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ABSTRACT 

 

Probing forces generated and architectures mediated by Tau on microtubules 

 

by 

Peter Jinwoo Chung 

 

Tau, a developmentally regulated protein localized to the axon of mature 

neurons, stabilizes axonal microtubules but has been implicated in many 

neurodegenerative diseases (“tauopathies”) including Alzheimer’s, Pick’s, and, 

more recently, chronic traumatic encephalopathy. Despite its importance in both 

development and disease, difficulty in understanding Tau is due, in part, to its 

intrinsically disordered nature; Tau does not assume a secondary structure in 

solution. However, lack of structure does not imply lack of function, as Tau binds 

to microtubules, thereby regulating microtubule assembly/stability and affecting 

inter-microtubule interactions, although the latter remains controversial. 

Herein, through microscopy and synchrotron small-angle X-ray scattering of cell 

free Tau/microtubule reconstitutions under various conditions, we report on the 

nature of the Tau structure and Tau-mediated interactions between 

microtubules.  

By examining the force-response of Tau-coated paclitaxel-stabilized 

microtubules by osmotic depletants, we observed that longer isoforms of Tau at 

high (and physiologically relevant) coverage on microtubules more effectively 
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sterically stabilize microtubules against microtubule bundling. This steric 

stabilization occurs by the amino-terminal tail of Tau assuming the 

conformational (and repulsive) properties of a polyelectrolyte brush. 

Furthermore, the coverage at which this transition into a polyelectrolyte brush 

occurs gives the first direct measurement of the size of the longer isoforms of 

Tau (~20-23 nm) on microtubule surfaces.  

To understand the molecular mechanism of Tau-mediated inter-

microtubule interactions in dissipative, out-of-equilibrium conditions, we co-

polymerized Tau with microtubules in the absence of stabilizing agents (i.e. 

paclitaxel) and found that Tau mediates microtubule bundles with resultant 

architectures mimicking fascicles of microtubules found in the axonal initial 

segment. These bundles confirmed an attractive component to the Tau-mediated 

microtubule interaction through an aggregate of sub-kBT interactions along the 

microtubule length heretofore unreported in intrinsically disordered systems. 

The interaction dependence on microtubule length reconciles previous 

(unsuccessful) attempts at reconstituting Tau-mediated bundles, as stabilizing 

agents often promoted more, but shorter, microtubules.  

These novel biophysical characterizations of Tau on the microtubule 

surface give insight to the physiological function of Tau inside the neuronal axon 

and represent possible properties to investigate the role of mutations and post-

translational modifications of Tau that lead to neurodegenerative disease.
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1. Introduction 

Tau, a protein primarily localized to the axon of mature neurons, is known 

to stabilize the neuronal cytoskeleton and is critical for the development of 

neuronal polarity. However, Tau dysfunction has been implicated in many 

neurodegenerative diseases (“tauopathies”) including Alzheimer’s1, Pick’s2, and, 

more recently, chronic traumatic encephalopathy3. Furthermore, genetic 

analyses have unequivocally demonstrated that specific mutations in Tau result 

in neuronal death and dementia in many of the aforementioned diseases4–6.  

Despite its importance in neuronal development and neuropathology, 

understanding of Tau function (and dysfunction) remains limited, partly due to 

its natively unfolded state in solution (i.e. intrinsically disordered). However, 

what is known to occur, from both in vivo and in vitro data, is that Tau 

associates with and modifies the assembly behavior of microtubules.   

 

1.1 The Microtubule: Assembly and Function 

Microtubules are a critical component of the eukaryotic cytoskeleton that are 

involved in a variety of cell functions, including maintaining cell structure, 

intracellular trafficking, and cell division7. Microtubules are made up straight 

protofilaments (PFs), polarized head-to-tail assemblies of globular αβ-tubulin 

heterodimers, which dynamically assemble into hollow protein nanotubes (13-15 

PFs, diameter ~ 25-30 nm) that are stabilized by lateral PF-PF interactions (Fig. 
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1.1). However, microtubules can switch between growing/shrinking phases in a 

process known as dynamic instability8, wherein tubulin polymerization into 

microtubules is interrupted by rapid microtubule depolymerization 

(“catastrophe”). Catastrophe occurs when GTP bound to the polymerizing end of 

microtubules (the microtubule GTP cap) is hydrolyzed into GDP, causing 

protofilaments to peel off as highly-bent GDP-tubulin oligomers and 

depolymerizing until a new microtubule GTP cap is formed, restarting the entire 

process9.  Furthermore, the depolymerization of microtubules is often enhanced 

in cold environs (4˚C) and with the addition of calcium ions10.  

 
Figure 1.1| A microtubule, made up of linear, polarized arrays of dimerized αβ-
tubulin (i.e. protofilaments) which self-assemble to form hollow nanotubes. 
Microtubules are often functionalized with the addition of microtoubule-
associated proteins such as Tau (depicted as gray strings).  

 

Despite the complex nature of microtubule assembly, microtubules can 

assume a variety of roles that either emphasizes its dynamic nature or its 

presence as a rigid support. In eukaryotic cell division, microtubules form from 

centromeres at opposing ends of the cell, searching (polymerizing) until a 

chromosome is found, and restarting (depolymerizing) if it is not11. In 
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intracellular trafficking, kinesin and dynein travel with their subcellular cargoes 

on microtubule networks, with both motor proteins uniquely evolved to travel 

towards opposing polarized ends of the microtubule. Although they are already 

superstructures of tubulin, microtubules can be a subunit of even larger cellular 

architectures, as seen in microtubule doublets that form the backbone of flagella, 

lash-like cellular appendages that rotate in one direction to provide cellular 

locomotion.  

Commensurate with the variety of roles microtubules play are the diversity of 

proteins that associate with microtubules. Specific microtubule-associated 

proteins (MAPs) are found in distinct cell types (and sometimes, even subcellular 

compartments) and help functionally differentiate microtubules by altering 

polymerization dynamics, modifying inter-microtubule interactions, or guiding 

microtubules towards specific cellular locations. Even in associating with 

microtubules do MAPs differ; some MAPs bind to the growing tip of microtubules 

(the EB-family of MAPs), others bind on the microtubule inner lumen, but most 

associate with the outer surface of microtubules.  

 

1.2 The Microtubule-Associated Protein, Tau 

One MAP in particular, Tau, is found to be abundant in neurons of the 

central nervous system and is often found almost exclusively in the healthy 

neuronal axons12, the long, dynamic process that extends from the neuronal cell 

body. Tau has been long known to minimize dynamic instability in 
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microtubules13,14, but its importance in neuropathology was not realized until it 

was discovered Tau was a constitutive component of neurofibrillary tangles15,16, 

one of the pathological hallmarks of Alzheimer’s disease.  Subsequent research 

would identify Tau as part of other pathological aggregations and extend 

neurofibrillary tangles to other pathologies, leading to the umbrella term 

“tauopathies,” or neurodegenerative diseases related to Tau.  

While both tauopathies and the regulation of Tau during neuronal 

development spurred extensive research into the function and structure of the 

protein, efforts were hampered by the intrinsically disordered nature of Tau. 

Unlike most proteins which form secondary structures, Tau lacks an ordered 

structure in solution and is better described as a random coil17,18. Thus, Tau is 

instead described through its primary sequence from N- to C- terminus: the N-

terminal tail (NTT) consists of a projection domain (PD, with low affinity for 

microtubules and projecting off its surface19,20) and a proline-rich region (PRR, 

with weak affinity for microtubules), then the microtubule-binding region 

(MTBR; a series of 3-4 18 amino acid long imperfect repeats separated from one 

another by 13-14 amino acid long inter-repeats), and finally a C-terminal tail 

(CTT, with low affinity for microtubules21–24.  The human central nervous system 

expresses 6 wild type (WT) isoforms (Fig. 1b) through alternative splicing; the 

MTBR either has 4 or 3 imperfect repeats (4R- or 3R- Tau isoforms), depending 

on expression/non-expression of exon 10. The PD length depends on expression 
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of exons 2 and/or 3 with +/+, +/-, and -/- resulting in long (-L), medium (-M), and 

short (-S) length PDs, respectively (Fig. 1.2). 

 
Figure 1.2| Charge (averaged over 10 residues) versus amino acid residue 
number for six isoforms of human Tau. The charge distribution diagram of each 
isoform shows the cationic (grey) nature of Tau with the exception the amino- 
and carboxyl- terminal tails which include anionic (bright green) regions, which 
lead to dipole-like characteristics.. The N-terminal (NT) is made up of the 
projection domain (PD, yellow background, first 92, 121, and 150 AAs for -S, -M 
and -L isoforms) and proline-rich region (PRR, green background, next 94 AAs), 
followed by MT-binding region (MTBR, blue background), and ending at the 
carboxyl-terminus (C) with the C-terminal (CT, pink background). Tau isoforms 
have either 3 or 4 microtubule-binding repeats (3R-, 4R-) as a result of excluding 
(or including) exon 10 (33 amino acids), which contains second microtubule-
binding repeat and the interrepeat region between first and second repeat. 
Additionally, the exclusion of exons 2 and 3 (both 29 amino acids), exclusion of 
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exon 2, or no exclusions in the PD result in the short (-S), medium (-M), or long (-
L) isoforms, respectively.1 

 

 The expression of the six different Tau isoforms is developmentally 

regulated. The fetal brain expresses only the shortest isoform (3RS) while the 

adult brain (with Tau concentration increasing along the length of the axon 

away from the cell body) expresses an approximately 1:1 ratio of 4R- and 3R- 

Tau25. In the adult brain, the composition of the different isoforms is not known 

as a function of position along the axon, but averaged over the entire length of 

the axon, the -S, -M, and -L N-terminal isoform ratio is 4:5:1, respectively26. 

 

1.3 Interactions between Microtubules and Tau 

The most well-characterized function of Tau, upon binding to microtubules, is 

the suppression of microtubule dynamic instability by decreasing the rate of 

catastrophe with increasing Tau27,28 (Fig. 1.3).   

 

                                            
1 This figure and caption has been adapted with permission from Chung et al, Proceedings of the 
National Academy of Sciences 2015, 112.  Copyright 2015 National Academy of Sciences, USA 
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Figure 1.3| A, Plotting the length (as measured from the plus-ends) of 
microtubules (derived from tubulin purified over a phosphocellulose column, or 
PCT) as a function of time show microtubule dynamic instability. B, With the 
addition of Tau (tu/htau40 5:1, or Tau to tubulin-dimer molar ratio Φ4RS=1/5), 
microtubule dynamic instability is slightly suppressed. C, At higher 
concentration of Tau (tu/htau40 1:1, or Φ4RS=1/1), microtubule dynamic 
instability is almost entirely suppressed. Adapted from Trinczek et al28. 

 

It was later discovered that Tau was primarily able to suppress microtubule 

dynamic instability through the microtubule-binding region (MTBR) binding to 

microtubules, with assistance from regions flanking the MTBR  (the C-terminal 

tail and proline-rich regions)14,24. This stabilizing activity was found to be the 

result from highly conserved residues that bind dynamically to the interface 

between protofilaments in microtubules29, thereby promoting microtubule 

assembly and stabilization.  
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While the caryboxyl-terminal half of Tau has been relatively well 

characterized, the amino-terminal half (and more specifically, the projection 

domain) has not, despite four of the six Tau isoforms resulting from changes in 

the Tau projection domain. Seminal studies20,30 of non-neuronal cells 

overexpressing transfected Tau cDNA had concluded that the Tau projection 

domain determines inter-microtubule distances in observed widely-spaced 

hexagonally-ordered microtubule arrays in neurite-like processes (Fig, 1.4). 

However, the studies could not discern whether the bundles were a repulsive 

lattice under confinement or the result of axially-symmetric microtubule 

attractions induced by Tau. Cell free experiments offered conflicting results. 

While the absence of bundles in cell free reconstitutions of microtubules with WT 

Tau led to the conclusion that Tau mediated a purely-repulsive force between 

microtubules14,31, surface force apparatus measurements of Tau-coated mica 

surfaces exhibited an attractive potential32.  

 
Figure 1.4|Overexpression of Tau cDNA transfected in non-neuronal cells result 
in neurite-like processes from which hexagonally-ordered microtubule arrays are 
clearly evident. As the spacing seemed to be dependent of that of the Tau 
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projection domain, Tau was thought to mediate widely-spaced microtubule 
bundles although recapitulation of such bundles in cell-free reconstitutions have 
been difficult. Scale bar, 500 nm, and adapted from Chen et. al20.   

 

Furthermore, prior to the discovery of Tau, groundbreaking electron 

micrscopy studies of the fine structure of axons in mature rat hippocampal 

neurons revealed that the axon-initial segment contained widely-spaced string-

like microtubule bundles (“fascicles of microtubules”, Fig. 1.5)33,34. However, the 

connection between fascicles and Tau remain an open question, although the 

evidence of higher-order microtubule structures in non-neuronal cells would 

perhaps indicate Tau may be responsible for such structures in the axon of the 

neuron.   

 

 
Figure 1.5| Electron microscopy of the fine structure of the axon initial segment 
reveals linear bundles of microtubules (“fascicles of microtubules”) with wide 
spacings between microtubules. This is one of the few observed instances of any 
kind of higher-order structure of microtubules in axons. Scale bar, 250 nm, and 
adapted from Peters et. al34.  
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2. Methods and Techniques 

While I will be summarizing the many experimental techniques used to 

replicate and examine the environmental conditions in which microtubules and 

Tau are found, I will first focus on the physical underpinnings of methods 

particular to our studies: the osmotic stress technique (recapitulating the 

macromolecular crowding within cells) and small-angle X-ray scattering 

(angstrom-resolution measurements of structures in solution).  

 

2.1 Osmotic Stress through Depletion Forces 

In order to fully capture the properties of biological assemblies, replication of 

the local environs (i.e. state variables) of the cytoplasm in which the system 

exists is necessary. For example, human physiological temperature (~ 37˚ C) can 

be easily obtained through the use of a sample oven and cytoplasmic salinity/pH 

mimicked through the use of the appropriate buffer with added 

monovalent/divalent salts. However, there is one effect that has been difficult to 

reproduce: macromolecular crowding. Biological macromolecules, unlike the 

dilute conditions in which biochemical/biophysical experiments are often run, 

exist and function in crowded environments. Macromolecular crowding can 

increase reaction rates, initiate protein aggregation, and even induce structures 

that would have not otherwise been observed in solution, even when accounting 

for increase in reaction rates vis-à-vis concentration1,2. 
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A fundamental force underlying many crowded environment physics is the 

depletion force, which is an attractive force between large colloidal particles (our 

biological macromolecule of interest) as a result of being suspended in a dilute 

solution of smaller solutes, or depletants3. This force arises as a result of 

depletants being preferentially excluded near the vicinity of colloidal particles, 

an absence of which creates an effective osmotic pressure (or stress) between 

colloidal particles4. Counter intuitively, this effectively entropic force promotes 

demixing of different colloids in solutions, the magnitude and range of which is 

dependent on the geometry, nature, and size of both the colloidal particles and 

depletants (as I will be later demonstrating with the calculation of depletion 

forces on cylinders by ideal polymers). Through this concept, Parsegian and 

associates developed5 the osmotic stress technique to measure the force response 

between particles and membranes in solution through the use of inert 

depletants.  

One can easily extend the concept of depletion attraction to that of the 

crowded macromolecular environment. Cells are often packed, with the 

macromolecular concentration of solutes of e. coli measured6 to be ~0.3 to 0.4 

g/mL. Indeed, depletion forces artificially induced in cell free conditions can 

recapitulate structures found in vivo. The sickle cell hemoglobin fiber naturally 

“zippers” both in vivo and in vitro (the latter in the presence of depletants), with 

the energy required to bundle the fibers from in vitro experiments8 to be -7.2 

kBT/µm.  
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2.1.1 Depletion Forces on Cylinders by Ideal Polymers1 

Depletion forces can arise when large colloidal and cylindrical particles (such 

as microtubules [MTs]) are suspended in a dilute solution of inert polymers 

(osmotic depletants) such as poly(ethylene oxide), MW=20 kDa (20k PEO).  The 

depletants are preferentially excluded from the vicinity of the colloidal particles 

due to its inability to get closer than its effective radius, a (Figure 2.1). In the 

low-concentration limit (dilute regime), the monomers apply an ideal gas-like 

osmotic pressure osm=ckBT (where c is the number density of 20k PEO) owing 

to a reduction of excluded volume when excluded volumes overlap9. 

 

 

Figure 2.1| An axial view of parallel cylinders bundled by depletion attraction. 

The 20k PEO (black circles) is barred from the excluded volume (dashed line) 

around the microtubules (blue circles). The overlap of these two excluded 

volumes results in an excess volume available for the 20k PEO, leading to an 

                                            
1This section has been adapted with permission from Chung et al, Proceedings of the National 

Academy of Sciences 2015, 112.  Copyright 2015 National Academy of Sciences, USA 
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entropically induced attraction between microtubules (equivalently, the removal 

of 20k PEO depletants results in an excess PEO density around the MTs, 

pushing them together).  

 

The depletion energy per unit length (at the dilute limit) takes the form4: 

 ),,( aRHTAckV Bdepletion         (Eq. 2.1) 

where A(H) is the overlap of the excluded area (cross section of overlap of the 

excluded volume) as a function of the distance H between the surface of two 

circular cylinders of radius R (for MTs10, R=12.5nm), surrounded by monomers of 

radius a (for 20k PEO, the effective depletant radius for a polymer of radius of 

gyration, RG = 6.9 nm,    
   

  
 = 7.8 nm)11,12. By constructing two circles of 

radius R' and center-to-center distance d (Figure 1.2), the known formula9 for 

circular segments is used to calculate the excluded area with the appropriate 

translation, R'  R + a and d  H + 2R 

 

Figure 2.2| The overlap of two circles as a function of center-to-center distance. 

The lens shaped region is a sum of two circular segments. 

 

  

R'

1 d

J

''

''

'

2

3

A

e

f

w

e

f

e

f;

o

p

e

k

j

2

R'

1

1

1

2

1

2

1

2

1

2

1

2

1

21 



17 

 

aH

aH
Ra

RH

Ra

RH

Ra

RH
Ra

aRHA

Ra

RHaHaRd

Ra

RH
RaaRHA

RHaHa
RH

Ra

RH
RaaRHA

dR
d

R

d
RRdA

2

20

0

)(2

2
1

)(2

2
2

)(2

2
cos2)(

),,(

)(2

)42)(2()2(

)(2

2
cos2)(),,(

)42)(2(
2

)2(

)(2

2
cos)(2),,(

'4
2

)
'2

(cos'2)',(

2

12

2

12

12

2212





































































































































 (Eq. 2.2) 

Which is mathematically equivalent to results of previous work8 
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published results as before. Thus, the potential energy normalized (in the dilute 

regime) is:  

 ),,()( aRHTAckHV Bdepletion         (Eq. 2.5) 

However, it is important to note that this is a simplified derivation; in 

treating PEO as an ideal gas (dilute regime), interactions between individual 
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polymers (2nd and higher order virial-coefficients) are not taken into account. 

Experimental measurements are needed to obtain the osmotic pressure (П) of 

polymer-induced depletion forces. Thus, the depletion-attraction potential 

energy used in our modeling was:  

 ),,()( aRHAHVdepletion         (Eq. 2.6) 

П is the measured depletant osmotic pressure (            ). Fortunately, 

measurements of the osmotic pressure for the dilute and semi-dilute regime of 

20k PEO have been reported13 (Figure 2.3), allowing quick translation between 

wt% of 20k PEO and osmotic pressure values. 

 

 

Figure 2.3| The osmotic pressure measured for increasing wt% of 20k PEO. 

Experimentally derived data points (triangle markers) for the osmotic pressure 

(Pa) is used to obtain a best-fit line to extrapolate pressures for any given wt% of 

20k PEO, where Log10(П) = 0.57 + 2.75 (PEOwt%)0.21.  
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2.1.2 Experimental Considerations: Depletant Size2 

One of the experimental limitations of the osmotic stress technique is the 

finite range of the depletion force, which is characterized by the size of the 

depletant (thus defining the excluded volume/area). Ordinarily, this is not an 

issue with most colloidal systems; in solution, the distance between large 

colloidal particles will eventually fall in range of the depletion force by even 

Brownian motion alone. However, this assumption will not hold if there is a 

repulsive force or steric spacers between colloids that are larger than the range 

of the depletion force. 

In particular, cytoskeletal systems often exhibit higher-order networks made 

up biopolymers spaced by sidearms or other proteins14,15. If the spacing between 

biopolymers is larger than that of the depletants being used, it is quite possible 

that the depletants will interpenetrate the region between biopolymers, exerting 

no osmotic pressure and precluding the basis for adding osmotic depletants to 

begin with!  

This limitation can be overcome with the use of larger depletants (or, in the 

case of ideal polymers, increasing polymer MW), but larger depletants are not 

without drawbacks, as well. Often, larger depletants have not been 

characterized as well or over the same thermal range as smaller depletants. 

Furthermore, increase in depletant size means a concomitant decrease in 

                                            
2This section has been adapted, in part, with permission from Chung et al, Nature 

Communications 2015, 112.  Copyright 2016 Nature Publishing Group, USA 
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depletant density, effectively limiting the realizable osmotic pressure range due 

to the depletant solubility limit.  

For widely-spaced microtubule bundles (see chapter 4 of this dissertation), we 

used a high-molecular weight poly(ethylene oxide), MW=100 kDa (PEO100k). 

PEO100k was used as the osmotic depletant of choice compared to better-

characterized depletants to parameters unique to our system: as stable inter-

microtubule distances of up to 38 nm were observed, the size of the depletant 

had to be equal or greater than that distance in order to create a concentration 

differential inside/outside the microtubule bundle. Prior work12 measured the 

radius of gyration (RG) of a function of PEO molecular weight (MW):  

RG = 0.215MW0.583     [nm]    (Eq. 2.7) 

Thus, the effective depletant radius16, a = 2RG
 = 19.95 nm, or an effective 

depletant diameter, d ≈ 40 nm, satisfies our experimental conditions that 

polymer not penetrate the space between microtubules in microtubule bundles.  

A previous study17 measured the osmotic pressure (in Pa), P, of an aqueous 

solution of varying concentrations (cg mL-1), wt%, of poly(ethylene oxide) 

(MW=105,000 g mole-1) at 35˚ C, which was taken as an reasonable 

approximation of the behavior of PEO100k at 37˚ C, absent further data. Data 

was fit to a 2nd order polynomial (following the mathematical form of a virial 

expansion for an ideal gas) to determine a formula to relate an arbitrary 

PEO100k concentration to a corresponding osmotic pressure:  
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P = 147.38wt%+338.19wt%  [Pa]     (Eq. 2.8) 

 

2.2 Small-angle X-ray scattering 

Small-angle X-ray scattering (SAXS) is an ideal technique for understanding 

the structure of both biological macromolecules and their higher order 

assemblies in solution, without the use of non-biological tags or labels.  While 

there are a great many resources available on X-ray scattering18–20, as with the 

prior section I will deal with the basics of X-ray scattering with the eventual goal 

of describing SAXS as it is relevant to our system of microtubules and Tau.  This 

is not to say that the described formalism is limited only to microtubules; the 

power in scattering is that both the incident particle (X-rays, neutron, light) and 

associated wavelengths can be adjusted, appropriate for the sample scattering 

length and geometry.  

 

 

Fig. 2.4|Scattering off an arbitrary object. Q is the difference between the 

incident and scattered wave vector, also known as the scattering vector.  
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The basic process of elastically scattering an X-ray photon (e.g. a photon with 

energy 100 eV to 100 keV) off an object can be depicted in Fig. 2.4,  in which the 

scattered intensity is observed as a function of the scattering vector  , such that: 

     -            (Eq. 2.9) 

Where    and     are the initial and final momentum of the photon scattered, 

respectively. It is worth noting that this chapter (and thesis) will be focused on 

elastic scattering (i.e. the photon energy is conserved and only momentum 

transfer occurs during the scattering process). While there are a myriad of 

techniques (and associated theories) dealing with inelastic X-ray scattering (e.g. 

Compton scattering, which occurs more prominently with high energy x-rays), 

the photons we use to analyze our samples of interest are in the lower energy 

hard X-ray regime (5 to 10 keV) which precludes much (if any) contribution from 

inelastic scattering.  

Experimentally, photons are emitted from a source towards a sample and the 

scattered intensity (as a function of  ) is captured via a 2-dimensional detector 

and subsequently analyzed via line-shape analysis or model fitting. While there 

have been many advances in both the X-ray sources (from 3rd generation 

synchrotron sources to 1st generation X-ray free electron lasers) and detectors 

(2D CCDs and active pixel solid state detectors), the theoretical framework by 

which X-ray scattering is approached has remained, more or less, unchanged for 

quite some time.   
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2.2.1 The Form Factor: Scattering off an Object 

While small-angle X-ray scattering experiments measure the intensity of 

light scattered     , our calculations begin with the form factor      (which, 

when multiplied by its complex conjugate, yields     ). The form factor      is 

ameasure of the scattering amplitude of a wave by an isolated object (objects in a 

dilute regime can be considered isolated), which is the Fourier transform of the 

electron number density      as a function of the scattering vector  : 

                           (Eq. 2.10) 

Implicit in the calculation of the form factor is a priori knowledge of the 

general shape of the objects being scattered. Practically speaking, this 

knowledge can be obtained via other real space techniques (i.e. electron 

microscopy, atomic force microscopy) or explicit assumptions/calculations made, 

with subsequent measurements by X-rays allowing iterative refinements of 

primitive to more advanced models that realistically capture accurate and 

relevant information about the objects.  

For the sake of simplicity, let us take the case of the atomic form factor, or 

the scattering amplitude of electrons of an atom. To illustrate the importance of 

the selection of the “correct” scattering vector   we examine the limiting cases of 

atomic form factor (i.e. scattering off of individual atoms): 

        
                 
                 

        (Eq. 2.11) 
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The first case is the limit in which the phase factor       approaches unity, in 

which case Eq. 2.10 just devolves into the integration of the electron number 

density of the atom (or simply,  ). The second case will have the phase factor 

      fluctuate around the unit circle in which case all contributions from the 

number density cancel each out (i.e. scattering from other electrons destructively 

interfere with each other with no resultant scattering).  

 (As an aside, this is not to say that   must be chosen in order to obtain 

realizable form factor; indeed, if   is so small such that the inverse is larger any 

length scale associated with the object, form factors can be approximated as 

Gaussians and other important information, such as the radius of gyration of the 

particle, can be accessed in what is known as the Guinier regime. On the other 

hand, at larger   scattering due to the form factor becomes less of an issue, 

which is especially helpful when scattering due to the form factor starts to 

become “noise” in data, see section 2.2.5.) 

 The case of the atomic form factor should clearly indicate that the electron 

density of larger objects can be calculated, as long as the appropriate   range is 

selected. Indeed, it is by this principle that X-ray scattering is used to measure 

the size and shape of objects larger than just atoms, like biomacromolecules such 

as microtubules. 
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2.2.2. The Form Factor for a Microtubule, or a Hollow Cylinder 

As mentioned previously, microtubules are hollow, protein nanotubes made 

up of a variable number of protofilaments. To first order, microtubules can be 

approximated as hollow cylinders with well-defined wall thickness δ (equal to 

the protofilament radial thickness) of constant electron density   , with a 

variable (fit parameter) inner radius    , to account for the changing 

protofilament number.  

A note must be made about   . While the constant electron density    seems 

to be a gross oversimplification of the charge distribution of proteins, for globular 

proteins this assumption holds up quite nicely10,16,21,22, especially at the   range 

over which the microtubule form factor is relevant (Eq. 2.11). Furthermore, as 

we are dealing with objects in solution, what we are really concerned with is    , 

or the difference in charge density between solution and object, which 

corresponds to the change density difference between the buffer solution 

(effectively, water) and the microtubule.  

 In describing the electron density of a hollow cylinder, the choice of 

coordinate system is obvious. Using a real-space cylindrical coordinate system 

(Fig. 2.4, left) with corresponding reciprocal-space coordinate system (Fig 2.4, 

right) simplifies the math involved a great deal. In this case, reciprocal-space 

(or Q-space) represents the Fourier transform of the real-space. An appropriate 

analogy is just as the Fourier transform of a radio signal over time is the sum of 

waves with different frequencies, the Fourier transform of an real space object 
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can be considered to be a sum of waves with different lengthscale distributions 

in the reciprocal space.  

 

Figure 2.4| A cylindrical coordinate system in real-space (left) and Q-space 

(right) 

 

Assuming an azimuthally-symmetric cylinder of length 2H axially aligned 

with the z-axis and, the resultant form factor (Eq. 2.9) can be written in   space 

as: 

                    
 

  
    

     

   
                

 
     (Eq. 2.11) 

The first integral and third integral reduces to a Bessel function of the first kind 

of order zero,         and           , respectively. Thus, the form factor for a 

hollow cylinder is:  

          
           

  
                                       (Eq. 2.12) 

Thus, the predicted intensity scattered      for a microtubule is 
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           

  
                                      

 

 (Eq. 2.13) 

It is helpful to point out at this time that this would be the ideal scattering 

off of one microtubule, aligned in one particular direction. However, we are 

scattering not just off of one microtubule, but multiple microtubules oriented in 

all directions.  

 

2.2.3. The Form Factor for Microtubules (Ensemble-Averaging) 

Experimentally, X-ray scattering does not just probe one microtubule, but 

rather probes all microtubules in a volume defined by size of the X-ray beam 

hitting the sample.  In practice, that means that the probed parameter     is 

actually the ensemble-averaged inner radius      , which allows us to measure 

the average number of protofilaments in cross-section of the overall microtubule 

population. While the microtubule wall thickness   is also being probed over the 

entire microtubule population, we take advantage of the fact that the wall 

thickness remains, more or less, constant for microtubules (as the protofilament 

thickness does not change).  

Furthermore, our prior calculations for      (Eq. 2.13) explicitly assumed that 

microtubules were aligned on one axis, while microtubules in solution are free to 

take any and all orientations. Thus, the predicted scattering of microtubules 

must be orientationally-averaged to account for all possible microtubule 

orientations, such that: 
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     (Eq. 2.14) 

At this point, the utility of numerical integration becomes quite apparent.  

 

2.2.4. The Structure Factor: Scattering off Lattices 

The previous calculations assumed no positional correlations between the 

objects being scattered. However, if objects were to be arranged in a lattice, the 

resultant scattering of the lattice would be modulated, given certain conditions 

are met. For the sake of brevity, the derivation by Als-Nielsen and McMorrow19 

will be quickly demonstrated here, but a more in-depth explanation can be found 

in the source material. These new scattered intensities will result from the 

lattice sum (or structure factor) over positions in a 3D lattice, with the 3D lattice 

defined by:  

                         (Eq. 2.15) 

And the structure factor defined by: 

             
  

       (Eq. 2.16) 

Upon inspection, the terms which contribute most towards the sum will be when 

the phase factor        approaches unity, or when the following condition is 

satisfied: 

                      (Eq. 2.17)  

To find a solution, we need to construct a lattice in   space such that 
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               (Eq. 2.18) 

Where     is the Kronecker delta (             ). This reciprocal lattice can 

then be defined as: 

       
      

      
        (Eq. 2.19) 

with h, k, and l as integers. If we were to take the dot product of this reciprocal 

lattice with the 3D real-space lattice, we see that:  

                            (Eq. 2.20) 

By our initial definitions that   ,   ,   , h, k, and l all be integers,          

     must also be an integer and thus the conditions set out in Eq. 2.17 is 

satisfied. Indeed, we see the lattice sum contribution is the greatest when      , 

otherwise known as the Laue condition.  

 This Laue condition gives us the framework to solve for structure factor 

peaks, or where we would expect the lattice sum to contribute the greatest based 

off of the reciprocal lattice.  

 

2.2.5. The Structure Factor: Scattering off 2D Hexagonal Lattices 

While in 3-dimensions there are 14 lattices types23, the extreme axial length 

of microtubules compared to its other dimensions means that effectively 

microtubules can only be found in 2D lattices. Of particular interest is 2D 

hexagonal lattice, with peak positions in Q space at: 

      -   
  

   
   +(h+k) 

  

   
         (Eq. 2.21) 
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with d corresponding to the hexagonal lattice parameter. While the scattered 

intensity is the product of the form factor multiplied with its complex conjugate 

and the lattice sum, we can choose a large enough Q such that the form factor is, 

more or less, constant. Then, if we were to orientationally-average (Eq. 2.14) the 

intensity as before, we find that the peak positions should lie at:  

      
  

   
                 (Eq. 2.22) 

With the first peak (the peak corresponding the h=1, k=0) occurring at 

    
  

   
         (Eq. 2.23) 

The lattice symmetry of the objects being scattered cannot be determined 

from the first peak position alone, but peak positions must be compared (relative 

to each other) to see which geometry is appropriate. This becomes problematic 

when the scattering of the structure factor is convolved with that of the form 

factor, which can extinguish apparent structure factor peaks.  

 

2.2.6. The Form and Structure Factor, Together (Convolution Theorem) 

We know the form factor and structure factor to be the Fourier transform of 

the electron density (or more specifically, electron density difference) of the 

object (Section 2.2.1) and lattice (Section 2.2.5) being scattered, respectively. 

However, often we are not solely dealing with form factor or structure factor, but 

rather a combination of the two (i.e. a lattice of objects). Thus, in real-space, the 
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resultant system can be described by the convolution of an object and the lattice 

in which the objects are found (Fig. 2.5) 

 

Figure 2.5| A system of scattering centers in a lattice can be mathematically 

described as the convolution () of the scattering center with the lattice.  

 

This mathematical description allows us to take advantage of the convolution 

theorem, which states that the Fourier transform of the convolution of two real-

space function is the pointwise product of their Fourier transforms. In other 

words, to obtain the mathematical description of the form factor and structure 

factor simultaneously, we only need to multiple the two to obtain the desired 

mathematical result in Q-space. We will take advantage of this theorem, 

especially when fitting out X-ray scattering data.  
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3. Direct force measurements reveal Tau confers short-range 

attractions and isoform-dependent steric stabilization to 

microtubules1 

Microtubules (MTs) are hollow cytoskeletal filaments assembled from αβ-

tubulin heterodimers. The microtubule-associated protein Tau, an unstructured 

protein found in neuronal axons, binds to MTs and regulates their dynamics. 

Aberrant Tau behavior is associated with numerous neurodegenerative 

dementias including Alzheimer’s. Here, we report on a direct measurement of 

forces between paclitaxel-stabilized MTs coated with distinct Tau isoforms by 

synchrotron small-angle-X-ray-scattering (SAXS) of MT-Tau mixtures under 

osmotic pressure (P). In going from bare MTs to MTs with Tau coverage near the 

physiological sub-monolayer regime (Tau/tubulin-dimer molar ratio, Tau=1/10), 

isoforms with longer N-terminal tails (NTTs) sterically stabilized MTs 

preventing bundling up to PB ≈10,000-20,000 Pa, an order of magnitude larger 

than bare MTs. In contrast, Tau with short NTTs showed little additional effect 

in suppressing the bundling pressure (PB ≈1,000-2,000 Pa) over the same range. 

Remarkably, the abrupt increase in P observed in the P-Tau phase diagram for 

longer isoforms suggest a mushroom-to-brush transition occurring between 

Tau=1/13 and Tau=1/10, which correspond to MT-bound Tau with NTTs that 

are considerably more extended than SAXS data for Tau in solution indicates. 

Modeling of Tau-mediated MT-MT interactions support the hypothesis that 

longer NTTs transition to a polyelectrolyte brush at higher coverages. Higher 

                                                           
1
 This section has been adapted with permission from Chung et al, Proceedings of the National 

Academy of Sciences 2015, 112.  Copyright 2015 National Academy of Sciences, USA 
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pressures resulted in isoform-independent irreversible bundling due to short-

range attractions arising from the polyampholytic nature of Tau. These findings 

suggest an isoform-dependent biological role for regulation by Tau, with longer 

isoforms conferring MT steric stabilization against aggregation, either with 

other bio-macromolecules or into tight bundles, preventing loss of function in the 

crowded axon environment. 

 

3.1.  Introduction 

Microtubules (MTs), a structural component of the eukaryotic cytoskeleton, 

are protein nanotubes involved in a range of cell functions including 

intracellular trafficking, cell motility, segregating chromosomes, and 

establishing cell shape1,2. MTs are composed of straight protofilaments (PFs), 

which are head-to-tail assemblies of globular -tubulin heterodimers that self-

organize with lateral PF-PF interactions stabilizing the hollow MT (Fig. 3.1a, 

left)3–5. MT structure and assembly dynamics are regulated and functionally 

differentiated in vivo by microtubule-associated proteins (MAPs)1,6. One MAP in 

particular, Tau (Fig. 3.1a, right), is primarily localized to the axons of mature 

vertebrate neurons1,7. While Tau is involved in numerous functions, which 

remain to be fully elucidated8, a well-characterized function of Tau upon binding 

to MTs (Fig. 3.1a, left) in mature neurons is in the modulation of MT dynamic 

instability (i.e. cycles of slow polymerization and rapid disassembly) by 
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enhancing tubulin assembly while suppressing MT depolymerization9–11. This 

ensures proper trafficking of organelles along relatively stable MTs in axons1,12–

15. Chemical modifications of Tau, including hyperphosphorylation and 

mutations leading to loss of function, have been implicated in Alzheimer’s 

disease and a wide range of neurodegenerative disorders including Fronto-

Temporal Dementia with Parkinsonism linked to chromosome 17 (FTDP-17), 

Pick’s, supranuclear palsy16–20, and, more recently, chronic traumatic 

encephalopathy (CTE) in athletes suffering concussions21. 

The human central nervous system generates six Tau isoforms as a result of 

alternative RNA splicing22. Tau structure is often described sequentially: the N-

terminal tail (NTT) consists of a projection domain (PD, with no affinity for MTs 

and projecting off its surface23,24) and a proline-rich region (PRR, with weak 

affinity for MTs), then the microtubule-binding region (MTBR; a series of 3-4 18 

amino acid long imperfect repeats separated from one another by 13-14 amino 

acid long inter-repeats), and finally a C-terminal tail (Fig. 3.1b)25–28.  The 

number of imperfect repeats is determined by the excision or inclusion of exon 10 

(leading to 3-repeat Tau or 4-repeat Tau, respectively) while the excision or 

inclusion of exons 2 and/or 3 determines the length of the projection domain, i.e., 

“short”, “medium” or “long” (Fig. 3.1b). While all of the Tau isoforms are 

intrinsically disordered in solution29, it is unclear whether or not the cationic 

domains in the repeat:inter-repeat region that specifically bind to the MT 

surface adopt folded structures upon attachment (Fig. 3.1a, left).  While Tau 



38 
 

strongly binds to the MT surface (≈1-3 µM affinity)10,26, recent work suggests 

Tau-MT interactions are highly dynamic and that Tau can assume numerous 

structures30,31. 

 

Fig. 3.1| MAP Tau binds to the microtubule surface and modulates the higher-

order structure of microtubules with increasing osmotic pressure. (a) Schematic 

of a microtubule with bound Tau protein (left) and a single Tau protein (right, 

labeled with N- and C- terminus ends) with four MT-binding repeats (colored 

boxes). (b) Charge (averaged over 10 residues) versus amino acid residue number 

for six isoforms of human Tau. The charge distribution diagram of each isoform 

shows the cationic (grey) nature of Tau with the exception the amino- and 

carboxyl- terminal tails which include anionic (bright green) regions, which lead 

to dipole-like characteristics. The N-terminal (NT) is made up of the projection 

domain (PD, yellow background, first 92, 121, and 150 AAs for -S, -M and -L 

isoforms) and proline-rich region (PRR, green background, next 94 AAs), 

followed by MT-binding region (MTBR, blue background), and ending at the 

carboxyl-terminus (C) with the C-terminal (CT, pink background). Tau isoforms 

have either 3 or 4 microtubule-binding repeats (3R-, 4R-) as a result of excluding 
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(or including) exon 10 (33 amino acids), which contains second microtubule-

binding repeat and the interrepeat region between first and second repeat. 

Additionally, the exclusion of exons 2 and 3 (both 29 amino acids), exclusion of 

exon 2, or no exclusions in the PD result in the short (-S), medium (-M), or long (-

L) isoforms, respectively. (c, d, e) Differential interference contrast microscopy of 

samples at 3RL=1/40 show the presence of an unbundled (c) and two distinct 

bundled phases (d, e) at 0, 1, and 10 wt% of 20k PEO, respectively.  

 

Previous synchrotron small-angle-X-ray-scattering (SAXS) work revealed 

that increasing coverage of paclitaxel-stabilized MTs by any of the six Tau 

isoforms led to an increase in the average number of protofilaments in MTs 32. 

This increase in the ensemble-averaged inner radius of MTs, <Rin
MT>, indicated 

that MAP Tau isoforms do not just bind and stabilize MTs, for example, by 

enhancing PF-PF interactions, but also change the shape of αβ-tubulin and thus 

PFs, leading to a change in curvature of MTs. This conclusion is consistent with 

recent NMR work demonstrating that Tau binds, at least in part, between 

tubulin heterodimers31. 

While Tau affects tubulin shape and inter--tubulin interactions within 

individual MTs, much less is known about how MT-bound Tau modifies inter-

microtubule forces. This study focuses on elucidating the structure and 

interactions of paclitaxel-stabilized MTs33–35 assembled at varying Tau/tubulin-

dimer molar ratios (Tau= 1/10, 1/13, 1/20, 1/40, 1/100, spanning the 

physiological range observed in axons36) using synchrotron SAXS in the presence 

of an osmotic depletant. By varying osmotic pressure (induced by 20k 

polyethylene oxide, or 20k PEO) and Tau-grafting density (Tau per MT-outer 

surface area32, controlled by Tau as Tau binds stoichiometrically to MTs up until 
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Tau≈1/5), the force response of Tau-coated MTs was directly measured via SAXS 

line-shape analysis37. Previous literature noted the functional dependence of the 

carboxyl-terminal MTBR of Tau in stabilizing individual MTs26–28, but herein we 

present data demonstrating that inter-MT forces are functionally dependent on 

and regulated by the N-terminal tail projection domain of Tau. Specifically, at 

Tau = 1/10, isoforms with longer projection domains suppressed MT bundling 

pressures by an order of magnitude more than bare MTs and MTs with short 

projection domain isoforms of Tau. This result indicates a gain of function of Tau 

isoforms with longer NTTs (by longer projection domains) in adopting brush-like 

conformations at higher coverages to impart steric stabilization to individual 

microtubules. This is in striking contrast to other neuronal cytoskeletal systems, 

such as the protruding long sidearms of neurofilaments, which have been found 

to always be in a brush-like phase with no observed subunit composition-

dependence on sidearm conformation38,39. In the high-pressure limit, where Tau 

chains from opposing MT surfaces are osmotically forced to interpenetrate, 

irreversible MT bundling was observed, which was attributed to the 

polyampholytic nature of Tau leading to short-range attractions between 

anionic/cationic residues on neighboring Tau chains.  
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3.2. Results and Discussion 

3.2.1. Phase behavior of MT/Tau mixtures under osmotic pressure 

Structurally distinct higher-order phases of paclitaxel-stabilized MTs co-

assembled with Tau at different P were initially observed by video-enhanced 

differential-interference-contrast (DIC) microscopy (Fig. 3.1c-e). Consistent with 

previous results without Tau40,41, MTs at high concentration undergo a 

transition from an orientationally ordered nematic state (NMT, Fig. 3.1c) to two 

distinct higher-ordered bundled phases (Fig. 3.1d,e) as a function of increasing 

osmotic pressure. The bundled phases result from PEO-induced depletion 

attraction. The internal structure of these higher-ordered phases at different 

Tau coverages was elucidated with in situ SAXS-osmotic pressure 

measurements. Line-shape analysis of azimuthally-averaged SAXS data of the 

samples (Fig. 3.2) revealed three distinct phases, correlating to the distinct 

structures seen in DIC microscopy. Fig. 3.2d shows SAXS profiles with 

increasing P in mixtures of MTs and 4RS Tau at 4RS = 1/10. At low osmotic 

pressures (Fig. 3.2d bottom profile, 0 to 0.46 wt% of 20k PEO), where DIC shows 

the NMT phase, fits of background-subtracted scattering corresponded to a 

hollow-cylinder form factor, with inner radii (~8 nm) and cylinder thickness (4.9 

nm) consistent with electron microscopy data of MTs42. This behavior is similar 

to previous reports of bare MTs where SAXS profiles of the NMT phase shows no 

evidence of a correlation peak5,32,40,41,43,44. At intermediate osmotic pressures (~1-

3 wt% of 20k PEO), where DIC shows bundled MTs (Fig. 3.1d), a scattering 
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structure factor was readily apparent with more than five orders of diffraction 

peaks indexed to a 2D rectangular lattice (Fig. 3.2d, labeled RB
MT at 1.63 wt% 

PEO). SAXS studies of bare MTs40 have shown that the rectangular symmetry 

results from the buckling of MTs, from circular to non-circular in cross-section, 

because the larger PEO concentration on the outside compared to the inside 

lumen of MTs produces an excess pressure on the MT wall (Fig. 3.2b). The 

gradient is expected because the radius of gyration of 20k PEO ≈ 6.9 nm is close 

to the inner radius of MTs45 and at these intermediate concentrations PEO does 

not readily enter the lumen due to an entropic confinement penalty. 
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Fig. 3.2| Microtubule bundling transitions with increasing osmotic pressure are 

Tau isoform and concentration dependent. (a, b, c) Schematic of the (a) nematic 

(NMT, with orientational order and no positional order), (b) buckled rectangular 

bundle (RB
MT, characterized by the rectangular lattice constants aR and bR), and 

(c) hexagonal bundle (HMT, characterized by the hexagonal lattice constant aH) 

phases of Tau-MTs, with PEO colored in yellow. (d, e) Azimuthally averaged 

synchrotron SAXS data of Tau-MTs plotted as a function of increasing osmotic 

pressure induced by 20k PEO, with PEO concentration and corresponding 

pressure shown next to each profile. A reaction mixture (d), 4RS=1/10 (4RS 

Tau/tubulin-dimer molar ratio), exhibits an osmotic pressure-induced phase 

transition from nematic (NMT) to buckled rectangular (RB
MT, aR=17.0 nm and 

bR=30.7 nm) and from buckled rectangular to hexagonal (HMT, aH=30.2 nm), with 

coexistence regimes between two phases. However, another mixture (e, 

4RL=1/10) displays a transition from nematic (NMT) to hexagonal (HMT, aH=29.3 

nm) phases, bypassing the buckled rectangular phase entirely. SAXS data was 

analyzed and presented fit parameters extracted with fitted model scattering 

curves (red lines) corresponding to the model appropriate structure and form 

factor, as described in text.  
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At higher osmotic pressures (~3-14 wt% of 20k PEO), the Bragg diffraction 

peaks could now be indexed to a 2D hexagonal bundled phase with lattice 

parameter aH (Fig. 3.2d, labeled HMT at 13.9 wt% PEO). The structural 

transition at higher P from the RB
MT (Fig. 3.2b) to the HMT (Fig. 3.2c) results 

from a transition from buckled (non-circular) to unbuckled (circular) MTs. The 

unbuckling occurs at concentrations near the chain overlap concentration (c* ≈ 

7.5 wt% for 20k PEO) where the external crowding of PEO eventually forces 

PEO chains to enter the MT lumen46,47 and thus equalizing the outside/inside 

pressure on MTs. The absence and presence of 20k PEO in the MT lumen in the 

RB
MT and HMT, respectively, has been directly confirmed with labeled PEO in 

fluorescence microscopy studies of bare MTs with increasing osmotic 

pressure40,41. 

For most samples the scattering from one phase clearly dominated, but 

samples at certain Tau coverages and osmotic pressures exhibited scattering 

from coexisting phases (NMT + RB
MT, RB

MT + HMT). Generally, MTs transitioned 

from NMT to the RB
MT and finally to the HMT under increasing osmotic pressure, 

as it did for 4RS=1/10 (Fig. 3.2d). Strikingly, for Tau isoforms with longest PDs 

(3RL, 4RL), RB
MT

 was entirely bypassed at the highest Tau coverage (i.e. NMT 

transitioned directly to the HMT). Fig. 3.2e shows SAXS profiles for 4RL Tau at 

4RL=1/10 where the NMT remains stable well into the intermediate osmotic 

pressure range with MT bundling being suppressed up to PB = 21,800 Pa (= 4.48 

wt% 20k PEO) before transitioning to the bundled HMT. This is in contrast to 
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SAXS data for Tau isoforms with short PDs, which undergo bundling at nearly 

an order of magnitude lower PB (Fig. 3.2d, profile at P = 1,900 Pa, 0.93 wt% 20k 

PEO). To fully elucidate the Tau isoform-dependence of MT bundling we mapped 

out the phase behavior by systemically altering all relevant variables (Tau 

isoform, Tau/tubulin-dimer molar ratio, and osmotic pressure).  

The osmotic pressure – Tau/tubulin composition (P-Tau) phase diagram of 

all six wild-type Tau isoforms is shown in Fig. 3.3, revealing regions of stability 

for unbundled NMT and bundled RB
MT and HMT. All three structural phases 

(either singularly or in co-existence) were exhibited at all concentrations for Tau 

isoforms with the short PD (Fig. 3.3a, 3.3d). However, Tau isoforms with the 

longest PDs (3RL, 4RL) suppress the RB
MT at high Tau (Fig. 3.3c for 3RL = 1/10, 

Fig. 3.3f for 4RL = 1/13 and 1/10). Tau isoforms with medium length PDs (3RM, 

4RM) also show a much narrower pressure range for the RB
MT for 3RM,4RM =1/13 

and 1/10 (Fig. 3.3b,e).   

Remarkably, the phase diagram reveals that at the highest coverages of 

Tau with longer PDs (3RM,4RM=1/10 and 3RL,4RL=1/10 and 1/13, both near the 

physiological regime), significantly higher osmotic pressures are required to 

stabilize microtubules against bundling (PB~10,000 Pa and PB~20,000 Pa at 

=1/10 for –M and –L isoforms, respectively). This is in marked contrast to Tau 

with short PD, which seems to have little effect on the bundling pressure 

(PB~1,000 Pa) at all measured coverages. The dramatic increase in pressure 

strongly indicates that the conformation of the medium and long PDs have 
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transitioned from a “mushroom” state (Fig. 3.3g, left) to a “brush” state (Fig. 

3.3g, right). This would give rise to an enhanced repulsive force of substantial 

magnitude between MTs, requiring much higher osmotic pressures to overcome 

that repulsion and bundle.  

 

Fig. 3.3| Osmotic pressure against Tau/tubulin concentration phase diagram for 

all six Tau isoforms. (a-f) MT/Tau phases, determined by SAXS analysis, plotted 
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as a function of increasing osmotic pressure (left Y-axis) induced by increasing 

wt% of 20k PEO (right Y-axis, which has independent Log domains to match 

PEO concentrations) against various Tau/tubulin-dimer molar ratios (Tau) of 

3RS (a), 3RM (b), 3RL (c), 4RS (d), 4RM (e), and 4RL (f) isoforms of Tau. The 

observed phases were nematic (N), buckled rectangular (RB
MT), hexagonally 

bundled (HMT) phases, or regions of phase coexistence. For isoforms with the 

longer projection domain (M- and L-), the microtubule bundling pressure, PB, 

increased abruptly at higher Tau coverages (Tau= 1/10). Notably, increasing 

Tau coverage of the 3RS and 4RS isoforms of Tau show little effect in affecting 

the MT bundling pressure. As described in text, the lines/open circles in the 

phase diagram correspond to the expected PB for the soft-cylinder model for bare 

MTs (dotted line), charged soft-cylinder model for selected Tau isoforms (–M and 

–L) bound to MTs (dashed line), and the charged brush model for Tau for 

selected Tau isoforms (–M and –L) at the highest coverages (Tau=1/10, 1/13, 

grey open circles). (g) Cartoon depicting the mushroom (left) and brush (right) 

states of Tau’s N-terminal tail with increasing grafting density. 

 

Classically, polymers undergo a mushroom-to-brush transition when the 

grafting distance between polymers is comparable to the diameter of the 

tethered polymer. Using SAXS48, the physical diameter of the medium and long 

PDs in solution was shown to be ~10 nm (in similar buffer conditions to those 

used in our study). This physical diameter was calculated as twice the physical 

radius, which is proportional to the radius of gyration49 

(DPhys.=2RPhys.=2(5/3)1/2Rg). The radius of gyration for unstructured proteins was 

found50 to fit the Flory equation Rg=0.1927N0.588 nm, which for the projection 

domains of –M and –L isoforms (NPD=121, 150) is 3.30 nm and 3.75 nm, 

respectively (in agreement with SAXS measurements of the PD in solution48), 

giving us DPhys=8.5 nm (-M) and 9.6 nm (-L). This follows previous 

measurements from SAXS (Rg=6.5 nm)51, dynamic light-scattering (Rg=6.6 nm)51, 

and Monte Carlo simulations (Rg=6.5 nm)52 that confirm the RG of isolated 4RL 
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Tau in solution scales as a random-coil conformation protein. However, the 

grafting distance, dg
Tau = 4.5*(Tau/2)-1/2 nm (4.5 nm is the average tubulin 

monomer-monomer distance and the factor of 2 arises because  is a Tau to 

tubulin-dimer ratio), at the lowest Tau
 where the abrupt increase in bundling 

pressure is observed (3RM,4RM=1/10 and 3RL,4RL=1/13) corresponds to dg
Tau = 

20.3 and 23.1 nm for –M and –L isoforms of Tau, respectively. Both grafting 

distances are considerably larger than the physical diameter, indicating that the 

Tau PD protruding away from the MT surface, at grafting densities prior to the 

transition to the brush state, is considerably more extended than the PD in 

solution.  

 

3.2.2. Modeling the interaction potential of MTs with MAP Tau 

To elucidate the distinct contributions of the -M and -L Tau isoforms with 

longer projection domains (PDs, Fig. 3.1b) in suppressing bundling at higher 

osmotic pressures, we modeled the pairwise potential energy between two 

microtubules in the absence and presence of Tau. The model presented here 

balances the repulsive interactions (due to the overall anionic MT and the PD of 

surface-adsorbed Tau) against the depletion attraction resulting from the 

addition of PEO (i.e. the PEO-induced osmotic pressure, which effectively forces 

MTs together). 
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The overall bare charge of - and - tubulin (summing over negative and 

positive charged residues including CTTs and bound nucleotides/ions) is -21.7e 

and -22.6e at pH 6.8, respectively (NCBI protein database: NP_001159977.1, 

NP_001040014.1). The - and - tubulin CTTs, which contain either neutral or 

negative residues, have a bare charge of -9e and -11e, respectively53. Due to the 

high charge of tubulin and its CTT, partial counterion neutralization of tubulin 

is expected; indeed, previous work54 measured an effective charge of -23e per 

dimer (via microtubule electrophoretic movement in microchannels) against a 

calculated bare charge of -50e per dimer at pH 6.9. This gave an effective charge 

renormalization prefactor r = Qeff/Qbare = 0.46, which was subsequently used in 

our calculations. The repulsive electrostatic potential energy between two MTs 

with wall-to-wall separation H may then be written in terms of a contribution 

from the renormalized charge of the CTTs and, separately, from the remaining 

renormalized charge of αβ-tubulin dimers: 

VMT
Repulsive (H) = Vcyl hard MT (H) + Vcyl 

soft CTT (H)    (Eq. 3.1) 

The first term in Eqn. 3.1) describes the electrostatic repulsion between MTs 

modeled as hard cylinders with mean surface charge density = Tub-CTT= -0.387e 

nm-2 due to the renormalized charge of αβ-tubulin dimers minus the charge of 

the CTTs. Thus, we write55: 
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In Eq. 3.2,  = 1/D with D the Debye-Hückel screening length (0.85 nm in 

our experiments), r0 is the permittivity, and 






1

2/1
2/1 /)(

k

k kzzL i is the 

polylogarithm function of order ½. The second term in Eq. 3.1 takes into account 

the contribution of the CTTs modeled as “soft cylinders” (i.e. where the charge of 

the CTTs is distributed within a layer of thickness L around the MTs), giving 

rise to a soft repulsive potential56: 
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cyl eLiL
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HV 



  H>2L   [Energy/Length] (Eq. 3.3) 

R = 12.5 nm is the MT outer radius and  = - rfNe/(dg
2L) is the charge density 

(charge/volume) of the polyelectrolyte layer, where r = 0.46 is the charge 

renormalization factor, e is the elementary charge, f ≈ ½ is the net ionization 

fraction of CTTs53, N =19.5 is the mean number of residues in the CTTs, dg = 4.6 

nm is the grafting distance between CTTs, and L ≈ 4.0 nm is the mean height of 

the CTTs57. For separations H<2L, where the polyelectrolyte layer is 

compressed, L is replaced by H/2 in Eq. 3.3. In this equation, the added salt 

leads to the presence of a double layer and the exponential screening of the 

electrostatic interactions between the polyelectrolyte-grafted surfaces. 

The total effective interaction potential between bare MTs in the presence of 

PEO may be written as: 

VMT
Total (H) = Vcyl hard MT (H) + Vcyl 

soft CTT (H) + VDepletion (H)  (Eq. 3.4) 
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The third term is the depletion attraction between cylinders (energy per unit 

length) due to the presence of non-interacting 20k PEO polymer “depletants” 

with an effective radius a = 2Rg/()1/2 ≈ 7.8 nm, with Rg = 6.9 nm for 20k PEO58,59: 

VDepletion (H) = -П A(H,R,a)  0 < H ≤ 2a    (Eq. 3.5) 

Here, A(H,R,a)= ))sin(()( 2  Ra  is the overlap in the excluded area, (where


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RHaHa
), and П is the osmotic pressure of the depletant, 

including second and higher order virial-coefficients to account for deviations 

from the ideal gas derivation for depletion attraction. For 20k PEO, 

measurements of П (Pa) fit an empirical expression, 21.
10 %)(*75.257.)( PEOwtLog   

where PEOwt% is the wt% of 20k PEO37,60. For H > 2a depletion attraction 

vanishes as the overlap in the excluded area term A(H,R,a) is zero.  

 

Fig. 3.4| Modeling MT-MT interactions requires more than a simple charged 

cylinder model. (a) Schematic of bare MT and expanded view showing negatively 

charged C-terminal tails of α- and β- tubulin. The presence of C-terminal tails on 

the MT surface requires the model to incorporate a “soft” polyelectrolyte layer 

above the surface of the MT. (b) Curves derived from the soft-cylinder model 
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plotted for  actual PEO wt% used in experiments (solid lines) and in-between 

concentrations (dashed lines). Colors (from black to orange) are coordinated with 

data in Fig. 3.3 (Tau=0). The pink-striped zone corresponds to a potential depth 

of 5 to 10 kBT for 2 µm MTs (see Fig. 3.10 for MT length distribution) where one 

would expect MT bundling. The orange curve which falls in this zone 

corresponds to the lowest pressure where MT bundles are observed in the 

absence of Tau (see Fig. 3.3). (c) Assuming the same potential depth (pink-

striped zone, 5 to 10 kBT for 2 µm length MTs) for MT bundling, the charged 

hard-cylinder model (i.e. all tubulin charge on the surface) predicts bundling at 

lower PEO concentrations compared to what is observed experimentally 

(between 0.25 and 0.46 wt% PEO).  

 

Figure 3.4b is a plot of VMT
Total (H)/length versus H as a function of increasing 

wt% 20k PEO. The solid curves (color coordinated with data points in Fig. 3.3) 

correspond to experimental PEO concentrations studied and the dashed curves 

to in-between PEO concentrations. We see that with increasing PEO 

concentration the potential curve begins to develop a well defined minimum with 

a bound state and depth of 5 to 10 kBT (where MT bundles may be expected to be 

stable) appearing between ≈ 0.30 wt% and ≈ 0.5 wt% of 20k PEO. We see in Fig. 

3.3 that the onset of MT bundling at Tau = 0 is between 0.25 wt% and 0.46 wt% 

20k PEO concentrations (P between 420 Pa and 810 Pa), in reasonable 

agreement with the MT model that takes into account the added repulsion from 

the short polyelectrolyte CTTs. (The horizontal dotted line in Fig. 3.3 (a-f) 

corresponds to the pressure where the depth of the potential between MTs (Eq. 

3.4) is 7.5 ± 2.5 kBT.) Figure 3.4c shows that if one ignores the CTTs and models 

MTs as charged hard cylinders with mean surface charge density  = Tub = -

0.497 e nm-2 then the potential curve develops a minimum at much lower PEO 
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concentrations and predicts that bundling with a potential depth ≈ 7.5 kBT 

would occur as low as ≈ 0.15 wt% PEO, significantly lower than the 

experimentally observed bundling between 0.25 wt% and 0.46 wt% PEO. (The 

potential energy curves in Fig. 3.4c are calculated from the first and third terms 

in Eq. 3.4 assuming the renormalized net negative charge of αβ-tubulin dimer (-

44.3e per dimer, including the CTTs) is located on the surface of the hard 

cylinder) 

To model the contribution of Tau isoforms with longer projection domains (as 

the short projection domain showed no appreciable change in PB) to the MT-MT 

interaction potential energy we considered the overall anionic projection domain 

(PD) of the N-terminal tail (NTT) (Fig. 3.1b) to be extended away from the 

negative MT surface with the remaining weakly-positive proline-rich region 

(PRR) of the NTT being very weakly-bound in a pancake-like conformation61 

near the surface (consistent with NMR spectroscopy31) with a height of ~1 nm, in 

agreement with simulation62,63 and AFM experiments64. The PRR, MT-binding 

region, and C-terminal tail were taken to contribute to the overall charge of αβ-

tubulin dimers. 

We first estimated Tau’s contribution (with Tau’s PD in the mushroom 

conformation, Fig. 3.3g, left) within the soft potential model described above. 

The total potential considered (VMT+Tau 
soft) used the soft potential term for the 

PD, Eq. (4), with r=1, where charge renormalization is not required because the 

combination of a low net ionization (fnet≈0.1) of PD and the low Tau coverage 
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results in a low charge density polyelectrolyte layer surrounding the 

microtubule. Furthermore, the Vcyl hard MT (H) term incorporated the modified 

surface charge density =-0.387+0.253*Tau (e nm-2) accounting for the 

renormalized, reduced negative charge (i.e. the charge of tubulin-dimer minus 

the charge of the CTTs (-0.387e nm-2) plus the added charge from Tau without 

the PD (0.253*Tau e nm-2 for 0 ≤ Tau ≤ .1). For the soft potential, Eq. 3.3 was 

used with the appropriate substitutions for parameters related to the PD: (f, 

NPD, LTauPD) = (0.120,121,20.1 nm) and (0.120,150,23.1 nm) for the medium (-M) 

and (-L) tau isoforms, respectively. Here, f is the net ionization fraction of the 

PD, NPD is the degree of polymerization of the PD, and LTauPD is the height of the 

PD. The Tau at which the mushroom-to-brush transition (Fig. 3.3g) occurs gives 

us an estimate for the polyelectrolyte layer height of the longer PDs. As 

discussed in the previous section, the lowest Tau
 where the transition is 

observed (3RM,4RM=1/10 and 3RL,4RL=1/13) corresponds to a dg
Tau = 20.3 and 23.1 

nm for –M and –L isoforms of Tau, which we used for LTauPD. 

Figure 3.5 (a,b) shows VMT+Tau 
soft/kBT versus H for 3RM and 3RL isoforms 

plotted with increasing wt% 20k PEO (0.46, 0.93, 1.63, 2.44) and (0.46, 0.93, 

1.63, 2.44, 3.26, 4.07) for the higher Tau coverages Tau = 1/13, 1/10, 

respectively. These PEO concentrations correspond to the lower range of PEO 

wt% data shown in Fig. 3.3. The potential curves with depth between 5 kBT and 

10 kBT (where one would expect bundling) are predicted to occur even for the 

lowest concentration ≈ 0.46 wt% PEO while bundling at these higher Tau 
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coverages requires much larger PEO concentrations as seen in Fig. 3.3 (the pink 

striped lines in Fig. 3.5 a-d correspond to a potential depth of 7.5 ± 2.5 kBT for 

MTs with average length of 2 µm). Although the soft potential model predicts a 

slight increase in repulsion from the Tau PD (and subsequent increase in wt% of 

PEO to bundle MTs), the difference is minor compared to MTs without Tau (the 

dashed lines versus the dotted lines in Fig. 3.3b,c,e,f) and fails to capture the 

dramatic increase in osmotic pressure required to bundle MTs assembled with 

the longer -M and -L isoforms at higher coverages (Tau=1/13, 1/10). For the 3RS 

isoform the MT interaction potential within the soft potential model (VMT+Tau 
soft) 

is dominated by the high density CTTs, which make a larger contribution than 

the 3RS PD in this coverage range. 
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Fig. 3.5| The charged brush model for tau isoforms with longer (-M, -L) 

projection domains better captures the bundling behavior of MT/tau mixtures at 

higher tau coverages (Tau=1/13, 1/10). (a-d) Potential energy curves plotted for 

high coverages of 3RM,3RL=1/13 and 3RM,3RL=1/10 using the soft-cylinder model 

(a, b) and the charged brush model (c, d), as discussed in the text. The curves are 

for [0.46, 0.93, 1.63, and 2.44] wt% PEO for 3RM,3RL=1/13 (left panels, a-d) and 

[0.46, 0.93, 1.63, 2.44, 3.26, and 4.07] wt% PEO for 3RM,3RL=1/10 (right panels, 

a-d). The concentrations are those used in experiments and the curves are color 

coded as in Fig. 3.3 where the first colored curves indicates the PEO 

concentration where bundling is first observed (see Fig. 3.3, Tau=1/13, 1/10 for -

M, -L isoforms). The pink-striped zone corresponds to a potential depth of 5 to 10 

kBT for 2 µm MTs (see Fig. 3.10 for MT length distribution) where one would 

expect MT bundling. Comparison between the model shows that the charged-

brush model for the projection domain (c, d) gives better qualitative agreement 

between theory and experiment compared to the soft-cylinder model (a, b). 
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The soft potential model (dashed lines in Fig. 3.3c,d,e,f) is not able to account 

for the dramatic increase in the bundling pressure, which suggests a 

polyelectrolyte brush model would be more appropriate for Tau with the longer 

PDs at high coverage (Tau=1/13, 1/10). We note that LTauPD (20.3 and 23.1 nm 

for –M and –L isoforms of Tau, respectively) used is in fact an underestimate of 

the brush height, as the applied height is only relevant for Tau coverage up until 

the point of the mushroom-to-brush transition, beyond which the brush height 

should increase as Tau increases.  

Within the polyelectrolyte brush model the total potential considered (VMT+ 

Tau
brush) consisted of the terms in Eq. (4) (with Vcyl

hard MT(H) incorporating = -

0.387+0.253*Tau (e nm-2) to account for the added charge from Tau minus the 

charge of the PD as described above in the previous section) plus the interaction 

potential between cylindrical MTs coated with Tau’s PD in the brush state 

(Vcyl
brush,Tau-PD(H)). Following Pincus and Witten the interaction potential 

between polyelectrolyte brushes in a (1:1) salt solution with concentration cs
 may 

be written as65,66 (see SI Note S2.3): 

Vcyl 
brush,Tau-PD (H)/kBT = 
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  (Eq. 3.6) 

In this equation, the counterion distribution is predominantly determined by 

the local counterions needed to neutralize the polyelectrolyte-grafted surface. 
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The repulsive potential between opposing grafted-polyelectrolyte surfaces results 

from both the counterion pressure and contributions from chain configurational 

entropy.  

Figure 3.5 (c,d) show plots of VMT+Tau
brush/kBT versus H for 3RM and 3RL 

isoforms with increasing wt% 20k PEO (0.46, 0.93, 1.63, 2.44 wt% for Tau = 1/13 

and 0.46, 0.93, 1.63, 2.44, 3.26, 4.07 wt% for Tau = 1/10). The colored potential 

curves correspond to PEO concentrations where bundling is observed in 

experiments as shown in Fig. 3.3. Compared to the soft-cylinder model we see 

that the longer Tau PDs modeled as grafted charged brushes now provide a 

significant increased repulsion at the higher Tau coverages (Fig. 3.5 (c,d) 

compared to (a,b) where the potential curves develop minima at significantly 

higher PEO concentrations). 

Overall, the qualitative agreement with similar trends at high Tau coverage 

between experimentally observed PEO bundling concentrations (Fig. 3.3) and 

the prediction by the charged brush model (open grey circles in Fig. 3.3 b,c,e,f for 

PEO concentrations predicting potential depth between 7.5 kBT for 2 µm MTs) 

for the -M and -L Tau isoforms is clear. It is also clear that the use of an 

estimate for the height of the brush is responsible for the lack of quantitative 

agreement. Thus, the analysis of the data suggest that the longer Tau PDs (-M, -

L) undergo a conformational change and are likely in a more extended state at 

Tau = 1/10, conferring steric stabilization up to osmotic pressures ≈ 10,000 to 

20,000 Pa, an order of magnitude higher compared to the short Tau isoforms.  
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3.2.3. Tau induces attraction between MTs at high osmotic pressure 

To characterize the P-distance curves in the bundled phase regime we 

analyzed the SAXS data in the high P regime (30,000 Pa < P < 120,000 Pa) 

where the system was in the hexagonal (HMT) phase with unbuckled MTs with 

circular cross-section. At low P in the NMT phase, the SAXS data was fit to the 

square of the MT form factor |FMT|2, where MTs are modeled as hollow 

cylinders with inner radius (<Rin
MT> ≈ 8.0 nm, a fit parameter) and constant wall 

thickness w = 4.9 nm, consistent with electron microscopy models of MTs41 (see 

e.g. Fig. 3.2 d,e, lowest profiles). As shown previously5,67, the MT wall-to-wall 

spacing (Dw-w = aH – 2*(<Rin> + w)) in the HMT can be quantitatively determined 

by measuring the X-ray structure factor (giving the hexagonal lattice parameter 

aH) and simultaneously the MT form factor yielding <Rin> and w. The structure 

factor was taken to be the sum of Bragg diffraction peaks at the reciprocal lattice 

vectors |Ghk| = G10(h2+k2+hk)1/2, G10 =4/(31/2aH). Each peak was represented as 

a squared lorentzian: [Ahk/(Wq
2 + (q – Ghk)2)]2, with Ghk, amplitudes Ahk and a 

single peak width proportional to Wq (where 1/Wq ≈ bundle size in cross-section), 

as fitting parameters. The background subtracted SAXS data for unoriented MT 

bundles was fit to the MT bundle structure factor multiplied by |FMT|2 and 

averaged over all orientations in q-space (solid lines in Fig. 3.2d,e top profiles).   
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Fig. 3.6| At high osmotic pressures Tau mediates short range attractions 

between microtubules in the bundled phase. (a-f) The wall-to-wall distance 

between microtubules in hexagonally-packed bundles plotted as a function of 

increasing osmotic pressure. Increasing concentrations of (a) 3RS, (b) 3RM, (c) 

3RL, (d) 4RS (e) 4RM, and (f) 4RL isoforms decrease the wall-to-wall distance 

between MTs, indicative of the onset of Tau-induced short range attractions 

(black circles correspond to distances between bare MTs). (g, h) Schematic 

cartoons show differing MT-MT interactions mediated by Tau. (g) The repulsion 

of the anionic component of Tau projection domains at long distances where low-

osmotic pressures do not favor chain inter-penetration. (h) The favorable 

cationic/anionic interaction between overlapping Tau projection domains 

(possibly including sections of the proline rich region) at short distances where 

high osmotic pressure favor chain inter-penetration. 

 

Most interestingly, SAXS analysis showed that for a majority of given 

osmotic pressures, not only did the addition of Tau serve to decrease the lattice 
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parameter relative to "naked" MTs (Fig. 3.6a-f, filled black circles), but increases 

in concentration of Tau further decreased the lattice parameter (Fig. 3.6a-f filled 

colored circles). While the decrease due to Tau concentration was apparent in 

Tau isoforms with the short projection domain (ΔDw-w ≈ 0.7 nm, Fig. 3.6a, d), the 

effect was noticeably more pronounced for Tau isoforms with the long projection 

domain (ΔDw-w ≈ 1.5 nm, Fig. 3.6c, f). The data are consistent with the onset of 

Tau-induced short-range attractions arising from the polyampholytic nature of 

Tau (i.e. with negative and positive amino-acid residues) and, in particular, the 

dipolar nature of the N-terminal tail of all six isoforms (the PD and overall 

cationic proline-rich-region, Fig. 3.1b). With increasing osmotic pressures 

overcoming longer-ranged repulsions of the overall anionic Tau-PD (Fig. 3.6g, 

discussed in the previous section), Tau’s N-terminal tails on neighboring MTs 

are expected to interpenetrate leading to the formation of favorable short-range 

anionic/cationic electrostatic bonds between overlapping chains and effectively 

reducing the MT wall to wall spacing (Fig. 3.6h). Similar chain interpenetration 

behavior has been reported for protruding neurofilament sidearms, which are 

also unstructured polyampholytes, at high osmotic pressures68–70.   

To confirm that the attractive regime was mediated by Tau we conducted 

reversibility experiments. When bare MTs were osmotically pressured into the 

rectangular-buckled phase at 4,100 Pa (Fig. 3.7a, top profile at 1.63 wt% PEO), 

lowering of PEO to below the bundling concentration resulted in a reversible 

transition back to the unbundled NMT, consistent with the repulsive nature of 
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MTs (Fig. 3.7a, lower profile at 0.09 wt% PEO). However, bundling of Tau 

covered MTs (3RS=1/10) into the RB
MT at the same osmotic pressure (Fig. 3.7b, 

top profile at 1.63 wt% PEO) followed by a similar dilution did not lead to the 

unbundled NMT but rather remained in a bundled phase for up to 60 hours after 

dilution (Fig. 3.7b, lower profile at 0.09 wt% PEO), indicative of stable Tau-

induced short range attraction. Interestingly, the MT bundles did not retain the 

original rectangular symmetry of the RB
MT but rather transitioned to the 

hexagonal bundled state, HMT. This was to be expected because removal of most 

of the PEO effectively removed the pressure difference between the outside wall 

of the MT and the inside luminal wall causing MTs to unbuckle and revert back 

to their circular cross-section.  
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Fig. 3.7| MAP Tau-induced irreversible MT bundling. (a, b) Reversibility 

experiments confirm the short range attractions are due to Tau. With no Tau (a), 

SAXS data analysis shows an osmotic pressure-induced (1.63 wt% 20k PEO) 

RB
MT, (a, top, aR=17.3 nm and bR=30.9 nm) relaxes into a NMT by diluting PEO to 

0.09wt% (a, bottom).  In the presence of Tau (b, 3RS=1/10), a similar dilution 

from 1.63wt% to 0.09wt% of 20k PEO shows that the bundled state remains 

(demonstrating the presence of Tau-induced short range attractions), but the 

bundled phase now transitions from the buckled RB
MT phase (b, top, aR=17.5 nm 

and bR=32.7 nm) to the unbuckled HMT phase (b, bottom, aH=32.2 nm) due to the 

large dilution of PEO as described in the text. SAXS data was analyzed and 

presented fit parameters extracted with fitted model scattering curves (red lines) 

corresponding to the model appropriate structure and form factor, as described 

in text.  
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3.3. Conclusions 

We have investigated Tau-mediated forces between MTs over a range of 

Tau/tubulin-dimer molar ratios (Tau=1/100 to 1/10, which includes the 

physiological regime) using small-angle-X-ray-scattering on mixtures subjected 

to osmotic pressure. The current study has revealed that MAP Tau 

fundamentally alters the repulsive forces between MTs in an isoform-dependent 

manner. In particular, the jump in osmotic pressure required to bundle 

microtubules coated with -M and -L Tau isoforms at the higher physiological 

coverages reveals a gain of function of Tau isoforms with longer N-terminal tails 

(NTTs, due to the longer projection domains), in imparting steric stabilization to 

individual microtubules against bundling. Significantly, the Tau at which the 

jump occurs shows the conformation of the NTT of tau bound to the MT surface 

at low coverages (before the mushroom-to-brush transition) is substantially more 

extended (≈a factor of two) than would be expected from SAXS measurements of 

the radius of gyration of Tau’s NTT in solution48.  

What is highly significant in the current work is the demonstration of the 

functional property of the projection domain, in sterically stabilizing MTs upon 

undergoing a transition to a charged brush state, from a direct force 

measurement. Previous identification of Tau’s projection domain was based 

entirely on its lack of binding affinity to MTs and did not give insight to its 

biophysical functions24. Steric stabilization against cellular bio-macromolecules 

is essential in preventing microtubule loss of function in the crowded axon 
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environment. Furthermore, the conformation of Tau on the MT surface is 

intrinsically connected to its coverage. The discovery of two distinct 

conformation states of MT-bound Tau, namely mushroom or brush, further 

emphasizes the need for future biophysical measurements of MT bound Tau to 

be conducted in both regimes.  

It is interesting to note that the expression of the six different Tau isoforms is 

developmentally regulated where fetal brain expresses only the shortest isoform 

(3RS) while the adult brain (with Tau concentration increasing along the length 

of the axon away from the cell body) expresses an approximately 1:1 ratio of 3R 

and 4R Tau71. This would suggest that the 3RS isoform is likely to be expressed 

at a higher level in fetal brain (i.e. compared to the adult brain), enabling steric 

stabilization of fetal MTs at higher coverage where 3RS Tau would be in a more 

extended brush conformation. With respect to the adult brain, although the 

composition of different isoforms is not known at different points along the 

length of the axon (where the ratio of -S, -M, and -L N-terminal configurations in 

adult brain, averaged over the entire exon, is 4:5:1, respectively72), our finding 

points to a minimum coverage needed by the longer isoforms (either –M or -L) in 

order to impart steric stabilization to MTs. 

This minimum coverage required for MT steric stabilization by Tau could 

also shed light on a possible pathway for neurodegeneration. In the diseased 

state, Tau is often found to be hyperphosphorylated with a weaker binding 

affinity to MTs. Should MTs lose sufficient Tau coverage to the degree where 
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projection domains transition from brush to mushroom and fail to sterically 

stabilize MTs, intracellular trafficking on MTs could be significantly hampered 

by the non-physiological close-bundled state in the crowded axonal environment.  

At high pressures in the MT bundled phase regime, the polyampholytic 

nature of Tau resulted in a coverage-dependent electrostatic attraction between 

microtubules. This regime of “tight-bundles”, resisted by longer projection 

domains, may conceivably be accessed in vivo in the presence of excess molecular 

crowding forces. This would have negative consequences for organelle trafficking 

by MTs where the small MT wall-to-wall spacings, ranging between 3 and 5 nm, 

would be expected to interfere with motors carrying cargo73.  

In addition to the biological interest in MAP Tau as a key component of the 

axonal cytoskeleton, the directed assembly of MTs by intrinsically disorder 

protein Tau is also of broad interest from a biomolecular materials and 

biophysics perspective. This is because the unique manifestation of short-range 

attraction and long-range repulsion by Tau of microtubules gives inspiration for 

the design of biomaterials with multiple interaction motifs. 

 

3.4. Methods 

3.4.1. Tubulin purification 

Tubulin was purified, as described74,75. Briefly, MAP-rich tubulin was isolated 

from bovine brain via successive in vitro polymerization/depolymerization cycles. 



67 
 

After suspension in PEM50 (50 mM PIPES pH 6.85, 1 mM MgCl2, 1mM EGTA) 

and 0.1 mM GTP, tubulin was purified by running through a P-11 

phosphocellulose column (GE Healthcare, Madison, Wisconsin), with non-tubulin 

elements binding to the column. Tubulin (>99% purity) was drop frozen with 

liquid nitrogen and stored at -70°C, with protein concentration determined by 

Bradford assay. 

 

3.4.2. Tau purification 

Tau was expressed and purified, as described11,76. Briefly, the human cDNA for 

all six Tau isoforms were encoded in pRK expression vectors and expressed via 

BL21(DE3) cells. Bacteria was collected and lysed through sonication and 

boiling. After isolation via centrifugation, the soluble Tau was bound to a P-11 

phosphocellulose column and eluted by increasing NaCl concentrations. SDS-

PAGE was used to identify fractions where Tau was collected and fractions were 

run and bound through a HiTrap phenyl HP (GE Healthcare) column, whereby 

Tau was again eluted by decreasing (NH4)2SO4 concentrations. Fractions with 

Tau were identified as before and suspended in BRB80 (80 mM PIPES at pH 6.8, 

1 mM MgSO4, 1 mM EGTA) and 0.1% -mercaptoethanol. Concentration was 

determined by SDS-PAGE comparison to Tau standard, with original 

concentration determined by amino acid analysis.   
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3.4.3. Sample preparation 

Microtubules were polymerized from 45 µM (5 mg/mL) of tubulin, 1 mM GTP, 5 

wt% glycerol mixed in PEM50 buffer (50mM PIPES, 1mM EGTA, 1 mM MgCl2
 

at pH 6.8) at 35˚ C for 20 minutes, after which 40 µM taxol, dissolved in DMSO, 

was added (matching the subsequent final tubulin concentration) to stabilize 

microtubules. Tau was then added to pre-assembled MTs to desired Tau with a 

small amount of 1M KCl in buffer to bring the solution to a final concentration of 

25 mM KCl. Varying concentration of 20,000 MW poly(ethylene oxide), or 20k 

PEO, dissolved in buffer was then added, with osmotic pressure induced 

calculated as a function of 20k PEO concentration: log(P)=1.57 +2.75 x [PEO 

wt%].21, where P is the pressure in dynes cm-2 and PEO wt% is the weight 

percentage of 20k PEO37. 

 

3.4.4. Differential interference contrast microscopy 

A CCD camera (SensiCamQE, Cooke) mounted on a Diaphot 300 (Nikon) with 

Xenon lamp (Sutter Instrument, Novato, CA) was used for optical microscopy 

measurements with samples placed between two microscopic slides sealed by 

wax. 
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3.4.5. Small-angle X-ray scattering 

SAXS was carried out at the Stanford Synchrotron Radiation Laboratory (Palo 

Alto, CA) beamline 4-2 at 9 KeV with a Si(111) monochromator. Scattering data 

was taken with a 2D area detector (MarUSA, Evanston, Illinois) with a sample 

to detector distance of ≈3.5 meters. Prepared samples were spun down at 16,000 

x g for 30 minutes and loaded into 1.5 mm diameter quartz capillaries  

(Hilgenberg GmbH, Malsfeld, Germany) at 3.5K RPM. Data analysis 

incorporated structure and form factors (as described in text) fit with non-linear 

least-squared fitting routines, with background subtraction of SAXS data tha 

 

3.5. Detailed calculations of inter-microtubule potential energies 

3.5.1. Electrostatic potential energy between two hard, charged cylinders 

To first order, the electrostatic repulsive forces between MTs can be modeled 

as the potential energy between two parallel, charged cylinders. This is 

calculated by applying the Derjaguin approximation77 (which has its limits, but 

is used for simplicity) to relate the potential energy between planar surfaces to 

curved surfaces of radius R: 
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Where Vplane(h) (energy per unit area) and Vcyl(H) (energy per unit length) are 

the potential energies for surface-to-surface distances for parallel planes and 

cylinders, respectively (Fig. 3.8).  

 

Fig. 3.8| The Derjaguin approximation takes planar potential energies and 

converts them to equivalent potential energies for curved surfaces. In our 

particular case, the electrostatic planar potential for surface-to-surface distance 

h is "bent" to an equivalent potential for two parallel cylindrical surfaces with 

surface-to-surface distance H 

 

The potential energy per unit area between two charged surfaces (in the 

Debye-Hückel regime) with "hard" surface charge density  in an electrolyte 

solution (of permittivity r0) is78 
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Where  is the inverse of the Debye-Hückel length, the characteristic decay 

length of electrostatic potential energy in an electrolyte solution of concentration 

cs. For monovalent salt concentration cs, the Debye-Hückel length is calculated78 
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as   2/12
0 )2/(/1 sBrD ceTk  . Inserting Equation 3.8 into Equation 3.7 yields 

the cylindrical potential energy per unit length for surface-to-surface distance H, 

as calculated by Ohshima and Hyono56: 
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Where 






1

2/1
2/1 /)(

k

k kzzLi , the polylogarithm function of order 1/2. The reduced 

potential energy per unit length rewritten for our system in terms of cylinder 

radius (microtubule radius, RMT12.5nm), Debye-Hückel length D =.85nm for 

PEM50 (50 mM PIPES, 1mM MgCl2 and 1 mM EGTA at pH 6.8 with 75 mM 

NaOH) with 25 mM KCl added (equivalent to a 100 mM solution of 1:1 

electrolyte plus 1 mM of MgCl2), surface charge density MT, and salt 

concentration cs.075nm-3 (for a monovalent salt equivalent to PEM50 at pH 6.8 

with 25 mM added KCl): 
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The surface charge density, absent a physical measurement, is usually 

calculated from the net charge of the sequence without accounting for partial 

neutralization by counterions. Measurements of microtubule electrophoretic 

movement in microchannels provide an estimate of the partial counterion 

neutralization 54. At pH 6.9, the bare-charge of the tubulin (Qbare) and bound 
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nucleotides/ions was calculated to be -50e per dimer, but the effective charge 

(Qeff) was measured as -23e per dimer. Thus, we calculate the effective charge 

renormalization prefactor r = Qeff/Qbare = 0.46.  

In our experiments the bare charge of α-tubulin (NCBI protein database: 

NP_001159977.1) and β-tubulin (NP_001040014.1) with bound nucleotides/ions 

was calculated to be -21.7e and -22.6e, respectively, at pH 6.8 (via 

http://protcalc.sourceforge.net/), giving a sum bare-charge of -44.3e per tubulin-

dimer. As both experiments were in similar buffer conditions, we use the 

effective charge renormalization prefactor r to calculate the effective charge Qeff 

= r Qbare ≈ -20.4e per tubulin-dimer. As the dimer area  41 nm2 (product of dimer 

height, 8 nm, and protofilament-protofilament distance, 5.13 nm)79, this gives an 

effective renormalized suface charge density MT= -0.497e nm-2.   

 

3.5.2. MT bundling using the hard cylinder model 

Equation S2.6 and 3.10 are used to model the pairwise interaction of 

microtubules using depletion attraction and the hard cylinder model for 

microtubules.  

)()()( HVHVHV hardMT
cyldepletionMT       (Eq. 3.11) 

The sum of the potential energies (Eq. 3.11) is plotted as a function of wt% of 20k 

PEO (Fig. 3.9). If we consider the average length of microtubules (~2 µm, Fig. 
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3.10) and expect the bundled state to correspond to a potential energy depth of 5 

to 10 kBT, the model predicts bundling at a wt% of 20k PEO as low as 0.15. As 

the nematic (non-bundled) phase is experimentally observed at a higher wt% of 

20k PEO (0.25), the model does not capture the magnitude of repulsive forces.   

 

Fig. 3.9| The energy per unit length curves against the wall-to-wall distance 

using the simple charged-cylinder model for MTs. Curves derived from the model 

(equation S1.10) are plotted for  actual PEO wt% used in experiments (solid 

lines) and in-between concentrations (dashed lines). Colors (from black to 

orange) are coordinated with data in fig. 3 (Tau=0). If the bundled state 

corresponds to a potential energy depth of 5 to 10 kBT (the pink-striped zone) for 

2 µm length MTs (see Fig. 3.10), the model predicts bundling would occur at .15 

wt% of 20k PEO (and above) while experimentally bundling is seen between 0.25 

and 0.46 wt% of 20k PEO (orange curve). 
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Fig. 3.10| The length distributions for taxol-stabilized microtubules. Near 

stoichiometric amounts of taxol to tubulin, the average length of microtubules is 

identified using electron microscopy and plotted after 1 min (hatched bars) and 

30 mins (thick bars)80. The average length is taken to be 2 µm 

 

3.5.3. Electrostatic potential energy between two soft, charged cylinders 

It is apparent that the modeling of microtubules as charged “hard” cylinders 

underestimates the repulsive component, thus requiring a more advanced model. 

From our knowledge of tubulin crystallography79, MTs do not have a constant 

charge density. Most of the charge is located on the C-terminal tails (CTT) of 

both - and - tubulin (18 and 21 residues, respectively53, both with an average 

ionization fraction fCTT≈0.5). As a result of this high-charge density, not only 

does it make MTs akin to a polyelectrolyte-grafted colloids (Fig. 3.11) but the 

charge must be renormalized (with prefactor r), as in S1.3 with the MT surface. 

Due to the intrinsically disordered nature of the CTT, the height of the CTT is 

not well defined but is estimated to be LCTT≈4 nm from simulation data57, with 

an expanded conformation expected by theory81.  
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Fig. 3.11| A close-up view of the microtubule surface reveals positively-charged 

C-terminal tails of - and - tubulin. While microtubules can be approximated to 

be hollow cylinders made up of tubulin with constant charge density, a more 

appropriate model takes into account the charge found in the CTTs that project 

off the microtubule surface.   

 

A more sophisticated model for microtubules accounts for the 

polyelectrolyte layer above the microtubule surface, necessitating a shift from 

the hard cylinder model (with surface charge density,) to a soft cylinder (with 

volume charge density,) model.  The potential energy per unit area for a soft 

planar charged surface is56 
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Where L is the height of the polyelectrolyte layer and h is the surface-to-surface 

distance, not including the polyelectrolyte layer. Utilizing the Derajaguin 

approximation (Eq. 3.7), the soft cylinder model is calculated by Ohshima56:  
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Where the volume charge density is the product of ionization fraction (fCTT1/2), 

average number of residues in the CTT (NCTT=19.5), and renormalization 

prefactor r, divided by the volume occupied by the CTT (simplified as the product 

of square of the CTT grafting distance [(dgCTT)2 21 nm2] and the height of the 

CTT [LCTT=4 nm]): 
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          (Eq. 3.14) 

Equation 3.13 can be rewritten using the appropriate variables. To include the 

limit where LH 2 , the polyelectrolyte layer height is compressed to half the 

surface-to-surface distance, by geometry.  
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Fig. 3.12| Component breakdown of the potential energy per unit length for 0.46 

wt% of 20k PEO. Note the dominant contribution of the soft-cylinder, owing to 

the short Debye-Hückel length which more effectively screens the hard-cylinder 

interactions. 

 

 

3.5.4. MT bundling using the soft cylinder model 

In our more advanced model (utilizing equation S1.15), contributing factors 

include the depletion attraction (from the 20k PEO, equation S1.5), "hard" 

electrostatic repulsion (from the remaining charge on the MT surface [where 

Tub-CTT=-0.387e nm-2], equation S1.9), and soft electrostatic repulsion from the 

tubulin CTT (equation S1.14) 

)()()()( HVHVHVHV
CTTsoft

cyl

MThard

cylDepletion
Total
MT     (Eq. 3.16) 
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The system potential energies were also plotted over a range of low wt% of 

20k PEO (Fig. 3.13). The model captures the correct wt% of 20k PEO.  

 

Fig. 3.13| The energy per unit length curves against the wall-to-wall distance 

utilizing the soft-cylinder model. Curves derived from the model (Eq. 3.16) are 

plotted for actual PEO wt% used in experiments (solid lines) and in-between 

concentrations (dashed lines). Colors (from black to orange) are coordinated with 

data in fig. 3.3 (Tau=0). If the bundled state corresponds to a potential energy 

depth of 5 to 10 kBT (the pink-striped zone) for 2 µm length MTs (see Fig. 3.10), 

the model predicts bundling would occur at .46 and .35 wt% of 20k PEO, which is 

experimentally recapitulated (orange curve). 

 

 

3.5.5. Height of Tau protruding normal to the microtubule surface 

While treatment of the C-terminal tails of tubulin is relatively 

straightforward, models of Tau are more involved because of its polyampholytic 

nature. While it is known the microtubule-binding repeats are closely bound to 

the surface, less is known about the N- and C- terminal tails of Tau (NTT and 
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CTT, respectively). Due to the relative size of the Tau NTT (196 residues for the 

shortest isoform) compared to the Tau CTT (73 residues) and the prior 

knowledge that the projection domain of the NTT is known to project off the MT 

surface24, only the contributions of the Tau NTT is considered.  

The NTT consists of a highly-charged polyampholytic projection domain 

(PD, ~40% of residues charged) and a weakly-cationic proline-rich region (PRR, 

~20% of residues charged).  Simulations62,63 suggest that the PRR is weakly-

bound to the highly-anionic MT surface and the PD assumes an extended 

conformation normal to the MT surface. The dramatic increase in pressure 

required to bundle microtubules for the –M and –L Tau isoforms (see Fig. 3.3, 

main paper) suggest that Tau underwent a conformational change on the MT 

surface at =1/13 for the –L isoforms and =1/10 for the –M isoforms. This 

occurs when the diameter of Tau protein on the MT surface approaches the 

distance between Tau proteins on MTs.  

Even though Tau is physisorbed on the MT surface, binding data32 

indicates that the concentration at which Tau is mixed with tubulin is the same 

concentration upon which Tau is bound to the MT surface (Up until =1/5 to 

1/3). Thus, we treat Tau as essentially grafted to the MT surface, where 

   
    

   

 
   
 

 
 [nm]       (Eq. 3.17) 
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4.5 nm is the average tubulin monomer-monomer distance and the factor of 2 

arises because  is a dimer ratio. The lowest  at which the transition is 

observed corresponds to a grafting distance of 20.3 nm and 23.1 nm for –M and –

L isoforms of Tau, respectively, which will be used as LPD, or the height of the 

projection domain.  

The grafting distance (as a proxy for the polyelectrolyte brush height) is 

clearly an underestimate, as it is more appropriate for the height of Tau prior to 

the brush transition. However, it will serve as a useful estimate for our models.  

 

3.5.6. Treatment of Tau isoforms with longer projection domains (3RM, 3RL) on 

microtubules (soft cylinder model) 

The 3RM isoform of Tau is also examined using the same system potential 

energy as before (Eq. 3.16) with r = 1 (i.e. where charge renormalization is 

expected to be negligible because the combination of a low net ionization of the 

PD together with low Tau coverage leads to a low charge density polyelectrolyte 

layer surrounding the microtubule) and additional soft potential term for Tau 

with appropriate variable substitution (L3RM,PD=20.3nm, N3RM,PD=121, 

f3RM,PD=.120, and eq. 3.16) (Fig. 3.14).  
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Fig. 3.14| The soft cylinder model did not capture the resultant increase in 

repulsion between microtubules coated with 3RM Tau. At osmotic pressures 

taken from selected experimental data points (top, dashed box), the normalized 

potential energy per unit length curves were plotted for 3RM=1/100, 1/20, 1/10 

(bottom), with the color of each model curve corresponding to phase observed 

experimentally. The phase diagram (top) has been marked (pink-dashed line) at 

the pressure where bundling is expected, if bundling is assumed to occur at a 

potential energy depth of 7.5 kBT for 2 µm length MTs (see Fig. 3.10). The 

potential energy curves (bottom) also have a pink-striped zone, which 

corresponds to a potential energy depth of 5 to 10 kBT. 
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The soft cylinder model for the 3RM isoform of Tau does not capture the increase 

in repulsion, especially at 3RM=1/10, where phases that were experimentally 

observed to be in non-bundled phases were, by our model, expected to be 

bundled. The model is similarly applied to the 3RL isoform of Tau, with 

appropriate substitution of variables (N3RL,PD=150, f3RL,PD=.120, L3RL,PD=23.1 nm) 

(Fig. 3.15). 
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Fig. 3.15| The soft cylinder model did not capture the resultant increase in 

repulsion between microtubules coated with 3RL Tau. At osmotic pressures 

taken from selected experimental data points (dashed boxes, top), the 

normalized potential energy per unit length curves were plotted for 3RL=1/100, 

1/20, 1/10 (bottom), with the color of each model curve corresponding to phase 

observed experimentally. The phase diagram (top) has been marked (pink-

dashed line) at the pressure where bundling is expected, if bundling is assumed 

to occur at a potential energy depth of 7.5 kBT for 2 µm length MTs (see Fig. 

3.10). The potential energy curves (bottom) also have a pink-striped zone, which 

corresponds to a potential energy depth of 5 to 10 kBT. 
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Upon accounting for the Tau isoforms with the longer projection domains, 

there was not an appreciable increase in repulsion in the modeled MT-MT 

interactions. The soft cylinder model broke down for Tau and another model was 

required to recapitulate the increase in bundling pressure required to bundle 

MTs with higher coverage of the Tau isoforms with longer projection domains.  

 

3.5.7. Treatment of Tau isoforms with longer projection domains (3RM, 3RL) on 

microtubules (charged brush model) 

The soft cylinder model for Tau is insufficient. Instead, we treat the PD as a 

brush (with appropriate modifications). While the theory was developed for 

polyelectrolytes (and not polyampholytes), a polyelectrolyte brush model is used 

to examine the scaling of the disjoining pressure.    

At high grafting density, interactions between polyelectrolytes on the same 

surface dominate and cause polyelectrolytes to stretch into a brush-like 

conformation (surface charge effects polyelectrolyte conformation, but the 

following model is chosen for its simplicity). Previously, Witten and Pincus65 

theorized that for a given polyelectrolyte solution (of counterion concentration 

c0), the osmotic pressure in the presence of salt (cs) is given by 
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Where 0
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0 4 clB   and  sBs cl 242    is the inverse square of the Debye-length of 

counterions and added monovalent salt, respectively. In the limit of high salt (
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The disjoining pressure, Plane, as a function of the surface-to-surface distance h 

is then 
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The Derjaguin approximation is used as before (but instead, for force) to arrive 

at the equivalent disjoining pressure for two cylinders18 
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Equation 3.21 can be integrated to obtain the disjoining potential energy for the 

appropriate limits 
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This gives the reduced potential energy, with appropriate insertion of variables: 
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The system potential energy is modeled, as before, but the contribution from Tau 

utilizing the soft cylinder model (4th term) is replaced with a contribution from 

Tau utilizing the polyelectrolyte brush model (Eq. 3.23) and the 2nd term is taken 

to include remaining anionic surface charge of the MT surface (without the 

tubulin CTT) and the positive contribution from the bound Tau (which excludes 

the PD, MT-CTT,3RTau-NT=-(-0.387+0.253×Tau) e nm-2) 

tauPDbrush
cyl

CTTsoft

cyl

tauMThard

cylDepletion
Brush

TauMT VVVVV ,,,
    (Eq. 3.24) 

Applying the charged brush model to the isoforms with the longer projection 

domains of Tau did recapitulate a jump in 20k PEO required to bundle the 

microtubules, especially at higher Tau coverages (Fig. 3.16 and 3.17).  The brush 

model seemed to be a more appropriate (despite assumptions made!) for high 

coverages of the Tau isoforms with longer projection domains (3RM, 4RM, 3RL, 

4RL).  
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Fig. 3.16| The charged brush model for 3RM Tau at higher coverages of Tau is 

in closer agreement with experimental behavior. At osmotic pressures taken 

from selected experimental data points (top), the normalized potential energy 

per unit length curves were plotted for 3RM=1/20, 1/13, 1/10 (bottom), with the 

color of each model curve corresponding to phase observed experimentally. The 

phase diagram (top) has been marked (pink-dashed line) at the pressure where 

bundling is expected, if bundling is assumed to occur at a potential energy depth 

of 7.5 kBT for 2 µm length MTs (see Fig. 3.10). The potential energy curves 

(bottom) also have a pink-striped zone, which corresponds to a potential energy 

depth of 5 to 10 kBT. 
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Fig. 3.17| The charged brush model for 3RL Tau at higher coverages of Tau is in 

closer agreement with experimental behavior. At osmotic pressures taken from 

selected experimental data points (top), the normalized potential energy per unit 

length curves were plotted for 3RL=1/20, 1/13, 1/10 (bottom), with the color of 

each model curve corresponding to phase observed experimentally. The phase 

diagram (top) has been marked (pink-dashed line) at the pressure where 

bundling is expected, if bundling is assumed to occur at a potential energy depth 

of 7.5 kBT for 2 µm length MTs (see Fig. 3.10). The potential energy curves 

(bottom) also have a pink-striped zone, which corresponds to a potential energy 

depth of 5 to 10 kBT. 
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4. Tau mediates microtubule bundle architectures mimicking 

fascicles of microtubules found in the axon initial segment1 

Tau, an intrinsically disordered protein (IDP) expressed in neuronal axons, 

binds to microtubules and regulates their dynamics. Tau dysfunction is linked to 

neurodegeneration but the molecular mechanism of Tau-induced microtubule 

bundling remains unknown. Although there have been observations of string-

like microtubule bundles in the axon initial segment (AIS) and hexagonal 

bundles in neurite-like processes in non-neuronal cells overexpressing Tau, cell 

free reconstitutions have been unable to replicate either geometries. We report 

the energy landscape of Tau-mediated, GTP-dependent “active” microtubule 

bundles at 37°C revealed by synchrotron SAXS and TEM. Widely-spaced bundles 

(energy minimum at microtubule wall-to-wall distance Dw-w≈26-38 nm) with 

hexagonally-ordered and string-like symmetry are observed, the latter 

mimicking bundles found in the AIS.  A second minimum (Dw-w≈16-23 nm), 

indicative of antiparallel dipole-dipole interactions of interpenetrating Tau 

projection domains (PDs), is revealed via osmotic pressure. Widely-spaced 

bundles reveal that anionic block repulsions of Tau PDs compete with transient, 

short-range cationic/anionic charge-charge attractions mediated by opposing 

weakly penetrating PDs, a sum of sub-kBT interactions heretofore unreported in 

IDP systems. Although previous work postulated that the PD of the amino-

terminal tail was required for widely-spaced bundles, remarkably, amino-

                                                           
1 This section has been adapted, in part, with permission from Chung et al, Nature 

Communications 2016, 7.  Copyright 2016 Nature Publishing Group, USA 
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terminal tail truncation demonstrates the carboxyl-terminal tail alone can 

similarly mediate relatively wide-spacings. This landscape would be significantly 

affected by Tau charge-altering modifications associated with 

neurodegeneration. 

 

4.1. Introduction 

Microtubules, a component of the eukaryotic cytoskeleton, are made up of -

tubulin heterodimers that dynamically assemble into hollow nanotubes 

composed of straight protofilaments1. Microtubules are involved in a wide 

variety of cell functions (e.g. intracellular trafficking, cell motility, chromosome 

segregation) through functionalization, in part, by microtubule-associated 

proteins (MAPs). One MAP in particular, Tau, is localized to neuronal axons and 

stabilizes microtubules upon binding (Fig. 4.1a) by partially suppressing 

microtubule dynamic instability (alternating periods of polymerization of tubulin 

into microtubules interrupted by catastrophe, or the rapid disassembly of 

microtubules following loss of the microtubule GTP cap). While Tau is 

developmentally regulated in neurons, Tau dysfunction in mature axons has 

been linked to many neurodegenerative “tauopathies” (including Alzheimer’s2, 

FTDP-173, and, more recently, chronic traumatic encephalopathy in athletes 

suffering concussions4). Tau consists of an amino-terminal tail (NTT) containing 

a projection domain (PD) and proline-rich region (PRR), followed by the 
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microtubule-binding region (MTBR), and a carboxyl-terminal tail (CTT). 

Alternative splicing results in 6 wild type (WT) isoforms (Fig. 4.1b); the MTBR 

either has 4 or 3 imperfect repeats (4R- or 3R- Tau isoforms), depending on 

expression/non-expression of exon 10. The PD length depends on expression of 

exons 2 and/or 3 with +/+, +/-, and -/- resulting in long (-L), medium (-M), and 

short (-S) length PDs, respectively. 
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Fig. 4.1| Tau-mediated microtubule assemblies and Tau charge distribution. a, 

Cartoon showing Tau binding to a microtubule (red/blue) through its 

microtubule-binding region (yellow), with the projection domain (green/purple) 

and CTT (gray/teal) extending off the microtubule surface. b, The average charge 

of fully expressed 4RL Tau (top) as a function of primary sequence, with 

alternative splicing of exons 2 (red rectangle), 3 (orange), and 10 (blue) resulting 

in the 5 additional wild type isoforms. Wild type Tau consists of the amino-

terminal tail (NTT) which includes the projection domain (PD, orange 

background) and proline-rich region (PRR, green), the microtubule-binding 
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region (MTBR, blue) and carboxyl-terminal tail (CTT, pink). Truncated Tau 

constructs were designed to understand the domain dependence of the CTT 

(3RSC, missing CTT), anionic component of the projection domain (3R(N-), 

missing anionic block of NTT), and the entire NTT (3RN, missing NTT). c, Prior electron 

microscopy revealed linear microtubule bundles in the axon initial segment (adapted from 

Peters et al.
5
). d, Subsequent Tau cDNA transfection of Sf9 cells revealed  hexagonal arrays 

of microtubules in neurite-like processes (adapted from Chen et al.
6
). Scale bars, 250 nm (c) 

and 500 nm (d).   

 

While it is generally accepted that Tau interacts with individual 

microtubules, the interactions between microtubules mediated by Tau remains 

unclear. Prior to the discovery of Tau, groundbreaking electron microscopy 

studies of the fine structure of axons in mature rat hippocampal neurons 

revealed5,7 that the AIS contained widely-spaced (Dw-w≈25-30 nm) string-like 

microtubule bundles (“fascicles of microtubules”, Fig. 4.1c). Fascicles are now 

believed8 to be a cardinal feature of the AIS, acting as a filter by allowing 

passage of kinesin motors with axon-specific cargo and thus contributing to 

neuronal polarity (i.e. ensuring distinct molecular environments for axons and 

dendrites). Later, seminal studies6,9 of non-neuronal cells overexpressing 

transfected Tau cDNA had concluded that the Tau PD determines inter-

microtubule distances in observed widely-spaced hexagonally-ordered 

microtubule arrays (Fig. 4.1D), although the studies could not discern whether 

bundles result from the presence of Tau-mediated attractions or due to a 

repulsive lattice under confinement. The answer to the very important question 

of whether Tau, which is localized to the axon region, induces microtubule 

bundles similar to those found in the AIS, remains controversial. Cell free 
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reconstitutions10,11 resulted in no microtubule bundles which led to the 

conclusion that the absence of bundles was due to the purely repulsive nature of 

Tau. Complicating matters was the frequent use of paclitaxel to stabilize 

microtubules12,13. Synchrotron small-angle X-ray-scattering (SAXS) has shown14 

that WT Tau does not bundle paclitaxel-stabilized microtubules over the 

relevant Tau-coverage regime in axons15. In eliminating microtubule dynamic 

instability it was possible the normal behavior of microtubules was being 

suppressed, without it being clear that paclitaxel-stabilized results were 

reflective of biological reality. 

Here, we report on experiments designed to elucidate the molecular 

mechanism of Tau-mediated microtubule-microtubule interactions in paclitaxel-

free reaction mixtures of tubulin, GTP, and WT Tau/truncated Tau (Tau = 1/40 

to 1/5) under dissipative out-of-equilibrium conditions at 37°C (i.e. mimicking 

the cytoskeletal environment of nerve cells with samples consuming the energy 

released by GTP hydrolysis). SAXS and plastic embedded transmission electron 

microscopy (TEM) were used to obtain both angstrom-resolution ensemble-

averaged structural information and nanometer-scale real-space local fine 

structure, respectively. Remarkably, we observed dissipative, “active” (i.e. GTP-

dependent and at 37˚ C) steady-state structures that were stable over time (> 24 

hours). The microtubule reaction mixture exhibited Tau-induced phase 

separation into microtubule bundles (forming domains of high and low 

concentrations of microtubules in optical microscopy), in contrast to paclitaxel-
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stabilized microtubules14, unambiguously demonstrating an attractive 

component to Tau-mediated interactions between widely-spaced microtubules.  

 

4.2. Methods 

4.2.1. Purification of Proteins (Tubulin, WT and Truncated Tau) 

Tubulin was purified from MAP-rich microtubules extracted from bovine 

brains.  MAP-rich microtubules were obtained from crude brain extract by three 

polymerization/depolymerization cycles, after which tubulin was separated from 

MAPs with a phosphocellulose anionic exchange column. Tubulin was suspended 

in PEM50 (50 mM PIPES pH 6.8, 1 mM MgSO4, and 1 mM EGTA) with protein 

concentration between 7 and 12 mg mL-1, as measured by BSA concentration 

standard. Solution was drop-frozen in liquid nitrogen and stored in a -70˚ C 

freezer until use.  

Tau was expressed in BL21(DE3) competent cells (Life Technologies, 

Carlsbad, CA) that were transfected with the pRK172 expression vector, coded 

for the appropriate wild type isoform or truncated Tau. After incubation in auto-

induction media (10g of tryptone (CAS#: 91079-40-2), 5g of yeast extract (CAS#: 

8013-01-2), 0.5g of dextrose (CAS#: 50-99-7), 2g of α-D-lactose (CAS#: 5989-81-1) 

and 5 mL of glycerol (CAS#:  56-81-5) per liter of 25 mM Na2HPO4, 25 mM 

KH2PO4, 50 mM NH4Cl,  5 mM Na2SO4 in DI water) for 24 hours, cells were 

collected, lysed, and resuspended in BRB80 buffer (80 mM PIPES at pH 6.8, 1 
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mM EGTA, 1 mM MgSO4). The solution were then bound to a phosphocellulose 

anionic exchange column, eluted with increasing concentration of (NH4)2SO4 in 

BRB80. Tau was further purified by a HiTrap hydrophobic interaction 

chromatography column (GE Healthcare Life Sciences, Pittsburgh, PA), eluted 

with decreasing concentration of (NH4)2SO4 in BRB80. Tau was then 

concentrated and buffer exchanged through successive centrifugation cycles 

using Amicon Ultra-15 Centrifugal Units with MWCO=10,000 (EMD Millipore, 

Darmstadt, Germany).  The concentration of each tau stock was determined by 

SDS-PAGE comparison with a Tau mass standard (originally measured via 

amino acid analysis).  

Truncated Tau mutants were designed via QuikChange Site-Directed 

Mutagenesis Kit (Agilent Technologies, Santa Clara, CA) with appropriate 

introduction/deletion of start and stop codons: 3RSC (truncation of the entire 

CTT, deleting residues 280-352 of 3RS), 3R(N-) (truncation of the anionic 

component of the NTT, deleting residues 2-117 of 3RL), and 3RN (truncation of 

the entire NTT, deleting residues 2-255 of 3RL). Truncated Tau were then 

expressed/purified, as above.  

 

4.2.2. Sample Preparation 

After thawing frozen tubulin and Tau stocks, samples were prepared on ice, 

mixing tubulin, GTP, and Tau such that final concentrations were 5 mg mL-1, 2 
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mM, appropriate molar ratio of Tau to tubulin, respectively, in a final volume of 

50 µL of PEM50 buffer. Samples were then polymerized in a 37˚ C for 40 

minutes. If necessary, sample was brought to appropriate KCl concentration.  

 

4.2.3. Osmotic Pressure Samples 

A previous study16 measured the osmotic pressure (in Pa), P, of an 

aqueous solution of varying concentrations (cg mL-1), wt%, of poly(ethylene 

oxide) (MW=105,000 g mole-1) at 35˚ C, which was taken as an reasonable 

approximation of the behavior of PEO100k at 37˚ C, absent further data. Data 

was fit to a 2nd order polynomial (following the mathematical form of a virial 

expansion) to determine a formula to relate an arbitrary PEO100k concentration 

to a corresponding osmotic pressure (P, in Pa):  

P = 147.38wt%+338.19wt%  [Pa]    (Eq. 4.1) 

PEO100k was used as the osmotic depletant of choice compared to better-

characterized depletants to parameters unique to our system: as stable inter-

microtubule distances of up to 38 nm were observed, the size of the depletant 

had to be equal or greater than that distance in order to create a concentration 

differential inside/outside the microtubule bundle. Prior work17 measured the 

radius of gyration (RG) of a function of PEO molecular weight (MW):  

RG = 0.215MW0.583     [nm]    (Eq. 4.2) 
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Thus, the effective depletant radius18, a = 2RG
 = 19.95 nm, or an effective 

depletant diameter, d ≈ 40 nm, satisfies our experimental conditions that 

polymer not penetrate the space between microtubules in microtubule bundles.  

 

4.2.4. Small-angle X-ray scattering (SAXS) 

After polymerization, samples are loaded into 1.5 mm diameter quartz 

mark tubes (Hilgenberg GmbH, Malsfeld, Germany) and subsequently spun in a 

capillary rotor in a Universal 320 R centrifuge (Hettich, Kirchlengern, Germany) 

at 10,000 RPM, 37˚ C for 30 minutes to protein density suitable for SAXS. To 

ensure structures were not induced by centrifugation, samples were observed 

over a period of 36 hours, with no major changes to scattering or extracted 

parameters. Additionally, phase separation of microtubules into bundles with 

the addition of Tau was observed in DIC microscopy without centrifugation. 

After centrifugation, varying concentration of PEO100k in PEM50 was 

added for SAXS samples under osmotic pressure. Samples are subsequently 

sealed with epoxy and placed in a custom made sample oven (maintained at 37˚ 

C) with X-ray-transparent Kapton windows for scattering measurements.  

SAXS measurements are carried out at the Stanford Synchrotron Radiation 

Laboratory (Palo Alto, CA) beamline 4-2 at 9 KeV (=1.3776 Å) with a Si(111) 

monochromator. Scattering data is taken with a 2D area detector (MarUSA, 

Evanston, Illinois) with a sample to detector distance of ≈3.5 meters (calibrated 
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with a silver behenate control). X-ray beam size on the sample was 150 µm in 

the vertical and 200 µm in the horizontal directions.  

 

4.2.5 SAXS Analysis 

Scattering data was azimuthally-averaged and small angle scattering was 

subsequently background subtracted by fitting the minima of scattering 

intensities to a polynomial equation. Data was then fit to the appropriate model 

using a custom MATLAB fitting routine using the Levenberg-Marquadt non-

linear fitting routine. microtubules were modeled as homogenous, hollow 

cylinders (with no expected scattering from Tau/PEO due to low electron density 

relative to water) with ensemble-averaged inner radius <rin> (a fit parameter), 

wall thickness   (49 Å, an input parameter19), and microtubule length L (20 µm, 

an input parameter20), averaged all orientations in q-space: 

|FMT|2 ∝ |[sin(qzL/2)/q⊥qz][(rin+)J1(q⊥(rin+))−rinJ1(q⊥rin)]|2
 (Eq. 4.3) 

Where q⊥, qz are wavevectors perpendicular and parallel to the tubular axis, and 

J1 is the Bessel function of order 1. The structure-factor peaks (at reciprocal 

lattice vector for a hexagonal array,  |Ghk|=q10(h2+k2+hk)1/2) were modeled as 

squared lorentzians with peak amplitude Ahk (a fit parameter) and peak width 

hk (a fit parameter, with 10 corresponding to the average bundle width L ≈ 

2(ln4)1/2/10)13: 
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S(q⊥) = ([Ahk/(hk2+(q⊥-Ghk)2)]2     (Eq. 4.4) 

Fits of the intensity data, I(q)= |Fmicrotubule|2 S(q⊥) yielded the hexagonal lattice 

parameter aH (=4π/[31/2q10]) and ensemble-averaged inner radius <rin>. 10 was 

fit independently while all other hk fit simultaneously, with hk approximately 

twice that of 10. 

 

4.2.6 Plastic embedded TEM Sample Preparation and TEM 

Samples for thin sections were centrifuged to a pellet at 10,000 rpm in 37˚ C 

for 30 minutes. Supernatant was removed and pellet fixed with 2% 

glutaraldehyde and 4% tannic acid overnight. The pellet was stained with 0.8% 

OsO4 in PEM50 buffer for 1 hour and subsequently rinsed 4 times with PEM50. 

Another stain of 1% uranyl acetate stain was applied for 1 hr and rinsed with 

deionized water.  

Fixed and stained pellets were subsequently dehydrated with 

25%/50%/75%/100% solutions of acetone in deionized water for 15 minutes 

apiece. Samples were embedded in resin then embedded in spur plastic and 

incubated overnight, with resin poured into flat embedding molds and held at 

65˚ C for 48 hours and cooled overnight.  

Plastic embedded samples were then cut to ≈50 nm slices with a 

microkeratome and transferred to highly stable Formvar carbon-coated copped 
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EM grids (Ted Pella, Redding, CA). Data were taken using the JEOL 1230 

Transmission Electron Microscope.  

 

4.2.7 DIC Samples and DIC 

A SensiCamQE CCD camera (Cooke, Auburn Hills, MI) mounted on a Nikon 

Diaphot 300 with Xenon lamp (Sutter Instrument, Novato, CA) was used for 

optical microscopy measurements. Samples were centrifuged to a pellet at 

10,000 rpm for 30 minutes in 37˚ C and placed between two microscopic slides 

sealed by wax. Images were taken while slides were kept at 37˚ C by heat stage.  

 

4.2.8 Calculation of RG 

Previously, the radius of gyration (RG) of WT Tau and truncated Tau domains 

in solution were found21,22 to scale as an unstructured protein with random-coil 

behavior, with RG=0.1927N0.588 nm, which was subsequently used to calculate 

the RG of the projection domain and truncated Tau used in our experiments.  

 

4.3 Results 

4.3.1 SAXS reveals hexagonally-ordered MT bundles mediated by Tau 

SAXS is especially well-suited to investigate Tau-directed higher-order 

assembly of microtubules, as solution scattering yields assembly structures in 
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near physiological conditions without tags/labels. Azimuthally-averaged 

scattering of microtubules co-assembled with WT Tau isoforms (Tau=1/10) 

registers Bragg peak positions consistent with a 2D-hexagonal array (q10, 

q11=31/2q10, q20=2q10, q21=71/2q10, q30=3q10, q22=121/2q10) of microtubules with 

center-to-center distance aH = 4/(3)1/2q10 (Fig. 4.2a). Some peak positions are not 

apparent due to their proximity to the form factor minima (in particular, q11 and 

q22), necessitating line-shape analysis to separate scattering from individual 

microtubules (form factor, see Fig. 4.2a, bottom profile), the lattice of 

microtubules (structure factor), and background small-angle scattering. 

Following previous work14,23, we modeled microtubules as hollow cylinders with 

ensemble-averaged inner radius <rin> (a fit parameter) and constant wall 

thickness δ (49 Å, in agreement with electron microscopy of microtubules19). 

Each structure factor peak at reciprocal lattice vector qhk = q10(h2+k2+hk)1/2 was 

represented as squared lorentzians (fit results as red solid lines in Fig. 4.2a, see 

Methods). 
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Fig. 4.2| SAXS and TEM show that Tau-assembled microtubules in active 

bundles at 37˚ C in 2 mM GTP recapitulate key in vivo features of microtubule 

wall-to-wall spacing and linear bundles. a, Azimuthally-averaged SAXS data of 

WT Tau and microtubules registers Bragg peak positions consistent with 

hexagonal lattices for all six isoforms, as opposed to just microtubule form factor 

for no Tau (bottom profile). b-e, Line-shape analysis of SAXS data [resultant fits 

in red on (a)] yields the ensemble-averaged microtubule inner radius <rin> (b), 

hexagonal lattice parameter aH (c), wall-to-wall distance Dw-w (d), and Dw-w 

normalized by the calculated projection domain radius of gyration, RG
PD (e) (see 

Methods). f, g,  Dw-w and Dw-w/RG
PD as a function of Tau net charge (QTau) shows a 

monotonic decrease in Dw-w and a nearly constant Dw-w/RG
PD ≈ 8-11, respectively. 

h, Electron microscopy of microtubules assembled with Tau (3RM=1/20) at low 

magnification show distinct bundled domains, demonstrating phase separation. 
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i, Domains of hexagonally-ordered arrays of microtubules (identified in white 

outlines, 3RL=1/20) with vacancies likely resulting from the suppressed (but 

still occurring) dynamic instability. j, Linear bundles of microtubules 

(3RL=1/20), a result of extensive vacancy introduction and mimicking string-like 

microtubule bundles in the AIS. In (i) and (j) the staining process exaggerates 

the microtubule wall thickness. Scale bars, 1 µm (h) and 500 nm [(i) and (j)].   

 

Even after ≈ 24 hours there are no major changes in scattering, indicating 

that although the microtubules are dynamic (i.e. hydrolyzing GTP), they have 

reached a steady state. The fit parameters <rin>, aH, calculated microtubule wall-

to-wall distance Dw-w (= aH - 2(<rin> + δ)) and Dw-w normalized to the PD radius of 

gyration (RG
PD) in solution (2.8/3.3/3.8 nm for –S/–M/–L Tau isoforms, see 

Methods) are plotted in Figure 2b-e as a function of increasing Tau. The Dw-w ≈ 

26-38 nm is similar to inter-microtubule spacings seen in cells (Fig. 4.1c). For 

both 3-repeat and 4-repeat Tau isoforms increasing PD length (increasing 

anionic block size, Fig. 4.1b) leads to increases in Dw-w (e.g. at Tau = 0.1 in Fig. 

4.2d Dw-w increases from 29.9 nm (26.9 nm) to 38.5 nm (32.7 nm) in going from 

3RS (4RS) to 3RL (4RL)). This behavior is consistent with observations in 

transfected cells6,9 where Tau isoforms with longer PDs exhibit microtubule 

bundles with larger spacing. Notably, Dw-w/RG
PD is nearly constant (≈ 8-11, Fig. 

4.2e). Surprisingly, for the same PD, smaller 3-repeat isoforms show a larger Dw-

w compared to longer 4-repeat isoforms. This may be appreciated by plotting Dw-w 

and Dw-w/RG
PD for the six WT isoforms as a function of the total overall charge of 

Tau (QTau, Fig. 4.2f,g), where we see that Dw-w decreases systematically as the 
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overall cationic charge of Tau increases, indicating the electrostatic nature of 

Tau-mediated attractions between anionic microtubules.  

 

4.3.2 TEM reveals active MT architecture mimicking that of the AIS 

TEM independently confirms phase separation of microtubules into bundles 

(Fig. 4.2h, 3RM = 1/20) seen in DIC microscopy.  TEM cross-sections exhibit 

microtubule domains in widely-spaced hexagonally-ordered 2D arrays 

(3RL=1/20, white outlines in Fig. 4.2i), consistent with SAXS diffraction peaks. 

However, there is also an additional feature not apparent in SAXS data: 

vacancies amidst areas of high microtubule density (akin to vacancy defects in 

crystalline materials). The vacancies are likely the result of the dissipative 

nature of the reaction mixture: although Tau partially suppresses dynamic 

instability in a Tau-concentration dependent manner24, microtubule dynamic 

instability is still occurring (for Tau ≤ 1/5) and introduces significant vacancies 

in the microtubule array. While the more ordered regions are readily picked up 

in SAXS, TEM also reveals significantly less ordered regions where microtubules 

appear to form linear bundles (3RL=1/20, Fig. 4.2j), mimicking string-like 

bundles (“fascicles of microtubules”7) found in the axon initial segment (AIS, Fig. 

4.1c). These linear bundles may be the result of extensive vacancy introduction, 

with microtubules retaining their attraction towards each other but losing one or 

more of their nearest neighbors.  
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4.3.3 Truncated Tau shows the Tau PD is unnecessary for MT bundles 

To further elucidate the nature of Tau-mediated microtubule-microtubule 

interactions, truncated Tau mutants (Fig. 4.1a, Truncated Tau) were 

expressed/purified, and used for similar SAXS measurements (Fig. 4.3a) and 

subsequent parameter extraction from line-shape analysis (Fig. 4.3b-g): 3RSC 

(truncation of the entire CTT), 3R(N-) (truncation of the anionic component of 

the NTT), and 3RN (truncation of the entire NTT). CTT elimination of 3RS Tau 

(3RSC) has scattering associated with widely-spaced bundles (Fig. 4.3a, top 

profile) and extracted parameters <rin>, aH, and Dw-w (Fig. 4.3b-d) similar to that 

of 3RS WT Tau (Fig. 4.2b-d), strongly indicating that the CTT is not critical to 

the WT mechanism of widely-spaced bundles. Elimination of the entire anionic 

block from the projection domain (3R(N-)) collapses the bundles (Fig. 4.3a, 

middle profile, Fig. 4.3d, Dw-w ≈ 4-5 nm), with a tight microtubule wall-to-wall 

spacing comparable to the radius of gyration of 3R(N-) (RG = 4.79 nm)21. This 

result indicates that the anionic block of the PD (a charged polymer containing 

overall anionic and cationic blocks) presents the dominant component of the 

repulsive barrier preventing neighboring microtubules from getting closer. 
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Fig. 4.3| SAXS and TEM of microtubules assembled with truncated Tau show 

widely- and tightly-spaced microtubule bundles. a, Azimuthally-averaged SAXS 

data of truncated Tau exhibits scattering consistent with widely-spaced [3RSC 

(missing CTT, top line-shape, q10 = 0.0126 Å-1) and 3RN (missing NTT, bottom 

line-shape, q10 = 0.0139 Å-1)] and tightly-spaced [3R(N-), (missing anionic 

section of PD, middle line-shape, q10 = 0.0213 Å-1)] hexagonally packed 

microtubules. b-e, Line-shape analysis of SAXS data [resultant fits in red on (a)] 

yields <rin> (b), aH (c), Dw-w (d), and Dw-w normalized by RG of the PD (3RSC), 

remaining PD (3R(N-)), or CTT (3RN) (e).  f, g,  Dw-w and Dw-w/RG
PD as a 

function of Truncated Tau net charge (QTrun. Tau) reveals a disparity in the data 

for 3R(N-), when compared to WT Tau (Fig. 4.2f,g), indicative of a different 

interaction regime between microtubules, likely induced by correlated density 

fluctuations. h, TEM of widely-spaced microtubule bundles (3RN=1/20) despite 

a lack of an entire NTT (and thus, lacking the projection domain). i, Closely-

packed microtubules (3R(N-)=1/20) upon elimination of the anionic component of 

the projection domain suggesting an interaction mediated by correlated density 
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fluctuations of the overall cationic 3R(N-) on the microtubule surface. Scale 

bars, 600 nm (f) and 150 nm (g).    

 

Removal of the entire NTT of Tau (3RN) results in a highly unexpected 

finding where SAXS data (Fig. 4.3a, bottom profile) gives Dw-w ≈ 22-24 nm (Fig. 

4.3d) compatible with widely-spaced bundles, despite the nominal size (RG = 4.0 

nm) of 3RN. The relatively wide spacing seen upon elimination of the NTT 

(3RN) indicates that the NTT is unnecessary for widely-spaced bundling (under 

these conditions) and that, in its absence, the CTT (Fig. 4.1a) plays an 

equivalent role in determining the inter-microtubule interactions. TEM of 

microtubules assembled with 3RN and 3R(N-) (Fig. 4.3h,i) clearly show 

microtubule bundles with relatively wide inter-microtubule spacing and in close 

contact, respectively, consistent with SAXS data. For 3RN and 3RSC, Dw-w/RG 

(≈8-11, Fig. 4.3e,g) is consistent with the WT ratio (Fig. 4.2e,g), suggesting a 

similar mechanism of inter-microtubule interactions. However, 3R(N-) 

presented dramatically smaller  Dw-w (≈5 nm) and Dw-w/RG  (≈2-4, Fig. 4.3e,g), 

suggesting a different inter-microtubule interaction regime. 

 

4.3.4 Secondary energy minimum of bundles accessed via osmotic stress 

To understand the molecular mechanism of the Tau-mediated interactions 

between microtubules in active bundles, the force response behavior of bundles 

was measured via SAXS of reaction mixtures under osmotic stress. We used high 
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molecular-weight PEO-100k (size ≈ 40 nm, see Methods) to ensure that polymer 

depletant did not penetrate the inter-microtubule region in the widely-spaced 

bundles, creating a polymer concentration exterior to microtubule bundles and 

thus exerting an osmotic pressure (P) on the bundle itself. By this method (Fig. 

4.4a), we measured the microtubule wall-to-wall spacing Dw-w of bundles induced 

by 3RS and 3RL WT isoforms as a function of increasing P (Fig. 4.4b). The P-Dw-

w curves for both WT isoforms exhibit an initial soft repulsion with Dw-w 

decreasing ≈ 3-4 nm up to P ≈ 40 Pa followed by a steep increase in slope (with 

Dw-w decreasing ≈ 2-3 nm for 40 Pa < P < ≈ 300-400 Pa) consistent with a highly 

repulsive barrier due to the PD with anionic blocks, resisting osmotic 

compression. Remarkably, above a critical pressure Pc (≈ 300 and 400 Pa for 3RS 

and 3RL, respectively) there is an abrupt ≈ 5 nm decrease in Dw-w from ≈ 21.5 nm 

to ≈ 16.5 nm for 3RS and ≈ 27.5 nm to ≈ 22.5 nm for 3RL. This sudden jump is 

reflected in the SAXS data as a sudden large shift in peak position as P is 

increased to just above Pc (lines in Fig. 4.4a are a guide to the first peak below 

and above Pc).  
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Fig. 4.4| Direct force measurements of Tau-mediated active microtubule bundles 

at 37˚ C in 2 mM GTP reveal distinct energy minima. a, Representative 

azimuthally-averaged SAXS data for 3RS=1/20 at selected increasing pressures 

resulting in increasing peak position of q10, reflecting the decrease in the 

hexagonal lattice parameter aH. b, The measured wall-to-wall distances (Dw-w) 

for 3RS and 3RL mediated microtubule bundles show a sudden transition (≈5 nm 

decrease) at applied osmotic pressure P ≈ 300-400 Pa, indicative of a secondary 

energy minimum for microtubule bundles. c, A cartoon of the osmotic-pressure 

induced secondary minimum at intermediate Dw-w, with anti-parallel 

dimerization occurring between the anionic section of the NTT (green) and the 

cationic part of the PD (purple) plus cationic proline-rich region (gray). d, A 

cartoon of the widely-spaced energy minimum, with Tau mediating microtubule 

bundles by transient charge-charge attractions between the cationic residues 

(purple/gray) and the anionic residues (green) in the amino-terminal tail.  
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4.4 Discussion and Conclusions 

The osmotic pressure data and, more specifically, the abrupt transition above 

Pc are consistent with the onset of anti-parallel dimerization between fully-

interpenetrating dipolar Tau PDs on opposing microtubule surfaces (Fig. 4.4c). 

Microtubule bundles at this intermediate spacing are in a second local energy 

minimum distinct from widely-spaced bundles in the absence of PEO. Several 

findings support this model. First, reversibility measurements show this local 

minimum is stable, as bundles for P > Pc do not relax to their previous spacings 

upon removal of PEO-100k but instead relax to the Dw-w associated with Pc. This 

implies the barrier between the second and widely-spaced minima is greater 

than thermal energy kBT. Second, the wall-to-wall spacing observed for this local 

minimum for intermediate spacing bundles (Dw-w ≈ 22.5 nm for 3RL) is 

consistent with recent work showing that PDs for microtubule-bound Tau are in 

an extended conformation (size ≈ 20 nm for the –L isoforms), twice that of the 

Tau PD physical diameter in solution18.  

Considering the minimum associated with widely-spaced bundles, several 

findings with WT Tau isoforms point to the repulsive component emanating from 

the projection domain containing the anionic block: the steep repulsive barrier 

when PD chains are pushed together under osmotic pressure and the increase in 

Dw-w with increasing projection domain length (and increasing anionic block size, 

Fig. 4.2d). The observation of microtubule phase separation into widely-spaced 

bundles (Fig. 4.2h), upon additi Tau = 
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1/40), demonstrates a Tau-mediated attractive component of the energy 

minimum, which overcomes the repulsive component, stabilizing microtubule 

bundles against dilution. The large Dw-w (≈ 38 nm for 3RL), when put in the 

context of the effective size of PDs (≈ 20 nm for –L isoforms18), strongly supports 

a model where only PD end regions interact with each other to create an 

attractive potential; although the Tau PD is anionic, locally it is a polyampholyte 

containing positive and negative residues. Additionally, the short Debye 

screening length (≈ 9.8 Å) of the reaction mixture solution strongly suggests a 

mechanism mediated via short-ranged attractions. 

Accordingly, we propose that the attraction is provided by transient short-

range charge-charge attractions between cationic/anionic residues of weakly 

penetrating Tau PDs near the midplane-layer between opposing microtubule 

surfaces (Fig. 4.4d). The proposed short-range attraction would still require 

transient extensions beyond the average length. Indeed, the SAXS 

measurements are ensemble-averaged over a finite time, in which transient, 

extended conformations are possible, as seen in Monte-Carlo simulations of the 

projection domain of 3RS Tau on microtubule surfaces25. While individually 

these attractions are weak26, the sum of these interactions over the entire 

microtubule length should be sufficient to stabilize the inter-microtubule 

spacing. For 20 µm length11 hexagonally-packed microtubule bundles, an energy 

depth of 10-20 kBT between microtubules would require ≈0.05-0.1 kBT per Tau-
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Tau interaction at Tau
 = 1/40. This mechanism is consistent with shorter, 

paclitaxel-stabilized microtubules27 (length ≈2 µm) not bundling14.   

A model of polyampholyte-mediated attraction near the midplane-layer 

dovetails with truncated Tau data: upon deletion of the NTT, the CTT plays an 

analogous role (which also contains an anionic, but shorter, block, see Fig. 4.1b). 

However, elimination of the PD anionic block (3R(N-)) results in a large enough 

attraction between microtubules (which the small CTT anionic block cannot 

sufficiently counterbalance) such that bundles collapse due to correlated density 

fluctuations of the highly cationic truncated Tau on the microtubule surface (Fig. 

4.3e,g)28,29. Similar behavior was observed in tightly-spaced microtubule bundles 

induced by smaller polyamines like spermine (4+)23. Remarkably, this ion 

correlation mechanism predicts30 that Dw-w ≈ physical size of the 

macromolecular-counterion (=2(5/3)1/2RG), consistent with Dw-w/RG ≈ 2-4 (Fig. 

4.3e,g).  

The proposed mode by which Tau bundles microtubules may have major 

implications for post-translation modifications of Tau associated with 

neurodegeneration, especially phosphorylation. In tauopathies, both cytosolic 

Tau and aggregated Tau in neurofibrillary tangles are hyperphosphorylated31,32. 

Our mechanism predicts that increasing Tau phosphorylation would suppress 

Tau-mediated attractions, disrupt fascicles in the AIS, and impair neuronal 

polarity crucial to healthy neurons. 
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A noteworthy conclusion of our study, which goes against normal biological 

dogma, is that Tau function is tied to its lack of structure. As a charged polymer 

with both anionic and cationic residues (i.e. a polyampholyte), Tau is able to both 

specifically bind to microtubules and act as a dynamic chain in bundling 

microtubules through non-specific electrostatic interactions instead of the more 

common static cross-linkages mediated through the specific interactions of folded 

proteins (e.g. α-actinin cross-linking f-actin into parallel bundles33). This novel 

and highly-unusual interaction between widely-spaced surfaces is made possible 

by the non-uniform charge distribution of the projection domain of Tau, where 

segments of the NTT (which shift the active zone to the mid-layer) are followed 

by shorter, attractive domains. This mechanism could also serve as an 

inspiration for polymer-directed assembling materials. 
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4.5 Additional Data 

 

Fig 4.5| Small-angle X-ray scattering (SAXS) and subsequent line-shape 

analysis of reaction mixtures with tubulin and wild type Tau show hexagonally-

ordered microtubule bundles that are stable over 12 hours. Azimuthally-

averaged X-ray scattering data of reaction mixtures of tubulin mixed with Tau 

(from top to bottom: 4RL, 4RM, 4RS, 3RL, 3RM, and 3RS, all at Tau = 1/20) is 

consistent with long, hollow tubes (microtubules) arranged in a hexagonal 

arrays, with scattering not significantly changing at T = 0 hours (a), 3 hours (b), 

6 hours (c), and 9 hours (d). Extracted parameters via line shape analysis of 

SAXS data [subsequent fits in red on data in (a-d)] show that although the 

ensemble-averaged inner radius <rin> (e), hexagonal lattice parameter aH (f), and 

wall-to-wall distance Dw-w (g) stabilize over time for all wild type Tau-induced 

bundles, there is a clear monotonic decrease in bundle domain width L ≈ 

2(ln4)1/2/10  (h), where 10 is the first peak width. The decreasing bundle 

domain width is most likely due to microtubule depolymerization as a result of 

microtubule dynamic instability.  
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Fig 4.6| Over a physiological range of Tau (1/40 ≥ Tau
 ≥ 1/5), SAXS and 

subsequent analysis show the Tau-induced show that microtubule wall-to-wall 

distance is relatively consistent and is primarily a function of the Tau projection 

domain length. As before, azimuthally-averaged SAXS data of tubulin mixed 

with Tau [Tau = 1/5 (a), Tau = 1/10 (b), Tau = 1/20 (c), and Tau = 1/40 (d)] at T = 

12 hours with subsequent line-shape analysis [fits in red on data in (a-d)] 

revealing the ensemble-averaged inner radius <rin> (e), hexagonal lattice 

parameter aH (f), wall-to-wall distance Dw-w (g), and bundle domain width L (h). 

Although Dw-w changes slight as a function of Tau, Dw-w is more directly a 

function of the Tau projection domain length. Generally, increasing Tau 

concentration also increases the bundle domain width L, in agreement with 

suppressed microtubule dynamic instability with increasing Tau.  
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Fig 4.7| Truncated Tau also induces microtubule bundle formation that is 

remarkably consistent over 12 hours. Azimuthally-averaged SAXS data of 

tubulin mixed with truncated Tau isoforms [C-terminal tail deletion (4RSC, 

3RSC), anionic domain deletion (4R(N-), 3R(N-)), and N-terminal tail 

deletion (4RN, 3RN)] presents scattering consistent with hexagonally-ordered 

bundles in reaction mixtures (Trunc. Tau = 1/20) at T = 0 hours (a), 3 hours (b), 6 

hours (c), and 9 hours (d) with the parameters ensemble-averaged inner radius 

<rin> (e), hexagonal lattice parameter aH (f), wall-to-wall distance Dw-w (g), and 

bundle domain width L (h) extracted via line-shape analysis. While truncation of 

the C-terminal tail did not majorly affect Dw-w compared to non-truncated 

variants (see Fig. 4.7f,g), truncation of the anionic domain of Tau collapses the 

microtubules into tightly-packed bundles. Remarkably, truncation of the entire 

N-terminal tail results in the restoration of relatively widely-spaced 

microtubules with hexagonal lattice symmetry.  
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Fig 4.8| Surprisingly, reaction mixtures with 4RN Tau (but not 3RN) undergo 

a phase transition from widely-spaced to tightly-packed microtubule bundles 

with increasing truncated Tau concentration. As before, azimuthally-averaged 

SAXS data of tubulin mixed with truncated Tau [Trun. Tau = 1/5 (a), Trun. Tau = 

1/10 (b), and Trun. Tau (c)] reveal hexagonally-ordered bundles, albeit with varying 

morphologies. Dramatically changing line profiles for reaction mixtures with 

4RN prompted higher resolution investigation a function of Tau concentration 

[Trun. Tau = 1/5, 1/7.5, 1/10, 1/12.5, 1/20, and 1/40 (d)] with phase transition 

observed from widely-spaced to tightly-packed bundles for increasing 4RN 

concentration. Line-shape analysis [subsequent fits in red on data in (a-d)] 

reveals the ensemble-averaged inner radius <rin> (e), hexagonal lattice 

parameter aH (f), wall-to-wall distance Dw-w (g), and bundle domain width L (h), 

with clear transition observed in (f) and (g). 
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5. Conclusions 

While much of the initial research pertaining to Alzheimer’s dealt with the 

protein amyloid beta1–5 (due, in part, to amyloid beta being the main constituent 

of extracellular plaques, a characteristic feature of Alzheimer’s), the discovery 

that many of the neurodegenerative symptoms associated with Alzheimer’s could 

be found in victims of chronic traumatic encephalopathy6 without amyloid beta 

plaques but with neurofibrillary tangles (made up primarily of 

hyperphosphorylated Tau) has, to a certain extent, caused a re-examination of 

the physiological and pathophsyiological roles Tau may play in brain function 

and neurodegeneration, respectively. Indeed, it was recently discovered that Tau 

pathology may actually spread trans-synaptically7, much like prions in bovine 

spongiform encephalopathy8. These new moieties through which Tau can exhibit 

dysfunction have underscored the need to characterize the biophysical and 

biochemical properties of Tau.  

This work represents an attempt to assess the action of Tau on the 

microtubule surface, such that we may not only understand the putative 

interactions between Tau and microtubules, but correlate phenomenon observed 

in our cell-free studies to in vivo and in vitro experiments. Additionally, as an 

intrinsically disordered protein (IDP) it is quite possible that motifs that occur in 

Tau may recur in other IDPs. This is particularly imperative, as other IDPs, 

such as α-synuclein, are implicated in neurodegenerative diseases as well.  
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5.1. Implications for Physiological Function 

It has been well established that increasingly phosphorylation of Tau, 

especially to the carboxyl-terminal half, reduces the binding affinity for 

microtubules9,10, but much less is understood of the role of phosphorylation of the 

amino-terminal half, particularly the Tau projection domain. In observing a 

mushroom-to-brush transition of Tau, it is clear that increasing phosphorylation 

of the Tau projection domain would likely alter the Tau coverage at which the 

transition occurs (owing to an expanded mushroom state as a result of increased 

intra-Tau repulsion) and increase the steric repulsion of microtubules against 

other microtubules or macromolecules that exist within the axoplasm. While I 

have shown that Tau is able to mediate attractions over longer microtubules 

with higher-order architectures mimicking axonal initial segment microtubules 

fascicles, it should be noted that axonal microtubules exhibit the nematic phase 

over most of the axon11,12. As Tau phosphorylation increases, it is quite possible 

that the non-specific, sub-kBT attractions mediated by Tau are suppressed or 

overwhelmed by the increasingly anionic characteristic of the projection domain, 

resulting in sterically-stabilized microtubules in the nematic phase. Indeed, this 

is consistent with the spatial map of Tau phosphorylation in axons, with 

phosphorylation increasing as Tau is further removed from the axon initial 

segment13,14.  

If higher-order microtubule architectures are not observed over the majority 

of the axon, what, then, would be the function of Tau-mediated microtubule 
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fascicles in the axonal initial segment (AIS)? The answer may lie in the AIS 

steering axon-specific cargo, contributing to neuronal polarity (i.e. ensuring 

distinct cellular environments for axons and dendrites)15. While this steering 

mechanism remains unknown16, it has been thought the differences in 

microtubule polarity (mixed in dendrites, polarized towards the distal end in 

axons) may be a factor.  The molecular motors kinesin and dynein travel towards 

the positive and negative end of microtubules, respectively. Additionally, cargo is 

thought to be moved by multiple motors17,18. Fascicles of microtubules may 

increase the polarized-microtubule area for an axonal-specific combination of 

motors to travel on. However, I would like to propose another alternative, in 

light of the discovery of sub-kBT attractions between microtubules in Tau-

mediated bundles. While previous efforts have focused on groups of motors 

traveling on a single microtubule, it may be entirely possible Tau-mediated 

microtubule fascicles provide a platform for transport to occur via multiple 

microtubules “docking” sites with locally weak Tau-Tau interactions producing 

only a small impediment towards axonal transport.    

 

5.2. Implications for Pathophysiological Function 

Tau is known to be constitutively phosphorylated in mature neurons with 

Tau binding-affinity to MTs thought to be regulated by phosphorylation19. 

However, in tauopathies, both cytosolic Tau and aggregated Tau in 

neurofibrillary tangles are often found to be hyperphosphorylated20,21. 
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Additionally, lysine acetylation of Tau is suggested to be another potential 

pathological pathway in Alzheimer’s and other neurodegenerative disorders22. 

While it is clear that the binding affinity of the mostly-cationic Tau to the 

anionic-microtubules would decrease upon increasing Tau phosphorylation 

(through increasing anionic charge) and acetylation (through decreasing cationic 

charge), a mechanism of sub-kBT interactions predicts that the bundling activity 

should also decrease upon increasing phosphorylation and acetylation, 

particularly at the many post-translation sites in the projection domain23. 

Indeed, there is direct cell-culture evidence that increasing Tau phosphorylation 

by GSK-3β leads to a decrease in higher-order MT bundles24 and cell-free 

reconstitution of acetylated-Tau mimetic mutants with MTs dramatically 

decreases bundling activity relative to WT Tau isoforms22. While the loss of 

function paradigm for Tau has often focused on the inability for 

hyperphosphorylated Tau to bind to microtubules (thus increasing microtubule 

depolymerization and subsequently decreasing axonal transport), the loss of 

fasciculated microtubules may also be a feature of Tau-induced pathogenesis.  

Furthermore, the loss of function paradigm for Tau may be more nuanced 

than increasing microtubule depolymerization in the absence of stabilizing Tau. 

The ability for Tau to sterically stabilize microtubules is contingent on the 

coverage of Tau on the microtubule surface. Even slight changes to the binding 

affinity of Tau to the microtubule surface could cause a drop in coverage below 
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which a conformational transition in which microtubules are not sterically 

stabilized occurs.  

 

5.3. Implications for other Intrinsically Disordered Proteins 

Although Tau and its subdomains are intrinsically disordered25, this work 

has shown that although Tau bound to microtubules may assume a structure26, 

said structures and concomitant interactions induced may require examining the 

aggregate properties of Tau on the microtubule surface. We see that Tau 

undergoes a mushroom-to-brush transition as a function of Tau coverage and 

that Tau mediates microtubule bundling through an aggregate of sub-kBT 

interactions, both of which would have been impossible to observe if Tau was 

under dilute conditions.  

Furthermore, the observation of Tau-mediated microtubule bundling under 

paclitaxel-free conditions underscores the importance of attempting to mimic 

cellular conditions when attempting cell free experiments. Indeed, microtubule 

dynamic instability would have made many experiments intractable were it not 

for the discovery that paclitaxel (known popularly as its chemotherapeutic 

formulation Taxol) promoted and stabilized microtubules against cold- and 

calcium ion-induced microtubule depolymerization27. Although the use of 

paclitaxel did alter microtubule structure by decreasing the microtubule 

radius28, minor changes to the microtubule structure were outweighed by the 

robustness of microtubules for experiments, especially at room temperature. 
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This, unfortunately, may have lead to results that were specific to paclitaxel-

stabilized microtubules only (e.g. the conclusion that Tau was purely repulsive29) 

as opposed reflecting a true biological reality.  

 

5.4. Future Directions 

One of the more critical post-translational modifications of Tau, 

phosphorylation, has escaped a systematic characterization due to the difficulty 

in producing Tau isoforms with site-specific phosphorylations. While in vivo and 

in vitro experiments have been able to identify the general effects of 

phosphorylation (and, to a certain extent, hyperphosphorylation) on cell 

function30,31,  understanding the specific role of Tau being phosphorylated at a 

specific site would require greater control of phosphorylation and the conditions 

under which it occurs. As some sites have been reported to be more correlated to 

the abnormal hyperphosphorylation of Tau in Alzheimer’s disease31 than others, 

it would be interesting if said phosphorylation gave way to any structural 

changes to Tau structure and/or function. 

 Finally, the role of the axon initial segment (AIS), while seen as critical in 

the development of neuronal polarity, is not entirely clear. If one were able to 

recreate the conditions in which the AIS exists (with the appropriate confined 

geometries) in cell free reconstitutions, one might be able to identify the 

properties that make the axon initial segment so unique in acting both as 
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cytoskeletal-based diffusion barrier32 while accepting axonal and rejecting 

dendritic cargo. As fascicles of microtubules are a cardinal feature of the AIS, it 

would be easy to imagine that the higher-order molecular architecture may 

affect properties specific to the AIS.   
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Appendix 

Tau Purification Protocol 

 

Purpose: To grow, harvest, and purify MAP Tau and other constructs from 

glycerol cell stocks. 

 

Day One: Media 

1. Using large graduated cylinder (red bottom), make 6.0 L of AIM 

a. Fill graduated cylinder with approximately 5.5 L of nanopure water 

b. Add sterile stir bar, begin mixing before adding ingredients 

c. Add ingredients: 

i. 60g of Peptone (Tryptone) 

ii. 30g of Yeast Extract 

iii. 21.36g of Na2HPO4 (CAS#: 7558-79-4) 

iv. 20.g of KH2PO4 (CAS#: 7778-77-0) 

v. 16.08g of NH4Cl (CAS#: 12125-02-9) 

vi. 4.32g of Na2SO4 (CAS#: 7757-82-6) 

vii. 2.94g of MgSO4 (CAS#: 10034-99-8) 

viii. 30mL of Glycerol (Wash out glycerol from graduate cylinder 

using DI water, getting AIM to 6.0 L) (CAS#: 56-81-5) 

ix. 3g of Dextrose (CAS#: 50-99-7) 

x. 12g of Lactose (CAS#: 5989-81-1) 
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d. Spin to homogeneity (Should be yellow-brown, no floating 

particulates) 

2. Using 500mL beaker or 250mL flask, make 250 mL of LB 

a. Fill container with approximately 200 mL of DI water 

b. Add sterile stir bar, begin mixing before adding ingredients 

c. Add ingredients 

1. 2.50g of Peptone (Tryptone) 

2. 1.25g of Yeast Extract 

3. 2.50g of NaCl (CAS#: 7647-14-5) 

d. Spin to homogeneity (Should be yellow, no floating particulates) 

3. Divide AIM into 6 2.0L flasks (1L in each) 

4. Pour LB into 1 500mL flasks  

5. Autoclave AIM and LB, 35 minute wet cycle, 0 minutes dry 

6. When cool, add 1% (V/V) of ampicillin solution (see Note 1) to LB, which 

should be approximately 2.5 mL. 

7. Add bugs to LB 

8. Shake overnight at 37deg C, 250RPM. Keep in mind that this cycle should 

last approximately 18 hours 

 

Note 1: Ampicillin (CAS#: 7177-48-2) should be set to 5 mg/mL in DI Water. A 

pellet of NaOH may be added to make it easier for Ampicillin to dissolve. 
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Solution should be stored in cold environment. Ampicillin salt does not require 

addition pellet of NaOH. 

 

Day Two: Induction 

1. Add 1% (V/V) of ampicillin solution to each 2.0L flask with 1L of LB, 

which should be 10 mL.  

2. Divides contents of LB flask into the six AIM flask  

3. Shake for 24 hours at 37 deg C, 250 RPM 

4. Wash empty LB flasks with dilute solution bleach in water 

 

Day Three: Harvesting and Lysing 

1. The French Press apparatus should be placed in the refrigerator in order 

to minimize time bacteria spends near or at room temperatures.  

2. Form pellets of bacteria 

a. Add contents of 2 2.0L AIM flasks into 6 800mL centrifuge bottles 

b. Balance centrifuge bottles with DI water 

c. Centrifuge bottles at 5000 RPM for 10 minutes 

d. Discard supernatant into empty AIM flasks 

e. Repeat steps A-D with remaining sets of AIM flasks. Take 

particular note that pellets should be facing same direction when in 

centrifuge rotor as previous centrifugations.  
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3. Using 10mL pipette tip, carefully move pellets from 5 centrifuge bottles 

into one bottle.  

4. Using 40mL of BRB80+.1%BME (See Note 2), sequentially wash out five 

remaining centrifuge bottles, with extra concern in resuspending 

remaining pellet (scrape with 10mL pipette tip, shake vigorously) 

5. Add BRB80+.1%BME+remaining pellet into centrifuge bottle with pellets 

6. Resuspend pellet in last bottle by scraping with 10mL pipette tip and 

shaking vigorously. Pour solution into 3-4 50mL falcon tubes 

7. Clean out remaining 6 centrifuge bottles ~30 mL of 50% BRB80+.1% BME 

solution/Isopropanol solution 

8. Add equal amounts of 50% BRB80+.1% BME solution/Isopropanol solution 

in 50mL falcon tubes, vortexing resulting solution. There should be 

approximately 40 mL in each falcon tube. 

9. Flash freeze 50mL falcon tubes in isopropanol/dry ice slurry for a period of 

at least 15 minutes (This is a period of time where it might be good to take 

a break, or eat lunch, provided there is enough dry ice) 

10. Thaw pellet in running water 

11. Run resuspended pellet through French Press 

12. Set up French Press apparatus. Plunger should inserted to the 

appropriate level, appropriate tubing hooked up, and cap securely 

fastened by bolt. 

13. Insert apparatus into machine and activate. 
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14. Ensure that the pressure within the apparatus does not fall below 1000 

PSI and exceed 1200 PSI to maximize cell shearing. 

15. Repeat twice for each 50 mL falcon tube of resuspended pellet. 

16. Wash apparatus and return to Foltz laboratory.  

17. In a 500mL beaker, boil ~200mL of water (NOT DI water). Once boiling, 

boil falcon tubes until solution in falcon tubes begins to foam (~5 min) 

18. Pour suspended pellets into four centrifuge tubes. Wash out falcon tubes 

w/ BRB80+.1%BME, using wash to balance centrifuge tubes 

19. Spin suspension at 10K RPM, 4deg C for 10 minutes. 

20. Freeze supernatant in -80deg Freezer. Trash pellet in sink.  

 

Note 2: BRB80 is 80mM PIPES (CAS#: 1000037-69-2), 1 mM EGTA (CAS#: 67-

42-5), and 1 mM MgCl2 (CAS#: 7791-18-6). .1% (V/V) of BME (CAS#: 60-24-2) 

should be added after solution has been maded.  

 

Day Four: Phosphocellulose Column 

1. Prepared column bed buffers: 1.0L of .5M NaOH, 2.0L of NaPO4 buffer, 

and 1.0L of .5 M HCl (under fume hood) (see Note 3).  

2. While cycling pH through columns, melt lysate (supernatant) from Day 3 

in running cold water and clean column/tubing necessary for 

phosphocellulose chromotography 

3. Cycle pH through column: 
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a. Weigh ~1g phosphocellulose per liter of AIM used (6g for 6.0L of 

AIM) 

b. Pour ~250mL of NaOH solution on phosphocellulose, mix 

thoroughly 

c. Allow phosphocellulose to settle until clear boundary forms (~5 

minutes) 

d. Pour off fines into sink 

e. Repeat steps b-d but with phosphate buffer, HCl solution, and 

finally phosphate buffer 

f. Buffer exchange using steps b-d with BRB80+.1%BME twice. Pour 

as much off as possible without losing phosphocellulose 

4. Mix lysate with phosphocellulose 

5. In 50 mL falcon tubes, rotate phosphocellulose+lysate mixtures in cold 

room for ~60 minutes.   

6. Pour into clean column, allowing for phosphocellulose to settle within 

column. If everything cannot fit into column, wait until phospocellulose 

has settled, pipette solution into reservoir, and pour remaining 

phosophocellulose+lysate into column 

7. Connect column to peristaltic pump (downstream) and column to reservoir 

cup (upstream) 

8. Run column 



145 

 

a. Gradually increasing collect speed from 0 to 3 mL/min, run flow-

through phosphocellulose column and collect.  

b. Wash with 2 column volumes (for ~6g of phosphocellulose, 50 mL) 

of BRB80+.1% BME. 

c. Collect fractions 1-8 of 2 column volumes of 50 mM (NH4)2SO4. 150 

mM (NH4)2SO4, 250 mM (NH4)2SO4, and 1 M (NH4)2SO4, all in 

BRB80+.1% BME.  

9. Run column results of flow through, wash, and fractions acquired from 

phosphocellulose columns with SDS-PAGE (See SDS-PAGE Protocol) 

 

Note 3: Sodium phosphate buffer is 87.2 g of sodium phosphate dibasic (CAS#: 

7558-79-4) and 47.8 g of sodium phosphate monobasic (CAS#: 10049-21-5).  

 

Day Five: Hydrophobic Interaction Chromotography (HIC) Column 

1. Having identified the fractions in which pure target protein appears, 

collect the appropriate fractions and add (NH4)2SO4 to get the salt 

concentration to 1M. 

2. Once HIC Column has been completely washed with Buffer A, load 

sample: 

a. Place 50mL falcon tube at the end of waste line to collect 

b. Bring column off-line by disconnecting feed tubing from intermix 

chamber 
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c. Connect feed line to clean column 

d. Anchor syringe to scaffolding 

e. Add all fractions + proteins to syringe 

f. Run at 1.00 mL/min 

3. Reconnect tubing to mixing chamber, and flow 10 column volumes of 

buffer A to wash through at 1 mL/min (it is possible that air has been 

trapped in the line between syringe/mixing chamber and the column; in 

that case, it is best to unhook the line before the column and allow air to 

escape until only buffer is coming through, then reconnecting) 

4. Run HIC Column program: 

a. Fill rack with culture tubes in appropriate fraction collector 

b. Run HIC program 

1. 0-60% Buffer B for 100 min 

2. 60-100% Buffer B for 10 min 

3. Collect in 1.5 mL fractions 

c. Clean column with cleaning program 

5. Take 10uL aliquots from approximately every 3rd fraction and run using 

SDS-PAGE gels to identify fractions containing the target protein 

 

Day Six: Concentration and Characterization 

1. Identify from SDS-PAGE results and concentrate relevant fractions with 

Amicon Centrifugal units and run Tau characterization.  
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SDS-PAGE Protocol 

Purpose: SDS-Page can be used to identify and quantify proteins of interest.  

SDS-PAGE Gel: 

Necessary Materials: 4x Resolving Buffer, 4x Stacking Buffer, 1x Electrode 

Buffer, 40% Bis/Acrylamide, DI Water, 10% APS, TEMED (CAS#: 110-18-9), 

Isopropanol, 2x Sample Buffer 

 

4x Resolving Buffer: 1.5M Tris (Acid or Base), pH 8.8, .4% (%W/V) of sodium 

dodecyl sulfate (CAS #151-21-3) OR sodium lauryl sulfate 

4x Stacking Buffer: .5M Tris (Acid or Base), pH 6.8, .4% (%W/V) of sodium 

dodecyl sulfate (CAS #151-21-3) OR sodium lauryl sulfate 

10x Running Buffer (1 L): 144g of Glycine (CAS#: 56-40-6), 30g of Tris Acid 

(CAS#: 1185-53-1), 10g of sodium dodecyl sulfate (SDS), filling up to 1L with DI 

water. For 1x running buffer, dilute 10x running with 9:1 ratio of DI Water:10x 

running buffer 

10% APS: 1g of ammonium persulfate (CAS#: 7727-54-0), filling up to 1mL with 

DI water 

2x Sample Buffer (40 mL):10 mL of 4x stacking buffer, 10 mL of glycerol, .8 g of 

sodium dodecyl sulfate (SDS), .1g of bromophenol blue (CAS#: 115-39-9), fill up 

to 40 mL with DI water 
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Table 1: Formula Chart for 1 Resolving Gel 

 
7% 8% 10% 12% 14% 

40% Bis/Acrylamide .875 mL 1.0 mL 1.25 mL 1.5 mL 1.75 mL 

4x Resolving Buffer 1.25 mL 1.25 mL 1.25 mL 1.25 mL 1.25 mL 

DI Water 2.875 mL 2.75 mL 2.5 mL 2.25 mL 2.0 mL 

10% APS 40 uL 40 uL 40 uL 40 uL 40 uL 

Temed 8 uL 8 uL 8 uL 8 uL 8 uL 

 

 

 

Table 2: Formula Chart for 2 Resolving Gels 

 
7% 8% 10% 12% 14% 

40% Bis/Acrylamide 1.75 mL 2.0 mL 2.5 mL 3.0 mL 3.5 mL 

4x Resolving Buffer 2.5 mL 2.5 mL 2.5 mL 2.5 mL 2.5 mL 

DI Water 2.875 mL 5.5 mL 5 mL 4.5 mL 4.0 mL 

10% APS 80 uL 80 uL 80 uL 80 uL 80 uL 

Temed 16 uL 16 uL 16 uL 16 uL 16 uL 

 

  

Table 3: Formula Chart for 2 Stacking Gels 

40% Bis/Acrylamide .625 mL 

4x Stacking Buffer 1.25 mL 

DI Water 3.125 mL 

10% APS 40 uL 

Temed 10 uL 
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1. Take appropriate number of gel plates and place in gel plate holder. Once 

secure in gel plate holder, put gel plate holder + gel plates in gel holder 

dock. Fill with water to ensure bottom of the gel plates are appropriately 

sealed.  

2. Make resolving gel solutions without adding APS or TEMED. 

3. Once the gel plates have been sealed from the bottom, evacuate water and 

wick with kimwipes to dry out gap between gel plates. 

4. Add APS and TEMED to resolving gel solution, adding 4.4 mL of the 

complete solution to each gap between gel plates. Quickly pipette 

isopropanol on top of polymerizing resolving gel solution to get rid of 

bubbles and define clear boundary.  

5. Prepare stacking gel solution while resolving gel is polymerizing. Again, 

do not add APS or TEMED until resolving gel has been completely 

polymerized.  

6. Once resolving gel has been polymerized, wash out with DI water and 

wick with kimwipes/paper towels to dry out remaining gap between gel 

plates.  

7. Add APS and TEMED to stacking gel solution, adding to the very top of 

the gel plates. Quickly insert gel comb to create loading wells for samples.  

8. Store in 1x running buffer for future use (within 1 week of creation) 
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