
UCLA
UCLA Electronic Theses and Dissertations

Title
Essays on Nonparametric Estimation of Dynamic Models

Permalink
https://escholarship.org/uc/item/0cq3s150

Author
Kang, David Minkee

Publication Date
2012
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0cq3s150
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Essays on Nonparametric Estimation of Dynamic Models

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy in Economics

by

David Minkee Kang

2012



c⃝ Copyright by

David Minkee Kang

2012



ABSTRACT OF THE DISSERTATION

Essays on Nonparametric Estimation of Dynamic Models

by

David Minkee Kang

Doctor of Philosophy in Economics

University of California, Los Angeles, 2012

Professor Rosa L. Matzkin, Chair

In this dissertation we describe conditions for nonparametric identification and meth-

ods for estimating dynamic simultaneous equation models. These models have two distinct

sources of endogeneity: lagged dependent variables that are related to autocorrelated unob-

servable variables and endogeneity through a simultaneous equations structure. Until now,

nonparametric estimation has been limited to models with either one or the other. In the

first chapter we show that the structural functions in such models are identified with panel

data under assumptions commonly made in nonparametric econometrics. We do so by bor-

rowing intuition from existing literature on dynamic panel models. In the second chapter of

the dissertation we describe conditions needed for consistent and asymptotically normal non-

parametric estimation of dynamic simultaneous equations models. In the third chapter we

nonparametrically estimate dynamic demand functions for airline travel using recent data.
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While previous work relies on the linearity of the demand function (or other parametric

assumptions), the functions we estimate are fully nonparametric. The nonparametric esti-

mates exhibit promising out-of-sample forecast properties when compared to linear models

in a limited forecasting exercise.
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Nonparametric Identification of Dynamic Simultaneous Equations

Models

1 Introduction

In this chapter we describe nonparametric identification and estimation in dynamic simul-

taneous equation models in which the structural functions are nonseparable in unobservable

variables. We are particularly interested in environments where the unobservable variables

are not independent over time - they are autocorrelated. These models are not straight-

forward to estimate because they have two distinct sources of endogeneity: simultaneous

equations structure and lagged dependent variable regressors (which are correlated with the

autocorrelated unobservable variables). Until now, nonparametric estimation has been lim-

ited to models with either one or the other. The contribution of this chapter is adapting

linear panel model intuition to show that identification in dynamic nonparametric simul-

taneous models is achieved under assumptions that are commonly made in nonparametric

econometrics. One advantage of this approach to identification is that we can apply existing

estimation techniques with known asymptotic properties.

There are a number of reasons that these particular models are important in economics.

First, there are many important economic relationships that are thought to be determined

through simultaneous equations. Some have called the simultaneous equation model “per-

haps the most remarkable development in econometrics” (cf. Hausman (1983)). Addi-

tionally, economic models are often characterized with dynamics - choices or conditions in
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prior periods are important for choices in the future. Dynamic models using panel data

are also necessary for separating the effects of state dependence from unobserved hetero-

geneity. Third, we focus on nonparametric identification (and estimation) because there are

environments in which we think unobservable variables have nontrivial influence on marginal

effects. We want to ensure that estimation in those cases is robust to model misspecification.

In this chapter we use theory and intuition from research on (static) simultaneous equa-

tions models, dynamic models and nonparametric models. This chapter might be considered

a nonparametric analog to Bhargava and Sargan’s (1983) paper where they propose treating

dynamic panel models as a system of linear simultaneous equations model. In the same way

we extend the nonparametric simultaneous equation identification results of Matzkin (2008)

and the corresponding estimation results in Matzkin (2010) to dynamic models with the use

of conditional independence conditions and by treating the set of simultaneous equations in

each period as an element in a larger simultaneous equations structure.

For readers that are familiar with panel models, we are focusing on environments with

observations on panel data of N observations over T time periods, where T is small relative

to N . While we use panel data to identify the structural elements of the model, we are not

dealing with what would be considered a ‘standard’ dynamic panel model. In this chapter,

for instance, we assume that autocorrelated unobservable variables are related to the lagged

dependent variables but not to some of the other included regressors. In companion papers

we extend the results of this paper to include functional forms and distributional assump-
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tions that are more typical of the dynamic panel literature.

There have been several recent papers on identifying nonparametric dynamic models us-

ing panel data. Cunha, Heckman and Schennach (2010) showed identification of a nonpara-

metric dynamic structural function where the outcome variables were unobservable measures

of ‘ability.’ This chapter is also about the identification of nonparametric laws of motion

where lagged dependent variables are correlated with autocorrelated unobservables, but it

is in an environment where the dependent variables are determined by simultaneous equa-

tions. Also, the focus of this paper is not on the evolution of unobservable variables, though

we do describe conditions under which functions determining the evolution of unobservable

variables are identified from data. Hu and Shum (2010) and Shiu and Hu (2010) also showed

identification in dynamic processes with autocorrelated unobservable variables but for mod-

els with scalar outcomes and without identification of structural features of the model as in

this chapter.

This chapter draws on existing work on identification in nonparametric models with en-

dogenous regressors. The dynamics in the models we examine roughly translate to a system

of triangular simultaneous equations. Chesher (2003) identifies the derivatives of the struc-

tural function using a control function approach that uses local conditional independence

conditions.1 Imbens and Newey (2009) use global conditional independence assumptions

and support conditions in a similar model to identify and estimate ‘structural effects.’ They

1The actual assumption of ‘quantile insensitivity’ in Chesher (2003) is weaker. For further discussion and
a survey on endogeneity in nonparametric models, please see Blundell and Powell (2006).
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discuss the necessity of large variation in instruments for identification; our results also rely

on large variation in our Xt variables.

This chapter also contributes to the literature on nonparametric identification using panel

data. Arellano and Honore (2001), in writing about estimation of linear models with lagged

dependent variables, noted that “almost nothing is known” about nonlinear panel models

with non-exogenous variables. Since then, many authors have relaxed the assumption of

regressor exogeneity in such models. For instance, Altonji and Matzkin (2005) identified

features of nonparametric panel models with conditional density restrictions. Lee (2010)

outlines identification and estimation in a nonparametric panel fixed effects model with ad-

ditive unobservable terms. Evdokimov (2009) estimated a model where a random effect is

nonseparable from X, but with an additive error term. Graham and Powell (2010) showed

identification of “average partial effects” in panel models with nonseparable individual het-

erogeneity. Bester and Hansen (2007) showed identification in semiparametric correlated

random effects models where individual effects are a nonparametric. These papers differ

from this chapter in that we do not assume linearity in the outcome equations and we focus

on endogeneity due to lagged dependent variables.

The model is described in greater detail in the following section, along with our distri-

butional and functional assumptions. Also in Section 2, we state the main theorem and its

proof. Section 3 contains our estimation results, and Section 4 concludes.
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2 Model

We consider models of the form

Y 1
it = m1(Y

2
it , Y

1
i,t−1, Y

2
i,t−1, X

1
it + ε1it)

Y 2
it = m2(Y

1
it , Y

1
i,t−1, Y

2
i,t−1, X

2
it + ε2it)

The models that we focus on are dynamic; lagged dependent variables directly affect current

values. Standard nonparametric methods would be valid except that the dependent variables

are determined according to a simultaneous equation system as well as the fact that the un-

observed error terms are correlated over time. In order to identify the structural equations

in this model we utilize panel data: N observations indexed by i = 1, . . . N , for T periods

of panel data, indexed by t = 0, . . . T . The discussions in this chapter will be restricted to

‘short panel’ situations where T is small relative to N .

We consider unobservable variables that evolve according to a simple nonseparable au-

toregressive process:

ε1it = h1(ε
1
i,t−1, η

1
it)

ε2it = h2(ε
2
i,t−1, η

2
it),

The overall structure makes the regressor Y 1
i,t−1 correlated with ε1it, since ε1i,t−1 enters the

equation for Y 1
i,t−1 directly.
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An important feature of these models is that unobserved heterogeneity is not restricted

to be additive. In particular, the marginal effect of yt−1 on yt is allowed to vary with εt

structurally; that is, the effect of yt−1 is separately identified from the effect of εt−1’s influ-

ence on εt, but this effect is allowed to depend on εt. In a model of ‘education production,’

for instance, this means that the effect of prior academic success on current achievement

depends on a child’s ability but attribution of this effect is not due to the endogeneity prob-

lem (since prior academic success will be associated with higher ability). In addition, the

unobserved variables evolve over time according to a nonparametric function that we can

also identify. We do not discuss explicitly issues of stability so we refrain from making

comparisons between the form of unobserved heterogeneity in this paper and the standard

notions of random or fixed effects.2

To simplify notation, we will refer to Yit =

[
Y 1
it Y 2

it

]′
(same for Xit, εit, ηit). We

adopt the same shorthand for functions ( m(·) will refer to
[
m1(·) m2(·)

]′
). In general we

have G-dimensional Yit (and ηit,εit) and K-dimensional Xit, where G ≤ K. For notational

simplicity the models in this chapter will have G = K. We restrict our focus on stationary

models. That is to say that we assume {Yit} is a stationary Markov process.3

2This and other topics related to dynamic panel estimation (discrete choice models, etc.) are reserved for
future research.

3This can be considered a restriction on the functions m but we leave the primitive assumptions assuring
stationarity for future research.
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2.1 A Two-Dimensional, Two Period Model

For illustrative purposes we first focus on a two equation model for determining outcomes

in periods 0 and 1.

Y 1
i1 = m1(Y

2
i1, Y

1
i0, Y

2
i0, X

1
i1 + ε1i1), ε1i1 = h1(ε

1
i0, η

1
i1)

Y 2
i1 = m2(Y

1
i1, Y

1
i0, Y

2
i0, X

2
i1 + ε2i1), ε2i1 = h2(ε

2
i0, η

2
i1)

Y 1
i0 = s1(Y

2
i0, X

1
i0 + ε1i0)

Y 2
i0 = s2(Y

1
i0, X

2
i0 + ε2i0)

where Xi0 ⊥ εi0 and Xi1 ⊥ (εi0, εi1).

These types of models do not have the triangular structure adopted by Imbens and Newey

(2009) or Chesher (2003) nor do they conform to assumptions restricting the simultaneous

equations models described by Matzkin (2008). To show identification of m and s, we adopt

the intuition of Bhargava and Sargan (1983) and treat the entire system of equations as a

larger set of simultaneous equations. As in the simultaneous equations models of Sargan

(1961), Matzkin (2008), identification of the structural functions will depend on whether a

rank condition holds, which depends on exclusion restrictions on the exogenous variables

X. However, Sargan’s results hold in the case of additively linear functions and Matzkin’s

are for cases without lagged dependent variables and autocorrelated unobservable variables.

The solution can be described as a control function approach in which we make a conditional

independence argument to solve the endogeneity of the lagged dependent variables.
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There are a number of applications of these models. In the field of education pol-

icy, there is much research on the relationship between education expenditure and student

achievement. Hanushek (1989) reviews the literature and states that there is little evidence

of an impact of education expenditure on student achievement. One potential application

for models of the type described in this paper are value-added models (VAM) of teacher

quality. There are endogeneity problems: unobserved variables like student and teacher

ability will be autocorrelated in addition to the simultaneous structure. Another application

relates student achievement with teacher effort.4 In the third chapter of this dissertation we

discuss the application of this theory to estimating dynamic systems of supply and demand

but restrict actual estimation to a single-equation model of demand for airline travel.

Abstracting from the issue of initial conditions, such models can take the form:

SAt = m1(SEt, SAt−1, SEt−1, X
1
t + ε1t ) ε1t = h1(εt−1, η

1
t )

SEt = m2(SAt, SEt−1, SAt−1, X
2
t + ε2t ) ε2t = h2(εt−1, η

2
t )

where SA is student achievement, SE is school expenditure (or teacher effort), and Xt are

instrumental variables satisfying appropriate conditions.

4See Ballou and Podgursky (1995)
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3 Identification

To show identification, we make the following assumptions:

Distributional Assumptions

We assume that

D1. ηit is independent of (εi,s−1), for s ≤ t.

ηit are independently distributed over i.

Xit is independent of (εis) for s ≤ t.

D2. The support of Xit is RG.

The support of (εi,t−1, ηit) is RK ×RK (the densities are everywhere positive)

Densities of (Xit) are everywhere continuously differentiable.

Assumption D1 is on the relationship between the unobserved and observed variables. In

each period, the innovation to the process for determining εit, ηt, is independent of prior and

current regressors. A consequence of this assumption is that Yi,t−1 and εit are independent

conditional on εi,t−1. The rest of assumption D1 is a ‘weak exogeneity’ condition for Xit that

allows for its use as an instrument.

Assumption D2 assures enough variation in Xit to cover the entire support of the unob-

servable variables. Also, the density of the unobservables is always positive; this ensures the

monotonicity (and invertibility) of distribution functions. These support conditions can be

loosened when considering identification of the model local to particular values.
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Initial condition assumptions

I1. Exogenous initial conditions: In the initial period (t = 0),

Y 1
i0 = s1(Y

2
i0, X

1
i0 + e1i1)

Y 2
i1 = s2(Y

1
i0, X

2
i0 + e2i1)

Functional assumptions

F1. The vector valued function m is twice continuously differentiable and invertible in εit.

F2. For any (yt, yt−1)

∣∣∣∣∂r(yt, yt−1)

∂yt

∣∣∣∣ > 0, where
∂r(yt, yt−1)

∂yt
is the Jacobian matrix for r.

F3. Xg
it appears exactly in one of the G equations m1, . . . ,mG.

We use the invertibility of m to express the conditional density of (Yi0, . . . , Yit) in terms

of the density of (εit, εi,t−1), both conditional on (Xi0, . . . , Xit). Assumption F2 is a sign

normalization to ensure that densities have correct signs. Assumption F3 details exclusion

restrictions on the vector of instruments Xit.
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Theorem. If the model is given by:

Y 1
it = m1(Y

2
it , . . . , Y

K
it , Yi,t−1, X

1
it + ε1it) ε1it = h1(ε

1
i,t−1, η

1
it)

...

Y K
it = mK(Y

1
it , . . . , Y

K−1
it , Yi,t−1, X

K
it + εKit ) εKit = hK(ε

K
i,t−1, η

K
it )

...

Y 1
i0 = s1(Y

2
i0, . . . , Y

K
i0 , X

1
i0 + ε1i0)

...

Y K
i0 = sK(Y

1
i0, . . . , Y

K−1
i0 , XK

i0 + εKi0)

Assumptions D, I, and F hold, and we observe the conditional density fYt,Yt−1|Yt−2,Xt,Xt−1,

then the derivatives of m are identified.

For proving our theorem, we start by writing the density of Yi ≡ (YiT , . . . , Yi0) conditional

on Xi ≡ (XiT , . . . , Xi0) in terms of the density of εi ≡ (εiT , . . . , εi0) conditional on Xi:

fYi
(yi) = fεi|Xi

(r(yiT , yi,T−1)− xiT , . . . , r0(yi0)− xi0))

∣∣∣∣∂R(yi)

∂yi

∣∣∣∣
Where R is the Jacobian of the vector-valued function made up of all the m functions. If

(r, fεi|xi
) and (r̃, f̃εi|xi

) are observationally equivalent,

11



fεi|Xi
(r(yiT , yi,T−1)− xiT , . . . , r0(yi0)− xi0)

∣∣∣∣∂R(yi)

∂yi

∣∣∣∣
=

fε̃i|Xi
(r̃(yiT , yi,T−1)− xiT , . . . , r̃0(yi0)− xi0)

∣∣∣∣∣∂R̃(yi)

∂yi

∣∣∣∣∣
Following Matzkin (2008), we take logarithms of both sides and differentiate with respect

to each yit:

∂ log fεi|xi

∂εit

∂r(yit, yi,t−1)

∂yit
+

∂ log fεi|xi

∂εi,t+1

∂r(yi,t+1, yit)

∂yit
+

∂ log
(∣∣∣ ∂R∂yi ∣∣∣)
∂yit

=

∂ log fε̃i|xi

∂ε̃it

∂r̃(yit, yi,t−1)

∂yit
+

∂ log fε̃i|xi

∂ε̃i,t+1

∂r̃(yi,t+1, yit)

∂yit
+

∂ log
(∣∣∣ ∂R̃∂yi ∣∣∣)
∂yit

This generates T conditions that must hold for observational equivalence. We will show

that the variation in Xi is sufficient to identify the derivatives of r and r̃.

Under additional assumptions we can also show that identification of the functions r

imply the identification of the functions h, which govern the evolution of the unobservable

variable εit. In our education applications, εit can carry the interpretation of quality (of

students, teachers, institutions, etc.). 5 To identify the derivative of h with respect to εi,t−1,

we make the following additional assumptions:

Additional Assumptions

5A function of this type, which described the development of cognitive and non-cognitive skill in students,
is of primary interest for Cunha, Heckman and Schennach (2010).
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U1. The function r(yit, yi,t−1) = γ at a known set of values (ȳit, ȳi,t−1).

U2. The vector valued function h is twice continuously differentiable and invertible in ηit.

U3. For every (εit, εi,t−1)

∣∣∣∣∂h−1(εi,t−1, εit)

∂εit

∣∣∣∣ > 0, where
∂h−1(εi,t−1, εit)

∂εit
is the Jacobian matrix for h−1.

U4. fηt(nt) is the same for all t.

Assumption U1 fixes the function r at a specific point in order to identify the function

from the derivatives identified under assumptions D, I and F. Assumption U2 and U3 are

the same as F2 and F3 and ensure that we can write the density of εit in terms of that of

ηit.

Corollary.

If Assumption U holds in addition to the conditions in the above theorem, the derivative

∂h(εi,t−1,ηit)

∂εi,t−1
is identified.

With the identification of the functions r, the values et = r(yt, yt−1)− xt are ‘observable’

for every t. Then the relationship

εt = h(εt−1, ηt)

is a set of nonparametric equations that can be estimated by a variety of methods, one of

which is outlined by Matzkin (2003).6

6See appendix B for details.
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Generalizing the model to multiple equations is also straightforward. The same intuition

of Matzkin (2008) can be used - identification/non-identification will depend on whether a

rank condition holds.

4 Conclusion

This chapter shows identification of a structural model with simultaneous equations where

there is endogeneity due to correlation between lagged dependent variables and unobserv-

able heterogeneity. Existing control function approaches would not be applicable because

of the autocorrelation in the unobservable variables. We extend the results of Matzkin

(2008) with a conditional independence argument in order to show identification of deriva-

tives of the structural functions. This paper also makes a contribution in the estimation of

nonparametric state dependence in the presence of serially correlated unobservable variables.

Future avenues for research include making closer ties with the dynamic panel literature;

a more rigorous handling of initial conditions and accompanying treatment of permanent

individual effects (fixed and random effects) would be helpful for making the model even

more applicable. A number of the assumptions made in this chapter are somewhat strict -

among them the exclusion restrictions on Xit and on εi,t−1 in the function εit = h(εi,t−1, ηit).

A variety of generalizations of the function h (e.g., the h functions can have a simultaneous

structure) are possible.
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Appendix

If m, h and fη are not restricted, m, h, and fη are not separately identified, since changes in

fη can be ‘undone’ by corresponding changes in h and the same is true for m with respect

to h. Therefore, we restrict m to be such that r is additively separable in Xit. This has the

effect of normalizing the scale of εit to match that of Xit.
7

εit = r(yit, yi,t−1, xit) = r(yit, yi,t−1)− xit

This form for r corresponds to these m functions:

Y 1
it = m1(Y

2
it , Y

1
i,t−1, Y

2
i,t−2, X

1
it + ε1it)

Y 2
it = m2(Y

1
it , Y

1
i,t−1, Y

2
i,t−2, X

2
it + ε2it)

4.1

To show identification of the derivatives of r (and thus, m, its inverse), we refer to the

concept of ‘observational equivalence.’ We call functions (r, fε) and (r̃, f̃ε) “observationally

equivalent” when either set could generate the observed density function fYT ,...,Y0|XT ,...,X0 .

Under our assumptions we can write the density of Yi ≡ (YiT , . . . , Yi0) conditional on

7Chesher (2003) makes a similar assumption by restricting (in our notation)
∂m(Yi,t−1,Xit,εit)

∂εit
= 1

15



Xi ≡ (XiT , . . . , Xi0) in terms of the density of εi ≡ (εiT , . . . , εi0) conditional on Xi:

fYi
(yi) = fεi|Xi

(r(yiT , yi,T−1)− xiT , . . . , r0(yi0)− xi0))

∣∣∣∣∂R(yi)

∂yi

∣∣∣∣
Where R is the Jacobian of the vector-valued function made up of all the m functions. If

(r, fεi|xi
) and (r̃, f̃εi|xi

) are observationally equivalent,

fεi|Xi
(r(yiT , yi,T−1)− xiT , . . . , r0(yi0)− xi0)

∣∣∣∣∂R(yi)

∂yi

∣∣∣∣
=

fε̃i|Xi
(r̃(yiT , yi,T−1)− xiT , . . . , r̃0(yi0)− xi0)

∣∣∣∣∣∂R̃(yi)

∂yi

∣∣∣∣∣
Following Matzkin (2008), we take logarithms of both sides and differentiate with respect

to each yit:

∂ log fεi|xi

∂εit

∂r(yit, yi,t−1)

∂yit
+

∂ log fεi|xi

∂εi,t+1

∂r(yi,t+1, yit)

∂yit
+

∂ log
(∣∣∣ ∂R∂yi ∣∣∣)
∂yit

=

∂ log fε̃i|xi

∂ε̃it

∂r̃(yit, yi,t−1)

∂yit
+

∂ log fε̃i|xi

∂ε̃i,t+1

∂r̃(yi,t+1, yit)

∂yit
+

∂ log
(∣∣∣ ∂R̃∂yi ∣∣∣)
∂yit

This condition is obviously different for periods T and 0. We also differentiate with respect

to each xit.

Adapting the notation in Matzkin (2008),

16



sεit =
∂ log fεi|Xi

∂εit
, ryit =

∂r(yit, yi,t−1)

∂yit
, ry+it =

∂r(yi,t+1, yit)

∂yit
, ∆yt =

∂

∂yit
log

∣∣∣∣∂r(yit, yi,t−1)

∂yit

∣∣∣∣
the conditions for observational equivalence can be summarized:

s̃εiT r̃yiT + ∆̃yiT = sεiT ryiT +∆yiT

s̃εit r̃yit + s̃εi,t+1
r̃y+it + ∆̃yit = sεitryit + sεi,t+1

ry+it +∆yit

s̃εi0 r̃yi0 = sεi0ryi0
s̃εit = sεit

The condition with respect to yiT (the first line) is:

s̃εiT r̃yiT + ∆̃yiT = sεiT ryiT +∆yiT

or

∆̃yiT −∆yiT = [s̃εiT ]r̃yiT − [sεiT ]ryiT

Note that the last condition ensures that the terms in square brackets are equal. This means

that

∆̃yiT −∆yiT = sεiT (r̃yiT − ryiT )

The left side of this equation depends only on yiT and yi,T−1, as do the terms in the paranthe-

ses). This means that if we fix yiT and yi,T−1 at particular values, as long as the middle term

17



changes with xit, xi,t−1 or yi,t−2, the only way for equality to hold is if both outside terms

are zero. The middle term is
∂ log fYi|Xi

∂xit
. Thus, as long as the density of (Yit, Yi,t−1) changes

with xit, the derivative of r with respect to yit is identified from the T period condition.8

The condition with respect to yit (when t is not 0 or T ) is:

[s̃εit ]r̃yit + [s̃εi,t+1
]r̃y+it + ∆̃yit = [sεit ]ryit + [sεi,t+1

]ry+it +∆yit

Again, the conditions on xit mean that the items in the square brackets are equal. Rear-

ranging, we get that

∆̃yit −∆yit = sεit [r̃yit − ryit ] + sεi,t+1
[r̃y+it − ry+it ]

From period T we determined that under our assumptions, ryit is identified. The middle

term is then zero and the same argument as above can be made for the remaining equation.

Matzkin (2008) shows that the above argument is equivalent to determining whether a

rank condition on a particular matrix made up of the terms sε, ry and ∆y holds.

From the identification of derivatives of r, the derivatives of m (r’s inverse) are also

8The argument for period 0 is almost exactly the same.
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identified.

∂m1(y
2
t , y

1
t−1, y

2
t−1, x

1
t + ε1t )

∂y1t−1

=

∂r(yt,yt−1)

∂y1t−1

∂r(yt,yt−1)

∂y1t

4.2

With the derivatives of r and assumption A6, the entire function r is identified. This

means that the realizations of εit are now ‘observable’ subject to the normalization made

in assumption A6. We combine this ‘observability’ with the structure of the model to show

identification of h, since


ε1it

...

εKit

 =


h1(ε

1
i,t−1, η

1
it)

...

hK(ε
K
i,t−1, η

K
it )


Since r is identified, if we define eit = r(yit, yi,t−1)− xit and ei,t−1 = r(yi,t−1, yi,t−2)− xi,t−1,


e1it

...

eKit

 =


h1(e

1
i,t−1, η

1
it)

...

hK(e
K
i,t−1, η

K
it )


where eit and ei,t−1 are observable. For each k ∈ 1, . . . , K, we have a nonparametric function

of the form

ekit = hk(e
k
i,t−1, η

k
it)
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As part of A6 we also assume that for a particular value ε̄i,t−1, the function hk(ε̄i,t−1, η) = η.

With this assumption we can use the results of Matzkin (2003) to show that hk is identified.
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Nonparametric Estimation of Dynamic Simultaneous Equations

Models

1 Introduction

In this chapter we build on the discussion of identification of nonparametric dynamic simul-

taneous equations models from the previous chapter and describe methods for estimation.

The estimators are constructed to correct for two sources of endogeneity. The first is due to

the simultaneous equations structure and the second is due to the inclusion of lagged depen-

dent variables as regressors. These estimators are shown to be consistent and asymptotically

normal. In order to alleviate the ‘curse of dimensionality’ that is endemic to nonparametric

estimation, we use the techniques shown by Matzkin (2010) to ‘average over’ each of the

exogenous variables. Even with this reduction in dimension the conclusion is that for most

applications, semiparametric estimation would be the preferred choice. We present a limited

view of some small-sample properties of these estimators using simulations. The simulations

highlight some of the practical drawbacks to nonparametric estimation.

In the previous chapter we discussed how dynamic nonparametric simultaneous equations

models with G equations in T time periods can be characterized as a set of G×T simultane-

ous equations as described by Bhargava and Sargan (1983) for the linear case. This allows

us to apply estimation techniques already developed for ‘standard’ simultaneous equations

models. The drawback to this is the rapid increase in the size of the model for moderate

increases in the number of time periods and/or number of equations. Not only is there a
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curse of dimensionality in the convergence rate of our estimators, in terms of the practical

implementation of the estimator, things like cross-validation and even the selection of points

over which to estimate the model grow very quickly. Despite these caveats, since nonpara-

metric dynamic models with endogenous regressors are increasingly economically important,

it is useful to understand how to conduct estimation.

As stated in the previous chapter, simultaneous equations models with dynamic elements

have been of interest for decades, but exclusively in linear form. Sargan (1961) focused on

identification issues from such models, and a number of subsequent papers were written by

Fair (1972), Hatanaka (1974) and Fomby (1984). These papers discuss efficient estimation

of these models using panel data.

The purpose of the research in this dissertation is to take these well-studied models and

relax the assumption of linearity by using recent advances in the estimation of nonparametric

simultaneous equations models. This chapter is closely related to that of Matzkin (2010),

which describes an estimation method for a system of simultaneous equations in one period.

Similar to Matzkin’s earlier papers on single-equation nonparametric estimation, the esti-

mation is based on the identification of derivatives of the structural functions. In Matzkin

(2010) the structure of the equations and their derivatives lends itself to a least-squares type

estimator. The work in this dissertation expands upon the results from Matzkin (2008) to

dynamic-panel type models; the reason to characterize the model as it is in the previous

chapter is so that, for estimation, methods from the well-studied ‘static’ simultaneous equa-
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tions model are applicable.

Naturally, the techniques discussed in this chapter relate to the estimation of nonpara-

metric/nonseparable models generally. In particular, the estimation of dynamic models is

closely related to the estimation of triangular simultaneous models, since identification and

estimation is achieved through control variable techniques - the lagged dependent variables

can be conditional independent given certain assumptions about initial conditions. Chesher

(2003) and Imbens and Newey (2009) do not explicitly mention dynamic models, but careful

application of their estimation techniques can be done for nonseparable models with dynam-

ics.

One benefit of using the Matkzin (2010) technique is that other methods require inverting

moments. When done with nonlinear models, this leads to the “ill-posed inverse” problem.

This requires the imposition of completeness conditions on the distributions of unobservable

variables. Imbens and Newey (2009) is one well-known example of an estimation method

that requires trimming or resorting to other methods to deal with the ill-posed inverse prob-

lem.

We first briefly discuss the issues of identification in dynamic nonparametric models with

simultaneous equations (the full treatment is in the previous chapter). We follow with a

section describing the form of the proposed estimators. Section 3 discusses the asymptotic

distribution and the results of the simulations of the model. Section 4 concludes.
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2 Identification

A typical supply and demand model:

Qi1 = γ1Pi1 + ρ1Qi0 + ε1i1

Pi1 = γ2Qi1 + ρ2Qi0 + ε2i1

The identification argument in the first chapter establishes the link between nonpara-

metric dynamic simultaneous equation models with previous work on linear dynamic panel

models. In both, there are systems of equations in each period, and the key insight, as found

in a paper by Bhargava and Sargan (1987) is ‘expanding’ the linear dynamic panel (in their

case with only one equation per period) to become a ( T × 1) set of simultaneous equations.

Extending this logic, we can say that a dynamic panel model with G simultaneous equations

in each period could be thought of as a T ×G set of simultaneous equations. The identifica-

tion then uses existing results on nonparametric systems of simultaneous equations applied

to the larger set of estimating equations.

Our identification strategy uses ratios of derivatives of conditional probability density

functions of observable variables. Even with structural functions that are nonseparable be-

tween variables, we show that particular items of interest, like marginal effects (derivatives

of the structural function) are identified from linear combinations of these derivatives. The

constructive nature of the identification arguments means that we can easily replace these

functions of conditional density functions with their sample analogs from data. The proce-
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dure is straightforward and is a direct application of existing estimators for nonparametric

simultaneous equations models.

For practitioners, the message of this chapter will most likely be that semiparametric es-

timation (instead of ‘fully’ nonparametric estimation) is prudent for a number of theoretical

and practical reasons detailed below. However, identification and the principles of estimat-

ing the nonparametric model are still valuable. In general, the nonparametric model almost

always correctly specifies the true model (i.e., there are no structural functions relating the

specified variables that are not special cases of the nonparametric model) while semipara-

metric (or linear) versions of the model could potentially suffer from model misspecification.

It is our opinion, therefore, that attention to the nonparametric identification of estimation

models is important even when there is no intention to use nonparametric estimation meth-

ods.9

Our assumptions preclude the inclusion of ‘fixed effects’ models as special cases. This is

a potential source of bias, since the true model may have fixed effects; that is, permanent

unobservable characteristics or conditions that are related to variables in each period. In-

novations in econometric theory or imposition of more structure could lead to identification

and estimation of nonparametric/nonseparable dynamic panel fixed effects models. With

such advancements, the potential for Hausman-type tests for the exogeneity of covariates

also exists. We leave these topics for future research.

9Future research on developing nonparametric specification and omitted variable tests (in the style of Fan
and Li (1996)) specifically for use with dynamic nonparametric simultaneous equations models might be of
particular interest for applied researchers.
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3 Estimation

As discussed in the introduction to this chapter, one significant benefit to casting the dynamic

problem as a set of nonparametric simultaneous equations that estimation is a straightfor-

ward application of Matzkin (2010). The method produces an (X ′X)−1(X ′Y )-like estimator.

As in the discussion of identification, the difference between the models of Matzkin (2010)

are the state dependence and autocorrelated errors, which means that Y0 will have two effects

on Y1 - one direct effect and one through the autocorrelation of ε.

Again, the model is:

Y 1
iT = m1(Y

2
iT , Y

1
i,T−1, Y

2
i,T−1, X

1
iT + ε1iT ) ε1iT = h1(ε

1
i,T−1, η

1
iT )

Y 2
iT = m2(Y

1
iT , Y

1
i,T−1, Y

2
i,T−1, X

2
iT + ε2iT ) ε2iT = h2(ε

2
i,T−1, η

2
iT )

...

Y 1
it = m1(Y

2
it , Y

1
i,t−1, Y

2
i,t−1, X

1
it + ε1it) ε1it = h1(ε

1
i,t−1, η

1
it)

Y 2
it = m2(Y

1
it , Y

1
i,t−1, Y

2
i,t−1, X

2
it + ε2it) ε2it = h2(ε

2
i,t−1, η

2
it)

...

Y 1
i0 = s1(Y

2
i0, X

1
i0 + ε1i0)

Y 2
i0 = s2(Y

1
i0, X

2
i0 + ε2i0)

Since the paper by Matkzin (2010) focuses on the estimation of the simultaneous equa-

tions, we focus specifically on the estimation of the lagged dependent variable’s effect on

current variables.
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The invertibility conditions in assumption F allow us to write the density function of

(Yi1, Yi0) conditional on (Xi1, Xi0) as a function of (εi1, εi0):

fYT ,...,Y0|XT ,...,X0(yT , . . . , y0;xT , . . . , x0) = fεT ,...,ε0|XT ,...,X0(r, d)

∣∣∣∣ ∂R

∂(yT , . . . , y0)

∣∣∣∣
where r and d are the inverse functions of m and s. Taking the logarithm of both sides

and taking derivatives (thanks to the smoothness conditions on the structural and density

functions), we get the following conditions:

qyiT = sεiT
∂r(yiT , yi,T−1)

∂yiT
+∆yiT

qyit = sεit
∂r(yit, yi,t−1)

∂yit
+ sεi,t+1

∂r(yi,t+1, yit)

∂yit
+∆yit

qxit
= sεit

Where

qyt =
∂ log fYi|Xi

∂yit
, sεit =

∂ log fεi|Xi

∂εit
, ∆yit =

∂

∂yit
log

∣∣∣∣∂r(yit, yi,t−1)

∂yit

∣∣∣∣
For notational simplicity, if we had a two period model (t = 0, 1), the conditions would
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be:

qy1 = qε1
∂r(y1, y0)

∂y1
+∆y1

qy0 = qε1
∂r(y1, y0)

∂y0
+ qε0

∂r0(y0)

∂y0
+∆y0

qx1 = qε1 , qx0 = qε0

The estimator for ∂r(y1,y0)
∂y1

differs from that in Matzkin (2010) because it explicitly depends

on y0, but the form of the estimator is the same.

To estimate ∂m(y1,y0,x1+e1)
∂y0

, take the derivatives with respect to Yi0:

qy0 = qε1
∂r(y1, y0)

∂y0
+ qε0

∂d0(y0)

∂y0
+∆y0 (1)

Integrating with respect to x = (x0, x1) and weighted by a function µ(x),∫
qy0µ(x)dx =

[∫
qx1µ(x)dx

]
∂r(y1, y0)

∂y0
+

[∫
qx0µ(x)dx

]
∂d0(y0)

∂y0
+∆y0

where µ(x) is a bounded and continuous function that takes a value zero outside a compact
set.

Subtracting the integrated condition from the original condition (equation (1)),

qy0 −
∫

qy0 =

[
qx1 −

∫
qx1

]
∂r(y1, y0)

∂y0
+

[
qx0 −

∫
qx0

]
∂d0(y0)

∂y0

where
∫
qy0 ≡

∫
qy0µ(x)dx.
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Defining Qy10
≡ qy10 −

∫
qy10 , we can rewrite the conditions in matrix form:

[
Qy10

Qy20

]
=

[
Qx1

1
Qx2

1

]
∂r(y0, y1)

∂y0
+

[
Qx1

0
Qx2

0

]
∂d(y0)

∂y0

=

[
Qx1

1
Qx2

1
Qx1

0
Qx2

0

] ∂r(y0,y1)
∂y0

∂d(y0)
∂y0



Now, (left) multiplying both sides of the condition by

[
Qx1

1
Qx2

1
Qx1

0
Qx2

0

]′
, we can get

the following system of equations:



Qx1
1
Qy10

Qx1
1
Qy20

Qx2
1
Qy10

Qx2
1
Qy20

Qx1
0
Qy10

Qx1
0
Qy20

Qx2
0
Qy10

Qx2
0
Qy20


︸ ︷︷ ︸

“Γy1,y0 (y1,y0)
′′

=



Qx1
1
Qx1

1
Qx1

1
Qx2

1
Qx1

1
Qx1

0
Qx1

1
Qx2

0

Qx2
1
Qx1

1
Qx2

1
Qx2

1
Qx2

1
Qx1

0
Qx2

1
Qx2

0

Qx1
0
Qx1

1
Qx1

0
Qx2

1
Qx1

0
Qx1

0
Qx1

0
Qx2

0

Qx2
0
Qx1

1
Qx2

0
Qx2

1
Qx2

0
Qx1

0
Qx2

0
Qx2

0


︸ ︷︷ ︸

“Πx1,x0 (y1,y0)
′′


∂r(y0,y1)

∂y0

∂d(y0)
∂y0



We integrate both sides over the function µ(x) and obtain our estimator by replacing the

matrices Π and Γ with their sample analogs:

 ∂r(y1,y0)
∂y0

∂d(y0)
∂y0

 = [Πx1,x0(y1, y0)]
−1 [Γy1,y0(y1, y0)]

Again following the notation of Matzkin (2010), we analyze the asymptotic distribution of

∂r̂(y1,y0)
∂y0

by first defining rr(y1, y0) ≡ vec


 ∂r(y1,y0)

∂y0

∂d(y0)
∂y0


, TTxx(y1, y0) ≡ IG ⊗ Πx1,x0

33



Again, a big advantage to characterizing the model as a larger set of simultaneous equa-

tions is the existence of previous work to derive the asymptotic distribution. In order to

prove consistency and asymptotic normality of our estimators for
∂r(yit,yi,t−1)

∂yit
and

∂r(yit,yi,t−1)

∂yi,t−1
,

we make the following assumptions (adapted from work by Newey (1994) on partial means

estimators and Matzkin (2010)).

3.0.1 Assumption E

E1. K(u) is a second order kernel. K is zero outside of a compact set, integrates to 1 and

is differentiable of order ∆ ≥ 2. These ∆ derivatives are Lipschitz continous.

E2. fYi,Xi
is at least four times continuously differentiable

E3. µ(x) is bounded, continuous almost everywhere and zero outside a compact set τ .

E4. The bandwidth σ is such that the following hold:

1. σ → 0

2. NσTG+2 → ∞:

3.
√
NσGT/2+1+s → 0:

4. Nσ2TG+2

lnN
→ ∞:

5. (
√
NσTG/2+1)(

√
lnN/Nσ2TG+2 + σ2)2 → 0:

Under assumption ‘E’ the limit distribution of r̂r(y1, y0) has the same form as that of the

static simultaneous equations estimator:

√
Nσ(r̂r(y1, y0)− rr(y1, y0)) →

(
0, TTxx(y1, y0)

−1V (y1, y0)TTxx(y1, y0)
−1
)
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where V (y1, y0) =

∫
µ(x)

{∫
K̃(ỹ, x)K̃(ỹ, x)′dỹdx̃

}
µ(x)′fY,Xdx

The derivation of the asymptotic variance is due to the ‘partial mean’ interpretation of

the estimator ∂r̂(y1,y0)
∂y0

. Note that the rate of convergence is related only to the number of

endogenous variables.

To isolate ∂r(y1,y0)
∂y0

,

rr0(y1, y0) ≡ vec

(
∂r(y1, y0)

∂y0

)
= I2 ⊗

 1 0 0 0

0 1 0 0

 [rr(y1, y0)]

As seen in the convergence rate of the estimators, the multi-period model suffers doubly

from the ‘curse of dimensionality’ as the time dimension increases, since the dimension

scales with T ×G and not just G. For this reason the practical choice will often have to be

semiparametric estimation.

4 Simulations

In order to assess the small sample properties of our estimation methods, we conducted a

limited Monte Carlo study using data simulated from a nonseparable model. The data are

simulated loosely based on a model of utility maximization where N individuals choose, over

two periods, how much of two goods (y1 and y2) to consume. Just as in the previous section,

we focuse on the effect of the Y0s on the Y1s.

35



In the initial period, (period 0), individuals maximize:

U(y10, y
2
0) = (y10)

α(y20)
β − ε10y

1
0 − ε20y

2
0

s.t. p10y
1
0 + p20y

2
0 = I0

In the second period, given the choices of period 0, individuals maximize:

U(y10, y
2
0, y

1
1, y

2
1) =

[
(y10)

α1(y11)
α2
]α [

(y20)
α3(y21)

α4
]β − ε11y

1
1 − ε11y

1
1

s.t. p11y
1
1 + p21y

2
1 = I1

Since the first order conditions determining the solution of this model are:

ε11 =
[
(y10)

α1α(y20)
α3β

]
α2αy

α2α−1
1 yα4β

1 − p11

ε21 =
[
(y10)

α1α(y20)
α3β

]
α4βy

α2α
1 yα4β−1

1 − p21

using the notation of this paper,

r1(y0, y1) =
[
(y10)

α1α(y20)
α3β

]
α2αy

α2α−1
1 yα4β

1

r2(y0, y1) =
[
(y10)

α1α(y20)
α3β

]
α4βy

α2α
1 yα4β−1

1 − p21

We simulate 100 samples of N = 100, 1000 and 5000 to assess the (and in doing so, illustrate

some small-sample properties of estimating the entire system).10

10The code to perform these simulations, which includes the parameter values used, is available at
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We also ran estimation on 100 samples of data generated through a linear simultaneous

equation model.

4.1 Simulation results

When Truth is Nonseparable:

N = 500 N = 1000 N = 2500

(True Value) Bias RMSE Bias RMSE Bias RMSE

∂r1(y0,y1)

∂y10
-20.6913 16.2198 24.6918 11.174 23.4973 -2.3123 12.6987

∂r1(y0,y1)

∂y20
-20.6913 19.4723 26.0850 14.8608 24.0841 3.8346 12.6414

∂r2(y0,y1)

∂y10
-20.6913 20.7138 30.0548 14.2784 25.6900 5.3452 14.6323

∂r2(y0,y1)

∂y20
-20.6913 16.9598 27.1661 11.3998 24.3153 -1.1912 15.2334

When True Model is Linear:

N = 500 N = 1000 N = 2500

(True Value) Bias RMSE Bias RMSE Bias RMSE

∂r1(y0,y1)

∂y10
1 -0.9393 3.1977 -0.6800 2.2011 -1.2125 2.8403

∂r1(y0,y1)

∂y20
0.8 -0.7760 4.4775 -0.5152 4.1716 -0.8022 3.7665

∂r2(y0,y1)

∂y10
0.3 -0.4263 3.1941 -1.0221 4.6274 -0.2178 3.2038

∂r2(y0,y1)

∂y20
1.2 -0.8249 2.7245 -0.9957 3.3496 -0.4299 2.6011

The simulations results show that when the true model is linear, the nonparametric

http://dmkang.bol.ucla.edu/research.html
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estimator is biased toward zero and very loosely estimated. However, when the true model

is nonlinear (and nonseparable), the (slow) convergence to the true values is apparent. While

linear models are precisely estimated, they would be very wrong and the results would have

no structural interpretation.

4.2 Discussion

The results of the simulation underscore the advice for practitioners that ‘fully’ nonparamet-

ric estimation of these models requires a great amount of data and, as a result, of computing

power as well. For instance, for feasibility reasons the derivatives of the (inverse) structural

function were only calculated at 3 points per dimension of Y (total of 34 = 81 points) and

5 points per dimension of X (625 points). In practice the estimator is likely better behaved

when calculated at more points.

The warnings on computing power only continue due to the fact that our bandwidth

selection for these simulations are likely also sub-optimal. Bandwidths were chosen accord-

ing to the minimization of the cross-validation criterion for conditional density estimation

(according to Fan and Yim (2004)). However, cross-validation was not performed for each

simulation - instead we crudely ‘estimated’ the constant term for a rule-of-thumb based

bandwidth that remained the same over each set of simulations.

These warnings underscore the difficulty of applying nonparametric estimation in general,

but particularly for these models since the dimension of the model is large to begin with and
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increases quickly. Even in our illustration model with two periods and two equations, the

theoretical convergence rate is on the order of N−1/6 and the practical estimation is fraught

with steps that can take a large amount of time.

With all that said, the research undertaken thus far has revealed several avenues by which

the reliability of estimators can be increased from a practical standpoint. For instance, there

are a number of data-driven ways to choose gridpoints for estimation, and there are also

ways we can introduce cross-validation type intuition to select not only bandwidths but

dimensions and spacing for gridpoints. These considerations, driven by necessity, might lead

to advancements in the way nonparametric estimation is conducted for a wide variety of

models. Of course, advancements in computing power and the ever-growing availability of

data (particularly panel data) may eventually render these practical concerns obsolete.

5 Conclusion

In this chapter we presented an estimator for a system of dynamic nonparametric simulta-

neous equations. We related the identification from the first chapter of this dissertation to

the construction of an estimator based on existing nonparametric estimators of simultaneous

equations models, particularly the class of estimators proposed by Matzkin (2010). These

estimators are consistent and asymptotically normal. However, one conclusion of this chap-

ter is that the curse of dimensionality dramatically reduces the usability of these estimators

unless large amounts of data and computing resources are available. The value in nonpara-

metric estimation, of course, is the generality of the specification - though dimensionality
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makes estimation computationally burdensome, there is potentially (severe) bias from mis-

specification of the model.

Further research into issues of estimation of dynamic nonparametric simultaneous equa-

tions models will be focused on ways, as discussed in the immediately previous section, to

improve its implementation. A more comprehensive study that incorporates optimal band-

width/kernel selection is also of keen interest. More generally we would like to construct a

guide for other researchers to formally test their parametric restrictions and to give them

options as to how to conduct their estimation in the most robust yet efficient (using multiple

meanings of the word) manner possible.
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Nonparametric Estimation of Dynamic Demand Functions for

Airline Travel

1 Introduction

In this chapter we estimate dynamic demand for airline travel using methods from non-

parametric econometrics. The purpose is to relax assumptions on the demand function - in

particular, the linear, additively separable relationship between price and quantity. Linearity

means that the elasticity of demand is independent of the level of price. As discussed in the

previous two chapters, the assumption of linearity brings many advantages in estimation but

also brings the risk of misspecification. In this application, there is evidence that the price

elasticity of airline travel changes with price. As a result, estimating price elasticities using

regression models that are linear (or log-linear) would be incorrect. Policymakers and those

responsible for pricing strategy could be basing their decisions on estimates with no struc-

tural interpretation. Relaxing parametric assumptions in these models gives us estimates of

elasticities with bigger variance but with robustness with respect to incorrectly specifying

the model.

There are a number of reasons why we expect the price elasticity of demand not to be

constant over the range of prices for airline tickets. Anecdotal evidence suggests that, when

shopping for airline tickets, people are more or less price-sensitive dependending on the type

of travel. Indeed, in many of the studies cited later in this chapter, there is a distinction

made between short-haul and long-haul travel and between business and leisure travel; when
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samples are separated by type of travel, estimated elasticities be very different. This evi-

dence suggests that elasticities are price dependent, or at least not constant over the entire

support of prices.

There are also theoretical reasons why we would expect demand to be price-dependent.

In a recent paper, Jaffe and Weyl (2010) show that if individuals are basing their decisions

according to typical discrete choice models, the aggregated market demand function will

not be additively separable between prices. As they describe it, linear demand requires the

(percentage) change in demand to be independent of the level of price. However, cheaper

airlines have more consumers to begin with. If all prices increase, these cheaper airlines will

have more consumers who are eligible to switch away and the elasticity of demand will be

price-dependent. Our estimation results do - changing prices changes demand differently

depending on the range of prices that an airline offers and is also not additively separable in

competitors’ prices.

Ironically, after spending most of this dissertation discussing dynamic simultaneous equa-

tions models, we will, in this chapter, not estimate the entire system of equations and instead

use proxies for endogenous variables. We describe elasticities in a general sense, because

changes in these variables will not correspond one-to-one with changes in price. This is one

advantage of linear models - instrumental variable and control function methods are much

more easily applicable.
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The data for this chapter are collected from the DB1B database collected by the US De-

partment of Transportation. The database is a 10% sample of all tickets sold for commercial

airline travel within the United States. Demand is measured in ‘revenue-passenger-miles,’

which is the product of miles traveled by each passenger and the number of passengers.11 We

also have data on price paid for each itinerary in the sample. We construct a panel dataset

to nonparametrically estimate dynamic demand equations.

We first highlight the economic literature on the demand for air travel and nonparametric

estimation in Section 2. Section 3 discusses our various estimation models and the theoretical

basis for estimating demand functions with non-constant elasticities. We then describe our

data and instruments for price in Section 4. The results of our estimation are found in Section

5. We conclude this chapter and dissertation in Section 6. A brief appendix describing more

details on our data follows.

2 Literature

The relevant literature covers the estimation of dynamic demand functions and nonparamet-

ric estimation. Naturally, the first estimation techniques developed for estimating demand

equations were linear. More recent work focuses on the estimation of nonlinear and non-

parametric demand functions, for instance papers by Kelejian (1971) and Roehrig (1988).

Later papers expanded estimation to include nonlinear specifications of demand. Nonlinear

demand functions are now used in a variety of applications. Two examples are Schmalansee

11100 passengers traveling 100 miles would be traveling 10,000 revenue-passenger-miles
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and Stoker (1999) and Blundell, Horowitz and Parey (2011); both papers are about estimat-

ing the demand for gasoline.

The airline industry, by itself, has had particular focus from economists due to the large

amounts of publicly available data and the relative economic importance of air travel. The

demand for airline travel has been studied by, among many others, Choi (1991), McGuire

and Staelin (1983), and Oum, Waters and Yong (1990). Oum, et al’s (1990) paper is rel-

evant to this chapter because it summarizes the early research done on price elasticities in

transportation. The more recent research on the economics of the airline industry has been

focused on structural models of discrete choice, dynamic games between airlines, and other

competitive aspects of the airline industry such as investment in capacity and merger be-

havior (cf. Snider (2010), Benkard, Bodoh-Creed, and Lazarev (2010), Benkard (2004)).12

A recent paper of note is Berry and Jia (2010). They construct and estimate a discrete

choice economic model of the airline industry based on the “BLP” model of Berry, Levinsohn

and Pakes (1995). Their goal is to document the reasons for falling profitability of airlines

in the 2000s; for instance, they determine that half of the decline in profitability is due to

changes in consumer demand. In this chapter we abstract from the supply side of the indus-

try and focus on demand but adopt the instruments they use to correct for the endogeneity

of prices.

Another recent paper by Park, Sickles and Simar (2007) - hereafter PSS - estimated price

12See also, Reiss and Spiller (1989), Berry (1990, 1992), Ciliberto and Tamer (2009).
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elasticities in a semiparametric model of demand in the airline industry. The focus of that

paper is the construction of efficient estimators for random effect panel model when para-

metric assumptions on the random effect are relaxed. PSS show that their estimator achieves

the semiparametric lower bound and apply their work to estimate demand for airline travel.

We wish to build on their results using more current data and, more importantly, by relaxing

the linearity of demand as the source of identification. In other words, we are not restricting

the estimated elasticities to be constant at every level of price. The aim of this chapter is

different from that of PSS; while they are interested in the efficiency of their estimator, we

are more concerned about the potential bias that arises from reliance on the linear functional

form.

As described in chapter 1, linear functional forms have advantages in estimation at the

expense of misspecification of panel data models. Linearity affords the ability to use random

or fixed effects because of the ability to difference between time periods and use the ‘within’

variance to estimate parameters. Since we cannot subtract equations from each other to

eliminate these additive effects, these methods are not available to us.

3 Estimation Models

An econometric model of dynamic demand using panel data is, in its simplest form:

Qit = γQit−1 + βPit + αi + uit
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Interpreting these as structural demand equations, demand in the current period is influ-

enced by demand in the previous period, the current price, and unobservable effects, both

permanent (αi) and time-specific (uit). The data we use in this paper looks at demand by

market, so αi represents market-specific factors unobserved to the econometrician, such as

facility improvements at origin or destination airports, among others. Though not written

here, we could also include other variables, such as population or other observable variables

that describe economic conditions in the origin and destination cities.

Prior studies estimating demand elasticities would estimate these models with either

linear IV-type estimators (cf. Hausman-Taylor (1981), Anderson and Hsiao (1991,1992),

Arellano and Bond (1991)) or GMM-type estimation (cf. Blundell and Bond (1998), Arel-

lano and Bover (1995)) which either use lags of exogenous variables (IV) or appropriate lags

of the dependent variable (GMM) as the exogenous variation used for identification and esti-

mation. Both methods take advantage of the linear form through ‘differencing’ the equations

to remove αi, the permanent unobserved effect.

PSS expand upon these models to estimate random effects models while assuming that

the distributions of the random effects and the initial conditions (the distribution describing

(xi0, yi0) can only be described nonparametrically. Specifically, the (key) assumptions that

PSS make are:

• αi is independent of the regressors and is distributed nonparametrically

• (Xi, Yi0) are i.i.d. and are distributed nonparametrically
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• The ‘within errors’ uit are normally distributed

• The model is stationary

They then estimate the following equation:

Qit = γQi,t−1 +Xitβ + αi + εit

where Yit is revenue passenger mile, Xit contains ln
(
own price

mile

)
, ln

(
competitors′ price

mile

)
, and

ln(population in origin city), and αi is a route-specific unobserved (random) effect.

When Yit is log(Qit) and the first element of the vector Xit is log(Pit), β1 represents

the (constant) own-price elasticity of demand where the unit of measurement is the mar-

ket. When an airline increases its price on any given route by 1%, it can expect a β × 100

% increase (typically we expect β < 0) in its demand. The vector Xit also contains the

passenger-weighted average of competitors’ prices. Its coefficient is the competitor price

elasticity of demand - when a competing airline increases its price by 1%, the corresponding

increase in demand is β2 × 100. Of course, these interpretations only hold in the absence of

responses by other airlines to changes in prices - incorporating those potentially important

effects requires a richer model, which we leave for future research.

Continuing with the theme of this dissertation, in this chapter we apply recently devel-

oped methods in nonparametric econometrics to models of demand for airline travel. We

eliminate the linearity assumption which, in previous papers, is the source of identification for
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(constant) elasticities of demand. This line of research could also lead to testing procedures

for some of the assumptions typically used for estimating demand functions. Instead of full

system estimation, we present results from limited-information estimation using instruments

in place of prices.

3.1 Nonparametric Estimation

A nonparametric characterization of the above models would be

Qit = m(Qi,t−1, Pit, Xit, εit)

where m denotes an unknown function. This model differs from the models studied in the

previous two chapters due to its single-equation structure. Additionally, the assumption that

Xit and εit share the same derivative is not made - instead we explicitly make an assumption

about the scale/variance of εit by normalizing the distribution of εit at a particular value of

the vector Xit.

The estimated own-price elasticities are not constant and are measured by ∂ logQit

∂ logPit
=

∂m(pit)
∂pit

, where m will be various functions that are primarily only restricted to be continuous

and monotonic. The techniques we use will estimate the slope of this function with respect

to m which we roughly translate to elasticities.

Our estimator uses the method described by Matzkin (2003), which gives us both es-

timates of the entire function and the derivatives of the function over the support of the
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exogenous variables. In the results we depict some of these functions to show that the data

contain potentially much richer interactions between price and quantity than linear demand

models would allow. Due to the endogeneity of prices, however, we do not use Pi,t directly

and instead use proxies for price in the estimation procedure. This method also differs from

the previous chapters because we make the restriction that εit is no longer autocorrelated.

It is important to note that we must also make an assumption that the demand equation is

identified - since we are not restricting the demand and supply functions to have linear form,

the nonparametric system must be solvable - the m functions must be such that the right

hand side variables correspond to unique values of Qit. It is possible to adapt the methods

covered in the first two chapters of this dissertation to deal with the endogeneity of prices

and of lagged demand (i.e., to specify conditions to deal specifically with limited-information

estimation), but we leave this for future research.

4 Data

The data are taken from the Department of Transportation’s DB1B database - a 10% sample

of all domestic air travel ticketed in a particular quarter. Our data range from Q1 1993 to

Q4 2011. To restrict the definition of the market, we look only at round-trip itineraries

between two cities (not airports). We also look only at itineraries ticketed and operated

by the same carrier (no ‘interlining’ itineraries). The quantity demanded is measured by

‘revenue-passenger-mile,’ which we calculate by taking the number of reported passengers

(in the sample, not extrapolated) multiplied by the number of miles flown on the route.
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One distinction from some papers, like Berry and Jia (2010), is that we do not distinguish

itineraries by direction. We have this information but choose not to use it because in most

cases it would be impossible to determine the ‘true’ origin city. For instance a college student

traveling between campus and her home might choose either city as the origin. Also, while

back-to-back ticketing is prohibited, nothing prohibits the purchase of two tickets that (com-

pletely) overlap, which makes travel in opposite directions potentially well-substitutable. For

this paper we assume that travel between cities is the product demanded and make no dis-

tinction with regard to direction.

There are a number of factors that were not accounted for in the construction of the

data. Chiefly among these is the fact that a number of changes to the market structure oc-

curred during the time spanned by the data. In particular, there were several mergers among

the largest participants in the market, such as the acquisition of US Airways by America

West (though completed as a “reverse takeover,” with US Airways retaining its name and

brand), the merger of Delta Air Lines and Northwest Airlines, and the recent merger of

United Airlines and Continental Airlines. In addition, there was a failed acquisition of US

Airways by United in 2010. There are a number of complications to adjusting the data

to reflect merger activity - the merger approval process spans multiple quarters and even

after approval, it takes time before airlines fully combine operations. For instance, Delta

Air Lines and Northwest Airlines continued to operate under separate operating certificates

until January 1, 2010, though the merger was approved by both companies in September
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2008 and the Department of Justice approved the merger in October 2008. During Q4 2008

- Q4 2009, the two companies were essentially the same company, yet they continued to sell

tickets and operate flights under their distinctive brands (indeed the DB1B data records a

number of itineraries for Northwest Airlines even in Q1 of 2010).

Table 1: Summary Statistics

Time period 1993Q1 - 2011Q4

Total Observations: 688,883

Airlines 77

Market-airline pairs 31,175

Occasionally we will use only a subset of these data, particularly when we look at indi-

vidual airlines. As in Berry and Jia, we describe our data in cross section over a few years.

Interestingly our subset of the data (including only round-trip, nondirectional itineraries)

paints a slightly different picture from that of Berry and Jia - our data has lower but rising

prices over this period. We document the same transition to direct flights - the average num-

ber of segments decreases, largely because of more direct flights offered by legacy airlines,

even while the average itinerary increased in length.
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Table 2: Fare Overview

1993-2011 1999 2006 2011

Average fare $372.89 $369.42 $382.61 $440.02

(136.11) (141.78) (131.69) (156.56)

Average fare (LCC) $318.56 $272.51 $327.41 $374.71

(84.55) (70.82) (79.78) (89.30)

Average fare (Legacy) $388.50 $392.01 $394.67 $473.84

(140.28) (146.69) (134.60) (171.23)

Trip Descriptors:

Segments 3.668 3.704 3.535 3.406

(0.813) (0.779) (0.843) (0.906)

Segments (LCC) 3.414 3.402 3.452 3.410

(0.840) (0.846) (0.830) (0.843)

Segments (Legacy) 3.723 3.763 3.573 3.410

(0.799) (0.761) (0.838) (0.935)

Miles 3099.80 3132.23 3230.99 3228.72

(1728.73) (1705.35) (1860.78) (1857.31)

Miles (LCC) 2839.86 2578.93 2914.07 2926.06

(1321.99) (1220.45) (1364.24) (1330.71)

Miles (Legacy) 3123.45 3181.11 3230.81 3378.28

(1788.51) (1760.36) (1926.11) (2064.70)

Our restrictions on the data seem to have led us to include fewer short-haul flights, which
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might have excluded more business travelers (seeing as our itineraries are longer and cheaper

than those of Berry and Jia). The average fares are weighted by number of passengers when

calculated. ‘Low cost carrier’ (LCC) airlines for this table are Airtran, Frontier, Jetblue and

Southwest. The ‘legacy’ airlines are American, Continental, Delta, Northwest, United and

US Airways.

Table 3: By Airline

Airline t Markets Total obs Ave Fare (std dev)

American (AA) 1993Q1 - 2011Q4 3753 96615 397.08 (141.25)

Continental (CO) 1993Q1 - 2011Q4 2861 64135 364.52 (127.28)

Delta (DL) 1993Q1 - 2011Q4 4230 111153 399.55 (141.23)

Northwest (NW) 1993Q1 - 2010Q1 3508 86104 362.51 (124.24)

United (UA) 1993Q1 - 2011Q4 3050 82767 417.14 (156.15)

US Airways (US) 1993Q1 - 2011Q4 2972 68563 378.99 (137.82)

JetBlue (B6) 2002Q2 - 2011Q4 369 5736 345.00 (106.15)

Frontier (F9) 1994Q4 - 2011Q4 742 13420 330.88 (74.53)

AirTran (FL) 1995Q1 - 2011Q4 995 20188 284.83 (63.74)

Southwest (WN) 1998Q3 - 2011Q4 1389 46649 326.91 (85.01)

Broken down by airline, the differences between legacy airlines (toward the top) and

LCCs is readily apparent - LCCs are relatively newer, operate in far fewer markets, and

have lower prices that are much less dispersed. Of course, much of the fare dispersion is due

to one-class service (no first class) in the LCCs (AirTran added “business class” but fare
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premiums - and extra amenities - are minimal).

4.1 Instruments

Just like in Berry and Jia (2010), we construct our instruments at the route-level and reflect

decisions made by competitors on the same origin-destination city pair. The argument for

their validity is that decisions by competitors are unrelated to the unobserved drivers of de-

mand for an individual airline but are related to demand through the prices that the airline

offers. We use as instruments the percentage of non-stop passengers that are carried by the

airline’s competitors. We have two measures of our instrument (rivalpass) - since we are

looking at round-trip itineraries only, we distinguish between those that have both legs of

the trip flown on nonstop flights (rivalpass-both) with those that have at least one leg with

a nonstop flight (rivalpass-oneway).13

Table 4: Instruments

Mean Std. Dev

rivalpass-both 52.86% (47.39%)

rivalpass-oneway 68.86% (41.61%)

In order to assess their appropriateness as instruments, we conduct a simple ‘first stage’

regression in which we (linearly) regress log price per mile on each of our measures of the

instrument. We report the coefficient value and the t statistic for the null hypothesis that

the coefficient is equal to zero. As expected, the relationship between price and the percent-

13The reason for this: if you search delta.com for “nonstop flights only,” the results will give you itinerary
options with multiple stops on the return leg of the trip.
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age of nonstop passengers carried by competitors is negative: the higher the desirability of

competition, the more likely prices should decrease. Interestingly, once we convert our price

into log(price per mile), the relationship between our instruments and price is positive.

In order to measure price elasticities, then, we will use an ‘indirect-least-squares’-type ap-

proach to measure the actual price elasticity. This strategy is originally credited to Haavelmo

(1943) and most recently was extended to nonseparable/nonparametric models by Schen-

nach, White and Chalak (2009). The method will be informally applied here in the manner,

as Schennach, White and Chalak write, of Heckman and Vytlacil’s (1999,2001) “local in-

strumental variable” - the simple local ratio between the derivative of quantity with respect

to the proxy and the derivative of price with respect to the proxy; please refer to the paper

by Schennach, White and Chalak (2009) for the formal justification.

Table 5: First Stage

Linear - price and instrument

Coefficient t-statistic

rivalpass-both -115.49 -54.07

rivalpass-oneway -120.57 -56.79

Linear - log(price per mile) and instrument

Coefficient t-statistic

rivalpass-both 0.1943 48.36

rivalpass-oneway 0.1387 34.49
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To this end we run a nonparametric ‘first stage’ with own-price as the dependent variable

and lagged quantity, competitors’ fare (the two exogenous variables in the demand function

specification) and the instrument as the ‘right-hand-side’ variables:

Table 6: First Stage

Nonparametric - log(price per mile) and instrument

Coefficient

rivalpass-both -0.0041

rivalpass-oneway 0.0634

Not only is the sign different from expected, the ‘second-stage’ specifications with

rivalpass − both used as a proxy for (own) price were less reliable (especially when esti-

mating by airline separately). This may be because of the greater number of city-pairs with

few nonstop options. As a result, unless noted, the reported tables are for specifications

where rivalpass− oneway is the proxy variable used.

5 Results

The airline industry itself is, for strategic reasons, interested in measuring the price elas-

ticity of the demand for air travel. The International Air Transport Association (IATA), a

trade group, publishes regular economic briefings. One recent briefing focused specifically

on research on elasticities for air travel (IATA (2008)). When focusing on the “route-level”

as we do (as in, the appropriate elasticity is raising the prices observed on a route in a given

time period by 1%) the elasticities measured for North America were in the range of -1.2 to

-1.5. PSS report elasticities (for specific airlines) in the range of -2.0 to 0.4.
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Table 7: Reported Elasticities (PSS 2005)

Airline Own Price Competitor Price

American -0.4209 -0.0345

Continental -2.0407 0.2299

Delta -0.3686 -0.1096

Northwest -0.2471 -0.2809

United -0.4475 -0.0566

US Air -0.3937 -0.1912

5.1 Linear Results

For comparison purposes, we report linear estimates are from a Arellano-Bond (1991) estima-

tor that uses differenced values of the exogenous variables as instruments for the differenced

lagged dependent variables.

Table 8: Full Sample Results (Linear)

Coefficient on Qi,t−1: .3879

Own-price elasticity: -.5663

Cross-price elasticity: .2757

For the full sample, the autocorrelation of quantity demanded (measured by revenue pas-

senger miles) is around .39. As we expect, the own-price elasticity is negative, but is smaller

in absolute value than is reported in many studies. Divided by airline, the results are as we

would expect - the legacy airlines have larger price dispersion and face more elastic demand.
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Table 9: By Airline (Linear)

Airline Qi,t−1 Own fare Comp. fare

DL .7038 -.8142 .7187

AA .6083 -.8323 .5436

CO .5677 -.8195 .4286

UA .7190 -.4626 .1833

US .7736 -.5099 .6980

WN .4095 -.1520 .4842

5.2 Nonparametric Results

The difference between nonparametric and linear demand functions can be depicted in the

following graphs

Figure 1: Nonparametric m(Q̄i,t−1, P
∗
i,t, P̄−i,t, ε̄it):

The above graph depicts log(Qit in relation to log(price per mile), as measured by its

proxy (P ∗
it is competitors’ share of nonstop passengers on that route), for given values of
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Qi,t−1, P−i,t and the unobservable variable εit. Parts of the function do in fact look linear

(the functions were estimated on a grid of 274 grid); however, there also is some clear price-

dependence on the derivative of quantity with respect to price.

Table 10: Average derivative:

2008-2011

E

[
∂m(Qi,t−1, Pit, P−i,t, e)

∂Qi,t−1

]
0.8228

E

[
∂m(Qi,t−1, Pit, P−i,t, e)

∂P ∗
it

]
-0.0148

E

[
∂m(Qi,t−1, Pit, P−i,t, e)

∂P−i,t

]
0.0711

We also have the results from the nonparametric first stage, we we can use to measure

the ‘actual’ average derivative of the demand function m with respect to log(price per mile),

corrected for the first stage (where log(price per mile) is the dependent variable and Qi,t−1,

log(competitor fares per mile) and rivalpass− oneway).

Table 11: Average derivative:

2008 - 2011

E

[
∂m(Qi,t−1, Pit, P−i,t, e)

∂Pit

]
-0.5726

Looking at the (uncorrected) results by airline:
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Table 12: By Airline

E
[

∂Qit

∂Qi,t−1

]
E
[
∂Qit

∂Pit

]
E
[

∂Qit

∂P−i,t

]
Delta 0.7596 -0.0119 0.0351

American 0.7591 -0.0122 0.1303

Continental 0.8528 -0.0214 0.1318

United 0.8161 -0.0150 0.1021

Northwest (N = 5541) 1.0904 -0.0325 0.1240

US Airways 0.6082 -0.0155 0.0914

Southwest 0.6221 -0.0141 0.1395

JetBlue (N = 2433) 1.1820 -0.0111 -0.0280

Virgin (N = 393) 2.3306 -0.1507 0.3914

The average derivatives are comparable to the linear results, though less in magnitude.

The elasticities are likely muted because we are using a proxy for the price instead of using

methods where we correct for the endogeneity of prices.

As seen from the pictures depicted above, the added benefit from nonparametric esti-

mation is the richer relationship between the variables - to assess the value added we do

two things - an experiment wherein we raise the prices that an airline charges in order to

assess the implied change (both in average and across fares) in demand, as well as do a

simple forecasting exercise where we compare changes in demand predicted by linear and

nonparametric methods.
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5.2.1 Policy experiment: Price Change

In this policy experiment we suppose that there is a reason that prices for a particular airline

would change by 1% uniformly across its entire route network. Though somewhat implausi-

ble, there are a number of situations that we could devise that would result in such a scenario.

Firstly, there are have been recent surcharges related to airline travel that have been insti-

tuted on all airline fares.14 The most well-known of these might be the 9-11 related surcharge

that adds $2.50 to each departure, but there are a number of charges like the excise tax of

7.5%, fees per segment that can be added by airports or the government, and most recently,

fuel surcharges that carriers can add to offset the higher price of jet fuel. Carriers are, as of

January 2012, required to include all taxes and surcharges in their marketing of ticket prices.

Therefore, making the somewhat extreme assumption that there is constant pass-through

of a change in the excise tax would mean that prices would change by a fixed percentage

across the route network. Besanko, Dube and Gupta (2005) study changes and pass through

in retail environments and would warn that this experiment is restricted to “short-run own-

brand pass through” of taxes, since we do not account for changes in competitors’ prices

or possible changes in market equilibria (entry, exit, etc.) due to the change in taxes or prices.

We choose United Airlines as our test case, since its linear estimates and the average

derivatives are the closest in size. Supposing that the government, to spur travel, cuts taxes

on the lower half of a given carrier’s airfares. Suppose the result is a 1% decrease in the price

of all tickets below United’s median; the linear result is that demand on those flights goes up

14Source: http://www.delta.com/planning reservations/plan flight/online reservations/fares ticketing rules/
taxes fees/index.jsp
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by 0.4626%.15 The overall result is an increase in demand of 0.2456% in revenue passenger

miles. Using our nonparametric estimates, a 1% decrease in the prices of all tickets below

United’s median results in an increase of of total demand of 2.401%.

5.2.2 Forecasting

As another illustration, we conduct a very informal forecasting exercise where we use our

estimated functions to forecast demand out-of-sample. Our nonparametric estimates are

from the sample 2008Q1 - 2011Q4, and so we use our results to forecast 2012Q1’s demand.

Table 13: Forecasting Results

Bias (rpm) RMSE (rpm)

Delta Linear -17202 43759

Nonparametric 11485 29550

United Linear -19055 47434

Nonparametric 10545 31677

Southwest Linear -15837 41848

Nonparametric 19697 33538

The out-of-sample forecasting ability of the nonparametric estimator performs very well

compared to the linear estimator, most likely because of the changing and also because of

the interaction effects between own-price and competitors’ price that are built-in to the non-

parametric estimation. More extensive research on the forecasting ability of nonparametric

15The median fare for United was $420.97, while the median fare per mile was $0.142.
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estimation of dynamic demand seems to deserve attention.

6 Conclusion

The purpose of this paper is to estimate non-constant elasticities over the entire range of

airline ticket prices as a robustness check against the possible misspecification of linear mod-

els. The benefit to this approach is that in all but a handful of cases, the structural models

that are used to describe the individual consumer’s choice will lead to route-level demand

equations that are not linear. We also apply new results from the field of nonparametric

econometrics to give more definitive answers about the identification and estimation of sys-

tems of demand and supply equations in the airline industry.

There are a number of avenues for future research. First, the full benefit of the research

presented in chapters 1 and 2 are evident if data on the supply side are collected an ana-

lyzed. Industry data on costs and supply conditions would make system estimation possible.

On a related note, the bridge between structural models and market-level models is a very

interesting area for future research. Structural models of individual choice have inputs like

conditional choice probabilities that are not able to be estimated consistently under com-

monly made assumptions (Aguirregabiria and Ho (2011)). While the models in this paper

are themselves not necessarily appropriate as inputs into models of discrete choice, the ability

to estimate route-level structural supply and demand functions may prove to be useful. In

general we would like to pursue this type of research - underlining the link between models

of individual choice and how it aggregates into market-level demand (cf. Berry and Haile
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(2010)).

The links between structural models of choice and market supply and demand do not

exist only on the demand side. Our data span a period with frequent episodes of bankruptcy

and mergers, both of which affect pricing and dynamic strategy. Certainly capacity and the

supply of seats (which are potentially exactly observable) are correlated with the unobserv-

able (random) route effects. The increased availability of data will allow us to make more

definitive statements about these relationships.

This dissertation is focused on promoting the use of nonparametric methods for estima-

tion in situations where endogenous regressor variables would normally force practitioners

to use linear methods. Chapter 1 presents basic assumptions to check identification in

models with simultaneous equations, nonseparable structural equations and autocorrelated

unobservable variables. Chapter 2 describes how to adapt nonparametric estimators of sim-

ulataneous equations models for use with the models described in chapter 1. Chapter 3 then

relates these models to those that describe supply and demand in the airline industry and

performs nonparametric estimation of demand equations (without supply). Further work

remains to generalize these models or at least to codify exactly what kinds of ‘restrictions’

to structural equations minimize and balance the risk associated with model misspecifica-

tion with slow rates of convergence brought on by the inherent curse of dimensionality in

nonparametric estimation.
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7 Data Details

The data include itineraries that begin and end in US territories that are outside of the 50

states. Most notably we had to drop tickets that originated or ended in the Virgin Islands,

Puerto Rico and Guam. Though technically US territories, we made the decision that these

destinations are typically thought of as international destinations and the type of consumer

deciding to take visits to Guam would be ones more interested in international destinations.

A few more things about the data - we removed roundtrips where there were reported

stops in the same city. We dropped itineraries in which either the outgoing or incoming

leg had more than 6 ‘coupons’ (5 stops). We removed ‘interline’ itineraries (where either

the ticketing or operating carriers changed during the itinerary). An important drop was

the removal of tickets where the reported fare is less than 10 dollars (likely to be buddy

pass/employee/comp/FF tickets) since our focus is on paid travel. We do not make any ad-

justments for airline quality (both in either the ‘hard product’ - airframes, physical amenities

like seats or entertainment, or the ‘soft product’ - service/food/other amenities); one huge

component of airline quality is the frequent flier program. We also do not include informa-

tion on the class of service (e.g., first class vs coach). We may be understating the actual

price elasticity once we take loyalty into account, however these types of questions are left

for future research.

‘Bulk fares’ were dropped; these fares only make up around 2 itineraries per quarter

For those familiar with the literature on the airline industry, in general we decided to make
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restrictions on the ticket sample that are very similar to the steps taken by Aguirregabiria

and Ho (2010).
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