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Abstract:

The Search for Hidden Mixing; Analysis of the Collective and Intrusive Instabilities

for Low Prandtl Number and Diffusivity Ratio Systems

by

Michael Medrano

Low mass stars on the red giant branch (RGB) experience more mixing in their outer convection zone

than what is predicted by stellar evolution theory. If there exists an inverse composition gradient on the

external wing of the HBS shell after the first ‘dredge- up’, then an unstable composition stratification along

with the stable stratification played by entropy implies that double diffusive mixing processes should occur

in stellar interiors and that some of the hidden mixing might be a result of double diffusive convection.

We explore double diffusive modes in the case where there exists a lateral gradient in composition and

entropy, in addition to a vertical gradient in order to understand their mixing rates. We find that under these

circumstances, the mixing rates of laminar fingering modes and oscillatory modes may be able to address

the missing mixing problem. In addition, we find that the ‘collective instability’, oscillatory modes with no

lateral gradients cannot explain the missing mixing on the RGB.
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1 Introduction:

1.1 Motivation:

This study seeks to gain a more complete understanding of the mixing processes involved in low mass

stars (.8M@ ă M ă 1.2M@) as they ascend the red giant branch (RGB). After the star has exhausted all the

hydrogen in the core, it continues to fuse hydrogen in a shell surrounding the Helium- rich core. While the

core is typically stable to convection, stars on the RGB usually have an outer convection zone located in a

shell near the surface. This region is homogeneously mixed.

As time progresses, the hydrogen burning shell (HBS) gets thinner (Charbonnel and Zahn, 2007). Simul-

taneously, the outer convective envelope expands inwards and mixes roughly 50% of the star by mass in an

event called the “First Dredge Up” (Gilroy, 1989). The major elements dredged up from the deep layers into

the convective envelope are 13C and 14N- both of which are products of the CNO cycle (Gilroy, 1989). In

addition to transporting the products of fusion from deep within the star to the surface, fragile elements such

as Li, Be, and B and the primordial 12C are brought down from the surface to the bottom of the convective

zone (Gilroy, 1989). Since the temperature of the deepest regions of the convective shell are very hot, the

light elements are burned. We observe this event as a drop in the spectral abundances of Li, Be, and B. The

ratios 12C{13C and 12C{14N also change as a result of the dredge- up event.

After the first dredge up event, the hydrogen burning shell continues to expand outwards- closely

following the retreating convective envelope. However, the two regions - the hydrogen burning shell and

outer convective envelope- never overlap. As a result, no further changes in surface abundances and isotopic

ratios are predicted (Charbonnel and Zahn, 2007). This model is referred to as the canonical stellar evolution

theory on the RGB.

The problem with stellar evolution theory along the RGB is that after the first dredge up, the observed

isotopic ratios and abundances continue to change dramatically; we would otherwise expect these values to

remain constant (Gilroy, 1989, Charbonnel, 1994, Gratton et al., 2000, Dearborn et al., 1975, Charbonnel
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Figure 1: The internal structure of a low mass RGB star. Shortly after the end of the Main Sequence (« 10
Gyr), the convective region is restricted to m{M@ « 1. The hydrogen burning shells are located much deep
in the star, m{M@ « .2. The “first dredge up" occurs at t « 12.3 Gyr. The luminosity bump occurs shortly
after- marked by the green curve LH . Courtesy K. Moore.

and Zahn, 2007). Palacios and Brun (2007) point out that no less than 98% of low -mass stars along the

RGB exhibit surface abundances which vary sharply from the predicted value. This discrepancy implies that

there must be some internal mixing between the convective zone and the hydrogen burning shell that is not

accounted for by canonical stellar theory. Numerous studies have been published with the aim of investigat-

ing possible mechanisms for mixing along the RGB after the first dredge up.

The possibility that rotation in stars could account for the missing mixing along the RGB has been ex-

plored intensely by Sweigart and Mengel (1979), Lattanzio et al. (2006), Wasserburg et al. (1995) - among

others. In a more recent paper, Palacios et al. (2006) found that rotation is unable to produce the mixing

required to explain the abundance problem in low mass RGB stars.

More recently, Eggleton et al. (2007) investigated a new mixing process they attribute to the presence

2



Figure 2: Mean Molecular Weight µ as a function of reduced mass coordinate m{M@ after HBS moves
past lowest point of the first dredge up. We see an inverse µ gradient since 3p3He,2p)4 is the energetically
preferred reaction in the cooler region of the HBS- the HBS region closest to the surface of the star. Courtesy
Garaud.

of an inverse molecular weight gradient resulting from the energetically favorable 3p3He,2p)4He pp chain

reaction. The final step of the p-p chain is 3He burning, 3He` 3HeÑ 1H` 1H` 4He reaction - abbreviated

as 3p3He,2p)4He. This reaction increases the number of particles per unit mass and therefore decreases the

mean molecular weight (Ulrich, 1972). Since the portion of the HBS closest to the surface is relatively cool,

the dominant reaction in the external wing of the HBS is 3p3He,2p)4 (Eggleton et al., 2006, 2007, Ulrich,

1972). All other reactions involved in the p-p chain are suppressed. Closer to the core region, the temper-

ature becomes warm enough for all the processes involved in the p-p chain to take place. Restricting our

attention to the cooler region in the HBS, we observe a compositionally unstable stratification or inverse µ

profile (see Figure 2).

Dearborn et al. (2006) ran 3D simulations to investigate the mixing processes resulting from such an

3



unstable stratification and found that they might help to solve the problem of the observed surface isotopic

abundances. They initially attributed the observed mixing to the Rayleigh- Taylor Instability (i.e. the over-

laying of dense fluid over light fluid) (Dearborn et al., 2006, Eggleton et al., 2006, 2007). Charbonnel and

Zahn (2007) later showed that the system they were referring to is more accurately described by the “thermo-

haline instability”, a double diffusive instability named after a related process that takes place in the ocean

and that can occur even when the density is stably stratified. This instability is the subject of this thesis.

We discuss the thermohaline instability as well as the related semi- convective instability in the following

section.

1.2 Small- Scale Double- Diffusive Instabilities:

Consider some fluid in a 3-dimensional Cartesian coordinate system. Acceleration due to gravity is act-

ing in the ´êz direction. Double diffusive convection occurs when the density of a fluid depends on two or

more components which diffuse at different rates. There are two kinds of double diffusive convection: fin-

gering convection (thermohaline convection) and oscillatory double diffusive convection (semi- convection).

Oscillatory double diffusive convection (ODDC), or semi-convection, occurs if the more slowly diffusing

component has a stable vertical stratification, whereas the more quickly diffusing component has an unstable

stratification. This happens for example in the oceanographic case where heat diffuses much more quickly

than salt, whenever both temperature and salinity decrease upward. This situation is commonly found in the

polar ocean.

Consider the case illustrated in Figure 3 in which a parcel of water -which has all the properties (i.e.

salinity and temperature) of water at its initial vertical position - is perturbed downward. If not for the

quickly diffusing component of temperature, this water parcel, perturbed slightly would experience a restor-

ing force back toward its initial position; the reason for this is that its the background density profile is stable.

However, if temperature diffusion occurs very rapidly, the water parcel will gain some heat from the envi-

ronment when perturbed downward. The water parcel will become lighter - when compared to parcels of

4



Figure 3: The ODDC Instability. The water parcel (black circle) is perturbed downward. The dotted black
line shows the motion of the parcel in the case temperature diffusion is negligible and hence, the density of
the parcel is constant. Notice, that in this case, the trajectory is purely oscillatory. The black line shows the
case where temperature diffusion occurs much more rapidly than diffusion due to salinity. The result of this
process is to amplify amplitude of the wave motion in the vertical. From Garaud (2013)

water at the same height - and begins to rise again. Because the water parcel is lighter than it was prior to the

initial perturbation, it overshoots its initial vertical position. It looses some heat to the surrounding environ-

ment after overshooting and its density increases again. Since the density of the water parcel increases, the

water parcel begins to sink and overshoots further down again. This feedback results in oscillatory motion

in the vertical direction with an amplitude that grows exponentially. Although it is useful to understand this

process for later, my work will be more concerned with the properties of fingering convection, described

below.

Fingering convection (also called thermohaline convection) occurs when the slowly diffusing component

has an unstable stratification and the quickly diffusing component has a stable stratification. In the case of

salt water, again, this situation commonly occurs in the tropical ocean where warm salty water lies on top of

cool fresh water (see Figure 4). If a parcel of water in this system is perturbed downward slightly, and diffu-

sion due to temperature is ignored, again its tendency is to return to its initial vertical position. However, if

temperature diffusion occurs very rapidly, heat will be lost by the water parcel. The result of this process is

an increase in density of the water parcel relative to its new environment; and, the parcel continues to sink -

5



Figure 4: The Basic Fingering Instability. Here a relatively warm and salty water parcel (black circle) is
perturbed downward. Since, temperature diffusion occurs very rapidly, the parcel becomes much cooler and
hence, denser than neighboring parcel and begins to sink. From Garaud (2013)

forming columns of salty water or “salt fingers". In stars ascending the RGB, the molecular weight inversion

caused by changing chemical composition plays the role of the unstable salinity stratification and entropy

plays the role of temperature, but the process of the fingering instability is otherwise unchanged. The only

difference lies in the typical system parameters (see Section 3.3).

1.3 Mathematical Model of Fingering Instabilities

In order to model a system unstable to fingering convection, we assume a Cartesian coordinate system

with gravity acting in the direction g “ ´gez. We treat the fluid with the Boussinesq approximation (Spiegel

and Veronis, 1960). This approximation is valid in the case where the fingering scales are much smaller than

the local scale height which is always true in stars and the velocities of the fluid are highly subsonic (Spiegel

and Veronis, 1960).

The background temperature and composition profiles are given by T0pzq “ T0zz and µ0pzq “ µ0zz.

The diffusion coefficient due to temperature and molecular weight are κT and κµ. We represent the viscosity

of the fluid by ν. The equation of state is given by:
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ρ

ρ0
“ αT ` βµ (1)

where ρ0 is the mean density of the region, ρ is the deviation from the mean, α “ ´Bρ{BT |T0,µ0 - the coeffi-

cient corresponding to thermal expansion- and β “ Bρ{Bµ|T0,µ0 - the coefficient of compositional contraction.

To non-dimensionalize the system, we employ the following scales. As in Traxler et al. (2011), we let the

length scale be the expected finger scale
“

l
‰

“ d “ pκTν{gα
ˇ

ˇT0z ´ T ad
0z

ˇ

ˇq1{4 where T ad
0z is the local adi-

abatic temperature gradient. For time
“

t
‰

“ d2{κT , temperature
“

T
‰

“ pT0z ´ T ad
0z qd, and composition

“

µ
‰

“ pα{βqpT0z´ T ad
0z qd. The relevant non-dimensional parameters are the Prandtl number Pr ” ν{κT , and

the diffusivity ratio τ ” κµ{κT . Not that for salt water Pr „ 7 and τ „ 0.01 while for stars Pr „ 10´6 and

τ „ 10´6.

In studies of fingering or oscillatory double -diffusive convection, the relevant parameter for stability

is the density ratio, defined as:

R0 “
α
`

T0z ´ T ad
0z

˘

βµ0z
“

O´ Oad
φ
δ
Oµ

(2)

Here, O “
`

dlnT{dlnP
˘

is the temperature gradient, Oad “ pdlnT{dlnPqad is the adiabatic temperature

gradient, and Oµ “ pdlnµ{dlnPq is the compositional gradient (Kippenhahn et al., 1990). We investigate

systems in which 1 ă R0 ă 1{τ, which are unstable to fingering convection (Baines and Gill, 1969). As in

Brown et al. (2013), we will sometimes prefer to use the “reduced density ratio",

r “
R0 ´ 1
τ´1 ´ 1

(3)

7



in which case the instability range is r ε
“

0, 1
‰

(Brown et al., 2013). The non-dimensional governing equa-

tions for the fingering instability are then given by (Spiegel and Veronis, 1960):

O ¨ u “ 0 (4)

1
Pr

ˆ

Bu
Bt
` u ¨ Ou

˙

“ ´Op` pT ´ µqêz ` O2u (5)

BT
Bt
` u ¨ OT ` w “ O2T (6)

BS
Bt
` u ¨ Oµ`

w
R0
“ τO2µ. (7)

To determine the properties of the fastest growing fingering mode, we linearize these equations assuming

solutions of the form:

u “ ũpx, y, z, tq

Ppx, y, z, tq “ P0pzq ` P̃px, y, z, tq

T px, y, z, tq “ T0pzq ` T̃ px, y, z, tq

µpx, y, z, tq “ µ0pzq ` µ̃px, y, z, tq

where the tilde terms represent small perturbation to the background fields, P0pzq, T0pzq, and µ0pzq. The

background velocity field is assumed to be zero.

Substituting these expressions into the non- dimensionalized momentum equation and throwing away

terms that are quadratic in the perturbations gives:

1
Pr

ˆ

Bũ
Bt
` ũ ¨ Oũ

˙

“ ´Op` pT ´ µqẑ` O2ũ

ñ
1
Pr
Bũ
Bt
“ ´Opp0 ` p̃q ` pT0 ` T̃ ´ pµ0 ` µ̃qqez ` O2ũ

ñ
1
Pr
Bũ
Bt
“ ´Op̃` pT̃ ´ µ̃qẑ` O2ũ

8



as long as Op0 ` T0 ´ µ0 “ 0. In this derivation, we have neglected many effects such as temperature de-

pendent viscosity and diffusivity and cross diffusion effects - the case where the molecular diffusion of one

substance is affected by the gradient of others (Radko, 2013). In addition, all non- linear effects of double

diffusive convection have been completely neglected. For information on these, see Radko (2013).

After linearizing the temperature and chemical composition equations in a similar fashion and discarding

the tildes, the linearized governing equations are given by (Spiegel and Veronis, 1960):

O ¨ u “ 0 (8)

1
Pr
Bu
Bt
“ ´Op` pT ´ µqez ` O2u (9)

BT
Bt
` w “ O2T (10)

Bµ

Bt
`

w
R0
“ τO2µ. (11)

We then assume the velocity, temperature, and composition fields have the form:

 

u,T, µ
(

“
 

û, T̂ , µ̂
(

exppλt ` mx` ny` kzq. (12)

where λ is the growth rate of the corresponding mode and m, n, and k are wave numbers associated with

axes x, y, and z. We substitute this ansatz into the governing equations (Baines and Gill, 1969). It can be

shown that the growth rate of the fingers are independent of the vertical wavenumber k - and so, the terms

involving k are discarded here (Radko, 2013). We define l “
?

n2 ` m2 to be the horizontal wavenumber.

9



Combining the governing equations results in the following cubic (Baines and Gill, 1969):

λ3 ` a2λ
2 ` a1λ` a0 “ 0 (13)

a2 “ l2p1` Pr ` τq (14)

a1 “ l4pτPr ` Pr ` τq ` Prp1´ R´1
0 q (15)

a0 “ l6τPr ` l2Prpτ´ R´1
0 q. (16)

In order to determine the growth rate λ of the fastest growing mode, we maximize λ with respect to the

horizontal wavenumber l (Brown et al., 2013). This results in the following quadratic for λ (Brown et al.,

2013):

a2λ
2 ` a1λ` a0 “ 0 (17)

a2 “ 1` Pr ` τ (18)

a1 “ 2l2
`

τPr ` τ` Pr
˘

(19)

a0 “ 3l4 τPr ` Pr
`

τ´
1

R0

˘

. (20)

Equations (13) and (17) can then be solved simultaneously for λ and l using a Newton- Raphson algorithm

to find the fastest growing mode λmax and its corresponding wavenumber lmax (Brown et al., 2013).

The Newton Method is rooted in the Taylor series expansion of a function in the neighborhood of a

point (Press et al., 1992),

f px` δq « f pxq ` f 1pxqδ`
f 2pxq

2
δ2 ` ...

For small values of δ, and for well- behaved functions, the terms of order δ2 and above can be neglected

(Press et al., 1992). If we let xi`1 “ x`δ and xi “ x, then the taylor expansion of f pxq can be approximated

10



as:

f pxi`1q « f pxiq ` f 1pxiqpxi`1 ´ xiq.

Since, we would like to know the roots of f pxq, we let f pxi`1q Ñ 0 and solve for xi`1 given xi

xi`1 “ xi ´
f pxiq

f 1pxiq
.

The analogue in the the 2D case is:

pxi`1, yi`1q “ pxi, yiq ´ Jacp f pxi, yiq, gpxi, yiqq
´1 ¨ p f pxi, yiq, gpxi, yiqq (21)

where Jac refers to the Jacobian of the functions f px, yq and gpx, yq. The algorithm is repeated until the error

drops below required tolerance. For our purposes, this tolerance is Op10´14q. See Press et al. (1992) for

more information.

Going back to our original problem of finding its corresponding horizontal wavenumber lmax. We simply

use the Newton algorithm described above to solve equations (13) and (17) simultaneously. This requires an

initial trial guess pλ0, l0q. The success of the algorithm is highly dependent upon the closeness of the initial

guess. The initial trial guess for λmax and lmax are taken from Appendix B: Asymptotic Analysis from Brown

et al. (2013).

Using this numerical method with the asymptotic guesses, we are able to reproduce Figure 13 from

Brown et al. (2013) - which overlays their semi- analytical predictions on top of the numerical solution for

λmax as a function of the reduced density ratio r (see eq (3)) for values values of Pr and τ. We find that

the fingering growth rate λmax, goes to zero as r Ñ 1 or equivalently, as R0 Ñ 1{τ- which is the point of

marginal stability. This is consistent with what we would expect by directly examining the marginal stability

of the cubic (13) instead. Indeed, at marginal stability, λ “ 0. Equation (13) reduces to a0 “ 0. Maximizing

this expression, with respect to the horizontal wavenumber l gives the result: R0 “ 1{τ when λÑ 0.
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Figure 5: A comparison of the numerical and asymptotic values of the growth rate λ as a function of r.

Our ultimate goal is to understand how much mixing can arise from double- diffusive instabilities. The

efficiency of mixing is often measured through the Nusselt number, defined as the ratio of the total flux

(turbulent ` diffusive flux) to the diffused flux or

NuT “
´ dT

dz κT ` FT

´ dT
dz κT

“ 1´ F̂T . (22)

where F̂T is the non- dimensional turbulent flux. Dimensional analysis of the governing equations implies

that the Nusselt Number can only be a function of R0, τ, and Pr. Brown et al. (2013) found that a good

estimate for the thermal and compositional Nusselt numbers at low Prandtl number and diffusivity ratio are

given by:

NuT “ 1`C2 λ2
max

l2maxpλmax ` l2maxq
(23)
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Nuµ “ 1`C2 λ2
max

τl2maxpλmax ` τl2maxq
(24)

where C “ 7.

Using Equation (24) then leads to a total effective flux for composition as:

F total
µ “ ´Nuµκµ

dµ
dz

“ ´κµ, turb
dµ
dz

where κµ, turb “ Nuµκµ. Figure 6 shows Nuµ as a function of R0 for Pr “ τ “ 10´6 based on the Brown

et al. (2013) model.

Traxler et al. (2011), Brown et al. (2013), and Denissenkov and Merryfield (2011), argued that the

mixing resulting from thermohaline or fingering convection cannot explain the missing mixing on the RGB.

Indeed, as shown in Figure 6, Brown et al. (2013)’s model implies a thermohaline mixing rate which is a

factor of 100 smaller than the observationally required rate of RGB extra-mixing. In this work we explore

the possibility that thermohaline convection may excite additional double diffusive instabilities - such as the

collective and intrusive instability. Perhaps, by including these new instabilities, we may be able to explain

the missing mixing along the RGB.
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Figure 6: A comparison of the Nu0 corresponding to fingering convection with Nu0 required by observations
in order to explain the missing mixing problem along the RGB. Courtesy Garaud.

14



2 Large Scale Double Diffusive Instabilities

2.1 The collective and intrusive instabilities

Rather than discuss the instability of a single finger, one could instead discuss the “collective instability”

of many fingers. Again for pedagogical purposes we consider the simple oceanic case of salt water although

similar instabilities exist in stellar interiors as well. To understand the mechanism for the collective instabil-

ity more completely, let’s “zoom out” of the small- scale fingering regime - in which κT " κµ - and observe

the system with this new large scale perspective. We see many salt fingers “falling” in the vertical direction

as opposed to just one salt finger. In this turbulent or “zoomed- out” perspective, the compositional flux is

much greater than the flux due to temperature - that is κµ, turb " κT, turb. Recall from section 3.2, if the quickly

diffusing component has an unstable background stratification, the system is unstable to semi- convection

or ODDC instead of fingering. In the turbulent regime, salinity is the more quickly diffusing component

of density but still has an unstable background stratification - since salty water is overlaying fresher water.

Therefore, from a turbulent perspective, the system produces internal waves whose components - rather than

microscopic water parcels - are patches of fingers. This phenomenon is known as the “collective instability”;

however, the mechanism described is really ODDC.

Another common large-scale instability is that of intrusions. One property that all intrusions have

in common is that they are excited only when there exists a lateral gradient of temperature and salinity in

the system, in addition to the vertical gradients previously discussed (see Section 4.2) (Radko, 2013). The

mixing that results from intrusions is sometimes referred to as “direct” since intrusions consistently transfer

warm, salty fluid laterally into colder, fresher regions and vice- versa (Radko, 2013), while in the collective

instability the fluid flow periodically changes direction. The picture describing the intrusive instability is as

follows.

Consider the system in Figure 7. The fronts of the intrusive currents and temperature and salinity

contours are tilted such that they are sloping downward in the positive x - direction (Radko, 2013). The

intrusions are less tilted than the isotherms and isohalines (Radko, 2013). As a result, the upward mov-
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Figure 7: The Intrusive Instability. The dotted lines correspond to the mean isohalines. Although the
isotherms are not shown, there slope very close follows the isohalines. From Radko (2013)

ing flow or (intrusions) transports warm, salty water across isohalines and isotherms to cold, fresh regions

(Radko, 2013).

This fluid advection results in a local increase of temperature and salinity, in the region where the fluid

was advected to. In contrast, the downward flows or intrusions reduce the local salinity and temperature

since they advect cold, fresh water across isotherm and isohalines to regions of warm, salty water (Radko,

2013). We find that in regions below the upward intrusions and above the downward moving intrusions, the

fluid flow the gradient of the local temperature, salinity stratifications - thus, increasing the vertical flux of

fingers. In regions below the downward intrusions, but above the upward moving intrusions, the background

gradients are reduced - the result of which is to decrease the vertical flux of the fingers. This leads to appos-

itive feedback loop which promotes the exponential growth of the instability.

Intrusions and the collective instability waves share many qualities. Both of these instabilities are driven

by a feedback loop in which the advection of some fluid alters the local density and temperature stratifica-
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tions and thus enhancing or diminishing the vertical flux of fingers. A major difference between these modes

is that the intrusions require a lateral gradient to exist, while the “Collective Instability” does not (Radko,

2013).

2.2 Unified Mathematical Model for Double Diffusive Instabilities

In the presence of lateral temperature and chemical composition gradients, Traxler et al. (2011) proposed

a unified formalism to study, at the same time, standard instabilities (fingering instability, and ODDC), as

well as, collective instabilities (turbulent intrusions and gravity waves). We reproduce their derivation here.

The dimensional background temperatures and composition profiles are now given by T0px, zq “ T0xx`

T0zz and µ0px, zq “ µ0xx` µ0zz. As in Traxler et al. (2011), we assume that the total background horizontal

density gradient to be zero, which implies αT0x ´ βµ0x “ 0 Traxler et al. (2011). We refer to the slope of

the background temperature gradient φ “ T0x{T0z, as the non-dimensional lateral gradient.

In the presence of lateral temperature and compositional gradients, the non-dimensional equations for

the evolution of the velocity, temperature, and composition fields, respectively u “ pu, v,wq, T px, y, z, tq,

and µpx, y, z, tq are (Traxler et al., 2011):

1
Pr
p
Bu
Bt
` u ¨ Ouq “ ´Op` pT ´ µqêz ` O2u, (25)

O ¨ u “ 0, (26)

BT
Bt
` φu` w` u ¨ OT “ O2T, (27)

Bµ

Bt
` φu`

1
R0

w` u ¨ Oµ “ τO2µ. (28)

To model the collective effect of many fingers in driving large- scale instabilities, we use a mean field
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theory, which assumes a separation of scales between the large- scale turbulent modes and the small- scale

fingering structures. We define:

upx, y, z, tq “ ūpx, y, z, tq ` u1px, y, z, tq (29)

T px, y, z, tq “ T̄ px, y, z, tq ` T 1px, y, z, tq (30)

µpx, y, z, tq “ µ̄px, y, z, tq ` µ1px, y, z, tq (31)

where u, T , and µ are averages and u1, T 1 and µ1 are perturbations. The averaging process (denoted by a bar

sign: ...) is defined by the following rules:

u “ u (32)

u1 “ 0 (33)

Typically, we will think of the averaging process as a local spatio- temporal average over many fingers.

Making the substitution u “ u ` u1 and similarly for temperature and composition into the momentum

equation gives:

1
Pr

ˆ

Bu
Bt
`
Bu1

Bt
` pu` u1q ¨ Opu` u1q

˙

“ ´OP` pT ` T 1 ´ µ´ µ1qêz ` O2u` O2u1

Expanding the third term on the L.H.S gives:

1
Pr

ˆ

Bu
Bt
`
Bu1

Bt
` u ¨ Ou` u ¨ Ou1 ` u1 ¨ Ou` u ¨ Ou1

˙

“ ´OP` pT ` T 1 ´ µ´ µ1qêz ` O2u` O2u1
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In order to proceed, we must assume that the averaging process commutes with time and spatial derivatives

(hence the need for scale separation). Applying the averaging process on the previous expression gives:

1
Pr

ˆ

Bu
Bt
` u ¨ Ou` u1 ¨ Ou1

˙

“ ´Op` pT ´ µqêz ` O2u

After moving the third term on the L.H.S to the right and defining the Reynold’s Stress term: Ri j “ u1iu
1
j, the

momentum equation becomes:

1
Pr

ˆ

Bu
Bt
` u ¨ Ou

˙

“ ´Op` pT ´ µqêz ` O2u´
1
Pr

O ¨ R (34)

Similarly, we obtain expressions for temperature and chemical composition:

BT
Bt
` φu` w` u ¨ OT “ O2T ´ O ¨ FT (35)

Bµ

Bt
` φu`

1
R0

w` u ¨ Oµ “ τO2µ´ O ¨ Fµ (36)

where FT ” u1T 1 and Fµ ” u1µ1.

These equations show that in order to evolve the large scale fields u, T , and µ in time and space, we

need to be able to express the turbulent fluxes of heat, FT, chemical composition Fµ and, momentum R in

terms of the large scale quantities, but these are a priori known only in terms of the small- scale perturba-

tions. This is a standard closure problem for turbulence. Traxler et al. (2011) addressed the closure problem

by neglecting the momentum flux R and by assuming that most of the temperature and compositional flux is

in the vertical direction so that,

O ¨ FT «
dFT

dz

O ¨ Fµ «
dFµ

dz
.
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The motivation for this approximation stems from the fact that the fingers transport material principally in

the vertical direction.

For fixed Pr and τ, the Nusselt number is a function of only Rρ- the local background density- which is

defined as:

Rρ “
αT0zp1` BT{Bzq

βµ0z

„

1`
`αT0z
βµ0z

˘

Bµ{Bz
 “ R0

1` BT{Bz
1` R0Bµ{Bz

. (37)

Now, recall the Nusselt number is defined as the ratio of the total flux to the diffused flux or NuT “

´ dT
dz `FT

´ dT
dz

. Solving for the flux due to temperature gives: FT “ p1 ´ Nuqp1 ` dT
dz q. The vertical derivative of

this quantity is then given by:

´
dFT

dz
“ ´

ˆ

B2T
Bz2 ´

BNu
Bz

´
BNu
Bz

BT
Bz
´ Nu

B2T
Bz2

˙

“
BNu
Bz

`
BNu
Bz

BT
Bz
` pNu´ 1q

B2T
Bz2

(38)

To find dNu{dz, we Taylor expand the Nusselt Number and flux ratio about R0:

NupRρq “ NupR0q ` pRρ ´ R0q
dNupRρq

dRρ

ˇ

ˇ

ˇ

ˇ

R0
` ...

Then,

dNu
dz

“
dRρ

dz
dNupR0q

dRρ
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Taylor expanding the density ratio and throwing the nonlinear terms away gives:

Rρ “ R0
1` dT

dz

1` R0
dµ
dz

« R0
`

1`
dT
dz

`

1´ R0
dµ
dz

˘˘

« R0
`

1`
dT
dz
´ R0

dµ
dz

˘

.

(39)

The derivative of the local density ratio with respect to the z- direction is then:

dRρ

dz
“ R0

`B2T
Bz2 ´ R0

B2µ

Bz2

˘

(40)

Substituting into eq (38) finally yields:

´
dFT

dz
“ A2

`B2T
Bz2 ´ R0

B2µ

Bz2

˘

` pNu0 ´ 1q
B2T
Bz2 (41)

where

A2 “
dNu0

dRρ
R0 (42)

and Nu0 “ NupR0q. A similar calculation can be done for the compositional flux Fµ and yields

´
dFs

dz
“ A1pNu0 ´ 1q

`B2T
Bz2 ´ R0

B2µ

Bz2

˘

´
1
γ0

dFT

dz
(43)

where,

A1 “ R0
dγ´1

0

dRρ
(44)

and γ´1
0 “ γ´1

turbpR0q and where we have defined a turbulent flux ratio as

γturb “ FT {Fµ “
R0pNuT ´ 1q
τpNuµ ´ 1q

. (45)
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The coefficients A1 and A2 can be found numerically by letting:

dNu0

dRρ
«

NuT pR0 ` εq ´ NuT pR0q

ε
(46)

dγ´1
0

dRρ
«
γ´1

turbpR0 ` εq ´ γ´1
turbpR0q

ε
(47)

where ε is taken to be some small number.

To summarize, the governing equations describing the large scale fields u, T , and µ are given by:

1
Pr

ˆ

Bu
Bt
` u ¨ Ou

˙

“ ´Op` pT ´ µqêz ` O2u (48)

BT
Bt
` φu` w` u ¨ OT “ O2T ´

dFT

dz
(49)

Bµ

Bt
` φu`

1
R0

w` u ¨ Oµ “ τO2µ´
dFµ

dz
(50)

where ´dFT {dz and ´dFµ{dz are given by eqs. (42) and (44). We recover the equations given in Traxler

et al. (2011). Note that if ´dFT {dz “ 0 and ´dFµ{dz “ 0, and letting u Ñ u, T Ñ T , and µ Ñ µ,

we recover the equations for the small scale instabilities in the presence of a lateral gradient φ. In this

sense, this formalism has the advantage of providing a unified view of all possible instabilities in the system,

both on the small scale and on large scales. A standard linear stability analysis assuming fields of the form
 

u,T, S
(

“
 

û, T̂ , Ŝ
(

exppλt ` ipmx` ly` kzqq results in the cubic:

λ3 ` a2λ
2 ` a1λ` a0 “ 0 (51)

where the coefficients are:
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a2 “ |k|2p1` Pr ` τq ` k2rp1´ A1R0qpNu0 ´ 1q ` A2p1´
R0

γ0
qs (52)

a1 “ |k|4pτPr ` τ` Prq ` k2|k|2rpτ` PrqpA2 ` Nu0 ´ 1q

´ A2p1` Prq
R0

γ0
´ A1R0p1` PrqpNu0 ´ 1qs ´ k4A1R0pNu0 ´ 1q2

` Pr
l2 ` m2

|k|2
`

1´
1

R0

˘

(53)

a0 “ |k|6τPr ` k2|k|4Prrpτ´ A1R0qpNu0 ´ 1q ` A2pτ´
R0

γ0
qs

´ k4|k|2PrR0A1pNu0 ´ 1q2 ` Pr
l
|k|2

„

|k|2rl
l2 ` m2

l2
pτ´

1
R0
q

´ kφpτ´ 1qs ` k2A1p1´ R0qpNu0 ´ 1qpl
l2 ` m2

l2
´ kφq ´ k2rA2p1´ R0q

` Nu0 ´ 1srl
l2 ` m2

l2
p

1
R0
´

1
γ0
q ´ kφp1´

1
γ0
qs



(54)

where |k|2 “ k2 ` l2 ` m2. Here, λ is the growth rate of the corresponding mode and m, l, and k are wave

numbers associated with axes x, y, and z. Solving the cubic expression (51) results in three solutions for

the growth rate λ; there are either three real roots, or one real root and two complex- conjugate roots. Of

these three solutions, we are interested in the one with the largest Repλq; all other modes are exponentially

smaller after some time interval t. In addition, solutions whose Repλq ă 0 are also discarded since as t Ñ8,

exppλt`imx`ily`ikzq Ñ 0. Solutions with non-zero imaginary part corresponds to oscillatory modes (e.g.

the collective instability, internal gravity waves). Solutions with zero imaginary part correspond to direct

modes (e.g. the fingering or intrusive instabilities). As discussed above, we recover the fingering cubic (11)

by letting A1 “ A2 “ φ “ 0 and Nu “ 1 (Traxler et al., 2011).

The regime of wave numbers at which these instabilities occur can be presented in the form of “Flower
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Figure 8: Flower Plots obtained by solving Equation (51) for λ for Pr “ 7, τ “ .01 at (a) R0 “ 7, (b)
R0 “ 4.0, (c) R0 “ 1.5. φ “ 0/.01 in the left/right columns. This figure recovers Figure 4 of Traxler et al.
(2011).
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Plots". Typical flower plots for salt water instabilities are shown in Figure 8 and reproduce the results of

Traxler et al. (2011). The left column corresponds to φ “ 0 and the right column to φ “ 0.01. From top

to bottom, the density ratio of the system decreases and is therefore more and more unstable. The colors

represents the real part of the growth rate, or Repλq, for growing modes. Modes with Repλq ă 0 are shown

in white.

In the left plots, Figure 8a is for high R0. Here, only the fingering modes are excited in a “bulb” at

relatively large l. In Figure 8b, oscillatory modes appear as “leaves” spanning a large range in l. In Figure

8c; in addition to the bulb and oscillatory modes, we see the layering instability is supported (Radko, 2013).

In the right plots - where φ “ 10´3 - Figure 8d we observe that the many modes are supported in

this system. A bulb is observed for large l, oscillatory modes for the “leaf” where k ă 0. The “fatter” leaf

represents an intrusive instability. In Figure 8e we observe an oscillatory mode for k ă 0 as well as in the

case k ą 0 and l ą 10´3. Again an intrusive mode is observed for low l for k ą 0. In Figure 8f we observe

again layering instabilities “umbrellaed” by oscillatory modes.

Comparing the cases with and without lateral gradients, we see that the latter alter the spectrum of

wave numbers at which the second order instabilities are excited. While this calculation was done for salt

water parameters, we now apply this to identify all possible modes of instability in the stellar parameter

regime.

25



3 Results:

3.1 The Laminar Case: Oscillatory and Intrusive modes at φ “ 10´3

We first set the flux coefficients, A1, A2 “ 0 and Nu0 “ 1 in order to learn the about the properties of

the fastest growing unstable mode as a function of wave numbers l and k in the case of laminar fluid motion.

Recall, under these conditions, if in addition, φ Ñ 0, we recover the fingering equations (13) discussed

earlier. We now study the more general case of laminar fluid motion when a lateral gradient exists; that is,

when φ ‰ 0.

3.1.1 Intrusions

Figure 9 shows the growth rate of direct modes (Impλq “ 0) at Pr “ τ “ 10´6 for various R0. As R0

increases, we see that all of the direct modes retreat to the region where k ă 0.

To our knowledge this phenomenon in the salt water system has been reported by Walsh and Ruddick

(2000) and Radko (2013), but attributed exclusively to variations in the flux ratio γ “ FT {FS with the local

density ratio Rρ (see Section 5.3). We are unaware of any work published about this phenomenon in the case

of laminar fluid flow.

At R0 “ 2 ˆ 104, we find that, kmax « ´.5 and lmax « .3. These wave numbers correspond to small

scales that are similar to the basic finger scale, but in contrast with the fingers (which are mostly vertical)

these modes are inclined. Another interesting feature in Figure 9, is that unlike the salty water case, the

boundaries in wave space between the fingering and intrusive modes are unclear. According to the numeri-

cal predictions of equation (52) in the astrophysical regime, there appears to be a continuous spectrum in l

in which direct modes can be excited.

Figure 10 shows the growth rate λmax of the fastest growing direct mode overlaid with the fastest finger-

ing growth rates (i.e. when φ “ 0) as a function of the reduced density ratio (see equation 3) at various Pr

and τ. These plots are constructed by producing flower plots for various R0 ą 1 (or r ą 0) then determining
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Figure 9: Flower Plots for Pr “ τ “ 10´6 and φ “ 10´3 at various R0 (A1 “ A2 “ 0 and Nu0 “ 1). An
effect of increasing R0 is that the intrusive mode is only supported for negative k.
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Figure 10: λmax of direct modes as a function of r. The fingering modes are represented by colored solid
lines. These have the distinct feature that λmax Ñ 0 as r Ñ 1. λmax for the direct modes with φ ‰ 0 are
depicted by lines with markers.

the largest growth rate of each among all unstable modes with Impλq “ 0. Despite the fact that the fingering

region exists only for r ε r0, 1s in the φ “ 0 case, the intrusive modes in the case φ “ 10´3 exist for all

values of r, even when r Ñ8. In other words, we find that intrusive modes persist even in systems stable to

fingering convection, for all density ratios.

To understand the mechanism responsible for this laminar intrusive instability, consider the case in Fig-

ure 11 where R0 ą 1{τ and so, the system is fingering stable. Again, we consider the ocean water case for

pedagogical purposes. Since, R0 ą 1{τ, perturbing the water parcel vertically slightly will not cause the fin-

gering mechanism to occur. However, if the water parcel is perturbed laterally over -say decreasing isotherms

and isohalines, the water parcel will be relatively warmer/saltier than neighboring parcels. Since, κT " κµ,

heat diffuses away from the parcel rapidly. The parcel is now denser than its surrounding neighbors and

sinks. Although the parcel “falls” in the vertical, its total trajectory is actually some angle with respect to the

horizontal instead. We see the total trajectory at which the fingers fall is given by the dotted line in Figure 11.
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Figure 11: Fingering in the case of lateral intrusions. Here, T1 ą T2 ą T3 and similarly S 1 ą S 2 ą S 3. The
dark lines represent isotherms and isohalines.
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Figure 12: lmax and kmax vs r for the direct modes. We see that for Pr “ τÑ 10´7, lmax Ñ ´kmax.

It can be shown (see Appendices) that for Pr « τ « 10´6 and φ « 10´3 as R0 Ñ 8 that at stellar

parameters, the direct mode have

λmax «

d

´klPrφ
ˇ

ˇk
ˇ

ˇ

2 for k ă 0 (55)

Maximizing this result with respect to l or k results in the following constraint:

k2
max “ l2max (56)

where, kmax and lmax are the vertical and horizontal wave numbers corresponding to the fastest growing mode

λmax. Since direct modes have Im
`

λ
˘

“ 0, we conclude

kmax “ ´lmax (57)
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We plot the approximated prediction for the direct growth rate (Equation (55)) as dark horizontal lines in

Figure 10. As expected, they approximate λmax for Pr, τ ! 1 reasonably well. We find that, to leading order,

the angle with respect to the horizontal at which these fingers fall is θ « tan´1p´1q “ ´45˝. Finally, we

plot the numerical values of l and k as a function of r for the direct modes in Figure 12. We notice that the

result - that kmax “ ´lmax as R0 Ñ 8 - is true in the case Pr, τÑ 10´7 and 10´6; but begins to breakdown

for Pr « τ ą 10´5. The reason for this is that Equation (55) assumes φ „ Pr
1
2 . Since φ “ 10´3 in Figure

12, this approximation becomes invalid in the case Pr « τ ą 10´6.

3.1.2 Oscillatory Modes

Figure 13 shows flower plots corresponding to Pr “ τ “ 10´6 at R0 “ 1.2 and 105, with φ “ 10´3. We

find, just as in the oceanic regime, that the fingering modes (i.e. modes with Impλq “ 0) dominate over the

oscillatory modes at both high and low R0. According to the flower plots given in Figure 13, the oscillatory

modes occur exclusively for k ą 0. In addition, the vertical wave numbers of the fastest growing oscillatory

modes are roughly the same order as those in the salty water regime. Notice that the oscillatory modes exist

for very small positive values of k - implying that the length scale of the oscillatory modes are fairly large.

We see typical values of k that correspond to oscillatory modes are kmax « .005. This corresponds to a

wavelength of 1200d in the vertical. In the horizontal direction, the length scale of these modes is much

larger since l « 10´6 - which corresponds to 107d. Since d « 10 m, the wavelengths in the vertical and

horizontal corresponding to Pr « τ « 10´6 are « 104 m and 108 m, respectively.

For perspective, the diameter of the Sun is about 109 m. The diameters of red giants range roughly

20´100 the diameter of the sun. Now most of the interior of red giants - except for a small region surround-

ing the core where the µ inversion takes place - is fully convective. This suggests that the possibility that

these modes may be present in a star is small. Still, if the these oscillatory modes do exist - their predicted

length scales imply they are global phenomena - which is interesting since such large-scale modes are po-

tentially observable.

We find that the Repλmaxq changes little as R0 varies, as seen in Figure 14. Moreover, we find that

31



Figure 13: Flower Plots obtained by solving equation (51) for λ for Pr = τ“ 10´6 and φ “ 10´3. The
oscillatory modes are given by the small k “leaf” structures.
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Figure 14: λmax vs r for the oscillatory modes at φ “ 10´3 for Pr “ τ varying between 10´4 and 10´7.

the wave numbers lmax and kmax exhibit the same behavior. It can be shown that in the oscillatory case (see

Appendix), the wave numbers associated with the fastest growing mode are related by:

kmax «
lmax

φ
(58)

Indeed, we find that the vertical wavenumber k is roughly 3 orders of magnitude smaller than the horizontal

wavenumber l. We also find numerically that kmax „ Opφq, so lmax „ Opφ2q.
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Figure 15: lmax and kmax vs r for the oscillatory modesfor Pr “ τ varying between 10´4 and 10´7 and
phi “ 10´3.

3.2 The Turbulent Case: The Collective Instability at φ “ 0

In this section, we now investigate the possibility of exciting the collective instability and begin with

the case where φ “ 0, in which case we do not expect intrusions to be excited. Unlike the laminar case -

which sets A1 “ A2 “ 0, Nu0 “ 1 - we now calculate these coefficients according to Equation (23) and

(45) using the prescription described in Section 2. Since the basic fingering instability, which is responsible

for the small scale turbulent fluxes required for the development of the collective instability, only exists for

1 ă R0 ă 1{τ i.e. pr ă 1q, we now limit our analysis to that range. We plot the LogpRepλqq as a function of

horizontal and vertical wave numbers l and k for Pr, τ “ 10´6 at R0 “ 105 (r « .1) and R0 “ 1.2 (r « 10´7)

in Figure 16. We provide the values of the coefficients calculated (see Section 4.2) in Table 1 below.

We plot the largest oscillatory growth rates as a function of non-dimensional r for Pr and τ in Figure

17a. We find that the collective instability can exist at relatively large values of Pr, τ (e.g. Pr, τ ą 10´3), but

for Pr “ τ ă 10´3, no oscillatory modes are found. In addition, we find that oscillatory modes only exist
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Figure 16: Flower Plots obtained by solving equation (51) for λ for Pr = τ“ 10´6 and φ “ 0.
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for smaller values of r, but disappear as r increases. The predicted range in r of the collective instability

actually decreases as Pr and τ decrease.

Figure 17: The Collective Instability and Fingering Instability growth rates for φ “ 0. Left: lines with circle
markers represent oscillatory modes and solid lines represent the fingering mode. Right: lines with circle
markers represent oscillatory modes and solid lines represent the stern number (see equation 59).

Table 1: Comparison of Coefficients for Pr “ τ “ 10´6, and R0 “ 1.2 pr « 2 ˆ 10´7q and R0 “ 105

pr « .1q

r “ .1 r “ 2ˆ 10´7

A1 -1.11 -322.51
A2 -6.52e-10 -8.16e-5
γ .40 1.5e-3

NuT 1.00 1.00
NuS 111.25 63218.92

According to Stern et al. (2001), a system should be unstable to the collective instability if the Stern
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number, defined as

A “
pNuT ´ 1qpγ´1

turb ´ 1q

Prp1´ R´1
0 q

(59)

is greater than one.

Fig. 17b plots the observed oscillatory modes as a function of r on the left axis and the Stern Num-

ber on the right axis. We observe that oscillatory modes aren’t excited at all for Pr and τ ă 10´3 despite the

fact that it is still possible for the constraint A ą 1 to be satisfied even for Pr, τ “ 10´6. This suggests that

the Stern number may not adequately describe the transition from stability to instability for collective modes

at low Pr. This is another example of a situation in which results obtained in the oceanographic context do

not apply to the astrophysical one.

Our results are on the other hand consistent with the conclusion given in Denissenkov and Merryfield

(2011) - that it is unlikely that the collective instability can explain the hidden mixing problem in RGB stars.

However, while their calculation was based on rough estimates for the turbulent transport caused by basic

fingering, our results are much more robust and reliable.

3.3 The Turbulent Case: Oscillatory and Intrusive Modes at φ “ 10´3

We now investigate the solutions of Equation (51) in the case φ “ 10´3. As in the previous section, the

turbulent flux coefficients A1, A2, and Nu are calculated according to (23) and (45) and we limit our analysis

to the range 0 ă r ă 1. As in the previous sections, we produce flower plots for Pr, τ “ 10´6 for R0 “ 1.2

and R0 “ 105 (Figure 18). A quick comparison of the flower plots generated here with those in the laminar

regime in which φ ‰ 0 demonstrates that many parallels exist between the laminar and turbulent regimes.

3.3.1 Direct Modes:

Notice how as r grows, the unstable domain shrinks and retreats to a region where k ă 0 - nevertheless

leaving a broad spectrum in l where direct modes can be excited. We find that the latter are very similar to
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Figure 18: Flower Plots obtained by solving the Equation (51) for λ for Pr “ τ “ 10´6 and φ “ 10´3. Both
direct modes (main plot) and oscillatory modes (see inset) are presented.
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the laminar intrusive modes discussed in Section 5.1.1. Moreover, the predictions for wave numbers lmax

and kmax of the fastest- growing direct modes given in Equation (57), for large R0 appear to be valid approx-

imations in the turbulent regime as well, and have, in the case of the intrusive mode, lmax « ´kmax « 0.4.

We also plot λmax as a function of r at various Pr, τ in Figure 19. Since Nu0 Ñ 1 as r Ñ 1 (Brown et al.,

2013), it is not surprising to see that the growth rates of the “turbulent” modes tend to approach the growth

rates of the “laminar” modes (which are obtained when Nu0 “ 1).

In addition, we plot λmax as a function of r at Pr “ τ “ 10´7 at various values of φ. We find that

the effect of decreasing φ is to decrease λmax as r Ñ 8. We recover the behavior we might expect based

upon the approximate solutions for λmax in Section 5.1 (see Equation (56)).

Figure 19: λmax for direct modes as a function for r. The lines with circle markers represent turbulent direct
modes. The lines with square markers represent laminar modes (i.e. A1 “ A2 “ 0 and Nu “ 1). Solid lines
represent the fingering mode when φ “ 10´3.

3.3.2 Oscillatory Modes

We see from the flower plots in Figure 18, in the large R0 case that, kmax « .005 and lmax « 10´6 - a

result we might expect in the case of a laminar fluid (recall Equation (59) from Section 5.1.2). We plot λmax
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Figure 20: λmax for direct modes as a function for r at Pr, τ “ 10´7 at various φ. The solid dark line
represents the fingering mode. Lines with markers represent the turbulent case.

Figure 21: λmax for oscillatory modes as a function for r at Pr, τ “ 10´7 at φ “ 10´3. The solid lines
represent the numerical predictions corresponding to the laminar case. Lines with markers represent the
numerical predictions corresponding to the turbulent case.
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for the oscillatory modes as a function of r in Figure 21. We find λmax is relatively constant in the astrophys-

ical parameter regime (i.e. Pr “ τ “ 10´7) as R0 is varied - just as in the laminar regime. Moreover, as

Pr, τ Ñ 10´7, the growth rates of the laminar and “turbulent” modes also converge to one another. This is

consistent with the results from the previous section- at such low Pr and τ the “turbulent” diffusivities are

very small, and the system essentially behaves as if the background fingering flux was negligible.

There is one caveat in this analysis that needs to be pointed out. The basic fingering mode in the case

φ “ 0 is described in Section 3.2 - 3.3 and Brown et al. (2013) and is used to calculate Nu0, γ0, A1, and

A2 coefficients that enter into Equation (51). However, Brown et al. (2013)’s theory does not apply when

φ ‰ 0. When φ ‰ 0, we must find some other estimate for NuT and Nuµ that better model transport by the

new inclined modes we discovered in Section 3.1.1. This problem is left for future studies.
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4 Conclusion

The objective of this work was to see if any modes excited by double diffusive instabilities can explain

the missing mixing in stellar interiors on the RGB. The motivation for looking at double diffusive instabil-

ities (as opposed to studying instabilities due to rotation, magnetism, etc.) stems from the presence of an

inverse molecular weight inversion generated in the external wing of the hydrogen burning shell after the

first dredge up (See Section 1.1). The effect of the µ inversion is to create an unstable stratification for the

slowly diffusing component of density. Moreover, since entropy, the quickly diffusing component, is stable,

the interior of the star has stratifications that could drive the fingering instability. Therefore, it is possible

that some of the hidden mixing on the RGB may be due to double diffusive processes of which are described

by Equation (51) from Traxler et al. (2011).

In this work, we’ve undertaken a semi-analytic investigation of both laminar and mean-field double-

diffusive instabilities, combining the works of Traxler et al. (2011) in the astrophysical regime with the

recent results of Brown et al. (2013). We began with the laminar case (A1 “ A2 “ 0 and Nu0 “ 1) and ob-

tained some approximations for the growth rates of fingering modes and other modes at low Prandtl number

and diffusivity ratio.

We discovered that if a lateral gradient exists, fingers will continue to form even in systems that are

nominally stable to basic fingering convection. The length scale and growth rate of these inclined fingers

are roughly the same order of magnitude as those where there is no lateral gradient. For systems in which

Pr , τ « 10´7, these fingers will fall at an angle 45˝ to the horizontal.

The oscillatory modes, on the other hand, are characterized by fairly large length scales and very small

growth rates. In the case Pr « τ « 10´6, their wavelength along the horizontal is „ 108 m -which is of

the order of magnitude of the diameter of many stars. We acknowledge that the possibility that these modes

exist is a bit dubious since the fingering region - that is, the region of the star that experiences an inverse µ

gradient - definitely does not extend the entire span of the star.
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In addition to laminar instabilities, we explored the possibility of mean-field or “turbulent instabilities”.

We found that the collective instability - which refers to the excitation of large scale oscillator modes - is not

present for Pr, τ ă 10´3. This means that the collective instability cannot explain the missing mixing along

the RGB. In the case where there is a lateral gradient, we essentially recover the fastest growing mode of the

laminar oscillatory and direct modes.

Figure 22: A comparison of the diffusion coefficients as a function of R0.

We close this section by estimating the rate of compositional mixing for oscillatory and direct modes

(See Section 3.3). The appropriate way to calculate an associated turbulent diffusivity would be to follow

the procedure discussed in section 4.2 in Brown et al. (2013). However, for lack of time, we opt instead

for a “rough" estimate based on dimensional analysis. Dimensional analysis of the diffusion coefficient im-
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plies that D ∝
“

length
‰2
{
“

time
‰

. A good estimate for a typical length scale is the wavelength of the fastest

growing mode and similarly, a good estimate for a typical timescale is the growth rate of the fastest growing

mode. Hence, the diffusivity is:

κµ, turb “
λmax

k2
max

κT

By definition, τ “ κµ{κT . This implies:

κµ, turb

κµ
«

λ

τk2 (60)

Note that we chose the vertical wavenumber to be the relevant parameter, since the fingers will tend to

fall in the ´êz direction. For the direct laminar instability discussed in Section 3.1.1, in the systems where,

Pr “ τ “ 10´7 and φ “ 10´3, λmax « 7ˆ 10´7, kmax “ ´.51, and lmax “ .5 as R0 Ñ 8. We calculate the

diffusion constant to be: D “ κµ, turb « 2.8ˆ 102κµ as R0 Ñ8. The value of D seems reasonable since it is

quite similar to that calculated through dimensional analysis from Brown et al. (2013) at low R0 (See Figure

19).

Finding the diffusion constant corresponding to the oscillatory modes is a little bit more complicated,

since there are two typical timescales in the problem: the mode growth rate and the mode period. However,

here we can draw from the work of Buhler et al. (2013). Buhler et al. (2013) completed an extensive study

on estimating the diffusion constant for diffusive oscillatory waves. They find the turbulent diffusivity of

oscillatory waves with frequency ω0 and damping rate α0:

D “ E
“

u2‰ α0

ω2
0 ` α2

0

(61)

where E
“

u2
‰

represents the kinetic energy of the system, α0 is the damping, and ω0 is the angular frequency

of the oscillations. According to the linearized dimensional Boussinesq equations, α0 “ κT
ˇ

ˇkmax
ˇ

ˇ

2 where
ˇ

ˇkmax
ˇ

ˇ

2
“ k2

max ` l2max and ω0 “ Impλmaxq. In addition, we assume E “ w2, where w is the vertical velocity

field. Using dimensional analysis, we find w ∝ λosc{k “ Impλq{kmax. With these substitutions into (61), the
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equation for the diffusion constant corresponding to oscillatory motion becomes:

D “
λ2

I

ˇ

ˇk
ˇ

ˇ

2

τk2
`

λ2
I `

ˇ

ˇk
ˇ

ˇ

4˘ (62)

Based on Figure 22, we see that in the case where there exists a lateral gradient, the intrusive mode and

oscillatory mode have the potential to explain the mechanism for the hidden mixing in low mass stars along

the RGB. The predicted mixing rate for the intrusive mode suggest that its mixing plays a greater role, at

large R0, in regions of the inverse µ gradient that might otherwise be stable to the basic fingering instability.

From Figure 22, we see that the oscillatory mode, owing to its fairly large length scale, has a mixing rate

larger than what is required by observation.

The next step for this work is to verify that the modes described here actually exist via numerical sim-

ulations. Modeling the oscillatory modes will require a combination of fairly large length scales and small

growth rates, which will likely require large computational times. Recall, from Section 3.1.2, we pointed out

that for Pr, τ « 10´6, the length scale in the horizontal and vertical are „ 107d and „ 104d, respectively.

For perspective, a ‘typical’ simulation domain from Traxler et al. (2011) is 83.75d ˆ 83.75d ˆ 268d. So to

simulate these waves, the domain size of the simulation box should be at least „ 107d and „ 104d in the

horizontal and vertical - which implies „ 105d more mesh points. Another characteristic of the oscillatory

modes is that they should be able to exist in 2D domains (as opposed to 3D). And so, to decrease computa-

tional time, the domain size of the simulation region might consist of very large dimensions in êx and êz and

a small slice in êy. The intrusions for φ ‰ 0, on other hand, should be much easier to observe since their

length scales are „ 10d.
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Appendices

A The Method of Dominant Balances: Intrusions

We now seek to approximate the growth rate of the fastest growing intrusive mode by using the method

of dominant balance. We make the following assumptions:

Assumption 1: k, l “ Op1q

Assumption 2: R0 Ñ8
`

R0 " 1{τ
˘

Assumption 3: Pr, τ are small, Pr « τ

Let τ “ αPr where α “ Op1q

Assumption 4: 1 ! φ ! Pr , τ

In the case Nu0 “ 1 and A1 “ A2 “ 0, the coefficients of Equation (52) can be written as:

a2 “
ˇ

ˇk
ˇ

ˇ

2
` OpPrq (63)

a1 “
ˇ

ˇk
ˇ

ˇ

4Prp1` αq ` Pr
l2 ` m2

ˇ

ˇk
ˇ

ˇ

2 ` OpPr2q (64)

a0 “
ˇ

ˇk
ˇ

ˇ

6
αPr2 ` αPr2pl2 ` m2q ` klφPr « klφPr ` OpPrq2 (65)

In the last coefficient, by Assumption 4, we assume Pr2 ! Prφ. Substituting (63 - 65) into the Equation (52)

gives:

λ3 `
ˇ

ˇk
ˇ

ˇ

2
λ2 `

„

ˇ

ˇk
ˇ

ˇ

4
p1` αq `

l2 ` m2

ˇ

ˇk
ˇ

ˇ

2



Prλ` klPrφ “ 0 (66)

We use the method of dominant balance in order to determine the order of magnitude of each of the

terms in Equation (52). The idea is to pick some number of terms to “balance” the left hand side. By balance

we mean that the terms we pick are assumed to be much larger than the remaining terms in the polynomial

46



and therefore, if the right hand side is equal to zero and all the other terms in the polynomial are neglected,

the large order terms we pick should cancel to equal the right hand side.

For our problem, we assume solutions of the form:

λ “ λ0Prβ where λ0 “ Op1q (67)

In the case A1 “ A2 “ 0 and Nu0 “ 1 (i.e. the Laminar Case), Equation (66) becomes:

λ3
0Pr3β `

ˇ

ˇk
ˇ

ˇ

2
λ2

0Pr2β `

„

ˇ

ˇk
ˇ

ˇ

4
p1` αq `

l2 ` m2

ˇ

ˇk
ˇ

ˇ

2



Pr1`βλ0 ` klPrφ “ 0 (68)

Now, if β ą 0, then Pr2β " Pr3β. We see immediately that for β ą 0, the cubic term will always be

negligible. And so, there exists only three possibilities that yield a balanced polynomial; only one of which

is true. They are as follows:

Pr 2β „ Pr1`β (69)

Pr 1`β „ Prφ (70)

Pr 2β „ Prφ (71)

Now, the first possibility, implies that β “ 1. It follows that Pr2β „ Pr1`β „ Pr2. By choosing this

value for β, we assume that all other terms aside from those involving Pr2β and Pr1`β are negligible. This

value for β cannot be the correct one, since according to Assumption 4, Prφ " Pr2. We reject this value of

β because it is inconsistent with Assumption 4.

What about option 2? Since, for the systems we’re concerned with φ „ Pr
1
2 , we re- write Option 2

as:

Pr1`β „ Pr
3
2 (72)
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In this option, we seek to balance the Pr1`β term with Prφ. And so, we assume the possibility that Pr2β

is negligible. For this option, the β “ 1{2. From this, it follows Pr1`β „ Prφ “ Pr
3
2 . Now the term we

neglected was Pr2β “ Pr for β “ 1
2 . This option, like the last one, results in an inconsistency since the term

we neglected is larger than the terms we considered might balance Equation (68).

Possibility 3 assumes Pr2β „ Prφ. With the assumption that φ „ Pr
1
2 becomes:

Pr2β „ Pr
3
2 (73)

In this case, we assume that there is a balance between Pr2β and Prφ and all the other terms are negligible.

That is, if this is the correct option to obtain a dominant balance, Pr2β „ Prφ " Pr1`β. For this balance,

β “ 3
4 . It follows that, Pr

3
2 " Pr

7
4 - which unlike the other options is consistent. Substituting β “ 3

4 into

Equation (68) and dropping all the negligible terms gives:

ˇ

ˇk
ˇ

ˇ

2
λ2 ` klPrφ « 0 (74)

Solving for λ gives:

λ «

d

´klPrφ
ˇ

ˇk
ˇ

ˇ

2 (75)

where, kmax and lmax are the wave numbers corresponding to the fastest growing mode with growth rate

λmax. In order for the growth rate (75) to return a non-imaginary result (since intrusive/fingering modes have

Impλq “ 0), we conclude

kmax “ ´lmax (76)

Substituting (76) into (75), we find that in the case Pr and τ are very small,

λmax «
1
2

a

2Prφ (77)
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In order to find lmax “ lmaxpPr, τq and kmax “ kmaxpPr, τq we could maximize (66) with respect to either of

the wave numbers, and complete the same analysis dominant balances analysis. For lack of time, we leave

this as a future pursuit. A less rigorous approach to this problem is given in the following section.

49



B Rough Approximation for Intrusive Modes

Prior to learning about the Method of Balances we approached the problem of approximating λmax and

its corresponding wave numbers lmax and kmax in the following way. We include the work here.

We now seek to approximate the growth rate of the fastest growing intrusive mode as R0 Ñ 8 (or r Ñ 8).

According to Figure 10 for Pr “ τ “ 10´7, λmax « 10´5. We can approximate our cubic by a quadratic

in λ in the case that the cubic term in (52) λ3 ! a2λ
2, a1λ, and a0. If this constraint is satisfied, our cubic

expression for the growth rate can be approximated by:

a2λ
2 ` a1λ` a0 “ 0 or λ2 `

a2

a1
λ`

a0

a1
“ 0 (78)

This is convenient since solutions of this polynomial are given by the quadratic formula:

λ “ ´
a1

2a2
`

1
2

c

`a1

a2

˘2
´ 4

a0

a2

Discarding the negative root (since such a solution would correspond to a negative growth rate) and substi-

tuting coefficients a2, a1, and a0 gives:

λ “
´Prl2

2
ˇ

ˇk
ˇ

ˇ

4 `
1
2

d

Pr2l4
ˇ

ˇk
ˇ

ˇ

8 ´
4τPrl2
ˇ

ˇk
ˇ

ˇ

2 ´
4Prlkφ
ˇ

ˇk
ˇ

ˇ

2 (79)

For the systems we are concerned with, Pr, τ « 10´7 and φ « 10´3. We discard the first and second terms

in the radical and keep the last term since Prτ „ Pr2 ! Pr. In addition, since we assume Pr ! φ, the

product
?

Prφ ą O
`

Pr
˘

. For this reason, we discard the first term as well.

This implies that for small Pr, τ, the growth rate of the fastest growing intrusive mode to leading order

is approximately:

λ «
1
2

d

´
4Prlkφ
ˇ

ˇk
ˇ

ˇ

2 (80)
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where,
ˇ

ˇk
ˇ

ˇ

2
“ k2 ` l2. Maximizing (80) with respect to either k or l results in the following constraint:

k2
max “ l2max

where, kmax and lmax are the wave numbers corresponding to the fastest growing mode with growth rate

λmax. In order for the growth rate (80) to return a non-imaginary result (since intrusive/fingering modes have

Impλq “ 0), we conclude

kmax “ ´lmax (81)

Substituting (81) into (80), we find that in the case Pr and τ are very small,

λmax «
1
2

a

2Prφ (82)

To solve for l, we maximize the quadratic (78) with respect to k. The derivative of Equation (78) with respect

to k is given by:

b2λ
2 ` b1λ` b0 “ 0 (83)

where,

b2 “ 2kp1` Pr ` τq (84)

b1 “ 4kpk2 ` l2qpPr ` τ` τPrq ´
2kl2Pr
pk2 ` l2q2

(85)

b0 “ 6kpk2 ` l2q2Prτ´ lPrpτ´ 1qφ (86)

Again, we approximate the coefficients of this polynomial by assuming that Pr, τ ! 1. We discard all but

the leading order terms in the in the coefficients b2, b1, and b0. Then, the coefficients can be approximated
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as:

b2 « 2k (87)

b1 « 4kpk2 ` l2qpPr ` τq ´
2kl2Pr
pk2 ` l2q2

(88)

b0 « lPrφ (89)

Substituting λmax (see Equation (82)) and letting l “ ´k into (83) with these approximated coefficients gives:

´1
2

Pr
kmax

` 8k3
maxpτ` Prq “ 0

Solving for kmax in this expression gives:

k4
max «

1
16

ˆ

Pr
τ` Pr

˙

(90)

So, in the case Pr, τ are very small and all but the leading order terms in in the coefficients in Equations (83

- 85) are negligible, the fastest growing direct mode have wave numbers and growth rate:

kmax « ´
1
2

ˆ

Pr
τ` Pr

˙1{4

(91)

lmax «
1
2

ˆ

Pr
τ` Pr

˙1{4

(92)

λmax «
1
2

a

2Prφ (93)
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C The Method of Dominant Balances: Oscillatory Modes

We substitute λ “ λR ` iλI into the original cubic (Equation (52)). Collecting imaginary terms gives:

λ2
I “ 3λ2

R ` 2a2λR ` a1 (94)

Doing the same for the real terms gives:

λ2
I ´ 3λRλ

2
I ` a2λ

2
R ´ a2λ

2
I ` a1λR ` a0 “ 0 (95)

Combining (94) and (95) results in the following cubic for λR:

λ3
R ` b2λ

2
R ` b1λR ` b0 “ 0 (96)

where,

b2 “ a2 (97)

b1 “
1
4

`

a2
2 ` a1

˘

(98)

b0 “
1
8

`

a1a2 ´ a0
˘

(99)

We begin by making the same assumptions as in Appendix A. In addition, if we again write:

Pr “ ατ (100)
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It follows that the coefficients of Equation (96) can be written as:

b2 “
ˇ

ˇk
ˇ

ˇ

2
` O

`

Pr
˘

(101)

b1 “
1
4

`
ˇ

ˇk
ˇ

ˇ

4
`
ˇ

ˇk
ˇ

ˇ

4Prp1` αq ` Pr
l2 ` m2

ˇ

ˇk
ˇ

ˇ

2

˘

«
1
4

ˇ

ˇk
ˇ

ˇ

4
` O

`

Pr
˘

(102)

b0 “
1
8

„

`
ˇ

ˇk
ˇ

ˇ

4Prp1` αq ` Pr
l2 ` m2

ˇ

ˇk
ˇ

ˇ

2

˘
ˇ

ˇk
ˇ

ˇ

2
´ klφPr



«
1
8

„

Pr
ˇ

ˇk
ˇ

ˇ

2
ˆ

ˇ

ˇk
ˇ

ˇ

4
p1` αq `

l2 ` m2

ˇ

ˇk
ˇ

ˇ

2

˙

(103)

Notice that for these coefficients, b2, b1, and b0 ą 0. This implies that the solutions of Equation (96) with

coefficients (101 - 103) have negative roots or growth rates but no positive ones. And so we see, that the

approximations made in Appendix A are invalid in the oscillatory case.
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D Rough Approximation for Oscillatory Modes

Again, we attempt to find an analytic approximation to λmax for oscillatory modes in order to understand

this behavior. We seek to approximate these coefficients such that Pr, τ ! 1. Unfortunately, we see from

Figure 13 that kmax ff lmax and therefore Equation (79) is not valid here. According to Fig 13, the wave

numbers for oscillatory modes are related to each other roughly by k „ l
1
2 „ Pr

1
2 . The coefficients of the

original cubic can be approximated by:

a2 “
ˇ

ˇk
ˇ

ˇ

2`1` Pr ` τ
˘

« k2 (104)

a1 “
ˇ

ˇk
ˇ

ˇ

4`
τ` Pr ` τPr

˘

`
Prl2
ˇ

ˇk
ˇ

ˇ

2

ˆ

1´
1

R0

˙

«
Prl2

k2

ˆ

1´
1

R0

˙

(105)

a0 “
ˇ

ˇk
ˇ

ˇ

6
τPr ` Prl2

ˆ

τ´
1

R0

˙

´ Prlkφ
`

τ´ 1
˘

« Prl2
ˆ

τ´
1

R0

˙

` Prlkφ (106)

We substitute λ “ λR ` iλI into the original cubic equation. Collecting imaginary terms gives:

λ2
I “ 3λ2

R ` 2a2λR ` a1 (107)

Doing the same for the real terms gives:

λ2
I ´ 3λRλ

2
I ` a2λ

2
R ´ a2λ

2
I ` a1λR ` a0 “ 0 (108)

Combining (107) and (108) results in the following cubic for λR:

λ3
R ` b2λ

2
R ` b1λR ` b0 “ 0 (109)
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where,

b2 “ a2 « k2 (110)

b1 “
1
4

`

a2
2 ` a1

˘

«
1
4

k4 (111)

b0 “
1
8

`

a1a2 ´ a0
˘

«
1
8

`

Pr l2 ´ Prlkφ
˘

(112)

Notice that the density ratio appears nowhere in these coefficients. This implies that for these coefficients,

the roots of the cubic (109) are also independent of R0. We conclude that the terms involving R0 in the un-

approximated cubic (109) are minuscule. Unfortunately, a quick numerical analysis shows that λ3 3 a2λ
2,

a1λ, and a0. This means that the cubic (109) cannot be approximated by a quadratic. Instead, we use

Cardano’s method to represent the real root of Equation (109) since λR represents only the real part of λ. We

define the following quantities according to Cardano’s method:

Q ”
1
9

`

3b1 ´ b2
2

˘

(113)

R ”
1
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`

9b2b1 ´ 27b0 ´ 2b3
2

˘

(114)

D ” Q3 ` R2 (115)

S “
`

R`
?

D
˘1{3 (116)

T “
`

R´
?

D
˘1{3 (117)

So that,

λR “ ´
1
3

b2 ` S ` T (118)

Maximizing this result with respect to l gives the constraint:

lmax “
kmaxφ

2
(119)

Alternatively, this wavenumber constraint could have been obtained by maximizing (109) with respect to l

56



instead. Substituting back into λR :

λR “
1

12

ˆ

´ 4k2 `
`

8k6 ` 27k2Prφ2 ´ 3
?

3
b

k4Prφ2p16k4 ` 27Prφ2q
˘1{3

`
`

8k6 ` 27k2Prφ2 ` 3
?

3
b

k4Prφ2p16k4 ` 27Prφ2q
˘1{3

˙ (120)

Maximizing (120) with respect to k gives the result:

kmax «

ˆ

9Prφ2

16

˙1{4

(121)

λmax « ´0.25
`

Prφ2˘1{2

`

ˆ

0.014
`

Prφ2˘3{2
´

b

0.00014Pr3φ6 ` 0.000046 pPrφ2q
3
˙1{3

`

ˆ

0.014
`

Prφ2˘3{2
`

b

0.00014Pr3φ6 ` 0.000046 pPrφ2q
3
˙1{3

(122)

Although the result for λmax in this case is not especially enlightening, we do learn about the properties of

the wavenumber - namely why lmax is about three orders of magnitude less than kmax. These predictions for

lmax and kmax imply very large length scales for the oscillatory modes. In addition, (119) and (122) recover a

property we definitely expect; as φÑ 0, the growth rate of the fastest growing mode in the oscillatory case

goes to zero.
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