT	(1),	mrdA	(1),	
clpA/serW	(1),	
ECB_02812/ECB_02
813	(1),	arcB	(1),	
rpoB	(1),	yfbM	
(0.205),	yhhI	
(0.178),	gltJ	(0.146),	
glvBC	(0.136)	

1.35	(0.13)	 5.20E-
04	

0.95	
(0.04)	

1.56E-
02	

1	 3*	 rpoB	(1),	glvBC	
(0.126)	 1.33	(0.11)	 3.71E-

04	
0.82	
(0.02)	

2.29E-
06	

2	 4	

lnt	(1),	insE1/serX	
(1),	ynfL	(1),	rtcA	
(1),	hslV	(1),	nagE	
(0.352),	yiaN	
(0.292)	

1.12	(0.18)	 7.35E-
02	

0.97	
(0.03)	

2.46E-
02	

2	 5	 ECB_00530	(1),	hslU	
(0.877)	 1.34	(0.13)	 6.97E-

04	
0.92	
(0.06)	

7.62E-
03	

2	 6	 clpA/serW	(1),	hslU	
(1),	yegM	(0.154)	 1.33	(0.12)	 6.06E-

04	
1.02	
(0.04)	

1.13E-
01	

2	 7	

clpA/serW	(1),	
insE1/serX	(1),	hslU	
(1),	glvBC	(0.309),	
gpsA	(0.237),	dfp	
(0.121)	

1.13	(0.05)	 4.52E-
04	

1.01	
(0.02)	

2.52E-
01	

2	 8	 ybgG/cydA	(1),	yghS	
(1),	hslU	(1),	pepA	 1.05	(0.05)	 2.96E-

02	
0.98	
(0.05)	

1.41E-
01	
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(1)	

3	 9*	
hslU	(0.986),	glvBC	
(0.138),	gpsA	
(0.117)	

1.41	(0.12)	 1.62E-
04	 1	(0.05)	 4.09E-

01	

3	 10	

secF	(0.872),	
ECB_01992	(0.332),	
glvBC	(0.137),	gltJ	
(0.116)	

1.38	(0.24)	 5.91E-
03	

0.95	
(0.04)	

1.78E-
02	

3	 11*	
hslU	(0.893),	glvBC	
(0.144),	gltJ	(0.136),	
hslV	(0.106)	

1.47	(0.19)	 8.52E-
04	 1	(0.04)	 4.69E-

01	

3	 12	 hslV	(1),	glvBC	
(0.122)	 1.43	(0.06)	 5.56E-

06	
0.97	
(0.01)	

6.53E-
04	

3	 13*	 hslV	(1)	 1.38	(0.09)	 8.31E-
05	

1.01	
(0.03)	

2.93E-
01	

3	 14*	
hslU	(0.874),	glvBC	
(0.178),	gltJ	(0.165),	
hslU	(0.111)	

1.30	(0.04)	 5.46E-
06	

1.03	
(0.05)	

7.82E-
02	

3	 15	

hslV	(0.611),		

ECB_01992	(0.326),	
hslU	(0.286),	gltJ	
(0.133),	glvBC	
(0.133)	

1.12	(0.10)	 1.57E-
02	 1	(0.04)	 3.84E-

01	

3	 16	

ECB_00530	(1),	
clpA/serW	(1),	rpoC	
(1),	appB	(0.212),	
glvBC	(0.157)	

1.35	(0.28)	 1.29E-
02	

0.96	
(0.05)	

5.28E-
02	

3	 17*	
hslV	(0.909),	
ECB_01992	(0.329),	
glvBC	(0.164)	

1.17	(0.04)	 1.20E-
04	

1.03	
(0.03)	

4.62E-
02	

3	 18	
rhsE	(1),	hslU	
(0.987),	glvBC	
(0.135),	gltJ	(0.109)	

1.20	(0.10)	 2.49E-
03	

0.97	
(0.04)	

7.41E-
02	

3	 19	 hslU	(0.989),	
ydfJ/ydfK	(0.529),	 1.08	(0.05)	 3.85E-

03	
0.99	
(0.02)	

1.05E-
01	
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ECB_01992	(0.318),	
glvBC	(0.182)	

5	 20	 clpA/serW	(1),	rpoC	
(1),	glvBC	(0.113)	 1.24	(0.07)	 1.79E-

04	
0.96	
(0.05)	

5.90E-
02	

5	 21b	
ECB_00530	(1),	hslV	
(0.956),	ECB_01992	
(0.33),	glvBC	(0.171)	

1.05	(0.06)	 6.14E-
02	

0.95	
(0.02)	

8.25E-
04	

6	 22c	
ECB_01992	(0.316),	
gltJ	(0.173),	glvBC	
(0.159)	

1.12	(0.10)	 1.90E-
02	

0.98	
(0.03)	

4.40E-
02	

6	 23c	 glvBC	(0.137)	 1.07	(0.09)	 5.33E-
02	

0.93	
(0.02)	

1.89E-
04	

6	 24	

ECB_00530	(1),	rhsE	
(1),	rpoC	(1),	
ECB_01992	(0.33),	
glvBC	(0.144),	gltJ	
(0.143)	

1.14	(0.06)	 1.51E-
03	

0.92	
(0.02)	

3.05E-
04	

6	 25c	 hslV/ftsN	(1),	glvBC	
(0.156),	gltJ	(0.121)	 1.04	(0.07)	 1.06E-

01	
0.96	
(0.03)	

1.04E-
02	

7	 26*	
rpoC	(1),	ECB_01992	
(0.341),	glvBC	
(0.155)	

1.24	(0.11)	 1.55E-
03	

0.92	
(0.04)	

1.36E-
03	

aSignificance	of	relative	fitness	increases	compared	to	a	value	of	1.0	was	determined	using	one-
tailed	t-tests	and	six	replicate	fitness	estimates	per	population.	
bPopulation	also	contained	a	duplication	of	~80	kb.	
cPopulation	also	contained	a	duplication	of	~20	kb.	
*Population	used	for	isolating	single	mutants.	
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Table	S1.3:	Number	of	differentially	expressed	genes	(DEGs)	between	the	single	mutants	
grown	at	43.0°C	relative	to	42.2°C	

Comparison	of	Single	Mutants	at	43.0˚C	relative	to	42.2˚C	

Rescue	
Mutant	

DEGs,	
padj<0.00
1	

Highly	upregulated	genes	(	
padj<0.001,	log2-fold	change	>	
2)	

Highly	downregulated	genes	
(	padj<0.001,	log2-fold	
change	<	-2)	

hslU	G60D	 77	 0	 6	

hslU	indel	 231	 3	 83	

hslU	L163R	 0	 0	 0	

hslV	H68P	 45	 10	 1	

hslV	indel	 1	 0	 0	

rpoB	H447L	 3	 0	 0	

rpoC	W1020G	 20	 0	 0	
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Table	S1.4:	Comparison	of	the	number	and	overlap	of	DEGs	between	the	rescue	mutants	
grown	at	42.2°C	relative	to	the	ancestor	at	42.2°C	and	the	rescue	mutants	grown	at	43°C	
relative	to	the	ancestor	at	42.2°C	

	

Rescue	Mutant	at	43˚C	
relative	to	Ancestor	at	

42.2˚C	

Rescue	Mutant	at	42.2˚C	
relative	to	Ancestor	at	

42.2˚C	

Comparing	gene	
sets	

Rescue	
Mutant	

Highly	
upregulat
ed	genes:	
padj<0.00
1,	log2-fold	
change	>	2	

Highly	
downregul
ated	genes:	
padj<0.001,	
log2-fold	
change	<	-2	

Highly	
upregulat
ed	genes:	
padj<0.00
1,	log2-
fold	
change	>	
2	

Highly	
downregul
ated	genes:	
padj<0.001,	
log2-fold	
change	<	-2	

Shared	
upregu
la-ted	
genes	

Shared	
downreg
ul-ated	
genes	

hslU	G60D	 65	 167	 142	 132	 50	 78	

hslU	indel	 58	 156	 62	 71	 26	 38	

hslU	L163R	 104	 231	 194	 189	 91	 140	

hslV	H68P	 101	 241	 115	 71	 76	 63	

hslV	indel	 123	 222	 143	 111	 110	 78	

rpoB	H447L	 250	 369	 246	 370	 199	 286	

rpoC	W1020G	 223	 268	 220	 230	 169	 171	
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Table	S1.5:	GO	analysis	on	the	set	of	highly	downregulated	genes	shared	by	rpoB	H447L	
and	rpoC	W1020G	single	mutants	

GO	biological	process	complete	 Refl
ist	
(43
91)	

Obser
ved	

Expec
ted	

Over/u
nder	

Fold	
Enrich
ment	

p-
value	

monosaccharide	transmembrane	
transport	(GO:0015749)	

43	 11	 2.14	 +	 5.13	 3.78E-
02	

alpha-amino	acid	catabolic	
process	(GO:1901606)	

60	 13	 2.99	 +	 4.34	 3.34E-
02	

carbohydrate	transport	
(GO:0008643)	

129	 27	 6.43	 +	 4.2	 2.71E-
06	

cellular	amino	acid	catabolic	
process	(GO:0009063)	

72	 15	 3.59	 +	 4.18	 1.22E-
02	

carbohydrate	transmembrane	
transport	(GO:0034219)	

87	 17	 4.34	 +	 3.92	 6.59E-
03	

small	molecule	catabolic	process	
(GO:0044282)	

290	 47	 14.46	 +	 3.25	 4.89E-
09	

carbohydrate	catabolic	process	
(GO:0016052)	

137	 22	 6.83	 +	 3.22	 4.86E-
03	

carboxylic	acid	catabolic	process	
(GO:0046395)	

185	 25	 9.23	 +	 2.71	 1.64E-
02	

organic	acid	catabolic	process	
(GO:0016054)	

193	 26	 9.63	 +	 2.7	 1.15E-
02	

organic	substance	catabolic	
process	(GO:1901575)	

482	 53	 24.04	 +	 2.2	 1.13E-
04	

catabolic	process	(GO:0009056)	 498	 54	 24.84	 +	 2.17	 9.93E-
05	

cellular	catabolic	process	
(GO:0044248)	

380	 40	 18.95	 +	 2.11	 1.89E-
02	

Unclassified	(UNCLASSIFIED)	 939	 36	 46.83	 -	 0.77	 0.00E+
00	



 

	
	

61	

cellular	nitrogen	compound	
metabolic	process	(GO:0034641)	

103
2	

26	 51.47	 -	 0.51	 3.69E-
02	

macromolecule	metabolic	
process	(GO:0043170)	

107
9	

25	 53.81	 -	 0.46	 2.38E-
03	

cellular	macromolecule	metabolic	
process	(GO:0044260)	

900	 19	 44.89	 -	 0.42	 5.85E-
03	

cellular	biosynthetic	process	
(GO:0044249)	

955	 19	 47.63	 -	 0.4	 7.21E-
04	
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Table	S1.6:	GO	analysis	on	the	set	of	highly	upregulated	genes	shared	by	all	rescue	
mutants	

GO	biological	process	
complete	

Reflist		 Obser
ved	

Expec
ted	

Ov
er/
un
der	

Fold	
Enrichmen
t	

p-
value	

bacterial-type	flagellum-
dependent	swarming	motility	
(GO:0071978)	

14	 6	 0.13	 +	 47.05	 1.44E-
05	

bacterial-type	flagellum	
organization	(GO:0044781)	

26	 8	 0.24	 +	 33.78	 3.59E-
07	

bacterial-type	flagellum	
assembly	(GO:0044780)	

17	 5	 0.15	 +	 32.29	 1.21E-
03	

bacterial-type	flagellum-
dependent	cell	motility	
(GO:0071973)	

40	 10	 0.36	 +	 27.44	 9.51E-
09	

archaeal	or	bacterial-type	
flagellum-dependent	cell	
motility	(GO:0097588)	

44	 10	 0.4	 +	 24.95	 2.16E-
08	

cilium	or	flagellum-dependent	
cell	motility	(GO:0001539)	

44	 10	 0.4	 +	 24.95	 2.16E-
08	

localization	of	cell	
(GO:0051674)	

50	 11	 0.46	 +	 24.15	 2.49E-
09	

cell	motility	(GO:0048870)	 50	 11	 0.46	 +	 24.15	 2.49E-
09	
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Table	S1.7:	List	of	highly	upregulated	genes	and	their	function		

Gene	 Function/process	 Reference	

asnA	 Aspartate--ammonia	ligase,	asparagine	
synthetase	

(Nakamura	et	al.,	1981)	

bipA	 GTPase,	has	chaperone	like	activity	and	
assists	ribosome	assembly	

(Choi	&	Hwang,	2018)	

deaD	 ATP-dependent	RNA	helicase,	involved	in	
ribosome	assembly	

(Toone	et	al.,	1991)	

fecC	 Fe(3+)	dicitrate	transport	system	
permease	protein	

(Pressler	et	al.,	1988)	

fecD	 Membrane	bound	protein	for	iron	
transport	

(Pressler	et	al.,	1988)	

flgA	 Flagella	 (Liu	&	Ochman,	2007)	

flgB	 Flagella	 (Liu	&	Ochman,	2007)	

flgC	 Flagella	 (Liu	&	Ochman,	2007)	

flgD	 Flagella	 (Liu	&	Ochman,	2007)	

flgE	 Flagella	 (Liu	&	Ochman,	2007)	

flgF	 Flagella	 (Liu	&	Ochman,	2007)	

flgG	 Flagella	 (Liu	&	Ochman,	2007)	

flgH	 Flagella	 (Liu	&	Ochman,	2007)	

flgI	 Flagella	 (Liu	&	Ochman,	2007)	

flgJ	 Flagella	 (Liu	&	Ochman,	2007)	

flgM	 Flagella	 (Liu	&	Ochman,	2007)	

flgN	 Flagella	 (Liu	&	Ochman,	2007)	

flhA	 Flagella	 (Liu	&	Ochman,	2007)	

flhB	 Flagella	 (Liu	&	Ochman,	2007)	
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flhE	 Flagella	 (Liu	&	Ochman,	2007)	

glnA	 Glutamine	synthetase	 (Reitzer	&	Magasanik,	1986)	

guaB	 Inosine-5'-monophosphate	dehydrogenase,	
required	for	synthesis	of	GMP	from	the	
common	purine	precursor	

(Husnain	et	al.,	2009)	

purE	 N5-carboxyaminoimidazole	ribonucleotide	
mutase,	de	novo	purine	nucleotide	
synthesis	

(Watanabe	et	al.,	1989)	

rhlE	 RNA	helicase	regulates	the	function	of	
related	RNA	helicases	during	ribosome	
assembly,	works	with	deaD	gene	

(Jain,	2008)	

rplC	 L3	ribosomal	protein	 (Riley,	1993)	

	

rplI	 50s	ribosomal	protein	 (Schnier	et	al.,	1986)	

rpsI	 30s	ribosomal	protein	 (Aseev	et	al.,	2016)	

secG	 Protein-export	membrane	protein,	
promotes	protein	export	across	the	inner	
membrane,	protein	translation	and	correct	
transport	to	periplasmic	space	

(Belin	et	al.,	2015)	

serA	 D-3-phosphoglycerate	dehydrogenase,	
catalyzes	the	first	committed	step	in	the	
“phosphorylated”	pathway	of	L-serine	

(Tobey	&	Grant,	1986)	

sotB	 Sugar	efflux	transporter	 (Condemine,	2000)	

xseA	 Exodeoxyribonuclease	7	large	subunit,	 (Riley,	1993)	

ycaD	 Uncharacterized	MFS-type	transporter	 https://www.uniprot.org/uniprot/P
21503	

ydhP	 Inner	membrane	transport	protein	 https://www.uniprot.org/uniprot/P
77389	
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ydjN	 CysB	regulon,	which	plays	a	central	role	in	
sulfur	assimilation	and	cysteine	
metabolism,	L-cystine	transporter.	

(Yamazaki	et	al.,	2016)	

yecR	 Uncharacterized	protein,	upregulated	by	
flhDC	which	is	involved	in	flagella	
regulation	

https://www.uniprot.org/uniprot/P
76308	

yeeF	 Hypothetical	transport	protein	 (Kaundal	et	al.,	2020)	

yeiB	 Uncharacterized	protein,	likely	involved	in	
transport	

https://www.uniprot.org/uniprot/P
25747	

yhjE	 Inner	membrane	metabolite	transport	
protein	

https://www.uniprot.org/uniprot/P
37643	

yicE	 Putative	transport	protein	 (Karatza	&	Frillingos,	2005)	

yjcD	 Guanine/hypoxanthine	permease	 (Papakostas	et	al.,	2013)	
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Table	S1.8:	GO	analysis	on	the	set	of	genes	that	have	novel	expression	levels	in	all	rescue	
mutants	

GO	biological	process	complete	 Reflist	
(4391)	

Obser
ved	

Expect
ed	

Over/un
der	

Fold	
Enrich
ment	

p-
value	

mannose	transmembrane	
transport	(GO:0015761)	

3	 3	 0.03	 +	 	>	100	 1.18E-
02	

N-acetylglucosamine	transport	
(GO:0015764)	

4	 3	 0.03	 +	 89.01	 2.05E-
02	

hexose	import	across	plasma	
membrane	(GO:0140271)	

4	 3	 0.03	 +	 89.01	 2.05E-
02	

glucose	import	across	plasma	
membrane	(GO:0098708)	

4	 3	 0.03	 +	 89.01	 2.05E-
02	

carbohydrate	import	across	
plasma	membrane	(GO:0098704)	

4	 3	 0.03	 +	 89.01	 2.05E-
02	

fructose	import	(GO:0032445)	 5	 3	 0.04	 +	 71.21	 3.26E-
02	

fructose	transmembrane	
transport	(GO:0015755)	

11	 4	 0.09	 +	 43.15	 5.88E-
03	

Unclassified	(UNCLASSIFIED)	 939	 3	 7.91	 -	 0.38	 0.00E
+00	
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Table	S1.9:	Direction	of	gene	expression	change	for	single	mutants	at	42.2°C	

	 Restored	 Reinforced	 Unrestored	 Novel	 Total	

hslU	indel	 488	 10	 1253	 310	 2061	

hslU	G60D	 1004	 2	 745	 82	 1833	

hslU	L163R	 1186	 1	 564	 76	 1827	

hslV	H68P	 835	 2	 914	 64	 1815	

hslV	indel	 957	 1	 793	 79	 1830	

rpoB	H447L	 1231	 11	 509	 335	 2086	

rpoC	W1020G	 1174	 2	 575	 115	 1866	
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CHAPTER	2	
	

Genotypic	evolution	and	fitness	outcomes	are	contingent	on	the	adaptive	
strategy	to	heat	stress	

	
2.1	Abstract	

	
There	exists	ambiguity	as	to	whether	an	organism’s	previous	selection	environment	

affects	its	future	adaptive	potential	due	to	the	historical	nature	of	evolution.	Here,	we	

studied	how	history	affects	future	evolution	by	performing	a	two-phase	evolution	

experiment.	The	first	experiment	consisted	of	115	lines	of	Escherichia	coli	adapted	to	the	

stressful	temperature	of	42.2°C.	Evolution	occurred	through	two	adaptive	pathways:	

mutation	of	rpoB,	encoding	RNA	polymerase,	or	through	rho,	a	transcriptional	terminator.	

Thus,	the	pathways	represent	two	distinct	evolutionary	histories	resulting	from	natural	

selection.	We	contrasted	these	two	histories	in	a	second	phase	of	evolution.	In	Phase	2,	we	

evolved	a	subset	of	the	Phase	1	rpoB	and	rho	genotypes,	along	with	the	Phase	1	Founder,	

representing	a	total	of	72	evolved	populations,	for	1,000	generations	at	19.0°C.	All	evolved	

populations	increased	their	relative	fitness	by	8%	on	average	in	response	to	evolving	in	

Phase	2.	The	magnitude	of	fitness	change	was	not	significantly	influenced	by	the	adaptive	

pathway,	as	evidenced	by	an	overall	convergence	towards	similar	fitness	values	across	all	

evolved	populations.	However,	we	did	observe	that	the	initial	genotype	significantly	

affected	relative	fitness,	suggesting	that	phenotypic	changes	can	be	influenced	by	different	

codon	mutations	in	the	same	gene,	therefore	suggesting	an	influence	of	evolutionary	

history.	We	sequenced	whole	populations	and	identified	1,387	mutations	that	arose	during	

Phase	2	evolution,	of	which	119	were	fixed.	While	the	total	number	and	type	of	mutations	

did	not	differ	between	isolates	from	different	adaptive	pathways,	we	identified	genes	
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frequently	mutated	in	evolved	populations	descended	from	the	same	starting	adaptive	

pathway,	suggesting	an	influence	of	history	on	genotypic	changes.	Our	results	suggest	that	

evolutionary	history	can	significantly	influence	adaptive	potential	and	may	be	an	important	

factor	towards	evolutionary	forecasting.		

	

2.2	Introduction	

Phenotypic	and	genotypic	evolution	are	influenced	by	the	processes	of	mutation,	

genetic	drift,	recombination,	and	natural	selection	(Bobay	&	Ochman	2017).	These	

evolutionary	forces	do	not	act	in	isolation,	rather,	the	combination	of	these	forces	push	an	

organism	along	a	particular	evolutionary	trajectory.	In	this	regard,	evolution	is	an	

inherently	historical	process,	and	the	evolutionary	history	of	an	organism	can	often	be	

traced	by	analyzing	genomic	content.	However,	the	extent	to	which	evolutionary	history	

itself	can	have	an	impact	on	future	adaptation	and	evolutionary	events	is	not	well	

established.	In	other	words,	is	evolution	contingent	on	past	events?		

Famously,	Stephen	Jay	Gould	argued	that	history	is	an	essential	feature	of	evolution.	

If	evolution	was	not	contingent	on	historical	processes,	then	natural	selection	would	be	

able	to	overcome	history	such	that	the	highest-fitness	solution	to	any	environmental	

challenges	could	always	be	selected	for,	rendering	evolution	deterministic	and	predictable.	

If	history	does	have	an	impact	on	future	evolution	and	adaptation,	then	evolution	would	be	

unpredictable	and	unrepeatable	as	evolutionary	trajectories	would	be	contingent	on	the	

previous	events.	This	is	an	important	distinction	because	many	biological	questions	rely	on	

predicting	evolutionary	outcomes.	For	example,	predictive	questions	are	crucial	for	

identifying	species	that	may	or	may	not	survive	dramatic	environmental	change,	to	
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produce	chemotherapeutic	agents	against	cancerous	tumors	and	prevent	subsequent	

resistance	against	the	treatment,	and	to	forecast	pathogen	variation	and	mutation	which	is	

incredibly	relevant	given	the	Covid-19	pandemic	(Vlachostergios	&	Faltas	2018;	Leray	et	al.	

2021;	Bay	et	al.	2017).	Understanding	if	and	how	evolution	is	contingent	on	past	events	

will	allow	for	more	reliable	predictions	of	evolutionary	outcomes.	

The	extent	to	which	historical	contingency	impacts	evolution	has	been	studied	in	

natural	populations	and	in	the	laboratory.	In	natural	populations,	experiments	have	

focused	on	established	populations	of	vertebrates	and	tried	to	infer	contingency	from	

convergent	evolution	events	(Losos	2011).	For	example,	one	such	experiment	tested	brown	

anole	lizard	populations	that	were	subjected	to	living	on	narrow	perches.	All	lizard	

populations	evolved	shorter	limbs	in	response	to	this	selection	pressure	(Kolbe	et	al.	

2012).	Similarly,	in	an	experiment	with	guppies,	male	guppies	across	different	populations	

evolved	shorter	life	histories	in	the	absence	of	predators	(Reznick	&	Bryga	1987).	Some	use	

these	convergent	phenotypes	as	evidence	that	natural	selection	is	predictable	and	that	

contingencies	of	history	therefore	do	not	play	a	major	role	in	evolution.	However,	this	

interpretation	is	debated,	particularly	because	these	observational	experiments	may	rely	

on	standing	genetic	variation	in	the	ancestral	population	that	can	increase	the	probability	

of	parallel	responses	(Blount	et	al.	2018).	

In	the	laboratory,	controlled	experiments	can	be	conducted	to	investigate	the	extent	

of	contingency	on	evolution,	especially	when	utilizing	isogenic	populations	or	identical	

environmental	conditions	(Blount	et	al.	2018).	With	careful	consideration	of	experimental	

design,	questions	regarding	evolutionary	contingency	can	be	addressed.	Bacterial	

populations	offer	a	good	way	to	study	the	effects	of	contingency	because	of	their	
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amenability	to	experimentation.	Several	studies	have	investigated	contingency	in	microbial	

populations	utilizing	the	methods	of	experimental	evolution.	However,	no	clear	pattern	has	

emerged.	For	example,	in	the	Long	Term	Evolution	Experiment	(LTEE),	phenotypic	

convergence	among	12	replicate	Escherichia	coli	populations	was	evidenced	by	increased	

fitness,	faster	growth,	and	larger	cells	(Bennett	&	Lenski	1993;	Wiser	et	al.	2013).	However,	

some	adaptations	were	unique	among	populations,	most	notably	the	ability	to	utilize	

citrate	present	in	the	media	(Blount	et	al.	2008).	To	discern	whether	this	adaptation	

occurred	due	to	the	appearance	of	a	rare	mutation	or	was	contingent	on	previous	

adaptations,	Blount	et	al.	(2008)	investigated	contingency	by	“analytically	replaying”	

evolution	with	populations	re-founded	from	frozen	samples	of	previous	generations.	They	

found	that	populations	restarted	from	generation	20,000	onward	were	more	likely	to	

develop	citrate	utilization,	indicating	that	adaptations	present	in	the	later	generations	were	

essential	for	this	trait	to	evolve,	showing	that	contingency	had	an	impact	on	the	

evolutionary	trajectory	-	both	genotypically	and	phenotypically.	Similarly,	antibiotic	

resistance	evolution	was	studied	using	the	LTEE	lines	with	results	suggesting	that	both	the	

level	of	resistance	and	the	types	of	resistance	mutations	that	occurred	were	contingent	on	

the	starting	genetic	background	(Card	et	al.	2021).	

In	other	experimental	systems,	the	influence	of	contingency	on	future	evolution	is	

not	as	clear.	For	example,	Plucain	et	al.	(2016)	evolved	16	populations	of	E.	coli	in	four	

different	chemical	environments	for	1,000	generations	before	being	propagated	for	

another	1,000	generations	in	a	single,	new	environment	(Plucain	et	al.	2016).	Phenotypic	

evolution,	as	measured	by	fitness	in	this	two-phase	experiment,	was	found	to	be	contingent	

on	the	evolutionary	history	of	each	population.	However,	in	contrast	to	results	observed	in	
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the	LTEE,	the	authors	found	that	the	mutations	that	arose	during	the	second	phase	of	

evolution	were	not	contingent	upon	the	mutations	that	arose	during	the	first	phase.	In	

addition,	a	two-step	evolution	experiment	with	yeast	has	suggested	that	phenotypic	and	

genotypic	changes	are	not	influenced	by	evolutionary	history	and	that	fitness	will	follow	

predictable	trajectories	(Kryazhimskiy	et	al.	2014).		

Here,	we	perform	an	evolution	experiment	in	two	phases	to	study	evolutionary	

contingency.	We	build	on	an	evolution	experiment	previously	described	in	Tenaillon	et	al.	

2012.	In	this	first	phase	of	evolution,	115	initially	identical	lines	of	E.	coli	were	evolved	at	

the	stressful	temperature	of	42.2°C	(Tenaillon	et	al.	2012)	from	a	single	E.	coli	founder	

strain.	After	2000	generations	of	evolution,	a	clone	from	each	population	was	sequenced,	

and	these	sequences	revealed	that	adaptation	occurred	through	two	adaptive	pathways:	

mutation	the	RNA	polymerase	subunit	beta	gene	(rpoB),	or	in	the	transcriptional	

terminator	(rho)	gene.	Intriguingly,	these	two	pathways	were	each	significantly	associated	

additional	but	distinct	sets	of	mutations,	thus	representing	two	distinct	evolutionary	

histories	that	resulted	from	natural	selection.	For	example,	clones	that	had	mutations	in	

rpoB	also	tended	to	have	mutations	in	rod,	ILV	and	RSS	genes,	whereas	mutations	in	these	

genes	were	rare	in	clones	that	had	mutations	in	rho.	This	first	phase	of	evolution	

represents	a	unique	opportunity	to	study	contingency,	because	natural	selection	resulted	

in	two	distinct	adaptive	pathways	(therefore,	represent	different	evolutionary	histories)	

that	can	be	leveraged	to	study	contingency	in	a	second	phase	of	evolution.	

By	performing	evolution	in	two	phases,	we	have	investigated	the	impact	of	

evolutionary	history	on	future	adaptive	trajectories	at	both	the	genotypic	and	phenotypic	

level.	Our	study	is	unique	as	evolution	during	Phase	1	occurred	in	a	single	environment	and	
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resulted	in	two	distinct	adaptive	histories	due	to	natural	selection	that	can	be	directly	

contrasted	in	a	second	evolution	regime	referred	to	as	Phase	2.	By	evolving	a	subset	of	lines	

from	the	two	adaptive	histories	(rpoB	or	rho	genotypes),	we	address	questions	about	the	

effect	of	historical	contingency	on	phenotypic	and	genotypic	evolution.	We	ask:	Do	the	rpoB	

and	rho	lines	differ	in	their	response	to	selection	in	Phase	2?	Do	the	rpoB	and	rho	adapted	

lines	differ	in	their	phenotypic	evolution	as	measured	through	fitness?	When	placed	in	a	

new	environment,	do	the	rpoB	and	rho	adapted	lines	evolved	by	different	pathways?	Using	

both	phenotypic	and	genotypic	data,	we	address	the	impact	of	historical	contingency	on	

future	evolution.							

	

2.3	Methods	

Two-Phase	Evolution	Experiment	Isolate	Criteria	and	Selection.	To	study	evolutionary	

contingency,	we	relied	on	two	evolution	experiments,	referred	to	as	Phase	1	and	Phase	2.	

The	first	evolution	experiment,	Phase	1,	was	conducted	previously	(Tenaillon	et	al.	2012).	

Briefly,	114	initially	identical	lines	of	E.	coli	strain	B	REL1206	were	serially	propagated	at	

the	stressful	temperature	of	42.2°C.	Natural	selection	in	this	thermal	environment	resulted	

in	evolution	through	two	distinct	adaptive	pathways:	the	rpoB	pathway	or	the	rho	pathway.	

Adaptive	mutations	in	rpoB	and	rho	were	not	specific	to	particular	codons,	so	we	selected	

representative	genotypes	carrying	different	codon	mutations	in	both	rpoB	and	rho	for	

evaluation.	Altogether,	these	two	adaptive	pathways	represent	two	distinct	evolutionary	

histories	that	arose	by	natural	selection	that	can	be	contrasted	in	a	second	phase	of	

evolution	in	order	to	investigate	if	and	how	historical	contingency	influences	evolution.		
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The	second	phase	of	evolution	was	conducted	at	19°C,	which	is	towards	the	lower	

limit	of	the	temperature	niche	for	the	REL1206	ancestor	(Rodríguez-Verdugo	et	al.	2014).	

The	Phase	2	experiment	was	founded	from	a	subset	of	high	temperature	evolved	ancestors	

from	Phase	1,	referred	to	as	Phase	2	founders.	We	selected	5	representative	individuals	

from	the	rpoB	and	rho	adaptive	pathways	to	compare	their	evolution	in	this	new	thermal	

environment.	To	determine	the	founders	(specific	rpoB	and	rho	genotypes)	for	Phase	2,	we	

developed	four	criteria.	First,	the	isolate	had	to	carry	a	single	mutation	in	either	rpoB	or	rho	

but	no	mutations	in	both	genes.	Second,	the	isolates	should	represent	the	breadth	of	

mutations,	so	we	were	careful	to	select	isolates	with	different	codon	mutations	in	rpoB	and	

rho.	Third,	we	identified	a	collection	of	isolates	that	reflect	the	range	of	fitness	values	at	

both	19.0°C	and	42.2°C	for	the	Phase	1	evolved	lines	as	previously	measured	in	Rodriguez-

Verdugo	et	al.	2014	(Table	2.1).	Fourth,	the	isolates	had	to	survive	a	nine	day	extinction	

test,	in	which	we	grew	and	maintained	the	potential	isolates	in	liquid	culture	through	daily	

transfer	at	19.0°C.	Briefly,	we	grew	the	isolates	from	frozen	stock	in	Luria-Bertani	medium	

(LB)	and	incubated	them	at	37.0°C	for	one	day	to	acclimate	from	frozen	conditions	

(Rodríguez-Verdugo	et	al.	2014;	Bennett	&	Lenski	1993;	Lenski	&	Travisano	1994).	The	

overnight	culture	was	diluted	1,000-fold	in	saline	and	this	dilution	was	transferred	into	

fresh	Davis	Minimal	(DM)	Media	supplemented	with	25mg/L	of	glucose	and	grown	for	one	

day	at	37.0°C.	Following	incubation,	100ul	of	the	culture	was	transferred	into	9.9ml	of	fresh	

DM	media	and	incubated	at	19.0°C	and	serially	propagated	for	at	least	nine	days.	Each	day	

we	measured	the	cell	density	to	determine	if	extinctions	had	occurred.	To	measure	the	cell	

density,	50ul	of	overnight	culture	was	diluted	in	9.9ml	of	Isoton	II	Diluent	(Beckman	

Coulter)	and	measured	in	volumetric	mode	on	a	Multisizer	3	Coulter	Counter	(Beckman	
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Coulter).	An	isolate	was	determined	to	survive	if	its	cell	density	measurements	were	

maintained	over	the	course	of	the	test	while	allowing	for	fluctuations	of	+/-	1x106	cells.		

Altogether,	we	selected	10	different	rpoB	and	rho	genotypes	for	evolution	at	19.0°C	

with	6	replicates	each	(Figure	2.1,	Table	2.1).	These	10	starting	genotypes	are	referred	to	

as	the	Phase	2	Founders.	We	also	included	12	replicates	of	the	original	ancestral	E.	coli	

REL1206	from	Phase	1	(Phase	1	Founder),	which	represents	a	third	evolutionary	history	

with	which	we	can	use	for	comparison	in	Phase	2.		

	

Evolution	Experiment	at	19.0°C.	To	prepare	the	isolates	for	the	Phase	2	experiment,	the	

selected	evolved	lines	from	Phase	1	and	the	ancestor	were	grown	from	frozen	stock	in	10	

ml	of	LB	at	37.0°C	with	120	RPM.	After	24	hours	of	incubation,	the	overnight	cultures	were	

diluted	10,000-fold	and	plated	onto	TA	plates	and	incubated	at	37.0°C.	On	the	next	day,	

single	colonies	were	picked	from	the	plates	and	inoculated	into	10	mL	of	fresh	LB	and	

incubated	at	37.0°C	with	120	RPM.	We	started	six	replicate	lines	of	each	rho	and	rpoB	

genotype,	as	well	as	12	replicate	lines	of	the	Phase	1	Founder	resulting	in	72	lines	for	

evolution	in	Phase	2.	The	next	day,	we	transferred	100	µl	of	the	bacterial	culture	into	9.9	ml	

of	fresh	DM25	media,	which	was	incubated	at	37.0°C	at	120	RPM	for	24	hours	to	acclimate	

to	experimental	conditions,	following	common	practice	(Lenski	&	Travisano	1994;	Bennett	

&	Lenski	1993;	Rodríguez-Verdugo	et	al.	2014).	After	incubation,	we	began	the	Phase	2	

evolution	experiment	by	transferring	100	µl	of	culture	into	9.9	ml	of	fresh	DM25	and	

incubated	the	tubes	at	19.0°C	with	120	RPM	and	incubated	for	24	hours.		

Each	day,	the	cultures	were	transferred	daily	into	fresh	media	via	a	100-fold	

dilution.	At	regular	intervals	(at	generation	100	and	roughly	every	200	generations	after	
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that),	we	mixed	800ul	of	each	line	with	800	ul	of	80%	glycerol	to	prepare	whole	population	

frozen	stocks.	We	began	the	experiment	in	January	2020,	but	due	to	the	Covid-19	

pandemic,	we	had	to	pause	the	experiment	after	297	bacterial	generations.	To	restart	the	

evolution	experiment,	we	revived	the	bacterial	populations	by	transferring	100ul	of	

thawed	glycerol	stock	into	9.9	mL	of	fresh	DM25	media.	We	incubated	the	lines	in	Phase	2	

experimental	conditions,	and	we	transferred	the	lines	daily	as	previously	described	until	

the	bacteria	had	grown	for	1000	generations	or	152	days.		

	

Measuring	Relative	Fitness.	We	performed	competition	experiments	to	measure	the	

relative	fitness	of	the	Phase	2	evolved	lines	after	1000	generations	of	evolution.	We	

competed	the	Phase	2	evolved	lines	against	the	Phase	1	Founder	and	their	respective	Phase	

2	Founder	at	both	19.0°C	and	42.2°C.	To	perform	the	competitions,	we	mixed	the	cells	in	a	

single	glass	culture	tube	and	plated	the	mixture	to	count	the	colonies	before	and	after	24	

hours	of	competition.	We	used	the	neutral	Ara+	marker	to	differentiate	between	the	two	

lines	when	plating	on	tetrazolium-arabinose	(TA)	plates.	To	generate	Ara+	mutants	from	

the	Phase	2	Founders	for	competitions,	we	followed	previously	published	methods	as	

described	in	(Lenski	et	al.	1991).	To	validate	neutrality,	we	competed	the	Ara+	mutants	

against	the	original	Ara-	stock	using	the	methods	described	below.	

To	perform	competition	assays,	bacteria	from	frozen	glycerol	stocks	were	revived	

with	a	loop	into	10	mL	of	LB	and	incubated	at	37°C	with	120	RPM	for	24	hours.	After	

incubation,	the	overnight	cultures	were	vortexed	and	100	µl	of	each	were	diluted	in	9.9	ml	

of	0.0875%	saline	solution.	From	each	dilution	tube,	100	µl	was	transferred	to	9.9ml	DM25	

to	incubate	at	37.0°C	with	120	RPM	for	24	hours.	Following	incubation	and	in	order	for	the	
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bacteria	to	acclimate	to	the	experimental	temperature,	we	transferred	100	µl	of	the	

overnight	cultures	into	9.9	ml	of	DM25	and	incubated	the	tubes	at	the	experimental	

temperature	(19.0°C	or	42.2°C)	with	120	RPM	for	24	hours	(Bennett	&	Lenski	1993).	The	

next	day,	we	mixed	the	Ara-	and	Ara+	competitor	strains	into	sterile	DM25	media.	For	

competitions	at	19.0°C,	we	mixed	the	bacteria	1:1.	For	competitions	at	42.2°C,	we	mixed	

the	bacteria	1:1	or	we	adjusted	the	ratio	to	1:3	if	the	original	ratio	resulted	in	too	few	

colonies	(<20)	on	the	plate	for	either	competitor.	The	mixture	was	incubated	at	the	

experimental	temperature	with	120	rpm	for	24	hours.	After	allowing	the	cells	to	compete,	

we	quantified	the	cell	density	of	each	competitor	by	plating	the	overnight	culture	onto	

tetrazolium-arabinose	(TA)	plates	and	counting	the	number	of	colonies.	All	competitions	

were	performed	in	at	least	triplicate,	resulting	in	roughly	600	competitions.		

Using	the	methods	described	in	Lenski	et	al.	(1991)	and	Tenaillon	et	al.	(2012),	we	

quantified	the	relative	fitness,	wr.	The	fitness	of	a	Phase	2	evolved	line	relative	to	its	

competitor	was	estimated	by:	

wr	=	[log2(NMf/NMi)]/[log2(NAf/NAi)]		

Where	NMi	and	NAi	represent	the	initial	cell	densities	of	the	two	competing	clones,	and	NMf	

and	NAf	represent	the	final	cell	densities	of	the	two	clones	after	one	day	of	competition.	

	

DNA	Library	Preparation	and	DNA	Sequencing.	In	order	to	sequence	the	1000	

generation	evolved	populations,	we	revived	~10	ul	of	frozen	glycerol	stock	in	10ml	of	DM	

media	supplemented	with	1000mg/L	of	glucose.	The	culture	tubes	were	incubated	at	

19.0°C	with	120	RPM.	Because	some	populations	went	extinct	(see	below),	we	extracted	

from	65	bacterial	populations	using	the	Promega	Wizard	Genomic	DNA	Purification	kit.		
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DNA	concentrations	were	measured	with	Qubit	dsDNA	HS	Assay	kits.	We	prepared	our	

DNA	sequencing	libraries	with	the	Illumina	Nextera	DNA	Flex	Library	Preparation	kit.	The	

libraries	were	multiplexed	and	sequenced	using	the	Illumina	NovaSeq	on	an	S4	flow	cell	to	

generate	100bp	paired-end	reads	at	UC	Irvine’s	Genomics	High-Throughput	Facility	

(https://ghtf.biochem.uci.edu).	Sequencing	read	quality	was	assessed	with	FastQC	v.	0.11.9	

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc),	trimmed	with	fastp	v.	0.23.2	

(Chen	et	al.	2018),	and	visualized	with	MultiQC	v.	1.9	(Ewels	et	al.	2016).	

	

Variant	Detection.	We	detected	mutations	and	their	respective	frequencies	in	each	

evolved	Phase	2	population	using	breseq	v.	0.35.5	(Deatherage	&	Barrick	2014).	We	

performed	the	breseq	analysis	in	polymorphism	mode	with	two	different	reference	

genomes.	First,	we	performed	breseq	analysis	using	E.	coli	strain	B	REL606	as	the	reference	

genome.	This	E.	coli	strain	differs	from	the	Phase	1	Founder,	REL1206,	in	seven	positions	

(topA,	spoT	K662I,	glmU/atpC,	pykF,	yeiB,	fimA	and	the	rbs	operon)	that	were	excluded	from	

our	analysis	(Barrick	et	al.	2009;	Tenaillon	et	al.	2012).	We	performed	a	first-round	of	

variant	detection	using	breseq	in	polymorphism	mode	on	all	of	the	1000-generation	

evolved	populations.	We	also	performed	breseq	analysis	in	consensus	mode	on	the	Phase	2	

Founders	that	were	previously	isolated	and	sequenced	following	Phase	1	evolution	in	

Tenaillon	et	al.	2012.		

Following	this	first-step	of	the	analysis,	we	generated	a	mutated	reference	for	each	

Phase	2	Founder	using	the	gdtools	APPLY	command	in	breseq.	We	then	ran	the	breseq	

analysis	again	using	the	respective	mutated	reference	to	verify	mutation	predictions,	as	

described	in	Deatherage	and	Barrick	2014.	Using	gdtools	available	through	breseq,	we	
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compiled	the	mutation	information	into	readable	tables	and	as	an	alignment	file	in	PHYLIP	

format.	A	phylogeny	was	constructed	using	IQ-tree	and	the	PHYLIP	alignment	as	input	

(Nguyen	et	al.	2015).		

We	generated	VCF	files	representing	the	fixed	SNPs	among	the	Phase	1	Founder,	

Phase	2	Founders,	and	the	Phase	2	1000-generation	evolved	populations	using	Snippy	v.	

4.4.0	with	the	trimmed	sequencing	reads	as	input	(Seemann	2022).	The	VCF	files	generated	

from	Snippy	were	used	as	input	for	Plink2	for	principal	components	analysis	(Chang	et	al.	

2015).	

	

Genotypic	Statistical	Analysis..	To	statistically	test	for	associations	between	the	mutation	

patterns	observed	in	Phase	2	and	their	initial	adaptive	pathway,	we	first	built	a	distance	

matrix	from	the	presence	and	absence	matrix	of	Phase	2	mutations	in	R	v	4.0.2	(R	Core	

Team	2019).	Using	the	vegan	package	v	2.5-7	in	R,	we	directly	tested	for	associations	

between	the	distance	matrix	of	Phase	2	mutations	and	the	adaptive	pathway	or	mutated	

codon	with	ANOSIM	(Oksanen	et	al.	2020).	We	also	built	a	Neighbor-Joining	(NJ)	tree	based	

on	the	presence-absence	matrix	of	accessory	genes.	To	do	so,	we	first	calculated	the	

Euclidean	distances	from	the	presence-absence	matrix	of	the	accessory	genes	using	the	dist	

function	in	R.	We	then	built	the	NJ	tree	from	the	Euclidean	distances	using	the	ape	package	

in	R	(Paradis	&	Schliep	2019).	To	identify	genes	or	intergenic	regions	that	were	more	

frequently	mutated	in	populations	descended	from	one	adaptive	history	but	not	the	other,	

we	built	a	2	×	2	Fisher’s	Exact	Test	for	each	mutated	gene	or	intergenic	region	in	R.			

	

2.4	Results	
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We	performed	a	two-phase	evolution	experiment	to	study	the	effects	of	contingency	

on	future	evolution	and	adaptive	potential	(Figure	2.1).	In	the	first	phase	of	evolution,	115	

initially	identical	lines	of	E.	coli	were	evolved	at	the	stressful	temperature	of	42.2°C	

(Tenaillon	et	al.	2012).	After	2,000	generations	of	evolution,	the	lines	experienced	fitness	

gains	of	about	42%	on	average	relative	to	the	REL1206	ancestor.	Full	genome	sequencing	

revealed	that	the	populations	traversed	one	of	two	evolutionary	trajectories.	Of	the	115	

lines,	76	carried	a	mutation	in	rpoB	and	43	lines	carried	a	mutation	in	rho.	The	rpoB	or	rho	

trajectories	were	each	significantly	associated	with	mutations	in	different	sets	of	genes.	To	

study	contingency,	we	relied	upon	this	initial	phase	of	evolution	and	performed	a	second	

phase	of	evolution	founded	from	a	subset	of	the	high	temperature	adapted	lines.	We	

selected	5	representative	genotypes	of	the	rpoB	and	rho	pathways	to	serve	as	the	Phase	2	

Founders	(6	replicates	each	per	Phase	2	Founder)	and	12	replicates	of	the	ancestral	E.	coli	

REL1206	(referred	to	as	the	Phase	1	Founder	for	the	remainder	of	the	text)	for	

experimental	evolution	at	19.0°C,	a	new	thermal	environment.	In	total,	we	evolved	72	E.	

coli	populations	at	19.0°C	in	minimal	media	for	1,000	generations.	Among	these	72,	we	

observed	that	7	populations	that	went	extinct	during	the	course	of	evolution:	1	population	

descended	from	the	Phase	1	Founder,	4	populations	descended	from	Phase	2	Founder	Line	

3	(rpoB	I966S),	and	2	populations	descended	from	Phase	2	Founder	Line	142	(rpoB	I572L).	

Therefore,	the	following	analyses	were	performed	on	the	set	of	65	populations	that	

survived	throughout	the	1000	generation	experiment.		

	

Changes	in	relative	fitness	at	19.0°C.	Historical	contingency	may	affect	the	rate	of	fitness	

change	thus	impacting	phenotypic	outcomes	in	new	environments.	To	investigate	whether	



 

	
	

86	

evolutionary	contingency	affected	phenotypic	evolution	in	our	system,	we	measured	the	

changes	in	fitness	of	the	Phase	2	evolved	populations.	First,	we	measured	the	changes	in	

relative	fitness	(wr)	of	the	Phase	2	populations	by	competing	them	against	their	respective	

Phase	2	Founder	at	19.0°C.	By	competing	the	evolved	populations	with	their	Phase	2	

Founder,	we	assessed	phenotypic	changes	as	a	result	of	adaptation	to	only	the	Phase	2	

environment,	thus	allowing	for	independent	investigation	and	comparison	of	the	

populations	descended	from	differing	starting	adaptive	pathways.	On	average,	the	Phase	2	

populations	had	wr	=	1.08,	thus	reflecting	on	average	an	8%	fitness	advantage	at	the	end	of	

the	experiment.	Lines	descended	from	rpoB	genotypes	experienced	a	10%	fitness	

advantage	on	average,	while	those	descended	from	rho	founders	had	a	7%	fitness	

advantage.	However	the	difference	was	not	significant	(P	=	0.0798,	unpaired	t-test;	Figure	

2.2A).	We	also	investigated	the	changes	in	wr	at	the	level	of	rho	or	rpoB	genotype	and	found	

that	8	of	the	10	genotypes	had	significant	fitness	advantages	at	the	end	of	Phase	2	(Table	

2.2;	Figure	2.3).	Using	ANOVA,	we	found	a	significant	effect	of	the	genetic	background	at	the	

level	of	adaptive	codon	on	relative	fitness	(P	=	1.54	×	10-6,	ANOVA).		

	 Second,	we	measured	the	fitness	of	all	Phase	2	Founders	and	Phase	2	Evolved	

Populations	against	the	Phase	1	Founder	at	19.0°C	(Figure	2.4).	With	this	method,	we	could	

directly	compare	each	population’s	fitness	changes	relative	to	a	single	competitor.	Of	the	

Phase	2	Founders,	only	one	(rpoB	I966S	background)	had	a	significant	fitness	decline	at	

19.0°C	relative	to	the	Phase	1	Founder	(Figure	2.4),	and	the	effect	of	adaptive	codon	on	

relative	fitness	was	statistically	significant	as	detected	by	ANOVA	(P	=	0.019,	ANOVA;	Table	

2.1).		
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In	total,	the	evolved	populations	increased	in	fitness	by	3.8%,	on	average,	at	the	end	

of	Phase	2	relative	to	the	Phase	1	Founder	(Figure	2.4).	Investigation	at	the	level	of	

adaptive	pathway	revealed	that,	on	average,	lines	descended	from	rpoB	backgrounds	

increased	by	1%,	rho	lines	decreased	by	6%,	and	those	descended	from	the	Phase	1	

Founder	increased	by	5%.	The	difference	in	relative	fitness	among	the	groups	was	

significant	at	the	level	of	adaptive	pathway	(P	=	0.0007337,	Kruskal-Wallis	test)	and	at	the	

level	of	codon	mutation	(P	=	0.0001793,	Kruskal-Wallis	test).	The	Wilcoxon	Rank	Sum	Test	

revealed	that	Phase	2	evolved	populations	descended	from	rpoB	founders	had	significantly	

different	average	wr	to	evolved	populations	descended	from	rho	(P	=	0.0007).	Moreover,	at	

the	level	of	the	adaptive	codon	we	found	significant	variation	of	average	wr	among	the	

Phase	2	evolved	populations	(P	=	0.000529,	ANOVA).		

								
	
High	temperature	fitness	tradeoffs	after	Phase	2	evolution	relative	to	Phase	2	

Founder.	Fitness	tradeoffs	are	pervasive	in	evolution	experiments,	and	previous	research	

has	demonstrated	significant	differences	in	tradeoff	dynamics	between	adaptive	genotypes	

(Rodríguez-Verdugo	et	al.	2014).	Thus,	evolutionary	contingency	may	influence	the	

tradeoff	dynamics	that	occur	after	organisms	are	exposed	to	new	environments.	To	

measure	tradeoff	dynamics,	we	competed	the	Phase	2	evolved	populations	against	their	

respective	Phase	2	Founder	at	42.2°C.	Altogether,	the	Phase	2	evolved	populations	had	an	

average	wr	=	0.8846	reflecting	significant	fitness	declines	at	42.2°C	(P	=	3.338×	10-10,	t-

test).	The	difference	in	average	wr	between	rho	and	rpoB	populations	was	not	statistically	

significant	despite	rho	experiencing	a	fitness	decline	of	8.4%	and	rpoB	by	15.4%	on	average	

(P	=	0.05112,	t-test;	Figure	2.2B).		
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We	were	interested	in	investigating	whether	the	background	at	the	level	of	adaptive	

pathway	or	adaptive	codon	influenced	the	tradeoffs	dynamics	at	high	temperature	(Figure	

2.5).	However,	the	starting	genotype	significantly	influenced	average	wr	at	42.2°C	at	the	

level	of	adaptive	codon	(P	=	6.83	×	10-10,	Kruskal-Wallis	test).	Of	the	ten	different	adaptive	

backgrounds	differentiated	by	the	specific	codon	mutation	in	rho	or	rpoB,	seven	

backgrounds	had	significantly	lower	fitness	at	42.2°C	compared	to	their	Phase	2	Founder	

counterpart	(Table	2.2).	Lines	descended	from	the	rpoB	G4446S	and	rho	V206A	adaptive	

backgrounds	had	the	lowest	fitness	at	42.2°C	with	wr	=	0.501	(P	=	1.34	×	10-6,	t-test)	and	wr	

=	0.795	(P	=	0.01242,	t-test).	Additionally,	Phase	2	evolved	populations	descended	from	the	

rpoB	I572L,	rpoB	I966N,	rho	I15N_1,	rho	A43T,	and	rho	T231A	backgrounds	all	had	

significant	decreases	in	relative	fitness	(Table	2.2).			

	
Genome	sequencing	of	Phase	2	evolved	populations.	Next,	we	investigated	the	effect	of	

historical	contingency	at	the	level	of	genomic	evolution.	At	the	end	of	Phase	2	evolution	to	

19.0°C,	we	sequenced	the	DNA	from	whole	populations.	We	identified	genomic	variants	in	

the	evolved	populations	with	breseq,	which	identifies	variants	in	haploid	genomes	using	a	

reference	sequence.	First,	we	investigated	the	presence	of	Phase	1	mutations	in	the	Phase	2	

evolved	lines	and	found	that	all	mutations	that	arose	during	Phase	1	were	maintained	in	

the	Phase	2	evolved	lines.	Next,	we	identified	the	mutations	that	arose	during	Phase	2	

evolution	at	19.0°C.	In	total,	we	identified	1,387	novel	mutations	occurring	at	a	5%	

frequency	or	higher	in	our	Phase	2	evolved	populations	(Figure	2.6).	The	distribution	of	

mutation	frequencies	among	all	Phase	2	populations	illustrated	that	almost	half	of	all	

mutations	(45%)	were	present	at	a	frequency	of	<	10%	in	the	populations	(Supplemental	



 

	
	

89	

Figure	S2.1).	Among	the	1,387	mutations,	we	identified	119	fixed	mutations,	which	were	

found	at	a	frequency	of	85%	or	higher	in	populations,	in	53	of	the	65	sequenced	

populations.	Of	the	fixed	mutations,	98	were	at	100%	frequency.		

The	largest	portion	of	mutations	occurred	in	intergenic	regions	of	the	genome:	742	

mutations	were	in	intergenic	regions	and	618	mutations	were	in	genic	regions	(Figure	2.7).	

In	the	intergenic	regions,	an	overwhelming	majority	of	mutations	were	point	mutations	

(95.8%,	711/742)	with	the	rest	composed	of	indels	(4.2%,	31/742),	which	are	short	

insertions	or	deletions	less	than	50	bp	long.	Of	the	point	mutations	in	intergenic	regions,	

the	majority	were	transversions	(93.7%,	666/711);	transitions	made	up	only	6.3%	of	point	

mutations	in	intergenic	regions.		

Next,	we	investigated	the	618	mutations	that	occurred	within	genes,	as	these	

mutations	are	most	likely	to	drive	adaptation.	We	first	classified	the	mutations	by	type	

across	all	populations	and	found	413	mutations	were	point	mutations	(66.8%)	and	205	

were	indels	(33.2%).	We	further	categorized	the	point	mutations	into	either	

nonsynonymous	or	synonymous	mutations.	A	majority,	89.8%,	of	point	mutations	that	

arose	in	genes	were	nonsynonymous	mutations	(371/413)	while	10.2%	were	synonymous	

mutations	(42/413).	Of	the	indels,	insertions	were	more	common	(84.4%,	173/205)	over	

deletions	(15.6%,	32/205).	Nonsynonymous	mutations	and	indels	are	most	likely	to	drive	

adaptation	as	they	directly	interfere	with	the	protein	sequence	by	either	changing	the	

amino	acid	or	causing	a	frameshift,	respectively.	

We	investigated	the	phylogenetic	relationships	between	the	evolved	populations	

using	the	polymorphism	information.	The	resultant	phylogeny	illustrated	that	all	Phase	2	

Founders	and	their	descendants	were	appropriately	clustered	with	each	other,	suggesting	
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that	contamination	did	not	occur	during	the	Phase	2	(Supplemental	Figure	S2.2).	We	

further	visualized	the	isolates	through	principal	components	analysis	(Supplemental	Figure	

S2.3).	In	plots	of	the	first	and	second	principal	components,	most	populations	clustered	

together,	but	five	rpoB-descended	populations	were	differentiated	based	on	the	identity	of	

the	Phase	2	Founder.	Visualizing	the	second	and	third	principal	components	further	

differentiated	the	lines	based	on	the	Phase	2	Founder	identity.		

	

Effects	of	historical	contingency	on	genomic	evolution.	To	investigate	the	effects	of	

historical	contingency	on	genomic	evolution,	we	performed	statistical	analysis	to	contrast	

the	mutational	patterns	found	in	the	lines	descended	from	the	rpoB	genotypes,	rho	

genotypes,	or	the	Phase	1	Founder.	We	were	interested	in	testing	whether	the	lines	

significantly	differed	in	the	patterns	and	types	of	mutations	that	arose	in	their	genomes	

during	Phase	2.	First,	we	explored	any	potential	differences	in	the	proportion	of	mutational	

variant	types,	namely:	intergenic,	frameshift,	nonsynonymous,	and	synonymous	mutations	

and	large	deletions	spanning	over	50	base	pairs.	We	found	no	significant	effect	of	

contingency	due	to	the	adaptive	pathway	on	the	total	number	of	each	mutation	type	

occurring	in	the	evolved	populations	at	a	frequency	of	5%	or	higher	(P	=	0.7809,	

contingency	test;	Figure	2.8).	This	previous	result	considered	all	mutations	that	could	be	

detected	at	a	5%	frequency	or	higher	which	could	contribute	excess	noise,	so	we	next	

investigated	whether	the	mutations	that	reached	fixation	in	these	populations	differed	due	

to	contingency	at	the	level	of	the	adaptive	pathway.	We	considered	the	set	of	fixed	

mutations	separately	as	they	were	likely	drivers	of	adaptation.	Similarly,	we	found	no	
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significant	difference	in	the	proportion	of	each	mutation	type	for	those	mutations	that	

reached	fixation	(P	=	0.0803,	contingency	test;	Figure	2.8).							

	 We	also	tested	whether	the	specific	genes	and	intergenic	regions	that	were	mutated	

during	Phase	2	evolution	differed	due	to	historical	contingency	defined	by	the	adaptive	

pathways	of	Phase	1	founders.	To	do	so,	we	built	a	distance	matrix	and	NJ	tree	from	the	

Phase	2	populations’	presence-absence	pattern	of	genic	and	intergenic	mutations	and	

tested	for	an	association	with	Phase	1	founder	pathways	using	ANOSIM	(Figure	2.9).	We	

found	a	significant	association	between	the	mutations	that	arose	during	Phase	2	and	the	

adaptive	history	at	the	level	of	pathway	(descended	from	rpoB,	rho,	or	Phase	1	Founder),	

suggesting	that	the	mutations	that	arose	during	Phase	2	evolution	were	influenced	by	

historical	contingency	(ANOSIM	R	=	0.139,	P	=	4	×	10-4).	Additionally,	we	tested	the	

association	between	the	mutation	presence-absence	patterns	and	the	adaptive	history	at	

the	level	of	codon	mutation	(Table	2.1).	We	hypothesized	that	the	specific	codon	mutation	

in	rpoB	or	rho	would	significantly	influence	genomic	evolution,	as	previous	research	has	

shown	significant	differences	in	phenotypic	outcome	between	different	SNPs	in	rpoB	and	

rho	(González-González	et	al.	2017;	Rodríguez-Verdugo	et	al.	2014).	The	ANOSIM	test	was	

significant	for	the	effect	of	adaptive	history	at	the	level	of	mutated	codon	on	the	mutational	

patterns	observed	at	the	end	of	Phase	2	evolution	(ANOSIM	R	=	0.2398,	P	=	1	×	10-4).		

	 Our	results	suggest	that	the	mutations	that	arose	in	the	Phase	2	experiment	were	

influenced	by	historical	contingency.	In	order	to	determine	if	the	different	starting	adaptive	

history	influenced	the	mode	of	adaptation	during	Phase	2,	we	identified	specific	mutations	

that	exhibit	contingency	among	the	adaptive	histories.	Using	Fisher’s	Exact	Test,	we	

identified	six	genes	or	intergenic	regions	that	were	more	frequently	mutated	in	Phase	2	
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evolved	populations	descended	from	one	adaptive	history	but	not	the	other	(P	<	0.05,	Table	

2.3).	We	note	that	significance	levels	were	lost	(P	>	0.05)	after	P-value	correction	with	FDR,	

perhaps	reflecting	low	statistical	power	due	to	sample	size.	

	

2.5	Discussion	

Evolution	is	an	inherently	historical	process,	but	the	influence	of	historical	

contingency	on	future	evolution	and	adaptation	is	not	well	characterized.	We	performed	a	

two-phase	evolution	experiment	to	investigate	the	influence	of	historical	contingency	on	

bacterial	genotypic	and	phenotypic	evolution.	Phase	1	of	the	evolution	experiment,	

previously	described	in	Tenaillon	et	al.	(2012),	consisted	of	over	100	initially	identical	

populations	of	E.	coli	evolved	under	the	stressful	temperature	of	42.2°C.	Evolution	in	this	

phase	resulted	in	the	E.	coli	populations	adapting	by	either	one	of	two	pathways	and	

represented	two	adaptive	histories:	rpoB	genotypes	or	rho	genotypes	(Rodríguez-Verdugo	

et	al.	2014).	Here,	a	subset	of	the	populations	from	Phase	1	were	selected	to	serve	as	

founders	of	Phase	2	evolution	at	19.0°C	(Table	2.1).	With	this	two-phase	experiment,	we	

have	compared	phenotypic	and	genotypic	evolution	between	the	two	adaptive	histories	to	

assess	the	effects	of	contingency	on	adaptation.		

	

Phenotypic	evolution.	To	assess	phenotypic	evolution	in	our	system,	we	measured	

relative	fitness	by	competing	evolved	populations	against	a	reference	genotype,	either	the	

Phase	1	Founder	or	the	respective	Phase	2	Founder	(Figure	2.1).	First,	we	characterized	the	

changes	in	fitness	of	the	evolved	populations	at	19.0°C,	the	Phase	2	thermal	environment,	

against	the	Phase	2	Founders.	In	general,	the	Phase	2	evolved	populations	experienced	an	
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8%	fitness	increase	on	average,	indicating	adaptive	evolution	in	our	system,	however,	the	

difference	between	average	relative	fitness	between	rpoB	and	rho	descended	populations	

was	not	significant	(Figure	2.2).	Similarly	to	experiments	using	yeast,	we	found	that	

phenotypic	evolution	may	converge	despite	initial	differences	in	adaptive	history	or	

starting	genotype	(Kryazhimskiy	et	al.	2014).	In	fact,	one	might	expect	that	the	3%	fitness	

difference	observed	between	rho	and	rpoB	descendants	after	1,000	generations	of	

evolution	would	dampen	with	time	if	let	to	evolve	in	the	same	environment.	Likewise	using	

E.	coli,	Plucain	et	al.	(2016)	found	that	the	evolution	trajectory	a	population	may	take	when	

adapting	to	a	new	environment	may	be	contingent,	but	certain	phenotypes,	like	growth	

rate,	may	improve	over	time	to	a	point	that	they	do	not	appear	to	be	influenced	by	

contingency	(Plucain	et	al.	2016).		

	 While	the	general	trends	between	rho	and	rpoB	descended	populations	do	not	

indicate	an	influence	of	historical	contingency,	we	examined	the	differences	in	fitness	

change	at	the	level	of	initial	genotype	designated	by	the	specific	codon	mutation	in	either	

rho	or	rpoB	(Table	2.1).	The	starting	genotype	significantly	influenced	phenotypic	

evolution	based	on	relative	fitness	at	19.0°C	and	42.2°C,	suggesting	that	bacteria	with	

different	mutations	in	the	same	gene	could	experience	significantly	different	evolutionary	

trajectories.	Previous	work	in	E.	coli	supports	the	notion	that	different	mutations	in	the	

same	gene	can	influence	evolutionary	trajectories,	because	single	mutations	in	both	rpoB	

and	rho	significantly	influenced	gene	expression	and	fitness	in	unique	ways	(Rodríguez-

Verdugo	et	al.	2014;	González-González	et	al.	2017;	Batarseh	et	al.	2020).	Altogether,	our	

results	suggest	that	the	trajectory	of	phenotypic	evolution	may	be	influenced	by	historical	
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contingency	at	the	level	of	genotype	such	that	mutational	differences	in	the	same	gene	may	

significantly	alter	trajectories,	however,	the	phenotype	may	converge	with	time.		

Evolutionary	theory,	specifically	Fisher’s	geometric	model	(Fisher	1930),	may	

explain	some	of	the	dynamics	in	our	system.	This	model	predicts	that	genotypes	further	

from	the	local	optimum	experience	larger	leaps	in	phenotypic	change	in	a	shorter	amount	

of	time	due	to	large	effect	mutations,	compared	to	those	closer	to	the	optimum	that	will	

accumulate	smaller	effect	mutations	and	thus	smaller	phenotypic	advancements	(Fisher	

1930).	We	were	interested	in	exploring	whether	the	initial	differences	in	fitness	at	the	start	

of	Phase	2	at	19.0°C	drove	phenotypic	evolution	(Figure	2.4).	To	do	so,	we	measured	the	

fitness	of	all	Phase	2	Founders	and	Phase	2	Evolved	Populations	at	19.0°C	relative	to	a	

single	genotype:	the	Phase	1	Founder	REL1206	(Figure	2.1).	Only	one	founder,	the	rpoB	

I966S	genotype,	had	a	significant	fitness	disadvantage	relative	to	the	Phase	1	Founder.	

Intriguingly,	the	evolved	populations	descended	from	the	rpoB	I966S	had	the	greatest	

fitness	increase	at	19.0°C	relative	to	its	Phase	2	Founder	(wr	=	1.14506;	Table	2.2).		

	 We	investigated	the	tradeoff	dynamics	in	our	system	by	measuring	the	changes	in	

fitness	of	the	Phase	2	Evolved	Populations	at	42.2°C,	the	Phase	1	environment,	relative	to	

the	Phase	2	Founders.	In	agreement	with	our	observations	at	19.0°C,	the	difference	in	

fitness	at	42.2°C	between	the	rho	and	rpoB	genotypes	was	not	statistically	significant,	

suggesting	that	the	adaptive	history	at	the	level	of	pathway	did	not	influence	the	overall	

phenotypic	changes	(Figure	2.2).	However,	there	was	a	significant	effect	of	the	initial	

genotype	on	relative	fitness	at	high	temperature	supporting	the	notion	that	tradeoff	

dynamics	can	vary	based	on	genotypic	composition	even	when	the	same	gene	is	mutated	

but	in	different	codon	locations	(Rodríguez-Verdugo	et	al.	2014).		
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	 Our	results	suggest	that	phenotype	is	influenced	by	contingency	at	the	level	of	

adaptive	codon.	In	particular,	Phase	2	evolved	lines	descended	from	the	rpoB	I966S	

genotype	experienced	the	highest	change	in	fitness	relative	to	its	ancestral	genotype	at	

19.0°C,	and	the	ancestral	rpoB	I966S	genotype	was	also	observed	to	have	the	lowest	initial	

starting	fitness	(Table	2.1)	and	has	been	previously	implicated	as	being	associated	with	

significant	tradeoffs	at	18.0°C	(Rodríguez-Verdugo	et	al.	2014).	Together	this	suggests	that	

the	initial	phenotypic	values	at	the	level	of	individual	genotype	may	be	a	predictor	of	

evolutionary	responses	or	rate	of	phenotypic	change	and	is	likely	to	be	a	more	reliable	

predictor	than	just	considering	the	identity	of	the	mutated	genes,	therefore,	following	

Fisher’s	geometric	model	(Fisher	1930).			

	

Genotypic	evolution.	To	characterize	the	influence	of	adaptive	history	on	future	genotypic	

change,	we	performed	whole	genome	sequencing	of	the	evolved	populations	and	identified	

variants	that	arose	during	Phase	2	evolution	to	19.0°C.	We	identified	over	1,000	mutations	

occurring	at	a	5%	frequency	and	119	fixed	mutations.	There	were	no	significant	differences	

in	the	types	of	mutations	that	occurred	between	the	adaptive	pathways,	suggesting	that	the	

adaptive	history	did	not	influence	the	rates	of	any	particular	mutation	type	that	occurred	in	

our	system.	The	majority	of	mutations	were	in	intergenic	regions,	which	has	been	

previously	observed	in	other	evolution	experiments	with	E.	coli,	but	we	also	observed	that	

44%	of	the	mutations	occurred	in	genes	(Lenski	2017).	We	considered	mutations	in	both	

genes	and	intergenic	regions	for	our	contingency	analyses,	because	intergenic	regions	have	

been	previously	implicated	as	drivers	for	adaptation	in	bacteria	(Khademi	et	al.	2019).		
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To	examine	evolutionary	contingency	with	regard	to	genotype,	we	tested	the	

association	between	the	presence	absence	patterns	of	the	Phase	2	mutations	and	the	

adaptive	pathway	or	initial	genotype.	We	found	a	significant	association	between	the	

mutational	pattern	from	Phase	2	and	both	the	adaptive	pathway	and	the	initial	genotype,	

suggesting	that	the	mutations	that	arose	during	Phase	2	was	contingent	on	the	adaptive	

history.	We	noted	that	the	ANOSIM	R-statistic	was	higher	for	the	effect	of	initial	genotype	

(ANOSIM	R	=	0.240)	compared	to	the	R-statistic	estimated	for	the	effect	of	adaptive	

pathway	(ANOSIM	R	=	0.139).	This	suggests	that	the	initial	genotype	may	have	a	greater	

influence	on	the	mutations	that	arise	during	evolution	than	the	general	adaptive	pathway.					

The	association	tests	revealed	that	the	mutations	that	arose	were	influenced	by	

historical	contingency,	which	is	in	contrast	to	Plucain	et	al.	(2016)	but	in	agreement	with	

Card	et	al.	(2021).	We	identified	six	regions	of	the	genome	that	were	more	frequently	

mutated	in	Phase	2	evolved	populations	descended	from	one	adaptive	history	but	not	the	

other.	Specifically,	four	regions	had	a	significantly	higher	proportion	of	mutations	in	rpoB	

descended	populations	and	two	regions	were	associated	with	rho	descended	populations	

(Table	2.3).	Intriguingly,	mutations	in	rpoC	and	rho	occurred	more	often	in	rpoB	

backgrounds,	along	with	mutations	in	the	gene	hepA.	The	gene	rpoC,	similarly	to	rpoB,	

codes	for	beta	subunit	of	RNA	polymerase	and	was	statistically	more	likely	to	be	mutated	in	

rpoB	derived	populations	(Conrad	et	al.	2010;	Trinh	et	al.	2006).	The	RNA	polymerase	

associated	protein	hepA	(also	known	as	rapA),	was	also	found	to	be	mutated	in	evolved	

populations	descended	from	the	rpoB	background,	and	this	gene	is	a	general	transcription	

factor	with	ATPase	activity	(Sukhodolets	et	al.	2001).	The	genes	valY	and	lysV	are	tRNA	

synthetases	(Andersen	et	al.	1997;	Ruan	et	al.	2011;	Agrawal	et	al.	2014).	Phase	2	evolved	
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populations	descended	from	rho	backgrounds	had	significantly	more	mutations	in	the	gene	

ECB_01992	and	within	the	intergenic	region	ybcW/ECB_01526,	however,	all	have	unknown	

function	(Table	2.3).		

It	is	interesting	to	note	that	lines	descended	from	rpoB	backgrounds	were	more	

likely	to	mutate	genes	that	are	key	players	in	transcription,	such	as	gaining	a	second	

mutation	in	rpoB	or	mutating	other	important	genes	like	rpoC	or	rho,	while	rho	descended	

lines	were	not	enriched	for	these	mutations.	These	observations	together	with	our	ANOSIM	

association	test	results	suggests	that	the	evolutionary	history	at	the	level	of	adaptive	

pathway	(either	rho	or	rpoB)	influenced	the	types	of	genes	mutated	in	the	second	phase	of	

evolution.	We	note	that	Phase	2	evolved	populations	descended	from	the	Phase	1	founder	

did	not	display	any	evidence	of	having	mutations	in	rpoB	or	rpoC,	further	supporting	our	

notion	that	mutating	such	key	players	in	transcription	during	Phase	2	evolution	was	an	

adaptive	strategy	beneficial	to	rpoB	descended	lines	and	contingent	on	evolutionary	

history.		

	

Evolutionary	history	influences	evolutionary	trajectories	and	genotypic	change.	We	

performed	a	sequential,	two-phase	evolution	experiment	using	E.	coli	to	investigate	the	

influence	of	evolutionary	history	on	evolutionary	outcomes.	We	assessed	both	phenotypic	

and	genotypic	evolution	by	measuring	relative	fitness	and	performing	whole	genome	

sequencing	of	the	evolved	populations	after	evolution	to	two	different	environments.	Our	

results	suggest	that	contingency	does	significantly	influence	future	evolution	at	the	

genotypic	level,	but	that	contingency	may	not	be	as	important	to	influence	phenotypic	

evolution	in	the	case	of	fitness.	
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We	saw	no	differences	in	phenotype	(measured	by	relative	fitness)	based	on	the	

identity	as	either	part	of	the	rho	or	rpoB	adaptive	pathway,	but	we	did	see	an	influence	of	

the	initial	genotype	on	phenotypic	change.	This	suggests	that	evolutionary	trajectories	may	

be	influenced	by	the	initial	genotypic	composition,	such	that	two	genotypes	with	mutations	

in	the	same	gene	but	different	codons	may	experience	different	evolutionary	trajectories	or	

different	rates	of	fitness	change.	With	enough	evolutionary	time,	those	phenotypic	

differences	are	likely	to	converge,	which	explains	the	lack	of	a	statistical	difference	

between	the	average	relative	fitness	of	the	two	pathways.	Measuring	and	tracking	the	

relative	fitness	from	the	earlier	generations	warrants	further	research	as	we	may	

disentangle	the	differences	among	evolutionary	trajectories	influenced	by	initial	genotype.			

The	genotypic	results	displayed	significant	associations	between	the	genetic	

changes	that	occurred	in	Phase	2	to	the	evolutionary	history	at	the	level	of	adaptive	

pathway	and	initial	genotype.	Similarly	to	the	phenotypic	results,	we	saw	a	stronger	

influence	of	contingency	at	the	level	of	initial	genotype.	However,	this	observation	may	be	

less	surprising	for	genotypic	changes,	as	we	may	expect	contingency	to	have	a	greater	

effect	on	mutational	change	due	to	genetic	complexity	such	as	pleiotropic	effects	and	

widespread	epistatic	interactions	(Chou	et	al.	2014).	We	did	observe	particular	regions	of	

the	genome	that	were	enriched	for	mutations	in	either	the	rho	or	rpoB	adaptive	pathway,	

and	we	found	that	the	mutations	that	were	enriched	could	be	found	in	evolved	populations	

derived	from	two	or	more	Phase	2	founders.	For	example,	the	gene	hepA	was	more	likely	to	

be	mutated	in	evolved	populations	derived	from	three	different	rpoB	Phase	2	Founders:	

Line	3,	Line	94,	and	Line	137	(Table	2.1).	Here,	the	adaptive	pathway	(i.e.	mutation	in	rpoB)	

did	significantly	influence	the	genetic	changes	in	a	new	environment.		
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Evolutionary	contingency	has	the	potential	to	significantly	influence	evolutionary	

trajectories	and	outcomes	which	can	affect	our	ability	to	forecast	evolutionary	change.	

Using	experimental	methods,	we	assessed	the	impact	of	contingency	on	genotypic	and	

phenotypic	evolution.	Our	results	suggest	that	both	genotypic	and	phenotypic	changes	are	

influenced	by	evolutionary	history.	Further	experimentation	over	a	gradient	of	selection	

pressures	or	in	more	diverse	environments	should	be	considered	in	order	to	disentangle	

the	effects	of	contingency	in	conjunction	with	other	evolutionary	forces.	
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Figures	

	

Figure	2.1:	Sequential	evolution	experiment	design	to	study	contingency.	The	first	phase	of	
evolution	was	previously	conducted	and	described	in	Tenaillon	et	al.	(2012).	The	second	
phase	of	evolution	was	founded	from	a	subset	of	evolved	lines	from	Phase	1		

Phase 1: 42.2°C Phase 2: 19.0°C

5 genotypes
(6 replicates each)

114 rep. total
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Figure	2.2:	Relative	fitness	of	evolved	populations	at	two	temperatures:	A)	19.0°C	and	B)	
42.2°C	relative	to	their	Phase	2	Founder.			
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Figure	2.3:	Phase	2	Evolved	Populations	Relative	Fitness	at	19.0°C.	Assays	were	performed	
by	directly	competing	a	Phase	2	evolved	population	against	their	respective	Phase	2	
Founder.		
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Figure	2.4:	Relative	fitness	of	Phase	2	Evolved	Populations,	Phase	2	Founders,	and	
ancestral	controls	relative	to	the	Phase	1	Founder	genotype	at	19.0°C.		
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Figure	2.5:	Phase	2	Evolved	Populations	Relative	Fitness	at	42.2°C.	Assays	were	performed	
by	directly	competing	a	Phase	2	evolved	population	against	their	respective	Phase	2	
Founder.		
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Figure	2.6:	Mutations	in	Phase	2	Evolved	Populations	plotted	along	the	genome.	The	graph	
is	faceted	by	adaptive	pathway	and	displays	over	1,000	mutations	identified	using	breseq	
in	Phase	2	evolved	populations.	Only	mutations	occurring	at	a	5%	frequency	or	higher	are	
shown.		
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Figure	2.7:	Number	of	mutations	by	type	across	all	evolved	populations.	Mutations	
considered	were	intergenic,	nonsynonymous,	frameshift,	synonymous,	large	deletions	
(deletions	greater	than	50	bp),	and	pseudogene	mutations.	
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Figure	2.8:	Types	of	mutations	in	Phase	2	Evolved	Populations	faceted	by	adaptive	
pathway.	A)	All	mutations	occurring	at	a	5%	frequency	or	higher	and	B)	fixed	mutations	
(85%	frequency	or	higher).		
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Figure	2.9:	Neighbor-joining	tree	built	from	presence	absence	patterns	of	mutations	that	
arose	in	Phase	2	evolved	populations.		
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Tables	

Table	2.1:	Phase	2	Founder	Adaptive	History	and	Fitness	

Phase	1	
Evolved	
Line*		

Phase	1	
Adaptive	
Pathway	

Phase	1	
Adaptive	
Pathway	
Genotype	

Mean	
Absolute	
Fitness	at	
19.0°C1	

Mean	
Relative	
Fitness	at	
19.0°C2	

Mean	
Relative	
Fitness	at	
42.2°C1	

Number	
of	
replicates	

2	 rho	 T231A	 0.018	 0.970	 1.484	 6	

3	 rpoB		 I966S	 0.022	 0.8953	 1.257	 6	

34	 rpoB		 G446S	 -0.082	 0.962	 1.510	 6	

66	 rho		 V206A	 0.053	 1.004	 1.430	 6	

82	 rho		 I15N_1	 -0.003	 0.952	 1.498	 6	

87	 rho		 I15N_2	 0.044	 1.015	 1.703	 6	

94	 rpoB		 E84G	 0.070	 1.031	 1.767	 6	

134	 rho		 A43T	 0.070	 1.008	 1.380	 6	

137	 rpoB		 I966N	 0.046	 0.982	 1.349	 6	

142	 rpoB		 I527L	 0.106	 0.899	 1.609	 6	

REL1206	 Phase	1	
Founder	

NA	 -0.004	 1	 1	 12	

*	Line	numbers	designated	in	Tenaillon	et	al.	2012	
1	Relative	fitness	value	data	for	42.2°C	and	absolute	fitness	value	data	for	19.0°C	originally	
measured	in	Rodríguez-Verdugo	et	al.	2014	
2	Relative	fitness	value	data	at	19.0°C	obtained	from	this	study	
3	Statistically	significant	for	a	fitness	decline	relative	to	competitor,	t-test		
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Table	2.2:	Relative	fitness	measurements	for	Phase	2	Evolved	Populations	at	19.0°C	and	
42.2°C	

	 	
Phase	2	Founder	
Competitor	

Phase	1	Founder	
Competitor	

Phase	2	Founder	
Competitor	

Phase	1	
Evolved	
Line*	

Phase	1	
Adaptive	
Codon	
Background	

Average	
wr	
(19.0°C)		

P-value1	
(19.0°C)		

Average	
wr	
(19.0°C)		

P-value1	
(19.0°C)		

Average	
wr	
(42.2°C)		

P-value1	
(42.2°C)		

1	 rho	T231A	 1.123	 <	0.01	 1.016	 0.692	 0.919	 <	0.01	
3	 rpoB	I966S	 1.146	 <	0.01	 1.083	 0.203	 1.041	 0.444	
34	 rpoB	G4446S	 1.078	 <	0.01	 1.003	 0.934	 0.500	 <	0.01	
66	 rho	V206A	 1.056	 <	0.01	 1.092	 <	0.01	 0.795	 0.0124	
82	 rho	I15N_1	 1.041	 <	0.01	 1.000	 0.990	 0.928	 0.0433	
87	 rho	I15N_2	 1.129	 <	0.01	 1.113	 <	0.01	 0.977	 0.0597	
94	 rpoB	E84G	 1.085	 <	0.01	 1.020	 0.417	 1.005	 0.594	
134	 rho	A43T	 1.008	 0.604	 1.069	 <	0.01	 0.962	 <	0.01	
137	 rpoB	1966N	 1.140	 <	0.01	 1.006	 0.711	 0.923	 0.0204	
142	 rpoB	I572L	 1.050	 0.170	 0.964	 0.190	 0.908	 0.0310	
NA	 REL1206	 NA	 NA	 1.047	 <	0.01	 NA	 NA	
*	Line	numbers	designated	in	Tenaillon	et	al.	2012	
1	T-test,	bolded	p-values	indicate	statistically	significant	increase	or	decrease	in	relative	fitness	
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Table	2.3:	Genic	or	intergenic	regions	with	evidence	of	contingency	due	to	adaptive	history	

Gene	or	Intergenic	
Region	

Adaptive	
pathway	

Fisher’s	Exact	Test	P-
value	

Adjusted	P-
value	(FDR)	

nmpC/dsbG	 rpoB	 8.20E-05	 0.0134	

hepA	 rpoB	 0.00195	 0.160	

ECB_01992	 rho	 0.00521	 0.2123	

valY/lysV	 rpoB	 0.00521	 0.212	

rpoC	 rpoB	 0.0223	 0.726	

ybcW/ECB_01526	 rho	 0.0282	 0.766	

rho	 rpoB	 0.0336	 0.782	
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Supplemental	Information	

	

 
Figure	S2.1:	Distribution	of	mutation	frequencies	in	Phase	2	evolved	populations.	
Mutations	that	arose	during	Phase	2	and	their	frequencies	based	on	percentage	of	
individuals	in	the	population	carrying	the	mutation.		
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Figure	S2.2:	Phylogeny	of	Phase	1	Founder,	Phase	2	Founders,	and	Phase	2	Evolved	
Populations.	Phylogeny	is	built	from	genotypic	information.	
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Figure	S2.3:	Principal	components	analysis	based	on	genome	mutations.	A)	PC1	and	PC2	
plotted	together	and	B)	PC2	and	PC3	plotted	together.		
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CHAPTER	3	
	

Using	genomes	and	evolutionary	analyses	to	screen	for	host-specificity	
and	positive	selection	in	the	plant	pathogen	Xylella	fastidiosa	

	
3.1	Abstract	

	
Xylella	fastidiosa	infects	several	economically	important	crops	in	the	Americas,	and	

it	also	recently	emerged	in	Europe.	Here,	using	a	set	of	Xylella	genomes	reflective	of	the	

genus-wide	diversity,	we	performed	a	pan-genome	analysis	based	on	both	core	and	

accessory	genes,	for	two	purposes:	i)	to	test	associations	between	genetic	divergence	and	

plant	host	species	and	ii)	to	identify	positively	selected	genes	that	are	potentially	involved	

in	arms-race	dynamics.	For	the	former,	tests	yielded	significant	evidence	for	specialization	

of	X.	fastidiosa	to	plant	host	species.	This	observation	contributes	to	a	growing	literature	

suggesting	that	the	phylogenetic	history	of	X.	fastidiosa	lineages	affects	host	range.	For	the	

latter,	our	analyses	uncovered	evidence	of	positive	selection	across	codons	for	5.3%	(67	of	

1,257)	of	core	genes	and	5.4%	(201	of	3,691)	of	accessory	genes;	these	genes	are	

candidates	to	encode	interacting	factors	with	plant	and	insect	hosts.	Most	of	these	genes	

had	unknown	functions,	but	we	identified	some	tractable	candidates	including	nagZ_2,	

which	encodes	a	beta-glucosidase	that	is	important	for	Neisseria	gonorrhoeae	biofilm	

formation;	cya,	which	modulates	gene	expression	in	pathogenic	bacteria;	and	barA,	a	

membrane	associated	histidine	kinase	that	has	roles	in	cell	division,	metabolism,	and	pili	

formation.	
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3.2	Introduction	

Bacteria	exhibit	extensive	intraspecific	variation	in	genome	content.	This	variation	

is	the	raw	material	for	evolutionary	adaptation,	including	the	evolution	of	pathogenicity	

and	virulence	(Furuya	&	Lowy	2006;	Yacoubi	et	al.	2007;	Juhas	2015;	Chen	et	al.	2018).	One	

example	of	genome	variation	comes	from	an	early	study	of	Escherichia	coli	that	compared	

two	pathogenic	strains	and	one	non-pathogenic	laboratory	strain	(Welch	et	al.	2002).	Of	

the	entire	set	of	protein	coding	genes	annotated	by	the	three	genomes,	only	39.2%	were	

shared	among	the	three	isolates.	Intriguingly,	the	two	pathogenic	strains	each	had	1,300	

unique	genes,	while	the	laboratory	strain	had	only	585,	suggesting	that	genes	that	vary	

across	accessions	(i.e.,	accessory	genes)	contribute	to	virulence.	Similar	patterns	have	been	

illustrated	for	plant	pathogens	(Badet	&	Croll	2020;	Kim	et	al.	2020).	In	Xanthomonas,	for	

example,	horizontal	gene	transfer	(HGT)	has	shuffled	virulent	accessory	genes	from	

pathogenic	strains	to	previously	non-pathogenic	strains	(Chen	et	al.	2018),	facilitating	the	

infection	of	common	bean	(Phaseolus	vulgaris	L.).	In	short,	accessory	genes	contribute	to	

host-pathogen	interactions,	making	them	a	critical	focus	for	comparative	analyses	of	

genome	evolution	and	function.		

Here	we	investigate	variation	in	the	genome	content	of	another	plant	pathogen.	

Xylella	fastidiosa	is	endemic	to	the	Americas	and	was	first	identified	as	the	causal	agent	of	

Pierce’s	Disease	(PD),	an	economically	devastating	disease	in	grapevines	(Vitis	vinifera	ssp.	

vinifera)	(Sicard	et	al.	2018;	Burbank	&	Roper	2021).	X	fastidiosa	causes	additional	

economically	and	ecologically	impactful	diseases	like	citrus	variegated	chlorosis,	coffee	leaf	

scorch,	oak	leaf	scorch	and	elm	leaf	scorch,	among	others.	Historically,	the	geographic	

distribution	of	X.	fastidiosa	was	limited	to	the	Americas,	but	it	was	recently	introduced	to	
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the	European	continent	by	anthropogenic	transmission,	which	has	further	expanded	its	

host	range	and	led	to	emerging	diseases	like	olive	quick	decline	syndrome	(OQDS)	in	Italy	

(Schuenzel	et	al.	2005;	Loconsole	et	al.	2016).	X.	fastidiosa	has	since	been	detected	in	

various	plants	species	across	locations	in	Europe	including	France,	Spain,	and	Portugal	

(Chatterjee	et	al.	2008;	Rapicavoli	et	al.	2018).	In	susceptible	hosts,	X.	fastidiosa	can	lead	to	

significant	crop	losses,	and	it	continues	to	threaten	crops	globally	(Tumber	et	al.	2014;	

Alston	et	al.	2015).		

For	each	of	these	diseases,	X.	fastidiosa	is	transmitted	by	xylem-feeding	insect	

vectors	into	the	plant	host,	where	it	then	utilizes	cell	wall	degrading	enzymes	to	

systemically	colonize	the	xylem.	In	the	xylem,	it	forms	biofilms	that	are	thought	to	be	

integral	to	pathogenicity	(Koo	et	al.	2017;	Castro	et	al.	2021).	Colonization	is	also	governed,	

in	part,	by	virulence	and	pathogenicity	factors	that	influence	a	wide	range	of	bacterial	

functions	–	e.g.,	biofilm	formation,	host	cell	wall	degradation,	regulatory	systems,	stress	

responses	and	bacterial	membrane	composition	--	although	other	abiotic	factors	(like	plant	

drought	stress)	likely	also	contribute	to	disease	progression	(Rapicavoli	et	al.	2018).	Given	

its	economic	impact,	the	effects	and	mechanisms	of	X.	fastidiosa	infection	have	been	studied	

widely,	especially	in	grapevine	(Roper	&	Lindow	2016).	However,	many	pathogenicity	

factors	likely	remain	undiscovered,	and	crucial	questions	remain	unanswered	about	the	

genetic	factors	that	govern	host-pathogen	interactions	and	potential	host	specialization	

(Rapicavoli	et	al.	2018).	

In	this	context,	it	is	helpful	to	recognize	that	X.	fastidiosa	consists	of	three	commonly	

recognized	subspecies	that	form	distinct	phylogenetic	clades:	ssp.	fastidiosa,	multiplex,	and	

pauca.	Each	subspecies	has	unique	phenotypic	characteristics	and	DNA	markers	
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(Marcelletti	&	Scortichini	2016).	Two	other	subspecies,	morus	and	sandyi,	have	also	been	

suggested,	though	they	are	not	recognized	as	broadly	(Burbank	&	Roper	2021);	indeed,	

morus	is	believed	to	be	a	product	of	a	recombination	event	between	fastidiosa	and	

multiplex	isolates	(Sicard	et	al.	2018).	The	recognition	of	subspecies	is	critical,	because	

initial	work	suggested	that	subspecies	correlate	with	specific	plant	hosts	(Nunney	et	al.	

2013).	While	it	has	long	been	known	that	that	genetic	differences	among	strains	facilitate	

host-plant	specialization	(Almeida	&	Purcell	2003;	Hernandez-Martinez	et	al.	2006;	

Almeida	et	al.	2008;	Roper	&	Lindow	2016),	there	is	not	a	clear	one-to-one	correspondence	

between	pathogen	and	host.	For	example,	some	strains	can	infect	more	than	one	host	

species,	as	demonstrated	by	a	strain	that	causes	PD	in	grapevines	and	also	leaf	scorch	in	

almonds	(Almeida	&	Purcell	2003).	Consequently,	the	questions	of	the	evolution	of	and	

determinants	of	host	specificity	are	still	central	for	understanding	the	distribution	and	

effects	of	this	pathogen.		

In	this	study,	we	analyze	X.	fastidiosa	genome	evolution	among	isolates	from	

different	plant	hosts.	Our	study	is	not	unique	in	some	respects,	because	numerous	

comparative	genomic	studies	of	X.	fastidiosa	have	been	published	already.	Many	of	these	

studies	have	focused	on	clarifying	phylogenetic	relationships.	For	example,	Marcelletti	and	

Scortichini	(2016)	studied	21	genomes	to	resolve	taxonomic	relationships	among	

subspecies;	Giampetruzzi	et	al.	2017	extended	sampling	to	27	genomes,	in	part	to	place	a	

novel	strain	(ST53)	in	the	broader	X.	fastidiosa	phylogeny;	and	Denancé	et	al.	(2019)	used	

kmers	from	46	genomes	to	untangle	species	and	subspecies	relationships.	Another	recent	

study	compared	X.	fastidiosa	populations	from	Central/South	America	(Costa	Rica,	Brazil),	

North	America	(California,	Southeastern	US),	Europe	(Spain,	Italy),	and	Asia	(Taiwan)	to	
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elucidate	the	evolutionary	origins	of	the	subsp.	fastidiosa	and	pauca	(Castillo	et	al.	2021).	

Still	other	studies	have	focused	on	populations.	For	example,	Vanhove	et	al.	(2020)	isolated	

and	sequenced	X.	fastidiosa	subsp.	fastidiosa	from	symptomatic	grapevines	from	five	

different	California	locations	(Vanhove	et	al.	2020).		

One	common	theme	of	genomic	studies	is	that	they	identify	the	set	of	genes	that	are	

present	in	most	samples	(i.e.,	core	genes)	and	used	those	genes	as	the	basis	to	perform	

phylogenetic	inference.	These	phylogenies	have	been	used	for	various	purposes.	For	

example,	two	recent	papers	have	used	phylogenies	to	explore	the	question	of	host	

specificity.	In	one,	Uceda-Campos	et	al.	(2022)	found	that	X.	fastidiosa	isolates	grouped	on	

the	phylogeny	by	geography,	but	not	by	plant	host	species,	suggesting	host	specificity	is	not	

correlated	with	phylogenetic	relationships	and	genetic	divergence	(Uceda-Campos	et	al.	

2022).	In	contrast,	Kahn	and	Almeida	(2022)	used	the	phylogeny	to	infer	the	ancestral	

character	states	of	plant	hosts	and	found	that	the	ancestral	host	plant	could	be	inferred	for	

most	ancestral	nodes	(Kahn	&	Almeida	2022).	They	concluded	that	genetic	history	affects	

host	range	and	also	identified	~30	genes	whose	presence/absence	correlated	with	specific	

plant	hosts.		

In	this	study,	we	combined	20	new	X.	fastidiosa	genomes	with	publicly	available	data	

to	build	a	dataset	for	molecular	evolutionary	analysis	and	to	investigate	patterns	of	host	

specificity	in	a	phylogenetic	context.	For	host-specificity	analyses,	we	focused	on	core	

genes,	but	we	also	assessed	the	phylogenetic	signal,	pattern	of	gene	gain	and	loss,	and	

potential	host	associations	of	accessory	(i.e.,	non-core)	genes.	Our	goals	for	these	analyses	

were	to	add	to	the	growing	literature	about	genetic	correlations	between	phylogenetic	

history	and	host	specificity	but	also	to	further	consider	the	dynamic	evolution	of	accessory	
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genes	in	this	context	(Kahn	&	Almeida	2022).	In	addition,	we	performed	extensive	analyses	

of	the	ratio	of	nonsynonymous	to	synonymous	(dN/dS	or	ω)	substitutions	to	identify	genes	

under	positive	selection	(ω	>	1.0).	Genes	under	positive	selection	may	be	involved	in	arms-

race	(or	Red-Queen)	dynamics	between	pathogens	and	hosts	(Daugherty	&	Malik	2012;	

Aleru	&	Barber	2020).	In	other	systems,	ω	analyses	have	identified	genes	with	functions	

that	contribute	to	host	defense	and	also	discovered	entirely	new	sets	of	genes	and	

pathways	involved	in	pathogen-host	interactions	(Mitchell	et	al.	2012;	Ng	et	al.	2015;	

Daugherty	et	al.	2016).	Here	we	apply	tests	for	positive	selection	in	the	hope	of	gaining	

insights	into	the	sets	of	genes	that	may	affects	host-pathogen	interactions.		

 

3.3	Methods	
	

Novel	X.	fastidiosa	genomes.	Fully	extracted	DNA	from	20	X.	fastidiosa	isolates	were	

provided	by	the	French	Collection	of	Plant-Associated	Bacteria	(CIRM-CFBP;	

http://www6.inra.fr/cirm_eng/CFBP-Plant-Associated-Bacteria)	and	from	the	University	

of	California,	Riverside.	Genomic	DNA	was	prepared	for	Illumina	sequencing	using	the	

Illumina	Nextera	DNA	Flex	Library	Prep	kit,	following	the	manufacturer’s	

recommendations	and	for	Pacific	Biosciences	(PacBio)	sequencing	with	the	SMRTbell	

Express	Template	Prep	Kit	2.0.	SMRTbell	libraries	had	10kb	DNA	target	insert	size	(Pacific	

BioSciences,	Menlo	Park,	CA)	using	360ng	of	sheared	DNA	as	input.	DNA	libraries	were	

sequenced	with	both	Illumina	and	PacBio	technologies	at	the	University	of	California,	

Irvine	Genomics	High	Throughput	Facility	(https://ghtf.biochem.uci.edu).	The	Illumina	

sequencing	reads	were	quality	assessed	using	FastQC,	and	reads	were	trimmed	using	

Trimmomatic	v.	0.32	(Andrews	2010;	Bolger	et	al.	2014)	using	default	options.	PacBio	
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sequencing	reads	were	corrected	and	trimmed	using	Canu	v.	1.5	(Koren	et	al.	2017).	The	

long	and	short	reads	were	used	for	genome	assembly	with	Unicycler	v.	0.4.8	in	hybrid	

assembly	mode	(Wick	et	al.	2017).	Genome	assembly	statistics	were	calculated	using	Quast	

v.	5.0.2	(Gurevich	et	al.	2013).	As	is	common	practice	(Chase	et	al.	2018),	short	contigs	

(<500	bp)	were	removed	from	the	assemblies	using	Seqkit	v.	0.13.2	(Shen	et	al.	2016).		

		

Genome	Assembly	of	public	data	and	sample	set	curation.	We	complemented	our	set	of	

novel	genomes	with	publicly	available	data.	To	do	so,	we	downloaded	all	available	whole	

genome	assemblies	of	X.	fastidiosa	and	X.	taiwanensis	(as	an	outgroup)	from	the	National	

Center	for	Biotechnology	Information	(NCBI)	and	Sequence	Read	Archive	(SRA)	databases	

on	July	9,	2020	(Supplementary	Table	S3.1).	In	addition,	we	downloaded	the	raw,	short-

read	sequences	for	an	additional	20	isolates	(Castillo	et	al.	2020;	Vanhove	et	al.	2020).	For	

each	isolate,	we	gathered	information	about	its	geographic	origin	and	its	host	plant	from	

NCBI	and	from	the	Pathosystems	Resource	Integration	Center	(PATRIC)	database.	To	

assemble	the	raw	reads	from	the	20	unassembled	accessions	into	genomes,	we	assessed	

quality	and	trimmed	the	reads	and	applied	SPAdes	v.	3.14.0	(Bankevich	et	al.	2012)	with	

the	--careful	option,	following	Vanhove	et	al.	(Supplementary	Table	S3.2;	2020).	If	long	

reads	were	also	available,	as	they	were	for	5	isolates	from	the	work	of	Castillo	et	al.	2020,	

then	whole	genome	assembly	was	performed	with	Unicycler	v.	0.4.8	in	hybrid	assembly	

mode	(Wick	et	al.	2017).	

In	total,	we	gathered	and	generated	148	Xylella	genome	assemblies.	From	this	set,	

we	removed	isolates	that	did	not	have	information	about	their	host	isolation	source	or	

were	lab-derived	recombinant	strains.	The	remaining	129	genomes	were	re-annotated	by	
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the	same	method	-	based	on	Prokka	v.	1.14.6	analysis	–	that	we	applied	to	the	new	

genomes,	to	ensure	homogeneity.	The	Prokka	analyses	were	then	input	into	Roary	v.	3.13.0	

with	options	-i	80	-cd	100	-e	-n	-z	to	obtain	a	core	gene	alignment	for	initial	comparisons	

among	isolates	(Seemann	2014;	Page	et	al.	2015);	we	defined	core	genes	as	those	that	were	

detectable	in	100%	of	the	samples.	This	core	set	was	aligned	with	MAFFT	and	polished	

using	gBlocks	v.	0.91b	(Castresana	2000;	Katoh	et	al.	2002;	Katoh	&	Standley	2013).	The	

polished	alignment	was	used	as	input	for	RAxML	v.	8.2.12	to	build	a	preliminary	

phylogenetic	tree	(Stamatakis	2014),	which	we	used	to	evaluate	and	curate	the	isolates	

(Supplementary	Figure	S3.1).		

To	curate	the	dataset,	we	created	a	distance	matrix	from	the	RAxML	phylogenetic	

tree,	using	the	Tree	and	reticulogram	REConstruction	(T-REX)	server	(Boc	et	al.	2012).	

Many	of	the	genomes	–	most	of	which	were	gathered	for	population	genomic	analyses	-	

were	sampled	from	the	same	plant	host	and	were	nearly	identical	genetically.	To	limit	

sampling	biases	for	our	species-wide	study,	we	removed	clones	and	near-clones	based	on	

the	distance	matrix.	That	is,	if	two	or	more	isolates	had	a	pairwise	distance	≤	0.0001	and	

came	from	the	same	host,	we	retained	the	isolate	with	the	more	contiguous	assembly.	We	

also	used	CheckM	(Parks	et	al.	2015)	to	assess	genome	completeness	based	on	a	set	of	

conserved	single	copy	genes	(Supplementary	Table	S3.3).	After	applying	these	filters,	our	

final	dataset	consisted	of	63	X.	fastidiosa	genomes	and	one	outgroup	genome	(X.	

taiwanensis	PLS229)	that	were	isolated	from	23	distinct	plant	host	species	(Supplementary	

Table	S3.1).		
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Pan-genome	analysis.	To	perform	a	pan-genome	analysis,	we	applied	Roary	to	the	64	

Xylella	genomes	using	gff	files	from	Prokka	as	input.	Roary	was	applied	with	the	option	-i	

80,	as	used	in	previous	microbial	studies	(Chase	et	al.	2018;	Rodriguez	&	Martiny	2020),	to	

lower	the	blastp	sequence	identity	to	80%	from	the	default	95%.	We	defined	a	core	gene	as	

a	gene	present	in	95%	of	the	isolates	used	in	the	analysis	(i.e.,	a	core	gene	was	present	in	at	

least	60	of	63	X.	fastidiosa	accessions).	From	the	Roary	output,	we	extracted	a	

representative	nucleotide	sequence	of	each	core	and	accessory	gene	using	cdbfasta	

(https://github.com/gpertea/cdbfasta)	and	translated	the	nucleotide	sequence	to	amino	

acids	using	the	transeq	command	from	EMBL-EBI	(Madeira	et	al.	2019).	The	representative	

sequences	were	the	basis	for	functional	categorization	--	using	the	eggNOG-mapper	v.	2	

(Huerta-Cepas	et	al.	2017,	2019)	--	of	both	core	and	accessory	genes.	Gene	Ontology	(GO)	

enrichment	analyses	were	performed	online	at	(http://geneontology.org)	using	

Xanthomonas	campestris	as	the	reference	list	(Ashburner	et	al.	2000).	To	explore	function	

further,	we	also	used	the	Conserved	Domain	Database	online	tool	

(https://www.ncbi.nlm.nih.gov/cdd/	)	to	identify	protein	domains.	

		

Phylogenetic	Tree	Construction.	We	used	the	core	gene	alignment	from	Roary	to	build	a	

phylogenetic	tree,	based	on	a	subset	of	genes	that	were	present	in	all	63	X.	fastidiosa	

samples	and	the	X.	taiwenensis	outgroup.	To	do	so,	we	curated	the	alignments	with	gBlocks	

v.	0.91b	(Castresana	2000),	used	the	polished	alignment	as	input	for	IQtree	v.	2.0.3,	and	

selected	the	best	nucleotide	model	for	phylogenetic	tree	construction	(Nguyen	et	al.	2015;	

Kalyaanamoorthy	et	al.	2017).	We	ultimately	constructed	an	unrooted	tree	using	the	

GTR+F+R8	model	with	RAxML	(Stamatakis	2014),	using	the	‘best	tree’	option.	Phylogenetic	
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trees	were	visualized	and	annotated	using	the	ape	package	v.	5.5	in	R	v.	4.0.2	(Paradis	&	

Schliep	2019;	R	Core	Team	2019).	We	used	the	most	likely	phylogeny	to	test	associations	

between	phylogenetic	relatedness,	geography,	and	host	isolation	source	(plant	taxonomic	

order	information	taken	from	https://www.itis.gov/)	with	ANOSIM	implemented	in	the	

vegan	package	v.	2.5-7	in	R	(Oksanen	et	al.	2020).		

	 X.	fastidiosa	is	naturally	transformant	and	undergoes	homologous	recombination	

(Burbank	&	Roper	2021;	Kung	&	Almeida	2011),	but	recombined	genomic	regions	can	

obscure	vertical	phylogenetic	relationships.	To	account	for	potential	recombination	among	

X.	fastidiosa	genomes,	we	applied	Gubbins	v.	3.2.1	(Croucher	et	al.	2015;	Shikov	et	al.	2022),	

using	again	the	subset	of	genes	that	were	found	in	all	64	samples.	From	this	input,	Gubbins	

identified	regions	that	were	likely	to	have	undergone	recombination	and	removed	them	

from	the	alignment.	We	then	built	a	phylogeny	from	this	recombination-adjusted	core	gene	

alignment	using	RAxML,	as	described	above.	We	assessed	the	congruence	between	the	two	

phylogenetic	trees	(i.e.,	with	and	without	removal	of	potentially	recombining	regions)	

using	phytools	v.	1.0-1	in	R	(Revell	2012).	

Finally,	we	also	built	a	Neighbor-Joining	(NJ)	tree	based	on	the	presence-absence	

matrix	of	accessory	genes.	We	first	calculated	the	Euclidean	distances	from	the	presence-

absence	matrix	of	the	accessory	genes	using	the	dist	function	in	R	(Mateo-Estrada	et	al.	

2019).	We	then	built	an	NJ	tree	from	the	Euclidean	distances	using	the	ape	package	in	R	

(Paradis	&	Schliep	2019).	We	also	utilized	the	ANOSIM	and	Mantel	test	(in	the	vegan	

package)	to	measure	the	correlation	between	accessory	gene	content	and	phylogenetic	

relatedness.	The	Mantel	test	required	two	distance	matrices,	which	were	the	Euclidean	

distances	estimated	from	the	accessory	gene	presence-absence	matrix	and	the	distances	
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from	the	RAxML	core	gene	phylogeny	generated	by	the	reticulogram	REConstruction	(T-

REX)	server	(Boc	et	al.	2012).		

	

Gain	and	Loss	of	Accessory	Genes.	We	utilized	GLOOME	to	investigate	gene	gain	and	loss	

dynamics	along	the	core	phylogenetic	tree	of	X.	fastidiosa	(Cohen	et	al.	2010).	GLOOME	

uses	a	mixture-model	approach,	coupled	with	maximum-likelihood	inference,	to	infer	rates	

of	gain	and	loss	of	genes	along	the	branches	of	a	phylogeny.	It	takes	as	input	the	

phylogenetic	topology,	in	this	case	the	phylogenetic	topology	based	on	core	genes,	and	a	

presence-absence	matrix	of	genes.	The	pattern	of	genic	presence	and	absence	was	obtained	

through	M1CR0B1AL1Z3R,	as	recommended	by	the	GLOOME	authors,	and	then	directly	

input	into	GLOOME	using	default	settings	(Avram	et	al.	2019).	The	default	settings	included	

a	fixed	rate	of	gene	gains	and	losses	with	gamma	distributed	rates	across	genes	(or	sites).	

Among	the	output,	GLOOME	returned	two	phylogenetic	trees	with	branch	lengths	

representing	either	the	number	of	expected	gain	events	or	the	number	loss	events	on	each	

branch.	As	recommended	(Cohen	et	al.	2010),	branch	lengths	representing	relative	gain	

and	loss	rates	were	extracted	from	the	phylogenetic	trees	using	FigTree	v.	1.4.4	

(http://tree.bio.ed.ac.uk/software/figtree/).	To	normalize	expected	gain	(or	loss)	events	

with	sequence	divergence,	we	calculated	the	ratio	of	inferred	gain	(or	loss)	against	the	

branch	lengths	of	the	sequence-based	core	phylogeny.	Outlier	branches	with	excess	

normalized	gains	or	losses	were	identified	using	the	interquartile	range	criterion.		

	

Positive	selection	analyses.	We	employed	codeml	from	PAML	v.	4.9	to	calculate	ω,	the	

ratio	of	nonsynonymous	to	synonymous	rates	(Yang	1997,	2007).	We	performed	codeml	
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analysis	on	nucleotide	alignments	of	the	single-copy	core	genes,	single-copy	accessory	

genes,	and	multicopy	genes	(defined	as	genes	with	two	or	more	copies	in	a	single	

accession).	For	all	tests,	we	required	at	least	four	sequences,	as	the	minimum	number	

suggested	for	codeml	analysis	(http://abacus.gene.ucl.ac.uk/software/pamlFAQs.pdf).	For	

each	gene	and	sequence	set,	we	ran	analyses	by	generating	an	unrooted	maximum-

likelihood	tree	for	each	gene	based	on	the	DNA	alignment,	using	RAxML	v.	8.2.12.	This	

approach	recognizes	that	the	phylogeny	of	a	single	gene	may	not	follow	the	consensus	

phylogeny	due	to	a	history	of	recombination.	For	completeness,	however,	we	also	

performed	codeml	analyses	by	assuming	the	global	phylogeny	for	the	subset	of	genes	that	

were	present	in	all	64	samples.	The	outcomes	of	the	two	approaches	were	highly	

correlated	(Supplementary	Figure	S3.2),	and	so	for	simplicity	we	focused	on	results	based	

on	phylogenies	inferred	separately	for	each	gene.		

Given	the	input	phylogenies,	we	performed	codeml	analyses	that	relied	on	

calculating	likelihood	ratios	(LRs)	under	various	models	(Yang	2007).	Briefly,	we	used	the	

models	to	test	the	null	hypothesis	that	ω	=	1.0	against	the	alternative	of	positive	selection	

(ω	>	1.0)	in	two	different	ways.	The	first	was	a	global	test	across	the	entirely	phylogeny	of	a	

gene	–	i.e.,	across	all	branches	and	all	sites.	This	test	requires	the	comparison	of	two	

models:	one	(Model	=	0	with	Fix_omega	=	1	and	Omega	=	1	in	the	codeml	control	file)	that	

estimates	a	single	ω	from	the	data	and	another	that	sets	ω=1.0	(Model	=	0	with	Fix_omega	

=	0	in	the	codeml	control	file).	The	two	models	yielded	evidence	for	positive	selection	when	

the	initial	ω	estimate	was	>1.0	and	when	the	likelihood	of	the	two	models	differed	

significantly,	based	on	P	<	0.01	after	FDR	correction.	The	second	set	of	analyses	was	across	

sites	–	i.e.,	testing	for	genes	with	variable	selection	pressure	across	sites.	For	each	gene,	we	
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first	compared	models	M0	and	M3	to	test	for	heterogeneity	in	evolutionary	rates	across	

codons.	If	that	test	was	significant,	we	then	compared	sites	models	M1a	and	M2a	from	

codeml	to	test	for	specific	codons	with	evidence	of	positive	selection	(ω	>	1.0).	For	all	

summary	statistics	of	ω,	we	excluded	estimates	of	ω	that	were	greater	than	10	as	

potentially	unreliable	due	either	to	low	ds	or	poorly	resolved	optimization.	Individual	

codon	residues	under	positive	selection	were	identified	using	the	Empirical	Bayes	analysis	

in	codeml.		

	

Data	availability	statement.	All	high-throughput	sequence	data	generated	in	this	study	

have	been	submitted	to	the	NCBI	Sequence	Read	Archive	database	at	

https://www.ncbi.nlm.nih.gov/sra	and	can	be	accessed	with	project	number	

PRJNA833428.		

	

3.4	Results	

Core	and	Accessory	Genes	in	Xylella.	To	investigate	genome	evolution	in	X.	fastidiosa,	we	

sequenced	20	novel	X.	fastidiosa	genomes	using	hybrid	approaches	and	retrieved	publicly	

available	genomes	and	raw	sequencing	data	(Supplementary	Tables	S3.1	and	S3.2).	After	

filtering	for	isolation	source	and	genetic	distance,	we	retained	a	sample	of	63	genomes	that	

were	broadly	distributed	among	the	subspecies.	All	our	analyses	were	performed	on	this	

final	set	of	63	X.	fastidiosa	genomes	with	the	X.	taiwanensis	outgroup.	The	X.	fastidiosa	

genomes	ranged	in	size	from	2.42	Mb	to	2.96	Mb,	with	an	average	length	of	2.61	Mb	(Figure	

3.1A)	and	an	average	of	2,478	predicted	genes	(Figure	3.1B).	The	samples	were	extracted	

from	22	plant	hosts	representing	12	botanical	orders	(Figure	3.1C).		
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We	categorized	each	gene	as	either	core	(present	in	95%	or	more	of	X.	fastidiosa	

samples)	or	accessory	(Page	et	al.	2015).	Across	all	64	genomes,	we	identified	10,477	genes	

within	the	pan-genome;	of	those,	1,257	were	core	genes	and	9,220	were	accessory	genes,	

with	nearly	4,000	genes	found	in	only	a	single	isolate	(Figure	3.1D).	We	performed	

functional	analyses	on	both	the	core	and	accessory	gene	sets	by	grouping	protein	coding	

sequences	into	clusters	of	orthologous	gene	(COG)	(Figure	3.1E-F).	We	compared	COG	

category	rankings	between	the	core	and	accessory	gene	sets,	with	significant	differences	

(Wilcoxon	rank	sum	test,	paired;	P	=	0.0001).	After	excluding	genes	with	unknown	

function,	the	largest	COG	categories	in	the	core	gene	set	were	‘translation,	ribosomal	

structure,	and	biogenesis’	(123	genes),	‘cell	wall/membrane/envelope	biogenesis’	(119	

genes),	and	‘amino	acid	transport	and	metabolism’	(92	genes).	In	contrast,	the	largest	

categories	for	accessory	genes	were	‘replication,	recombination	and	repair’	(547	genes),	

‘intracellular	trafficking,	secretion,	and	vesicular	transport’	(364	genes),	and	‘transcription’	

(298	genes).	Additionally,	we	investigated	the	core	and	accessory	gene	lists	for	significant	

GO	based	enrichment	of	specific	biological	processes	(Supplementary	Tables	S3.4	and	

S3.5).	

	

Phylogenetic	Patterns	of	Core	Genes,	Accessory	Genes	and	Hosts.	We	constructed	a	

maximum	likelihood	phylogeny	based	on	a	subset	of	1,024	genes	that	were	present	in	all	

64	isolates.	The	topology	was	highly	supported;	it	had	a	mean	bootstrap	support	of	93.75%	

across	all	nodes,	with	a	median	of	100%	(Figure	3.2).	The	lowest	bootstrap	supports	were	

primarily	found	at	nodes	separating	X.	fastidiosa	strains	isolated	predominantly	from	

grapevines,	reflecting	relatively	low	evolutionary	divergence	among	these	samples.	As	
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expected	(Denancé	et	al.	2019),	isolates	clustered	into	three	distinct	clades	representing	

the	three	main	subspecies	(ssps.	fastidiosa,	multiplex,	and	pauca),	with	27,	23	and	13	

isolates	in	each	clade,	respectively.	To	account	for	the	possibility	that	homologous	

recombination	impacted	the	resolution	of	the	core	phylogeny,	we	extracted	regions	of	the	

core	gene	alignment	that	had	an	apparent	history	of	recombination	(Croucher	et	al.	2015),	

ultimately	removing	85.1%	of	the	alignment.	The	phylogeny	inferred	from	this	alignment	

was	nonetheless	highly	congruent	with	the	phylogeny	that	did	not	consider	recombination.	

Only	five	accessions	had	altered	positions	between	the	recombination-adjusted	and	non-

adjusted	trees	(Supplementary	Figure	S3.3).		

To	investigate	general	evolutionary	patterns	of	the	accessory	gene	complement,	we	

compared	the	core	gene	phylogeny	against	a	phylogeny	based	on	accessory	gene	

composition	(Figure	3.3).	Both	the	core	gene	and	the	accessory	gene	phylogenies	clustered	

into	three	groups,	and	all	members	of	the	groups	were	consistent	between	phylogenetic	

treatments.	This	pattern	broadly	suggests	that	accessory	genes,	while	defined	by	their	

inconstancy,	are	not	exchanged	en	masse	to	a	sufficient	degree	to	alter	phylogenetic	signal	

among	subspecies.	Within	subspecies,	however,	relationships	at	the	tips	of	the	phylogeny	

often	differed	between	core	and	accessory	trees.	As	an	example,	the	cluster	corresponding	

to	multiplex	displayed	the	most	discordance	between	the	core	and	accessory	trees,	with	all	

OTUs	contributing	to	phylogenetic	incongruence	(Figure	3.3).	Interestingly,	our	multiplex	

sample	also	had	more	plant	host	species	than	our	fastidiosa	and	pauca	samples,	suggesting	

the	possibility	(but	by	no	means	proving)	that	host	factors	may	affect	or	moderate	genome	

content	(Kahn	&	Almeida	2022).	Nonetheless,	we	found	a	significant	correlation	between	

distance	matrices	based	on	the	core	and	accessory	phylogenies	(Mantel	test,	R	=	0.1144,	P	=	
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0.019),	which	is	consistent	with	the	fact	that	the	two	trees	had	the	same	three	major	clades.	

The	overarching	impression	of	these	analyses	is	that	accessory	gene	composition	does	not	

turn-over	so	rapidly,	due	to	HGT	or	other	mechanisms,	to	erase	phylogenetic	and	historical	

signals	of	subspecies	diversification	within	X.	fastidiosa.		

We	used	both	species	phylogenies	(based	on	alignments	with	and	without	putative	

recombinant	regions)	to	test	for	associations	between	X.	fastidiosa	and	their	isolation	

sources	(i.e.,	geographic	location	or	host	plant	information)	using	ANOSIM	(see	Methods).	

There	was	a	weakly	significant	phylogenetic	association	(ANOSIM	R	=	0.08178,	P	=	0.042)	

between	the	geographic	location	and	the	phylogeny	built	from	the	full	core	gene	alignment	

(ANOSIM	R	=	0.08178,	P	=	0.042)	but	not	with	the	phylogeny	built	from	non-recombinant	

regions	(ANOSIM	R	=	-0.004147,	P	=	0.4895).	Applying	the	same	approach	to	host	species	

revealed	a	significant	phylogenetic	signal	for	both	phylogenies	(ANOSIM	R	=	0.1381,	P	=	

0.047;	non-recombining	regions	only,	ANOSIM	R	=	0.6698,	P	<	1	x	10-4).	Since	X.	fastidiosa	

infects	a	wide	range	of	plants,	we	also	retrieved	the	taxonomic	order	of	each	plant	host	to	

test	for	a	phylogenetic	signal	at	a	deeper	taxonomic	level,	recapitulating	the	significant	

association	with	both	phylogenies	(ANOSIM	R	=	0.3152,	P	<	0.0001;	non-recombining	

regions	only,	ANOSIM	R	=	0.1226,	P	=	0.0198).	In	other	words,	strains	isolated	from	plants	

within	the	same	taxonomic	order	were	more	phylogenetically	similar	to	one	another	than	

isolates	taken	from	unrelated	plants.		

We	hypothesized	that	accessory	genes	are	crucial	in	pathogen-host	interaction	and	

therefore	repeated	ANOSIM	analyses	with	a	distance	matrix	based	on	the	presence	and	

absence	of	accessory	genes	(Figure	3.3).	We	found	a	significant	association	between	

accessory	gene	content	and	geographic	isolation	source	(ANOSIM	R	=	0.4553,	P	=	0.5307)	
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and	a	weakly	significant	association	between	accessory	gene	content	and	host	species	

(ANOSIM	R	=	0.1503,	P	=	0.0372).	The	association	was	lost,	however,	at	the	level	of	plant	

order	(ANOSIM	R	=	0.02367,	P	=	0.3033).	Overall,	associations	were	less	evident	based	on	

accessory	gene	content	vs.	the	core-gene	phylogeny.		

Gene	Gain	and	Loss.	The	sheer	number	of	accessory	genes	indicate	that	the	genome	

content	of	X.	fastidiosa	is,	like	other	microbes	(Bolotin	&	Hershberg	2015;	Iranzo	et	al.	

2019),	shaped	by	extensive	gene	gain	and	loss	events	that	are	probably	mediated	by	HGT	

(Firrao	et	al.	2021).	We	were	interested	in	assessing	the	pattern	of	gene	gain	and	loss	

across	the	phylogenetic	tree,	hypothesizing	that	both	could	be	enhanced	on	branches	that	

lead	to	host	shifts.	We	used	GLOOME	to	estimate	the	number	of	gain	and	losses	of	

accessory	genes	across	the	X.	fastidiosa	phylogeny	and	represented	those	estimates	

phylogenetically	(Figure	3.4).	Ignoring	the	branch	leading	to	the	X.	taiwanensis	outgroup	

(PLS229),	the	internal	branches	discriminating	the	X.	fastidiosa	subspecies	were	estimated	

to	average	~550	separate	gene	gain	and	gene	loss	events.	The	remainder	of	the	tip	and	

ingroup	branches	averaged	~100	gene	gain	and	loss	events	(average	gains/branch	=	92.8	

genes;	average	losses/branch	=	100.0	genes;	Figure	3.4A&B).		

While	it	is	useful	to	estimate	the	number	of	gains	and	losses	on	each	branch,	we	

thought	it	more	helpful	to	normalize	the	number	of	estimated	gain	and	loss	events	by	

branch	lengths,	estimated	from	the	sequence	analysis	of	core	genes.	This	normalization	by	

branch	length	converted	the	number	of	gene	gains	and	losses	to	rates	of	gene	gain	(or	loss)	

relative	to	sequence	divergence.	We	then	sought	to	identify	branches	with	aberrantly	high	

rates	of	gene	gain	or	loss	(Figure	3.4C&D),	which	reflect	branches	with	especially	notable	

turnover	of	accessory	genes.	Like	a	previous	microbial	study	(76),	we	found	that	most	of	
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the	phylogenetic	lineages	with	outlier	rates	were	located	at	the	tips	of	the	phylogenetic	

tree.	For	example,	of	the	21	branches	with	high	rates	of	gene	gain,	19	were	at	the	tips	of	the	

phylogeny	(Figure	3.4A).	Similarly,	18	of	21	branches	with	high	rates	of	gene	loss	were	

external	branches.	These	observations	suggest	features	about	the	evolutionary	dynamics	of	

genic	turnover	(see	Discussion).		

	

Characterizing	selection	with	𝜔.	We	characterized	selection	on	individual	genes	by	

estimating	the	dN/dS	ratio	(𝜔);	we	especially	sought	to	identify	genes	that	experienced	

positive	selection	(i.e.,	𝜔 > 1.0),	as	a	potential	signal	of	genes	that	contribute	to	dynamics	

between	the	pathogen	and	its	hosts.	To	do	so,	we	applied	a	series	of	nucleotide	substitution	

models	to	individual	genes,	ultimately	resulting	in	tests	for	positive	selection	on	two	levels:	

globally	across	a	phylogeny	and	across	codon	sites	(see	Methods).	For	these	tests,	we	

examined	the	full	complement	of	1,257	core	genes,	a	subset	of	3,691	accessory	genes,	and	a	

set	of	187	multicopy	genes.		

Testing	selection	globally	for	each	gene:	We	first	estimated	a	single	ω	value	for	each	

gene,	using	a	method	that	assumes	ω	is	constant	across	all	branches	of	the	entire	gene	tree	

and	across	all	codons	in	the	nucleotide	alignment.	Applied	to	the	core	genes,	ω	estimates	

(𝜔,)	ranged	from	0.01048	to	2.92803	with	an	average	of	0.21973	(Figure	3.5A).	Nineteen	

core	genes	had	𝜔,	higher	than	1.0,	but	none	of	these	were	significantly	>	1.0	(P	>	0.01,	FDR	

correction).	In	fact,	the	vast	majority	(1,144	of	1,257)	of	core	genes	had	𝜔,	significantly	<	

1.0	(P	<	0.01,	FDR	correction;	Figure	3.5A),	reflecting	pervasive	purifying	selection.	The	

range	of	𝜔,	was	substantially	broader	for	accessory	genes,	from	𝜔, 	=	0.0001	to	9.60069,	

with	an	average	of	0.51443	(Figure	3.5B).	Among	accessory	genes,	367	(9.9%)	had	a	global	
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estimate	of	ω	>	1.0,	but	only	eight	had	statistically	significant	evidence	for	positive	

selection.	These	eight	genes	were	candidates	to	encode	proteins	involved	in	host-pathogen	

interactions,	but	seven	of	eight	were	annotated	as	hypothetical	genes.	Overall,	the	average	

𝜔,	was	significantly	higher	in	the	accessory	gene	set	compared	to	the	core	genes	(Welch’s	T-

test,	P	<	2.2	x	10-16),	reflecting	either	lower	purifying	selection	against	these	genes,	more	

positive	selection,	or	both.	

We	also	identified	187	genes	that	had	2	or	more	copies	within	a	single	accession	in	a	

syntenic	context,	but	that	were	single	copy	in	other	accessions.	We	performed	codeml	

analysis	to	estimate	ω	for	each	multicopy	gene;	𝜔,	ranged	from	0.02272	to	4.26800,	with	an	

average	of	0.51129	(Figure	3.5D).	Over	half	of	the	genes	had	𝜔,	significantly	<	1.0	(59.4%;	P	

<	0.01,	FDR	correction);	only	one,	a	hypothetical	gene	(group_1109)	had	𝜔,	significantly	

higher	than	1.0	(𝜔,	=	1.85845,	P	<	0.01,	FDR	correction).		

Positive	selection	in	codon	sites:	The	global	test	is	a	conservative	criterion	to	search	

of	positive	selection,	perhaps	overly	so.	Accordingly,	we	turned	to	an	alternative	method	

that	tests	for	variation	in	ω	among	codon	sites	and	identifies	whether	sites	are	under	

positive	selection.	To	do	so,	we	ran	the	sites	models	in	codeml,	which	are	a	group	of	nested	

models.	For	completeness,	we	first	compared	sites	model	M0,	which	represents	the	null	

hypothesis	that	there	is	a	single	ω	value	for	all	sites,	against	sites	model	M3,	which	permits	

ω	to	vary	among	sites.	In	the	core	genes,	the	likelihood	ratio	test	was	significant	for	501	

genes	(P	<	0.01,	FDR	correction).	We	then	took	this	set	to	compare	to	test	for	positive	

selection	using	sites	models.	A	total	of	67	core	genes	had	evidence	of	positive	selection	

among	sites	(P	<	0.01,	FDR	correction).	We	also	tested	for	positive	selection	on	codon	sets	

within	the	3,691	accessory	genes	using	the	same	approach.	Of	the	total,	895	displayed	
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evidence	of	variable	ω	among	sites	(P	<	0.01,	FDR	correction)	and	201	yielded	evidence	of	

positive	selection	(P	<	0.01,	FDR	correction).	Finally,	we	applied	the	sites	models	to	the	set	

of	187	multicopy	genes,	yielding	another	33	genes	with	evidence	for	positive	selection.	To	

sum,	5.3%	(i.e.,	67	of	1,257)	of	core	genes,	5.4%	(201/3,691)	of	accessory	genes	and	17.6%	

of	multicopy	genes	had	significant	evidence	of	at	least	one	codon	with	an	apparent	history	

of	positive	selection.	Among	the	201	accessory	genes,	four	(cya,	group_454,	group_1057,	

and	group_3542)	also	had	evidence	for	positive	selection	via	the	global	test.		

	

3.5	Discussion	
	

Host-pathogen	interactions	can	drive	rapid	evolution	of	pathogenic	bacteria,	

particularly	for	genes	involved	in	arms-race	dynamics	(Daugherty	&	Malik	2012;	Sironi	et	

al.	2015).	Here,	we	investigated	the	genomic	evolution	of	the	plant	pathogen,	X.	fastidiosa,	

through	comparative	genomic	analysis	of	genomes	that	represent	diversity	across	the	

species,	based	on	a	sample	set	of	64	genomes.	The	sample	was	isolated	from	23	different	

plant	hosts	(Figure	1C)	from	throughout	the	world	(Supplementary	Figure	S3.1).	With	

these	data,	we	constructed	a	pangenome	that	contained	1,257	core	genes	and	9,220	

accessory	genes,	similar	to	previous	studies	(Giampetruzzi	et	al.	2017;	Castillo	et	al.	2020).	

Of	the	core	genes,	the	majority	were,	as	expected	(Tettelin	et	al.	2008),	involved	in	essential	

cellular	processes	--	such	as	translation,	cell	wall	biogenesis,	and	amino	acid	metabolism	

(Figure	3.1E).	We	used	the	set	of	core	genes	to	infer	a	maximum	likelihood	phylogeny,	

either	with	or	without	adjusting	to	putatively	recombining	regions	of	the	genome	(Figure	

3.2;	Supplementary	Figure	S3.3).	As	with	previous	systematic	treatments	of	X.	fastidiosa	

(Yuan	et	al.	2010;	Marcelletti	&	Scortichini	2016;	Denancé	et	al.	2019),	both	phylogenies	
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identified	three	clades	corresponding	to	the	three	main	subspecies	(fastidiosa,	multiplex,	

and	pauca).		

We	employed	both	phylogenies	to	investigate	the	relationship	between	the	X.	

fastidiosa	phylogeny	and	the	plant	host.	The	question	of	host	specialization	was	first	

addressed	using	phylogenetic	approaches	with	multilocus	sequencing	typing	(MLST)	data.	

In	this	work,	Sicard	et	al.	(2018)	generated	MLST	data	from	7	housekeeping	genes	from	50	

X.	fastidiosa	genotypes.	After	building	a	phylogeny,	they	tested	coevolutionary	relationships	

between	host	species	and	X.	fastidiosa	MLST	types	but	found	no	significant	evidence	of	

coevolution,	implying	a	lack	of	host	specialization.	This	topic	was	recently	revisited	with	

full	genome	data	(Kahn	&	Almeida	2022;	Uceda-Campos	et	al.	2022),	but	the	results	were	

inconsistent	between	studies.	Uceda-Campos	et	al.	(2022)	found	no	evidence	that	plant	

host	species	clustered	on	their	X.	fastidiosa	phylogeny,	but	the	samples	did	cluster	by	

geography.	In	contrast,	Kahn	and	Almeida	(2022)	inferred	ancestral	character	states	of	

plant	hosts	on	the	X.	fastidiosa	phylogeny	and	were	able	to	resolve	the	character	state	of	

some	deep	nodes.	They	inferred,	for	example,	that	coffee	plants	were	the	ancestral	host	

species	for	the	node	separating	X.	fastidiosa	ssp.	fastidiosa	from	other	subspecies.	These	

patterns	suggest	that	phylogenetic	history	is	associated	with	specific	plant	hosts	and	host	

ranges.		

The	disagreement	among	previous	studies,	and	the	fact	that	all	such	analyses	are	

properties	of	the	sampled	isolates,	makes	the	issue	worthy	of	further	assessment.	In	our	

study,	we	have	found	a	significant,	non-random	association	between	phylogenetic	

relationships	and	both	the	species	and	taxonomic	order	of	plant	hosts	(P	<	0.0001)	based	

on	core	phylogenies.	These	results	are	consistent	with	some	level	of	specialization	of	X.	
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fastidiosa	to	plant	hosts	and	with	the	recent	analysis	of	Kahn	and	Almeida	(2022).	

Moreover,	these	results	were	robust	to	phylogenetic	treatment	–	i.e.,	the	inclusion	or	

exclusion	of	genomic	regions	inferred	to	have	histories	of	recombination.	Although	it	is	

difficult	to	quantitatively	compare	ANOSIM	results	across	studies,	it	is	worth	noting	that	

the	association	of	X.	fastidiosa	to	plant	order	is	similar	in	magnitude	to	the	association	

between	a	gut	colonizing	bacterium	(Bifidobacterium)	and	the	host	species	from	which	it	

was	isolated	(Rodriguez	&	Martiny	2020).		

Given	some	evidence	for	host	specialization,	we	hypothesized	that	it	is	driven	in	

part	by	accessory	gene	content.	Under	this	hypothesis,	we	predicted	an	association	

between	genes	and	hosts	should	be	as	(or	more)	pronounced	for	accessory	genes	than	for	

core	genes.	Instead,	we	found	no	significant	association	between	accessory	gene	

complement	and	taxonomic	order	and	only	a	weak	association	with	plant	species.	Our	

results	are	unlike,	for	example,	the	case	of	bifidobacteria,	where	the	association	with	host	

species	was	nearly	as	strong	for	accessory	genes	as	for	host	genes	(Rodriguez	&	Martiny	

2020).	We	cannot	be	sure	why	we	do	not	detect	a	signal	for	host	specialization	of	accessory	

genes,	but	we	can	think	of	three	explanations.	One	is	that	that	host	associations,	to	the	

extent	they	exist,	are	not	driven	by	accessory	genes	but	rather	by	evolutionary	divergence	

in	core	genes.	Another	is	statistical	power:	because	there	are	many	more	sequence	changes	

among	the	core	genes	than	there	are	changes	in	accessory	gene	content,	the	distance	

matrix	for	core	genes	likely	has	a	higher	signal-to-noise	ratio	than	accessory	gene	content.	

Finally,	if	accessory	genes	do	mediate	host	shifts,	it	is	possible	–	and	even	likely	-	that	only	a	

subset	of	accessory	genes	drive	these	shifts.	Under	this	scenario,	there	may	be	significant	

associations	for	a	small	subset	of	accessory	genes,	but	the	signal	of	this	association	is	weak	
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across	the	entire	accessory	gene	set.	This	conjecture	seems	reasonable	given	that	Kahn	and	

Almeida	(2002)	found	that	the	presence/absence	of	a	subset	of	only	~30	accessory	genes	

correlated	with	the	plant	host.	In	addition,	it	is	worth	emphasizing	that	X.	fastidiosa	

interacts	not	only	with	plants	but	also	insect	vectors	and	microbial	communities,	so	that	

some	subset	of	accessory	genes	likely	contribute	to	these	interactions	instead	of	those	with	

plant	hosts.		

	

The	pattern	of	gene	gain	and	loss	events.	Another	potential	tool	to	study	adaptation	to	

specific	hosts	is	by	examining	shifts	in	gene	composition	through	gene	duplication,	

deletion,	or	HGT	events	(Hurles	2004;	Arnold	et	al.	2022).	We	estimated	the	number	of	

gene	loss	and	gain	events	along	the	core-gene	phylogeny,	and	then	normalized	those	

numbers	relative	to	sequence	divergence.	Using	this	approach,	we	found	that	most	

branches	followed	a	consistent	rate	of	gene	gain	or	loss	relative	to	sequence	divergence.	

The	fact	that	the	accessory	gene	phylogeny	recapitulates	the	three	subspecies	(Figure	3)	

suggests,	along	with	previous	evidence,	that	X.	fastidiosa	evolves	predominantly	through	

vertical	inheritance	and	intraspecific	recombination,	rather	than	HGT	from	other	bacterial	

species	(Nunney	et	al.	2013;	Castillo	&	Almeida	2021).		

We	have,	however,	identified	19	and	18	lineages	with	enriched	gain	or	loss	events,	

respectively,	and	most	of	these	branches	were	at	the	tip	of	the	phylogeny.	Again,	a	potential	

explanation	for	these	gain	and	loss	dynamics	is	that	they	reflect	host	shifts.	There	are	some	

isolated	examples	that	are	consistent	with	this	hypothesis.	For	example,	isolates	XF6c,	

Pr8x,	RAAR17,	and	OLS0478	in	pauca	have	branches	with	enriched	gene	gains	(Figure	

3.4A).	Two	of	these	(OLS0478	and	Pr8x)	were	isolated	from	oleander	and	plum,	
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respectively,	and	are	the	only	isolates	associated	with	those	plant	hosts	in	their	clades,	

suggesting	a	host	shift.	More	globally,	however,	the	evidence	for	this	hypothesis	is	

unconvincing.	When	we,	for	example,	contrast	gene	gains	between	pairs	of	sister	taxa	with	

the	same	plant	host,	three	of	the	16	sister	pairs	had	enriched	rates	of	gene	gain.	This	

proportion	of	enriched	branches	was	not	significantly	lower	than	the	reminder	of	the	tree	

(P	>	0.05;	Fisher’s	Exact	Test),	despite	the	fact	that	the	sister	taxa	did	not	experience	a	host	

shift.	All	of	these	inferences	are	of	course	dependent	on	our	sample	and	ignore	the	vector	

component	of	the	X.	fastidiosa	lifecycle,	so	there	are	limitations	to	our	conclusions.	At	

present,	however,	the	evidence	for	an	association	between	host	shifts	and	enhanced	gene	

gain	and	loss	events	is	weak.		

This	leaves	unexplained	the	pattern	of	enriched	rates	of	gene	gain	and	loss	at	the	

tips	of	the	tree.	We	suspect	this	pattern	is	analogous	to	patterns	of	mutations	in	

populations,	as	suggested	previously	(Graña-Miraglia	et	al.	2017).	New	mutations	begin	as	

rare,	low	frequency	variants	in	single	individuals.	Eventually	most	of	these	mutations	are	

removed	by	the	processes	of	genetic	drift	and	natural	selection,	so	that	there	are	more	new	

mutations	in	populations	than	old	mutations.	In	a	phylogenetic	context,	these	new	

mutations	would	be	evident	at	the	tip	of	the	trees,	so	it	may	be	reasonable	to	expect	higher	

effective	rates	of	gene	gain	and	loss	in	the	‘newest’	phylogenetic	branches.	This	explanation	

only	has	credence,	however,	if	the	observed	gain	and	loss	events	are	both	recent	–	i.e.,	

newer	than	the	sequence	mutations	that	define	the	tip	branches	–	and	frequent.		

	

The	identification	of	positively	selected	genes.	Many	previous	studies	have	implicated	

genes	and	their	protein	products	in	ongoing	arms-races	between	pathogens	and	their	hosts	
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(Anderson	et	al.	2010;	Schulte	et	al.	2010).	One	way	to	approach	this	question	is	agnostic	to	

function,	which	is	to	screen	for	genes	with	a	history	of	positive	selection.	Ours	is	not	the	

first	attempt	to	detect	selection	in	X.	fastidiosa	genomes.	Previous	studies	have	searched	for	

selection	by	comparing	levels	of	polymorphism	or	rates	of	synonymous	and	

nonsynonymous	mutations	in	the	core	genome	using	Tajima’s	D	and	the	McDonald-

Kreitman	test	(Castillo	et	al.	2021,	2020).	Other	work	has	measured	ω	in	core	genes	but	

without	statistically	testing	for	positive	selection	(Castillo	&	Almeida	2021)	or	by	applying	

the	global	test	for	w	for	>	1.0	(Vanhove	et	al.	2020).	To	our	knowledge	no	other	study	of	X.	

fastidiosa	has	tested	for	positive	selection	in	accessory	genes	nor	applied	codon	sites	

models.	The	set	of	positively	selected	X.	fastidiosa	genes	represents	candidate	pathogenicity	

factors	to	mediate	interactions	with	the	environment,	including	plant	host,	insect	vectors,	

or	members	of	the	microbial	community.		

To	study	positive	selection,	we	estimated	ω,	or	the	ratio	of	nonsynonymous	to	

synonymous	mutations,	for	each	core	gene	and	for	each	accessory	gene	found	in	four	or	

more	isolates.	In	total,	this	exercise	encompassed	5,135	genes:	1,257	core	genes,	3,691	

accessory	genes,	and	187	multicopy	genes.	We	began	by	applying	a	global	test	that	

estimates	ω	over	all	sites	and	phylogenetic	lineages.	This	approach	can	be	overly	

conservative,	because	a	significant	test	of	ω	>	1.0	requires	that	positive	selection	is	very	

strong,	acts	across	many	sites	in	a	gene,	is	present	in	most	of	the	branches	of	the	phylogeny,	

or	all	of	the	above.	As	expected,	we	found	only	a	few	genes	(eight	accessory	genes	in	total)	

that	were	significant	for	positive	selection	with	this	test.	Unfortunately,	the	annotations	of	

7	of	8	of	these	genes	yielded	few	insights	into	their	functions.	To	explore	gene	function	

further,	we	identified	protein	domains	using	the	Conserved	Domain	Database.	We	found,	
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for	example,	that	the	gene	group_7848	contains	a	VirB3	protein	domain,	which	is	part	of	the	

Type	IV	secretory	pathway	and	is	commonly	associated	with	the	membranes	of	the	

bacterial	cell.	The	gene	cya	was	also	implicated	using	this	test,	which	encodes	adenylate	

cyclase	and	plays	essential	roles	in	regulation	of	cellular	metabolism	(Danchin	et	al.	1984).	

Interestingly,	the	cya	protein	is	involved	in	the	cyclic	AMP	system,	which	is	a	global	

regulator	in	gram-negative	bacteria	and	has	been	shown	to	modulate	gene	expression	in	

pathogenic	bacteria	(Smith	et	al.	2004;	Kim	et	al.	2005).	

The	global	test	did	allow,	however,	for	two	broad	generalizations	about	patterns	of	

selection	in	X.	fastidiosa.	First,	as	a	group	the	core	genes	are	under	strong	purifying	

selection	with	most	(>90%)	having	ω	estimates	significantly	<	1.0.	Second,	accessory	genes	

generally	have	lower	levels	of	purifying	selection,	as	evidenced	by	a	lower	proportion	

(45%)	of	significant	tests	for	ω	<	1.0	and	by	much	higher	average	𝜔,	values	(0.21973	vs.	

0.51443;	Figure	3.5A).	The	proportion	of	significant	tests	must	be	compared	between	genic	

sets	with	caution,	because	the	smaller	sample	sizes	(n=4	to	59)	for	accessory	genes	likely	

reduce	statistical	power	relative	to	the	minimum	of	60	samples	for	all	core	genes,	as	do	any	

differences	in	gene	lengths.	Nonetheless,	the	contrasting	pattern	of	ω	is	consistent	with	the	

ideas	that	core	genes	have	conserved	biological	functions	and	that	accessory	genes	are	

more	amenable	to	evolutionary	change	due	to	their	nonessential,	but	still	potentially	

biological	relevant,	cellular	roles	(Horesh	et	al.	2021).	Accessory	genes	may	also	experience	

higher	variation	in	their	selection	dynamics	because	recombination	affects	them	more	than	

core	genes	(Castillo	&	Almeida	2021).	

Given	few	signals	of	positive	selection	with	the	global	test,	we	turned	to	codon	site	

models.	To	our	surprise,	the	proportion	of	positively	selected	genes	was	similar	for	core	
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genes	(5.3%)	and	accessory	genes	(5.4%).	The	salient	question	is	whether	these	genes	give	

some	clue	to	function.	Of	the	67	core	genes	with	evidence	for	positive	selection	at	the	codon	

level,	40%	were	unannotated.	We	performed	a	functional	analysis	by	grouping	the	protein	

coding	sequences	of	these	67	core	genes	into	COG	categories	to	infer	cellular	functions.	

Excluding	the	category	of	unknown	function,	the	largest	category	was	‘cell	

wall/membrane/envelope	biogenesis,’	followed	by	the	‘amino	acid	metabolism	and	

transport,’	‘carbohydrate	metabolism	and	transport,’	‘translation,’	and	‘intracellular	

trafficking	and	secretion’	(Supplementary	Figure	S3.4A).		

	 Of	the	201	accessory	genes	with	evidence	for	positive	selection	at	the	codon	level,	

82%	were	not	annotated	for	function.	The	remaining	set	of	36	genes	was	enriched	for	GO	

categories	related	to	protein	secretion	by	the	type	IV	secretion	system	(Supplementary	

Table	S3.6).	To	better	infer	function,	we	performed	a	COG	analysis	and	found	that	the	

largest	categories	(excluding	the	category	of	unknown	function)	were	‘intracellular	

trafficking	and	secretion,’	‘replication,	recombination	and	repair,’	and	‘secondary	

metabolites	biosynthesis,	transport	and	catabolism’	(Supplementary	Figure	S3.4B).	

Intriguingly,	of	this	set	of	201	genes,	50	overlapped	with	the	set	of	367	genes	that	had	a	

gene-wide	estimate	of	𝜔,	>	1.	While	these	are	especially	strong	candidates	for	having	a	

history	of	positive	selection,	a	disappointing	94%	of	them	were	unannotated	for	function.	

The	three	genes	with	annotations	were:	cya,	nagZ_2,	and	bacterial	adaptive	response	A	

(barA).	The	gene	nagZ_2	encodes	a	beta-glucosidase	that	is	important	for	biofilm	formation	

in	Neisseria	gonorrhoeae,	suggesting	it	could	play	a	similar	role	in	X.	fastidiosa.	It	merits	

further	functional	analysis,	since	biofilms	are	important	to	the	infection	cycle	(Bhoopalan	

et	al.	2016).	barA	encodes	a	membrane	associated	histidine	kinase	that	has	a	regulatory	
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role	in	cell	division,	metabolism,	and	pili	formation,	and	it	has	been	implicated	in	regulating	

the	virulence	response	of	uropathogenic	E.	coli	(Palaniyandi	et	al.	2012;	Sahu	et	al.	2003).	

Finally,	the	multicopy	genes	also	yielded	evidence	of	positive	selection,	including	cdiA1,	

which	is	part	of	the	secretory	contact-dependent	growth	inhibition	(CDI)	system	that	

modulates	biofilm	formation	in	Acinetobacter	baumannii	(Roussin	et	al.	2019).		

As	a	final	exercise,	we	cataloged	the	incidence	of	positive	selection	in	a	set	of	35	

genes	that	have	been	listed	as	virulence	and	pathogenicity	factors	in	X.	fastidiosa	

(Rapicavoli	et	al.	2018).	Of	the	35,	we	could	identify	29	in	our	database	based	on	the	PD	

number	annotation	and	reference	sequence	

(http://www.microbesonline.org/operons/gnc183190.html;	Table	1).	We	expected	that	

this	set	of	29	genes	would	be	enriched	for	evidence	of	positive	selection	relative	to	the	

genomic	background,	because	these	genes	are	putatively	involved	in	arms-race	

interactions.	The	trend	for	these	genes	was	in	the	expected	direction,	because	4	of	29	(=	

13.9%)	were	significant	vs.	301	of	5,135	(=	5.8%)	in	the	rest	of	the	genome.	However,	the	

difference	in	proportions	was	not	significant	(Fisher	Exact	Test,	P	=	0.1091).	Nonetheless,	

this	set	of	experimental	genes	is	interesting.	All	four	genes	with	evidence	of	positive	

selection	encode	proteins	associated	with	the	membrane	of	gram-negative	bacteria	and	are	

involved	in	membrane	transport	or	adhesin.	Specifically,	the	genes	fimF,	xadA	and	xatA	

encode	proteins	involved	in	fimbrial	adhesion,	non-fimbrial	adhesion,	and	biofilm	

formation,	respectively,	and	the	gene	PD1311	encodes	a	protein	involved	in	membrane	

transport	(Ma	Rodriguez	et	al.	1993;	Sun	et	al.	2005;	Abbas	et	al.	2007;	Das	et	al.	2009;	

Zeiner	et	al.	2012).	Because	there	is	a	resolved	protein	structure	for	fimF	(Gossert	et	al.	

2008),	we	investigated	the	location	of	positively	selected	codons.	Of	the	four	positively	
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selected	codons	(N80,	D87,	F137,	and	D142),	one	(D87)	was	in	a	flexible	loop	and	a	second	

(D142)	comprised	part	of	the	second	β-sheet	of	the	protein	(99).	Together	this	suggests	

that	changes	in	the	amino	acid	sequence	of	fimF	may	be	impacting	its	function	

We	must	caution	that	positive	selection	analyses	are	subject	to	false	positives,	and	

they	are	also	dependent	on	specific	analysis	features,	like	the	sample	set,	the	criteria	for	

determining	homology,	and	the	sequence	alignments.	We	have	nonetheless	found	several	

genes	with	some	evidence	of	positive	selection	that	may	also	contribute	to	functions	

relevant	to	infection.	We	believe	they	represent	suitable	candidates	for	further	functional	

analyses	to	elucidate	their	role	in	host-pathogen	interactions	and	perhaps	even	host	

specificity.		
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Figures	
	

	
Figure	3.1:	Histograms	reporting	the	characteristics	of	the	64	Xylella	genomes.	A)	Genome	
lengths,	exhibited	in	base	pairs.	B)	The	number	of	genes	within	a	genome.	C)	A	histogram	of	
the	plant	species	from	which	genomes	were	isolated.	D)	A	histogram	of	the	number	of	
genes	found	in	x	number	of	genomes;	this	histogram	shows,	for	example,	that	nearly	4,000	
genes	are	found	in	only	of	one	the	genomes	out	of	the	entire	sample	of	64	genomes	and	that	
1,024	genes	are	found	in	all	64	genomes;	E)	the	distribution	of	functional	categories	for	the	
set	of	1,257	core	genes	and	F)	the	distribution	of	functional	categories	for	the	set	of	9,220	
accessory	genes.	A	key	to	the	COG	categories	for	panels	E)	and	F)	is	in	Figure	S4.		
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Figure	3.2:	The	inferred	phylogeny	of	64	Xylella	genomes,	based	on	maximum	likelihood	
inference	of	core	gene	alignments.	Each	isolate	is	labelled	at	the	tips	and	is	colored	
according	to	the	order	of	the	plant	isolation	source	(host).	The	common	name	of	the	host	is	
provided	to	the	right	of	order	information.	The	three	X.	fastidiosa	subspecies	are	indicated,	
as	are	bootstrap	values	at	each	node.	The	bootstrap	values	are	pie	charts,	where	black	
represents	the	percent	of	bootstrap	support,	and	the	scale	bar	reflects	the	magnitude	of	
sequence	divergence	per	nucleotide	site.		
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Figure	3.3:	A	comparison	of	a	NJ	tree	based	on	distances	due	to	gene	presence	/	absence	
(on	the	left)	to	the	likelihood	tree	based	on	the	core	gene	alignments	(from	Figure	2,	on	the	
right).	As	in	Figure	2,	the	isolates	are	labelled	at	the	tips	of	trees,	with	the	colors	
representing	plant	order.	Both	phylogenies	contain	three	main	X.	fastidiosa	clades,	
representing	the	three	subspecies.	Lines	connect	the	same	isolate	between	the	two	trees,	
with	angled	lines	representing	topological	discordance	between	phylogenies.	The	three	
Xylella	subspecies	are	outlined	in	a	black	box	and	labelled.			
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Figure	3.4:	The	result	of	gene	gain	and	loss	analyses.	A)	The	phylogeny	of	the	isolates,	with	
branch	lengths	proportional	to	the	number	of	gene	gain	events.	The	colored	branches	are	
branches	with	outlier	gene	gain	rates.	B)	The	phylogeny	of	the	isolates,	with	branch	lengths	
proportional	to	the	number	of	gene	loss	events.	The	colored	branches	are	branches	with	
outlier	gene	loss	rates.	C)	A	plot	of	the	gene	gains	against	sequence	divergence;	in	the	plot	
each	dot	represents	one	of	the	125	branches	on	the	phylogeny.	Outlier	dots	are	colored	red.	
D)	As	in	C,	with	gene	losses	plotted	again	sequence	divergence.		
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Figure	3.5:	Estimated	values	of	ω	under	M0	(the	one-ratio	model)	in	the	core	and	
accessory	genes.	The	distribution	of	𝜔,	values	is	plotted	for	A)	core	genes	estimated	with	
gene	trees,	B)	accessory	genes	with	gene	trees	C)	core	genes	estimated	with	the	core	gene	
alignment	(CGA)	phylogeny,	and	D)	multicopy	genes	with	gene	trees.	Histogram	bars	are	
shaded	to	reflect	the	outcome	of	the	likelihood	ratio	test	(non-significant	tests	are	colored	
red	and	significant	tests	are	colored	blue)	between	a	model	that	estimated	𝜔,	and	a	model	
with	ω	fixed	to	1.0.	The	horizontal	dashed	line	denotes	𝜔,	for	each	gene	set.		
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Tables	
	

Table	3.1	Codeml	results	for	experimentally	identified	virulence	and	pathogenicity	genes,	
as	listed	(Rapicavoli	et	al.	2018)	

PD	
Number	

Gene	
Name	

Pan-genome	
classification	

No.	
Genomes1	 	(M0)

2	 M2a	vs.	M1a	p-
value3		

PD0058	 fimF	 Accessory	 41	 0.31555	 3.25E-08	

PD0062	 fimA	 Accessory	 26	 0.81255	 0.247	

PD0233	 rpfB	 Accessory	 57	 0.16832	 1	

PD0279	 cgsA	 Core	 64	 0.14404	 1	

PD0406	 rpfC	 Accessory	 44	 0.34502	 1	

PD0528	 xatA	 Core	 64	 0.43097	 1.38E-41	

PD0731	 xadA	 Accessory	 58	 0.39196	 0.004	

PD0732	 xpsE	 Core	 64	 0.05825	 1	

PD0814	 wzy	 Accessory	 43	 0.17675	 1	

PD0843	 tonB1	 Core	 64	 0.11374	 0.534	

PD0848	 pilL	 Core	 64	 0.18195	 1	

PD0986	 		 Core	 64	 0.10828	 1	

PD1099	 dinJ/relE	 Accessory	 25	 0.10271	 1	

PD1100	 		 Accessory	 15	 0.20708	 0.731	

PD1284	 algU	 Core	 64	 0.19261	 1	

PD1311	 		 Accessory	 33	 0.42541	 3.47E-05	

PD1380	 csp1	 Core	 64	 0.15702	 1	

PD1391	 gumH	 Accessory	 46	 0.12964	 1	

PD1394	 gumD	 Core	 63	 0.11504	 1	

PD1485	 pglA	 Accessory	 59	 0.28401	 0.114	

PD1678	 phoQ	 Core	 64	 0.1086	 1	

PD1679	 phoP	 Core	 64	 0.03272	 1	
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PD1703	 lesA/lipA	 Core	 64	 0.06614	 1	

PD1792	 hxfB	 Core	 64	 0.10828	 1	

PD1826	 chiA	 Core	 64	 0.11424	 1	

PD1856	 engXCA1	 Core	 63	 0.24034	 1	

PD1964	 tolC	 Core	 64	 0.10051	 1	

PD1984	 gacA	 Core	 64	 0.13444	 1	

PD2118	 hxfA	 Core	 64	 0.10828	 1	

1	the	number	of	genomes,	out	of	64,	in	which	the	gene	was	detected.		
2	M0	estimates	a	single	w	across	the	entire	phylogeny	of	sequences.	
3	The	p-value	of	tests	after	FDR	correction.	Bolded	values	are	significant	at	p	<	0.01.	The	notation	E	
refers	to	the	power	of	ten.	
	 	



 

	
	

155	

Supplemental	Information	
	

	
Figure	S3.1:	Phylogenetic	relationships	of	the	set	of	129	publicly	available	and	novel	
Xylella	fastidiosa	and	X.	taiwanensis	genomes	gathered	to	develop	this	study.	The	outer	ring	
denotes	the	specific	plant	host	from	which	the	bacteria	was	isolated,	and	the	shaded	ranges	
denote	the	host	plant’s	taxonomic	order.	The	branches	are	colored	to	denote	the	continent	
of	isolation:	North	America	(Blue),	Central	America	(Purple),	South	America	(Green),	
Europe	(Red),	Asia	(Gold).  
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Figure	S3.2:	Correlation	plot	between	the	values	of	omega	estimated	with	two	different	
methods:	building	an	unrooted	maximum-likelihood	gene	tree	plotted	on	the	x-axis	and	
with	the	global	phylogeny	built	from	the	core	gene	alignment	on	the	y-axis.				
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Figure	S3.3:	Comparison	of	Gubbins	recombination-corrected	phylogeny	(left)	to	the	
phylogeny	built	from	the	entire	core	gene	alignment	(right).		
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Figure	S3.4:	The	distribution	of	functional	categories	for	A)	the	67	core	genes,	B)	the	201	
accessory	genes,	and	C)	33	multicopy	genes	with	evidence	for	positive	selection	under	the	
sites	models.	A	key	to	the	COG	categories	is	provided	in	the	bottom	panel.		
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Supplemental	Tables	
	
Table	S3.1	Accessions	gathered	for	this	study	
Isolate	Name	 NCBI	

Accession	
Species	 Continent	

of	Isolation	
Location	
of	
Isolation	

Host	 Includ
ed	for	
Analys
is	

XF32	 AWYH0000000
0	

Xylella	
fastidios
a	

South_Amer
ica	

Brazil	 Coffee	 Yes	

XF3124	 CP009829	 Xylella	
fastidios
a	

South_Amer
ica	

Brazil:	
Matao,	Sao	
Paulo	

Coffee	 No	

XF11399	 JNBT00000000	 Xylella	
fastidios
a	

South_Amer
ica	

Brazil	 Citrus	 No	

XF6c	 AXBS00000000	 Xylella	
fastidios
a	

South_Amer
ica	

Brazil	 Coffee	 Yes	

XF9a5c	 AE003849	 Xylella	
fastidios
a	

South_Amer
ica	

Brazil:	Sao	
Paulo,	
Macaubal	

Citrus	 Yes	

AlmaEM3	 PUIY00000000	 Xylella	
fastidios
a	

North_Ame
rica	

USA:	
Georgia	

Blueberry	 Yes	

Ann-1_AAAM	 AAAM0000000
0	

Xylella	
fastidios
a	

N/A	 N/A	 Oleander	 No	

ATCC_35871	 AUAJ00000000	 Xylella	
fastidios
a	

North_Ame
rica	

USA:Georgi
a	

Plum	 Yes	

Ann-
1_CP006696	

CP006696	 Xylella	
fastidios
a	

N/A	 USA:Califor
nia,	Palm	
Springs	

Oleander	 Yes	

ATCC_35879	 JQAP00000000	 Xylella	
fastidios
a	

North_Ame
rica	

USA:	
Florida	

Grape	 No	

ATCC_35879_Pa
cBio	

CP044352.1	 Xylella	
fastidios
a	

North_Ame
rica	

USA:	
Florida	

Grape	 Yes	

Bakersfield-1	 NZ_CP040799.1	 Xylella	
fastidios
a	

North_Ame
rica	

USA:Bakers
field	

Grape	 No	

BB01	 MPAZ0000000
0	

Xylella	
fastidios
a	

North_Ame
rica	

USA:	
Georgia	

Blueberry	 Yes	
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BB08-1	 PUIZ00000000	 Xylella	
fastidios
a	

North_Ame
rica	

USA:	
Florida	

Blueberry	 No	

BBI64	 PUJA00000000	 Xylella	
fastidios
a	

North_Ame
rica	

USA:	
Georgia	

Blueberry	 Yes	

CCPM1	 PUJB00000000	 Xylella	
fastidios
a	

North_Ame
rica	

USA:	
Georgia	

Grape	 Yes	

CFBP7969	 PHFQ0000000
0.1	

Xylella	
fastidios
a	

North_Ame
rica	

USA:	North	
Carolina	
Horticultur
al	crops	
research	
station	
Castle	
Hayne	

Grape	 No	

CFBP7970	 PHFR00000000	 Xylella	
fastidios
a	

North_Ame
rica	

USA:	
Florida	

Grape	 No	

CFBP8069	 PRJNA833428	 Xylella	
fastidios
a	

N/A	 N/A	 Grape	 Yes	

CFBP8071	 PHFP00000000	 Xylella	
fastidios
a	

North_Ame
rica	

USA:	
California	

Almond	 No	

CFBP8072	 LKDK0100000
0	

Xylella	
fastidios
a	

South_Amer
ica	

Ecuador	 Coffee	 No	

CFBP8073	 LKES01000000	 Xylella	
fastidios
a	

North_Ame
rica	

Mexico	 Coffee	 Yes	

CFBP8074	 PRJNA833428	 Xylella	
fastidios
a	

South_Amer
ica	

Ecuador	 Coffee	 Yes	

CFBP8078	 PHFS00000000	 Xylella	
fastidios
a	

North_Ame
rica	

USA:	
Florida	

Periwinkl
e	

Yes	

CFBP8082	 PHFT00000000	 Xylella	
fastidios
a	

North_Ame
rica	

USA:	
Florida	

Ragweed	 Yes	

CFBP8083	 PRJNA833428	 Xylella	
fastidios
a	

North_Ame
rica	

USA:	North	
Carolina	

Grape	 Yes	

CFBP8084	 PRJNA833428	 Xylella	
fastidios
a	

North_Ame
rica	

USA:	
Massachus
etts	

Mulberry	 Yes	
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CFBP8173	 PRJNA833428	 Xylella	
fastidios
a	

North_Ame
rica	

USA:	
Georgia	

Plum	 No	

CFBP8174	 PRJNA833428	 Xylella	
fastidios
a	

North_Ame
rica	

USA:	
California	

Grape	 No	

CFBP8175	 PRJNA833428	 Xylella	
fastidios
a	

North_Ame
rica	

USA:	
Florida	

Grape	 No	

CFBP8176	 PRJNA833428	 Xylella	
fastidios
a	

North_Ame
rica	

USA:	
Florida	

Grape	 No	

CFBP8177	 PRJNA833428	 Xylella	
fastidios
a	

North_Ame
rica	

USA:	
Florida	

Grape	 No	

CFBP8351	 PHFU0100000
0	

Xylella	
fastidios
a	

North_Ame
rica	

USA:	
California	
Fresno	
county	

Grape	 No	

CFBP8356	 PHFV00000000	 Xylella	
fastidios
a	

Central_Am
erica	

Costa	Rica	 Coffee	 Yes	

CFBP8416	 LUYC00000000	 Xylella	
fastidios
a	

Europe	 France:	
Corse,	
Propriano	

Milkwort	 Yes	

CFBP8417	 LUYB00000000	 Xylella	
fastidios
a	

Europe	 France:	
Corse,	Alata	

Spartium	 Yes	

CFBP8418	 LUYA00000000	 Xylella	
fastidios
a	

Europe	 France:	
Corse,	Alata	

Spartium	 No	

CFBP8419	 PRJNA833428	 Xylella	
fastidios
a	

Europe	 France	
(intercepte
d)	

Coffee	 Yes	

CFBP8478	 PRJNA833428	 Xylella	
fastidios
a	

Europe	 France	
(intercepte
d)	

Coffee	 No	

CO33	 LJZW01000000	 Xylella	
fastidios
a	

Central_Am
erica	

Costa	Rica	 Coffee	 No	

CoDiRO	 JUJW01000000	 Xylella	
fastidios
a	

Europe	 Italy:	
Apulia	

Olive	 No	

COF0324	 LRVG00000000	 Xylella	
fastidios
a	

South_Amer
ica	

Brazil:	
Minas	
Gerais	

Coffee	 No	
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State,	
Varginha	

COF0407	 LRVJ00000000	 Xylella	
fastidios
a	

Central_Am
erica	

Costa	Rica:	
San	Jose	
Province,	
Curridabat	

Coffee	 No	

Conn_Creek	 PRJNA833428	 Xylella	
fastidios
a	

North_Ame
rica	

USA:	
California	

Grape	 Yes	

CVC0251	 LRVE00000000	 Xylella	
fastidios
a	

South_Amer
ica	

Brazil:	Sao	
Paulo	State,	
Bebedouro	

Citrus	 No	

CVC0256	 LRVF00000000	 Xylella	
fastidios
a	

South_Amer
ica	

Brazil:	Sao	
Paulo	State,	
Colina	

Citrus	 No	

De_Donno	 CP020870	 Xylella	
fastidios
a	

Europe	 Italy:	
Apulia	
(region)	

Olive	 No	

Dixon	 AAAL00000000	 Xylella	
fastidios
a	

N/A	 N/A	 Almond	 Yes	

EB92.1	 AFDJ00000000	 Xylella	
fastidios
a	

North_Ame
rica	

USA:	
Florida	

Elderberr
y	

Yes	

ESVL	 QPQV0100000
0	

Xylella	
fastidios
a	

Europe	 Spain:	
Benimantel
l,	Alicante	
province	

Almond	 Yes	

Fb7	 CP010051	 Xylella	
fastidios
a	

South_Amer
ica	

Argentina:	
Corrientes	

Citrus	 Yes	

Fetzer	 PRJNA833428	 Xylella	
fastidios
a	

North_Ame
rica	

USA:	
California	

Grape	 No	

Fillmore	 CP052855.1	 Xylella	
fastidios
a	

North_Ame
rica	

USA:Califor
nia	

Olive	 Yes	

Fresno	 PRJNA833428	 Xylella	
fastidios
a	

North_Ame
rica	

USA:	
California	

Almond	 No	

GB514	 CP002165	 Xylella	
fastidios
a	

North_Ame
rica	

USA:	Texas	 Grape	 No	

Griffin-1	 AVGA0000000
0	

Xylella	
fastidios
a	

North_Ame
rica	

USA	 Oak	 Yes	
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GV156	 VOSD00000000
.1	

Xylella	
fastidios
a	

Asia	 Taiwan:	
Nantou	
County	

Grape	 Yes	

Hib4	 CP009885	 Xylella	
fastidios
a	

South_Amer
ica	

Brazil:	
Jarinu,	Sao	
Paulo	

Hibiscus	 Yes	

IAS-AXF-
235T10	

VCQO0000000
0.1	

Xylella	
fastidios
a	

Europe	 Spain:	El	
Castell	de	
Guadalest	
(Alicante)	

Almond	 No	

IAS-AXF212H7	 VCPQ00000000
.1	

Xylella	
fastidios
a	

Europe	 Spain:	
Benimantel
l	(Alicante)	

Almond	 No	

IVIA5235	 CP047171	 Xylella	
fastidios
a	

Europe	 Spain:	
Mallorca	
Island	

Sweet_Ch
erry	

Yes	

IVIA5901	 CP047134	 Xylella	
fastidios
a	

Europe	 Spain:	
Bolulla,	
Alicante	
province	

Almond	 No	

IVIA6586-2	 VDCM0100000
0	

Xylella	
fastidios
a	

Europe	 Spain:	
Beniarda,	
Alicante	
region	

Curry_pla
nt	

Yes	

IVIA6629	 VCPM0100000
0	

Xylella	
fastidios
a	

Europe	 Spain:	
Callosa	
d'en	Sarria	
(Alicante)	

Buckthor
n	

Yes	

IVIA6731	 VCPN01000000	 Xylella	
fastidios
a	

Europe	 Spain:	
Tarbena	
(Alicante)	

Curry_pla
nt	

No	

IVIA6902	 VCPO01000000	 Xylella	
fastidios
a	

Europe	 Spain:	
Castell	de	
Castells	
(Alicante)	

Almond	 No	

IVIA6903	 VCPP00000000
.1	

Xylella	
fastidios
a	

Europe	 Spain:	
Castell	de	
Castells	
(Alicante)	

Almond	 No	

J1a12	 CP009823	 Xylella	
fastidios
a	

South_Amer
ica	

Brazil:	
Jales,	Sao	
Paulo	

Citrus	 Yes	

Je117	 SRR8144172	 Xylella	
fastidios
a	

North_Ame
rica	

USA,	
California,	
Temecula,	
Van	Roekel	

Grape	 No	
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Vineyard	
and	Winery	

Je4	 SRR8144148	 Xylella	
fastidios
a	

North_Ame
rica	

USA,	
California,	
Santa	
Barbara,	
Cebada	
Canyon	
road	

Grape	 No	

Je54	 SRR8144122	 Xylella	
fastidios
a	

North_Ame
rica	

USA,	
California,	
Napa	
valley,	
Veteran	
peak	
(nearby)	

Grape	 No	

Je7	 SRR8144115	 Xylella	
fastidios
a	

North_Ame
rica	

USA,	
California,	
Sonoma,	
Bradford	
Mountain	

Grape	 No	

Je82	 SRR8144197	 Xylella	
fastidios
a	

North_Ame
rica	

USA,	
California,	
Bakersfield,	
General	
Beale	road	

Grape	 No	

LM10	 CP052854.1	 Xylella	
fastidios
a	

North_Ame
rica	

USA:Califor
nia	

Olive	 Yes	

M12	 CP000941	 Xylella	
fastidios
a	

North_Ame
rica	

USA:	
California,	
Kern	
County	in	
the	San	
Joaquin	
Valley	

Almond	 Yes	

M23	 CP001011	 Xylella	
fastidios
a	

North_Ame
rica	

USA:	
California,	
Kern	
County	in	
the	San	
Joaquin	
Valley	

Almond	 Yes	

Merced	 PRJNA833428	 Xylella	
fastidios
a	

North_Ame
rica	

USA:	
California	

Grape	 No	
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Mul-MD	 AXDP00000000	 Xylella	
fastidios
a	

North_Ame
rica	

USA:	
Maryland	

Mulberry	 No	

MUL0034	 CP006740	 Xylella	
fastidios
a	

North_Ame
rica	

N/A	 Mulberry	 Yes	

Mus-1	 AWPK0000000
0.1	

Xylella	
fastidios
a	

North_Ame
rica	

USA	 Grape	 No	

NOB1	 JABCJG000000
000.1	

Xylella	
fastidios
a	

North_Ame
rica	

USA:	Stone	
County,	
Mississippi	

Grape	 No	

OK3	 JABCJH000000
000.1	

Xylella	
fastidios
a	

North_Ame
rica	

USA:	
Beaumont,	
Mississippi	

Grape	 No	

OLS0478	 LRVI00000000	 Xylella	
fastidios
a	

Central_Am
erica	

Costa	Rica:	
San	Jose	
Province,	
Sabanilla	

Oleander	 Yes	

OLS0479	 LRVH0000000
0	

Xylella	
fastidios
a	

Central_Am
erica	

Costa	Rica:	
San	Jose	
Province,	
Sabanilla	

Oleander	 No	

PD7202	 RRUA0100000
0	

Xylella	
fastidios
a	

Central_Am
erica	

Costa	Rica	 Coffee	 Yes	

PD7211	 RRTZ00000000	 Xylella	
fastidios
a	

Central_Am
erica	

Costa	Rica	 Coffee	 Yes	

PLS229	 CP053627.1	 Xylella	
taiwane
nsis	

Asia	 Taiwan:	
Houli	
District,	
Taichung	
City	

Pear	 Yes	

Pr8x	 CP009826	 Xylella	
fastidios
a	

South_Amer
ica	

Brazil:	
Jarinu,	Sao	
Paulo	

Plum	 Yes	

RAAR14_plum3
27	

VDDF0000000
0.1	

Xylella	
fastidios
a	

South_Amer
ica	

Brazil:	Rio	
Grande	do	
Sul,	
Veranopoli
s	

Plum	 Yes	

RAAR15_Co33	 SRR10246966	 Xylella	
fastidios
a	

South_Amer
ica	

Brazil:	
Brasilia	DF	

Coffee	 No	
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RAAR16_Co13	 SRR10246965	 Xylella	
fastidios
a	

South_Amer
ica	

Brazil:	Sao	
Paulo,	
Cordeiropo
lis	

Coffee	 No	

RAAR17_CiUb7	 SRR10246964	 Xylella	
fastidios
a	

South_Amer
ica	

Brazil,	
Minas	
Gerais,	
Lavras	

Coffee	 Yes	

RAAR6_Butte	 VDDE0000000
0.1	

Xylella	
fastidios
a	

North	
America	

USA:	Butte	
County,	
California	

Almond	 Yes	

RH1	 CP052853.1	 Xylella	
fastidios
a	

North_Ame
rica	

USA:Califor
nia	

Olive	 No	

Salento-1	 CP016608	 Xylella	
fastidios
a	

Europe	 Italy:	
Taviano,	
Lecce,	
Apulia	

Olive	 Yes	

Salento-2	 CP016610	 Xylella	
fastidios
a	

Europe	 Italy:	
Ugento,	
Lecce,	
Apulia	

Olive	 No	

Stag's_Leap	 LSMJ00000000	 Xylella	
fastidios
a	

North_Ame
rica	

USA:	Napa	
Valley,	
California	

Grape	 No	

Sycamore_Sy-
VA	

JMHP01000000	 Xylella	
fastidios
a	

North_Ame
rica	

USA:	
Virginia	

Sycamore	 Yes	

Temecula_2	 PRJNA833428	 Xylella	
fastidios
a	

North_Ame
rica	

USA:	
California	

Grape	 No	

Temecula1_AE0
09442	

AE009442	 Xylella	
fastidios
a	

North_Ame
rica	

USA:	
California	

Grape	 Yes	

Temecula1Star	 PUJI00000000	 Xylella	
fastidios
a	

North_Ame
rica	

USA:	
California	

Grape	 No	

TemeculaL	 PUJJ00000000	 Xylella	
fastidios
a	

North_Ame
rica	

USA:	
California	

Grape	 No	

TOS14	 SMTJ00000000	 Xylella	
fastidios
a	

Europe	 Italy:	
Tuscany	

Spartium	 Yes	

TOS4	 SMTH0000000
0	

Xylella	
fastidios
a	

Europe	 Italy:	
Tuscany	

Almond	 Yes	
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TOS5	 SMTI00000000	 Xylella	
fastidios
a	

Europe	 Italy:	
Tuscany	

Milkwort	 Yes	

TPD3	 VJWG0100000
0	

Xylella	
fastidios
a	

Asia	 Taiwan:	
Hou-li	

Grape	 No	

TPD4	 VJWH0100000
0	

Xylella	
fastidios
a	

Asia	 Taiwan:	
Hou-li	

Grape	 No	

Traver	 PRJNA833428	 Xylella	
fastidios
a	

North_Ame
rica	

USA:	
California	

Grape	 No	

U24D	 CP009790	 Xylella	
fastidios
a	

South_Amer
ica	

Brazil:	
Ubarana,	
Sao	Paulo	

Citrus	 No	

UCLA	 PRJNA833428	 Xylella	
fastidios
a	

North_Ame
rica	

USA:	
California	

Grape	 No	

VB11	 JABCJI0000000
00.1	

Xylella	
fastidios
a	

North_Ame
rica	

USA:	
Beaumont,	
Mississippi	

Grape	 No	

WM1-1	 PUJK00000000	 Xylella	
fastidios
a	

North_Ame
rica	

USA:	
Georgia	

Grape	 No	

XF1090	 SRR10246940	 Xylella	
fastidios
a	

Central_Am
erica	

Costa	Rica:	
San	Rafael	
de	Montes	
de	Oca\,	
San	Jose	

Coffee	 Yes	

XF1093	 SRR10246939	 Xylella	
fastidios
a	

Central_Am
erica	

Costa	Rica:	
San	Rafael	
de	Montes	
de	Oca\,	
San	Jose	

Coffee	 Yes	

XF1094	 SRR10246938	 Xylella	
fastidios
a	

Central_Am
erica	

Costa	Rica:	
Vargas	
Araya	de	
San	Pedro	
de	Montes	
de	Oca\,	
San	Jose	

Periwinkl
e	

Yes	

XF1105	 SRR10246935	 Xylella	
fastidios
a	

Central_Am
erica	

Costa	Rica:	
San	Rafael	
de	Montes	
de	Oca\,	
San	Jose	

Coffee	 Yes	
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XF1110	 SRR10246946	 Xylella	
fastidios
a	

Central_Am
erica	

Costa	Rica:	
Santiago\,	
Puriscal\,	
San	Jose	

Periwinkl
e	

Yes	

XF3348	 VDCL00000000
.1	

Xylella	
fastidios
a	

Europe	 Spain:	
Binissalem,	
Mallorca	

Almond	 Yes	

XF68	 SRR10246937	 Xylella	
fastidios
a	

Central_Am
erica	

Costa	Rica:	
Coronado\,	
Coronado\,	
San	Jose	

Psidium	 Yes	

XF70	 SRR10246936	 Xylella	
fastidios
a	

Central_Am
erica	

Costa	Rica:	
San	Rafael	
de	Montes	
de	Oca\,	
San	Jose	

Coffee	 Yes	

XF71	 SRR10246945	 Xylella	
fastidios
a	

Central_Am
erica	

Costa	Rica:	
San	Rafael	
de	Montes	
de	Oca\,	
San	Jose	

Coffee	 No	

XF72	 SRR10246944	 Xylella	
fastidios
a	

Central_Am
erica	

Costa	Rica:	
Granadilla\
,	
Curridabat
\,	San	Jose	

Coffee	 No	

XF73	 SRR10246943	 Xylella	
fastidios
a	

Central_Am
erica	

Costa	Rica:	
Santa	
Rosa\,	
Santo	
Domingo\,	
Heredia	

Coffee	 Yes	

XF74	 SRR10246942	 Xylella	
fastidios
a	

Central_Am
erica	

Costa	Rica:	
San	Rafael	
de	Montes	
de	Oca\,	
San	Jose	

Coffee	 Yes	

XF75	 SRR10246941	 Xylella	
fastidios
a	

Central_Am
erica	

Costa	Rica:	
Granadilla\
,	
Curridabat
\,	San	Jose	

Coffee	 Yes	

XYL1732	 QTJT01000000	 Xylella	
fastidios
a	

Europe	 Spain:	
Mallorca	

Grape	 No	
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XYL1752	 VDCK0000000
0.1	

Xylella	
fastidios
a	

Europe	 Spain:	
Ciutadella,	
Menorca	

Almond	 No	

XYL1981	 VDCJ00000000.
1	

Xylella	
fastidios
a	

Europe	 Spain:	
Campos,	
Mallorca	

Mulberry	 Yes	

XYL2055	 QTJS00000000	 Xylella	
fastidios
a	

Europe	 Spain:	
Mallorca	

Grape	 No	
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Table	S3.2	X.	fastidiosa	genome	assemblies	for	this	study		
Strain	 SRA	Number	 Host	 Assembl

y_pipelin
e	

Asse
mbly	
size	
(bp)	

Total	
Conti
gs	

N50	
(bp)	

Conti
gs	
(>500
bp)	

Asse
mbly	
size	of	
contig
s	
>500
bp	

Referenc
e	

XF1105	 SRR1024693
5,	
SRR1024694
7	

Coffee	 Unicycler	 25844
47	

363	 12238
4	

106	 25395
89	

Castillo	et	
al.	2020	

XF70	 SRR1024693
6	

Coffee	 Spades	 25984
24	

283	 99440	 115	 25542
89	

Castillo	et	
al.	2020	

XF68	 SRR1024693
7	

Psidiu
m	

Spades	 26466
95	

343	 10005
9	

124	 25853
61	

Castillo	et	
al.	2020	

XF1094	 SRR1024693
8,	
SRR1024694
8	

Periwi
nkle	

Unicycler	 25904
34	

539	 14453
4	

106	 25125
34	

Castillo	et	
al.	2020	

XF1093	 SRR1024693
9,	
SRR1024694
9	

Coffee	 Unicycler	 26434
97	

385	 98804	 95	 25872
59	

Castillo	et	
al.	2020	

XF1090	 SRR1024694
0,	
SRR1024695
0	

Coffee	 Unicycler	 26250
15	

484	 97769	 119	 25623
74	

Castillo	et	
al.	2020	

XF75	 SRR1024694
1	

Coffee	 Spades	 26528
78	

318	 10391
2	

135	 25998
55	

Castillo	et	
al.	2020	

XF74	 SRR1024694
2	

Coffee	 Spades	 25437
80	

314	 13466
2	

115	 24869
09	

Castillo	et	
al.	2020	

XF73	 SRR1024694
3	

Coffee	 Spades	 26172
97	

249	 11041
2	

103	 25752
91	

Castillo	et	
al.	2020	

XF72	 SRR1024694
4	

Coffee	 Spades	 25976
49	

326	 97666	 128	 25428
94	

Castillo	et	
al.	2020	

XF71	 SRR1024694
5	

Coffee	 Spades	 26679
10	

373	 11656
9	

147	 26010
30	

Castillo	et	
al.	2020	

XF1110	 SRR1024695
1,	
SRR1024694
6	

Periwi
nkle	

Unicycler	 26048
15	

437	 98810	 109	 25435
56	

Castillo	et	
al.	2020	

RAAR15
_Co33	

SRR1024696
6	

Coffee	 Spades	 26461
51	

319	 17329
5	

69	 26047
19	

Castillo	et	
al.	2020	

RAAR16
_Co13	

SRR1024696
5	

Coffee	 Spades	 27224
08	

557	 13442
8	

91	 26509
41	

Castillo	et	
al.	2020	

RAAR17
_CiUb7	

SRR1024696
4	

Coffee	 Spades	 26638
24	

296	 14517
8	

71	 26258
92	

Castillo	et	
al.	2020	

Je117	 SRR8144172	 Grape	 Spades	 25495
13	

219	 14093
4	

92	 25168
93	

Vanhove	
et	al.	2020	

Je119	 SRR8144174	 Grape	 Spades	 25020
22	

207	 11602
2	

95	 24729
14	

Vanhove	
et	al.	2020	
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Je34	 SRR8144142	 Grape	 Spades	 25420
80	

213	 11602
2	

93	 25124
22	

Vanhove	
et	al.	2020	

Je4	 SRR8144148	 Grape	 Spades	 25163
56	

209	 11599
7	

97	 24859
13	

Vanhove	
et	al.	2020	

Je5	 SRR8144134	 Grape	 Spades	 25279
21	

249	 10335
9	

109	 24870
35	

Vanhove	
et	al.	2020	

Je54	 SRR8144122	 Grape	 Spades	 25420
91	

215	 11602
2	

89	 25110
24	

Vanhove	
et	al.	2020	

Je7	 SRR8144115	 Grape	 Spades	 25109
81	

177	 15032
7	

87	 24867
35	

Vanhove	
et	al.	2020	

Je76	 SRR8144211	 Grape	 Spades	 25306
91	

214	 11737
4	

94	 24962
69	

Vanhove	
et	al.	2020	

Je82	 SRR8144197	 Grape	 Spades	 25226
35	

202	 11738
3	

90	 24919
22	

Vanhove	
et	al.	2020	

Je93	 SRR8144226	 Grape	 Spades	 25105
69	

183	 14044
3	

88	 24869
76	

Vanhove	
et	al.	2020	

CFBP80
69	

PRJNA83342
8	

N/A	 Unicycler	 24639
82	

215	 21581
9	

96	 24375
53	

This	study	

CFBP80
70	

PRJNA83342
8	

Plum	 Unicycler	 47711
58	

241	 19785
0	

115	 47416
23	

This	study	

CFBP80
74	

PRJNA83342
8	

Coffee	 Spades	 25091
64	

277	 13981
4	

126	 24712
44	

This	study	

CFBP80
75	

PRJNA83342
8	

N/A	 Unicycler	 23735
72	

143	 16455
6	

70	 23573
37	

This	study	

CFBP80
83	

PRJNA83342
8	

Grape	 Unicycler	 24751
78	

61	 61877
4	

33	 24688
74	

This	study	

CFBP80
84	

PRJNA83342
8	

Mulbe
rry	

Unicycler	 24960
31	

277	 94284	 113	 24568
65	

This	study	

CFBP81
73	

PRJNA83342
8	

Plum	 Unicycler	 24323
02	

145	 16556
3	

67	 24127
73	

This	study	

CFBP81
74	

PRJNA83342
8	

Grape	 Unicycler	 24569
16	

214	 10613
2	

109	 24305
70	

This	study	

CFBP81
75	

PRJNA83342
8	

Grape	 Unicycler	 24730
18	

207	 12606
3	

97	 24478
21	

This	study	

CFBP81
76	

PRJNA83342
8	

Grape	 Unicycler	 24926
99	

145	 29010
7	

58	 24733
25	

This	study	

CFBP81
77	

PRJNA83342
8	

Grape	 Unicycler	 24812
82	

133	 35083
7	

61	 24643
48	

This	study	

CFBP84
19	

PRJNA83342
8	

Grape	 Unicycler	 25906
04	

146	 22218
0	

85	 25775
83	

This	study	

CFBP84
78	

PRJNA83342
8	

Coffee	 Unicycler	 25897
39	

173	 15938
4	

86	 25699
85	

This	study	

Conn_Cr
eek	

PRJNA83342
8	

Grape	 Unicycler	 25388
57	

42	 13049
95	

20	 25337
65	

This	study	

Fetzer	 PRJNA83342
8	

Grape	 Unicycler	 25114
88	

78	 12669
56	

33	 25013
47	

This	study	

Fresno	 PRJNA83342
8	

Almon
d	

Unicycler	 25521
04	

58	 16288
21	

25	 25445
10	

This	study	

Merced	 PRJNA83342
8	

Grape	 Unicycler	 25422
64	

85	 55580
6	

33	 25289
91	

This	study	
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Temecu
la_2	

PRJNA83342
8	

Grape	 Unicycler	 24878
98	

79	 46630
3	

37	 24785
74	

This	study	

Traver	 PRJNA83342
8	

Grape	 Unicycler	 25410
57	

42	 62343
0	

27	 25370
49	

This	study	

UCLA	 PRJNA83342
8	

Grape	 Unicycler	 26302
35	

109	 66795
4	

51	 26164
93	

This	study	
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Table	S3.3	CheckM	results	for	Xylella	genomes	
		 		 Number	of	

Copies*	
		 		 		

Bin	id	 Includ
ed	in	
study	

0
a	

1b	 2
c	

3
d	

Completene
ss	

Contamina
tion	

Strain	
heterogen
eity	

XF32	 Yes	 1	 480	 0	 0	 99.64	 0	 0	
XF6c	 Yes	 2	 478	 1	 0	 99.28	 0.18	 0	
XF9a5c	 Yes	 2	 478	 1	 0	 99.59	 0.18	 0	
AlmaEM3	 Yes	 1	 480	 0	 0	 99.64	 0	 0	
ATCC35871	 Yes	 1	 480	 0	 0	 99.64	 0	 0	
ATCC35879P	 Yes	 3	 478	 0	 0	 98.91	 0	 0	
BB01	 Yes	 1	 480	 0	 0	 99.64	 0	 0	
BB164	 Yes	 3	 444	 2

9	
5	 98.91	 7.19	 100	

CCPM1	 Yes	 2	 468	 1
0	

1	 99.28	 3.08	 100	

CFBP8069	 Yes	 1	 480	 0	 0	 99.64	 0	 0	
CFBP8073	 Yes	 2	 479	 0	 0	 99.63	 0	 0	
CFBP8074	 Yes	 1	 480	 0	 0	 99.64	 0	 0	
CFBP8078	 Yes	 1	 480	 0	 0	 99.64	 0	 0	
CFBP8082	 Yes	 1	 480	 0	 0	 99.64	 0	 0	
CFBP8083	 Yes	 1	 480	 0	 0	 99.64	 0	 0	
CFBP8084	 Yes	 1	 480	 0	 0	 99.64	 0	 0	
CFBP8356	 Yes	 2	 479	 0	 0	 99.28	 0	 0	
CFBP8416	 Yes	 7	 473	 1	 0	 98.31	 0.02	 100	
CFBP8417	 Yes	 1	 480	 0	 0	 99.64	 0	 0	
CFBP8419	 Yes	 2	 478	 1	 0	 99.28	 0.36	 0	
ConnCreek	 Yes	 1	 480	 0	 0	 99.64	 0	 0	
Dixon	 Yes	 2	 479	 0	 0	 99.63	 0	 0	
EB921	 Yes	 1	 479	 1	 0	 99.64	 0.18	 0	
ESVL	 Yes	 1	 479	 1	 0	 99.64	 0.36	 0	
Fb7	 Yes	 5	 476	 0	 0	 98.78	 0	 0	
Fillmore	 Yes	 1	 480	 0	 0	 99.64	 0	 0	
Griffin1	 Yes	 5	 476	 0	 0	 98.46	 0	 0	
GV156	 Yes	 2	 479	 0	 0	 99.46	 0	 0	
Hib4	 Yes	 1	 474	 6	 0	 99.64	 1.45	 83.33	
IVIA5235	 Yes	 1	 480	 0	 0	 99.64	 0	 0	
IVIA65862	 Yes	 1	 478	 2	 0	 99.64	 0.72	 50	
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IVIA6629	 Yes	 1	 474	 6	 0	 99.64	 1.16	 16.67	
J1a12	 Yes	 2	 478	 1	 0	 99.59	 0.18	 0	
LM10	 Yes	 1	 480	 0	 0	 99.64	 0	 0	
M12	 Yes	 1	 480	 0	 0	 99.64	 0	 0	
M23	 Yes	 1	 480	 0	 0	 99.64	 0	 0	
MUL0034	 Yes	 1	 480	 0	 0	 99.64	 0	 0	
OLS0478	 Yes	 1	 480	 0	 0	 99.64	 0	 0	
PD7202	 Yes	 9	 472	 0	 0	 98.14	 0	 0	
PD7211	 Yes	 1	 480	 0	 0	 99.64	 0	 0	
PLS229	 Yes	 5

0	
431	 0	 0	 89.25	 0	 0	

Pr8x	 Yes	 2	 478	 1	 0	 99.59	 0.18	 0	
RAAR14	 Yes	 1	 479	 1	 0	 99.64	 0.18	 0	
RAAR17	 Yes	 1	 479	 1	 0	 99.64	 0.18	 0	
RAAR6Butte	 Yes	 1	 480	 0	 0	 99.64	 0	 0	
Salento1	 Yes	 4	 477	 0	 0	 99.11	 0	 0	
Sycamore	 Yes	 1	 479	 1	 0	 99.64	 0.09	 100	
Temecula1_AE00
9442	

Yes	 1	 480	 0	 0	 99.64	 0	 0	

TOS14	 Yes	 1	 480	 0	 0	 99.64	 0	 0	
TOS4	 Yes	 1	 479	 1	 0	 99.64	 0.36	 100	
TOS5	 Yes	 1	 480	 0	 0	 99.64	 0	 0	
XF1090uni	 Yes	 1	 480	 0	 0	 99.64	 0	 0	
XF1093uni	 Yes	 1	 479	 1	 0	 99.64	 0.36	 0	
XF1094uni	 Yes	 2	 479	 0	 0	 99.28	 0	 0	
XF1105uni	 Yes	 2	 479	 0	 0	 99.28	 0	 0	
XF1110uni	 Yes	 2	 479	 0	 0	 99.59	 0	 0	
XF68care	 Yes	 1	 479	 1	 0	 99.64	 0.36	 0	
XF70care	 Yes	 1	 480	 0	 0	 99.64	 0	 0	
XF73care	 Yes	 1	 480	 0	 0	 99.64	 0	 0	
XF74care	 Yes	 1	 480	 0	 0	 99.64	 0	 0	
XF75care	 Yes	 1	 480	 0	 0	 99.64	 0	 0	
XYL1981	 Yes	 1	 479	 1	 0	 99.64	 0.12	 0	
CP006696	 Yes	 1	 480	 0	 0	 99.64	 0	 0	
XF3348uni	 Yes	 1	 472	 8	 0	 99.64	 1.37	 87.5	
XF3124	 No	 1	 480	 0	 0	 99.64	 0	 0	
XF11399	 No	 1	 479	 1	 0	 99.64	 0.18	 0	
Ann1AAAM	 No	 9	 469	 3	 0	 98.29	 0.74	 66.67	
ATCC35879	 No	 3	 478	 0	 0	 99.23	 0	 0	
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AXF212H7	 No	 1	 476	 4	 0	 99.64	 0.41	 25	
AXF235T10	 No	 1	 473	 7	 0	 99.64	 1.1	 57.14	
BB081	 No	 2	 465	 1

2	
2	 99.52	 5.11	 100	

Bakersfield-1	 No	 1	 480	 0	 0	 99.64	 0	 0	
CFBP7969	 No	 1	 480	 0	 0	 99.64	 0	 0	
CFBP7970	 No	 3	 478	 0	 0	 99.23	 0	 0	
CFBP8071	 No	 2	 478	 1	 0	 99.59	 0.12	 0	
CFBP8072	 No	 2	 479	 0	 0	 99.59	 0	 0	
CFBP8173	 No	 1	 480	 0	 0	 99.64	 0	 0	
CFBP8174	 No	 1	 480	 0	 0	 99.64	 0	 0	
CFBP8175	 No	 1	 480	 0	 0	 99.64	 0	 0	
CFBP8176	 No	 2	 479	 0	 0	 99.59	 0	 0	
CFBP8177	 No	 1	 477	 3	 0	 99.64	 0.91	 100	
CFBP8351	 No	 1	 480	 0	 0	 99.64	 0	 0	
CFBP8418	 No	 1	 480	 0	 0	 99.64	 0	 0	
CFBP8478	 No	 2	 479	 0	 0	 99.28	 0	 0	
CO33	 No	 2	 479	 0	 0	 99.28	 0	 0	
CoDiRo	 No	 1	 480	 0	 0	 99.64	 0	 0	
COF0324	 No	 1	 479	 1	 0	 99.64	 0.18	 0	
COF0407	 No	 2	 479	 0	 0	 99.28	 0	 0	
CVC0251	 No	 1	 479	 1	 0	 99.64	 0.18	 0	
CVC0256	 No	 4	 476	 1	 0	 98.91	 0.18	 0	
DeDonno	 No	 2	 479	 0	 0	 99.59	 0	 0	
Fetzer	 No	 1	 480	 0	 0	 99.64	 0	 0	
Fresno	 No	 1	 480	 0	 0	 99.64	 0	 0	
GB514	 No	 3	 478	 0	 0	 99.18	 0	 0	
IVIA5901	 No	 1	 480	 0	 0	 99.64	 0	 0	
IVIA6731	 No	 1	 475	 5	 0	 99.64	 1.13	 40	
IVIA6902	 No	 1	 467	 1

3	
0	 99.64	 2.05	 23.08	

IVIA6903	 No	 1	 474	 6	 0	 99.64	 0.97	 33.33	
Je117	 No	 3	 478	 0	 0	 99.28	 0	 0	
Je4	 No	 1	 480	 0	 0	 99.64	 0	 0	
Je54	 No	 3	 478	 0	 0	 99.28	 0	 0	
Je7	 No	 3	 478	 0	 0	 99.28	 0	 0	
Je82	 No	 1	 480	 0	 0	 99.64	 0	 0	
Merced	 No	 1	 480	 0	 0	 99.64	 0	 0	
MulMD	 No	 1	 480	 0	 0	 99.64	 0	 0	



 

	
	

176	

Mus1	 No	 4	 476	 1	 0	 99.29	 0.36	 100	
NOB1	 No	 1	 480	 0	 0	 99.64	 0	 0	
OK3	 No	 1	 480	 0	 0	 99.64	 0	 0	
OLS0479	 No	 3	 477	 1	 0	 99.23	 0.36	 0	
PLS235	 No	 5

4	
427	 0	 0	 88.87	 0	 0	

PLS244	 No	 5
0	

431	 0	 0	 89.25	 0	 0	

RAAR15	 No	 1	 480	 0	 0	 99.64	 0	 0	
RAAR16	 No	 2	 478	 1	 0	 99.59	 0.18	 0	
RH1	 No	 1	 476	 4	 0	 99.64	 1.45	 100	
Salento2	 No	 2	 479	 0	 0	 99.59	 0	 0	
StagsLeap	 No	 1	 480	 0	 0	 99.64	 0	 0	
T1Star	 No	 1	 480	 0	 0	 99.64	 0	 0	
T2	 No	 1	 480	 0	 0	 99.64	 0	 0	
TL	 No	 1	 480	 0	 0	 99.64	 0	 0	
TPD3	 No	 1	 479	 1	 0	 99.64	 0.36	 100	
TPD4	 No	 1	 478	 2	 0	 99.64	 0.21	 100	
Traver	 No	 1	 480	 0	 0	 99.64	 0	 0	
U24D	 No	 2	 478	 1	 0	 99.59	 0.18	 0	
UCLA	 No	 1	 479	 1	 0	 99.64	 0.36	 0	
VB11	 No	 1	 479	 1	 0	 99.64	 0.01	 100	
WM11	 No	 1	 480	 0	 0	 99.64	 0	 0	
XF71care	 No	 1	 480	 0	 0	 99.64	 0	 0	
XF72care	 No	 1	 480	 0	 0	 99.64	 0	 0	
XYL1732	 No	 1	 480	 0	 0	 99.64	 0	 0	
XYL1752	 No	 1	 477	 3	 0	 99.64	 0.25	 33.33	
XYL2055	 No	 1	 477	 3	 0	 99.64	 0.91	 0	
*	The	reference	set	of	single	copy	genes	included	a	total	of	481	gene	markers	
a	Number	of	marker	genes	not	found	in	the	genome	 	
b	Count	of	marker	genes	found	with	a	single	copy	in	the	genome	
c	Count	of	marker	genes	found	duplicated	in	the	genome	
d	Count	of	marker	genes	found	with	three	copies	in	the	genome	
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Table	S3.4:	GO	analysis	of	core	genes	
GO	biological	
process	complete	

REFLIST	 upload	 expected	 over/under	 fold	
Enrichment	

P-value	

pyrimidine-
containing	
compound	
biosynthetic	
process	
(GO:0072528)	

20	 16	 2.99	 +	 5.35	 1.91E-03	

translation	
(GO:0006412)	

105	 73	 15.71	 +	 4.65	 8.14E-19	

aromatic	amino	
acid	family	
biosynthetic	
process	
(GO:0009073)	

22	 15	 3.29	 +	 4.56	 1.51E-02	

regulation	of	
developmental	
process	
(GO:0050793)	

28	 19	 4.19	 +	 4.54	 1.32E-03	

peptide	
biosynthetic	
process	
(GO:0043043)	

113	 76	 16.91	 +	 4.5	 4.72E-19	

regulation	of	cell	
shape	
(GO:0008360)	

27	 18	 4.04	 +	 4.46	 2.93E-03	

regulation	of	cell	
morphogenesis	
(GO:0022604)	

27	 18	 4.04	 +	 4.46	 2.93E-03	

regulation	of	
anatomical	
structure	
morphogenesis	
(GO:0022603)	

27	 18	 4.04	 +	 4.46	 2.93E-03	

ribonucleoside	
monophosphate	
metabolic	process	
(GO:0009161)	

29	 19	 4.34	 +	 4.38	 1.93E-03	

amide	
biosynthetic	
process	
(GO:0043604)	

140	 91	 20.95	 +	 4.34	 1.53E-22	
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nucleoside	
monophosphate	
biosynthetic	
process	
(GO:0009124)	

31	 20	 4.64	 +	 4.31	 1.26E-03	

peptide	metabolic	
process	
(GO:0006518)	

133	 85	 19.9	 +	 4.27	 1.63E-20	

nucleoside	
monophosphate	
metabolic	process	
(GO:0009123)	

36	 23	 5.39	 +	 4.27	 2.46E-04	

RNA	methylation	
(GO:0001510)	

22	 14	 3.29	 +	 4.25	 4.84E-02	

ribonucleoside	
monophosphate	
biosynthetic	
process	
(GO:0009156)	

27	 17	 4.04	 +	 4.21	 9.32E-03	

pyrimidine-
containing	
compound	
metabolic	process	
(GO:0072527)	

27	 17	 4.04	 +	 4.21	 9.32E-03	

cell	cycle	
(GO:0007049)	

42	 26	 6.28	 +	 4.14	 6.80E-05	

cellular	amide	
metabolic	process	
(GO:0043603)	

178	 104	 26.63	 +	 3.91	 2.08E-23	

ribonucleotide	
biosynthetic	
process	
(GO:0009260)	

52	 30	 7.78	 +	 3.86	 2.33E-05	

ribose	phosphate	
biosynthetic	
process	
(GO:0046390)	

53	 30	 7.93	 +	 3.78	 3.21E-05	

ribonucleotide	
metabolic	process	
(GO:0009259)	

78	 44	 11.67	 +	 3.77	 2.47E-08	

glycosaminoglycan	
biosynthetic	
process	
(GO:0006024)	

32	 18	 4.79	 +	 3.76	 1.64E-02	
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aminoglycan	
biosynthetic	
process	
(GO:0006023)	

32	 18	 4.79	 +	 3.76	 1.64E-02	

peptidoglycan	
biosynthetic	
process	
(GO:0009252)	

32	 18	 4.79	 +	 3.76	 1.64E-02	

ribosome	
biogenesis	
(GO:0042254)	

47	 26	 7.03	 +	 3.7	 3.50E-04	

ribonucleoprotein	
complex	
biogenesis	
(GO:0022613)	

47	 26	 7.03	 +	 3.7	 3.50E-04	

ribose	phosphate	
metabolic	process	
(GO:0019693)	

82	 45	 12.27	 +	 3.67	 2.94E-08	

purine	
ribonucleotide	
biosynthetic	
process	
(GO:0009152)	

42	 23	 6.28	 +	 3.66	 1.79E-03	

monocarboxylic	
acid	biosynthetic	
process	
(GO:0072330)	

42	 23	 6.28	 +	 3.66	 1.79E-03	

cellular	
component	
macromolecule	
biosynthetic	
process	
(GO:0070589)	

33	 18	 4.94	 +	 3.65	 2.23E-02	

purine	
ribonucleotide	
metabolic	process	
(GO:0009150)	

66	 36	 9.87	 +	 3.65	 3.05E-06	

cell	wall	
macromolecule	
biosynthetic	
process	
(GO:0044038)	

33	 18	 4.94	 +	 3.65	 2.23E-02	

cellular	
macromolecule	

178	 97	 26.63	 +	 3.64	 6.22E-20	
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biosynthetic	
process	
(GO:0034645)	
gene	expression	
(GO:0010467)	

244	 132	 36.5	 +	 3.62	 3.41E-28	

tRNA	metabolic	
process	
(GO:0006399)	

65	 35	 9.72	 +	 3.6	 6.45E-06	

organonitrogen	
compound	
biosynthetic	
process	
(GO:1901566)	

406	 218	 60.74	 +	 3.59	 4.74E-51	

sulfur	compound	
biosynthetic	
process	
(GO:0044272)	

56	 30	 8.38	 +	 3.58	 8.05E-05	

nucleotide	
biosynthetic	
process	
(GO:0009165)	

71	 38	 10.62	 +	 3.58	 1.69E-06	

peptidoglycan-
based	cell	wall	
biogenesis	
(GO:0009273)	

36	 19	 5.39	 +	 3.53	 1.92E-02	

nucleoside	
phosphate	
biosynthetic	
process	
(GO:1901293)	

72	 38	 10.77	 +	 3.53	 2.27E-06	

tRNA	processing	
(GO:0008033)	

40	 21	 5.98	 +	 3.51	 7.90E-03	

purine	nucleotide	
biosynthetic	
process	
(GO:0006164)	

44	 23	 6.58	 +	 3.49	 3.25E-03	

vitamin	
biosynthetic	
process	
(GO:0009110)	

46	 24	 6.88	 +	 3.49	 2.08E-03	

water-soluble	
vitamin	
biosynthetic	

46	 24	 6.88	 +	 3.49	 2.08E-03	
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process	
(GO:0042364)	
purine	nucleotide	
metabolic	process	
(GO:0006163)	

69	 36	 10.32	 +	 3.49	 7.43E-06	

cellular	amino	acid	
biosynthetic	
process	
(GO:0008652)	

100	 52	 14.96	 +	 3.48	 4.04E-09	

cell	division	
(GO:0051301)	

54	 28	 8.08	 +	 3.47	 3.51E-04	

cellular	nitrogen	
compound	
biosynthetic	
process	
(GO:0044271)	

365	 189	 54.61	 +	 3.46	 5.09E-41	

cell	wall	
biogenesis	
(GO:0042546)	

37	 19	 5.54	 +	 3.43	 2.56E-02	

phospholipid	
biosynthetic	
process	
(GO:0008654)	

45	 23	 6.73	 +	 3.42	 4.32E-03	

phospholipid	
metabolic	process	
(GO:0006644)	

45	 23	 6.73	 +	 3.42	 4.32E-03	

organophosphate	
biosynthetic	
process	
(GO:0090407)	

135	 69	 20.2	 +	 3.42	 2.08E-12	

purine-containing	
compound	
biosynthetic	
process	
(GO:0072522)	

47	 24	 7.03	 +	 3.41	 2.77E-03	

water-soluble	
vitamin	metabolic	
process	
(GO:0006767)	

49	 25	 7.33	 +	 3.41	 1.77E-03	

vitamin	metabolic	
process	
(GO:0006766)	

49	 25	 7.33	 +	 3.41	 1.77E-03	
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ncRNA	metabolic	
process	
(GO:0034660)	

98	 50	 14.66	 +	 3.41	 1.78E-08	

alpha-amino	acid	
biosynthetic	
process	
(GO:1901607)	

85	 43	 12.72	 +	 3.38	 5.63E-07	

carboxylic	acid	
biosynthetic	
process	
(GO:0046394)	

157	 79	 23.49	 +	 3.36	 3.26E-14	

organic	acid	
biosynthetic	
process	
(GO:0016053)	

159	 79	 23.79	 +	 3.32	 5.71E-14	

RNA	processing	
(GO:0006396)	

77	 38	 11.52	 +	 3.3	 9.26E-06	

ncRNA	processing	
(GO:0034470)	

73	 36	 10.92	 +	 3.3	 2.27E-05	

external	
encapsulating	
structure	
organization	
(GO:0045229)	

41	 20	 6.13	 +	 3.26	 2.84E-02	

nucleotide	
metabolic	process	
(GO:0009117)	

107	 52	 16.01	 +	 3.25	 2.83E-08	

small	molecule	
biosynthetic	
process	
(GO:0044283)	

225	 109	 33.66	 +	 3.24	 1.31E-19	

sulfur	compound	
metabolic	process	
(GO:0006790)	

93	 45	 13.91	 +	 3.23	 6.77E-07	

carbohydrate	
derivative	
biosynthetic	
process	
(GO:1901137)	

152	 73	 22.74	 +	 3.21	 3.79E-12	

dicarboxylic	acid	
metabolic	process	
(GO:0043648)	

50	 24	 7.48	 +	 3.21	 6.23E-03	

nucleoside	
phosphate	

111	 53	 16.61	 +	 3.19	 3.04E-08	
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metabolic	process	
(GO:0006753)	
purine-containing	
compound	
metabolic	process	
(GO:0072521)	

78	 37	 11.67	 +	 3.17	 3.20E-05	

cellular	
biosynthetic	
process	
(GO:0044249)	

616	 292	 92.16	 +	 3.17	 1.39E-64	

organic	substance	
biosynthetic	
process	
(GO:1901576)	

625	 294	 93.51	 +	 3.14	 1.42E-64	

organophosphate	
metabolic	process	
(GO:0019637)	

185	 87	 27.68	 +	 3.14	 2.42E-14	

macromolecule	
biosynthetic	
process	
(GO:0009059)	

251	 118	 37.55	 +	 3.14	 1.49E-20	

aromatic	
compound	
biosynthetic	
process	
(GO:0019438)	

235	 109	 35.16	 +	 3.1	 2.01E-18	

organic	cyclic	
compound	
biosynthetic	
process	
(GO:1901362)	

266	 122	 39.8	 +	 3.07	 1.01E-20	

biosynthetic	
process	
(GO:0009058)	

650	 296	 97.25	 +	 3.04	 1.50E-62	

heterocycle	
biosynthetic	
process	
(GO:0018130)	

251	 113	 37.55	 +	 3.01	 2.33E-18	

RNA	modification	
(GO:0009451)	

56	 25	 8.38	 +	 2.98	 1.74E-02	

RNA	metabolic	
process	
(GO:0016070)	

170	 75	 25.43	 +	 2.95	 6.31E-11	
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nucleobase-
containing	small	
molecule	
metabolic	process	
(GO:0055086)	

147	 64	 21.99	 +	 2.91	 7.92E-09	

cellular	
component	
biogenesis	
(GO:0044085)	

148	 64	 22.14	 +	 2.89	 9.35E-09	

DNA	repair	
(GO:0006281)	

72	 31	 10.77	 +	 2.88	 2.25E-03	

nucleobase-
containing	
compound	
biosynthetic	
process	
(GO:0034654)	

165	 71	 24.69	 +	 2.88	 6.94E-10	

nucleic	acid	
phosphodiester	
bond	hydrolysis	
(GO:0090305)	

56	 24	 8.38	 +	 2.86	 3.43E-02	

regulation	of	
biological	quality	
(GO:0065008)	

73	 31	 10.92	 +	 2.84	 2.71E-03	

carbohydrate	
derivative	
metabolic	process	
(GO:1901135)	

231	 98	 34.56	 +	 2.84	 3.48E-14	

lipid	biosynthetic	
process	
(GO:0008610)	

95	 40	 14.21	 +	 2.81	 1.80E-04	

cellular	amino	acid	
metabolic	process	
(GO:0006520)	

190	 80	 28.43	 +	 2.81	 5.80E-11	

cellular	nitrogen	
compound	
metabolic	process	
(GO:0034641)	

703	 295	 105.18	 +	 2.8	 1.13E-55	

alpha-amino	acid	
metabolic	process	
(GO:1901605)	

138	 57	 20.65	 +	 2.76	 6.99E-07	

cellular	
component	
organization	or	

197	 81	 29.47	 +	 2.75	 1.33E-10	
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biogenesis	
(GO:0071840)	
carboxylic	acid	
metabolic	process	
(GO:0019752)	

327	 134	 48.92	 +	 2.74	 2.14E-19	

oxoacid	metabolic	
process	
(GO:0043436)	

334	 136	 49.97	 +	 2.72	 1.32E-19	

small	molecule	
metabolic	process	
(GO:0044281)	

507	 203	 75.85	 +	 2.68	 2.22E-31	

cellular	response	
to	DNA	damage	
stimulus	
(GO:0006974)	

80	 32	 11.97	 +	 2.67	 6.09E-03	

organic	acid	
metabolic	process	
(GO:0006082)	

341	 136	 51.02	 +	 2.67	 6.21E-19	

cellular	
component	
organization	
(GO:0016043)	

152	 60	 22.74	 +	 2.64	 9.23E-07	

monocarboxylic	
acid	metabolic	
process	
(GO:0032787)	

123	 48	 18.4	 +	 2.61	 5.03E-05	

cellular	response	
to	stress	
(GO:0033554)	

107	 41	 16.01	 +	 2.56	 7.27E-04	

organic	cyclic	
compound	
metabolic	process	
(GO:1901360)	

614	 233	 91.86	 +	 2.54	 2.41E-34	

heterocycle	
metabolic	process	
(GO:0046483)	

589	 223	 88.12	 +	 2.53	 3.20E-32	

cellular	aromatic	
compound	
metabolic	process	
(GO:0006725)	

587	 220	 87.82	 +	 2.51	 4.84E-31	

cellular	lipid	
metabolic	process	
(GO:0044255)	

127	 47	 19	 +	 2.47	 2.53E-04	
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cellular	protein	
metabolic	process	
(GO:0044267)	

255	 93	 38.15	 +	 2.44	 5.67E-10	

nucleobase-
containing	
compound	
metabolic	process	
(GO:0006139)	

495	 179	 74.06	 +	 2.42	 2.37E-22	

organonitrogen	
compound	
metabolic	process	
(GO:1901564)	

781	 280	 116.85	 +	 2.4	 4.72E-40	

cellular	metabolic	
process	
(GO:0044237)	

1323	 455	 197.93	 +	 2.3	 1.26E-83	

nitrogen	
compound	
metabolic	process	
(GO:0006807)	

1124	 384	 168.16	 +	 2.28	 2.39E-60	

response	to	stress	
(GO:0006950)	

143	 48	 21.39	 +	 2.24	 2.57E-03	

nucleic	acid	
metabolic	process	
(GO:0090304)	

354	 118	 52.96	 +	 2.23	 3.85E-11	

phosphorus	
metabolic	process	
(GO:0006793)	

328	 107	 49.07	 +	 2.18	 2.48E-09	

cellular	
macromolecule	
metabolic	process	
(GO:0044260)	

567	 184	 84.83	 +	 2.17	 1.59E-18	

phosphate-
containing	
compound	
metabolic	process	
(GO:0006796)	

320	 103	 47.88	 +	 2.15	 1.26E-08	

lipid	metabolic	
process	
(GO:0006629)	

150	 48	 22.44	 +	 2.14	 6.63E-03	

organic	substance	
metabolic	process	
(GO:0071704)	

1435	 449	 214.69	 +	 2.09	 7.90E-69	
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primary	metabolic	
process	
(GO:0044238)	

1277	 394	 191.05	 +	 2.06	 6.86E-52	

protein	metabolic	
process	
(GO:0019538)	

383	 116	 57.3	 +	 2.02	 1.81E-08	

metabolic	process	
(GO:0008152)	

1590	 477	 237.88	 +	 2.01	 3.77E-72	

macromolecule	
metabolic	process	
(GO:0043170)	

821	 239	 122.83	 +	 1.95	 2.28E-20	

cellular	process	
(GO:0009987)	

1918	 543	 286.95	 +	 1.89	 2.91E-90	

biological_process	
(GO:0008150)	

2336	 582	 349.49	 +	 1.67	 3.82E-88	

Unclassified	
(UNCLASSIFIED)	

1768	 32	 264.51	 -	 0.12	 0.00E+00	
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Table	S3.5:	GO	analysis	of	accessory	genes		
GO	biological	
process	
complete	

REFLIST	 upload	 expected	 over/under	 fold	
Enrichment	

P-value	

glutamine	family	
amino	acid	
biosynthetic	
process	
(GO:0009084)	

17	 8	 0.94	 +	 8.51	 1.46E-02	

glutamine	
metabolic	process	
(GO:0006541)	

17	 8	 0.94	 +	 8.51	 1.46E-02	

tRNA	
aminoacylation	
for	protein	
translation	
(GO:0006418)	

25	 10	 1.38	 +	 7.23	 4.31E-03	

tRNA	
aminoacylation	
(GO:0043039)	

25	 10	 1.38	 +	 7.23	 4.31E-03	

amino	acid	
activation	
(GO:0043038)	

26	 10	 1.44	 +	 6.95	 5.69E-03	

chromosome	
organization	
(GO:0051276)	

27	 9	 1.49	 +	 6.03	 4.03E-02	

glutamine	family	
amino	acid	
metabolic	process	
(GO:0009064)	

37	 11	 2.05	 +	 5.37	 1.51E-02	

purine	nucleotide	
biosynthetic	
process	
(GO:0006164)	

44	 12	 2.43	 +	 4.93	 1.34E-02	

tRNA	metabolic	
process	
(GO:0006399)	

65	 17	 3.6	 +	 4.73	 4.18E-04	

purine-containing	
compound	
biosynthetic	
process	
(GO:0072522)	

47	 12	 2.6	 +	 4.62	 2.33E-02	

ribose	phosphate	
biosynthetic	

53	 13	 2.93	 +	 4.43	 1.59E-02	
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process	
(GO:0046390)	
ncRNA	metabolic	
process	
(GO:0034660)	

98	 24	 5.42	 +	 4.43	 5.69E-06	

nucleotide	
biosynthetic	
process	
(GO:0009165)	

71	 15	 3.93	 +	 3.82	 1.76E-02	

cellular	amino	
acid	biosynthetic	
process	
(GO:0008652)	

100	 21	 5.53	 +	 3.8	 4.68E-04	

translation	
(GO:0006412)	

105	 22	 5.81	 +	 3.79	 2.61E-04	

nucleoside	
phosphate	
biosynthetic	
process	
(GO:1901293)	

72	 15	 3.98	 +	 3.77	 2.03E-02	

ncRNA	processing	
(GO:0034470)	

73	 15	 4.04	 +	 3.71	 2.34E-02	

alpha-amino	acid	
biosynthetic	
process	
(GO:1901607)	

85	 17	 4.7	 +	 3.62	 9.63E-03	

RNA	processing	
(GO:0006396)	

77	 15	 4.26	 +	 3.52	 4.00E-02	

peptide	
biosynthetic	
process	
(GO:0043043)	

113	 22	 6.25	 +	 3.52	 7.74E-04	

amide	
biosynthetic	
process	
(GO:0043604)	

140	 27	 7.74	 +	 3.49	 5.23E-05	

cellular	amino	
acid	metabolic	
process	
(GO:0006520)	

190	 35	 10.51	 +	 3.33	 1.49E-06	

RNA	metabolic	
process	
(GO:0016070)	

170	 31	 9.4	 +	 3.3	 1.67E-05	
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peptide	metabolic	
process	
(GO:0006518)	

133	 23	 7.36	 +	 3.13	 2.63E-03	

organonitrogen	
compound	
biosynthetic	
process	
(GO:1901566)	

406	 68	 22.46	 +	 3.03	 3.08E-13	

carboxylic	acid	
biosynthetic	
process	
(GO:0046394)	

157	 26	 8.68	 +	 2.99	 1.23E-03	

organic	acid	
biosynthetic	
process	
(GO:0016053)	

159	 26	 8.79	 +	 2.96	 1.52E-03	

gene	expression	
(GO:0010467)	

244	 39	 13.5	 +	 2.89	 5.90E-06	

cellular	amide	
metabolic	process	
(GO:0043603)	

178	 28	 9.85	 +	 2.84	 1.20E-03	

alpha-amino	acid	
metabolic	process	
(GO:1901605)	

138	 21	 7.63	 +	 2.75	 3.83E-02	

cellular	
macromolecule	
biosynthetic	
process	
(GO:0034645)	

178	 27	 9.85	 +	 2.74	 3.44E-03	

small	molecule	
biosynthetic	
process	
(GO:0044283)	

225	 34	 12.45	 +	 2.73	 1.99E-04	

carboxylic	acid	
metabolic	process	
(GO:0019752)	

327	 48	 18.09	 +	 2.65	 1.45E-06	

oxoacid	metabolic	
process	
(GO:0043436)	

334	 49	 18.47	 +	 2.65	 9.46E-07	

cellular	nitrogen	
compound	
biosynthetic	
process	
(GO:0044271)	

365	 53	 20.19	 +	 2.63	 2.03E-07	
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organic	acid	
metabolic	process	
(GO:0006082)	

341	 49	 18.86	 +	 2.6	 1.49E-06	

small	molecule	
metabolic	process	
(GO:0044281)	

507	 70	 28.04	 +	 2.5	 7.71E-10	

nucleic	acid	
metabolic	process	
(GO:0090304)	

354	 47	 19.58	 +	 2.4	 3.16E-05	

cellular	
component	
organization	or	
biogenesis	
(GO:0071840)	

197	 26	 10.9	 +	 2.39	 4.79E-02	

cellular	
biosynthetic	
process	
(GO:0044249)	

616	 81	 34.07	 +	 2.38	 7.21E-11	

macromolecule	
biosynthetic	
process	
(GO:0009059)	

251	 33	 13.88	 +	 2.38	 6.22E-03	

biosynthetic	
process	
(GO:0009058)	

650	 85	 35.95	 +	 2.36	 1.44E-11	

organic	substance	
biosynthetic	
process	
(GO:1901576)	

625	 81	 34.57	 +	 2.34	 1.28E-10	

nucleobase-
containing	
compound	
metabolic	process	
(GO:0006139)	

495	 64	 27.38	 +	 2.34	 1.73E-07	

cellular	aromatic	
compound	
metabolic	process	
(GO:0006725)	

587	 74	 32.47	 +	 2.28	 9.26E-09	

heterocycle	
metabolic	process	
(GO:0046483)	

589	 74	 32.58	 +	 2.27	 1.04E-08	

cellular	protein	
metabolic	process	
(GO:0044267)	

255	 32	 14.1	 +	 2.27	 2.65E-02	
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organic	cyclic	
compound	
metabolic	process	
(GO:1901360)	

614	 77	 33.96	 +	 2.27	 3.34E-09	

cellular	nitrogen	
compound	
metabolic	process	
(GO:0034641)	

703	 86	 38.88	 +	 2.21	 3.79E-10	

organonitrogen	
compound	
metabolic	process	
(GO:1901564)	

781	 94	 43.2	 +	 2.18	 3.34E-11	

nitrogen	
compound	
metabolic	process	
(GO:0006807)	

1124	 129	 62.17	 +	 2.07	 1.17E-16	

cellular	
macromolecule	
metabolic	process	
(GO:0044260)	

567	 64	 31.36	 +	 2.04	 3.36E-05	

cellular	metabolic	
process	
(GO:0044237)	

1323	 144	 73.18	 +	 1.97	 7.22E-18	

protein	metabolic	
process	
(GO:0019538)	

383	 41	 21.18	 +	 1.94	 4.45E-02	

macromolecule	
metabolic	process	
(GO:0043170)	

821	 87	 45.41	 +	 1.92	 4.67E-07	

primary	
metabolic	process	
(GO:0044238)	

1277	 133	 70.63	 +	 1.88	 7.50E-14	

organic	substance	
metabolic	process	
(GO:0071704)	

1435	 148	 79.37	 +	 1.86	 1.76E-16	

metabolic	process	
(GO:0008152)	

1590	 158	 87.95	 +	 1.8	 5.66E-17	

cellular	process	
(GO:0009987)	

1918	 185	 106.09	 +	 1.74	 5.42E-23	

biological_process	
(GO:0008150)	

2336	 198	 129.21	 +	 1.53	 3.01E-19	

Unclassified	
(UNCLASSIFIED)	

1768	 29	 97.79	 -	 0.3	 0.00E+00	
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Table	S3.6:	List	of	eight	genes	with	evidence	of	positive	selection	based	on	the	global	test	

Gene	 (M0)1	
Likelihood	ratio	
test	P-value2	

cya	 1.24241	 0.00669718	
group_454	 2.06375	 0.00918337	
group_1057	 2.2049	 0.0029329	
group_3049	 2.49761	 0.00248336	
group_3542	 1.94168	 0.00235286	
group_3757	 6.53607	 0.00434296	
group_5674	 1.58194	 0.0079647	
group_7848		 9.60069	 0.00868936	
1	M0	estimates	a	single	w	across	the	entire	phylogeny	of	sequences		
2	The	p-value	of	tests	after	FDR	correction.	LRT	between	the	global	model	which	estimates	omega	
for	each	gene	and	the	model	which	sets	omega	to	1	for	each	gene.	
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CONCLUSIONS 

	 Adaptive	evolution	drives	species’	survival	and	innovation,	and	it	underlies	the	vast	

diversity	of	life.	Our	understanding	of	adaptation	has	come	largely	from	observations	of	

phenotype.		However,	recent	advances	in	genome	sequencing	have	facilitated	potential	

links	between	phenotype	and	genotype	to	advance	our	knowledge	of	adaptive	evolution	

(Orr	2005).	Despite	these	advances,	there	are	deficits	in	our	understanding	of	adaptive	

processes	such	as	characterizing	the	mechanisms	that	adaptation	utilizes	at	the	genomic	

and	phenotypic	levels,	the	influence	of	historical	contingency	on	evolutionary	change,	and	

the	influence	of	intraspecific	genomic	variation	on	adaptive	evolution.	 

In	my	dissertation,	I	utilized	experimental	and	bioinformatic	methods	to	examine	

and	characterize	adaptive	evolution	using	bacteria	as	my	model	organism.	Bacteria	are	

ubiquitous	and	fundamental	to	ecosystem	functioning	and	often	to	the	health	of	the	

eukaryotic	organisms	with	which	they	associate.	Therefore,	characterizing	and	

understanding	the	evolution	and	adaptation	of	bacteria	is	crucial.	Additionally,	bacteria	

themselves	are	convenient	agents	to	study	evolution	due	to	their	small	genomes	and	their	

relative	ease	to	grow	and	maintain	in	the	laboratory.	Their	growth	characteristics	allow	for	

experimental	replication	and	for	evolution	to	be	monitored	over	hundreds	of	generations,	

because	of	their	short	generation	times.	Advances	in	genome	sequencing	and	bioinformatic	

methods	allow	for	comparative	genomics,	monitoring	of	genomic	evolution,	and	identifying	

the	causative	genetic	changes	underlying	adaptive	evolution.	 

In	my	first	chapter,	I	studied	evolutionary	rescue	to	lethal	temperature	using	E.	coli.	

Evolutionary	rescue	is	a	phenomenon	by	which	populations	can	survive	lethal	

environmental	conditions	due	to	genetic	changes	driven	by	adaptive	evolution.	To	study	
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rescue,	a	short-term	evolution	experiment	was	performed	in	which	hundreds	of	

populations	of	E.	coli	were	maintained	for	five	days	at	the	lethal	temperature	of	43.0°C.	The	

goals	of	this	experiment	were	to	quantify	the	frequency	of	rescue,	identify	the	adaptive	

mutations	that	drive	rescue,	and	to	discern	a	mechanism	by	which	rescue	occurs	to	lethal	

temperature	stress.	We	identified	that	rescue	occurred	at	an	8.8%	frequency	in	our	system,	

resulting	in	26	rescue	populations	that	could	be	further	examined.	Through	whole	genome	

sequencing	of	the	populations	that	successfully	experienced	evolutionary	rescue,	I	

identified	the	causative	adaptive	mutations	underlying	rescue	to	high	temperature	and	

characterized	the	molecular	effects	of	the	mutations	through	mRNA	sequencing	and	gene	

expression	analysis.	 

Together,	the	work	conducted	on	evolutionary	rescue	highlights	the	importance	of	

evolution	as	potential	agent	to	rescue	populations	on	the	same	timescales	as	ecological	

change	and	also	to	highlight	different	pathways	that	adaptive	evolution	may	utilize	for	

rescue.	I	identified	that	a	single	mutation	in	either	the	rpoBC	or	hslVU	operon	of	E.	coli	was	

sufficient	for	evolutionary	rescue	to	lethal	temperature	and	the	adaptive	mutations	likely	

arose	de	novo	during	serial	transfer	(Batarseh	et	al.	2020).	Strikingly,	a	single	

nonsynonymous	or	frameshift	mutation	in	either	operon	caused	significant	changes	in	

fitness	at	two	different	temperatures	and	caused	hundreds	of	genes	to	have	altered	

expression	patterns.	These	findings	illustrate	that	bacterial	evolution	should	be	an	

important	factor	towards	population	survival,	maintenance,	and	innovation	even	in	natural	

populations	as	a	single	mutation	can	be	sufficient	for	adaptive	evolution	to	occur.	

Additionally,	I	observed	that	mutations	in	different	pathways	can	result	in	similar	rescue	

outcomes.	The	rpoBC	operon	encodes	the	beta	subunit	of	RNA	polymerase,	which	is	a	
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global	regulator	involved	in	the	transcription	of	all	genes,	and	the	hslVU	operon	encodes	a	

heat	shock	protease	with	specific	functions	to	degrade	misfolded	proteins	under	heat	

stress.	These	results	suggest	that	a	diversity	of	adaptive	solutions	may	exist	in	response	to	

lethal	environmental	conditions. 

In	my	second	chapter,	I	used	experimental	evolution	to	investigate	the	influence	of	

contingency	on	future	evolutionary	change.	The	goals	of	this	chapter	were	to	examine	

whether	future	evolutionary	outcomes	are	significantly	influenced	by	an	organism’s	

evolutionary	history.	The	effects	of	contingency	can	greatly	alter	our	ability	to	predict	or	

forecast	evolutionary	outcomes	(Blount	et	al.	2018).	If	contingency	does	significantly	

influence	both	genotypic	and	phenotypic	evolution,	then	evolution	would	be	unpredictable.	

However,	a	major	goal	of	evolution	and	biology	is	to	predict	evolutionary	outcomes	as	this	

has	great	implications	for	human	health	and	species	survival,	especially	in	the	face	of	

climate	change.	Therefore,	by	characterizing	how	and	when	contingency	may	influence	

evolution,	we	will	better	understand	the	factors	driving	evolutionary	change	so	that	we	

may	be	able	to	form	predictions.	 

To	study	contingency,	I	utilized	a	sequential	evolution	experiment	approach	using	E.	

coli	as	my	model	organism.	The	first	phase	consisted	of	an	evolution	experiment	that	was	

previously	performed	in	the	Gaut	lab	and	described	in	Tenaillon	et	al.	(2012).	In	this	

evolution	experiment,	114	initially	identical	lines	of	E.	coli	were	evolved	at	42.2°C	which	is	

a	stressful	but	non-lethal	temperature	for	the	ancestral	E.	coli.	After	2,000	generations	of	

evolution,	whole	genome	sequencing	was	performed	to	identify	the	adaptive	mutations	

that	arose	in	response	to	thermal	stress.	The	results	illustrated	that	adaptive	evolution	

occurred	through	mutation	in	one	of	two	genes	which	represented	two	distinct	adaptive	
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pathways	each	associated	with	their	own	sets	of	mutations	in	other	genes.	The	first	

adaptive	pathway	was	characterized	by	mutations	in	rpoB,	encoding	the	beta	subunit	of	

RNA	polymerase,	and	the	second	was	characterized	by	mutations	in	rho,	a	transcriptional	

terminator	that	works	on	a	subset	of	genes	in	the	E.	coli	genome	(Tenaillon	et	al.	2012).	A	

second	phase	of	evolution	was	founded	using	a	subset	of	the	evolved	lines	from	the	first	

phase	of	evolution,	so	we	could	compare	and	contrast	the	evolutionary	outcomes	of	the	two	

adaptive	pathways	in	a	second	environment.	The	second	phase	of	evolution	occurred	at	

19.0°C,	which	is	towards	the	lower	thermal	limit	of	the	ancestral	E.	coli’s	thermal	niche.	

This	study	was	unique	to	study	contingency,	as	we	had	two	separate	adaptive	pathways	

that	had	resulted	from	evolution	to	the	same	selective	pressure	during	Phase	1	that	we	

could	then	contrast	in	Phase	2.	 

Following	the	second	phase	of	evolution,	the	evolved	populations	were	assessed	for	

their	phenotypic	and	genotypic	changes.	I	measured	the	changes	in	relative	fitness	of	the	

evolved	populations	against	their	ancestral	variants	(Phase	1	Founder	and	Phase	2	

Founders)	and	found	statistically	significant	evidence	to	suggest	that	the	initial	genotype	at	

the	start	of	Phase	2	influenced	the	relative	fitness	at	two	temperatures,	19.0°C	and	42.2°C,	

which	suggested	that	contingency	due	to	genotypic	differences	may	influence	the	trajectory	

of	relative	fitness.	At	19.0°C,	I	found	that	the	evolved	populations	descended	from	a	

particular	Phase	2	Founder	(rpoB	I966S	genotype)	experienced	the	greatest	changes	in	

fitness	after	Phase	2	evolution.	Interestingly,	the	Phase	2	Founder	rpoB	I966S	genotype	

also	had	the	lowest	initial	relative	fitness	at	the	start	of	Phase	2.	This	suggests	that	initial	

fitness	may	be	indicative	of	evolutionary	change,	therefore	following	Fisher’s	geometric	
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model,	and	may	be	used	as	a	tool	to	predict	fitness	outcomes	in	new	environments	and	can	

be	used	in	conjunction	with	genotypic	data	(Fisher	1930).	 

I	also	investigated	the	genetic	changes	that	occurred	during	the	second	phase	of	

evolution	at	19.0°C	for	evidence	of	contingency.	I	identified	over	1,000	mutations	in	the	

Phase	2	evolved	populations	and	identified	six	regions	of	the	genome	that	were	enriched	

for	mutations	in	lines	descended	from	either	the	rho	or	rpoB	adaptive	pathways.	Two	

regions	were	enriched	for	mutations	in	lines	descended	from	rho	backgrounds,	and	four	

regions	were	enriched	for	mutations	in	rpoB	descended	lines.	This	suggests	that	

contingency	influenced	the	genetic	changes	that	arose	during	Phase	2	and	caused	further	

divergence	between	lines	descended	from	the	two	different	adaptive	pathways.	The	

regions	of	the	genome	enriched	for	mutations	in	rho	backgrounds	did	not	have	annotation	

evidence	to	explore,	but	the	regions	enriched	for	mutations	in	rpoB	lines	did	have	

annotation	and	functional	evidence	which	we	investigated	further.	Mutations	in	genes	with	

large	effect,	like	the	genes	rapA	(hepA),	rho,	and	rpoC,	were	enriched	in	rpoB	lines,	

suggesting	that	large	effect	mutations	were	necessary	for	adaptation	in	rpoB	lines	but	not	

in	rho	lines.	Together,	the	genotypic	data	suggests	that	genotypic	evolution	is	significantly	

influenced	by	evolutionary	history	and	contingency	must	be	considered	when	performing	

evolutionary	forecasts.	 

The	results	from	my	second	chapter	suggest	that	both	phenotypic	change	

(measured	by	relative	fitness)	and	genotypic	change	are	influenced	by	contingency	due	to	

differences	in	evolutionary	history	between	bacterial	lines.	These	results	are	both	in	

contrast	and	in	agreement	with	other	experimental	studies	that	assessed	the	influence	of	

contingency	on	bacterial	and	yeast	evolution.	Studies	using	yeast	have	demonstrated	that	
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both	phenotypic	and	genotypic	changes	are	not	influenced	by	differences	in	evolutionary	

history.	In	particular,	Kyrazhimskiy	et	al	(2014)	found	that	diverse	yeast	lines	would	still	

accumulate	mutations	in	the	same	or	similar	genes	despite	initial	differences	in	

evolutionary	history.	Instead	we	found	that	the	lines	descended	from	the	two	adaptive	

pathways	had	enrichment	for	mutations	in	different	genes.	In	another	study	that	

investigated	antibiotic	resistance	evolution	in	bacteria,	the	authors	found	that	both	

phenotypic	and	genotypic	changes	were	contingent	on	evolutionary	history,	which	was	

similar	to	our	findings	(Card	et	al.	2021).	Altogether,	this	chapter	demonstrates	that	future	

fitness	outcomes	and	genetic	evolution	are	significantly	influenced	by	the	evolutionary	

history	of	an	organism. 

In	my	third	chapter,	I	utilized	a	different	approach	to	study	adaptive	evolution	and	

focused	on	comparative	genomics	using	bioinformatic	methods	to	study	the	evolution	of	

the	plant	pathogen	X.	fastidiosa.	By	using	a	comparative	genomics	approach,	I	could	

investigate	the	phylogenetic	relationships	and	variation	in	genomic	content	of	this	plant	

pathogen	to	understand	X.	fastidiosa’s	evolutionary	history	and	possibly	identify	genetic	

determinants	underlying	pathogenicity.		To	investigate	X.	fastidiosa	genomes,	I	gathered	

publicly	available	data	and	generated	novel	sequences	for	analysis.	I	performed	a	

pangenome	analysis	to	characterize	the	genes	in	the	Xylella	genus	as	either	a	core	or	

accessory	gene.	Using	association	tests	and	phylogenetic	methods,	I	found	that	both	the	

core	gene	sequences	and	the	composition	of	accessory	genes	were	associated	with	the	

identity	of	the	plant	host	the	bacteria	was	isolated	from.	This	suggested	that	X.	fastidiosa	

has	signatures	of	host	specificity	encoded	in	both	its	core	and	accessory	genes,	which	has	

previously	been	debated	(Uceda-Campos	et	al.	2022;	Kahn	&	Almeida	2022).	 
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Additionally,	I	measured	the	ratio	of	nonsynonymous	to	synonymous	mutations	

(known	as	dN/dS	or	ω)	in	all	of	the	core	genes	and	a	subset	of	accessory	genes	to	identify	

genes	experiencing	positive	selection.	Evolutionary	dynamics	between	host	and	pathogen	

can	facilitate	rapid	genomic	evolution	and	would	leave	signatures	in	the	genome	that	could	

be	identified	by	testing	for	positive	selection.	Using	a	global	test	that	quantifies	the	average	

value	of	ω	for	each	gene,	I	found	that	the	core	genes	are	largely	experiencing	purifying	

selection	while	the	accessory	genes	are	more	variable	in	their	values	of	ω.	Average	ω	was	

significantly	higher	for	accessory	genes	as	well	compared	to	core	genes.	In	addition	to	the	

global	test,	I	also	performed	a	test	that	measured	positive	selection	in	codons	of	genes	and	I	

found	that	5.3%	of	core	genes	and	5.4%	of	accessory	genes	have	evidence	of	a	history	of	

positive	selection	in	particular	codons.	The	information	from	the	two	tests	revealed	a	set	of	

accessory	genes	that	have	significant	evidence	of	positive	selection	and	represent	genes	

that	are	candidates	towards	pathogenicity	and	could	be	further	investigated	in	the	

laboratory	for	disease	management.	 

Altogether,	my	dissertation	has	revealed	various	characteristics	of	adaptive	

evolution	in	microbial	systems	using	both	experimental	and	bioinformatic	methods	and	

has	opened	up	new	lines	of	research	that	can	be	pursued.	Using	experimental	methods,	I	

identified	the	mutations	underlying	rescue	to	lethal	temperature	and	characterized	the	

effects	of	these	mutations	by	measuring	fitness	and	gene	expression.	My	results	suggest	

that	rescue	is	an	important	phenomenon	serving	to	rescue	populations	on	the	same	

timescales	as	ecological	change	and	that	evolution	to	lethal	stressors	may	have	qualitative	

differences	compared	to	evolution	to	non-lethal	stress.	Both	lines	of	thought	prompt	

further	research	efforts.	Do	the	novel	changes	in	gene	expression	found	in	rescue	mutants	
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persist	over	a	longer	period	of	evolution	to	lethal	stress?	Do	multiple	pathways	exist	for	

rescue	in	other	environmental	conditions	(pH	stress,	salinity)?	Through	experimental	

evolution,	I	found	that	evolutionary	history	may	significantly	influence	both	phenotypic	

and	genotypic	change	which	may	affect	our	ability	to	form	evolutionary	predictions.	With	

growing	evidence	to	suggest	that	contingency	matters,	it	would	be	beneficial	to	study	the	

factors	that	influence	contingency.	Does	the	intensity	of	selection	affect	contingency?	Do	we	

still	see	contingent	effects	on	evolution	if	the	second	phase	of	evolution	occurs	in	a	

completely	different	environment	(for	example,	evolving	to	high	temperature	stress	before	

evolving	to	pH	stress)?	Can	we	quantify	a	minimum	genetic	distance	that	may	serve	as	a	

predictive	tool	to	discern	if	contingency	may	affect	the	evolution	of	similar	bacterial	

strains?	Finally,	using	comparative	genomics	I	found	evidence	to	suggest	that	X.	fastidiosa	

does	exhibit	host	specificity	and	it	is	encoded	in	its	genome.	The	genes	identified	with	

sufficient	evidence	of	positive	selection	could	be	manipulated	in	X.	fastidiosa	in	the	

laboratory	to	see	if	knocking	out	the	function	affects	pathogenicity.	Additionally,	sampling	

X.	fastidiosa	from	a	greater	geographic	range	and	from	diverse	host	plants	(symptomatic	

and	asymptomatic	plants)	would	be	beneficial	towards	better	understanding	the	

evolutionary	history	of	X.	fastidiosa.	Are	there	genetic	differences	between	X.	fastidiosa	

found	in	symptomatic	and	asymptomatic	plants	and,	if	so,	are	those	differences	driving	

pathogenicity?	Understanding	and	characterizing	adaptive	evolution	is	imperative	and	has	

implications	for	species	survival,	evolutionary	predictions,	and	pathogen	management.	 
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