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ABSTRACT OF THE DISSERTATION

Sympathetically-cooled quantum chemical dynamics and progress towards a technique for

internal state readout of a molecular ion

by

Prateek Puri

Doctor of Philosophy in Physics

University of California, Los Angeles, 2019

Professor Eric R. Hudson, Chair

This dissertation focuses on observing and controlling cold atom-ion collisions. Such colli-

sions have numerous applications ranging from providing insight into the formation of the

interstellar medium to presenting a potential platform for developing quantum information

architectures. The experimental apparatus at the center of this work is a hybrid atom-ion

trapping system in which laser-cooled Ca atoms held within a magneto-optical trap are spa-

tially overlapped with ions localized within an ion trap. The ions studied in this work are

both laser-cooled atomic ions as well as sympathetically cooled molecular ions. As detailed

in the remainder of this thesis, by employing tools such as optical pumping, collision energy

control, and mass spectrometry, reactions between these species can not only be studied with

high precision but can also be controlled, leading to expanded tools for reaction engineering

as well as the creation of exotic chemical species. Finally, this work also includes e�orts to

use inelastic collisions between room temperature BaCl+ molecular ions and cold Ca atoms

to create ro-vibrational ground state molecules, a precursor for developing a high-�delity

qubit based on rotational levels in polar molecules.
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anti-parallel to the magnetic �eld direction in the relevant parts of the trap,

RHCP is needed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
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5.1 Hartree-Fock Method overview (a) Di�erence between restricted and

unrestriced Hartree-Fock methods. In RHF, each spatial orbital is doubly

occupied with electrons of opposing spin. In UHF, electrons of opposing spin

may occupy di�erent spatial orbitals, with unpaired electrons being allowed.

In both methods, molecular orbitals, σ ,are constructed as linear combination

of basis functions, which can often be taken to be hydrogen-like wavefunctions

(i.e. 1s, 2s, etc.). (b) A conceptual �owchart of the Hartree-Fock method pro-

cess. Basis sets are used to construct molecular orbitals, which the electrons

in the many-body system occupy. A Slater determinant, comprised of spin-

orbitals (molecular orbitals multiplied by a spinor), is calculated from these

orbitals to produce a properly symmetrized electronic wavefunction. In order

to minimize the expectation value of the electronic Hamiltonian, the Fock

matrix is initially constructed from Ansantz molecular orbital geometries and

the Fock-Roothan-Hall equations are solved to calculate updated geometries.

This optimization routine is repeated until the orbital geometries have con-

verged to the desired level of accuracy, at which point it is said the SCF has

converged and other molecular properties of interest can be calculated. . . . 79

5.2 Electronic structure calculations overview A diagramatic overview of

the Hartree-Fock method as well as post-Hartree-Fock methods that can be

used to account for electronic correlation energy not contained in EHF . . . . 84
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5.3 Con�guration Interaction treatment of the H2 molecule (a) In the

con�guration interaction treatment of the H2 molecule, the trial wavefunc-

tion is assumed to be a linear combination of Slater determinant wavefunc-

tions. While the Hartree-Fock wavefunction contains only bonding orbitals,

the excited Slater determinants can also include antibonding orbitals. The

expansion coe�cients are optimized to minimize the ground state energy of

the system. (b) Radial electronic wavefunction plots for both the bonding

(blue) and antibonding (red) molecular orbitals. The anti-bonding orbital

possesses a node at the origin, which leads to lowered electron repulsion as

compared to σb, but the σab also has a higher energy due to the exchange in-

teraction. (c) The di�erence between the radial electron density distribution

obtained from the optimized wavefunction in (a) and the distribution from the

Hartree-Fock wavefunction. As can be seen, by mixing in antibonding orbital

character, the electron density between the nuclei is reduced, thereby reducing

the electronic-repulsion energy as compared to the Hartree-Fock wavefunction.

Since the energy of the system is lowered, it is a more accurate depiction of

the true ground state, as predicted by the variational theorem. . . . . . . . . 85

6.1 MOTion experiment diagram A schematic diagram of the MOTion appa-

ratus and its key measurement devices, including a depiction of the ToF-MS

system, the LQT, and the reentrant viewport used for optical imaging of the

ion species. This �gure is borrowed from Ref [SSY16]. . . . . . . . . . . . . 96
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6.2 Schematic drawing of the LQT Drawings that display the various dimen-

sions of the LQT utilized in this work. As seen in the lower right hand corner,

the α and β rods are equipped with a rf voltage, while all four rods may be

assigned an independent DC voltage, allowing for adjustment of the Math-

ieu a/q-parameters of the trapping potential as well as excess micromotion

compensation. Further, high voltage DC pulsing is applied to the α/γ rods

and the δ/β rods in order to guide the ions into the ToF-MS. This �gure is

borrowed from Ref [Sch16]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3 Simpli�ed circuit diagram of MOTion drive unit The circuit is divided

into a primary low-voltage (left) and secondary high-voltage (right) side, which

are isolated from each other through a toroidal transformer. The low-voltage

side consists of rf ampli�ers and the primary winding of the rf transformer

(blue), as well as timing and damping circuitry (green). The high-voltage side

consists of the secondary winding of the transformer along with capacitors

that collectively form the resonator circuit (red). In addition, damping and

HV pulsing circuitry (purple) and a UDC bias supply is also present on the

secondary side. This �gure is borrowed from Ref [SSY16]. . . . . . . . . . . 99

6.4 Optimized and unoptimized MOTion drive unit outputs (a) and (c)

display unoptimized signals from the MOTion drive boxes during both rf

output and HV pulsing, as measured through pickup electrodes. In (a), the

relative phase and amplitude between the rf applied to diagonally opposed

rods in the LQT can be seen to di�er. In (c), the asymptotic HV values

between the front and back rod pairs both appear to diverge and the phase

initiation time for the non-rf rods is chosen too early such that a suboptimal

voltage `overshoot' occurs that will likely compromise the mass resolution and

detection e�ciency of the ToF-MS. (b) and (d) display optimized rf output

and HV pulse sequences, respectively, that avoid these issues to a large degree. 102
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6.5 Ba+/Yb+ laser-cooling diagrams Energy level diagrams for Ba+ (a) and

Yb+ (b). Laser-driven transitions are depicted with squiggly lines whereas

relevant spontaneous emission lines are presented with dashed lines. Basic

information about the transitions, such as the wavelength and Einstein-A

coe�cient, are also presented. The lifetimes of relevant metastable states, τ ,

are presented below each such level. . . . . . . . . . . . . . . . . . . . . . . 106

6.6 BaCl+ molecular potentials Molecular potentials for the BaCl+ 1Σ+ and

1Π1 molecular electronic states. The 1Σ+ potential yields a series of bound

states characterized by rotational and vibrational quantum numbers. Select

(v = v′, J = 0) band-head states are shown in blue with the remaining states in

each v′ vibrational manifold shown in red (only a subset of rotational states are

shown). The 1Π state is a repulsive potential with no bound states; promotion

into this potential results in dissociation of the molecule. . . . . . . . . . . . 110

6.7 Methanol reaction kinetics Reaction kinetics obtained by loading a Ba+

sample and allowing it to react for a variable amount of time with the back-

ground CH3OH gas before ejecting the entire ion sample into the LQT. The

y-axis is the ion amount of each species present in the LQT at a given instance

of time, normalized by the initial amount of Ba+ present in the system. The

solutions of Eqn. 6.2 can be �t to the kinetics data to obtain reaction rates

for the formation of BaOH+ and BaOCH+
3 . . . . . . . . . . . . . . . . . . . . 112

6.8 Sample ToF-MS mass spectrum Channeltron voltage as a function of

time. As can be seen, the Ba+, BaOH+, and BaCl+ species reach the detector

at di�erent times, allowing their ion numbers to be individually resolved. . . 115
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6.9 Two-stage acceleration in the ToF-MS Sequence of events in a two-stage

acceleration scheme in a ToF-MS. The back rod is set to V1 while the front

rod is set to V2. Thus, at t1, the moment the HV is pulsed, the ion towards

the back rod, ion a, experiences a higher potential than ion b; however, ion

a's position, za, is also further from the detector than ion b's position, zb

(za(t1) >zb(t1)). Consequently, the velocity of ion a when it reaches the front

rod is larger than that of ion b (va >vb at this point), but ion b reaches the

front rod before ion a does temporally. After reaching the front rod, both ions

are then accelerated through of potential di�erence of V2 → 0 V as they pass

through the grounded skimmer. V1 and V2 are adjusted so that the ions reach

the detector at essentially the same time (za(t2) =zb(t2)), with their di�erence

in drift tube velocities accounting for their initial di�erence in position in the

LQT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.10 Digram of MOTion trap coupled into a ToF-MS Diagram of a series of

ion clusters being ejected from the the MOTion trap LQT into the ToF-MS.

Also depicted are the Yb and BaCl2 ablation targets used for LQT loading as

well as the Ca getter units employed for loading the MOT. . . . . . . . . . . 119

6.11 Optimized ToF-MS spectrum The resultant mass-spectrum from a sam-

ple of laser-cooled 138Ba+ ions, as well as its sympathetically cooled natural

isotopes, obtained after optimizing the ToF-MS parameters . . . . . . . . . . 121

6.12 Mass-timing ToF-MS calibration Measurements of ion mass plotted as

function of channeltron arrival time for Ba+, BaOH+, and BaCl+. Also

presented is the �t to the inverted equation presented in Sec. 6.4.3, with

t0=1.30(3) and γa = 1
k2
a
=1.77(1). . . . . . . . . . . . . . . . . . . . . . . . . . 122
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6.13 ToF-MS calibration and saturation correction (a) A histogram of the integrated de-

tector current when a single ion is detected in the ToF-MS. For a single ion, non-detection

events are distinguished from detection events based on whether the detector voltage sur-

passes a certain discrimination level during the detection time window (not depicted in the

plot), with an overall detection e�ciency of ∼ 30%. (b) Laser-cooled Ba+ ions are initial-

ized in the LQT, and the total ion number is counted in one of two ways. For linear chains,

single-ion-resolved optical detection is used, and for non-single-ion-resolvable 3D structures,

spatial estimates of the crystal size are used to extract ion number values. After the ions

are initialized, they are ejected into the ToF-MS, and a scatter plot is created to compare

the optically-measured ion number to the integrated ToF-MS detector response. Here, the

y-axis is proportional to the total integrated current from the channeltron and is converted

into an e�ective ion number by �tting the equation y = mx+b to the low-ion-number data,

with determination of m providing the necessary conversion factor. Fits to the detector

response are applied to both low-ion-number and high-ion-number data, with the �t coef-

�cients for the two data sets being visibly di�erent, implying detector saturation. Here,

the solid lines denote the �t and the bands represent 90% con�dence intervals. (c) Due to

detector saturation the voltage pro�le of the channeltron output has to be transformed by

Eqn. 6.4. In the plot, this function is applied to the mass-spectrum of a Ba+ crystal, with

the saturation e�ect quite signi�cant (here total ion number is taken to be proportional

to the integrated ion signal curve). (d) The calibration in (b) is repeated after applying

the saturation correction function to the mass spectra, and the discrepancies between the

low-ion-number and high-ion-number �ts is greatly reduced. . . . . . . . . . . . . . . 124

6.14 Reentrant imaging system dimensions Dimensions of the reentrant imag-

ing system, expressed in mm. The reentrant �ange allows the objective to be

placed roughly 50 mm from the ion, allowing for a total NA of 0.23 . . . . . 126
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6.15 Ion �uorescence imaging (a) False color images of linear chain of laser-

cooled Yb+ ions (top) and bi-sample of laser-cooled Ba+ ions with two sym-

pathetically cooled BaCl+ ions (red circles denote their position). (b) Images

of a resolved two dimensional crystal of Ba+ ions. (c) Images of a non-single-

ion-resolvable 3D crystal of laser-cooled 174Yb+ and sympathetically cooled

172Yb+. The two species spatially separate due to the radiation pressure on

the 174Yb+ ions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.16 Ion �uorescence spatial pro�ling Fluorescence pro�le (which is propor-

tional to the ion number density pro�le) of an ion image as a function of radial

displacement from the null (x dimension). Here the camera pixels have been

summed along the axial dimension of the trap (z). The pro�le is �t to both

a prolate spheroid and a Gaussian function. Since the sample is crystallized,

the prolate spheroid o�ers a much better �t, with the Gaussian �t overesti-

mating the density at at the peak as well as the wings. The camera image

being analyzed is presented as an inset. . . . . . . . . . . . . . . . . . . . . . 130

6.17 Leak valve system schematic diagram Schematic diagram of the leak

valve system, which consists of a primary side where a high pressure of reactant

gas in maintained and a secondary side that a controlled amount of gas is

leaked into, with this gas eventually �owing to the MOTion chamber. See

text for speci�c part numbers for the various components. . . . . . . . . . . 135

6.18 Leak valve reaction loading (a) BaCl+ fraction (normalized by total ion

amount) as a function of total integrated CH3Cl leak pressure. (b) Leak

valve response when a constant HV is applied to the doser and then suddenly

switched o�. (c) Leak valve response of the doser system when using sending

a stream of ∼0.5 sec period TTL pulses to the doser (pump out time is longer

than the pulse time). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
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6.19 MOT density and spatial pro�ling (a) Fits to integrated absorption im-

ages in both the x (F (x)) and y (F (y)) dimensions, as well as the camera

count pro�les the �ts were applied to. The absorption image from which the

�ts were obtained is shown as an inset. (b) Similar to (a) except now the �ts

are applied to a �uorescence image. Speci�cally, the �ts are applied to the

camera count pro�les along the x (R(x)) and y (R(y)) dimensions. These �ts

allows for extraction of MOT spatial dimensions, and as mentioned in the text,

can also be calibrated to yield atomic densities. (c) Absorption measurement

timing sequence. The MOT is loaded to its steady state density. The cooling

beams (C beams) and deceleration beams (D beams) are then switched o� the

release the MOT. 5 µs later, an absorption beam (A beam) is introduced for

1 µs to probe the MOT density. The camera, whose minimum exposure time

is 10 µs, is triggered slightly before the A beam trigger to capture the pulse

event. The whole timing sequence can be repeated with no MOT initially

present to obtain a control image. . . . . . . . . . . . . . . . . . . . . . . . . 142

6.20 MOT lifetime measurement The chamber in initialized with the getters on

but no beams present. The cooling beams are turned on for variable amounts

of time, at which point a camera image is taken. The integrated camera

counts, as a function of time, are plotted and an exponential �t is applied to

extract a MOT lifetime of τ = 1.73(3) s. . . . . . . . . . . . . . . . . . . . . 147

6.21 MOT ballistic expansion The evolution of the MOT size as a function of

time after the cooling beams have been extinguished. The rate at which this

expansion occurs is indicative of the temperature of the sample. After �tting

the Eqn. 6.26 to the data, a temperature of 4.8(1) mK is extracted for the

MOT sample (error bars given by 68% con�dence interval bands. . . . . . . 149
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6.22 Magnetic trap atom number pro�ling (a) Magnetic trap density as a

function of time after the MOT has been switched o�, with an extracted life-

time of 1.3(21) s. The magnetic trap atoms are presumably lost from the trap

over time due to collisions with background gas particles and non-adiabatic

transfer into non-trapped states. (b) Timing sequence for a magnetic trap

atom number measurement. The MOT, and consequently the magnetic trap,

are �rst loaded to their steady state values (∼ 5 s). Then the cooling beams

(C beam) and deceleration beam (D beam) are extinguished. The MOT bal-

listically expands away in roughly ∼ 1 ms. ∼ 50 ms after the MOT has been

extinguished, the optical pumping beam (P beam) is introduced to transfer

population to the ground state. At the same time, the C beam is introduced

to retrap them into a MOT. After ∼ 10 ms, a vast majority of the triplet

atoms have been reintroduced into the MOT, and a 10 ms camera image is

acquired. The total captured camera counts on the image can subsequently be

converted to an atom number. (c) The optical pumping scheme is displayed

diagrammatically. (1) First, 3P2 atoms are transferred to the 3P1 state by

pumping atoms from the former state to the 4p2 3P2 level which has a 25%

decay the latter state, meaning after a few optical cycles the population is

essentially all transferred. (2) Second, atoms in the 3P1 state, which has a

∼ 300 µs lifetime, decay to the ground state. (3) Lastly, the C beams are

introduced to capture �uorescence from the transferred atoms. . . . . . . . . 153
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6.23 Magnetic trap-ion overlap The measured Ca 4s4p 3P2 reaction rate con-

stant, ΓT, multiplied by the geometric atom-ion overlap factor, Ô, obtained at

di�erent spatial o�sets between the ion sample and the center of a magnetic

trap of pure triplet atoms. The corresponding �t curve (dashed line) along

with its 90% con�dence interval (CI) (yellow band) are displayed as well. The

functional form of the �t curve (Eqn. (6.30)) allows for approximate estima-

tion of the magnetic trap density pro�le. For both plots, each data point

consists of approximately 100 measurements, where error bars represent one

standard error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.24 Camera reference frames Coordinate systems for all three camera planes,

ignoring polar angle rotations. The atom-ion imaging cameras are rotated -θ

and +θ azimuthally with respect to the reentrant camera. Here n̂, n̂′, and

n̂′′ represents the normal vector to the three cameras, and all three cameras

share the same z-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.25 M2 laser system (a) Image of the M2 SolStis system, with the 532 nm pump,

the ti-sapph cavity coupling unit, the ti-sapph cavity, and the reference cavity

all visible. (b) An image of the ECD-X unit which consists of a BBO crystal

in a bowtie cavity con�guration. The input (M1) and output (M4) coupling

mirrors should be adjusted during cavity alignment for maximum power output.165

6.26 Toptica TA-SHG-110 laser system An image of the Toptica TA-SHG-110

laser system including the IR diode, the tapered ampli�er, and the doubling

cavity, along with their associated coupling mirrors and relevant adjustment

knobs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
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6.27 MOT beam setup The beam setup for the MOT system. The output of

the Toptica is locked to a saturated absorption lock, with a lock frequency of

ω0 + 2π×85 MHz, where ω0 is the Ca 1S0 →1 P1 transition frequency. The

�rst AOM shifts this beam to ω0 - 2π×30 MHz, creating the cooling beam (C

beam). Two subsequent AOM's create the two deceleration beams (D Beams),

which are set to ω0 - 2π×135 MHz and ω0 - 2π×355 MHz. Lastly the zeroth

order AOM beams are �nally directly to a +85 MHz AOM which can be used

to create an on-resonance beam of frequency ω0, for absorption imaging. . . 169

7.1 Comparison of the calculated CI+MBPT transition rates with 111 available

experimental data. Transitions involving a state with orbital angular momen-

tum l ≥ 3 or principal quantum number n ≥ 6 are shown in blue. All other

transitions are shown in black. Error bars correspond to the experimental error.178

7.2 Relevant level structure for operation of a standard calcium MOT. Laser cool-

ing is accomplished on the 423 nm 4s4p 1P1 ← 4s2 1S0 transition. Atoms that

decay to the 3d4s 1D2 state are repumped back into the cooling cycle via

the 672 nm 4s5p 1P1 ← 3d4s 1D2 transition, while those in the long-lived

4s4p 3P0,2 states are lost from the MOT. . . . . . . . . . . . . . . . . . . . . 181

7.3 Simpli�ed calcium electronic level structure showing the eight repumping tran-

sitions considered here. All transitions except the 504 nm and 535 nm have

been studied experimentally. The overall best Ca MOT performance is found

when pumping to a highly con�guration-mixed state, labeled as 4snp 1P1,

using the 453 nm 4snp 1P1 ← 3d4s 1D2 transition. . . . . . . . . . . . . . . 183

7.4 Measured calcium MOT density as a function of repumping laser detuning

for the (a) 1F3 and (b) 1P1 repump transitions. Experimental data are shown

by points, while Lorentzian �ts are shown as lines. All measured densities

are scaled to the peak MOT density achievable with the standard 672 nm

repumping scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
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7.5 Measured Ca MOT loading curves for the (a) 1F3 and (b) 1P1 repump tran-

sitions, MOT �uorescence is plotted as a function of time elapsed after the

cooling lasers are turned on; curves �tted to N(t) = Rτ
(
1− e−t/τ

)
are shown

alongside the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.6 Simpli�ed electronic energy level structures illustrating the main loss channels

for the experimentally tested repumping schemes. 1F3 repumps are shown in

(a), (b), and (c), and 1P1 repumps are shown in (d) and (e). Here we show

only the most signi�cant pathways into lossy triplet states, shown in red.

The omitted decays dominantly return to the main cooling cycle. Using only

these branching ratios and the natural linewidths of the upper states, one can

compare the approximate relative MOT lifetimes for each transition. This

simple model reproduces the lifetime ordering of the more comprehensive 75-

level rate equation model and also matches experimental results. . . . . . . . 186

7.7 Measured Ca MOT lifetime as a function of 4s4p 1P1 state population with a

453 nm repump. The measured lifetimes are shown alongside the rate model

predictions and a curve representing the fundamental limit for any single

repump laser scheme in a Ca MOT. This limit is the result of decay from

the 4s4p 1P1 state indirectly to the 4s4p 3P0 and 3P2 states and is found as

0.24/ρpp s-1, where ρpp is the population fraction of the Ca 4s4p 1P1 state. . . 190
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8.1 Shuttling procedure and energy resolution (a) Schematic of the MO-

Tion trap apparatus displaying an ion cloud being ejected from the 12-segment

LQT (3 segments per rod) into the ToF-MS, with arrows denoting the direc-

tion of ejection. (b) Energy distributions, derived from approximate Mathieu

equation solutions, of a Yb+ sample tuned to an average kinetic energy of ∼ 4

K through ion chain displacement from the trap null, crystal size tuning, and

idealized shuttling at a constant velocity of a crystal with an initial micro-

motion energy of ∼ 100 mK. The standard deviations for each distribution

are denoted by horizontal scale bars. (c) Voltage waveforms measured on

the right and left endcap electrodes (EC) of the LQT, as well as the corre-

sponding predicted ion velocities, expressed as a function of shuttle time. The

waveforms follow the VS(ω, t) pro�le, presented in Eq. 8.8, with VDC = 30 V,

Vamp = 5 V, γ = 0.18, and ω = 2π · 95 Hz. The portions of the waveform

where the ions are stationary are not shown for clarity. The shaded region

denotes the approximate period of overlap between the shuttled ions and the

MOT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

8.2 Ion shuttling imaging False-color experimental �uorescence images of Yb+

ions undergoing shuttling presented for the following cases: i) a single ion, ii)

a �ve-ion chain with one non-laser-cooled dark isotope, iii) a two-dimensional

Coulomb crystal with one embedded dark isotope. As the ions spend ∼ 90%

of the time at the trajectory endpoints, their �uorescence is only evident in

these locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
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8.3 Doppler velocimetry and large crystal simulation results (a) Experimentally mea-

sured [〈vz〉]S of a ∼ 100 ion crystal obtained through Doppler velocimetry at di�erent

shuttling frequencies, where the error bars are displayed at the 1σ level. The experimental

results show reasonable agreement with MD simulations. A linear �t applied to the ex-

perimental data shows that varying the shuttle frequency modi�es the axial velocity of the

trapped ions in the expected way. The inset shows the corresponding mean kinetic energies

and energy resolutions obtained at the various shuttling frequencies, with the dotted line

referring to the average resolution. Note here that the plot refers to averages and resolu-

tions of the distribution [〈Êz〉]S (see text), but the subscript was omitted in the plot for

clarity. (b) Experimental 〈vz〉 values, obtained as a function of shuttle time at a shuttle

frequency of 120 Hz, are compared to results of a MD simulation and the predictions of a

1D damped harmonic oscillator model. (c) The e�ects of laser cooling on damping secular

motion from both simulation and experiment. The saturation parameter used to construct

the laser cooling force in the simulations was tuned until β matched well with experiment.

(d) Experimental damping timescales are obtained as a function of laser cooling saturation

parameter and are compared with predictions from a rate equation model. Horizontal and

vertical error bars are expressed at the 1σ level, with the latter being smaller than the data

points (e) Measured 〈vz〉 as function of shuttle time for two di�erent axial con�nement

strengths. The shuttle was performed with a linear ramping pro�le more prone to ion heat-

ing than ftanh(t) in order to accentuate the increase in energy resolution that is possible

with greater axial con�nement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
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8.4 Single ion simulation results (a) Total kinetic energy for a simulated sin-

gle ion shuttled at various waveform frequencies, using two separate axial

con�nements. The simulations performed at the higher axial con�nement dis-

play higher energy resolutions and exhibit less signi�cant secular oscillations,

as evidenced by their adherence to the waveform-predicted energy, shown in

bands. Error bars are expressed at the 1σ level. The inset to the �gure shows

R[E]S , the total kinetic energy resolution including both axial and radial mo-

tion, for the high axial con�nement simulations, with the average resolution of

≈ 35 denoted by the dotted line. Low axial con�nement simulations produced

average energy resolutions of ≈ 20. (b) R[E]S of a simulated ion shuttled at

≈ 100 K of kinetic energy as a function of neutral cloud spatial dimension.

The results are compared to the resolutions that would be expected if the

ions perfectly followed the motion of the equilibrium position without any

micromotion or secular excitation. . . . . . . . . . . . . . . . . . . . . . . . . 206

8.5 Controlled chemistry implemented with ion shuttling (a) Simulated

energy distributions for a single shuttled BaCl+ molecular ion sympathetically

cooled by two laser-cooled Ba+ ions. The shuttled distributions are presented

for a variety of shuttle frequencies and are compared to the theoretical distri-

bution obtained from using the excess micromotion of a single ion to access

an average kinetic energy of ≈ 25 K. (b) Simulated BaCl+ kinetic energy as

a function of axial ion position while shuttling. The dashed lines enclose the

250 µm e�ective region of MOT interaction where the ion velocity is approx-

imately constant. (c) Decay of Ba+ amount from the LQT as a function of

shuttling time when a Ca MOT is placed at the center of the trajectory. The

inset displays superimposed experimental �uorescence images of a ∼ 500-ion

Ba+ sample and a Ca MOT containing roughly one million atoms taken while

performing a shuttling reaction rate measurement. The large ion sample uti-

lized in the experiment was initially liquid upon loading into the LQT and

remained so while shuttling. . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
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8.6 E�ects of micromotion on shuttling energy (a) Energy as a function of

axial shuttle distance for a single ion in a perfectly excess micromotion com-

pensated system at various shuttling frequencies. (b) The same simulations in

(a) repeated with an additional electric �eld o�set of 4.2 V/m. The micromo-

tion broadens the energy distribution and shifts the average energy upwards

from the perfectly compensated simulations in (a). The 4.2 V/m o�set is con-

sistent with what can currently be compensated in our system.(c) Simulations

of an ion being shuttled with radial electric �eld gradients of varying strengths

(i-iii) imposed upon the ion. The ions are assumed to be perfectly compen-

sated at the center of the trajectory with the electric �eld rising linearly in a

symmetric fashion for displacements from the center. The labels re�ect the

maximum electric �eld the ions experience at the outer points of the trajec-

tory. As can be seen in the �gure, the ions respond nearly adiabatically to the

local micromotion compensation at a given point along the trajectory, making

the energy resolution of the ions during MOT interaction less sensitive to the

energy resolution of the ions at other points in the trajectory. Approximate

regions of MOT interaction are shaded in red (color). . . . . . . . . . . . . . 216
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9.1 Experimental schematic of the hybrid system and ToF apparatus

(A) A schematic of the experimental apparatus, including the LQT, the high

voltage pulsing scheme (shown as solid and dashed lines), and the ToF. (B)

An illustrative experimental time sequence that depicts initialization of a Ba+

crystal, production of BaOCH+
3 (visualized as dark ions in the crystal) through

reactions with methanol vapor, and subsequent MOT immersion. (C) Sample

mass spectra obtained after ejecting the LQT species into the ToF after vari-

ous MOT immersion times, ti, along with an inset depicting a superimposed

�uorescence image of an ion crystal immersed in the Ca MOT. (D)Mass spec-

tra of photofragmentation products collected after inducing photodissociation

of BaOCa+. The identi�ed photofragments were used to verify the elemental

composition of the product. . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

9.2 BaOCa+ production mechanism (A) Energy of stationary points along the Ca 1S0 (black) and 3PJ

(red) reaction pathways calculated at the CCSD(T)/cc-pV5Z level of theory. The corresponding energies

for the singlet (triplet) pathway in kcal/mol are, from left to right, 0 (43.5), -25.5 (-13.9), 10.2 (18.1),

-56.4 (-11.3), and -5.3 (-5.3). The presence of a barrier in the Ca 1S0 pathway precludes reaction at low

temperature, while the transition state in the triplet pathway is well below the energy of the reactants

and does not prevent the exothermic reaction to BaOCa+ and CH3. The geometries of the complexes at

each stationary point are shown below (above) the singlet (triplet) pathway. The inset displays the linear

geometry of the BaOCa+ molecule and its open shell highest occupied molecular orbital. (B-C) Energy

along the IRC for both the singlet (B) and triplet (C) surfaces calculated at the B3LYP/cc-pVTZ level of

theory. The circles correspond to the stationary points in (A), and all energies are given with respect to

the ground state reactants. (D) Experimental total reaction rates plotted as a function of aggregate triplet

Ca population, presented alongside a linear �t to the data (weighted by the reciprocal of the standard error

squared) and its corresponding 90% con�dence interval band. Experimental uncertainties are expressed

at the one-sigma level. The inset shows the temporal evolution of both BaOCH+
3 and BaOCa+ amounts,

normalized by initial Ba+ number, in the LQT as a function of MOT exposure time as well as the solutions

of di�erential equations globally �t to 250 kinetic data points in order to extract reaction rate constants,

with a reduced chi-square statistic of 1.03 specifying the goodness-of-�t to the displayed data set. . . . 228
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9.3 Experimental schematic of the hybrid system and ToF apparatus (A) The number

of atoms (normalized by the initial atom amount in each trap) in both the magnetic trap and

the MOT probed as a function of experiment time by monitoring the amount of �uorescence

produced from each when illuminated with a near-resonant laser. A typical experimental

time sequence is also presented, along with scaled false-color �uorescence images of both

the atoms and ions for illustration. Approximate spatial scales, provided separately for the

atom and ion images, are also displayed for reference. Ions are initially displaced from the

MOT as the magnetic trap is loaded. At ts, the atom cooling beams are extinguished to

deplete MOT atoms from the magnetic trap region, and the LQT endcaps are subsequently

adjusted at tm to overlap the ions with the center of the magnetic trap for roughly 500 ms,

enabling BaOCH+
3 reactions with Ca (3P2) atoms. (B) BaOCa+ accumulation, expressed as

a fraction of initial Ba+ amount, plotted as a function of interaction time with the magnetic

trap. A control case where a laser is used to depopulate the 3P2 Ca level during magnetic

trap loading is also presented. Fitted solutions to di�erential equations, obtained in the

same manner as those in Fig. 9.3C, are presented alongside the data, and, after estimating

the magnetic trap density, they yield reaction rate constants of 8(3) × 10−9 cm3/s and 0(3)

× 10−9 cm3/s for the experimental case and the control, respectively. (C) A level scheme

for Ca including the relevant electronic states involved in the laser cooling process, with

the reactive 3P0,1,2, states highlighted. . . . . . . . . . . . . . . . . . . . . . . . . 233
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9.4 Experimental schematic of the hybrid system and ToF apparatus

(A) The molecular potential for each triplet sublevel. (B) The subsequent

energy dependent rate constants obtained from capture theory. (C) The mJ

averaged rate constants assuming equal population of each mJ level for each

J level. (D) The rate constant of each individual triplet state, measured by

depopulating the other triplet states through optical pumping and acquiring

reaction kinetics data. Solutions of di�erential equations were �tted to ap-

proximately 250 kinetic data points to obtain reaction rate constants at each

triplet setting, with experimental uncertainties expressed at the one-sigma

level. Theoretical estimates, along with uncertainty bands associated with the

polarizability and quadrupole moment values used to construct the molecular

potentials in (A), are presented alongside the data. (E) The temperature

dependence of the total reaction rate compared to theory by varying the mi-

cromotion energy of ions in the LQT and recording reaction kinetics data at

each temperature, with the theoretical uncertainty denoted by the thickness

of the theory band. Roughly 250 data points were collected at each collision

energy, and experimental uncertainties are presented at the one-sigma level. 236

9.5 BaOCa+ production rate dependency on Ca electronic state popula-

tions Experimentally observed reaction rates are plotted against the (A) 4s2

1S0, (B) 4s4p 1P1, (C) 3d4s 1D2, (D) 4s5p 1P1, (E) 4s4p 3PJ electronic state

populations, which are the only states populated signi�cantly during the Ca

laser cooling process. For each plot, experimental points, along with their as-

sociated one-sigma uncertainties, are presented alongside linear �ts (dashed)

and their 90% con�dence interval bands. Further, the χ2
red statistic for each

�t is also displayed in the upper left hand corner of the plot. As can be seen

from the χ2
red statistics, the 3PJ model best represents the data, supporting

the theoretical and experimental �ndings detailed throughout this report. . 239
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9.6 BaOCa+ photofragmentation analysis Experimentally observed photodis-

sociation rates are presented as a function of dissociation beam intensity for

both (A) 423 nm and (B) 493 nm lasers. Roughly 30 data points were ac-

quired at each intensity setting and experimental uncertainties are expressed

at the one-sigma level. (C) A graphical representation of the various dissoci-

ation limits of the molecule, with the asymptotic energy of each represented

by arrows labeled in units of photon energy. For comparison, the energy of a

two photon process at both 423 nm and 493 nm wavelengths (dashed) is also

presented, with both processes possessing an energy above several dissociation

limits of the molecule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

10.1 Experimental apparatus and techniques (a) The MOTion trap atom-

hybrid trap apparatus (b) Image of an ion chain being shuttled over a distance

of ≈ 1 mm at a collision energy of ≈ 750 mK. To reduce secular heating, the

ions spend over 90% of the time at the trajectory endpoints, and thus ion

�uorescence is only visible at these locations. (c) The trajectory of a shuttled

ion sample, as determined by �uorescence images acquired by triggering on

the phase of the shuttling waveform. Also presented is the location of the po-

tential minimum of the axial potential as predicted from the endcap waveform

voltages at particular instances of time. For reference, the blue shaded region

represents the 1/e spatial density width of the three-dimensional Coulomb

crystal used in the measurement. Additionally the horizontal red shaded re-

gion represents the 1/e spatial distance of the MOT cloud. To the right of

the plot, an inset displays experimental false-color �uorescence images of the

shuttled ions at various times along the shuttling trajectory. . . . . . . . . . 246
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10.2 Reaction rate characterization (a) Observed reaction rate constant de-

pendence on Ca 4s4p 1P1 population. The inset displays a typical reactant

decay curve used to extract the rates, with the reactant amount determined

by integrating over ToF-MS spectra. (b) The measured Ca 4s4p 3P2 reaction

rate constant, ΓT, multiplied by the geometric atom-ion overlap factor, Ô,

obtained at di�erent spatial o�sets between the ion sample and the center of

a magnetic trap of pure triplet atoms. The corresponding �t curve (dashed

line) along with its 90% con�dence interval (CI) (yellow band) are displayed

as well. The functional form of the �t curve (Eqn. (6.30)) allows for approxi-

mate estimation of the magnetic trap density pro�le. For both plots, each data

point consists of approximately 100 measurements, where error bars represent

one standard error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
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10.3 Reaction blockading in excited neutral-ion systems (a) The experi-

mental dependence of reaction rate constant on collision energy, as measured

through both micromotion (MM) tuning (circles) and shuttling (squares) for

both the singlet and triplet reaction surfaces. Note that the y-axis scale is

di�erent for the two reactions. Both data sets are in reasonable agreement

with a modi�ed capture theory incorporating reaction blockading, with the

reaction rate of the short-lived Ca 1P1 state signi�cantly suppressed at low

temperatures as compared to its standard capture theory prediction. For the

triplet data, an absolute rate constant is measured at 10 K and all subsequent

data points are normalized with respect to this value due to technical di�cul-

ties associated with frequent magnetic trap density measurements. Each data

point consists of approximately 100 measurements, and standard errors are

expressed at the 1σ level. (b) Mass spectra, obtained from the ToF-MS, of

the identi�ed product ions of the reaction. The shaded portions identify the

masses corresponding to the product ions, and a control spectrum is included

where the ions were ejected into the ToF-MS without MOT exposure. (c)

A comparison of the measured branching fractions and the predictions of the

statistical phase space theory (PST) for both Ca singlet (top) and triplet (bot-

tom) reactions. Experimental standard errors are expressed at the 1σ level

and, in the case of the CaCl+ values, may be smaller than the plot-marker size. 250

10.4 Phase space diagram for branching fraction calculation A phase space

diagram showing the range of rotational (N) and orbital (`) angular momen-

tum product states accessible at a given reactant total angular momentum

(K). The shaded region of the curve denotes the �nal states that both obey

angular momentum conservation and possess enough product kinetic energy,

εf , to clear the product state centrifugal energy barrier, λf (`f ), and dissoci-

ate from the three body reaction complex into the �nal product atom and

diatomic molecule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
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10.5 Potential energy curves and surfaces. (a) Potential energy curves for

each (J,|mJ |) level expressed as a function of internuclear separation coordi-

nates for BaCl+ + Ca (1P1), where the molecular ion is considered as a point

charge placed at the origin (Ba+ in blue, Cl in red) . (b-d) Potential energy

surfaces corresponding to (b) the A
′′
symmetry and (c and d) the two A′ sym-

metries for the BaCl+ + Ca (1P1) complex. The x and y axes are in Å and

the z axis in eV. The orange plane is the asymptotic value 3.08 eV above the

global ground state of BaCl+ + Ca, computed with the same level of theory

at R = 50 Å. Short-range energetic barriers along the A
′′
(b) and 2A

′
(d) sur-

faces prevent the reactants in these surfaces from reaching the reaction region

at short-range, resulting in a reduction of the overall Ca 1P1 reaction rate by

a factor of 1/3 (see Eqn. 10.18). (e-h) Similarly for the BaCl+ + Ca(3P2)

complex, potential energy curves (e) and surfaces are displayed corresponding

to the A′′ (f) and the two A′ symmetries (g and h), with axes consistent with

those of the singlet. The orange plane is the asymptotic value 1.88 eV above

the global ground state of BaCl+ + Ca (singlet) computed with the same level

of theory at R = 30 Å. Unlike the Ca 1P1 surfaces, no short-range energetic

barriers prevent reaching the reaction region for the triplet surfaces and thus

there is no additional reduction in triplet reaction rate. . . . . . . . . . . . . 260
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11.1 Shuttling in the hybrid atom-ion MOTion trap. (a) Schematic of the

MOTion trap. (b) False-color �uorescence image of 3 shuttled Yb+ ions.

As the exposure time is greater than the shuttling period, �uorescence from

the 3 ions is concentrated at the positions of the two end points, where the

ions spend the most time. (c) Experimental sequence illustrating the shut-

tling technique. As the Yb+ ions are shuttled through the Ca MOT, the 369

nm Yb+ cooling beams are extinguished to prepare the ions in the 6s 2S1/2

state. (d) Measured charge-exchange rate coe�cient (with standard errors)

for Ca(1P1) + Yb+(2S1/2) as a function of collision energy using the shuttling

technique. Also shown are rate coe�cients from coupled-channels calcula-

tions, one with (solid line) and one without (dashed line) the e�ect of reaction

blockading (RB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

11.2 Long-range diabatic potential energy curves. (a) Relevant long-range

molecular potentials. The two crossings between potentials relevant for charge

exchange are indicated with black circular markers. The potential energy zero

is located at the Ca(4s2 1S0) + Yb+(6s 2S1/2) dissociation limit. (b) The �rst

pathway corresponds to a collision between an excited 4s4p 1P1 Ca atom with

a ground-state 6s 2S1/2 Yb+ ion. The charge-exchange (CE) crossing is shown

by a red circle. The vertical wavy line represents spontaneous emission to

the ground Ca(4s2 1S0) + Yb+(6s 2S1/2) channel. (c) The second pathway

corresponds to a collision between a ground-state 4s2 1S0 Ca atom with a

6s 2S1/2 Yb+ ion in the presence of a photon of the MOT laser. The dashed

blue curve corresponds to the dressed-state potential for this entrance channel.

It has an avoided crossing with the excited Ca(4s4p 1P1) + Yb+(6s 2S1/2)

potential. (d) In the presence of a catalyst laser, the incoming Ca(4s2 1S0) +

Yb+(6s 2S1/2) state is coupled to the reactive Ca(4s4p 1P1) + Yb+(6s 2S1/2)

state at short range, where spontaneous emission is unlikely before reaction. 270
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11.3 Dual-isotope technique. False-color �uorescence images of the Yb+ ions

and the Ca MOT (not to scale) illustrating the dual-isotope method used

to measure the low decay rate of 172Yb+(2S1/2). We �rst trap 172Yb+ and

174Yb+, while laser-cooling only 172Yb+ ions (shown in red), while 174Yb+

ions (shown as blue circles) remain dark. We then switch the 369 nm cooling

laser frequency to cool 174Yb+ ions (shown in blue), while the 172Yb+ ions

(shown as red dashed circles) remain dark. We then overlap the MOT with

the laser-cooled 174Yb+ ions as well as the ground-state 172Yb+(2S1/2) ions for

a variable amount of time. Finally, we cool and measure the �nal number of

172Yb+ ions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

11.4 Removing suppression with addition of a catalyst laser. Total charge-

exchange rate coe�cient as a function of catalyst laser (a) frequency and (b)

intensity. Plotted alongside experimental data are the results of a coupled-

channels calculation and an estimate using the Landau-Zener approximation.

For reference, the experimental rate with no catalyst beam is shown. Error

bars correspond to the standard error in experimental measurements and error

bands include uncertainties from the theoretical simulations and experimental

parameters. Horizontal error bars in (a) are smaller than the plot marker. . . 274

11.5 Charge Exchange Reaction Exponential decay (upper left) of 174Yb+ �u-

orescence during immersion in the Ca MOT due to CEX as indicated by the

CCD images (right). The excited state fraction ρpp (bottom left), as deter-

mined by �uorescence per ion, is shown to be constant. . . . . . . . . . . . . 277

11.6 Measured Charge Exchange Rate Constants CEX rate constants as a

function of excited state fractions of 174Yb+(2P1/2) (top) and 174Yb+(2D3/2)

(middle). The CEX rate constant appears to be independent of the excited

state fraction of Ca(1P1) (bottom). This, however, actually re�ects the ex-

perimental inability of measuring the reactivity of the Ca(1P1) state due to

its short life time and the shifting of the transition energy in close proximity

to the Yb+ ion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
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11.7 Measured CEX rate constant for 172Yb+(2S1/2) as a function of Ca(1P1) state

population fraction ρpp. Using the dual isotope method, we are able to detect

the Ca(1P1) + Yb+(2S1/2) rate constant which was previously overshadowed

by CEX involving the Yb+(2P1/2) state. . . . . . . . . . . . . . . . . . . . . 280

12.1 Two photon photodissociaton rotational state readout scheme Ro-

tational readout scheme whereby population from a single rotational level is

�rst transferred to the v=8 state through a midIR photon. At this point,

a 266 nm photon dissociates the molecule into Ba+, which can be detected

through laser �uorescence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

12.2 Overtone transition properties The Einstein A coe�cient for the R-branch

(0, 0) → (v, 1) transition plotted against, λPD == σ(266 nm)IPD
~ωPD

, the photodis-

sociation rate for the v=5-20 levels. Only select vibrational levels are labeled

along with their overtone transition wavelengths. For our scheme, the v=8

band was chosen as the intermediate state in our two-photon process due to

its combination of high λPD, relatively high Einstein-A coe�cient, and ease

of experimental implementation at 3800 nm. . . . . . . . . . . . . . . . . . . 287

12.3 Overtone transition properties Tuning curve for the Daylight solutions

M1038-PC-QCL-J0162 midIR laser system used to drive the overtone transi-

tion in the rotational readout photodissociation scheme . . . . . . . . . . . . 288

12.4 Overtone transition properties Ba+ �uorescence as a function of experi-

ment time when no midIR laser is present. The combined e�ect of background

reactions with methanol and background BaCl+ photodissociation combine to

cause a slight increase in Ba+ �uorescence as a function of time. . . . . . . . 291
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12.5 Overtone transition properties Model predictions of BaCl+ amount both

when the midIR laser is present and when it is not. In the simulation, the

photodissociating laser is given a pulse energy of 2 mJ and has a wavelength

of 266 nm, while the midIR laser is given 200 mW of power and has a 250 GHz

sweep range. As can be seen in the �gure, the overtone laser is expected to

produce a dissociation rate than should be easily di�erentiable from that of

our control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
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CHAPTER 1

Introduction

This dissertation encapsulates the last several years of research I performed as a member

of Professor Eric Hudson's lab at UCLA. We are an atomic, molecular, and optical (AMO)

physics group, and in general, our �eld is interested in studying the underlying properties

of atoms, molecules, and light, as well as interactions between these species. A discipline

that is as challenging as it is diverse, AMO physics requires a unique blend of engineering,

experimental design, and theoretical modeling. This variety not only encourages you to

approach lab problems from multiple perspectives but also helps ensure that if you are sick

of banging your head against the wall trying to solve one di�cult problem, there are several

di�erent ones you can rotate your attention to.

While there are many systems one may choose to study at a quantum level within

AMO physics, our project is primarily concerned with studying interactions between charged

species and neutrals and low temperatures. Ultracold atoms and ions are systems that have

both been investigated extensively for applications ranging from quantum computation to

metrology. In our hybrid trapping apparatus, we pair the strengths of both species together

by spatially overlapping a cold atom magneto-optical trap (MOT) with a four rod linear

quadrupole ion trap (LQT), enabling interactions between the two to be studied at temper-

atures near absolute zero. By observing, and controlling, collisions between the two species,

we can investigate a diverse range of physical processes - including but not limited to cold

chemistry, quantum information encoding, and non-equilibrium thermodynamics.

Of all these applications, perhaps the primary goal of the project is to utilize inelastic

collisions between cold atoms and molecular ions to produce internally ground state molecules

and to thereafter obtain complete internal state control over the species. Once this control
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has been established, it can be exploited for a host of applications such as state-to-state

chemistry and high �delity quantum logic.

However, pairing atoms and ions within an hybrid trapping apparatus also presents a

series of challenges. Namely reactions between the two, as well as problematic thermody-

namics, can serve as limiting mechanisms to the e�ciency of the sympathetic cooling for

ground state molecule preparation. Indeed, some of the work in this thesis was initially

geared towards understanding the reaction-related limitations of atom-ion sympathetic cool-

ing. However, while our foray into chemistry may have begun as a means to address an

unintended nuisance, it quickly blossomed into an accidental romance, as we realized what

an ideal platform hybrid traps, equipped with orthogonal optical and mass-spectrometry

detection techniques, provide for studying chemical reactions. Through adapting many of

the techniques of ultracold physics towards the study of chemical reactions, we have been

able to produce exotic chemical species and unlock new tools for reaction engineering, paving

the way to transition from merely observing chemistry to actually controlling it with high

precision. In the future, we hope others build on this work, perhaps allowing these reac-

tion control techniques, which include the ability to start and stop reactions as well as to

select product outcomes, to be extended to more complex systems of interest to the broader

biological and chemistry communities.

1.1 Dissertation outline

A brief summary of each chapter included in this dissertation is presented in this section.

Chapter 2: Molecular structure

A general overview of molecular structure is discussed, including a description of molecu-

lar energy levels and angular momenta couplings. The Born-Oppenheimer approximation is

reviewed, and methods for calculating both elastic and inelastic cross-sections are presented.

Finally, classical long-range capture theory is discussed as a tool for fast-and-loose calcula-
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tions of atom-ion inelastic collision rates.

Chapter 3: Ion trapping theory

The fundamentals of ion trapping theory are reviewed. The equations of motion of an ion

held within a four-rod radiofrequency trap are derived, and the properties of the correspond-

ing Mathieu equation solutions are discussed. Apart from providing spatial con�nement for

ionic species, the utility of ion traps for both mass �ltering and energy-tuning are also men-

tioned.

Chapter 4: Interaction of light with matter

This chapter provides a review of basic light-matter interactions. First, Rabi �opping

equations are derived by considering a simple two-level system in the presence of a classical

EM �eld. Later, a casual treatment of the density matrix formalism is presented and the

corresponding optical Bloch equations are developed. As a comparison to these coherent

treatments, an Einstein rate equation method for analyzing atomic electronic populations in

the presence of resonant radiation is also presented.

Finally, the applications of these light-matter interactions are discussed. In particular,

standard laser cooling theory is reviewed as well as magneto-optical trapping fundamentals.

Chapter 5: Electronic structure calculations

A simple overview of basic electronic structure methods used to numerically solve for var-

ious properties of molecular systems is presented. In particular, the Hartree-Fock method

is discussed as a formalism to numerically treat the many-body molecular Hamiltonian, and

post-Hartree-Fock methods that can better account for electron correlation energy are also

discussed. As much of the experimental work presented in this thesis is cross-con�rmed
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through computational chemistry calculations, a cursory understanding of these methods is

bene�cial.

Chapter 6: Experimental implementations

For future MOTion project scientists, this chapter will likely be the most useful as it

covers the nuts and bolts behind a majority of the measurement techniques and experimental

hardware in the lab. First, an overview of the MOTion drive electronics used to control the

ion trap and the time-of-�ight mass spectrometer (ToF-MS) is presented, as well optimization

procedures for tuning the performance of these systems. Next, the structure of the speci�c

molecules and atoms studied in this thesis is reviewed, and their loading mechanisms into

the hybrid trapping apparatus are discussed.

ToF-MS and imaging detection methods are described next. In particular, the capability

of the ToF-MS for providing ion number and mass information on ions held within the LQT

is discussed, and the ways in which �uorescence images can provide similar information is

also described. The operating principles of the leak valve system utilized for introducing

controlled amounts of gaseous reagents into our vacuum system are also reviewed.

The Ca MOT hardware and imaging system is described, and a step-by-step procedure

for measuring MOT temperature, density, and lifetime is provided. An analogous descrip-

tion of the magnetic trap also present in our system is given as well. Lastly, after discussing

how to calculate the geometric overlap of the atom and ion species, a description of all laser

systems present in the lab, as well as their locking mechanisms, is presented.

Chapter 7: Ca electronic structure and laser-cooling pathways

This chapter chronicles our foray into Ca atom spectroscopy. In particular, it details

a series of novel single-laser Ca laser-cooling repumping schemes that were discovered and

found to provide superior performance when compared to the standard 672 nm pathway.
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The lifetime and maximum MOT density achieved with each repump is presented, with the

453 nm line providing e�ciency approaching the limit of what is possible in any single-color

con�guration. In addition to greatly enhancing the quality of Ca laser-cooling, this work

also demonstrates how MOT's can be used for atomic metastable state spectroscopy.

Chapter 8: High resolution atom-ion collision energy control

This chapter describes a series of experiments and simulations that were performed in

order to develop an improved method for controlling atom-ion collision energy. This param-

eter is of critical importance for controlling reaction outcomes, and further, may be used

to identify theory-sensitive scattering resonance features. The discussed method relies on

controlled modulation of ion position through careful manipulation of the ion trapping po-

tential and can a�ord order-of-magnitude improvements in energy resolution as compared

to micromotion-based methods over a collision energy range of 0.01-120 K.

Chapter 9: Synthesis of a mixed hypermetallic oxide

In this chapter, an experiment to characterize the BaOCH+
3 + Ca → CaBaO+ + CH3

reaction is discussed. Firstly, the reaction products, as well as the reaction rate, was deter-

mined through a series of ToF-MS measurements. Then the pathway of the reaction was

discovered by manipulating Ca laser cooling parameters to alter atomic electronic state pop-

ulations, eventually allowing us to locate which Ca electronic level was responsible for the

reaction. A series of electronic structure and long-range capture theory calculations were

performed, with the results supporting the experimental �ndings. In summary, this exper-

iment resulted in the production of the �rst ever observed mixed hypermetallic oxide from

a spin-assisted production pathway, and further, demonstrated how the tools of ultracold

physics could be applied towards studying and controlling polyatomic chemistry.
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Chapter 10: Low temperature reactions between BaCl+ and Ca∗

Inelastic collisions between the BaCl+ and Ca species have been proposed as method to

produce ground state molecules. However, if chemical reactions were to occur between the

pair, the e�ectiveness of the method could be severely compromised. While ground-state

reactions between the two species are energetically precluded, excited state reactions can,

in principle, occur. In this work, we discuss the conditions under which such excited state

reactions can be neglected, and in turn, experimentally demonstrate a reaction blockading

phenomena general to nearly all atom-ion excited state reaction processes. Essentially by

considering the interplay between spontaneous emission and collision trajectories, we dis-

cover that at low collision energies, excited state atom-ion reactions are severely inhibited.

In addition to analyzing the relationship between collision energy and reaction rate, we also

employ a statistical phase space model to explain observed product branching ratios and

perform advanced electronic structure and long-range capture theory calculations to better

understand the system, with the results in good agreement with experiment.

Chapter 11: Optical control of radiatively suppressed charge exchange collisions

The reaction blockading e�ect discussed in the previous chapter, which is thought to be

general to all ion-excited-state-atom systems, is experimentally demonstrated in the Y b++Ca

system. Further, a method to optically control this process is experimentally presented and

is further con�rmed through theoretical calculations. The method, which relies on the in-

troduction of a so-called `catalyst laser', allows for excited state chemistry to be observed at

cold temperatures and opens new avenues in low-temperature reaction engineering.

Chapter 12: Rotational-state readout and future outlook

While several hurdles to molecular internal state control have previously been overcome,

6



such as problematic reactions and thermodynamics, developing a method for rotational state

readout is the current limitation for further coherent studies with molecules in the MOTion

project. In this �nal chapter, our recent e�orts towards developing such a method for

state readout are summarized. In particular, a two-photon photodissociation scheme is

presented that relies on driving a rotational-state-selective dissociation transition in order to

measure molecular populations. Progress developing this method is presented and remaining

challenges are summarized, with the latter mainly boiling down to lack of precise molecular

spectroscopy.
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CHAPTER 2

Molecular Structure

At �rst glance understanding the structure of a diatomic molecule may seem like a trivial

extension to understanding that of a single atom, but in fact, the act of increasing the number

of atoms in the system by one yields an extraordinary amount of additional complexity.

For example, in comparison to atoms, molecules have many more modes in which to store

energy. As with atoms, they may possess translational kinetic energy, and electrons within

the molecule may be promoted to various excited states. However, unlike atoms, they may

also rotate and vibrate, providing di�erent energy scales for the system and also introducing

an additional angular momentum that can couple to other momenta in the molecule.

As is true for many quantum systems, one can gain intuition by �rst considering the

Hamiltonian. In general, the simpli�ed molecular Hamiltonian [BC03] looks like the follow-

ing:

Ĥ = Ĥe + Ĥvib + Ĥrot + ĤSO + ĤSR + ĤHFS + ĤΛd (2.1)

where the terms from left to right correspond to the electronic, vibrational, rotational, spin-

orbit, spin-rotational, hyper�ne, and Λ-doubling terms. Here, the terms in the Hamiltonian

are approximated as being uncoupled from one another, but in the most rigorous treatments,

coupling between various components of the molecular wavefunction prevents these energy

terms from being treated independently. However, under the Born-Oppenheimer approxi-

mation (see Sec. 2.3), the electronic, vibrational, and rotational terms are assumed to be

uncoupled, and the remaining terms can generally be treated as perturbative additions.

The di�erent terms in Eqn. 2.1 create a hierarchy of energy scales within the system.

For example, splittings between di�erent electronic states are generally the most energetic
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and typically assume values on the ∼ 100 THz level, which can generally be accessed using

commercial laser technology.

Vibrational splittings are generally the next largest, with vibrational separations typi-

cally in the ∼ 1 THz regime. The vibrational energy, corresponding to Ĥvib, arises from

oscillations in the internuclear spacing, which can often be treated as a harmonic-oscillator

interaction. Vibrational transition energies typically exist within a laser diode �hole� and thus

are typically only addressable using state-of-the-art MidIR laser technology or two-photon

Raman excitation schemes.

Lastly, the nuclei may also rotate around one another (Ĥrot), and these rotational energy

splittings tend to be in the ∼ 10 GHz regime, which is typically very convenient to ad-

dress using commercial microwave technology. The small energy separation of these states,

amongst other useful properties [DeM02], make them an attractive candidate for quantum

information studies [HC18], as will be discussed later in this text.

2.1 Electronic structure

The structure of molecules parallels atomic structure in many ways. Atomic states are

generally de�ned by the di�erent types of angular momentum they possess. In these systems,

the electronic angular momentum is carried solely by the valence electrons, since the total

angular momentum of the paired inner-shell electrons sums to zero. The electronic angular

momentum is stored as spin (S) and orbital angular momentum (L), while the nucleus may

also possess nuclear spin (I). Further, atomic electronic quantum states are also characterized

by a principal quantum number n which labels which radial solution to the Schrödinger

equation describes a particular electron's wavefunction (i.e. 1s, 2s, 3s). To �rst order, n

determines an electron's energy; however, higher-order interactions within the atom generally

ensure that electrons that share the same n are not energetically degenerate.

Molecules are similar to atoms in many of these regards but o�er additional complexity

due to their more sophisticated structure. With regards to angular momenta, diatomics have

an additional degree of freedom in the form of nuclear rotational angular momentum (N).
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Atomic property Molecular property

Angular momentum Symbol Values Symbol Projection Values

Electronic spin S 0,1
2
,1,... S Σ 0,1

2
,1,...

Electronic orbital angular momentum L s,p,d,... L Λ Σ,Π,∆,...

Nuclear rotational angular momentum N 0,1,2,...

Nuclear spin I 0,1
2
,1,... I 0,1

2
,1,...

Total angular momentum (minus I) J 0,1
2
,1,... J Ω 0,±1

2
,±1,...

Table 2.1: Table take from Ref. [Ham10] describing the various angular momenta atoms and

molecules may possess. While the S,L,J, angular momentum vectors are well de�ned quantities

in atomic systems due to their spherical symmetry, in molecules, the �good� quantum numbers

depend on how the various angular momenta couple together, with the couplings generally able to

be described by one of the limiting Hund's cases.

Table 2.1 gives an overview of the various types of angular momentum present in molecules

and atoms.

While atoms possess spherical symmetry, diatomic molecules possess cylindrical symme-

try. Due to the spherical symmetry in atoms, the conserved quantities are the electronic spin

S, the orbital angular momentum, L, and the overall total electronic angular momentum,

J = S + L.

In diatomics, the total angular momentum of the molecule J is the vector sum of the

various angular momenta in the system, as J = L + S + N, where the L and S vectors are

de�ned as in the atomic case. J is always conserved (neglecting hyper�ne for the moment);

however, in general, due to the cylindrical symmetry of the system, the various components

of J may precess about the internuclear axis. Since these angular momentum vectors rotate

in time, the individual vectors themselves are often not conserved quantities; instead, the

ways in which the various angular momenta couple to one another will determine what the

conserved quantities are.

Examples of �good� quantum numbers in diatomic molecules, assuming for example
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Hund's case (a) coupling (see Sec. 2.1.2), are Σ and Λ, the projections of S and L onto

the internuclear axis, respectively. Similarly, Ω = Σ + Λ, the J projection, is also conserved

and is given as the vector sum of the orbital and spin projections.

However, while the above projections are assumed to be well-de�ned quantities in Hund's

case (a), di�erent types of angular momenta coupling within the molecule can lead to other

types of Hund's cases where these quantities are not conserved, just as is the case in atomic

systems with strong-�eld and weak-�eld Zeeman splittings, for example.

Further, similar to atomic spectroscopic notation, molecular angular momenta quantum

numbers can be condensed into a molecular term symbol for state-labeling as

2Σ+1Λ
+/−
Ω,(g/u) (2.2)

where the (+/−) refers to (even/odd) re�ection symmetry of the electronic state along

an arbitrary plane containing the internuclear axis and (g/u) refers to (even/odd) parity

inversion symmetry about the center of mass position of diatomic. For example in BaCl+,

the two lowest lying molecular states are the X1Σ+ and A1Π states. Here the X and A

letters are used to designate the energetic ordering of electronic states with the same spin

multiplicity. The X symbol is reserved for the ground state, while A,B,C... symbols specify

states of increasing energy. Similarly, for excited states with di�erent multiplicities than the

ground state, the letters a,b,c... are used to denote such ordering. However, this notation

does vary from resource to resource and further can be altered if a new state is found in a

physical system that is lower in energy than previously discovered states; thus state labeling

should be cross-con�rmed through other means when browsing the literature.

In general, the L projections are allowed to be negative since the electrons can either

rotate clockwise or counterclockwise about the internuclear axis; however, unless consider-

ing higher order angular momentum couplings (see Sec. 2.1.1), these di�erent rotations are

energetically degenerate. Therefore, in the molecular term symbols, Λ typically refers to the

absolute value of orbital angular momentum projection, but we can introduce another num-

ber |ML| to describe the signed value of the L projection. For example, given a total angular

momentum magnitude L, ML ∈ {−L,−L+ 1, ...L− 1, L}, where ML is the projection of the
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orbital angular momentum onto the internuclear axis, with Λ = |ML|.

In general, the number of Λ states that are accessible in a given diatomic molecule can be

determined by considering the L values of the individual atomic constituents. For example, if

considering the number of Λ states that exist in a molecule composed of two atoms that each

have a P-state valence electron, �rst consider the di�erent angular momentum projections of

each atom. Since L=1 for each atom, ML1 ∈ {−1, 0, 1} andML2 ∈ {−1, 0, 1}, for the valence

electron in the �rst and second atom, respectively. Combining these projections in all nine

possible ways (|ML1 +ML2 |) produces 3 distinct Σ (Λ = 0) states, 4 Π (Λ = 1) states, and 2

∆ (Λ = 2) states. For this molecule then, ML ∈ {−2,−1, 0, 1, 2}.

Lastly, the above discussion mostly focused on angular momenta in molecules; however,

molecular states are also characterized by a radial solution to the Schrödinger equation.

Each electron in a molecule can be thought of as residing in a `molecular orbital', typically

labeled as σ, that is described by a solution to the electronic Hamiltonian, as discussed in

Chapter 5. Similar to atomic orbitals, these molecular orbitals will have di�erent energies

and the molecular principle quantum number, similar to the atomic n, is used to characterize

which orbital an electron is occupying (1σ, 2σ, etc.), with orbitals generally increasing in

energy as a function of this principal quantum number.

2.1.1 Energy splittings and angular momentum couplings

It is worth reiterating that for molecules in which |Λ| ≥ 1, a two-fold degeneracy exists,

essentially because there are two directions in which the electrons can rotate, counterclock-

wise and clockwise with respect to the internuclear axis. While both of these rotations are

nominally energetically degenerate, interactions with the nuclear rotation and other angular

momenta can lift this degeneracy, yielding so-called Λ-doublets.

Further, for situations in which both Σ and Λ are greater than zero, the orbiting electrons

create a magnetic �eld that interacts with spin of the electrons, creating an energy splitting

in a similar manner to traditional spin-orbit coupling in atoms. This energy splitting is

typically given a
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ĤSO = A~L · ~S (2.3)

where A is the spin-orbit coupling constant. This results in a further splitting of degenerate

Ω states into |2Ω + 1| distinct energy levels, with the splitting roughly approximated, under

a coupling such as Hund's case (a), as ∆ESO = AMLMS (MS is de�ned similarly to ML

above).

In addition to these electronic quantum numbers, one or both of the nuclei may possess

nuclear spin, leading to a nuclear spin angular momentum vector I. Once again, how the

various J, L, S, I, and N couple together, and thus what the `good' quantum numbers are,

depend on the system of interest. This is qualitatively similar to determining what the `good'

quantum numbers are in an atomic system simultaneously undergoing spin-orbit coupling

and Zeeman shifts - ultimately how large these perturbations are in relation to the base

Coulomb interaction will determine the conserved quantities.

2.1.2 Hund's case (a)

In general,the angular momentum coupling in most diatomic systems will fall under one of

the limiting cases presented in Hund's cases. As an example, we will consider a Hund's case

(a) molecule, whose angular momentum couplings are presented graphically in Fig. 2.3.

In Hund's case (a), we consider the Coulombic interaction to be the dominant term

in our Hamiltonian, which is much larger than the spin-orbit interaction, which in turn

is much larger than the rotational energy of the diatom. In this situation, L cannot be

independently conserved since the system lacks spherical symmetry. Instead it precesses

about the internuclear axis, leading to a well de�ned projection Λ. The orbital motion of

the electrons produces a magnetic �eld that de�nes the quantization axis for S and causes

it to precess about the internuclear axis due to the spin-orbit interaction. S, unlike L, does

not need a spherically symmetric potential to be conserved, and in this case, we can consider

both S and its projection, Σ, to be well-de�ned. Therefore, Ω = Σ + Λ is also well-de�ned,

as is the total angular momentum J since the total angular momentum is always conserved.
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Figure 2.1: Illustration of Hund's case (a)

The eigenstates of the system are characterized by the quantum numbers |J,Ω,Σ,Λ, S〉. In this

regime, the spin-orbit coupling is considered to be large in comparison to the nuclear rotation.

This gives a set of mutually commuting operators {Ĵ , Ĵz, Ŝ, Ŝz, L̂z} and their associated

eigenvalues characterize our quantum state, |J,Ω, S,Σ,Λ〉. Here, N is not considered a good

quantum number and is instead de�ned as N = J−Ω. Evaluating 〈J,Ω, S,Σ,Λ|N̂2|J,Ω, S,Σ,Λ〉

will yield the rotational splittings that will de�ne the rotational energy levels of the molecule.

Further, since Ω and Λ are well-de�ned, Eqn. 2.3 can be used to calculate ∆ESO. In other

Hund's cases, the conserved quantities change, and thus the expressions for the spin-orbit

and rotational energy terms will change as well. In general, it is not always easy to tell

a priori what type of coupling case a molecular state will fall into; rather, in these cases,

observed spectra can be used to infer what type of coupling is dominant in the molecule,

providing additional insight into its structure [BJP03].
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2.2 Ro-vibrational structure

We can now turn our attention to the rotational and vibrational energy level structure of

a diatomic molecule. As a �rst-order approximation, we can consider the rotational and

vibrational terms of Eqn. 2.1 to be independent of the other terms in the Hamiltonian

and then employ a simple semi-classical treatment to obtain the rotational and vibrational

energy levels of the molecule. This approach may seem ad-hoc at the moment but will

become formalized later through application of the Born-Oppenheimer approximation.

2.2.1 Vibrational structure

We can approximate the relative motion of the nuclei in a diatom [Dem06] as that of a

harmonic oscillator with characteristic frequency ω0, yielding states with energies of

Evib = ~ω0(v + 1/2) (2.4)

where v is the vibrational quantum number. While this model is accurate for low lying

vibrational levels, as higher vibrational states are sampled, the potential becomes more

anharmonic. In this regime, the Morse potential V (r) = DE[1−e−a(r−re)] is a better approx-

imation for the radial potential, where DE is the dissociation energy of the molecule, re is

the equilibrium internuclear separtion distance, and a is a free parameter �t to a particular

molecular system. Solving the radial Schrödinger equation with Morse potential, the energy

eigenvalues can be given as [Dem06]

Evib = ~ω0(v + 1/2)− ~2ω2
0

4DE

(v + 1/2)2

→Evib/hc = ωe(v + 1/2)− ωeχe(v + 1/2)2

(2.5)

where ωe and ωeχe are the commonly used term symbols quoted in literature (units of cm−1).
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2.2.2 Rigid rotor model of diatomic molecules

To asses the nuclear rotational energy of a diatom, one can model the system as a rigid-

rotor [Dem06]. Under this model, rotations of the molecule through any axis that contains

the center-of-mass yield a rotational kinetic energy of

Erot =
1

2
Iω2 =

J2

2I
(2.6)

where ω is the angular velocity of the molecule, I is the moment of inertia, given as I =

mar
2
a + mbr

2
b , where mi and ri describe the mass and distance from the rotational axis of

the ith atom in the diatomic molecule, and |J | = Iω is the quantized rotational angular

momentum. The eigenvalues of the Ĵ2 operator lead to energy eigenvalues of

Erot =
J(J + 1)~2

2µre2

→Erot/hc = BeJ(J + 1)

(2.7)

where µ is the reduced mass of the system and re is the equilibrium internuclear separation of

the molecule. Be is the rotational spectroscopic constant that is typically quoted in literature

(units cm−1).

A higher-order approximation to this rotational model considers the non-rigidity of the

molecule. Instead of being completely rigid, the molecule can be approximated as oscillating

as a spring with a spring constant k about its equilibrium distance. A rotating body will

experience a centrifugal force that will displace the spring from its equilibrium position,

leading to the equality

µω2r = µ

(
J

I

)2

r =
J(J + 1)~2

µr3
= k(r − re). (2.8)

Solving for r, we �nd the new equilibrium internuclear separation distance of the molecule

is de�ned by the equation rc = re+
J(J+1)~2

kµr3
c

. To proceed further, the following approximation
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can be made by �nding rc to �rst order in small displacements from re:

rc ≈ re

(
1 +

J(J + 1)~2

µkr4
e

)
= re(1 + δ). (2.9)

Now, we can further approximate Eqn. 2.7 through a Taylor expansion

Erot =
J(J + 1)~2

2µr2
c

≈ J(J + 1)~2

2µ

1

r2
e(1 + δ)2

≈ J(J + 1)~2

2µr2
e

(1− 2δ) =
J(J + 1)~2

2µr2
e

(
1− 2J(J + 1)~2

µkr4
e

) (2.10)

which leads to

Erot ≈
J(J + 1)~2

2µre
− J2(J + 1)2~4

µ2kr6
e

(2.11)

As can be seen above, one of the e�ects of centrifugal distortion is to shift the equilibrium

distance of the molecule to larger values. At a �xed J , this serves to reduce the angular

velocity, and thus the angular kinetic energy, resulting in the negative energy correction

term.

Another e�ect, however, is a positive energy correction term associated with displacement

of the spring. This can be calculated as

∆Erot =
1

2
k(rc − re)2 ≈ 1

2
kδ2 =

J2(J + 1)2~4

2µ2kr6
e

(2.12)

As can be seen, the above correction term is positive as the string is stretched from its

equilibrium distance, increasing the calculated potential energy of the system.

Combining both e�ects we see

Erot ≈
J(J + 1)~2

2µre
− J2(J + 1)2~4

2µ2kr6
e

→Erot/hc = BeJ(J + 1)−DeJ
2(J + 1)

(2.13)

where De is the centrifugal distortion constant typically quoted in literature.
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Combing both rotational and vibrational energy terms, the ro-vibrational energies, EvJ ,

can �nally be approximated as

EvJ/hc = ωe(v + 1/2)− ωeχe(v + 1/2)2 +BeJ(J + 1)−DeJ
2(J + 1) (2.14)

2.3 The Born-Oppenheimer approximation

We will now give a more formal treatment of the �rst three terms in Eqn. 2.1, which consist

of terms associated with both electronic and nuclear energy. The generic non-relativistic

Hamiltonian for a diatomic molecule is given as

Ĥ =−
N∑
I=1

~2

2MI

∇2
RI
−

n∑
i=1

~2

2me

∇2
ri

+
1

2

N∑
I,J=1
I 6=J

1

4πε0

ZIZJe
2

|RI −RJ |

+
1

2

n∑
i,j=1
i 6=j

1

4πε0

e2

|ri − rj|
−

I=N,i=n∑
I,i=1

1

4πε0

ZIe
2

|RI − ri|

=T̂N + T̂e + V̂NN + V̂ee + V̂Ne

(2.15)

where MI refers to the mass of the I th nucleus; ~ is the reduced Planck's constant; ∇2
RI

is

the Laplacian operator with respect to the I th nucleus's spatial coordinates, RI ; me is the

mass of the electron; ∇2
ri
is the Laplacian operator with respect to the ith electron's spatial

coordinates, ri; ε0 is the vacuum permittivity of free space; ZI is the nuclear charge of the

I th nucleus; RI is the vector representing the position of the I th nucleus; ri is the vector

representing the position of the ith electron; and N and n are the total number of nuclei and

electrons, respectively.

From left to right, the terms in the equation represent the kinetic energy of the nucleus

(T̂N), the kinetic energy of the electrons (T̂e), the nucleus-nucleus repulsion terms (V̂NN),

the electron-electron repulsion terms(V̂ee), and lastly, the electron-nucleus attraction terms

(V̂Ne). In general, the above Hamiltonian is analytically unsolvable, and in order to treat

these types of many-body systems theoretically, approximation methods must be employed.
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One of the most popular approximation techniques for treating the molecular Hamiltonian

is the Born-Oppenheimer approximation. When looking at Eqn. 2.15, one of the most

problematic aspects is V̂Ne, which mixes both electronic and nuclear coordinates. Without

this term, the Hamiltonian would be separable into terms that depend exclusively nuclear

or electronic coordinates, implying that the solution to the Schrödinger equation would also

be separable as

Ψ(r,R) = ψp(r)χv,J(R) (2.16)

where Ψ(r,R) is the total wavefunction of the system, dependent on both nuclear (R) and

electronic coordinates (r), where r denotes a vector of all ri coordinates in the problem and

R denotes a vector of all Ri coordinates in the problem. ψp(r) describes the pth electronic

wavefunction of the system, and χv,J(R) describes the nuclear wavefunction of the system,

indexed by the (v, J) vibrational and rotational quantum numbers (to be discussed in more

detail below).

Most conveniently, we would like to be able to neglect all terms in Eqn. 2.15 that mix

nuclear and electronic coordinates so we could obtain the above separable solution; however,

there really isn't any justi�cation for this since many of the mixing terms are of the same

order as the non-mixing terms in the Hamiltonian.

However, we can note that MA >> me (MA/me ≈ 1800), which implies that electronic

motion will have very little e�ect on the position of the nuclei, whereas the electrons should

respond nearly instantaneously to changes in nuclear motion. Therefore, we can rewrite

Eqn. 2.16 as

Ψ(r,R) = ψp(r,R)χpv,J(R) (2.17)

which implies that the nuclear wavefunction is independent of electronic coordinates [BO27]

and that the electronic wavefunction depends only parametrically on nuclear coordinates.

The nuclear wavefunction is now also indexed by p since, as we will see shortly, the elec-

trostatic potential included in the nuclear Schrödinger equation will also depend on the
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electronic state of the molecule.

Inserting Eqn. 2.17 into Eqn. 2.15, we see for the T̂N term

T̂Nψp(r,R)χpv,J(R) = −~2

2

N∑
I=1

1

MI

[ψp(r,R)∇2
RI
χpv,J(R)

+ χpv,J(R)∇2
RI
ψp(r,R) + 2∇RIψp(r,R) · ∇RIχ

p
v,J(R)]

≈ −~2

2

N∑
I=1

1

MI

ψp(r,R)∇2
RI
χpv,J(R)

(2.18)

The latter approximation can be made since the ∇RIχ
p
v,J(R) � ∇RIψp(r,R). In a

classical sense, this is intuitive [BO27] since the nucleus is heavy and well-localized to a

pointlike distribution, meaning its wavefunction changes drastically as a function of the

nuclear coordinate, allowing the nuclear gradient term to dominate over the electronic terms.

After incorporating the rest of the terms from Eqn. 2.15 into the Schrodinger equation

HΨ = EΨ, we see

[T̂e + V̂ee + V̂Ne]ψp(r,R)

ψp(r,R)
= E −

[T̂N + V̂NN(R)]χpv,J(R)

χpv,J(R)
(2.19)

Since the RHS of the above equation is a function of R alone, the left side must be as

well, leading to

[T̂e + V̂ee + V̂Ne]ψp(r,R) = φp(R)ψp(r,R) (2.20)

The above equation is known as the electronic eigenvalue equation [BO27] and can be used

to solve for the electronic eigenvalues φp(R) as well as the electronic wavefunctions, ψp(r,R).

While the above equation is by no means simple to solve, we have e�ectively transformed the

analytically-impossible molecular Hamiltonian problem into a slightly less complex electronic

Hamiltonian problem that can be attacked using state-of-the-art computational chemistry

techniques. The key di�culty in solving the above equation is the electron-electron repulsion

terms, which mix the coordinates of all the electrons in the system. While this indeed poses
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a challenge, a suite of computational techniques has been developed to address this issue,

which will be discussed in detail in Chapter 5.

After solving for the appropriate electronic eigenvalues and eigenfunctions, there will be

a corresponding reduced nuclear Hamiltonian from Eqn. 2.19 that can be solved as well,

given as

[T̂N + VNN(R) + φp(R)]χpv,J(R) = Eχpv,J(R) (2.21)

where φp(R) is the electronic eigenvalue associated with the pth electronic eigenstate.

For the case of diatomic molecules of interest in this work, the corresponding nuclear

wavefunction, χpv,J(R), may be further separated into functions that depend solely on the

radial (Spv(R)) and angular (YJ(θ, α)) variables of the system as

χpv,J(R, θ, α) = Spv(R)YJ(θ, α) (2.22)

where θ and α are the polar and azimuthal variables, respectively. Inserting this solution into

Eqn. 2.21, we can perform another separation of variables to isolate the nuclear Schrödinger

equation into its rotational and vibrational components.

Since the molecular potential curve (φp(R)) depends only on the internuclear separa-

tion distance, the radial form of the Schrödinger equation resembles that of a hydrogen

atom [Gri05] and is given as

[ 1

R2

d

dR

(
R2dS

p
v(R)

dR

)
+

2µ

~2
(E − φp(R))− J(J + 1)~2

2µR2

]
Spv(R) = 0 (2.23)

where we have absorbed the nuclear repulsion term, V̂NN into φp(R) for notational simplicity.

Similarly, YJ(θ, α) is determined by solving the following equation:

1

sin θ

∂

∂θ

(
sin θ

∂YJ(θ, α)

∂θ

)
+

1

sin2 θ

∂2YJ(θ, α)

∂α2
+ J(J + 1)YJ(θ, α) = 0 (2.24)

Once the above electronic, vibrational, and rotational wavefunctions have been obtained,

we can say that a general wavefunction of the system is given as
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Ψ(r,R) =
∑
v,J,p

Cv,J,pχ
p
v,J(R)ψp(r,R) (2.25)

where Cv,J,p are expansion coe�cients.

After the total molecular wavefunction has been determined, many other quantities of

interest for the molecule, such as transition rates, photo-dissociation rates, etc., can be

calculated [Jec14,PST07,DS09].

2.3.1 Transition rates

One of the most relevant quantities of interest to calculate in molecular physics experiments

are rates of transitions between ro-vibrational levels, driven by external electric �elds. Within

the Born-Oppenheimer approximation, a generalized transition rate, ΓT , can be estimated via

Fermi's Golden Rule by considering the transition dipole matrix element. The electric dipole

energy is proportional to Eε̂ · p, where E is the electric �eld amplitude, ε̂ is the unit vector

pointing in the direction of the incident electric �eld, and p is the dipole function [Dem06]

given as

p = −e
∑
i

ri + e
∑
i

Ri = pe + pN (2.26)

where the pe (pN) term corresponds to the electronic (nuclear) dipole moment contribution.

Typically only the outermost valence electron is involved in the transition but we will leave

the summation general for the moment.

Using Fermi's Golden Rule in a diatomic system, ΓT is proportional to

ΓT ∝ E2| 〈YJ ′(θ, α)Sp
′

v′ (R)ψp′(r, R)|ε̂ · p|ψp(r, R)Spv(R)YJ(θ, α)〉 |2

∝ E2| 〈YJ ′(θ, α)Sp
′

v′ (R)| 〈ψp′(r, R)|ε̂ · pe|ψp(r, R)〉 |Spv(R)YJ(θ, α)〉

+ 〈YJ ′(θ, α)Sp
′

v′ (R)ψp′(r, R)|ε̂ · pN|ψp(r, R)Spv(R)YJ(θ, α)〉 |2

∝ E2| 〈YJ ′(θ, α)Sp
′

v′ (R)|dp,p′(R, θ, α)|Spv(R)YJ(θ, α)〉

+ 〈YJ ′(θ, α)Sp
′

v′ (R)| (〈ψp′(r, R)|ψp(r, R)〉) ε̂ · pN|Spv(R)YJ(θ, α)〉 |2

(2.27)
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where dp,p′(R, θ, α) is the transition dipole moment function (obtained from evaluating Êε ·

p over the electronic states in the system). We can analyze the above equation for two

particular cases.

In the �rst case, we can consider overtone transitions within the same electronic state

(ψp′(r, R) = ψp(r, R)). The �rst term in Eqn. 2.27 will be 0 since pe is a symmetric func-

tion, meaning dp,p′(R, θ, α) will evaluate to 0. Therefore, overtone transitions only arise

from the second term in Eqn. 2.27, which represents the nuclear dipole energy contribution.

For homonuclear molecules, however, pN = 0, and thus overtone transitions are electric

dipole forbidden in these systems and thus are much more easily driven in heteronuclear

systems [AP10].

In the second case, we can consider transitions between di�erent electronic states (ψp′(r, R) 6=

ψp(r, R)). Now the second term is zero since the electronic functions are orthonormal, mean-

ing only the �rst term contributes [Dem06]. The �rst term in general is a complicated integral

over both electronic and nuclear coordinates; however, a common approximation [Dem06] is

to assume dp,p′(R, θ, α) = dp,p′ , a constant. Using this approximation

ΓT ∝ d2
p,p′ 〈S

p′

v′ (R)|Spv(R)〉
2

HJ,J′

∝ d2
p,p′FCF (p′, v′, p, v)HJ,J′

(2.28)

where FCF (p′, v′, p, v) is known as the Franck-Condon Factor and describes the vibrational

wavefunction overlap and HJ,J′ is known as the Hönl-London factor. The Hönl-London

factors are the molecular equivalent of Clebsch-Gordon coe�cients and are responsible for

rotational selection rules. The rotational selections rules mirror those in atoms, primarily

because the rotational components of the wavefunction are essentially spherical harmonics,

matching their atomic counterparts. Namely, for molecular transitions, ∆J = −1, 0, 1, with

∆J = 0 implying ∆Λ = ±1 to conserve angular momentum (J=0→J'=0 is forbidden). The

∆J = −1, 0, 1 transitions are known as the P, Q, and R branch transitions respectively.

In additional to these rotational selection rules, the FCF acts as a sort of `weak vibrational

selection rule' by suppressing transitions with poor vibrational wavefunction overlap. Finally,

dp,p′ encodes the electronic state selection rules, which follow those similarly found in atoms
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in which ∆S = 0, ∆Σ = 0, ∆Λ = 0,±1, and ∆Ω = 0,±1. For more detailed information on

these selection rules, the reader is referred to Refs. [BC03,HH79].

2.3.2 Born-Oppenheimer breakdown

The Born-Oppenheimer approximation is also referred to as the adiabatic approximation.

The approximation inherently assumes that if the electrons are initialized in state ψn(r,R(t = 0)),

they will remain in the same eigenstate as they adiabatically evolve to changes in the in-

ternuclear separation distance as ψn(r,R(t)). That is to say, as the nuclei slowly approach

one another, the electronic wavefunction evolves adiabatically to remain in the the same

eigenstate, albeit one whose energy is changing with internuclear separation distance. This

is analogous to a ground state particle in a box whose boundaries are slowly widening in

time. As long as the expansion of the box is slow enough, the particle will remain in the

ground state even as the energy of that ground state, which depends on the boundaries of

the box, changes.

However, this need not always be the case, and there may be situations in which adia-

baticity is broken as the electrons are unable to respond quickly enough to sudden changes in

internuclear separation distance. In our particle-in-a-box analog, this resembles a case where

the box is suddenly yanked to a new distance, which suddenly causes the `pre-yank' wave-

function to be re-expressed in the basis set of the `post-yank' box, potentially leading to non-

ground state components in the wavefunction. While a full treatment of Born-Oppenheimer

breakdown is provided elsewhere [Mar05], a casual analysis will be provided here.

To estimate when non-Born Oppenheimer e�ects become important to �rst order, we can

consider the neglected terms in Eqn. 2.18, and apply �rst order perturbation theory using

the Born-Oppenheimer electronic and nuclear wavefunctions, as

Vn,v,J =
∑
v′,J ′,n′

| 〈χn′v′,J ′(R)ψn′(r,R)|V̂ |ψn(r,R)χnv,J(R)〉 |2

En,v,J − En′,v′,J ′
(2.29)

where V̂ is the operator associated with neglected terms in Eqn. 2.18 [Voo15].
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Qualitatively, we can see that the non-Born-Oppenheimer terms become more signi�cant

when the energy spacing between Born-Oppenheimer surfaces En,v,J − En′,v′,J ′ is small, as

occurs at so-called �avoided crossings�, as shown in Fig. 2.2. In theory, the non-adiabatic

terms, even when BO states are spaced closely in energy, may still be small if the matrix

elements in Eqn. are near-zero; however, evaluating such matrix elements is a more di�cult

enterprise and not considered here.

Typically when En,v,J−En′,v′,J ′ is small, the individual Born-Oppenheimer electronic sur-

faces, φn(R), are no longer accurate, and couplings can occur from one Born-Oppenheimer

surface to the other. Here, the `true' electronic wavefunctions, and thus the electronic poten-

tial energy surfaces the nuclei experience, will be a linear combination of Born-Oppenheimer

terms. Therefore, if a system begins in a particular Born-Oppenheimer eigenstate, as the

internuclear separation distance changes and an avoided crossing is approached, the state

can be re-projected into another Born-Oppenheimer state, if energy conservation permits

such an event given the collision energy of the system.

To �rst order, the probability of transfer can be approximated by Landau-Zener the-

ory [BD80,Hal13] as

Pa→b = exp(−2πωabτ) (2.30)

where ωab is the e�ective Rabi frequency between the states, which is set by other parameters

related to their coupling strength, and τ is a measure of the interaction time, classically

thought of as how long it takes the nuclei to pass through the avoided crossing. However, a

set of more sophisticated techniques is often used for more accurate predictions of transfer

probabilities [ZD88,HB76].

The two surfaces that are coupled together may have observably distinct properties, such

as which atom within the two body system contains a majority of the system charge, and

thus these nonadiabatic transitions can leading to physically observable phenomena such as

charge-exchange collisions and chemical reactions.
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Figure 2.2: Born-Oppenheimer Breakdown

When the energy spacing between Born-Oppenheimer surfaces is small, non-adibatic components

of the molecular Hamiltonian can mix the eigenstates together, leading to observable phenomena

such the two-body charge-exchange reaction in this example where A+ + B → A + B+. Here

the potentials with the dotted lines are the diabatic BO potentials (assumed to be of di�erent

symmetries) while the solid lines show adiabatic potentials in which this degeneracy has been lifted

due to non-adiabatic perturbations.

2.4 Collision cross-sections

Observing collisions between atoms and ions is the cornerstone of much of the work contained

in this thesis, and thus, accurate calculations of collisional cross-sections are paramount to

interpreting experimental results. In the range of temperatures explored here, there are a

host of methods that may be employed for this purpose, ranging from highly sophisticated

electronic structure calculations to simple classical models. Often, there is a compromise be-

tween accuracy and computational e�ort, and consequently, the approach taken will depend

on the constraints of the problem of interest. Here, we will focus on a series of classical and

semiclassical models that can be employed to estimate these cross-sections.
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2.4.1 Elastic collisions

In general, an elastic collision is de�ned as a collision where total kinetic energy is conserved.

Such collisions are crucial in processes such as atom-ion translational sympathetic cooling

and low-temperature evaporative cooling. Semiclassical models may be used to understand

the collisional cross sections of such events.

For a given atom-ion system, the potential between the two nuclei is derived from a

central force, and thus angular momentum is conserved, according to Noether's thereom.

This means that the scattering wavefunction can be expanded in eigenfunctions of the total

nuclear orbital angular momentum operator, known as partial waves.

Recalling the radial Schrödinger equation for a two-body system in Eqn. 2.23, the long-

range asymptotic behavior of Spv(R) can be approximated [SN11] as

u`(R) ∼ sin(kR− `π

2
+ η`(k)) (2.31)

where Spv(R) = u`(R)/R, k sets the incoming kinetic energy as E = ~2k2

2µ
, and ηl(k) is the

phase shift of the `th partial wave.

Using the partial wave expansion, the total elastic cross section, σel, of a scattering event

is given as [SN11]

σel =
4π

k2

∞∑
l=0

(2`+ 1) sin2 η`(k) (2.32)

Thus, the problem of determining the elastic cross section is equivalent to the problem

of determining the phase shifts for di�erent partial waves by solving the radial Schrödinger

equation. For the systems in this work, we can assume the scattering potential to be domi-

nated by the standard C4 atom-ion interaction (see Sec. 2.4.3).

There are a variety of approximation techniques for calculating the required phase shifts.

In the regime of most interest in this work, several partial waves are accessible. The typical

approach is to approximate the elastic cross section by splitting our partial wave contributions

into two general regimes and making di�erent approximations for the phase shifts in each.
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The �rst general regime is for partial waves with ` < `max where `max is de�ned as the

maximum angular momentum the colliding pair can have and still reach short range. `max

is set by the collision frame energy and the corresponding centrifugal barrier height and is

given as (see Sec. 2.4.3)

`max =
(8µ2C4E)1/4

~
(2.33)

For partial waves with ell < `max the colliding pair will reach short range, and thus

the corresponding phase shift will be sensitive to details of the short range intermolecular

potential. In general, these features are di�cult to calculate accurately, thus it is standard

to set sin(ηl)
2 ≈ 1/2 in this range [CD00].

On the other hand, for ` > `max, the partial waves cannot scale the centrifugal barrier

and are assumed to be insensitive to the short-range features of the molecular potential.

Therefore, phase shifts in this regime are assumed to be solely dependent on the long-range

form of the atom-ion interaction. TheWKB approximation can be employed [CD00,DMW58]

to estimate these phase shifts as

ηWKB
` ≈ − µ

~2

∫ ∞
R0

V (R)√
k2 − (`+ 1/2)2/R2

(2.34)

where R0 is the classical turning point of the incoming particle.

For the standard C4 potential used in this work, the above integral can be evaluated

exactly; however, an estimate for the classical turning point must be made. Utilizing the

approximation presented in Ref. [CD00], we obtain

ηWKB
` ≈ πµ2C4

4~4

E

`3
(2.35)

Further, for ` > `s, we will assume sin(η`) ≈ η` [CD00].

Using these results the total inelastic cross section can be estimated by splitting the sum

in Eqn. 2.32 into two regions. For ` ≈ `max, the above treatment for either regime is really

not appropriate, so for now, we will leave the angular momentum value at which we choose
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to split our sum �exible and de�ne this quantity as `s. This will give us some wiggle room

to account for errors in our treatment by varying `s.

The total elastic cross section can now be expressed as

σel =
4π

k2

∞∑
`=0

(2`+ 1) sin2 η`(k)

=
4π

k2

`s−1∑
`=0

(2`+ 1) sin2 η`(k) +
4π

k2

∞∑
`s

(2`+ 1) sin2 η`(k)

≈ 4π

k2

(
`s−1∑
`=0

(2`+ 1)
1

2
+

∫ ∞
`s

2`(ηWKB
` )2d`

)

=
4π

k2

(
`2
s

2
+

1

2

π2µ2C2
4E

2

16~8

1

`4
s

)
=

2π

k2
`2
s(1 + (ηWKB

`=`s )2)

(2.36)

Quantum mechanical calculations [CD00] have demonstrated that a reasonable value of

`s is one such that ηWKB
`s

= π/4, which yields `s = ((µ2C4E)/~4)
1/3.

Finally, the total elastic cross section can be obtained as

σel ≈
(
π3µC2

4

~2

)1/3(
1 +

π2

16

)
E−1/3 (2.37)

2.4.2 Inelastic scattering

Many of the phenomena of interest studied in this work, such as internal molecular sym-

pathetic cooling, charge exchange, etc., are inelastic processes where the kinetic energy of

the collision complex is not conserved. Instead a portion of this energy is either released or

absorbed into an inelastic process, such as internal state conversion or charge-exchange.

Estimates of the cross-section of these inelastic events can be performed most accurately

by solving the radial Schrödinger equation numerically as is done with the close-coupling

method [FSL91]. However, a far simpler semiclassical treatment can also be used as a rough

estimate, similar to that presented in the Sec. 2.4.1.
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In order for an inelastic events to occur, the collision complex must clear the angular

momentum barrier and reach short range. For a �xed collision complex energy E and

assuming a C4 potential, the maximum angular momentum than can be possessed (see

Sec. 2.4.3) is

`max =
(8µ2C4E)1/4

~
(2.38)

We can make the same approximation as for the elastic cross-section that for ` < `max,

sin(η`)
2 ≈ 1/2; however, diverging from our elastic treatment, we will assume that higher

partial waves do not contribute to the cross-section whatsoever and additionally we will

modify our cross-section formula by a constant factor [BV12]. Then, the total inelastic

cross-section can be estimated as

σie =
2π

k2

`max−1∑
`=0

(2`+ 1) sin(η`)
2 ≈ π

k2
`2
max

= π

(
2C4

E

)1/2
(2.39)

for the standard C4 collision. Of course, if a non-C4 interaction is present in the system, such

as a C3 interaction, `max may be recalculated, as discussed in the next section, and then the

above summation may be appropriately updated.

2.4.3 Capture theory models

For the above calculations, the calculation of `max will depend on the particular interaction

between the atom and ion in the system. Such interactions can become complicated if elec-

tronic excitations are involved that create non-spherically symmetric electron distributions

that give rise to higher order electrostatic interactions.

Capture theory models are a convenient tool to estimate the rates at which such colli-

sions occur. These models assume that the long-range form of molecular potentials govern

whether a collision will occur or not, and further, that the probability of an inelastic pro-

cess occurring once a short-range collision occurs is unity. In reality, short-range features
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of a molecular potential (coupling strengths between Born-Oppenheimer surfaces, etc.) can

produce a probability less than unity (see Sec. 2.3.2 and Ref. [BV12]), but capture models

provide a convenient upper bound on the rate at which such processes can occur.

Long-range potentials are typically described using a power-low expansion

V (R) =
∑
n

−CN
RN

(2.40)

where the CN coe�cients are determined by the nature of the atom-ion interaction re-

sponsible for the potential term. For example, the C4 interaction, known as the Langevin

interaction, is caused by an approaching monopole polarizing the neutral atom of interest,

thereby creating a induce dipole-monopole attractive interaction.

The induced dipole moment of a neutral atom placed within the �eld of a singly charged

monopole is determined from an atom's polarizability as

~p = α~E

=
e

4πε0

α

R2
r̂

(2.41)

where ~p is the atomic dipole moment and α is the atomic polarizability. This leads to a

separation distance dependent atom-ion potential energy of

V (R) = −
∫ R

0

~E(R′) · d ~p(R′)

= −
∫ E(R)

0

E(R′) [αdE(R′)]

= −1

2
α[E(R)]2

= −1

2

e2

(4πε0)2

α

R4

= −C4

R4

(2.42)

where R is the atom-ion internuclear separation distance at which the potential is to be

calculated and C4 = α
2

e2

(4πε0)2 . For most cases, it is only necessary to consider the �rst one or

two leading terms in Eqn. 2.40, as high order terms will generally have a minimal e�ect.
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Once the appropriate long-range potential has been derived, capture theory can be ap-

plied to derive collision cross sections. In the capture theory model, the collision complex

can be assumed to reach short range and collide if it is able to clear any potential energy

barriers (Fig. 2.3).

Where do these barriers come from? In addition to the long-range atom-ion interaction,

centrifugal barriers in the collision complex exist that depend on the orbital angular momen-

tum of the system, `, where ~` = µvb, where µ is the reduced mass of the complex, v is the

collision velocity, and b is the collision impact parameter. As we will see below, we can place

restrictions on these parameters of the system to ensure the complex reaches short-range.

Considering both the centrifugal barrier and atom-ion attractive potential, the total

e�ective potential [CD00] is given as

Veff (R) =
~2`2

2µR2
− CN
RN

(2.43)

A short-range event will occur, at a given collision energy, if the incoming particles

approach each other under a critical angular momentum ~`max = πvbmax, where bmax is

the critical impact parameter associated with `max. Assuming hard-sphere collisions, bmax

can be used to calculate an energy-dependent cross section σ(E) = πb2
max(E), which can be

averaged over the collision energy distribution of the sample to yield collision rates. The

procedure for determining the cross-section will go as follows: (1) Determine `max(E), (2)

Determine bmax(E) from (1), (3) calculate the cross-section as πb2
max(E).

The �rst step in determining `max(E) is determining the height of the energetic barrier.

The separation distance at which the barrier maximum occurs, Rmax, can be found by setting

the derivative of Eqn. 2.43 to 0, resulting in

Rmax =

(
NCNµ

~2`2

) 1
N−2

(2.44)

which can be used to �nd the height of the potential barrier, Vmax(Rmax), as
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Figure 2.3: Capture theory models

(a) Molecular potentials at various ` values for a prototypical C4 potential. For ` > 6, the incoming

kinetic energy, Ek is no longer large enough to scale the centrifugal barrier, and thus only partial

waves with angular momenta below this value will reach short range. (b) Calculated trajectory for

a prototypical collision event in which ` < `max. As can be seen in the plot, the collision pair spiral

inwards towards each other until a collision occurs.

Vmax =

(
~2`2

µ

) N
N−2

(NCN)−
2

N−2

(
1

2
− 1

N

)
(2.45)

When the incoming kinetic energy of the complex, E ≥ Vmax the collision pair will

reach short range. Therefore, at a given collision energy, `max can be calculated by setting

E = Vmax and inverting the subsequent equation as

E =

(
~2`2

max

µ

) N
N−2

(NCN)−
2

N−2

(
1

2
− 1

N

)
→ `max =

1

~

(
2E

N − 2

)N−2
2N

(CN)
1
N (µN)1/2

(2.46)

With this in hand, we can use `max = µvbmax and E = µv2/2 to calculate σ(E) as

σ(E) = π[bmax(E)]2

= πN

(
1

N − 2

)N−2
N
(
CN
2E

) 2
N

(2.47)
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Lastly, the collision rate, k(E), which is separate quantity from the cross-section, is given

as k(E) = σ(E)vρ where ρ is the scattering center density [Swi62] (taken to be the number

density of the atom cloud in this work).

Experimentally, k(E) is an common quantity to consider since both the collision rate

and the collision energy are convenient experimental parameters to measure/tune in the

lab [Ebe16, PMW18]. As seen from Eqn. 2.47, the functional form of k(E) can be used

to backtrack N , the power of the dominant long-range potential in the complex, yielding

valuable insight into the physical system.

Physically, the scaling of k(E) depends primarily on two competing factors. Firstly,

k(E) ∝ σ(E), and in general, the cross-section is a monotonically decreasing function of E.

The larger kinetic energy of the collision complex, the smaller the impact parameter of the

collision must be in order for the attractive atom-ion force to be able to induce an inwardly

spiraling collision, as shown in Eqn. 2.47. However, at the same time k(E) ∝ v ∝ E1/2.

Essentially, the larger E is the larger v is, and thus, the more scattering centers a particular

particle will pass through in a given unit of time.

These two e�ects cancel out exactly for the C4 interaction, leading to an energy-independent

collision rate. However, for inverse power law potentials withN < 4, σ(E) decreases abruptly

enough as a function of energy to dominate over the collision velocity enhancement factor

(v = (2E/µ)1/2), causing k(E) to decrease with increasing collision energy. On the other

hand, for N > 4, the collision velocity factor dominates over σ(E), which has reduced en-

ergetic sensitivity in this regime, resulting in cross-sections that increase with increasing

collision energy.

Further, we can average k(E) over the energy distribution of the sample to get a better

sense of a rate that would be measured experimentally. The simplest case to consider is a

collision energy set by a standard Maxwell-Boltzmann distribution at a temperature, T , as

kT =

∫ ∞
0

P (E)σ(E)dE (2.48)

where P (E) is the normalized Maxwell-Boltzmann probability energy distribution, given as
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P (E) = 2

√
E

π

(
1

kBT

)3/2

e
− E
kBT (2.49)

However, in the atom-ion systems considered in this thesis, a Maxwell-Boltzmann energy

distribution is often too simplistic and in general one needs to consider energy distribu-

tions that include e�ects such as micromotion interruption [CSH14,RW17] and ion-ion heat-

ing [CSR13,SDC16] for the most accurate collision-rate calculations. Lastly, while we have

only considered attractive potentials thus far, the sign of the CN coe�cients can also lead to

repulsive potentials in certain situations, precluding short-range collisions from occurring.
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CHAPTER 3

Ion trapping theory

In order to perform high precision optical manipulations on charged species, these particles

must �rst be su�ciently spatially localized. The standard protocol for achieving such local-

ization is through a technique known as ion trapping. Ion trapping theory is well-documented

in the literature [BMB98], and only a brief conceptual overview will be presented in this work.

3.1 Motion within an ion trap

3.1.1 Time dependent trapping potentials

Within ion traps, electromagnetic �elds are utilized to create a con�ning potential that

guides charged species to an e�ective potential minimum. The most natural potential to

consider that could match such conditions is a three-dimensional harmonic oscillator who

potential is given as

V (x, y, z) = αx2 + βy2 + γz2 (3.1)

For a typical trapping potential, the coe�cients of the quadratic terms would all need

to be positive. However, as echoed in Earnshaw's theorem [Ear48], the electrostatic ar-

rangement of particles needed to create such a potential would also need to satisfy Laplace's

equation as

∇2V (x, y, z) = 2(α + β + γ) = 0 (3.2)

which implies that α, β, and γ cannot all have positive values, and by extension, trapping

potentials cannot exist in all three dimensions simultaneously when using static �elds.

However, we can `cheat' by using time-varying �elds to overcome this hurdle and provide
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a three-dimensional restoring force, under certain conditions. However, before dabbling in

time-dependent potentials, the appropriate electrode geometry for the ion trap must be

selected. Electrodes arranged in a hyperbolic geometry are capable of producing a potential

that strongly resembles that presented in Eqn. 3.1, and thus are of considerable practical

interest within the ion trap community. Electrode geometries that resemble the idealized

hyperbolic con�guration but permit a larger degree of optical access, such as the four-rod

linear quadrupole trap (LQT) utilized in this work, can also produce similar potentials while

o�ering other experimental conveniences, and therefore the remainder of this discussion will

assume a LQT geometry.

The electrostatic potential produced from electrodes arranged in the hyperbolic geometry

is given as

Φ(r, z) =
Φ0

r2
0

(r2 − z2) (3.3)

where Φ0 is a scale-factor constant.

If a sinusoidally-varying voltage is placed on one pair of rods while a constant voltage is

placed on the other pair, the potential then becomes

Φ(x, y, t) =
Vrf cos(Ωt) + UDC

2r2
0

(x2 − y2) (3.4)

where Vrf is the amplitude of the time-varying radiofrequency (rf) voltage, Ω is the rf os-

cillation frequency, UDC is the DC voltage, and r0 is the distance between the rods and the

trap center. Trapping in the z-dimension will be performed using purely static �elds and

will be discussed later, with the proceeding section focusing on the time-dependent trapping

present in the x and y dimensions.

Newton's law can be used to solve for the equations of motion of an ion placed within

this potential as

~F = mr̈ = Q∇Φ(r, t) (3.5)

where Q(m) is the charge (mass) of the ion.
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For the x-dimension this leads to

ẍ =
Q

mr2
0

(Vrf cos(Ωt) + UDC)x (3.6)

and correspondingly for the y-dimension

ÿ = − Q

mr2
0

(Vrf cos(Ωt) + UDC)y (3.7)

These equations can be simpli�ed by making the following substitutions: ax = −ay =

4qUDC
mr2

0Ω2 , qx = −qy =
2qVrf
mr2

0Ω2 , and τ = (tΩ)/2, yielding the following Mathieu di�erential

equation

üi + (ai − 2qi cos(2τ))ui = 0 (3.8)

where the ux and uy dimensions are de�ned by the pair of orthogonal unit vectors that point

from the center of one rod to the center of its diagonally opposed counterpart (Fig. 1B in

Ref. [BMB98]).

Only certain values of a and q will produce stable trajectories, resulting in the LQT

stability regions presented in Fig. 3.2. Since the underlying Mathieu a and q-parameters

depend on the ion mass, Vrf , and Ω, the stability regions will depend on these parameters

as well, meaning these parameters can be varied to control which species are stable within

the trap, thereby allowing the LQT to serve as a mass �lter.

The resulting trajectory for an ion within an ion trap in both one and two dimensions is

shown in Fig. 3.1 for particular trap parameters. In general, ion motion can be decomposed

into oscillations of two kinds - a slow oscillation at the secular frequency of the trap (secular

motion) and a faster oscillation at the driving frequency of the trap (micromotion).

As seen in the stability diagrams in Fig. 3.2, for low q-values (assuming UDC = 0), ion

motion is generally stable, and in this regime, the trajectories more closely resemble that of

a harmonic oscillator. However, at high q-values, the e�ects of micromotion become more

apparent, with trajectories generally becoming unstable when q & 0.908.

38



0 20 40 60 80 100
-0.2
-0.1
0.0

0.1

0.2

time (arb. u.)

x-po
s
(arb.

u.
)

-0.2 -0.1 0.0 0.1 0.2
-1.5
-1.0
-0.5
0.0

0.5

1.0

1.5

x position (arb. u.)

y
po
si
tio
n
(arb.

u.
)

� � � �

Figure 3.1: Paul trap trajectories

(a) Radial dimension trajectory for an ion held within a 3D Paul trap under standard stable ion

trapping parameters. The ion's motion can be decomposed into oscillations of two types - a slower

secular oscillation and a faster micromotion at the trap drive frequency.(b) A parametric plot of

the x-y motion of a trapped ion under standard trapping conditions.

3.1.2 Low q limit solution

A approximate analytical solution to Eqn. 3.5 can derived [LL82] when in the low-q limit

where q � 1. In this regime, we can consider the total ion motion as the sum of the respective

micromotion (um(t)) and secular motion (us(t)) components as u(t) = us(t) + um(t). In this

regime, the amplitude of secular motion dominates over the micromotion amplitude (meaning

u(t) = us(t) + um(t) ≈ us(t)); whereas, the acceleration of the fast time-scale micromotion

dominates over the secular acceleration (meaning ü(t) = üs(t)+ üm(t) ≈ üm(t)). Using these

approximations, the ion equation of motion presented in Eqn. 3.6 (UDC = 0) can be solved

as

üs(t) + üm(t) =
Q

mr2
0

Vrf cos(Ωt)(us(t) + um(t))

üm(t) ≈ Q

mr2
0

Vrf cos(Ωt)us(t)

→ um(t) = − QVrf
mr2

0Ω2
cos(Ωt)us(t)

(3.9)
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Figure 3.2: Ion trap stability diagrams

Regions of stability as a function of Vrf and Ω for various ions studied in this thesis. When the

Matheui-q paramter is greater than ≈ 0.908, the trajectories of all ions are unstable.

where the last equality was obtained by assuming the secular motion was slowly varying over

a micromotion oscillation period.

With this expression for micromotion in hand, one can then back substitute into the

ion equation of motion and average over one micromotion oscillation period to obtain an

expression for the secular motion as

ü(t) ≈ Q

mr2
0

Vrf cos(Ωt)(1− Q

mr2
0Ω2

Vrf cos(Ωt))us(t)

→ 〈ü(t)〉1/Ω ≈ 〈üs(t)〉1/Ω = −
Q2V 2

rf

2m2r4
0Ω2

us(t)

= −ω2
sus(t)

(3.10)

which implies the secular motion is simply harmonic motion at the pseudopotential oscillation

frequency ωs = qΩ/(2
√

2). Putting our approximate expressions for micromotion and secular

motion together, we see that

u(t) = um(t) + us(t) = A cos(ωst)(1−
q

2
cos(Ωt)) (3.11)

here A is a constant that speci�es the initial displacement of the ion from the trap null.
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A few general observations can be made from this approximation. Firstly, the amplitude

of micromotion scales with the amplitude of secular motion, i.e. at the outermost points of

secular trajectory, at the secular potential turning points, the amplitude of micromotion is

greatest.

The average kinetic energy of the ion can be approximated [BMB98] in the low-q limit

as

〈Ekin〉 =
1

2
m〈u̇(t)〉2 ≈ 1

4
A2(ω2

s +
1

8
q2
i Ω

2) (3.12)

with the �rst (second) term corresponding to the energy of the secular motion (micromotion)

(these terms are approximately equal in this regime).

Correspondingly, the average energy of the ion can be tuned by controlling the secular

amplitude, and thus also the micromotion energy, of the ion, either by creating an ion sample

with a tunable radial spread or by introducing a stray electric �eld into the system that o�sets

the ion sample from the trap null. Such considerations are important to hybrid trapping

experiments where ion energy is tuned as a means to scan the collision energy of atom-ion

interactions, as to be discussed later in this thesis.

Also of note, the secular frequency is mass-dependent and correspondingly, oscillating

electric �elds can be introduced into the trap in order to secularly excite certain masses,

pumping energy into these species until they are ejected from the LQT. This is yet another

feature that permits the quadrupole trap to function secondarily as a mass �lter, which will

be of use for several experiments studied in this work.

3.1.3 General solution

Outside of the low-q regime, more general solutions can be found to that Mathieu equation

that possess more frequency components than the simple secular model described above.

These solutions are given generally [LBM03] as

uj(t) = Ajcj(aj, qj, τ) +Bjsj(aj, qj, τ) (3.13)
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where Aj and Bj are amplitude coe�cients and cj(aj, qj, τ) and sj(aj, qj, τ) are the even

and odd Mathieu functions, respectively. The Mathieu functions themselves are periodic

functions, and thus, their sum can also be expanded in a Fourier series, for example [CSH14]

as

uj(aj, qj, τ) =
∞∑

n=−∞

C2n

(
bne

i(βj+2n)τ + cne
−i(βj+2n)τ

)
(3.14)

where C2n, bn, and cn are expansion coe�cients. The n = 0 term corresponds to the

harmonic-oscillator-like, secular motion trajectory discussed earlier, and the higher order

terms collectively give rise to the micromotion component. In general, the motion will be

a linear combination of oscillations at frequencies ωj,n = (βj + 2n)Ω/2. βj in general is a

complicated function of both a and q, but approximations of these frequencies can be derived

to various degrees of accuracy. Generally speaking, in the jth dimension [cTR06]

βj ≈

√
aj −

q2
j (aj − 1)

aj(aj − 1)2 − q2
j

−
q4
j (5aj − 7)

32(aj − 1)3(aj − 4)
(3.15)

although a more convenient, albeit less accurate, approximation is given as βj ≈ 1
2
Ω
√
a2
j + q2

j/2

[BMB98].

The trap depth, or the maximum amount energy an ion can obtain and still remain in

the trap, can be approximated by calculating the secular energy in each dimension at the

position of the trap electrodes (Ri), given as

Di =
1

2
mω2

i,0R
2
i (3.16)

As considered thus far, the axial and radial ion motions are uncoupled; however, if the

ion is subject to elastic collisions that mix the radial and axial energies, at an ion energy

of Dmin = min{Dx, Dy, Dz}, the particle will possess enough energy to clear its secular

potential and be expelled from the trap.

3.1.4 Excess micromotion

If a stray DC electric �eld, EDC,i, is present in the trap in the ith dimension, the equilibrium

position of the ion can be shifted o� the trap null, leading to a new equilibrium position of
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Figure 3.3: Excess micromotion trajectories

Radial dimension ion trap trajectories for cases in which both no o�set electric �eld is applied and

when a 1.5 V/m �eld is applied. When the o�set electric �eld is present, the average kinetic energy

of the ion increaes from 40 mK to 900 mK and the average ion position is shifted o� the null of the

trap

r0,i =
QEDC,i
mω2

i

(3.17)

To �rst approximation, this modi�es the equation of motion of the ion as

ri(t) = (r0,i + A cos(ωst))(1−
q

2
cos(Ωt)) (3.18)

leading to a modi�ed kinetic energy [BMB98] of

EKE ≈
1

4
A2(ω2

s +
1

8
q2
i Ω

2) +
1

2
m(

qΩ

2
√

2
)2r2

0,i (3.19)

The energy included in the last term is known as excess micromotion energy and posses a

challenge to hyrbid-trapping experiments seeking to reach the ultracold regime (. 1 mK) [CGc12].

Technically, if the ion were a point-particle placed exactly on the trap null, there would be

no excess micromotion energy. However, the non-zero spatial spread of the ion wavefunction

43



means some component of the ion will always reside o�-axis, meaning some degree of excess

micromotion energy is inevitable [CLC13]. While this minimized amount of excess micromo-

tion energy is negligible for the experiments in this thesis, a much more problematic concern

is electric �elds that can force the ion to reside ≈ 10− 100 µm o� the trap null, leading to

excess micromotion energies on the order of ∼ 10 K.

However, excess micromotion can be reduced by minimizing r0,i by superimposing DC

voltages onto the trap electrodes that compensate for stray electric �elds in the system.

Fig. 3.3 displays trajectories for ions placed under identical trapping conditions except for

an added o�set electric �eld. As described above, the e�ect of the o�set �eld is to displace

the ion from the trap null, where it executes higher energy orbits.

However, another source of excess micromotion energy is phase mismatches between the

rf voltage applied to di�erent rods, due to di�ering cable lengths for example, which serve to

e�ectively add an oscillating stray electric �eld that cannot be compensated for through DC

shimming. This phase mismatching e�ect, along with imperfect DC compensation, typically

provide the dominant sources of micromotion in most ion trap systems.

3.1.5 Axial localization

Thus far, our discussion has focused on radial con�nement. In order to produce axial con-

�nement, endcap electrodes are placed along the trap axis and are held at a constant DC

voltage. When superimposed on the existing rf potential, a total trap potential is obtained

as follows

Φ(x, y, z) =
Vrf cos(Ωt) + UDC

2r2
0

(x2 − y2)− κUec
z2

0

(z2 − 1

2
(x2 + y2)) (3.20)

In this model, the z-dimension contains a purely static trap at secular frequency ωz =√
κUec
mz2

0
. In addition to axial trapping, placing voltages on the endcap electrodes gives rise to

additional anti-trapping radial terms, as seen in Eqn. 3.20. These terms give rise to a radial

defocusing e�ect on the ion sample that downshifts the radial secular frequencies of the trap

and thereby changes the spatial radial distribution of the ion cloud. Further, in certain
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electrode geometries, projections of the rf trapping �eld may exist along the z dimension,

meaning that axial micromotion will also exist [TRL12], although such e�ects are generally

not considered to be signi�cant at the ion energies studied in this work.

3.2 Ion crystal equilibrium positions

In general the equilibrium position of ions within the LQT can be solved for by minimizing

the overall potential energy of the multi-ion system, which includes terms from the ion trap

potential as well as ion-ion repulsion. For the simplest case of a 1D ion chain placed along the

radial trap null, we can restrict ourselves to only considering the secular energy associated

with the axial dimension. The total system potential energy for the N ions is given as

V (z1, z2, ....zn) =
N∑
i

1

2
mω2

zz
2
i +

Q2

8πε0

N∑
i,j,i6=j

1

|zi − zj|
(3.21)

After enforcing the multivariate minimization condition ∂d
∂zi
V (z1, z2, ....zn) = 0, we are

left with a set of coupled equations that can be solved to yield the equilibrium position of

each ion. These equations are only analytically solvable for one or two ion systems; however

numerical studies have concluded, for larger systems, that the separation between adjacent

ions at the center of the chain scales approximately as N−0.559 [Jam98]. Further, the above

analysis can be extended to include more dimensions for situations in which two and three

dimensional structures are studied where ion positions deviate from the trap null.
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CHAPTER 4

Interaction of light with matter

4.1 Two level system

Much of the work completed in thesis involves coupling light with matter to achieve various

objectives, whether that be laser-cooling, studying the reactivity of excited electronic quan-

tum states, or other purposes. The simplest interaction one can imagine is light interacting

with a two level system. For our purposes, the two level system can most relevantly be taken

to represent di�erent electronic states within an atom or molecule. Using a semiclassical

analysis, the light source can be taken to be a plane wave that creates an electric �eld

~E(~r, t) = ~E0 cos(ωt− ~k · ~r) (4.1)

where ~E0 is the electric �eld amplitude vector, ω0 is the frequency of the electric �eld, and

~k is the �eld k-vector. The atomic energy levels can be said to be E2 = ~ω0 and E1 = 0,

respectively.

In general we may say the total wavefunction, |Ψ(t)〉, of such a system can be expressed

as

|Ψ(t)〉 = c1(t)e−iE1t/~ |φ1〉+ c2(t)e−iE2t/~ |φ2〉 (4.2)

where |φi〉 are the stationary states of the system and ci(t) are the time-dependent state

coe�cients.

Now, we can solve Schrödinger's equation for the system
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Ĥ |Ψ(t)〉 = i~
d

dt
|Ψ(t)〉 (4.3)

where Ĥ is the Hamiltonian of the system. The Hamiltonian consists of two terms, a sta-

tionary component, Ĥ0, that gives rise to the static natural energy levels of the system and

a time-dependent component related to the electric-dipole interaction

ĤI = −~µ · ~E(~r, t) (4.4)

where ~µ = e~r is the electric dipole moment operator for our system. At this point, we can

make the assumption that the wavelength of our light source is much larger than the spatial

dimension of the atomic wavefunction (certainly true for the 400-1000 nm radiation typically

used in this thesis). Thus, making what is known as the electric dipole approximation, we

can remove the spatial dependence of our electric �eld and only consider the time-dependent

component as

~E(~r, t) ≈ ~E(t) = ~E0 cos(ωt− φE) (4.5)

where we can choose an initial time for the interaction such that φE = 0. Further if we

assume ~E0 = E0x̂, then −~µ · ~E(t) = −exE0 cos(ωt)

Equipped with this simpli�cation, we can now express our Hamiltonian in matrix notation

i~
d

dt

c1(t)e−iE1t/~

c2(t)e−iE2t/~

 =

0 0

0 ~ω0

− E0 cos(ωt)

V11 V21

V12 V22

c1(t)e−iE1t/~

c2(t)e−iE2t/~

 (4.6)

where Vij = 〈φi|ex|φj〉. Since x is an odd function and the stationary states are parity

eigenstates, V11 = V22 = 0 and V12 = V ∗21, by symmetry.

The time derivatives in the above equations can be evaluated as

d

dt
c1(t)e−iE1t/~ = ċ1(t)

d

dt
c2(t)e−iE2t/~ =

(
ċ2(t)− iE2

~
c2(t)

)
e−iE2t/~

(4.7)
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since E1 = 0.

This allows us to reduce the Schrödinger equation to the following set of coupled di�er-

ential equations

i~ċ1(t) = −E0 cos(ωt)V21c2(t)e−iω0t

i~ċ2(t)e−iω0t = −E0 cos(ωt)V12c1(t)
(4.8)

Now we can substitute cos(ωt) = eiωt+e−iωt

2
, leading to

iċ1(t) = −Ω21

2
(e−i(ω+ω0)t + ei(ω−ω0)t)c2(t)

iċ2(t) = −Ω12

2
(ei(ω+ω0)t + e−i(ω−ω0)t)c1(t)

(4.9)

where we de�ne the Rabi frequency Ωij = E0

2~ 〈φi|ex|φj〉. It is generally most convenient

to solve the above equations under certain approximations. Namely, let us drop the terms

rotating at ω+ω0. In most cases of interest, we will be considering optical radiation sources at

the ∼THz level under near resonant conditions (ω0 ≈ ω), so the ω−ω0 terms will be relatively

slowly rotating and thus more important for the dynamics we are considering (additionally,

later we will see that the amplitude of higher frequency terms also is suppressed).

Using this so called rotating wave approximation (RWA), our di�erential equations be-

come

ċ1(t) =
iΩ21

2
(ei∆t)c2(t)

ċ2(t) =
iΩ12

2
(e−i∆t)c1(t)

(4.10)

where ∆ = ω − ω0.

The �rst equation above can be substituted into the di�erentiated version of the second

equation, leading to the following formula

d2

dt2
c2(t) + i∆

d

dt
c2(t) +

|Ω|2

4
c2(t) = 0 (4.11)
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Then using the Ansatz c2(t) = Ae−rt,this can be converted into the eigenvalue problem

λ2 + i∆λ+
|Ω|2

4
= 0 (4.12)

where the subscripts on the Rabi frequency are no longer needed as the magnitude of the

quantity is now taken. This eigenvalue equation can be solved to yield the following solution

λ± = i(−∆/2±
√

∆2 + Ω2) (4.13)

yielding the general solution

c2(t) = A(eλ+t − eλ−t) (4.14)

after enforcing the initial condition c2(0) = 0. This solution can be plugged into Eqn. 4.10 to

solve for c1(t) and combined with the initial condition c1(0) = 1 to yield the �nal probability

amplitude solutions

|c2(t)|2 =
|Ω|2

|Ω|2 + ∆2

[
sin

(√
|Ω|2 + ∆2

2
t

)]2

|c1(t)|2 =
1

|Ω|2 + ∆2

(
|Ω|2

[
cos

(√
|Ω|2 + ∆2

2
t

)]2

+ ∆2

) (4.15)

The results for the excited state population are displayed in Fig. 4.1. As can be seen from

the �gure, the population oscillates between the ground and excited states at a frequency

known as the generalized Rabi frequency Ω′(∆) =
√
|Ω|2 + ∆2/2 in a process is known

as Rabi-�opping. When exposed to radiation for tπ = π/(2Ω′), the population reaches a

maximum in the upper state and is said to undergo a �π-pulse�. Also as a further justi�cation

for our RWA, if we had kept the higher frequency terms instead of the lower frequency terms

in Eqn. 4.9 and de�ned ∆ = (ω0 +ω), the denominators in the above expressions would have

been much greater, thereby making excitations due to these terms relatively small.

Further, as the laser detuning increases, the e�ective oscillation frequency also increases

while the maximum excited state population decreases (as displayed in Fig. 4.1a).
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Figure 4.1: Rabi-�opping in a two-level system

(a) Rabi oscillations under two di�erent radiation detuning settings (∆ = Ω and ∆ = 0). With

higher detunings, the maximum population fraction in the excited state decreases and the oscillation

frequency increases. (b) Maximum excited state fraction, plotted after assuming a perfect π-pulse,

as a function of radiation detuning. As the detuning increases, the π-pulse fraction decreases.

4.1.1 Optical Bloch Equations

While the above formalism is quite useful for many systems, it is known that excited states

also decay through a process known as spontaneous emission. Although a true derivation

of spontaneous emission requires quantization of the electric �eld, e�ectively its physical

origin can be thought of as being caused by perturbations of the atomic energy level by

vacuum electromagnetic modes (related to the zero-point energy of the vacuum �eld). These

perturbations cause uncertainty in the energy of the atomic levels and therefore gives rise

to an excited state lifetime through the Heisenberg uncertainty principle. A rigorous treat-

ment of this process is given through the Jaynes-Cummings [JC63] model or Weisskopf-

Wigner [Wei35] theory, yielding an e�ective spontaneous emission rate in a two-level system

of

Γ =
ω3

0|V12|2

3πε0~c3
(4.16)

While for a single atom, the e�ect of spontaneous emission would be to interrupt coherent

Rabi oscillations by demoting population to the ground state after each emission event, for
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an ensemble of atoms, these emission events are uncorrelated. Therefore at short time scales,

the collective sample would exhibit Rabi oscillations, but at longer timescales, uncorrelated

emission events would causing damping of these oscillations to an eventual average steady-

state excited state fraction of the system.

This process is usually studied under the density-matrix formalism. The density matrix

operator is de�ned as

ρ̂ = |Ψ(t)〉 〈Ψ(t)| (4.17)

where |Ψ(t)〉 =
∑

n cn(t) |φn〉 (here the phase factors are absorbed into the coe�cients for

convenience). Therefore the individual matrix elements of the density matrix operator, ρij

are determined as

ρij = 〈φi|ρ̂|φj〉 = ci · c∗j (4.18)

The evolution of the density matrix is determined by the Heisenberg equation of motion

as

d

dt
ρ̂ =

i

~
[Ĥ, ρ̂] (4.19)

For a two-level system

ρ̂ =

|c1|2 c2c
∗
1

c∗2c1 |c2|2

 (4.20)

while as detailed above

Ĥ = ~

 0 1
2
ΩRe

(i∆t)

1
2
Ω∗Re

(−i∆t) ω0

 (4.21)

This leads to the following set of matrix equations

51



ρ̂ =

 d
dt
ρ11

d
dt
ρ21

d
dt
ρ12

d
dt
ρ22

 =
i

2

(ρ21Ω∗Re
−i∆t − ρ12ΩRe

i∆t) ei∆t(ρ11 − ρ22)ΩR

e−i∆t(ρ22 − ρ11)ΩR (ρ12ΩRe
i∆t − ρ21Ω∗Re

−i∆t)

 (4.22)

which in turn lead to the following set of di�erential equations

d

dt
ρ11 = Γρ22 +

i

2
(ρ̃21Ω∗ − ρ̃12Ω)

d

dt
ρ22 = −Γρ22 +

i

2
(ρ̃12Ω− ρ̃12Ω∗)

d

dt
ρ̃21 = (i∆ρ̃21 −

Γ

2
) +

i

2
(ρ11 − ρ22)Ω

ρ̃21 = ρ̃∗12

(4.23)

where the Γ terms represent spontaneous emission in the system and have been added by

hand, and the new variables ρ̃21 = ρ21e
−i∆t and ρ̃12 = ρ12e

i∆t have been de�ned for conve-

nience.

It seems as though I have pulled a sleight of hand by introducing the spontaneous emission

terms; however, this addition can be made more formal through the introduction of the

relaxation matrix and the master Lindblad equation [BP03] although this formalism will not

be discussed in this work.

To obtain the steady state excited state fraction, one simply needs to set all the time

derivatives in Eqn. 4.23 to 0, yielding

ρ22 =
|Ω|2

Γ2

1

1 + 2Ω2/Γ2 + 4∆2

Γ2

(4.24)

This equation can be put in a more illuminating form by making a simple substitution.

Let us de�ne a quantity known as the saturation intensity as

Is =
2π2~cΓ

3λ3
(4.25)

where λ is the wavelength of the two-level transition.

Given that the intensity of the electric �eld is
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I0 =
1

2
cε0E

2
0 (4.26)

we can now de�ne what is known as the saturation parameter

s =
I0

Is
(4.27)

After some algebra, we obtain

s = 2|Ω|2/Γ2 (4.28)

This allows us to reexpress the excited state population as

ρ22 =
1

2

s

1 + s+ 4∆2

Γ2

(4.29)

which is the common form typically used in the �eld.

A few observations from the above equations. Firstly, even at in�nite s and therefore

in�nite electric �eld amplitude, the maximum steady-state excited state population is 1/2.

Secondly, the lineshape of the excited-state fraction as a function of detuning is Lorenztian.

The maximum of this Lorenztian is determined as

ρmax = ρ22|∆→0 =
s

2(1 + s)
(4.30)

Using this expression, we can reformulate Eqn. 4.29 as

ρ22(∆) =
s

2(1 + s)

1

1+s+ 4∆2

Γ2

1+s

= ρmax
1

1 + 4∆2

Γ2(1+s)

(4.31)

in order to make it apparent that the full-width half-maximum of this Lorenztian occurs at

∆FWHM = Γ
2

√
1 + s. Thus, the width of the Lorentzian increases as the input intensity of the

monochramtic driving source increases, a phenomenon [CGG77] known as power broadening

(see Fig. 4.2). Experimentally, for high precision determination of transition frequencies,

power broadening can be detrimental as it obscures the center of the transition; however, it
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Figure 4.2: Power broadening

Steady state excited state fraction as a function of laser detuning for both s = 1 and s = 100

conditions. When s is larger, the full-width-half-maximum of the atomic Lorenztian response pro�le

is increased, and the transition is said to be power-broadened.

is advantageous in other situations, such as when searching for narrow transitions of unknown

energy.

4.1.2 Einstein Rate Equation Treatment

Often, we are interested in the steady-state electronic populations of a system, for example

when experimentally observing laser addressed species over timescales much greater than an

atomic lifetime. In these situations, coherent e�ects get washed out by spontaneous emission

events, and a simple linear rate equation model can used to estimate atomic populations.

The standard convention is to assume the rate of both promotion and decay is propor-

tional to the state population. For a two-level system, the required rates are generally labeled

through a set of coe�cients and describe the following processes

stimulated emission (B21): process by which an atom in an excited state is perturbed

by an incoming photon and releases an identical photon while being demoted to the ground

state
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stimulated absorption (B12): process by which an atom in its ground state absorbs an

incoming photon and is promoted to its excited state

spontaneous emission (A12): process by which an excited state atom is perturbed by the

vacuum �eld to deexcite to the ground state while emitting a photon (previously described

above)

Including these rates leads to a system of di�erential equations as

dN1

dt
= A21N2(t) +B21ρ(ω)N2(t)−B12ρ(ω)N1(t)

dN2

dt
= −A21N2(t)−B21ρ(ω)N2(t) +B12ρ(ω)N1(t)

(4.32)

where ρ(ω) is the energy density per unit volume per unit angular frequency of the radiation

source. We note that the simple stimulated emission and absorption terms presented above

describe a monochromatic source, and these expressions become more complicated when

radiation widths are considered (see further below).

The spontaneous emission coe�cient, A12 has already been de�ned above. Einstein

showed quite generally [Ein16], by considering a system in thermodynamic equilibrium, the

following relationships exist between A12 and B12

B21 =
π2c3

~ω3
0

A21 =

(
λ

2

)2
c

~ω0

A21

B21 =
d1

d2

B12

(4.33)

where di is the state degeneracy of the ith level.

In order to obtain an explicit formula for the stimulated absorption and emission terms,

given how we de�ned B12 above, the absorption cross-section can be expressed [Hil82] as

σ(ω) =
d2

d1

(
λ

2

)2

A21g(ω) (4.34)

where g(ω) de�nes the transition lineshape and satis�es
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Figure 4.3: Optical Bloch equations vs. Einstein model

The state populations for a two level system as solved by the optical Bloch equations (OBE) (solid

lines) as well as the Einstein rate equation model (dashed lines), where the input parameters to the

latter was adjusted to yield the same steady state values. We see that the Einstein model neglects

coherent oscillations at short timescales but is capable of adequately reproducing the same steady

state behavior of the OBE model.

1 =

∫ ∞
−∞

g(ω)dω (4.35)

For most atomic transitions, g(ω) can be considered as a Lorentzian; however, di�erent

broadening mechanisms, such as Doppler or collisional broadening [HW10], can a�ect this

functional form.

Equipped with the cross-section, from the Beer-Lambert law [Swi62], the total absorption

rate, now de�ned as B12, can be found by integrating the cross-section over the incident

photon �ux which is given as

B12 =

∫ ∞
−∞

d2

d1

i(ω)

~ω
σ(ω)N1dω =

∫ ∞
−∞

d2

d1

i(ω)

~ω
N1

(
λ

2

)2

A21g(ω)N1dω (4.36)
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where

I =

∫ ∞
−∞

i(ω)dω (4.37)

where i(ω) is known as the spectral irradiance of the beam source (power per unit area per

unit angular frequency) and I is the total intensity of the radiation source.

Now we consider certain forms of g(ω) and i(ω). A typical case to consider is a Lorenztian

atomic lineshape of width ΓA given as

g(ω) =
2

πΓA

1

1 + 4(ω−ω0)2

Γ2
A

(4.38)

and a Lorentzian intensity distribution of width of ΓL, given as

i(ω) =
2I

πΓL

1

1 + 4(ω−ωL)2

Γ2
L

(4.39)

this yields a total emission/absorption coe�cient of

B12 =
d2

d1

(
λ

2

)2
I

~ω0

A21

ΓL + ΓA

1

1 + 4∆2

(ΓA+ΓL)2

(4.40)

where ∆ is the radiation detuning from the atomic lineshape ∆ = ω0 − ωL. Further, when

evaluating the above integral, we made the approximation 1/(~ω) ≈ 1/(~ω0) since we as-

sumed g(ω) is sharply peaked about its transition energy. When radiation sources with more

complicated lineshapes are used or when additional lineshape broadening mechanisms are

present in the system, the above treatment needs to be modi�ed, often resulting in Voigt-like

absorption pro�les.

After the appropriate convolutions have been made, the resultant absorption coe�cient

can be substituted back into Eqn. 4.32 using the relation B12ρ(ω) = B12 and thus B21 =

d1

d2
B12 through Eqn. 4.33.

The predictions using the Einstein rate equation model is compared to the optical Bloch

equation solution in Fig. 4.3. Here we notice both models predict the same steady-state
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fractions; however, the optical Bloch equations also are sensitive to coherent population

oscillations before the steady-state is reached. If long time scales are being considered for

a particular problem, the Einstein model is both convenient and su�cient; however, if an

experiment is sensitive to coherent e�ects, caution must be exerted when relying on the

Einstein treatment.

4.2 Optical Forces

In addition to transferring population from one state to another, light-matter interactions

can also exert useful forces on particles. Although thus far we have only considered laser

light classically, i.e. as being comprised of a plane wave electric �eld, once the electric �eld

is quantized, the light is seen as being composed of photons with characteristic momentum

~k. Thus, when an atom �absorbs� a photon to be excited to the excited state, the atom

is imparted the momentum of the photon. Similarly, when an atom �emits� a photon to be

demoted to the ground state, it receives a momentum kick of ~k in the direction opposite to

emission. Emission occurs in two �avors - either spontaneously, where the emitted photon is

ejected in a random direction, or through stimulated emission, whereby an incoming photon

�tickles� an excited atom and causes emission of a coherent photon from the atom in the

same direction of the incoming photon. While a rigorous derivation of these processes is

most readily obtained through electric �eld quantization [Wys11] (outside the scope of this

work), pictoral representations of these processes are presented in Fig. 4.4.

4.2.1 Scattering Forces

Consider a one-dimensional treatment of an atom that traveling antiparallel to the k-vector

of an incoming beam of resonant laser radiation. The atom will absorb photons, and thereby

gain ~k momentum per absorption event along the propagation direction of the laser. The

atom will also emit the photons to return to its ground state. The emission process will either

occur through stimulated emission, whereby −~k momentum is imparted to the system, or

by spontaneous emission, whereby the atom receives a momentum kick in a random direction.
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Figure 4.4: Optical forces

(a) A diagram of the momentum exchange during a stimulated absorption/emission cycle from a

single beam. The atom absorbs a photon and is promoted to its excited state, receiving a momentum

kick of ~k. The a second photon arrives at the atom and induces stimulated emission where a photon,

equal in phase and frequency to the incoming photon, is `tickeld' out of the atom, demoting it to

the ground state and imparting a −~k momentum kick. The total force of this cycle is 0. (b) A

diagram of a standard stimulated absorption/spontaneous emission cycle. The �rst step is identical

to as in (a); however, in the second step, the atom spontaneously emits. Considering many such

cycles, this results in an isotropic emission of photons from the excited state atom, and therefore

the atom is also imparted isotropically distributed momentum kicks. Averaging over many cycles,

the net momentum exchange is ~k and thus the atom experiences a positive force from the beam.
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Every absorption event that is followed by a stimulated emission event will result in

0 net momentum being imparted to the atom and therefore 0 net force. However, if we

consider absorption events followed by spontaneous emission, we see that the atom, on

average, experiences a non-zero force. If we time average over enough spontaneous kicks, the

spontaneous emission force will average to zero since the emission pattern is isotropic, leaving

the atom with a positive force along the laser propagation direction due to the absorption

events (see Fig. 4.4). Therefore, we can express the averaged force the atom experiences due

to the laser as

〈~Fs〉 = (photon momentum kick)× (scattering rate)

= ~~k × Γρ22

(4.41)

where we assume an excited state atom spontaneously emits at a rate Γ.

Since at high laser intensities, ρ22 saturates to 1/2, this means that a maximum average

scattering force of

〈~Fs〉 =
1

2
~~kΓ (4.42)

is obtained.

Additionally we can also derive an expression for the approximate minimum possible

energy an atom can have when exposed to resonant laser radiation. Even if initially at rest,

after one absorption event, then atom will posses a velocity of vr = ~k/m, leading to a

minimum kinetic energy of

Er =
1

2
mv2

r =
1

2

~2k2

m
(4.43)

This energy, known as the recoil energy, can be of order ∼ 1 µK for many atomic species;

however, it is a temperature rarely reached due to other optical e�ects, as will be discussed

below. However, while the recoil limit is unbroachable in many laser-cooling setups, state-

of-the-art cavity cooling techniques can be used to cool atomic species below Er [WKK12b].
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4.2.2 Doppler Cooling

Observing cold atomic and molecular species is a central goal of this thesis, and this section

will explore how optical forces can be used to reduce the temperature of these particles.

Earlier, in Eqn. 4.31, we derived an expression for the excited state fraction as a function

of ∆, the total detuning of the laser �eld from the transition energy. However, when consid-

ering ∆, one has to consider both the detuning of the laser with respect to the unperturbed

atomic transition energy as well as the Doppler shift associated with atomic motion, as

∆ = ωL − ω0 − ~k · ~v = ∆L − ~k · ~v (4.44)

where ωL is the angular frequency of the laser, ω0 is the transition angular frequency, ~v is

the velocity vector of the atom, with the positive direction being de�ned along the direction

of ~k, and ∆L = ωL − ω0. As we will see shortly, this velocity dependence can lead to a

velocity-dependent damping force being exerted on the atom.

To see this, consider a Taylor expansion of the scattering rate about v = 0, with the

detuning now including the Doppler shift

〈~Fs〉x = ~kxΓρ22 = ~kxΓ

(
1

2

s

1 + s+ 4 (∆L−kxvx)2

Γ2

)

≈ 〈~Fs〉|vx=0 +
∂〈~Fs〉
∂vx

|v=0 · vx

=
~kxΓ

2

s

1 + s+ 4 (∆L)2

Γ2

+ 4~k2
x

s(
1 + s+ 4 (∆L)2

Γ2

)2

(
(∆L)

Γ

)
vx

= 〈~Fs〉|vx=0 + αv

(4.45)

where we have chosen the laser to propagate along the x-axis.

The above force expression for a single beam very much resembles the force expression

for a free-falling object subject to air resistance damping. The constant term in the expres-

sion, known as the radiation pressure term, provides uniform acceleration while the velocity

dependent term damps this motion to a terminal velocity.
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However, as the goal is to produce cold atomic species, unless the radiation pressure

term is accounted for, the atoms will be unable to reach low kinetic energies. Continuing

the analogy with a free-falling system, if the energy of an atomic system initially exists in a

wide distribution, as the system is exposed to the resonant laser beam, the �nal velocity of

each individual atom will tend to the same terminal velocity, to �rst approximation. This

will produce an energetically narrow beam with a high forward velocity (in reality our Taylor

approximation would break down at this point, but the analogy is still useful to consider).

However, we would really like to maintain an atomic sample with both a narrow energy

distribution and an average velocity of approximately 0. In essence, this means the radiation

pressure term in the above equation needs to be negated somehow. For a system such

as an ion within an ion trap, an electrode potential can produce an an electromagnetic

force that directly opposes the radiation pressure term. However, for neutral species, such

counterbalancing forces are more di�cult to produce since neutrals typically have weaker

coupling to electromagnetic �elds.

Therefore, in these systems, a counterpropagating beam setup is normally employed to

negate the radiation pressure term. Suppose a second beam is introduced into the system

that is anti-parallel with the �rst beam. If we allow the positive direction of the �rst beam

to de�ne the positive direction, the resulting force term for the second beam is

〈~Fs〉x = −~kxΓρ22 (4.46)

Repeating the same procedure as in Eqn. 4.45 with (kx → −kx) now, we see that resulting

Taylor expanded expression will be similar to that of the �rst beam, except the sign of the

radiation pressure term will be switched while the sign of the damping term remains the

same . Adding the forces for the two beams together, we end up with

〈~Fs〉x = 2αvx (4.47)

For cases in which ωL < ω0 (red-detuned), α is negative and thus the atom experiences

a damping force with a negative coe�cient, leading to velocity compression. On the other
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Figure 4.5: Doppler cooling

(a) Force pro�le as a function of velocity for a beam propagating in the +x direction (F+), the

-x direction (F−), as well as their composite sum (F+ + F−). Forces and velocities are expressed

in the dimensional parameters, F/(~kΓ) and (kv)/Γ. (b) Damping coe�ceint, α expressed as a

function of detuning. The maximum value of α (αmax) di�ers from the α that yields the Doppler

cooling limit, α(∆D), since the latter was chosen to optimize the ratio between velocity damping

and spontaneous emission heating while the former was not.

hand, for ωL > ω0 (blue-detuned), the damping force has a positive coe�cient, and thus the

atom is heated. One key assumption here is that we are in a low s regime such that excited

state saturation is not an issue, and thus the beams can be treated independently.

The resulting force curves, using the full force expression instead of the Taylor expansion,

are presented for both beams as well as their sum in Fig. 4.5. As can be seen, the velocity

damping term is fairly linear for small velocities, as predicted by our Taylor approximation.

In general

v̇(t) = 〈~Fs〉x/m =
2

m
αvx (4.48)

leading to

vx(t) = vx0e
2α
m
t (4.49)

where vx0 is the initial velocity of the atom and m is its mass.
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Once again, for red-detuned beam con�gurations, this results in velocity damping with

a damping coe�cient of kd = 2α/m. The maximum value this coe�cient can have is set by

the maximum possible value of α(∆L), which is obtained at ∆L =
√

1 + sΓ/(2
√

3).

Of course, this velocity damping cannot happen inde�nitely as eventually the cooling will

have to compete with the heating due to spontaneously emitted velocity kicks. To estimate

what �nal temperature the atomic sample will settle at, we can consider the dominant heating

and cooling rates of the system.

Consider a six-beam optical molasses cooling con�guration, where three pairs of coun-

terpropagating beams are assembled along the x, y, and z axes. The cooling rate is given

as

(
dE

dt

)
cool

= 〈~Fs〉 · ~v = 〈Fx, Fy, Fz〉 · 〈vx, vy, vz〉 = 2αv2 (4.50)

With the cooling rate in hand, we must now calculate the heating rate. The heating rate

is derived by considering the average added kinetic energy from an absorption/spontaneous

emission cycle, assuming a total recoil velocity of ~k/m upon emission/absorption of a pho-

ton.

We'll start with the spontaneous emission heating rate. Since the emission direction is

isotropic, the average added kinetic energy for a single spontaneous emission event can be

found by averaging over all possible emission directions as

〈∆Esp〉 =
1

4π

[∫ 2π

0

∫ π

0

1

2
m

(
(vx −

~k
m

sin(θ) cos(α))2 + (vy −
~k
m

sin(θ) sin(α))2 + (vz −
~k
m

cos(θ))2

)

× sin(θ)dθdα

]
− 1

2
m(v2

x + v2
y + v2

z)

=
~2k2

2m

(4.51)

Similarly, we can consider the heating due to a single absorption event from a single beam

as
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〈∆Eab〉 =
1

2
m

[(
vi −

~k
m

)2

− v2
i

]
≈ ~2k2

2m
(4.52)

where we have assumed we are in the low-velocity limit and our beam is propagating along

the ith dimension. Further, in a given emission/absorption cycle, the atom may decay via

spontaneous or stimulated emission. However, the average amount of energy transferred to

the atom is the same in both cases, as can be gleamed from the above equations. Thus, we

will assume all decay occurs spontaneously, for convenience.

Next, we assume the intensities of our beams are low enough such that they can be

considered independently. The emission and absorption events happen once every absorp-

tion/emission cycle at an overall rate of approximately Γρ22. Thus, combining the heating

rates for all six beams in our setup

(
dE

dt

)
heat

= 6[〈∆Esp〉+ 〈∆Eab〉]Γρ22 = 6

(
~2k2

m

)
Γρ22

=
6~2k2

m

Γ

2

s

1 + s+ 4∆2/Γ2

(4.53)

where once again, the factor of 6 comes from the fact that there are six beams in our optical

molasses con�guration.

At equilibrium the heating and cooling rates are equal, implying

2α(∆L)v2 = 6
(~k)2

m
Γρ22

→ 1

2
mv2 =

3

8
~Γ(

1

2

Γ

∆L

+
2∆L

Γ
)

(4.54)

where we have taken the low s limit and neglected the Doppler shift in the scattering rate

associated with our heating rate. The expression on the right can be minimized at the

Doppler limit detuning, de�ned as ∆D = Γ/2. At this detuning, we can make the substitution
1
2
mv2 = 3

2
kBT , yielding the Doppler cooling temperature limit

TD =
hΓ

2kB
(4.55)
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Cooling below this temperature generally requires more sophisticated schemes, such as

Sisyphus cooling, which is not discussed here.

4.2.3 Magneto-Optical Trapping

The optical molasses technique used above will indeed cause velocity phase space compres-

sion; however due to the random walk of the atom over time due to spontaneous emission

momentum kicks, eventually the atoms will be pushed outside of the intersection region of

the six-beam setup, preventing the species from remaining cooled and spatially localized.

For ions, the ion trapping potential is su�cient for spatial localization. Similarly, for

neutrals, we would also like to add a position-dependent force, along with our velocity-

dependent force, to ensure the atoms remain spatially localized while laser-cooling occurs.

This can be achieved through incorporating magnetic �elds that couple to the magnetic

sublevels of an atomic system. Imagine a magnetic �eld that varies linearly through space

with the �eld equal to zero at the origin. Such magnetic �elds can be produced through a

variety of current coil con�gurations, such as the anti-Helmholtz con�guration which is used

in our system and described later.

In the presence of a magnetic �eld that varies linearly with position, an atomic energy

level will experience a Zeeman shift as

∆EB,mJ = −~µ · ~B(z) = µBgJmJB0z (4.56)

where µB is the Bohr magneton, gJ is the Lande g-factor, mJ is the magnetic quantum

number, B0 is the magnetic �eld gradient, and we assume the quantization axis to be along

the z-direction of the magnetic �eld.

Thus, if considering two levels in the atomic system, the resultant energy shift to the

transition energy will be the shift of the upper level minus the shift of the lower level,

yielding
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∆EB = µBB0z(geme − ggmg) (4.57)

where ge(g) and me(g) are the Lande g-factors and magnetic quantum numbers for the excited

(ground) state, respectively. In our particular case, for a Ca Type I MOT, the ground state

is the same for all driven transitions and mg = 0. Consequently, the transition energy shift

depends on me - e�ectively on whether a σ+, σ−, or π transition is being driven.

For σ+ transitions me = mg+1 = 1 and thus the energy level spacing between the ground

and excited state gets larger as z increases. Similarly, For σ− transitions me = mg−1 = −1,

and thus the energy level spacing between the ground and excited state gets smaller as z

increases.

To exploit this property to create a spatially dependent trapping force, we can consider a

counterpropagating beam setup where each beam has opposite left-handed and right-handed

circular polarizations at a given point in the trap when measured in the same frame (see

Fig. 4.6). On either side of the �eld zero, the mJ = −1 level will be down-shifted in energy

since the direction of the magnetic �eld in a particular point of space sets the quantization

axis. Consequently, the polarization of each beam is chosen such that on either side of

the �eld-zero, the beam whose k-vector is oriented towards the �eld zero is in resonance

with the down-shifted mJ = −1 level of the excited state, providing spatial con�nement.

Further, since the frequency of both beams is the same, on each side of the �eld zero, one

beam will be in resonance with the mJ = −1 level and provide a con�ning force, while

its counterpropating beam with opposite circular polarization will only be able to weakly

address the out-of-resonance mJ = 1 level, ensuring anti-con�ning doesn't occur.

To model this analytically, consider that the total detuning, ∆, from the atomic transition

will now also include the Zeeman shift as

∆ = ∆L − ~k · ~v + ∆EB (4.58)

Now, if we consider the averaged force of both the beam with ~k = ẑ, given as 〈 ~F+〉z, as

well the beam with ~k = −ẑ, given as 〈 ~F−〉z, the combined scattering force is given as
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Figure 4.6: MOT level scheme

A Ca atom with a natural ground state (1S0) to excited state (1P1) energy splitting of ~ω0 is placed

in a magnetic �eld gradient that adds additional position-dependent Zeeman shifts to the atomic

energy levels. In particular, on either side of the �eld zero, the mJ = −1 level will be down-shifted

in energy. Counterpropagating beams are introduced into the system such that, on either side

of the �eld-zero, a scattering force is exerted on the atom in the direction towards the �eld zero,

providing spatial con�nement. On each side of the �eld zero, one beam will be in resonance with

the mJ = −1 level and provide a con�ning force while its partner counterpropating beam will only

be able to weakly address the out-of-resonance mJ = 1 level, ensuring anti-con�ning doesn't occur.

Pictoral representations of the energy level shifts are presented for di�erent displacements along the

radial direction of the trap.

68



〈~Fs〉z = 〈 ~F+〉z + 〈 ~F−〉z

=
~kzΓ

2

(
s

1 + s+ 4 (∆−kzvz+µ′B0z/~)2

Γ2

+
s

1 + s+ 4 (∆+kzvz−µ′B0z/~)2

Γ2

)
≈ 2αvz − 2κz

(4.59)

where µ′ = µBgeme and in the last expression, following a similar procedure as in Eqn. 4.45,

a Taylor approximation has been invoked. The resulting expression features α de�ned as

de�ned in Eqn. 4.45 as well κ = µ′B0

~k α.

Now we both have a velocity-damping force and spatial restoring force, meaning that our

atoms can be cooled while they are spatially localized. The spatial restoring force can be

thought of as a spring force with characteristic frequency, ωMOT =
√

κ
m
, which for standard

MOT parameters is typically ≈ 2π× 1 KHz. For anti-Helmholtz con�gurations, the axial

magnetic �eld gradients are typically weaker than the radial ones, resulting is di�ering trap

frequencies in the di�erent spatial dimensions.

While the above analysis was carried out in 1D, it can easily be extended to 3D, as long

as we remain in the low-s regime; otherwise more delicate treatments involving the optical

Bloch equations are needed [Tar15].

4.2.4 Polarization

Getting the polarization of the incoming beams correct can cause some confusion. The

quantization axis of the atom is de�ned by the magnetic �eld. Since the Zeeman shift is

∝ mJB(z) (one-dimensional case) this means that the mJ = −1 sublevel is going to always

be downshifted in the energy. As our MOT beams are red-detuned in order to address the

lowest sublevel transition, this means that for proper trapping, we want to arrange our light

polarization such that it is σ− polarized with respect to whatever direction B(z) is pointing.

As shown in Fig. 4.7c, for light in which the magnetic �eld vector and the light k vector are

parallel, which is the case for all radial dimensions in the trap due to the anti-Helmholtz

con�guration, this corresponds to standard left-hand circularly polarized (LHCP) light (with
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the handedness de�ned by k).

However, for the z-dimension, the magnetic �eld and the light k-vector are antiparallel.

Meaning LHCP light is actually projected as right-handed circularly polarized (RHCP) light

(σ+ light) in the frame de�ned by the magnetic �eld direction. Therefore, RHCP light must

be input to the system for both axial directions in order to drive the desired σ− transitions

(see Fig. 4.7d).
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Figure 4.7: MOT Overview

(a) The six-beam optical molasses con�guration combined with an anti-Helmholtz coil setup to

produce the MOT trapping potential. (b) The magnetic �eld pro�les in both the radial and axial

dimensions, as a function of displacement form the �eld zero, taken at 110 A of coil current. (c)

A diagram showcasing what polarization is needed for each pair of counterpropating beams in the

radial dimensions in the MOT setup. Since both beams are parallel with the magnetic �eld on

the side of the �eld zero in which they are meant to provide a restoring force, they need LHCP

polarization to drive the correct σ− transition. (d) A similar argument as in (c) is presented for

the axial dimension. Now since the k-vector of both beams are anti-parallel to the magnetic �eld

direction in the relevant parts of the trap, RHCP is needed.
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CHAPTER 5

Electronic Structure Calculations

A thorough understanding of the electronic properties of molecules and many-electron atoms

yields considerable insight into their reaction dynamics and structural properties, and thus

solving the electronic Schrödinger equation presented in Eqn. 2.20 is of utmost importance

to the work conducted in this thesis. For example, the energetic splitting of rotational levels

within a polar molecule, a parameter of extreme relevance for quantum information studies

with these species [DeM02, HC18], depends on the electronic e�ective potential. Further,

barriers to reaction can be predicted [PT05] by analyzing the e�ective potential created by

the interaction of electrons on colliding reaction pairs.

As a reminder, the di�culty in Eqn. 2.20 lies primarily in the fact that the V̂ee elec-

tron repulsion terms mix the coordinates of all electrons in the system, making the problem

increasingly di�cult as the number of electrons within a system increases. While analyt-

ical solutions to Eqn. 2.20 are generally not possible even for the simplest multi-electron

systems, a class of computational techniques has been developed to confront the challenges

the electronic Hamiltonian presents. Indeed, such computational chemistry techniques have

become one of the most useful ways for researchers to answer questions about the struc-

ture of molecules, especially in situations where experimental probing of such structures is

di�cult [MS17], or even impossible. While the �eld of computational chemistry is highly

sophisticated [SO96, HPO96] and is constantly evolving, only a general overview of core

techniques used in the �eld will be presented here.

72



5.1 Hartree-Fock Method

The Hartree-Fock method is a technique for predicting electron distributions, amongst other

useful properties, in many-electron systems and is one of the most commonly used tools in

computational chemistry, often forming the foundation for more elaborate schemes [She00].

As much of the work in this thesis is concerned with diatomics, the method is perhaps best

illustrated through application to one of the most basic diatomic molecules imaginable: the

two electron/two proton system within the H2 molecule.

Under the Born-Oppenheimer approximation, the wavefunction of such a system is sep-

arable into nuclear and electronic functions and is given as

Ψ(R, r) = ΨN(R1,R2)Ψe(r1, r2) (5.1)

where Ψ(R, r) is the total wavefunction parameterized by both nuclear, R, and electronic,

r, coordinates, ΨN(R1,R2) is the nuclear wavefunction, and Ψe(r1, r2) is the electronic

wavefunction.

The nuclear wavefunction can be determined after the electronic eigenvalues, themselves

parameterized by |R1 −R2|, have been calculated, as discussed in Chapter 2. However, in

order to so, electronic wavefunctions must �rst be determined. How then do we determine

the electronic wavefunctions?

We can start by making a simpli�cation. We can pretend that the two electrons in the

system do not interact with one another. In this case, the V̂ee potential term would essentially

be zero. As the V̂ee operator is the only operator that mixes the electronic coordinates, the

electronic wavefunction would then be separable.

Under this approximation, we can model the H2 electronic wavefunction as

Ψe(r1, r2) = ψ1(r1)ψ2(r2) (5.2)

where the ψi(ri) is known as themolecular orbital for the ith electron. What are the molecular

orbitals exactly? They are the analog of atomic orbitals within molecules and yield the spatial
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probability distributions that electrons in the system may occupy. Unlike with the hydrogen-

atom atomic orbitals, the molecular orbitals are usually impossible to solve for analytically.

Given this di�culty, they are often expressed as linear combinations of other basis functions,

and the coe�cients of these linear combinations are subsequently optimized using variational

methods, to be discussed further below [She00]. Ultimately, the number of basis sets, as well

as their ability to span the true Hilbert space of the electronic Hamiltonian, will determine

how well these approximate orbitals converge to the exact orbitals [She14].

Moving forward, due to the Pauli exclusion principle, since electrons are fermions, their

collective wavefunction must be antisymmetric with respect to exchange of electronic coor-

dinates as

Ψe(r1, r2) = −Ψe(r2, r1) (5.3)

By itself, the wavefunction in Eqn. 5.2 does not meet the above antisymmetrization

condition; however, it can be modi�ed to do so. If the wavefunction in Eqn. 5.2 is a solution

to the simpli�ed electronic Schrödinger equation (with the V̂ee terms removed), a state with

the coordinates permuted is also a solution, as are linear combinations of such states [SO96].

This means the so-called Slater determinant involving the molecular orbitals in Eqn. 5.2 is

also a solution and has the form

Ψe(r1, r2) =
1√
2

∣∣∣∣∣∣ψ1(r1) ψ2(r1)

ψ1(r2) ψ2(r2)

∣∣∣∣∣∣ (5.4)

When evaluated, this determinant yields the properly antisymmetrized wavefunction

Ψe(r1, r2) =
1√
2

(ψ1(r1)ψ2(r2)− ψ1(r2)ψ2(r1)) (5.5)

This process of antisymmetrization can be generalized to a N -electron system as
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Ψe(r1, r2, ..., rN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1) ψ2(r1) . . . ψN(r1)

ψ1(r2) ψ2(r2) . . . ψN(r2)
...

...
...

ψ1(rN) ψ2(rN) . . . ψN(rN)

∣∣∣∣∣∣∣∣∣∣∣∣
(5.6)

To clarify the structure of the Slater determinant, we note that each column vector

contains the same molecular orbital, expressed in di�erent electronic coordinates, and each

row vector contains the same electronic coordinates, expressed in the di�erent molecular

orbitals of the system.

So now we have an understanding of how to create an antisymmetrized wavefunction,

comprised of molecular orbital functions. But what do the molecular orbitals themselves

look like?

Each molecular orbital, in general, is described by a spatial component and a spinor, in

what is known as a spin-orbital

ψj,ζ(ri, ωi) = φj(ri)ζ(ωi) (5.7)

where φj(ri) is the spatial component of the jth molecular orbital and ζ(ωi) is a spinor of spin

coordinate (ωi), usually de�ned as being in one of two states, spin-up, α(ωi), or spin-down,

β(ωi). The concept of a `spin-coordinate' may be odd, but we note that such coordinates

are mostly de�ned just for tracking which electron is associated with which spin-state and

are not used explicitly in calculations typically.

Now what do the φ(ri) functions look like? Ideally, they would be the solutions to the

full electronic Hamiltonian; however, as this Hamiltonian is analytically unsolvable, one

convention, as brie�y discussed earlier, is to approximate them as linear combinations of so

called basis functions. Using these basis functions, the spatial component of the molecular

orbital can be expressed as
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φi(ri) =
∑
µ

Cµiχµ(ri) (5.8)

where χµ(ri) are the indexed basis functions and Cµi are their associated weighting coe�-

cients. Further, the basis functions themselves may take several di�erent forms. One stan-

dard approach, known as the linear-combination-of-atomic-orbitals method, is to use a set of

hydrogen-like wavefunctions with origins centered at the various nuclei of the system [AF11].

However, calculations within this basis set are often computationally costly. Alternatively,

it has been shown that these atomic orbitals can be approximated as a linear combination

of simple Gaussian-like orbitals. Given the convenient mathematical properties of Gaussian

functions, products and integrals of these functions often have simple, closed-form solutions,

leading to huge computational savings [She14].

Aside from the type of functions that are used in these basis sets, how many di�erent

functions do the sets contain themselves? Minimal basis sets, as one example, refer to the

smallest possible basis sets that are typically used to model an N-electron system. These

sets approximately consist of one basis function for every normally occupied atomic orbital

in the system. For example, within the CO molecule, the C atom contains six electrons

distributed amongst the 1s, 2s, 2px, 2py, and 2pz atomic orbitals, and the O atom contains

eight electrons distributed amongst the same orbitals. Thus, when using a minimal basis set,

one would place the 14 electrons of the system in molecular orbitals constructed from the 10

atomic orbitals of the system that are normally occupied in the separated-atom limit, 5 of

which are centered on the C atom and 5 of which are centered on the O atom (2 electrons

of di�erent spin may occupy a given spatial orbital). We note that even though not all �ve

orbitals are occupied on the C atom, in general all subshell levels are included in the minimal

basis set, although this may change based on the system being studied [She14].

While minimal basis sets are convenient for quick-and-dirty calculations, due to their lim-

itations, they do not generally o�er accurate predictions of molecular electron distributions

and thus are not used for publication quality calculations. When more accurate results are

needed, researchers often resort to double-zeta or triple-zeta basis sets, which, in contrast to
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minimal basis sets, contain two or three basis functions for every normally occupied atomic

orbital in the system, respectively [She14].

In the end, many di�erent basis set sizes and basis set functions may be used, and

in general there is a compromise between complexity of basis set and chemical accuracy.

The more basis functions that are included, the more �exibility the approximate molecular

orbitals will have to resemble the true molecular orbitals of the system, but such �exibility

can come at signi�cant computational costs. Thus basis sets are chosen judiciously given the

requirements of the problem being solved.

Back to the Hartree-Fock method, once the Slater determinant has been invoked to obtain

the electronic wavefunction, we can consider the expectation value

EHF = 〈Ψe(r)|Ĥ|Ψe(r)〉 (5.9)

where

Ĥ = T̂N + T̂e + V̂NN + V̂ee + V̂Ne (5.10)

as de�ned in Eqn. 2.15.

According to the variational method, the true ground state wavefunction will yield the

lowest energy for EHF , the so called Hartree-Fock energy. Thus, we can vary Cµi for each

electron to minimize EHF and thus get a Hartree-Fock wavefunction that resembles the

ground state wavefunction to increasing degrees of accuracy, depending on the quality of the

minimization. However, our minimization procedure will be constrained, typically through

employing the method of Langrange multipliers [EA07], such that the resulting molecular

orbitals are orthornormal with respect to one another, as is required for eigenfunctions of

the same operator.

With some e�ort and clever tricks [EA07,SO96], this optimization problem can be trans-

formed into an eigenvalue-like problem known as solving the Fock-Roothaan-Hall equa-

tions [EA07], which can be stated succinctly in matrix notation as
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FC = SCε (5.11)

where C is the matrix of Cµi coe�cients, ε is a diagonal matrix of orbital energies, S is the

matrix of overlap integrals de�ned as

Sµv = 〈χµ|χv〉 (5.12)

and F is the Fock matrix de�ned as

Fµv = 〈χµ|f̂ |χv〉 (5.13)

where f̂ is the Fock-operator de�ned as

f̂ = ĥ+
∑
j

(2Ĵj − K̂j) (5.14)

where ĥ is the operator associated with kinetic energy of the electron and the nuclear-electron

attraction, Ĵj is an operator accounting for the electron repulsion energy, and K̂j is a term

corresponding to the �exchange� energy between electrons [EA07,RMV16,SO96]. In general,

f̂ |Ψe〉 =
∑
εi |Ψe〉, where εi is the energy eigenvalue associated with the ith molecular orbital.

Here, the Fock matrix itself depends on the elements of C, meaning in general, the

minimization problem is an iterative process where the molecular orbitals that are used

to solve the Fock-Roothan-Hall equations are updated after each loop iteration (Fig. 5.1a).

This process is continued until the elements of C have been determined to a level of accuracy

such that EHF has converged within a desired tolerance level, at which point it is said that

the self-consistent �eld (SCF) has converged [EA07]. At this point, the optimized molecular

orbitals can be used to understand structural properties of the molecule as well as to calculate

quantities of interest such as dipole moments, e�ective electronic potentials, etc. [LXC99].

Further, we note that while we neglected V̂ee in making our electronic wavefunction

separable, we reintroduce the term in our variational Hamiltonian so that our optimized

molecular orbitals account for electron-electron repulsion to some degree.
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Figure 5.1: Hartree-Fock Method overview

(a) Di�erence between restricted and unrestriced Hartree-Fock methods. In RHF, each spatial

orbital is doubly occupied with electrons of opposing spin. In UHF, electrons of opposing spin may

occupy di�erent spatial orbitals, with unpaired electrons being allowed. In both methods, molecular

orbitals, σ ,are constructed as linear combination of basis functions, which can often be taken to

be hydrogen-like wavefunctions (i.e. 1s, 2s, etc.). (b) A conceptual �owchart of the Hartree-

Fock method process. Basis sets are used to construct molecular orbitals, which the electrons

in the many-body system occupy. A Slater determinant, comprised of spin-orbitals (molecular

orbitals multiplied by a spinor), is calculated from these orbitals to produce a properly symmetrized

electronic wavefunction. In order to minimize the expectation value of the electronic Hamiltonian,

the Fock matrix is initially constructed from Ansantz molecular orbital geometries and the Fock-

Roothan-Hall equations are solved to calculate updated geometries. This optimization routine is

repeated until the orbital geometries have converged to the desired level of accuracy, at which point

it is said the SCF has converged and other molecular properties of interest can be calculated.

79



5.1.1 Restricted Hartree-Fock

The Hartree-Fock method optimizes a given Slater determinant wavefunction, but in general

there are many ways in order to construct a Slater determinant. In what is know as a

restricted Hartree-Fock (RHF) calculation, the molecular orbitals that are used in our N-

electron Slater determinant consist of theN/2 lowest energy spin-orbitals [She00]. Thus, each

spatial orbital is doubly occupied, once with an electron with an α spinor and once with

an electron with a β spinor (see Fig. 5.1b). The antisymmetrization in the Hartree-Fock

wavefunction will then be accounted for through the spin states instead of the spatial states.

For example, consider the following simple two-electron Slater determinant, composed under

RHF conditions

Ψe(r1, r2) =
1√
2

∣∣∣∣∣∣ψ1(r1) ψ2(r1)

ψ1(r2) ψ2(r2)

∣∣∣∣∣∣ =
1√
2

∣∣∣∣∣∣φ1(r1)α(ω1) φ1(r1)β(ω1)

φ1(r2)α(ω2) φ1(r2)β(ω2)

∣∣∣∣∣∣
=

1√
2
φ1(r1)φ1(r2)

[
α(ω1)β(ω2)− β(ω1)α(ω2)

] (5.15)

This method works well for closed-shell systems (i.e. every orbital is occupied with

two electrons of di�erent spin) in which every electron is paired. Moreover, it has been

established that the wavefunction produced by the restricted Hartree-Fock method will be

an eigenfucntion of the Ŝ2 spin operator [SO96]. Consequently, if attempting to produce

the ground state wavefunction (S = 0) for a particular system, the RHF wavefunction will

retain the spin properties of the S = 0 state without contamination from other spin-states.

5.1.2 Unrestricted Hartree-Fock

However, when modeling excited states or other open-shell systems, the RHF method is

often a poor choice since electrons are necessairly spin-paired in a RHF wavefunction. In

these cases, the unrestricted Hartree-Fock (UHF) method is used in which N distinct spatial

orbitals may be used to construct the N -electron Hartree-Fock wavefunction, each of which

is assigned an unconstrained spin orbital (see Fig. 5.1b). Now the molecular orbital opti-

mization is performed as usual in order to minimize EHF . For the two electron system, an

example UHF wavefunction is
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Ψe(r1, r2) =
1√
2

∣∣∣∣∣∣ψ1(r1) ψ2(r1)

ψ1(r2) ψ2(r2)

∣∣∣∣∣∣ =
1√
2

∣∣∣∣∣∣φ1(r1)α(ω1) φ2(r1)β(ω1)

φ1(r2)α(ω2) φ2(r2)β(ω2)

∣∣∣∣∣∣
=

1√
2

(φ1(r1)α(ω1)φ2(r2)β(ω2)− φ2(r1)β(ω1)φ1(r2)α(ω2))

(5.16)

However, since the spins are no longer restricted, the UHF can yield wavefunctions that

are no longer Ŝ2 eigenstates, which means if attempting to model the ground state of a

particular system, the UHF wavefunction may in fact be `contaminated' by higher spin

states [AJB91].

Spin contamination results in wavefunctions which appear to emulate the desired spin

state, but in fact have portions of higher spin states mixed in. However, despite this draw-

back, the UHF method will also be able to describe e�ects such as spin polarization, triplet-

spin states, and reactions in which the spin state of the products do not match the spin

states of the reactants. To take advantage of the UHF method while avoiding spin con-

tamination, 〈Ŝ2〉 is calculated for the UHF wavefunction to ensure it is within a speci�ed

degree of tolerance to the Ŝ2 eigenstate that is being studied (i.e. if studying a singlet state

〈Ŝ2〉UHF ≈ 3
4
~2) [SO96].

Lastly, for both the UHF and the RHF method (whose similarities and di�erences are

presented in Fig. 5.1), the computation time for solving the Hartree-Fock equations typically

scales ∝ B4 [Saa11], where B is number of basis functions used (roughly equal to the number

of electrons in the system for minimal basis sets). Therefore, to save computation time, the

Hartree-Fock Hamiltonian is often modi�ed to include an e�ective core potential [Gro00] for

the inner electrons while the molecular orbitals for the valence electrons (outer most shell

electrons) are optimized. As the valence electrons typically dictate many of the chemical

properties of an atomic system, this approximation may still yield accurate results for a

variety of chemical properties.
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5.2 The Correlation Energy Problem

As noted above, the Hartree-Fock method, whether unrestricted or restricted, does not treat

the electron correlation energy fully.

The electron correlation energy, Vee can be considered as a sum of three separate terms [SO96]

as

Vee = EJ + EK + EC (5.17)

where EJ is the repulsion energy, EK is the exchange energy, and EC is the correlation

energy.

Here, EJ has simple classical analog as the electronic repulsion each electron experiences

due to the mean electric �eld produced by all other electrons. However, EK has no simple

classical interpretation and instead is viewed as the energy associated with the electrons

experiencing a �force� that prevents them from occupying the same quantum state at the

same position in order to satisfy Pauli exclusion.

While not obvious from our simple Hartree-Fock method overview, a more rigorous treat-

ment will illuminate that both EK and EJ are generally well-treated through the Hartree-

Fock method. On the other hand, EC is not. Physically EC can be thought of represent-

ing additional electrostatic repulsion energy the electrons experience due to faster-timescale

movements of the electron clouds that are not re�ected in their averaged distributions (EJ).

There are two types of correlation energies discussed in general

EC = ED + ES (5.18)

where ED is the dynamic electron correlation energy and ES is the static electron correlation

energy [HG11,Sin07].

Why does the Hartree-Fock method neglect each of these factors? First let us consider

ED. In the Hartree-Fock method, the electron wavefunctions are separable; for a two-particle

system, the total electronic wavefunction can be approximated as
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Ψe(r1, r2) = Ψ1(r1)Ψ2(r2) (5.19)

This separability is central to forming the Hartree-Fock equations; however, it misses

key aspects of the problem. In reality, the electrons' distributions are not independent of

one another. For example, classically speaking, the electrons will move in order to avoid

the instantaneous position of all other electrons, i.e. their positions are correlated and these

additional dispersion interactions result in dynamic correlation energy [Sin07]. However, the

HF wavefunction cannot take this e�ect fully into account due to its separability. While

the Hartree-Fock wavefunction does take some minor correlations into account due to its

antisymmterization, there are much richer dynamics that are missed [Sin07].

ES is more di�cult to get physical intuition for but can be understood by considering a

di�erent type of error in the Hartree-Fock method. The Hartree-Fock method assumes that

the electronic wavefunction is given by a single reference Slater determinant. In general, the

electron wavefunction is a general function of N electron coordinates as Ψe(r1, r2....., rN).

Such a function can be expanded in a variety of basis functions, with each basis function

itself being a function of N electron coordinates. Slater determinants themselves are one

such sets of basis functions that can be used, and in general an in�nite number of such

determinants will be able to exactly represent the true wavefunction of the system. However,

the Hartree-Fock method assumes only one Slater determinant in its wavefunction expansion,

not necessarily a valid assumption for many systems. Especially when considering transitions

between two molecular states, the Hartree-Fock wavefunction may be a better approximation

to one state than the other, leading to di�ering levels of accuracy in energetic predictions

for the two states and therefore large energy level di�erence errors [HG11].

As comparing the relative energies of molecular levels is of utmost importance in compu-

tational chemistry, developing so called �post-Hartree-Fock methods� (see Fig. 5.2) capable

of accurately modeling the correlation energy is one of the most important problems in com-

putational chemistry. There are a multitude of methods used to calculate the correlation

energy, and the ones most relevant to this thesis are discussed below.
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Figure 5.2: Electronic structure calculations overview

A diagramatic overview of the Hartree-Fock method as well as post-Hartree-Fock methods that can

be used to account for electronic correlation energy not contained in EHF .

5.2.1 Con�guration Interaction

Typically the for a N electron system, the N lowest molecular orbitals are used to con-

struct the Slater determinant wavefunction that is iteratively optimized to yield the minimal

Hartree-Fock energy. If there are a total of M orbitals available in a system, this means

that M − N orbitals will remain un�lled and are so-called �virtual� orbitals. While vir-

tual orbitals are typically not included in a standard Hartree-Fock calculation, constructing

wavefunctions with these orbitals can actually help more accurately account for the electron

correlation energy by allowing for additional molecular orbital �exibility.

To better illustrate this point, as an example, again consider the H2 molecule. In the

simplest case, consider molecular orbitals constructed of a basis set of hydrogen wavefunc-

tions, given as nl(ri) where n is the principle quantum number and l is the orbital angular

momentum of the state, and ri is the coordinate of the ith electron. For this example, we

can restrict ourselves to two molecular orbitals, a so-called bonding orbital
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Figure 5.3: Con�guration Interaction treatment of the H2 molecule

(a) In the con�guration interaction treatment of the H2 molecule, the trial wavefunction is assumed

to be a linear combination of Slater determinant wavefunctions. While the Hartree-Fock wavefunc-

tion contains only bonding orbitals, the excited Slater determinants can also include antibonding

orbitals. The expansion coe�cients are optimized to minimize the ground state energy of the sys-

tem. (b) Radial electronic wavefunction plots for both the bonding (blue) and antibonding (red)

molecular orbitals. The anti-bonding orbital possesses a node at the origin, which leads to lowered

electron repulsion as compared to σb, but the σab also has a higher energy due to the exchange

interaction. (c) The di�erence between the radial electron density distribution obtained from the

optimized wavefunction in (a) and the distribution from the Hartree-Fock wavefunction. As can be

seen, by mixing in antibonding orbital character, the electron density between the nuclei is reduced,

thereby reducing the electronic-repulsion energy as compared to the Hartree-Fock wavefunction.

Since the energy of the system is lowered, it is a more accurate depiction of the true ground state,

as predicted by the variational theorem.
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σb(ri) =
1√
2

(1S(ri −RA) + 1S(ri −RB)) (5.20)

and the antibonding orbital

σab(ri) =
1√
2

(1S(ri −RA)− 1S(ri −RB)) (5.21)

where RA and RB are the nuclear positions for the hydrogen atoms in the problem. In a

RHF calculation, we can assume both atoms are in the lower energy σb bonding orbital, and

therefore we obtain a Slater determinant reference wavefunction of

Ψe(r1, r2) =
1√
2

∣∣∣∣∣∣σb(r1)α(ω1) σb(r1)β(ω1)

σb(r2)α(ω2) σb(r2)β(ω2)

∣∣∣∣∣∣ =
1√
2
σb(r1)σb(r2)

[
α(ω1)β(ω2)− β(ω1)α(ω2)

]
(5.22)

where the spin portion of the orbitals produces the proper antisymmterization.

However, if we look at the spatial wavefunctions for both the bonding and antibonding

orbitals, we see that σab has a node at the origin (see Fig. 5.3). In our RHF wavefunction, we

only considering the σB orbital, which has considerable more electron density near the origin,

leading to more dynamical correlation energy. In general, our approximate wavefunction

should minimize the energy of the system, according to the variational method. Therefore, if

we were to �mix� our excited state anti-bonding orbital with our Hartree-Fock wavefunction,

we would perhaps be able to reduce our dynamic correlation energy while still retaining some

of the desirable properties of our reference wavefunction, such as a reduced amount of EJ

and EK .

Therefore we can consider another wavefunction consisting of additional excited state

Slater determinants as
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Ψe(r1, r2) =
C0√

2

∣∣∣∣∣∣σb(r1)α(ω1) σb(r1)β(ω1)

σb(r2)α(ω2) σb(r2)β(ω2)

∣∣∣∣∣∣+
C1√

2

∣∣∣∣∣∣σb(r1)α(ω1) σab(r1)α(ω1)

σb(r2)α(ω2) σab(r2)α(ω2)

∣∣∣∣∣∣
+
C2√

2

∣∣∣∣∣∣ σab(r1)α(ω1) σab(r1)β(ω1)

σabb(r2)α(ω2) σab(r2)β(ω2)

∣∣∣∣∣∣
(5.23)

Now we can use the variational energy to optimize the above Ci coe�cients in order to

minimize the energy of the system [McQ08], with C1 = 0 due to symmetry considerations. If

we plot the corresponding electron density of this optimized wavefunction alongside our HF

wavefunction electron density, assuming a �xed internuclear spacing, we notice a reduced

density in between the two nuclei. In this way, we see that including the excited state can

help account for the lack of electron correlation in the HF wavefunction by giving additional

�exibility to our trial wavefunction [CMY12].

We can now introduce additional notation to generalize the method. Let us denote a

properly symmetrized Hartree-Fock wavefunction, where N electrons have been placed into

the N lowest energy molecular orbitals, {φ1...φN}, as

Ψ0 = Ψ(r1, r2...rN) = |φ1φ2....φN〉 (5.24)

If there are M total orbitals in the system then M −N unoccupied virtual orbitals exist.

To incorporate excited state character into our wavefunction we can consider adding Slater

determinants where the ith molecular orbital has been replaced by the ath virtual orbital as

Ψa
i = |φ1φ2...φi−1φaφi+1...φN〉 (5.25)

We can de�ne Ψab
ij similarly for double excitations then a general trial wavefunction can

be expressed as

Ψe = Ψ0 +
∑
ia

Ca
i Ψa

i +
∑
i,j,a,b

Cab
ij Ψab

ij + ... (5.26)

87



where the sum is carried out across all occupied and all virtual orbitals and the Ca
i and

Cab
ij terms are the Slater determinant expansion coe�cients. Further, higher-order terms

corresponding to triple excitations, quadruple excitations, etc. can also be included.

Once these wavefunctions have been constructed, you can then apply the variational

method to optimize for the various individual expansion coe�cients.

However, in general, there are multiple ways to optimize the above wavefunction. One

may choose to iteratively optimize both the coe�cients in the expansion of the molecular

orbitals themselves as well as the Slater determinant coe�cients, a two-fold optimization

problem that adds additional computational complexity (used in methods such as the mul-

ticon�gurational self-consistent �eld (MCSCF) method [She04] ). Alternatively, one may

choose �x the molecular orbitals and to solely optimize the Slater determinant coe�cients,

as is the case for what is known as con�guration interaction (CI) calculations.

In general, considering all possible excitations, known as a Full CI calculation, will cause

a con�guration interaction wavefunction to converge to the true ground state of the system

to the highest degree possible within a given basis set [She95]. However, whether or not the

con�guration interaction will converge to the true ground state energy of the system will

depend on the limitations of the chosen basis set.

While in H2 a full CI calculation can be done rather simply with four total terms (assum-

ing a two molecular orbital basis set), in general the number of excited state determinants

scales roughly with the factorial of the number of orbitals in the system (which in turn scales

with the number of electrons) as ≈ (M)!/[(N !)!(M −N)!] (choose N electrons to occupy M

orbitals). Especially when using complex basis sets that span a wider, and therefore more

accurate, Hilbert space, this often means including trillions of terms in the con�guration

interaction wavefunction. Therefore, the con�guration wavefunction is often truncated in

practice to include only single or double excitations, leading to deviations from the ground

state energy. The following acronyms have been developed to describe the level of truncation

that is used in a particular calculation:
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CIS: (single excitations only)

CISD: (single and double excitations)

CISDT: (single, double, and triple excitations only)

Full CI: (all possible excitations)

5.2.2 Coupled Cluster Method

As Full CI methods are quite cumbersome, often other methods are preferred, such as coupled

cluster theory. Similar to the CI, in coupled cluster theory an Ansatz wavefunction is �rst

chosen that is a linear combination of excited state Slater determinants. However, the ex-

pansion is di�erent than in the CI method. For coupled cluster theory, the trial wavefunction

is formed as

|ΨCC〉 = eT̂ |Ψ0〉 (5.27)

where

T̂ = T̂1 + T̂2 + T̂3 (5.28)

where T̂i is the operator that generates a Slater determinant at the ith level of excitation

(i.e. singly excited, double excited, etc.)

For example

T̂1 |Ψ0〉 =
∑
ia

tai |Ψa
i 〉 (5.29)

and

T̂2 |Ψ0〉 =
∑
i,j,a,b

tabij |Ψab
ij 〉 (5.30)

where the ti and tij are expansion coe�cients.

The full couple cluster wavefunction [BM07] is given as
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|ΨCC〉 = eT̂ |Ψ0〉 = (1 + T̂ +
T̂ 2

2
...) |Ψ0〉

= (1 + T̂1 + T̂2 + T̂3 + ....+
T̂1

2

2
+
T̂2

2

2
+
T̂3

2

2
+ ...T̂1T̂2 + T̂1T̂3 + T̂3T̂2 + ...) |Ψ0〉

(5.31)

With ΨCC in hand, we can now attempt to solve the Schrödinger equation. Assuming

the coupled cluster wavefunction is a solution to the Schrödinger equation, we obtain

Ĥ |ΨCC〉 = E |ΨCC〉 = EeT̂ |Ψ0〉 (5.32)

If we multiply the above equation by both 〈Ψ0|, we see

〈Ψ0|Ĥ|ΨCC〉 = E 〈Ψ0|ΨCC〉 = E (5.33)

where 〈Ψ0|ΨCC〉 = 1 once we assume orthonormality of the determinants in our expansion.

Now we can express the energy of the system as

E = 〈Ψ0|Ĥ|ΨCC〉 = 〈Ψ0|ĤeT̂ |Ψ0〉

= 〈Ψ0|Ĥ|Ψ0〉+
∑
ia

tai 〈Ψ0|Ĥ|Ψa
i 〉+

∑
i,j,a,b

tabij 〈Ψ0|Ĥ|Ψab
ij 〉+ ...

(5.34)

Thus in order to solve for E, one needs to solve for the expansion coe�cients.

In order to to this, we can multiply Eqn. 5.32 on the left by 〈Ψ∗| e−T̂ , where 〈Ψ∗| is one

of the excited state determinant terms included in |ΨCC〉, yielding

〈Ψ∗|e−T̂ Ĥ|ΨCC〉 = E 〈Ψ∗|e−T̂ |ΨCC〉 = E 〈Ψ∗|Ψ0〉 = 0 (5.35)

where we have once again enforced orthonormality of our determinants. The above equation

can be repeated for all Ψ∗ to solve for all expansion coe�cients in ΨCC . Greatly simplify-

ing this calculation is that the e−T̂ ĤeT̂ operator can be expressed using Baker-Campbell-

Hausdorf (BCH) expansion and is shown to terminate at the fourth order [BM07].
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Full CI and full coupled cluster theory methods generally converge to the same solution

as they both include all possible excitations within a given basis set. However, the full ex-

pansion coupled cluster wavefunction runs into the same issues as the full CI wavefunction

in that number of terms generally scales with the factorial of the number of electrons in the

system. Therefore, coupled cluster methods, like con�guration interaction methods, usually

involve truncating the Ansatz waveform to only include certain excitations. Thus, a coupled

cluster calculation is usually speci�ed by the level of truncation used as

CCS: (T̂ ≈ T̂1)

CCSD: (T̂ ≈ T̂1 + T̂2)

CCSD(T): (T̂ ≈ T̂1 + T̂2, T̂3 treated perturbatively)

CCSDTQ: (T̂ ≈ T̂1 + T̂2 + T̂3 + T̂4)

and so on.

There are a number of disadvantages and advantages of coupled cluster (CC) methods

with respect to CI calculations. Namely, while CI calculations are variational (i.e. expansion

coe�cients are varied to minimize E), CC methods are not. There are many reasons for

this [BM07], but in the end, the non-variationality generally means that the CC energy

cannot be assumed to necessarily be greater than the true ground state energy of the system.

However, there are other advantages. It can be shown that CC calculations are size-

extensive [BM07], meaning that the total energy of a non-interacting system is the sum of its

individual components, whereas truncated CI methods do not possess this property [BM07].

This is of particular importance in correctly calculating dissociation curves, for example.

Consider two noninteracting atoms spaced by R whose energy is E(A,B,R). A size-extensive

energy calculation would imply

E(A,B,R) = E(A) + E(B) (5.36)

an equality truncated CI calculations fail to satisfy [Cre13] due to di�ering levels of excita-

tion being applied to the combined system versus the separate subsystems. To clarify, for

interacting systems, this size-consistency issue would a�ect truncated CI calculations at any
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internuclear separation distance, meaning even E(A,B,∞) 6= E(A) +E(B), a troubling re-

sult indeed (although this can partly be corrected for, through Davidson corrections [Sza05],

for example).

This property, along with the fact that coupled clustered correlation energies generally

converge more quickly that those obtained from CI calculations [BM07], make CC methods

typically preferred over CI calculations, although this may vary system to system. Generally,

CCSD(T) is considered the `gold standard of computational chemistry' [SO96,SL90], yielding

highly accurate results while balancing reasonable computation time.

Lastly, in the above sections we have been using the Hartree-Fock wavefunction as a

reference wavefunction on which all our excitation operators are performed. In general, the

reference wavefunction need not be the Hartree-Fock wavefunction; instead, multiple refer-

ence wavefunctions may be used, resulting in what is known as a multirefernce calculation.

While multireference calculations are more expensive, they can become advantageous when

calculating transition energies between ground and excited states. In these situations, the

reference wavefunctions are chosen judiciously to ensure that the correlation energy calcu-

lation for the excited and ground states are performed to similar degrees of accuracy, so

transition energies between the states may be better known.

5.2.3 Møsser Plosset Pertubation Theory

Lastly, we may consider perturbative methods as well that are often computationally less

expensive that the CI and CC methods. First, we can recall that |Ψ0〉 is an eigenfunction of

the Fock-operator f̂ , as de�ned in Eqn. 5.14.

f̂ does not treat electron correlation fully and we can de�ne the `missing' component as

V̂ ′ = Ĥ − f̂ (5.37)

where Ĥ is the full electronic Hamiltonian as de�ned in Eqn. 5.10. We then can then treat

V̂ ′ as a perturbation to f̂ as a way to determine how much energy we `missed out' on with

our Hartree-Fock treatment.
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According to standard perturbation theory, the �rst and second order energy corrections

terms can be expressed as

E ≈ E0 + E1 + E2 = 〈Ψ0|f̂ |Ψ0〉+ 〈Ψ0|V̂ ′|Ψ0〉 −
∑

i<j,a<b

〈Ψab
ij |V̂ ′|Ψ0〉

2

(εa − εi) + (εb − εj)

= 〈Ψ0|Ĥ + f̂ − f̂ |Ψ0)〉+
∑

i<j,a<b

| 〈Ψab
ij |V̂ ′|Ψ0〉 |2

(εa − εi) + (εb − εj)
= EHF −

∑
i<j,a<b

〈Ψab
ij |V̂ ′|Ψ0〉

2

(εa − εi) + (εb − εj)

(5.38)

where εi is the energy of the ith spin-orbital. The substitution was made in the above equation

by recalling that EHF is the optimized expectation value of the Ĥ operator.

In perturbation theory, the second-order sum is carried over all basis states of the system.

For us, a complete basis would consist of an in�nite amount of N-particle Slater determinants

of various degrees of excitation (similar to Full CI). So why do we only consider the doubly-

excited terms in our second-order energy? According to Brillouin's Theorem [Sur89], all

single-excitation matrix elements will be zero, and triply-excited or higher-excited states will

also be zero because the perturbation operator only considers pairwise interactions [Sur89].

This allows for a dramatic simpli�cation of the second-order energy.

Third- and fourth-order perturbation correction terms may be considered as well, but,

in general, the computation time for such calculations is non-trivial, and further it has been

found that these correction terms generally do not converge. For these reasons, a second-

order (MP2) calculation is often used in the �eld.

MP2 methods do not optimize the Slater orbitals or the reference wavefunction and

require only integrals to be performed, o�ering computational advantages over other post-

Hartree-Fock methods. However, since the wavefunction is not optimized, any reference

errors associated with Φ0 and its associated molecular orbitals will be passed along to the

MP2 calculation [Cre11]. As with any of the above methods, the strengths and weaknesses

of the method have to be assessed when determining if it is appropriate for a given problem.
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5.3 Software Suites

Implementing the above iterative algorithms programmatically can be quite challenging;

however, fortunately, these routines have been e�ciently packaged into a number of commer-

cially available software suites. In fact, the majority of computational chemistry performed

for research included in this thesis was performed using the Gaussian [FSL91] and MOL-

PRO [WKK18] packages. These packages allow convenient platforms for Hartree-Fock, as

well as post-Hartree-Fock, calculations to be performed and also allow for density functional

theory calculations.

While these packages simplify the computation process, one must be judicious in choosing

what type of calculation is appropriate for a given system. As mentioned above, each of these

approximation techniques has its weak points, and these vulnerabilities will inform what

the most e�ective way is to choose basis sets, reference con�gurations, correlation energy

calculations, etc. In general, multiple calculations can also be performed at various levels of

theory to cross-reference results and better ensure accuracy.
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CHAPTER 6

Experimental Implementations

This chapter will provide an overview both of the atomic and molecular species studied in

this work as well as the LQT-MOT hybrid trap experimental apparatus in which the species

were studied (see Fig. 6.1). Particular emphasis will be placed on the optical and mass

spectrometry detection techniques that are used to analyze the electronic state population,

velocity, and mass of the studied particles, tools that collectively form the crux of virtually

all scienti�c measurements made in this work. A description of the laser systems utilized

in this work, as well as the leak valve apparatus used to introduce controlled amounts of

gaseous reagents into our vacuum chamber, will also be provided.

6.1 Vacuum system

If the ambient pressure within the atom-ion trapping volume is too large, reactive and elastic

collisions with background gas particles can cause the particles to be lost from the trap. These

ejection events are caused either by elastic collisions that impart energies to the atom/ions

that surpass their associated trap depths, or by reactive events that convert the trapped

particles into other species, both of which are e�ects that limit trap lifetime. Therefore, to

maintain stable trapping environments for both our ions and our MOT, ultra-high vacuum

(UHV) conditions (/ 10−9 mbar) are required.

The housing that provides our trapping environment is a 8� Kimball physics extended

spherical octagon (MCF800-ExtOct-G2C8A16), which is held at UHV pressure by a Varian

sputtering ion pump (VA-911-5034, pumping speed 60 L/s). A titanium sublimation pump

(TSP) is also present in the system and further reduces pressure in the chamber by emitting
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Figure 6.1: MOTion experiment diagram

A schematic diagram of the MOTion apparatus and its key measurement devices, including a

depiction of the ToF-MS system, the LQT, and the reentrant viewport used for optical imaging of

the ion species. This �gure is borrowed from Ref [SSY16].

a stream of titanium that coats the walls of the chamber and binds with background gas

particles to form a solid along the chamber walls, thereby reducing the ambient gas pressure.

To be discussed in later sections, a time-of-�ight mass spectrometer (ToF-MS) and a leak

valve system are also attached to the main chamber, which allow for LQT mass analysis

and the controlled introduction of reactive gas particles into the chamber, respectively. The

entire vacuum apparatus as well as the required cooling lasers and many of their associated

control electronics, are positioned on a 12' x 5' Newport optical table, which is �oated to

lessen problematic mechanical vibrations that can a�ect trap/laser stability.

The octagon possesses sixteen 1.33�, eight 2.75� and two 8� CF �anges, the majority of

which are �tted with optical viewports to allow for camera imaging of the trapped species

as well as optical access for the six-beam MOT con�guration and the ion cooling beams.
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Figure 6.2: Schematic drawing of the LQT

Drawings that display the various dimensions of the LQT utilized in this work. As seen in the lower

right hand corner, the α and β rods are equipped with a rf voltage, while all four rods may be

assigned an independent DC voltage, allowing for adjustment of the Mathieu a/q-parameters of the

trapping potential as well as excess micromotion compensation. Further, high voltage DC pulsing

is applied to the α/γ rods and the δ/β rods in order to guide the ions into the ToF-MS. This �gure

is borrowed from Ref [Sch16].
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6.2 The ion trap and the control electronics

6.2.1 The ion trap

The ion trap utilized in this thesis is a standard segmented four-rod linear quadrupole trap

(LQT) (see Fig. 6.2 for a diagramatic depiction, borrowed from Ref [Sch16]), where each rod

consists of three segments. The initial design of the trap was developed in Ref. [Sul13] and

later revised in Ref. [Sch16]. For a more complete description of the engineering speci�cs,

the reader is referred to those sources. Under normal trapping conditions, the α and β rods

are supplied with a rf trapping voltage, while the δ and γ rods are not supplied with any

rf (see Fig. 6.2 for rod labeling). All four rods may be biased with either HV or DC for

ToF-MS extraction and excess micromotion compensation, respectively, as to be discussed

below.

6.2.2 Control electronics

The individual rods must be equipped with rf trapping voltages (Vrf ), DC bias voltages

(UDC), and the ability for high voltage (UHV ) pulse sequencing for extracting the ions into

the time-of-�ight apparatus. These requirements are made more stringent by the need for

phase and amplitude matching of the applied rf voltages, as well as proper synchronization

of the extraction pulses across the four rods. If this synchronization is performed improperly,

the ions may experience unnecessary micromotion or may be ine�ciently coupled into the

mass-spectrometer.

These requirements inspired the development of a sophisticated set of electronics, known

as MOTion drive units, that have now been exported to a variety of ion trapping groups

throughout the nation. The reader is referred to Ref. [SSY16] for a complete discussion of

the MOTion drive units, but a brief overview will be presented here.
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Figure 6.3: Simpli�ed circuit diagram of MOTion drive unit

The circuit is divided into a primary low-voltage (left) and secondary high-voltage (right) side,

which are isolated from each other through a toroidal transformer. The low-voltage side consists of

rf ampli�ers and the primary winding of the rf transformer (blue), as well as timing and damping

circuitry (green). The high-voltage side consists of the secondary winding of the transformer along

with capacitors that collectively form the resonator circuit (red). In addition, damping and HV

pulsing circuitry (purple) and a UDC bias supply is also present on the secondary side. This �gure

is borrowed from Ref [SSY16].
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6.2.2.1 Drive units

There are twelve drive units total, one unit for each segment of the trap, and a simpli�ed

circuit diagram for the units is presented in Fig. 6.3 (borrowed from Ref. [SSY16]). Each

drive unit is supplied an input rf voltage (supplied via a direct digital synthesis board (DDS),

described in 6.2.2.2), which is initially RC-�ltered before subsequently being ampli�ed by

both a preampli�er and a power ampli�er. The power ampli�er then drives the primary side

of a toroidal transformer with a total turn-number of a few tens.

The secondary side of the transformer consists of an LC circuit, where the total capac-

itance of the resonant circuit is set collectively by the capacitance of the output cables, rf

electrodes, vacuum feedthroughs, and lastly, an adjustable trim capacitor than can be used

to �ne-tune the resonant frequency (typically set to ≈ 2π × 680 kHz). One end of the sec-

ondary side of the transformer is connected to the rf trap electrode, while the other end is

rf grounded via a capacitor, which allows biasing of the rf trap segment with DC voltages,

as is required for the HV pulsing and micromotion compensation.

UDC is supplied by a DC power supply that is fed through a low-pass �lter and an HV

diode (as a protection from UHV to rf ground). Similarly, UHV is applied to rf ground

by activating a MOSFET which is supplied by a HV power supply and bypassed with a

capacitor. As a result, not only the trap electrode but the entire secondary side of the drive

unit is biased with UDC permanently and UHV during pulsing.

Merely turning o� the rf source prior to HV pulsing would result in a ring-down time

of ∼ 10 µs on the secondary side of the transformer, causing problematic e�ects during ion

extraction. To remedy these e�ects, active damping of the resonator on both its primary

and secondary side is achieved using MOSFETs, which essentially short the windings of the

rf transformer. Logic circuitry allows adjustment of the delay and duration of both the

damping and HV pulsing sequences, and these parameters are further synchronized across

all drive units for maximum ToF-MS coupling e�ciency.
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6.2.2.2 Timing control

The rf signals are generated by four direct digital synthesis (DDS) devices, which each have

four channels whose individual frequency, phase, and amplitude can be set programatically.

All four DDS devices receive the same 500 MHz reference clock signal for synchronization

of the outputs, and further, the output cables are chosen to be of similar lengths to ensure

that the signals reach the drive boxes simultaneously.

Additional clocks are also introduced into the system to ensure the bu�er input/output

sequences and the synchronization of the digital interface of the DDS devices are performed

properly [SSY16]. Perhaps most crucially, the additional clocks help ensure that HV pulsing

sequences are initiated at consistent rf phases. This helps ensure that the potential gradient

the ions are accelerated through during ToF-MS extraction is consistently maintained even

as other parameters associated with the rf signal are varied.

These synchronization devices are collectively managed by a microcontroller, which can

be sent commands over a serial-to-USB interface coupled to the main experimental control

computer or also accessed through the lab wi-� network.

6.2.2.3 Wiring

The outputs of the drive units are connected to the vacuum chamber over ≈ 175 cm long

low-capacitance coaxial cables. These cables have 75Ω mini-SMB connectors and are plugged

into one of four printed circuit board (PCB) wiring units positioned on the 1.33� CF-�anges

on the vacuum chamber. The PCB interfaces possess receptacles that mate the electrical

pins of the vacuum feedthroughs to SMB connectors, and the units also provide the ground

connection to the vacuum chamber. On the vacuum side, three wires per feedthrough are

connected to the three segments of an electrode (leaving one wire per feedthrough unused).

The interface PCBs also include capacitive pickups, which sample a small fraction of the

rf/HV voltage supplied to the segments and can be used for signal monitoring. The pickup

signal allows the measurement of the input voltages at each segment with a probe ratio

of ≈ 1000 : 1 (as measured with an oscilloscope with 1 MΩ impedance and typical cable
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Figure 6.4: Optimized and unoptimized MOTion drive unit outputs

(a) and (c) display unoptimized signals from the MOTion drive boxes during both rf output and HV

pulsing, as measured through pickup electrodes. In (a), the relative phase and amplitude between

the rf applied to diagonally opposed rods in the LQT can be seen to di�er. In (c), the asymptotic

HV values between the front and back rod pairs both appear to diverge and the phase initiation

time for the non-rf rods is chosen too early such that a suboptimal voltage `overshoot' occurs that

will likely compromise the mass resolution and detection e�ciency of the ToF-MS. (b) and (d)

display optimized rf output and HV pulse sequences, respectively, that avoid these issues to a large

degree.

lengths). These ratios are calibrated against an HV probe (Agilent 10076B) to better than

1% (relative).

6.2.2.4 Optimization

While monitoring the pickup electrodes on an oscilloscope, commands can be sent to the

microcontroller to adjust the phase and voltage amplitude of each rf channel such that

the produced signals are properly matched. Further, the parameters of the HV extraction
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sequence, such as the rf phase at which the sequence is initiated (see Ref. [SCR12] for further

details), can also be controlled. Fig. 6.4 displays output traces for both rf output as well as

HV extraction sequences both before and after such optimization has been performed.

For the voltage/phase rf optimization, the oscilloscope used to monitor the pickup traces

can be interfaced with the experimental control computer through LabVIEW, allowing the

phase and amplitude of the rf electrodes to be programmatically varied to minimize their

mismatch with one another.

The HV extraction parameters can also be optimized to maximize the detection e�ciency

and mass resolution of the ToF-MS. There are two main parameters to optimize here - the

�nal voltage each rod will reach and the phase at which the pulse sequence is initiated. The

pulse initiation phases and amplitudes are initially coarsely chosen to match the following

criteria.

Firstly, for the rods with rf applied (α and β), the initiation phases should be chosen

such that the pulse sequence begins at roughly at the rf zero point, where the rf voltages

cross the 0 V threshold with a positive slope.

Secondly, the HV values themselves are also adjusted so that each pair of front/back

rods asymptote to approximately the same value, as this allows for the ions to be ejected

most directly along the ToF-MS axis. Simulations conducted in the SIMION software suite

demonstrate that, during an extraction sequence, the ions studied in this work exit the LQT

in approximately ∼ 1 µs; however, the majority of their motion occurs in the latter 500

ns of this timeframe, when the HV pulses have essentially reached their steady state value

(10%-90% rise time of ≈ 250 ns). Thus, choosing the HV amplitudes such that they are

well-matched asymptotically is most critical for ToF-MS performance; however, slight o�sets

from these values may be chosen to account for physical misalignments between the LQT

and ToF-MS by `steering' the ions into the entrance of the spectrometer.

Lastly, the initiation phase of the non-rf rods (δ and γ) are adjusted such that the pulse

signals for these rods intersect those of the rf rods (α and β) pulses at roughly half of their

respective maximum amplitudes (see Fig. 6.4). This condition is chosen for the following
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reason. The rise time of the HV pulse is slightly di�erent for the di�erent MOTion drive

units. Primarily, this is because the the MOTion drive units supplying the rf voltage to the

α and β rods have a resonant frequency of ∼ 2π×680 kHz, while the drive units that supply

the HV to the non-rf δ and γ rods have resonant frequencies of ∼ 2π× 1800 kHz. The boxes

have di�erent trapping frequencies to allow us to switch between the two settings if desired;

however, in an approximate sense, their di�erent associated capacitances can be understood

as causing the two units to have di�erent RC rise times.

Therefore, due to these di�erences in rise times, for a given pair of front/back rods, if the

initiation phase is chosen so that the pulses are well-matched during the beginning of the HV

sequence, an `overshoot' will occur towards the end of the sequence (see Fig. 6.4c), and vice

versa. In practice, choosing the initiation phase such that the voltages intersect at roughly

half of their asymptotic values balances the amount of `overshooting' that occurs during early

and late portions of the pulse sequence; however, �ner optimization is typically performed by

observing experimental mass-spectra and adjusting HV phase and amplitude parameters to

maximize the corresponding ToF-MS mass-resolution. Ultimately, however, initiation phase

selection is a relatively minor consideration when compared to the asymptotic amplitude

matching criteria, for reasons mentioned above.

The HV and low-voltage DC signals needed for biasing of the rf electrodes are provided

by separate homebuilt, low-noise DC (0-50 V) and HV (0-2 kV) power supplies, engineered

by Peter Yu and Christian Schneider. These power supplies are heavily low-pass �ltered

to ensure that the resultant output signals have minimal frequency components at secular

resonances of the ion trap. Table 6.1 provides typical voltage values at which the LQT is

operated as well as other parameters related to the trap.

6.3 Atomic and molecular species of interest

Both laser-coolable atomic ions and molecular ions are of interest in this work. The central

molecular ion of interest is BaCl+, while the atomic ions of interest are Ba+ and Yb+. Both of

the atomic ions are simple spin-1/2 systems with a hydrogen-like structure possessing a single
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Parameter Description Typical Value Relevant rods

Vrf Trapping rf amplitude 320 Vpp (α, β)

Ω Trapping rf frequency 2π × 680 kHz (α, β)

VEC Axial con�nement ∼0-30 V (endcap electrodes)

UDC a-parameter/micromotion compensation ∼0-30 V (α, β, γ, δ)

r0 Radial electrode spacing 6.81 mm

z0 Axial endcap spacing 10.2 mm

Table 6.1: Table describing the various rf voltages, DC voltages, and spatial dimensions of the

LQT in this work.

valence electron. Correspondingly, both can be laser-cooled through standard two-color

optical con�gurations where one beam addresses the central cycling transition and a second

beam serves as a `repump' that reintroduces population that has leaked into metastable levels

back into the central cooling cycle. Further, since this work only focuses on laser-cooling of

even-mass species, the e�ects of hyper�ne structure can be neglected.

6.3.1 The Ba+ ion

The level structure for Ba+ is presented in Fig 6.5a. As can be seen in the �gure, the cooling

transition (A=2π × 15.2 MHz) along the 6s 2S1/2 → 6p 2P1/2 line lies at 493 nm while the

repump transition (A=2π × 4.9 MHz) along the 5d 2D3/2 → 6p 2P1/2 line is centered at 650

nm, with the metastable 2D3/2 state possessing a ∼ 80 second lifetime. The ∼1:3 branching

ratio between the cooling and repump transition is closer to 1 than those found in many

other ion laser cooling schemes, and thus the Ba+ ions can be imaged along either the 650

or 493 nm lines, a convenient feature for avoiding optical scatter in the imaging system, as

discussed later.

Further, since both transitions couple to the 2P1/2 level, coherent population trapping

(CPT) e�ects result in the creation of non-laser addressed dark states in the system when

both beams are present. CPT is a general e�ect that occurs in so-called Λ cooling systems
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Figure 6.5: Ba+/Yb+ laser-cooling diagrams

Energy level diagrams for Ba+ (a) and Yb+ (b). Laser-driven transitions are depicted with squiggly

lines whereas relevant spontaneous emission lines are presented with dashed lines. Basic information

about the transitions, such as the wavelength and Einstein-A coe�cient, are also presented. The

lifetimes of relevant metastable states, τ , are presented below each such level.
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in which both the repump and cooling transition couple to the same excited state. In Ba+,

when the beams for both of these transitions possess the same laser detuning with respect

to the 2P1/2 state, optical dark states that are a coherent superposition of the S and D

levels are formed. Ions that fall into these levels are unable to be addressed by the laser

�elds and thus interrupt the laser-cooling cycle. In order to maintain optical cycling, a

non-zero magnetic �eld is introduced into the system that lessens buildup into these dark

states by transferring the dark population into bright states addressed by the lasers. Due to

these coherent e�ects, Einstein-rate-equation models are typically insu�cient for accurate

Ba+ steady-state modeling and instead need to be supplanted by optical-Bloch-equation

treatments involving all eight levels of the density matrix [SMA17].

6.3.2 The Yb+ ion

Yb+, on the other hand, possesses a four-level atomic structure where both the cooling and

repump transitions are coupled to di�erent states, removing the di�culties of dark-state

formation. In the four-level scheme of Yb+ (Fig 6.5b), the cooling transition (A=2π × 19.2

MHz) lies along the 369 nm 6s 2S1/2 → 6p 2P1/2 line. The 2P1/2 level can decay into the

5d 2D3/2 metastable state (lifetime ∼ 50 ms), and population from this level is reintroduced

into the ground state through the 5d 2D3/2 → 5d6s 3[3/2]1/2 935 nm transition, where the

5d6s 3[3/2]1/2 level is a mixed state that has a high spontaneous emission branching ratio

into the ground state.

The isotope shifts on the cooling and repump lines for adjacent even isotopes of Yb+ are

roughly ∼ 4 GHz each, which enables one laser-cooled isotope of Yb+ to sympathetically

cool other non-laser-cooled Yb+ isotopes while avoiding blue-detuned heating e�ects, which

could be present if the splitting were on the order of hundreds of MHz, as in Ba+.

6.3.2.1 Ablation loading of atomic and molecular ions

Ions are loaded into the ion trap through laser ablation of targets by a pulsed 1064 nm

ND:YAG laser (Continuum Laser's Minilite II series, 5-7 ns pulse width). A single pulse of
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the ablation laser strikes the target, positioned roughly ∼ 1 in from the center of the ion

trap, and causes a plume of ions to be ejected into the surrounding vacuum. Two targets

are present in the trap, a Yb+ metal ingot target, composed of a natural abundance of Yb+

isotopes and a powdered BaCl2 target, which typically ejects a natural abundance of both

Ba+ and BaCl+ ions. Therefore, ablation loading may be used to load both atomic ions and

molecular ions. To avoid excessive electrode charging, we typically limit pulse energies to

2 mJ/pulse, although the system is capable of producing up to ∼15 mJ/pulse.

After the �ring of the ablation pulse, the trapping rf is momentarily shut o� to allow the

ejected ion plume to enter the trapping volume uninhibited. After a controllable delay time

(typically set to ∼ 50 µs), the rf trapping �eld is switched on again to snare a portion of the

ion plume within the ion trap potential. This delay time can be scanned to more e�ciently

load ions of speci�c masses and to optimize the overall loading e�ciency of the plume as a

whole.

Additionally, the ablation pulse energy can also be tuned to control the number of ions

emitted by the target. Manipulating the size of the ablation beam will also accomplish this

goal, and a standard one-lens con�guration is used to focus the beam to the desired spot size

on the ablation target. Care must be taken, especially when utilizing high ablation energies,

to avoid striking the trap rods with the beam, causing problematic electrode charging that

can destabilize the trapped ions.

6.3.3 BaCl+

The molecular ion at the center of this thesis is the BaCl+ molecule. As an ionically bonded

molecule composed of two closed-shell atoms, Ba2+ and Cl−, BaCl+ exhibits reduced chem-

ical reactivity compared to other ions [Hud09]. Further, its large dipole moment and conve-

nient rotational splitting make the molecule a promising candidate for quantum information

applications, such as the development of a high-�delity rotational-level qubit [HC18].

Many exciting applications with this molecule require internal state control as well as

initialization into the ro-vibrational ground state. While laser cooling has been impres-
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State Re De ωe ωeχe Be

(a0) (cm−1) (cm−1) (cm−1) (cm−1)

1Σ+ 4.89 39103 339.5(7) 1.19(10) 0.0903

1Π 6.38 2083 96 0.0528

Table 6.2: Table describing the molecular constants for the BaCl+ 1Σ+ and 1Π states. Values

with error bars are obtained from Ref [BVH15] and subsequent work by the same group, whereas all

other values are obtained from Ref. [CSK11] and subsequent work from the Svetlana Kotochigova's

group at Temple University.

sively implemented [AAB18,BMN14,KBM17] for this purpose for a select class of molecules,

the leaky nature of molecular excited states prevents closed cycling transitions from being

identi�ed in many systems. As an alternative, we hope to achieve internal state cooling

through sympathetic-cooling collisions with ultracold Ca atoms [Hud09,RSS12], a technique

that should be generalizable to many other systems. BaCl+ is particularly well-suited for

this method since its electron a�nity energetically precludes the molecule from undergoing

2-body chemical reactions with ground-state Ca [Hud09].

As is the case for most atomic and molecular species, the �rst step to control is spec-

troscopy. Once the rotational and vibrational transitions within the molecule have been

mapped out, methods for robust readout and state control can be developed.

We have collaborated with excellent molecular spectroscopists for this goal. In Ref [BVH15]

and in more recent experiments by Michael Heaven's group at Emory University, the vibra-

tional spectroscopic constants were experimentally mapped out for the 1Σ+ ground state,

while rotational constants have also been extracted for this state from theoretical molec-

ular potentials calculated by Svetlana Kotochigova's group [CSK11] at Temple Univer-

sity. All obtained constants for the BaCl+ system are presented in Table 6.2. While this

level of structural characterization has been immensely helpful for vibrational state read-

out [RSS12,CSK11], �ner energy-level resolution will be needed as we push forward towards

rotational-state readout and control (see Chapter 12).
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Figure 6.6: BaCl+ molecular potentials

Molecular potentials for the BaCl+ 1Σ+ and 1Π1 molecular electronic states. The 1Σ+ potential

yields a series of bound states characterized by rotational and vibrational quantum numbers. Select

(v = v′, J = 0) band-head states are shown in blue with the remaining states in each v′ vibrational

manifold shown in red (only a subset of rotational states are shown). The 1Π state is a repulsive

potential with no bound states; promotion into this potential results in dissociation of the molecule.

Further, aside from the ground state, many electronically excited states in BaCl+ also

exist. However, most of the work in this thesis concerns only the ground 1Σ+ state as well as

the lowest lying dissociative 1Π state, shown in Fig. 6.6 (potentials obtained from Professor

Hua Guo's group at the University of New Mexico).

Lastly, the BaOH+ and BaOCH+
3 molecular ions are also of interest in this thesis, as they

serve as reactants for many of the studied atom-molecular ion reactions, and thus, they will

be further discussed below.

6.3.3.1 Molecular ion loading

While BaCl+ can be loaded directly into the LQT through ablation, a number of other

molecular ions of interest in this work, such as BaOH+ and BaOCH+
3 , can be introduced

into the ion trap through reaction. In particular, a background CH3OH (methanol) gas is
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present in our chamber that ultimately limits our Ba+ trap lifetime to 1000-2000 s due to

reactive collisions (reactions with Yb+ are comparatively suppressed).

Interestingly, the background methanol was unintentionally introduced into the chamber.

This most likely was a result of cleaning the vacuum components of our chamber in a super-

sonic bath of liquid methanol prior to assembling our chamber and a virtual leak forming

once the chamber was sealed. However, fortuitously, the methanol reactions have provided

the foundation of some of the most interesting chemistry discussed in this thesis [PMS17].

The following reactions [DSL93,LY98] can occur between Ba+ and CH3OH

Ba+ + CH3OH → BaOCH+
3 +H

Ba+ + CH3OH → BaOH+ + CH3

(6.1)

Experimentally, the rate of these reactions can be extracted by obtaining reaction kinetics

data in which a sample of Ba+ ions is initially loaded into to chamber, the sample is allowed

to react for variable amount of time, and then all reactant and product species in the LQT are

ejected into the ToF-MS, giving an indication of how the relative product/reactant amounts

evolve in time.

The data can be �t to the following set of di�erential equations in order to solve for the

various reaction rates of the system

dNBa+

dt
= −(kBa+→BaOCH+

3
+ kBa+→BaOH+)NBa+

+ kBaOH+→Ba+NBaOH+ + kBaOCH+
3 →Ba+NBaOCH+

3
− ΓLNBa+

dNBaOH+

dt
= −kBaOH+→Ba+NBaOH+ + kBa+→BaOH+NBa+ − ΓLNBaOH+

dNBaOCH+
3

dt
= −kBaOCH+

3 →Ba+NBaOCH+
3

+ kBa+→BaOCH+
3
NBa+ − ΓLNBaOCH+

3

(6.2)

where ki→j refers to the rate of reaction of species i into species j (the density of the methanol

vapor is implicitly absorbed into this coe�cient) and ΓL refers to the overall trap loss rate,

for example caused by high energy collisions with background gas particles (assumed to be

species independent).

The solutions Eqn. 6.2 can be �t to the reaction kinetics data described above to extract

the associated rates, as shown in Fig. 6.7.
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Figure 6.7: Methanol reaction kinetics

Reaction kinetics obtained by loading a Ba+ sample and allowing it to react for a variable amount

of time with the background CH3OH gas before ejecting the entire ion sample into the LQT. The

y-axis is the ion amount of each species present in the LQT at a given instance of time, normalized

by the initial amount of Ba+ present in the system. The solutions of Eqn. 6.2 can be �t to the

kinetics data to obtain reaction rates for the formation of BaOH+ and BaOCH+
3 .
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We note that in Eqn. 6.2 presented above, we allow for both forward and backwards

reactions. While the speci�cs of the potential surface of the (Ba+ + CH3OH) pair have not

been mapped out to our knowledge, the reactions in Eqn. 6.1 are generally understood to

be exothermic [DSL93]. However, at the collision energy of the ions within the LQT, the

particles may have enough energy to clear any energetic barriers posed by backward reaction

processes, especially if these processes are photon-assisted by beams present in our chamber.

Further, photodissociation events may cause any formed molecules to be dissociated into

their initial reactant constituents. While we do not have direct knowledge of the exact

nature of these back-reactions processes, it appears the best �ts to our reactions kinetics

data occur when such events are included. In general, these back reactions may be collision-

energy or laser-intensity dependent, and the rate-extraction �ts should be repeated for any

measurement in which these parameters are varied.

With the above rates in hand, rates for other reactions involving BaOCH+
3 and BaOH+

can also be determined, as to be discussed in Chapter 9.

6.4 Time-of-�ight mass spectrometer

The time-of-�ight mass spectrometer (ToF-MS) is an incredibly powerful tool for character-

izing atom-ion chemistry in hybrid trapping systems such as ours. Much of the technical

aspects and optimization procedures of the ToF-MS used in our system have been discussed

in Refs. [SCR12, SSY16, SSC14]; however, a general overview of the system, including a

discussion on the principles of operation, will be given here.

6.4.1 Principles of operation

When attempting to measure ion amount within a LQT, many approaches may be taken. For

example, one may place a channeltron detector nearby the LQT and introduce a mass-speci�c

secular excitation signal to one of the trap electrodes [CSK11,HW12]. The species that is

excited by this resonant secular excitation will gain energy and eventually be ejected from the

LQT, and a portion of these purged ions will hit the channeltron detector, registering an ion-
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number-dependent signal. The resonant frequency can then be swept across other masses,

and the process can be repeated to gain a mass spectrum of the trap. While straightforward

to implement, this technique su�ers from low detection e�ciency and does not allow for

simultaneous mass readout of multiple ion species.

Another approach, as detailed in Refs. [SCR12, SSY16, SSC14], is radial time-of-�ight

mass spectrometry. In this approach, after an ion sample has been loaded in a LQT, the

trapping rf is extinguished and a HV pulse is applied to both the front and back pair of rods.

The front pair is set to a lower voltage as compared to the back pair, creating a potential

gradient that accelerates the ion towards the front pair of electrodes.

After passing the front pair of electrodes, the ions pass through a grounded skimmer plate

(diameter ≈ 5 mm) and enter a �eld-free drift tube. The velocity that the ions possess upon

entering the drift tube is dependent on the mass of the species and is given approximately

as

q∆V =
1

2
mv2

f (6.3)

where ∆V is the potential di�erence which the ions are accelerated through, m is the mass

of the ion, and vf is its �nal velocity. A more thorough treatment of the process is presented

in Ref. [WM55], but the gist is that the heavier the mass the slower the �nal velocity.

A channeltron detector is placed at the end of the drift tube (≈ 254 mm). As a cluster

of ions collide with the channeltron, the device outputs an ion-number-dependent current

which can be read on an oscilloscope. The oscilloscope tracks this current as a function of

time, which can be read as a string of time-tagged voltages on the oscilloscope monitor. This

current is also dependent on the channeltron gain, which is in turn set by the detector bias

voltage (typically held at ≈1700 V).

By monitoring the channeltron output as a function of time, one can simultaneously

measure the ion amount of a wide range of masses in the LQT, as shown in Fig. 6.8. The

narrower the time-width of the mass cluster peaks, the greater the mass resolution. Therefore

the various time and voltage parameters in ToF-MS extraction sequence are optimized to
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Figure 6.8: Sample ToF-MS mass spectrum

Channeltron voltage as a function of time. As can be seen, the Ba+, BaOH+, and BaCl+ species

reach the detector at di�erent times, allowing their ion numbers to be individually resolved.

ensure that each mass cluster arrives at the channeltron detector at as uniform of a time as

possible while satisfying other constraints in the system.

The skimmer, which has a roughly 6 mm circular diameter, serves multiple purposes in

this process. Firstly, it prevents ions that are ejected extremely o�-axis (with respect to

the axial dimension of the �ight tube) from reaching the channeltron detector. If these ions

reached the detector they would have severely bent trajectories, meaning their path length

would be longer and they would reach the detector at a later time, broadening the time-width

of the channeltron signal and thereby compromising the mass-resolution. Thus the skimmer

rejects these ions, improving mass-resolution while sacri�cing detection e�ciency to a slight

degree.

The second purpose the skimmer serves is allowing for a two stage acceleration scheme.

Initially described in Ref [WM55], a two stage acceleration scheme involves accelerating

the ions from VLQT (z) →V2 →0 V, as opposed to a single stage acceleration scheme that

accelerates the ions as VLQT (z)→ 0 V. In our system, the back (∼ 1400) and front (∼ 1200)
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rod voltages, V1 and V2 respectively, set VLQT (z) and V2, while the skimmer is held at

ground.

Note that VLQT (z) is position dependent because the ion cloud has a non-zero spatial

width (∼ 500 µm radial width). The potential �eld created in the LQT during pulsing can

roughly be thought of as that produced by a parallel plate electrodes, where VLQT (z) = Ez

where E is the electric �eld between the rods. Thus, the position of the ion within the LQT

will determine what initial voltage it feels when the HV is pulsed.

Therefore, the ions closer to the front rods accelerate through less of a potential di�erence

than ions positioned further from the front rods. Thus, while having a shorter path length to

the detector, the front-most ions also have a smaller drift-tube velocity than the back-most

ions.

Of course, in a single-stage scheme, this isn't necessarily an issue if one could choose

to vary the position of the detector to �nd the location where the back-most ions have

exactly `caught up' to the front most ions; however, this parameter is not convenient to vary

experimentally and further may con�ict with other design considerations, such as placement

of ion-focusing optics. Therefore, these e�ects in general lead to broadening of the time-width

of each mass cluster, signi�cantly impairing mass-resolution.

The two-stage scheme depicted in Fig. 6.9 improves on this method by splitting the

acceleration into two stages. Essentially there are two e�ects to consider in the system:

1) the fact that the front-most ions have a smaller path length to the detector and thus

will reach the detector �rst given the same velocity, 2) the fact that the back-most ion will

in general experience a larger potential di�erence and thus will reach a larger drift-tube

velocity than the front-most ions. Ideally, one would balance the velocity di�erence between

the back-most and front-most ions such that both species reach the detector at the same

time, and the two-stage process allows just this �exibility.

In the �rst stage, the ions are accelerated through a potential di�erence of VLQT (z)→V2.

The larger VLQT (z)-V2 is, the larger the di�erence in exit velocity between the front-most

and back-most ions. On the other hand, if VLQT (z) ≈V2, the ions will hardly accelerate at
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Figure 6.9: Two-stage acceleration in the ToF-MS

Sequence of events in a two-stage acceleration scheme in a ToF-MS. The back rod is set to V1 while

the front rod is set to V2. Thus, at t1, the moment the HV is pulsed, the ion towards the back rod,

ion a, experiences a higher potential than ion b; however, ion a's position, za, is also further from

the detector than ion b's position, zb (za(t1) >zb(t1)). Consequently, the velocity of ion a when

it reaches the front rod is larger than that of ion b (va >vb at this point), but ion b reaches the

front rod before ion a does temporally. After reaching the front rod, both ions are then accelerated

through of potential di�erence of V2 → 0 V as they pass through the grounded skimmer. V1 and

V2 are adjusted so that the ions reach the detector at essentially the same time (za(t2) =zb(t2)),

with their di�erence in drift tube velocities accounting for their initial di�erence in position in the

LQT.
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all through the �rst process, and consequently, their �nal velocity will be set by the V2 →0 V

stage, which is the same for all ions. In this way, one can tune V2, as well as V1, strategically

such that, at the position of the detector, the path length di�erence is optimally balanced

by the velocity dispersion e�ect, as detailed with great clarity in Ref. [WM55] and displayed

schematically in Fig. 6.9.

In addition to the two-stage scheme, in order to establish a large detection e�ciency, ion

trajectories in both the radial and axial planes must be adjusted to prevent ion loss due to

collisions with the chamber wall. The ion trajectories upon exiting the LQT di�er in both of

these planes, largely due to the skewed aspect ratio of the LQT and its associated extraction

potential. To correct this astigmatic ion beam, we employ two Einzel lenses with di�ering

focusing strengths, which are set by the voltages applied to the Einzel electrodes. The �rst

Einzel lens, positioned directly after the skimmer, approximately collimates the ions in the

axial plane and su�ciently decreases the divergence in the radial plane to avoid ion loss. A

second Einzel lens, added closer to the channeltron detector, slightly focuses ions in the axial

plane while approximately collimating the ions in the radial plane [SCR12]. In practice, the

voltages of both Einzel lens are scanned in order to optimize the detection e�ciency of the

system; however in general, there is a compromise between detection e�ciency and mass-

resolution that must be struck, since allowing more ions with o�-axis trajectories to reach

the channeltron also results in broadening of the time-width of each mass cluster peak.

Table 6.3 provides typical voltage parameters at which the ToF-MS is operated and

Fig. 6.10 presents a diagram of the entire system. Once again, we note that the front rods

have a slight voltage o�set to allow for `beam-steering' of the ion beam to account for spatial

misalignment of the LQT with respect to the channeltron detector.

6.4.2 Optimization

There are many ways to coarsely optimize the ToF-MS operating settings experimentally,

and we choose an iterative approach. V1 and V2 are coarsely set by the Wiley/McLauren

condition and initially these values are �xed. We then adjust the HV pulse initiation phase
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Description Typical Value (V) Relevant rods

Front rod pulse voltage 1209 δ

Front rod pulse voltage 1195 β

Back rod pulse voltage 1386 (γ, α)

First Einzel lens voltage 940

Second Einzel lens voltage 610

Channeltron bias voltage 1700

Table 6.3: Table describing the various rf voltages, DC voltages, and spatial dimensions of the

LQT in this work.

Figure 6.10: Digram of MOTion trap coupled into a ToF-MS

Diagram of a series of ion clusters being ejected from the the MOTion trap LQT into the ToF-MS.

Also depicted are the Yb and BaCl2 ablation targets used for LQT loading as well as the Ca getter

units employed for loading the MOT.
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to match the criteria presented in the Sec. 6.2.2.4. At this point, we load samples of ions into

the ion trap and adjust the o�set on the front rods, while both Einzel lenses are grounded, to

maximize detection e�ciency. This coarsely optimizes the `beam-steering' of the ions onto

the detector. At this point, the front Einzel lens is turned on and its voltage is varied to

maximize detection e�ciency, and then the same process is repeated for the second Einzel

lens.

At this point, either the V1-V2 or the initiation phase can be adjusted and the process

can be repeated, eventually yielding settings that o�er an acceptable local maximum for

detection e�ciency. Once detection e�ciency has been optimized, we can turn our heads

to mass resolution. At this point, essentially all parameters (pulse initiation phase, Einzel

lens voltages, extraction voltages) can be �nely varied to essentially `throw-away' o� axis

ions that are reaching the detector, thereby reducing detection e�ciency while increasing

mass resolution. Fortunately, there is not much of a need for a mass resolution greater than

m/∆m ≈ 500, a value easily achievable with even modest optimization when studying di-

rectly laser-cooled and sympathetically-cooled species [SSC14]. Fig. 6.11 displays a resulting

isotopically resolved mass spectrum for a sample of laser-cooled 138Ba+ ions, along with its

sympathetically cooled dark isotopes.

Most of these optimization routines are performed using the laser-cooled species of interest

(Ba+, Yb+) in this work. Of course, some of the e�ects of the Einzel lens focusing and the

HV pulse sequence may also be mass-dependent. For example, extremely light ions may

accelerate over a larger distance during the rise time of the HV pulse and therefore may be

a�ected di�erently by the beam steering. This could potentially result in o�-axis entry into

the �eld free drift tube that could complicate Einzel lens focusing. For the work conducted

in this thesis am/z ratio range of ≈80-200 is studied, a range in which none of the mentioned

e�ects appear to di�er signi�cantly.

One way this can be veri�ed is by initializing a sample of Ba+ in the LQT and allowing

the sample to react into BaOH+ and BaOCH+
3 . The entire sample can then be ejected

into the ToF-MS, and the summed ion amount, normalized by initial ion amount through

�uorescence imaging for example (see Sec. 6.5.1), can be monitored as a function of reaction
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Figure 6.11: Optimized ToF-MS spectrum

The resultant mass-spectrum from a sample of laser-cooled 138Ba+ ions, as well as its sympatheti-

cally cooled natural isotopes, obtained after optimizing the ToF-MS parameters

time. If the decay rate of total ion number is consistent with 0 over the timescale studied,

it is a good indication that detection e�ciency is not varying much as a function of mass.

Indeed, if the detection e�ciency of the higher-mass species was quite lower, we would expect

a statistically signi�cant decay as reaction products are lost during the extraction process

(the reaction rate should be faster than the trap loss rate to avoid a complications here). Of

course, this measurement also assumes that the studied reactions do not have exit channels

that would result in LQT ejection, i.e. trap ion number is conserved throughout reaction.

While the above-mentioned routine can check for heavier-mass detection e�ciency changes,

similar checks, when possible, should also be performed for lower-mass regions if relevant to

experiments.

6.4.3 Mass-timing calibration

The relationship between ToF arrival time and mass for a given species is given by ta =

ka
√
ma + t0 where ta is the arrival time for the species of interest, ma is the mass of the

species of interest, ka is a proportionality constant, and t0 is an o�set time. The ToF-MS
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Figure 6.12: Mass-timing ToF-MS calibration

Measurements of ion mass plotted as function of channeltron arrival time for Ba+, BaOH+, and

BaCl+. Also presented is the �t to the inverted equation presented in Sec. 6.4.3, with t0=1.30(3)

and γa = 1
k2
a
=1.77(1).

is calibrated by measuring channeltron arrival times for species of known masses in our

system (isotopes of BaCl+, Ba+, BaOH+, and BaOCH+
3 ) and performing a �t using the

above functional form to determine ka and t0 (see Fig. 6.12). Once these constants have

been determined, mass-identi�cation for unknown species in the LQT can be performed.

There are two main sources of mass determination error to consider. Firstly, there is an

uncertainty in peak arrival time associated with the temporal spread of each species' ToF

signal. To this end, a Gaussian �t is applied to each mass signal to extract the arrival time

uncertainty. Secondly, statistical errors in our actual ToF-MS calibration can be determined

from the �t errors to the free parameters in the above arrival time equation. In addition to

the errors associated with the parameters themselves, the accuracy of our mass determina-

tion for unknown species in the trap increases as the mass of these unknown species nears

the calibration masses, since the calibration is inherently well known at these points. For

example, Ca+ is further away in mass from its nearest calibration mass (Ba+ - 137.9 amu)

than BaO+ is (BaOH+ - 154.9 amu), and while both species are still isotoptically resolv-

able, the associated calibration-related mass determination error is greater for the former.
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This calibration-based error is calculated from spreads in 95% con�dence interval bands ap-

plied to our calibration �t, assuming ion arrival time uncertainties as determined by the

above-mentioned Gaussian mass signal �t. By adding our con�dence interval uncertainty in

quadrature with the mass error determined from propagating error through the arrival time

equation, we can extract conservative overall mass determination errors.

6.4.4 ToF-MS Performance

After optimization has been performed, single Ba+ ions may be loaded into the LQT and

ejected into the ToF-MS to assess the single ion detection e�ciency. The number of ions can

be counted prior to ToF-MS ejection via optical imaging (see Sec. 6.5), and this value can

be compared to the resultant integrated ToF-MS spectrum. This process is �rst repeated

for a single ion multiple times, and the detection e�ciency for the channeltron registering a

detectable response above a determined discrimination level is roughly ∼ 30%. In addition

to this detection e�ciency, this is also a variation in detector response, as the channeltron

response current also has a distribution. For a single ion, this distribution is shown in

Fig. 6.13a.

However, in reality, the detector gain is also dependent on output-current, and thus, the

response also varies with ion number as saturation occurs. This response is investigated in

Fig. 6.13b where ion number is varied and the channeltron output is observed after ejection

of the sample in the ToF-MS. Here, ion number is initially counted in two ways.

Firstly, for low ion numbers that can be counted optically, we use camera imaging to

count the number of resolvable particles. Secondly, for larger three-dimensional structures,

we �t spatial dimensions to �uorescence images of the crystal, assuming prolate spheroid

density pro�les, and then multiply the resultant ion volume by the space-charge limited

density to extract ion numbers (see Sec. 6.5.1 for details).

The results of such a measurement are presented in Fig. 6.13b. As can be seen from

the �gure, at low ion numbers, where the amount of ions is individually countable, we see a

roughly linear response; however, the response function becomes non-linear as ion number
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Figure 6.13: ToF-MS calibration and saturation correction

(a) A histogram of the integrated detector current when a single ion is detected in the ToF-MS. For a single

ion, non-detection events are distinguished from detection events based on whether the detector voltage

surpasses a certain discrimination level during the detection time window (not depicted in the plot), with

an overall detection e�ciency of ∼ 30%. (b) Laser-cooled Ba+ ions are initialized in the LQT, and the total

ion number is counted in one of two ways. For linear chains, single-ion-resolved optical detection is used,

and for non-single-ion-resolvable 3D structures, spatial estimates of the crystal size are used to extract ion

number values. After the ions are initialized, they are ejected into the ToF-MS, and a scatter plot is created

to compare the optically-measured ion number to the integrated ToF-MS detector response. Here, the y-axis

is proportional to the total integrated current from the channeltron and is converted into an e�ective ion

number by �tting the equation y = mx+ b to the low-ion-number data, with determination of m providing

the necessary conversion factor. Fits to the detector response are applied to both low-ion-number and high-

ion-number data, with the �t coe�cients for the two data sets being visibly di�erent, implying detector

saturation. Here, the solid lines denote the �t and the bands represent 90% con�dence intervals. (c) Due

to detector saturation the voltage pro�le of the channeltron output has to be transformed by Eqn. 6.4. In

the plot, this function is applied to the mass-spectrum of a Ba+ crystal, with the saturation e�ect quite

signi�cant (here total ion number is taken to be proportional to the integrated ion signal curve). (d) The

calibration in (b) is repeated after applying the saturation correction function to the mass spectra, and the

discrepancies between the low-ion-number and high-ion-number �ts is greatly reduced.
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is increased and saturation becomes an issue.

Saturation can be a problem for reaction rate experiments where reactant/product num-

ber is relied upon to extract rate constants. Therefore, we develop a method to account for

detector saturation by applying the following function to each voltage in our mass spectrum

Vc(t) = V (t)e41.9543 V (t)1.9765

(6.4)

where Vc(t) is the saturation corrected voltage and V (t) is the uncorrected voltage, with the

functional form of the correction function empirically chosen to minimize saturation errors.

When Eqn. 6.4 is applied point-by-point to each voltage in the obtained mass spectra

(Fig. 6.13c) and the calibration curve is replotted, we see a much more linear response at

both low and high ion numbers, as shown in Fig. 6.13d. Indeed, the form Eqn. 6.4, which

may seem unusual, was empirically chosen and optimized to match such a criteria. Of course,

our saturation model assumes saturation is instantaneous and only depends on the detector

voltage at a given instant of time. However, in reality, detector `dead time' may play a role,

and the history of previous voltages prior to a particular point may also a�ect that point's

degree of saturation. However, given the quality of the �t shown in Fig. 6.13d, such e�ects

may play a minor role. Further, this calibration also depends on factors such as detector age

and gain and thus should be repeated regularly for accuracy, especially when the channeltron

bias current has been altered. Lastly, the calibration is also dependent on knowledge of the

ion-number-density, which in turn is subject to errors in trap secular frequency determination

(see Eqn.6.5).

However, limitations aside, the above calibration allows for reasonably accurate ion num-

ber predictions for ion numbers ranging from a few tens to a few thousands, which will

become of critical importance for quantum chemistry work discussed later in this thesis.
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Figure 6.14: Reentrant imaging system dimensions

Dimensions of the reentrant imaging system, expressed in mm. The reentrant �ange allows the

objective to be placed roughly 50 mm from the ion, allowing for a total NA of 0.23

6.5 Imaging system

Electron-multiplying-charged-coupled-device (EMCCD) cameras (model Andor Luca-R, 1000

x 1000 pixels, 8 µm x 8 µm pixel size) are used to optically image the ionic and atomic species

in this work. There are three main cameras used for this type of imaging: one camera that

is positioned along a reentrant �ange (DUV 2 3/4� sapphire viewport, MPF) aligned with

the center of the LQT and two other cameras positioned along 1.33" viewports (UV Fused

Silica), positioned at a relative angle (16◦, 28◦) and (-16◦, 28◦) with respect to the reentrant

camera (azimuthal angle, polar angle) (assuming the axial dimension of the MOT coils sets

the z direction of the trap).

For the reentrant camera, relevant dimensions of the objective (Sill Optics) imaging

system is shown in Fig. 6.14, with the system having an overall imaging magni�cation of ∼ 8
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and a NA of 0.23. As the reentrant camera has by far the largest solid angle of the three

cameras, it is the primary choice for imaging small ion crystals. In addition to the objective,

a 2� mirror is also included in the optical setup to allow for redirection of the ion image. In

addition, a �lter wheel is included to allow for switching of the optical �lters in the imaging

system, which allows for Ba+ ions to be imaged with either 650 nm or 493 nm light, Yb+

ions to be imaged with 369 nm light, or even Ca atoms to be imaged with 422 nm light.

We note that 650 nm imaging of Ba+ is particularly useful since only 493 nm light is

typically used in the radially-oriented beams employed to provide the cooling necessary to

create stable ion chains. As these beams also cause a majority of the optical scatter in the

system due to their geometry, imaging on the 650 nm line can be very convenient. Typical

camera settings used when studying ions are 100 ms exposure time, 4 x 4 binning, and an

EM gain of 200.

The other two cameras imaging systems' consists primarily of a single 75 mm lens ar-

ranged in the 2f-2f con�guration to provide a magni�cation of 1. Optical �lters are again used

in these systems, with the most commonly used �lter a 369 nm/493 nm/422 nm tri-band-

pass-�lter that allows imaging of all three Yb+/Ba+/Ca species, a convenient feature when

determining spatial atom-ion overlap factors. When imaging the Ca MOT, these cameras

are typically run without EM gain at settings of 25 ms exposure time and 1 x 1 binning.

6.5.1 Ion number measurements from imaging

One of the most useful quantities that can be calculated through imaging, especially for

the quantum chemistry experiments in this thesis, is the number of ions present in an ion

sample. For laser-cooled species arranged in a chain, such as in Fig. 6.15a, this is a fairly

straightforward matter of counting. As seen from Fig. 6.15a,c, non-laser cooled species that

are sympathetically cooled are also observable.

However, when dealing with three dimensional structures where the ions are no longer

individually countable, other approaches must be taken. The approach that is taken will

depend on the phase of matter that the ions are in.
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20 μm

Figure 6.15: Ion �uorescence imaging

(a) False color images of linear chain of laser-cooled Yb+ ions (top) and bi-sample of laser-cooled Ba+

ions with two sympathetically cooled BaCl+ ions (red circles denote their position). (b) Images of

a resolved two dimensional crystal of Ba+ ions. (c) Images of a non-single-ion-resolvable 3D crystal

of laser-cooled 174Yb+ and sympathetically cooled 172Yb+. The two species spatially separate due

to the radiation pressure on the 174Yb+ ions.

If in the crystal phase, we can say that the ion has a constant density throughout its

volume. The maximum possible density obtainable can be calculated as follows. Assume

isotropic conditions such that (ω = ωx = ωy = ωz). Consider a test charge positioned at

a general radial distance r′ from the center of the sphere - the maximum possible density

will occur when the centripetal force inwards due to harmonic potential exactly equals the

Coulomb repulsion along the outward radial dimension, calculated from Gauss's Law as

Fω = FC

mω2r′ =
Qenc

4πε0r′2
=
Q2ρmaxVenc

4πε0r′2

=
Q2ρmax
4πε0r′2

4

3
πr′3 =

Q2ρmax
3ε0

r′

→ ρmax =
3ε0m

Q2
ω2

(6.5)

where Qenc(Venc) is the amount of charge (volume) enclosed at a radial distance r′ from the

sphere center and ρmax is the maximum ion number density (charge density =Q× ρmax).

The expression yields an approximate maximum density for ions within an ion trap, a

quantity typically only achievable at laser-cooled conditions. For the LQT conditions in this

work, ρmax = 108 cm−3.

With ρmax in hand, for ion crystals, the spatial density distribution can be modeled using
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a prolate spheroid function as follows:

ρ(x, y, z) =


ρmax

x2

r2
x

+ y2

r2
y

+ z2

r2
z
≤ 1

0 x2

r2
x

+ y2

r2
y

+ z2

r2
z
> 1

(6.6)

where rx, ry, and rz are the spatial lengths of our ion crystal.

Given knowledge of these spatial dimensions, we can calculate the total ion number as

Ntot = ρM
4
3
πrxryrz, but �rst we must calculate the spatial dimensions. For most LQT's, the

radial dimensions are degenerate, meaning rx = ry.

Further we can assume all laser-cooled ions in the sample are �uorescing at the same rate.

This approximation is valid as long as the waist of the cooling beam is much bigger than the

sample size and excess micromotion doesn't add a signi�cant Doppler shift to the ions at

the crystal outskirts. In this regime, �uorescence is directly proportional to ion number, and

thus, we can use knowledge of the spatial distribution of the �uorescence pro�le, obtained

from our ion image, to infer the ion-number spatial distribution.

Our camera image compresses a three-dimensional into a two-dimensional image by es-

sentially integrating along the axis of the camera, in this case, one of the radial dimensions

of the LQT.

Thus, the total camera counts obtained from the camera, F(x,z), is given as

F (x, z) = TE

∫ ∞
−∞

ρ(x, y, z)dy (6.7)

where TE is a factor incorporating the scattering rate of the ions and the overall e�ciency

of the imaging system (including optical losses due to solid angle, absorption, etc.)

Now to determine rx (rz), using the camera image of our ion crystal, we can sum over all

pixels in the remaining axial (radial) direction, e�ectively yielding

F (x) = Ti

∫ ∞
−∞

∫ ∞
−∞

ρ(x, y, z)dydz = TEρmax
πrz(rx − x)(rx + x)

rx

F (z) = Ti

∫ ∞
−∞

∫ ∞
−∞

ρ(x, y, z)dydx = TEρmax
πrx(rz − z)(rz + z)

rz

(6.8)
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Figure 6.16: Ion �uorescence spatial pro�ling

Fluorescence pro�le (which is proportional to the ion number density pro�le) of an ion image as

a function of radial displacement from the null (x dimension). Here the camera pixels have been

summed along the axial dimension of the trap (z). The pro�le is �t to both a prolate spheroid and

a Gaussian function. Since the sample is crystallized, the prolate spheroid o�ers a much better �t,

with the Gaussian �t overestimating the density at at the peak as well as the wings. The camera

image being analyzed is presented as an inset.
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where the �rst equation is vald for −rx ≤ x ≤ rx, the second equation is valid for −rz ≤ z ≤

rz, and we have assumed rx = ry.

After �tting the above pro�les to the summed camera images (Fig 6.16) we can extract

the rx and rz values, allowing us to also extract the total ion number and the ion-number

density pro�le.

If in the liquid or gas phase, the situation shifts. The peak density of the sample now

depends on the secular temperature and is given as ρ0(T ), with the scaling approximately ∝

T−3/2 [CSK11]. We can also say the ion density in a particular dimension will scale according

to the Boltzmann factor associated with its secular potential as ∝ e
−mωir

2
i

kbT = e
−
(
ri
ri0

)2

, where

ri0 is the characteristic length scale of the ion cloud in the ith dimension. Therefore the

overall ion number density can be expressed as

ρ(x, y, z) = ρ0(T )e
−
(

x
rx0

)2

e
−
(

y
ry0

)2

e
−
(

z
rz0

)2

(6.9)

and once again

F (x, y, z) = TEρ(x, y, z) (6.10)

ρ0(T ) can be di�cult to directly experimentally probe; however, the rx0, ry0, and rz0

length scales can be determined by following a similar �tting procedure as above, allowing

a relative ion-number density to be determined.

With theses spatial values in hand, the total �uorescence, Ftot, can be expressed as

Ftot =

∫
F (x, y, z)dV = Tiρ0(T )π3/2rx0ry0rz0 (6.11)

Here, we can also recall Ftot = TENtot. Therefore, if we can determine the amount of total

camera counts for a single ion (e�ectively TE), we can divide Ftot by this value to get Ntot.

Of course, this method has its limits, and at larger ion sizes, Doppler shifts due to excess

micromotion at large LQT radial displacements, as well as beam size issues, may prevent

accurate �uorescence �ts from being obtained.
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6.5.2 Micromotion compensation and mass-�ltering

DC voltages can be placed on the trap rods to compensate for stray electric �elds. In general,

if such �elds are present, they will shift the ion o� the trap null, and it is possible to probe for

such displacements optically. For example, if an ion is o� the trap null, if Vrf is increased, its

position should shift towards the true trap center as the radial potential tightens. However,

if the ion is already on the null, it should essentially remain motionless as Vrf is scanned.

Thus, to compensate for stray electric �elds, the position of a trapped ion can be observed

as Vrf is switched between two values, and the shim voltages of the LQT can be adjusted

until ion motion appears minimal upon rf switching.

However, our camera will not be able to resolve ion displacements along the camera

axis, since the obtained image is only sensitive to motion orthogonal to the camera axis.

To account for shifts in this direction, we can apply the same technique as above while

instead varying the a-parameter of our trap. If a DC voltage is jointly applied to rods

α/β, an a-parameter will be introduced into the trap that will in general compress ions to

a plane connecting the γ/δ rods. If the ion has a positional o�set along the direction of the

camera axis, it will thereby be compressed to this plane, allowing for optical detection of this

motion. Like before, shim voltages can be adjusted until negligible motion upon a-parameter

modulation is observed.

These two methods are performed iteratively while shims are adjusted until the shim

voltages have converged to within ∼ 10 mV, as set by our control software (actual voltage

on the rods may be slightly di�erent). Procedurally, the voltages on the α/γ rods are

adjusted in equal steps concurrently, and same goes for the γ/β rod pair. This allows for

adjustment of the ion position along experimentally convenient axes in the LQT. Further,

the optimization protocol is most easily performed using a 1D chain of ions for maximum

sensitivity to positional shifts.

The success of the optimization relies on the rf being properly phase/voltage matched at

both settings, as well as the DC voltage needed for the a-parameter being applied equally to

both rods. Both of these checks can be performed by monitoring the proper voltage probe

132



for each rod upon Vrf and a-parameter switching.

6.5.3 Mass-�ltering

Due to the nature of LQT stability regions, changing the a-parameter of the trap is very

useful for destabilizing undesired ions (often BaOCH+
3 and BaOH+), when such ions are

heavier than the ions of interest being studied (see Sec. 3.1.1). To accomplish this mass-

�ltering, a triangle voltage ramp (∼ 1 sec period) can be applied to a pair of diagonally

opposed rods to raise the a-parameter of the trap to a certain level before returning it to its

base value. The a-parameter needed to eject the undesired ions will vary based on Vrf .

However, this method will only be able to deplete heavier ions. To remove lighter ions,

the q-parameter of the trap may be raised, or the trap may be operated at a q-value such

that a nonlinear resonance causes the undesired ions to be purged [DW69]. Lastly, a resonant

tickle, at the mass-dependent secular frequency (typically ∼40-60 kHz at Vrf = 160V ) of the

undesired ion, may be placed on one of the trap rods to selectively expel [SKD00] the mass

species from the trap.

6.6 Leak valve system

6.6.1 System overview

Ablation loading is a simple and robust technique; however, it is also stochastic and results

in often inconsistent amounts of ions being loaded in the LQT. Much of this stochasticity

can be circumvented by loading a large number of ions initially, and then `whittling' the

ions down to the required size by manipulating the Matheui a and q parameters to make a

portion of the ions unstable. However, when multiple ion species are being loaded into the

LQT via ablation, such as is the case with Ba+ and BaCl+ bi-samples, the ratio of these

species loaded into the LQT is often also inconsistent, making it more di�cult to correct for

using mere post-ablation mass-�ltering.

An alternative to this method is to initialize a sample of a particular ion species into the
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LQT and then introduce a controlled quantity of reactive gas to induce reactions with the

ions until they have formed a desired amount of product ions. For the purposes of this work,

the following reaction is most useful

Ba+ + CH3Cl→ BaCl+ + CH3 (6.12)

Thus, by introducing controlled amounts of CH3Cl in our vacuum chamber, we can

engineer bi-crystals with precise Ba+/BaCl+ ratios. When conducting quantum chemistry

experiments, where knowledge of initial amount of reactant is crucial, or when conducting

proposed quantum information experiments, where a speci�c number of BaCl+ molecules

may be needed to form an entangled qubit system [HC18], having such control will be highly

desirable. The apparatus created to produce these controllable gas bursts is described below.

The leak valve system, depicted in Fig. 6.17, consists of two stages - a primary stage

where a constant pressure (∼100 mBar) of reactant gas is maintained, and a secondary stage

attached directly to the MOTion chamber that is connected to the primary stage through a

piezo-controllable leak valve.

Primary Stage

The CH3Cl gas is produced from a Praxair gas cylinder (part numnber MC 3.5-LP5)

hooked up to a Matheson single stage regulator (3396 Series). The regulator connects to a

stainless steel �exible bellow line that feeds into a VCR cross. On one end of the cross is a

MKS Pirani gauge (part number 103170014SH) used to monitor the CH3Cl pressure on the

primary stage. Another end of the cross connects to stainless steel bellow that feeds into a

scroll pump (Agilent, IDP-3) that can be used to purify the system before introducing the

methyl chloride gas.

The �nal cross end feeds into a bellow that itself feeds into a VCR tee. One end of

the T is connected to a valved nitrogen line. The valve can be opened to overpressure the

primary side with nitrogen, allowing for �ushing of the system when a gas cylinder needs to

be changed, for example. The other end of the tee connects directly the piezo doser. We

also note that a ball valve is placed after the Matheson regulator to allow for convenient
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Figure 6.17: Leak valve system schematic diagram

Schematic diagram of the leak valve system, which consists of a primary side where a high pressure

of reactant gas in maintained and a secondary side that a controlled amount of gas is leaked into,

with this gas eventually �owing to the MOTion chamber. See text for speci�c part numbers for the

various components.

exchange of gas cylinders. Moreover, a needle valve is placed prior to the scroll as a means

to control how much pumping, if any, is occurring on the primary side.

CH3Cl is a toxic chemical and thus should be handled delicately. The exhaust from

the scroll line is fed into a ALTEF Gas Sampling Bag (Restek 22958) through brass and

Viton connectors (McMaster 5346K12/5119K32). When ready for removal, this bag should

be valved o� and taken to a fume hood before the gas is released.

Secondary Stage

The primary stage is connected to the secondary stage through a piezo doser (input CF

1.33�, output CF 2 3/4 �). The doser (Oxford Applied research, PLV1000) can be fed a

voltage between 0-1000 V to open the piezo valve to various degrees. A HV pulser unit

designed by Elizabeth West is used to send HV pulses to the devices. However, we note it is

best to send signals with rise times of ∼100 ms or so to the unit to avoid exciting mechanical

resonances in the piezo.

For further control of the valve, a tightening nut that clamps the piezo to the sapphire
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Figure 6.18: Leak valve reaction loading

(a) BaCl+ fraction (normalized by total ion amount) as a function of total integrated CH3Cl leak

pressure. (b) Leak valve response when a constant HV is applied to the doser and then suddenly

switched o�. (c) Leak valve response of the doser system when using sending a stream of ∼0.5 sec

period TTL pulses to the doser (pump out time is longer than the pulse time).
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seat that controls the valve can be adjusted to a�ord greater dynamic range of pressure �ow.

On the secondary side is also a residual gas analyzer (SRS, RGA 200) and an ion gauge

(MKS, 100005980) as well as turbomolecular pump (Agilent, TPS Flexy 304FS) which is

backed by an Agilent Scroll pump (SHG 100). The entire secondary side is connected to the

MOTion chamber through a gate valve located near the second Einzel lens on the ToF-MS.

Before the gate valve is a variable leak valve (Duniway, VLVE 1000), which can be adjusted

to further control how much gas enters the MOTion chamber and also acts as a convenient

safety-stop in case anything malfunctions with the system.

6.6.2 Leak valve system performance

The performance of the leak valve can be tested by leaking in various amounts of CH3Cl gas

and observing BaCl+ formation. The voltage waveforms applied to the doser can be varied

depending on the application. One may apply fast voltage pulses, resulting in a plume of

gas in the chamber that is quickly pumped out by the ion and turbomolecular pumps (with

just the ion pump the decay time is ∼5 seconds, but with both pumps, this lifetime is more

like ∼1 sec). The fast bursts are most useful when only a small amount of BaCl+ is needed;

however, the valve response to fast voltage pulses can be somewhat inconsistent, and thus

the amount of gas leaked in does vary pulse to pulse (Fig. 6.18b).

Alternatively, one may choose to operate the piezo at a constant voltage, allowing re-

actions to occur until a suitable amount of BaCl+ has formed, at which point the voltage

is switched o� (Fig. 6.18c). This generally results in more consistent gas �ows but may be

di�cult to implement when only single BaCl+ ions are needed.

As an experimental demonstration of the reaction loading, BaCl+ formation as a function

of gas input is displayed in Fig. 6.18a. The amount of gas input into the system is measured

by the RGA; however, since the RGA is spatially separated from the ion trap by several

low-conductance apertures, only a fraction of this pressure actually reaches the ions. As can

be seen, the amount of BaCl+ in the trap can be controlled by merely changing the amount

of gas input into the chamber.
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6.7 Ca MOT hardware and pro�ling

6.7.1 Anti-Helmholtz coils

The magnetic �eld gradient necessary for the MOT trapping potential is produced by a pair

of current coils arranged in the anti-Helmholtz con�guration. The coils are powered by a HP

6683A power supply (0-32 V, 0-160 A), and are usually operated at ∼95 A of current. A full

description of the dimensions of the anti-Helmholtz coils, including coil number, diameter,

and thickness, as well as a more analytical treatment of the resulting magnetic �eld gradient,

is given in Refs. [SDC16,Sul13].

In practice, the magnetic �eld zero is slightly o�set from the ion trap center. To correct

for this, a bias current can be placed on the top coil through means of a second power supply

(HP-6033A, 0-20 V, 0-30A) that is added in parallel with the top coil. By adding current to

the top coil but not the bottom coil, the magnetic �eld zero can be scanned across the axial

dimension of the MOT trapping potential.

The location of the magnetic �eld zero can be experimentally determined by loading a

sample of laser-cooled Ba+ ions into the LQT and adjusting the shim current until the ions

are maximally dark, which occurs due to CPT e�ects when the ions are not exposed to a

state-mixing magnetic �eld.

Usually when operating with an anti-Helmholtz current of ∼95 A, a shim current of ∼ 7 A

will center the magnetic �eld zero on the ions; however, when performing an experiment

with laser-cooled Ba+, the shim current is kept at ∼ 5 A to ensure CPT e�ects do not

impede hinder cooling. Near the �eld zero, the measured �eld gradient per unit current

is 0.527 G/(cm A) along the anti-Helmholtz axis and 0.2635 G/(cm A) along the radial

direction [Sul13].

Our current coils are spaced relatively far away from our �eld zero due to the large vacuum

chamber needed to house the ion trap. Consequently, relatively high currents are needed

to produce the necessary MOT trapping potential, which in turn generate signi�cant heat

loads. The coils themselves are constructed from copper tubing that can be water cooled
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(Small Tube Products) and also possess a Kapton coating performed by S&W Wire Co.

Chilled water is pumped through the coils, in parallel, dropping from about 270 PSI to

the house return pressure of about 40 PSI. At typical operation of about 95 A through each

coil, the temperature measured via a thermocouple adhered to the outer portion of the coil

equilibrates to roughly 65 (45) C in the top (bottom) coil (the top coil tends to get hotter

than the bottom coil, likely due to internal debris that obstructs water �ow). To avoid

runaway heating in the event of a cooling failure, the temperature reading on each coil is

used to interlock the HP-6683A power supply via the alarm function on an Omega CN9600

temperature controller. If a temperature above the setpoint is detected, the alarm function

shorts the interlock pins on the HP-6683A power supply, disabling it.

6.7.2 Getter units and Ca loading

Ca atoms are introduced into the MOT trapping region through two calcium getter sources

(Alvatec) contained in MACOR housings that are mounted to the end caps of the LQT

(Fig. 6.10). While two getter units are present, during MOT operation current (∼ 5 A) is

�owed (HP 6256B, 0-10V, 0-20A) through just one of the units, which heats the unit and

creates a calcium vapor which sprays into the MOT trapping volume through an aperture of

the housing. When installing a new getter, it must �rst be `popped' by running the units at a

current between ∼4-6 A (where the current is increased at roughly ∼1 A/hr), at which point

an argon signal will be visible, which can be monitored on the RGA. A turbmolecular pump

should also be connected to the vacuum housing during this process to pump any background

gasses emitted from getter unit. Ideally, the lowest possible getter current needed to produce

the Ca MOT density required by a particular experiment should be used to maximize getter

lifetime.

The Ca atoms are quite hot as they exit the getter units (∼ 1000 K), and thus they must

be slowed down to temperatures lower than the MOT trap depth, which is of order a few

Kelvins. For this purpose, beams detuned by roughly −4Γ and −10Γ, arranged in a power

ratio of roughly 1:1, respectively, are aimed directly at the aperture of the getter unit to slow
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the velocity of the emitted Ca atoms. This simple setup provides satisfactory trap loading

e�ciency, but may be replaced by other techniques, such as white light [ZOH91] slowing or

chirped slowing [EBH85] for further MOT loading e�ciency gains.

Once the Ca atoms have been loaded into the MOT, various parameters of the optical

system can be manipulated to adjust the position of the MOT, which is critical for main-

taining good overlap with the ionic species. The MOT is created by beams arranged in the

standard six-beam optical molasses con�guration. The power balancing between each pair

of counterpropagating beams is controlled by a half wave plate (HWP) that feeds into a

polarizing beam splitter (PBS) that splits the beam into a pair that are later sent through

quarter-wave plates (QWP) (to obtain the correct circular polarization) before entering the

chamber.

By changing the power balancing between a pair of counterpropagating beams, the MOT

can be moved along the axis of the beam pair. We note that this may change the equilibrium

position of the MOT to one that is not centered on the magnetic �eld zero, meaning the

detuning of each σ+ and σ− beam from its associated transition may in general be di�erent

(o� the �eld zero, both beams no longer address the σ− transition, see Sec. 4.2.4 for further

clari�cation). While this may seem counterintuitive for trapping, we note that since the MOT

is stable at this new equilibrium position, it must be experiencing no net force. Therefore, the

di�erence in power between the beams makes up for the di�erence in e�ective detuning from

their associated transitions, leading to balanced scattering forces and thus stable trapping

of the MOT at a position displaced from the �eld zero. We note that since the magnetic

�eld gradient is twice as strong in the axial dimension as it is in the radial dimension, half

the power should be used in the axial beams as in the radial beams in order to create a

spherically symmetric MOT sample. Further, beam pointing can also be used to change the

intersection region of the beams, and hence the MOT location, and to increase/decrease the

e�ective MOT density.

The number of atoms loaded into the MOT is also quite sensitive to alignment of the

deceleration beams with the getter beam source, and therefore, this parameter should also

be varied during routine MOT alignment.
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6.7.3 Density pro�ling

Knowledge of the MOT density is critical for accurate determination of the atom-ion reac-

tion rate constants measured in the quantum chemistry experiments in this work, as the

overall reaction rate scales proportionally with the atomic density. In order to measure this

parameter, we employ a standard absorption imaging technique.

The density of the MOT, due to the linear restoring force present in the system, can be

modeled as spherical Gaussian as

ρ(x, y, z) = ρ0e
−( x

ωx
)

2

e
−
(
y
ωy

)2

e−( z
ωz

)
2

(6.13)

According to Beer's Law [Swi62], if a resonant beam is directed towards the sample, the

intensity of the incoming beam will be attenuated as

dI(x, y, z)

dz
= −I(x, y, z)σa(λ0)ρ(x, y, z)

→dI(x, y, z)

I(x, y, z)
= −σa(λ0)ρ(x, y, z)dz

(6.14)

where σa(λ0) is the absorption cross-section at wavelength λ0.

We are interested in the intensity change in the beam as it passes through the entire

sample, so we can integrate the above equation integrate across the z-dimension as

∫
dI(x, y, z)

I(x, y, z)
= −

∫ ∞
−∞

σa(λ0)ρ(x, y, z)dz

ln

(
If (x, y)

Ii(x, y)

)
= −

∫ ∞
−∞

σa(λ0)ρ(x, y)e−( z
ωz

)
2

dz

= −π1/2σa(λ0)ρ(x, y)ωz

(6.15)

where If (x, y) is the �nal intensity after the beam has passed through the MOT and Ii(x, y)

is the corresponding initial intesntiy prior to MOT exposure.

We are really interested in solving for the peak density, ρ0, so we can rearrange the above

formula, using ρ(x, y) = ρ0e
−( x

ωx
)

2

e
−
(
y
ωy

)2

as
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Figure 6.19: MOT density and spatial pro�ling

(a) Fits to integrated absorption images in both the x (F (x)) and y (F (y)) dimensions, as well as

the camera count pro�les the �ts were applied to. The absorption image from which the �ts were

obtained is shown as an inset. (b) Similar to (a) except now the �ts are applied to a �uorescence

image. Speci�cally, the �ts are applied to the camera count pro�les along the x (R(x)) and y (R(y))

dimensions. These �ts allows for extraction of MOT spatial dimensions, and as mentioned in the

text, can also be calibrated to yield atomic densities. (c) Absorption measurement timing sequence.

The MOT is loaded to its steady state density. The cooling beams (C beams) and deceleration

beams (D beams) are then switched o� the release the MOT. 5 µs later, an absorption beam (A

beam) is introduced for 1 µs to probe the MOT density. The camera, whose minimum exposure

time is 10 µs, is triggered slightly before the A beam trigger to capture the pulse event. The whole

timing sequence can be repeated with no MOT initially present to obtain a control image.
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− ln

(
If (x, y)

Ii(x, y)

)
= π1/2σa(λ0)ωzρ0e

−( x
ωx

)
2

e
−
(
y
ωy

)2

(6.16)

In the above formula, let T (x, y) =
(
If (x,y)

Ii(x,y)

)
. If (x, y) can be obtained experimentally by

�rst shining a beam through the MOT and then having the output be directed towards one

of the Andor Luca cameras. After this image has been obtained, the process can be repeated

with no MOT present to obtain Ii(x, y) and then two images can be subsequently divided,

resulting in the desired T (x, y) matrix.

Now Eqn. 6.17 can be integrated over both the x and y dimensions to yield

F (x) =

∫ ∞
−∞
− lnT (x, y)dy = πσa(λ0)ωzωyρ0e

−( x
ωx

)
2

F (y) =

∫ ∞
−∞
− lnT (x, y)dx = πσa(λ0)ωzωxρ0e

−
(
y
ωy

)2 (6.17)

As shown in Fig. 6.19, ωx and ωy can both be extracted from Gaussian �ts to the inte-

grated T (x, y) camera pixel matrices (experimentally, summing over all pixels in a particular

dimension is treated as equivalent to integration over that dimension).

Once ωx and ωy have been determined, we can assume that ωz =
√
ωxωy, since this

quantity cannot be measured easily experimentally.

The �ts that produce ωi have the form Aie
−
(

(ri−ri0)

ωi

)2

where Ai is an amplitude coe�cient

and ri0 allows for a spatial o�set of the MOT from whatever is de�ned as the coordiante

system origin. As can be seen From Eqn. 6.17

Ai = πσa(λ0)ωzωiρ0

→ ρ0 =
Ai

πσa(λ0)ωzωi

(6.18)

In general, two measurements of ρ0 may be made from the x and y dimension �ts, and

the peak MOT density is generally taken to be the average of these measurements.

On resonance, σa(λ0) is given as
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σa(λ0) =
2J ′ + 1

2J + 1

λ2
0

2π
(6.19)

where J ′(J) is the rotational quantum number of the upper (lower) state (J ′ = 1, J = 0 in

this case).

6.7.3.1 Experimental considerations

When taking an absorption image, it is important to select the absorption beam exposure

time carefully. In general, it is best to pick the shortest time possible while yielding resolv-

able signals, and this value is typically ∼ 1µs. At times much longer than this, the MOT

ballistically expands while absorbing the beam, smearing out its spatial pro�le. Moreover,

the beam also exerts a scattering force on the MOT, and given enough time, this e�ect may

also morph the Ca density pro�le.

Lastly, in a typical absorption image cycle, shown in Fig. 6.19c, the MOT is �rst loaded

into the chamber and then the cooling beams are extinguished. A brief ∼ 5 µs delay is

included to allow for a majority of excited state atoms to fall into the ground state, and

then the absorption beam is introduced (∼ 1 µs exposure) from the output of a �ber cou-

pler aligned with one of the CF 1.33� chamber viewports. While the absorption beam is

introduced, a camera image is also captured. The camera exposure time is set to camera

minimum of 10 µs, although ideally this would perhaps be closer to the absorption beam

pulse time to limit background scatter. The process is repeated with no MOT present as a

control.

One might think, to save time, that one could take both an absorption image and a control

in the same duty cycle by reintroducing the absorption beam after the MOT has ballistically

expanded out of the trapping region. However, AOM's are used as optical switches to control

both the cooling beam and the absorption beam timing. Due to AOM heating, the amount

of light that couples into the absorption beam �ber changes as a function of time during the

AOM duty cycle. To avoid these e�ects, the control and absorption images are therefore

taken using the same delay time after switching on the absorption beam AOM (in separate
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imaging cycles).

6.7.4 `Shortcut' density pro�ling

Experimentally obtaining absorption images can be a little time consuming due to the need

to need to cycle over several MOT lifetimes. However, once an initial density measurement

has been made, a `shortcut' measurement may be made for future density measurements

that only involves standard �uorescence images.

Say that the overall total number of counts collected by our camera from the �uorescing

MOT is RC . This quantity can be expressed as

RC = Γρ22ΩGENatoms

= Γρ22ΩGE

∫
ρ(x, y, z)dV

= Γρ22ΩGEπ3/2ωxωyωzρ0

(6.20)

where Ω is the solid angle of the imaging system, G is the camera gain, E is the optical

e�ciency of the imaging system (includes losses due to optical �lter absorption, re�ectances

at the objective, etc.), and Natoms is the total number of atoms in the system. {ωx, ωy, ωz}

are de�ned as above. Shown in Fig. 6.19, ωx and ωy can be obtained easily through �ts to

simple �uorescence images, without invoking the more complicated procedures needed for

absorption imaging (see Sec. 6.7.3.1).

Thus, the density can be calculated as

ρ0 =
Rc

Γρ22ΩGEπ3/2ωxωyωz
= C

Rc

ωxωyωz
(6.21)

where C is a coe�cient that can be determined by calibrating to a MOT of known density,

as determined by absorption images. While the above relation means that density pro�les

can be obtained from simple �uorescence images; the C coe�ceint needs to be remeasured

frequently, as thermal beam drifts in the system can change the amount of scatter in the

system and thus the number of photons collected by the imaging system. Further, often
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times parameters like the excited state fraction are changed in a measurement which will

generally change C as well. Therefore, it is often more reliable to use absorption imaging for

accurate density measurements.

6.7.5 MOT lifetime measurements

The time evolution of the atom number in the MOT can be understood by the following

simple di�erential equation

dN

dt
= −ΓLN(t) + L (6.22)

where N is the MOT atom number, ΓL is atom loss rate, and L is the atom loading rate. L

is set by the getter current and the e�ciency of the deceleration beams in allowing atoms to

enter the MOT, while ΓL is primarily set by leakages in the laser-cooling cycle that populate

dark states that cannot be laser cooled as well as background gas collisions.

The solution to Eqn. 6.22, given initial conditions N(0) = 0, is given as

N(t) =
L

ΓL
(1− e−ΓLt) (6.23)

Experimentally, ΓL can be measured by initializing the chamber with no MOT beams

present but the getter unit on. Then the MOT beams can be introduced for varying amounts

of time, and a �uorescence image can be taken at the end of each sequence. The total

�uorescence, which is proportional to the total atom number, can then be plotted as function

of time to extract ΓL and the MOT lifetime, τ = ΓL, can be extracted (see Fig. 6.20). As

we will see in Ch. 7, τ is heavily determined by how e�cient the repump used in the MOT

is (multiple repump pathways are available) and can vary from ∼ 80− 4000 ms.

6.7.6 MOT Temperature

According to a simple Boltzmann model, the probability of an atom occupying a position

x in the MOT is P (x) ∝ e−(x/ωx)2

. If the atom is released from the trapping potential
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Figure 6.20: MOT lifetime measurement

The chamber in initialized with the getters on but no beams present. The cooling beams are turned

on for variable amounts of time, at which point a camera image is taken. The integrated camera

counts, as a function of time, are plotted and an exponential �t is applied to extract a MOT lifetime

of τ = 1.73(3) s.
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when it has a velocity v, we would expect the updated probability distribution to look like

P (x(t)) ∝ e−((x+vt)/ωx)2

, in a process known as ballistic expansion.

Now to understand our MOT's spatial probability distribution as a function of time,

P (x(t)), we need to consider the fact that our MOT is a thermal source and thus has a

velocity probability function Pv(T ) ∝ e
− mv2

2kBT , where T is the temperature of the sample.

Convolving the two factors, we see that

P (x, t) ∝
∫
e−((x+vt)/ωx)2

e
− mv2

2kBT dv

∝ e
−
(

x

ωx+
2kBT
m t2

)2 (6.24)

Here we use the velocity probability distribution instead of the speed probably distribution

since we are interested in velocity vectors (i.e. vx + t 6= −vx + t).

Thus, it can be seen that P (x(t)) is the similar to P (x), except ωx has been replaced

with a time dependent length scale, ωx(t, T ) as

P (x, t) ∝ e−( x
ωx(t,T ))

2

= e
−
(

x

ωx(t=0)2+
2kBT
m t2

)2

(6.25)

where

ωx(t, T ) =

√
ωx(t = 0)2 +

2kBT

m
t2 (6.26)

Experimentally, we can monitor the evolution of ωx(t, T ) by initializing a MOT and then

extinguishing our cooling beams. We then allow our MOT to expand for a variable amount

of time, and then image our MOT to determine its spatial distribution, e�ectively extracting

a ωx(t0, T ) value for a given amount of delay time, t0. We can then �t the functional form

of ωx(t, T ) to our data, using T as a �t parameter, in order to extract the temperature of

our sample (see Fig. 6.21).

For the ∼5 mK temperature of our sample, ballistic expansion results in a majority of the

MOT atoms leaving the trapping region in under a millisecond. Due to the optical e�ciency

of our imaging system, direct �uorescence imaging cannot be used on these timescales.

148



0.0 0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

time (ms)

ω
(t,

T)
(m

m
)

T = 4.8(1) mK

data

�t

Figure 6.21: MOT ballistic expansion

The evolution of the MOT size as a function of time after the cooling beams have been extinguished.

The rate at which this expansion occurs is indicative of the temperature of the sample. After �tting

the Eqn. 6.26 to the data, a temperature of 4.8(1) mK is extracted for the MOT sample (error bars

given by 68% con�dence interval bands.

However, absorption imaging, due to it's increased sensitivity, can be used to probe these

timescales. Thus MOT images are obtained by performing MOT absorption images at a set

of hold times. We note that since the act of taking an absorption image a�ects the MOT

position dynamics, we take only one absorption image per imaging cycle.

Lastly, for the temperatures studied in this work, this analysis extends to all three spatial

dimensions. However, in our setup, we only monitor the MOT in the dimension consistent

with the axial dimension of the LQT, since the LQT rods block a large portion of our

absorption beam in the orthogonal dimension, preventing the MOT from being imaged at

expansion distances greater than ∼500 µm.

Further, if our MOT was much colder, in the µK regime for example, we would also have

to consider the e�ect of gravity along the z dimension of expansion. This would involve

performing our above treatment with e−((z+vt)/ωz)2 → e−((z+vt− 1
2
gt2)/ωz)

2

for analysis of the

MOT spatial pro�le along the axis parallel with Earth's gravitational �eld.
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6.8 Magnetic trap

In addition to the MOT, a magnetic trap also exists within our system. The magnetic trap

potential energy due to our anti-Helmholtz coil con�guration can be expressed using the

electronic state Landé g-factors, gF , as

UB = −~µM · ~B = gFµBmJB0|z| (6.27)

where UB is the magnetic trap potential energy, ~B is the trap magnetic �eld, B0 is the

magnetic �eld gradient, and ~µM , the magnetic moment, is given by −gFµB ~J/~, where µB is

the Bohr magneton and ~J is the total angular momentum vector.

Why the absolute value |z|? Here we assume, if an atom is placed into a particular mJ

state when it enters the trap, its orientation will remain �xed with respect to the magnetic

�eld direction as it moves through the trap. Thus, the magnetic sublevel orientation will

adiabatically respond to the changing magnetic �eld direction, meaning the dot product in

Eqn. 6.27 will always have the same sign, and thus the absolute value is introduced. However,

in general, this adiabatic behavior need not exist. If the atoms spend enough time near the

�eld zero, their quantization axis will no longer be well-de�ned and the atoms may project

into other mJ states, and this e�ect has indeed been observed to cause magnetic trap loss

through so-called Majorana transitions [Maj32].

Due to the dependence of UB on mJ and gF , only atoms in states where gFmJ > 0 will

have stable trapping forces. For states populated during Ca laser-cooling, these states are

the |3P2, mJ = 1, 2〉, |3P1, mJ = 1〉, |1P1, mJ = 1〉 , and |1D2, mJ = 1, 2〉 electronic levels.

In general, all of these states are populated to some degree through leakages in the Ca laser

cooling cycle.

However, since the last three states have very short radiative lifetimes (< 2 ms) compared

to that of the 3P2 state (∼118 min), after only a few milliseconds, the magnetic trap contains

purely |3P2〉 atoms. Further, due to the smaller potential depth of the |3P2, mJ = 1〉 atoms,

the atomic density of the magnetically trapped |3P2, mJ = 2〉 atoms is ∼10x larger, resulting

in a magnetic trap dominated by |3P2, mJ = 2〉 Ca atoms. Essentially, as atoms fall into the
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|3P2〉 state, they are lost from the Ca laser-cooling cycle but are also simultaneously loaded

into the magnetic trap, allowing a steady-state population to form in the latter.

Often the magnetically trapped atoms are used as reactants to study atom-ion chemistry.

We note that above we have de�ned mJ with respect to the trap magnetic �eld direction;

however, when considering reactions with ionic species, the relative velocity vector between

the reagent pairs that de�nes the reaction is isotropically distributed, meaning the Ca mJ

sublevel is not controlled along the reaction quantization axis.

6.8.1 Magnetic trap density

In many experiments in this thesis, the magnetically trapped atoms will be used as a chemical

reactant to explore the reactivities of triplet states, allowing comparison of these reactivities

to those of other excited levels. However, in order to extract reaction rate constants, magnetic

trap densities must be estimated.

While absorption imaging methods, discussed in Sec. 6.7.3, are typically used to assess

the density of atom traps, the magnetic trap is not dense enough for this technique to yield

resolvable values using current techniques. Thus, alternative methods must be pursued.

Primarily, we make separate measurements of the magnetic trap atom number and spatial

distribution, and combine these measurements to obtain an approximate density.

6.8.1.1 Magnetic trap atom number

In order to measure the trapped atom number, a MOT is �rst loaded, which in turns loads

|3P2〉 atoms into the magnetic trap. The MOT cooling beams are extinguished for roughly

50 ms. At this time, due to ballistic expansion, any atoms that were trapped in the MOT

have exited the trapping region, essentially leaving only the magnetically trapped atoms.

Optical pumping is now utilized to transfer the magnetically trapped triplet atoms into

the ground state, through introducing a beam resonant with either the 4s4p 3P2 → 4s4p 3D2

transition (445 nm) or the 4s4p 3P2 → 4p2 3P2 transition (430 nm). The upper levels in these

transitions decay primarily to the 4s4p 3P2 level or to the 4s4p 3P1 state, which decays to
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the ground state with a lifetime of ∼ 300 µs. Thus, after ∼ 1 ms of optical pumping, nearly

all of the magnetically trapped population should reside in the ground state (see Fig.6.22c).

When the optical pumping beam is introduced, the MOT cooling beams are also in-

troduced into the chamber. The transferred atoms are then recaptured into a MOT, and

�uorescence from the magnetically trapped atoms is collected for ∼10 ms. We note that it

takes roughly 5-10 ms for the atoms to be retrapped by the MOT cooling beams, so often it is

best to have the cooling beams on for this amount of time time before collecting �uorescence

(see Fig.6.22b).

However, �uorescence from a small amount of non-magnetically-trapped atoms loaded

into the MOT from the getter source is also recorded during this interval. Fortunately, since

the MOT loading time is typically &100 ms, this background is negligible, and further, it

can easily be accounted for through background subtraction. The deceleration beams may

also be turned o� during this recapture process, further minimizing the background rate.

After the �uorescence image has been obtained, by using a calibration of �uorescence

to atom number based on observing a Ca MOT of known density, total magnetic trap

atom numbers can be calculated. However, no spatial information about the magnetic trap

is o�ered by this measurement since the trap is optically depopulated before �uorescence

collection.

Aside from atom number measurements, this process can easily be modi�ed to capture

magnetic trap lifetime information as well, as shown in Fig.6.22a. In this case, the 50 ms

hold time is varied to include larger hold times, and the atom number is probed as a function

of time, allowing τM , the magnetic trap lifetime, to be extracted (assuming an exponential

decay model).

Further, this decay curve allows for prediction of the atom number at a hold-time of

0 s, which is the magnetic trap atom number that is reached during steady-state MOT

conditions, a quantity often relevant to reaction rate calculations.

A few �nal notes - if conducting a measurement where a steady-state magnetic trap

is needed (which in turn requires a steady-state MOT), be careful to block the optical
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Figure 6.22: Magnetic trap atom number pro�ling

(a) Magnetic trap density as a function of time after the MOT has been switched o�, with an

extracted lifetime of 1.3(21) s. The magnetic trap atoms are presumably lost from the trap over

time due to collisions with background gas particles and non-adiabatic transfer into non-trapped

states. (b) Timing sequence for a magnetic trap atom number measurement. The MOT, and

consequently the magnetic trap, are �rst loaded to their steady state values (∼ 5 s). Then the

cooling beams (C beam) and deceleration beam (D beam) are extinguished. The MOT ballistically

expands away in roughly ∼ 1 ms. ∼ 50 ms after the MOT has been extinguished, the optical

pumping beam (P beam) is introduced to transfer population to the ground state. At the same

time, the C beam is introduced to retrap them into a MOT. After ∼ 10 ms, a vast majority of the

triplet atoms have been reintroduced into the MOT, and a 10 ms camera image is acquired. The

total captured camera counts on the image can subsequently be converted to an atom number. (c)

The optical pumping scheme is displayed diagrammatically. (1) First, 3P2 atoms are transferred to

the 3P1 state by pumping atoms from the former state to the 4p2 3P2 level which has a 25% decay

the latter state, meaning after a few optical cycles the population is essentially all transferred. (2)

Second, atoms in the 3P1 state, which has a ∼ 300 µs lifetime, decay to the ground state. (3) Lastly,

the C beams are introduced to capture �uorescence from the transferred atoms.
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pumping beam during MOT operation. A small amount of pumping light, even on the

level that leaks through an AOM employed as an optical switch, can result in signi�cant

magnetic trap depopulation. Lastly, the distance over which the MOT beams can recapture

atoms e�ciently is ∼ 7 mm, and as we will see shortly, this is a distance much greater

than the dimension of the magnetic trap, ensuring the atoms are e�ciently recaptured and

subsequently counted. However, this recapture range can vary with cooling beam power,

and therefore, experiments should be performed to measure this recapture range before any

serious density measurement is performed. If the recapture range is too small, the magnetic

trap atoms will not be e�ciently reintroduced into the MOT, resulting in arti�cially low

density measurements.

6.8.1.2 Spatial magnetic trap estimate

The magnetic trap spatial pro�le needed for atom number density calculations, and thus rate

constant extraction, is obtained by monitoring how the reaction rate of the triplet atoms with

an ionic reactant varies as a function of displacement from the trap center. The reaction

rate is proportional to the density, meaning the reaction rate spatial pro�le is e�ectively

proportional to the trap density spatial pro�le, all other factors being the same.

The position of the ionic reagent can conveniently be scanned across the axial dimension

of the LQT by manipulating the endcap voltages, allowing for local probing of the magnetic

trap density over a distance of ∼ 8 mm. The most convenient ionic reactant to use is BaCl+,

which participates in the following reaction:

Ca(3P2) +BaCl+ → Ba+ + CaCl

→ Ca+ +BaCl
(6.28)

In general, the density of the magnetic trap can be pro�led as

ρM(r) = ρM0e
−
√
r2+4z2

ωB (6.29)

where ρM0 is the peak density of the magnetic trap, r(z) is the radial (axial) position of

154



the ions with respect to the magnetic trap center, and ωB is the spatial length scale of

the magnetic trap. Here, the asymmetry between the r and z dimensions occurs since the

magnetic �eld gradient is twice as strong in the z dimension.

In order to calculate the spatial overlap of the magnetic trap and the ions, the center of

the magnetic trap is �rst identi�ed by observing a Ba+ laser-cooling �uorescence dip due to

coherent-population-trapping (CPT) at the magnetic �eld zero of the system. Subsequently,

a bias current is applied to the anti-Helmholtz coils utilized for constructing the MOT

trapping potential. The bias current shifts the magnetic �eld zero, and thus the center

of the magnetic trap, by a �xed distance, z0, away from the ions (typically chosen to be

≈ 500 µm) in the axial dimension, ensuring that CPT e�ects do not complicate reaction

rate data acquisition. The radial distance of the ions from the center of the magnetic trap

is then tuned by adjusting the endcap voltages of the LQT, and reaction rates are measured

at various atom-ion spatial o�sets (see Fig. 6.23).

Assuming an axial o�set of z0, at each position in the LQT, the ions experience a local

magnetic �eld density, ρM(r), of

ρM(r) = ρM0e
−
√

r2+4z20
ωB (6.30)

ωB = 0.98(11) mm, as determined through �ts (see Fig. 6.23) to the above-mentioned

reaction rate data (error expressed at 68% con�dence interval). For clarity, we emphasize

that the axial and radial dimensions referenced here refer to the conventional dimensions of

the anti-Helmholtz coil geometry and not the LQT trapping potential. We note that this

measurement was performed at a current of 95 A, and the trap size will need to be scaled,

or the measurement repeated, for density measurements at other gradient strengths.

Interestingly, if one were to predict ωB theoretically from Eqn. 6.27, assuming of a 4 mK

Ca temperature and known values for the magnetic �eld gradients, Landé factor, and other

atomic properties, one would predict a magnetic trap size ωB ≈ 7 mm. The fact that

our measured size is much smaller might point to other e�ects in the system, such as rf

kni�ng [BBM00], playing a role in reducing the trap size.
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Figure 6.23: Magnetic trap-ion overlap

The measured Ca 4s4p 3P2 reaction rate constant, ΓT, multiplied by the geometric atom-ion overlap

factor, Ô, obtained at di�erent spatial o�sets between the ion sample and the center of a magnetic

trap of pure triplet atoms. The corresponding �t curve (dashed line) along with its 90% con�dence

interval (CI) (yellow band) are displayed as well. The functional form of the �t curve (Eqn. (6.30))

allows for approximate estimation of the magnetic trap density pro�le. For both plots, each data

point consists of approximately 100 measurements, where error bars represent one standard error.

As a technical note, it is imperative in the above measurements to limit the amount of

reactions that occur between BaCl+ and the Ca MOT - ideally we want the ions to only

interact with the magnetically trapped atoms. To this end, we initially displace the atoms

∼4 mm away from the center of the MOT while the magnetic trap is being loaded. We then

switch o� the MOT and immediately `shuttle' the ions to the position in the trap where

we would like to probe the magnetic trap density. Since the lifetime of the magnetic trap

is ∼ 2 s, the ions can react with the pure magnetic trap for this duration. At this point,

the ions are again far-displaced from the center of the trap, the MOT is reloaded, and the

process is repeated. This shuttling method minimizes MOT/ion overlap while still allowing

magnetic trap interactions, and further will be used several more times in the measurements

discussed in this thesis.

With the atom number and magnetic trap spatial estimates in hand, we can estimate the
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magnetic trap peak density from the relation

Nmag =

∫
ρM0e

−
√

r2+4z20
ωB dV

=

∫ ∞
−∞

∫ 2π

0

∫ ∞
0

ρM0e
−
√

r2+4z20
ωB rdrdθdz

= 4πω3
BρM0

→ ρM0 =
Nmag

4πω3
B

(6.31)

Typically densities are of order ∼ 107 cm−3, although this density is largely dependent

on factors such as getter current and MOT density.

6.9 Atom-ion overlap factor

One of the most important quantities to calculate experimentally is the atom-ion overlap

factor, as this factor is integrated into reaction rate calculations and will also determine

the rate of atom-ion sympathetic cooling. Essentially the overlap factor a�ects the average

atomic density that the ion sample experiences. This average density, ρav, can be expressed

as

ρav = ρ0Ô = ρ0

∫
ρ̂MOT (x, y, z)ρI(x, y, z)dV (6.32)

where Ô is the atom-ion overlap factor, ρ̂MOT (x, y, x) is the peak-normalized MOT density,

and ρI(x, y, z) is the spatial ion probability distribution, which has the integral normalized

property

1 =

∫ ∞
−∞

ρI(x, y, z)dV (6.33)

Physically speaking, from above, we see that the average density the ions experience is

simply the expectation value of the MOT density integrated over the spatial probability

distribution of the ion - a quantity given as ρ0Ô.

The overlap integral will depend on the functional forms of both the MOT and ion density.
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In one of the simplest cases, we can consider ρI(x, y, z) to have an ellipsoidal Gaussian form

and the ρ̂MOT (x, y, z) to have a spherical Gaussian form. Consequently, the atom-ion overlap

factor Ô, can be calculated as

Ô =

∫
ρ̂MOT (x, y, x)ρI(x, y, z)dV =

∫
e
−x

2+y2+z2

ω2
M ρI0e

− (x−x0)2

ω2
x e

− (y−y0)2

ω2
y e

− (z−z0)2

ω2
z dv

=
∏

i∈(x,y,z)

ρi0
√
πωMωi√

ω2
M + ω2

i

e
− x2

0
ω2
M

+ω2
i

(6.34)

where ρI0 is the coe�cient of normalization for ρI(x, y, z). The MOT size is characterized

by spatial length ωM , where the ion distribution is characterized by ωx, ωy, and ωz. The

ion distribution also can generally be o�set from the center of the MOT by a displacement

〈x0, y0, z0〉.

ωM , ωx, ωy, and ωz can all be estimated conveniently through �uorescence images of the

atom and ions. Thus, the only remaining quantities that need to be calculated for the overlap

calculation are the spatial o�sets. To estimate these values, we rely on the two EMCCD

cameras situated along the 1.33� CF Flanges, each of which can produce a two-dimensional

image of both the atoms and ions.

In each image, a vector from the center of the MOT to the center of the ion can be

drawn to determine the atom-ion o�set in the imaging plane. However, from a single image

there no information regarding o�sets along the camera axis; rather this information must

be inferred from combining information from both images.

First, consider the atom-ion o�set vector within the frame of each camera image as

o′ = 〈x′, y′, z′〉 = x′ê′x + y′ê′y + z′ê′z

o′′ = 〈x′′, y′′, z′′〉 = x′′ê′′x + y′′ê′′y + z′′ê′′z

(6.35)

where o′ is the frame of the �rst camera o′′ is the frame of the second camera. Recall from

earlier discussions that the �rst camera axis is rotated 16◦ azimuthally from the reentrant

camera axis and the second camera is rotated - 16◦ from the reentrant camera axis. Here, we
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Figure 6.24: Camera reference frames

Coordinate systems for all three camera planes, ignoring polar angle rotations. The atom-ion

imaging cameras are rotated -θ and +θ azimuthally with respect to the reentrant camera. Here n̂,

n̂′, and n̂′′ represents the normal vector to the three cameras, and all three cameras share the same

z-axis.

ignore the polar angle rotation of both cameras with respect to the reentrant camera frame

since the ion cloud spatial distribution is symmetric to polar rotations. ê′i/ê
′′
i are the basis

vectors in the respective imaging frames, with ê′x/ê
′′
x being the normal vector to the camera

planes. Once again, since x′ and x′′ lie along the camera axes, they cannot be determined

from a lone image.

It is convenient to represent both o�set vectors within the same frame, and in this case,

the reentrant camera frame is most prudent. Once again, in all camera frames the x-basis

vector represents the vector normal to the camera frame (referred to as n̂ in Fig. 6.24 for

convenience).
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Expressed in the reentrant frame

êi
′ = R(θ)êi

êi
′′ = R(−θ)êi

(6.36)

for i ∈ {x, y} where R(θ) is the rotation matrix de�ned as

R(θ) =

cos(θ) − sin(θ)

sin(θ) cos(θ)

 (6.37)

The z-axis is the same in all frames since we are not considering polar angle rotations.

Thus the ion position, P , expressed in the o′ frame is

Po′ = x′ê′x + y′ê′y + z′ê′z

= x′(x̂ cos(θ) + ŷ sin(θ)) + y′(−x̂ sin(θ) + ŷ cos(θ)) + z′ẑ

= x̂(x′ cos(θ)− y′ sin(θ)) + ŷ(y′ cos(θ) + x′ sin(θ)) + z′ẑ

(6.38)

Similarly in the second camera frame

Po′′ = x′′ê′′x + y′′ê′′y + z′′ê′′z

= x′′(x̂ cos(−θ) + ŷ sin(−θ)) + y′′(−x̂ sin(−θ) + ŷ cos(−θ)) + z′′ẑ

= x̂(x′′ cos(θ) + y′′ sin(θ)) + ŷ(y′′ cos(θ)− x′′ sin(θ)) + z′′ẑ

(6.39)

In reality, both cameras are imaging the same object, so Po′ = Po′′ . Thus we can express

both vectors in the reentrant coordinate system and set their components equal to one

another. This results, most simply, in the relation z′′ = z′, as well as

x′′ cos(θ) + y′′ sin(θ) = x′ cos(θ)− y′ sin(θ)

y′′ cos(θ)− x′′ sin(θ) = y′ cos(θ) + x′ sin(θ)
(6.40)

After some algebra, this yields

x′ =
y′′ − y′ cos(2θ)

2 cos(θ) sin(θ)
(6.41)
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We can examine this case for two special cases. If θ = π
4
, then the two camera normal

vectors are orthogonal and x′ = y′′, i.e. the camera-axis o�set for the �rst camera is given

exactly by the o�set along one of the basis vectors of the second camera. This situation

would be the most convenient in the lab; however, experimentally it is unobtainable in our

system due to limitations on the placement of viewports. Secondly, if θ = 0 there is no

solution to the above equation, as the two camera axis are parallel and thus there is no way

to determine o�sets along the camera axis from the resulting 2D camera images, unless such

information is inferred from the amount of defocusing occurring in the imaging system.

Using the above relation, the total atom-ion o�set vector is given as

o = x̂

(
y′′ − y′ cos(2θ)

2 sin(θ)
− y′ sin(θ)

)
+ ŷ

(
y′ cos(θ) +

y′′ − y′ cos(2θ)

2 cos(θ)

)
+
z′ + z′′

2
ẑ (6.42)

where the average of the z-o�sets is taken to account for experimental imperfections.

Once o has been determined, it can be plugged into Eqn. 6.34 to yield the overlap factor.

Similarly, after o has been determined, Eqn. 6.34 can be adapted to include other ion/atom

density functional forms of interest, such as prolate spheroid functions for ion crystals or

magnetic trap pro�les for the atoms.

Also as a �nal note, the spatial dimensions of the MOT are measured in the rotated

camera frames; however, for transformation into the reentrant frame in which the overlap

integral is calculated, we make the following approximations

{ωx, ωy, ωz} = {√ωzωy,
ω′y + ω′′y

2
,
ω′z + ω′′z

2
} (6.43)

6.10 Laser systems

There are several laser systems in the lab used to provide optical �elds necessary for laser

cooling, dissociation transitions optical pumping, and other atomic and molecular manipu-

lations. These systems range from commercially purchased units to homebuilt sysems. A

brief discussion of the laser systems in the lab, as well as their locking mechanisms, will be

given here.
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6.10.1 External cavity diode lasers: the 650 nm, 493 nm, 672 nm, and 369 nm

systems

The most standard homebuilt laser systems in our lab are external cavity dioder lasers

(ECDL) arranged in the standard Littrow con�guration. In this setup, a laser diode, typ-

ically equipped with an anti-re�ection coating, is housed within a temperature controlled

mount and further collimated with an aspheric lens. The collimated output is directed at

a di�raction grating, and the m = −1 order of the grating is directed into the laser diode,

providing optical feedback. Thus, the lasing mode is determined by the length of the cav-

ity formed between the grating and the rear facet of the diode, which also sets the laser

wavelength.

Further, the angle of the grating with respect to the diode will also determine the fre-

quency of the light that is fed back into the laser, and thus the diode laser output fre-

quency. Therefore, a piezo element (typically Thorlabs AE0203D08F) is integrated into the

opto-mechanical mount that houses the di�raction grating (typically either Thorlabs Polaris

or LINOS Lee's mount) to allow for �ne frequency tuning. All components are typically

mounted to an aluminum base plate, which itself is �xed to an aluminum diecast box (Ham-

mond Manufacturing 1550Z139BK), which can be sealed with rubber gasket. The entire box

is placed on top of a layer of vibration damping material (sticky blue stu�) which is spread

over large hunk of metal, which in turn rests on top of sorbethane or Neoprene feet that are

placed on our �oated optical table - o�ering many layers of vibration isolation.

In general, the temperature of the diode, the temperature of the base plate, the grating

piezo voltage, and the diode current all o�er ways to tune the e�ective cavity length of the

system and thus what the frequency output of the system is. Changing these parameters

strategically in conjunction is often key to obtaining the largest `mode-hop-free' tuning range

where laser frequency can be tuned continuously without `jumps' to adjacent cavity modes

(in our homebuilt systems this value is usually ∼ 4 GHz).

Typically, the grating-diode spacing is chosen to be less than . 1 in. The shorter this

distance, the longer the free-spectral-range (FSR) of the cavity. In general, a large FSR will

162



lead to less mode-hoping. However, the shorter the diode-grating spacing, the less a given

change in piezo length will a�ect the feedback frequency fed into the diode, leading to a

smaller frequency sweeping dynamic range.

There are many di�erent temperature and current controller units incorporated into these

laser systems, with a majority of them manufactured by MogLabs or Wavelength Electronics

or produced in house by Peter Yu and Christian Schneider. The performance of each of these

units varies, and thus whichever unit best matches the constraints of a particular application

should be used.

6.10.2 Titanium Sapphire Laser System

A titanium sapphire (ti-sapph) SolsTis-ECD-X unit was purchased from M2 Lasers. This

laser has ∼ 4 W optical output from 700-1000 nm that can also be frequency doubled to

allow probing of the 350-500 nm spectral region as well (∼500-1000 mW of doubled light

power).

The ti-sapph cavity is pumped by a 15 W 532 nm pump laser from Lighthouse Photonics

(Sprout G). Unlike a bowtie frequency doubling cavity, multiple cavity modes across the ti-

sapph crystal gain pro�le can resonate within the cavity. Thus, for single frequency output,

optical elements are introduced into the cavity to induce frequency-speci�c optical losses,

allowing a single mode to resonate. For coarse tuning, an intracavity bi-fringent �lter (BRF)

can be tilted to varying degrees (o�ering tuning at the ∼ 500 GHz level). In addition,

an etalon is also present within the ti-sapph cavity, and it itself acts an optical �lter that

only allows frequencies that match a certain resonance condition to propagate in the crystal

cavity. The etalon length can be tuned via a piezo, allowing for frequency control on the

order of ∼100 MHz. Lastly, a piezo-element is also positioned within the ti-sapph cavity

that can be used to scan the cavity length, and further, a feedback voltage can be applied

to the piezo for laser locking purposes.

The output of the laser can also be fed into a reference cavity for further line narrowing

to the ∼kHz level; however, the reference cavity can also make long-term laser locking more
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di�cult. Even without the reference cavity, the normal ti-sapph cavity output has a linewidth

on the order of 1 MHz, which is perfectly adequate for many applications.

The ti-sapph fundamental output can be directed into a bow-tie doubling cavity for

frequency doubling. A number of doubling crystals, each with ∼ 20 nm of doubled light

tuning range, have been purchased for use with the system. The doubling power output will

depend on the gain pro�le of the ti-sapph fundamental output, which is peaked near ∼800

nm; however, in general, up to ∼ 1 W of doubled light can be obtained.

Control of the BRF, the cavity etalon, the reference cavity, and the ECD-X unit is handled

electronically through the M2 ICEBLOC control system, which has a software interface that

can be linked to the wi-� network within the lab. There are a variety of sensors that can

observed through the ICEBLOC system, which also is equipped with two BNC outputs for

signal monitoring. Namely these include photodiodes within both the ti-sapph and ECD-X

cavity as well as error signals for the etalon, reference cavity, and ECD-X locks.

6.10.3 Alignment procedures

A general alignment procedure for the system goes as follows (the user manuals for the

system can be consulted for more thorough details). Use the BRF to coarse tune to the

desired wavelength, and then use the etalon control to navigate to the desired wavelength

to within ∼100 MHz. Ideally, keep the etalon control setting as close to 50% as possible for

optimal performance. Then adjust the ti-sapph cavity coupling mirror (see Fig. 6.25a) using

the x/y dimension mirror mount knobs (but not the z knob) to maximize the cavity output,

as determined by the intracavity photodiode.

Once this has been done, engage the etalon lock and proceed to optimizing the ECD-

X unit if needed. The ECD-X can be aligned through iterative adjustment of the input

coupling and output coupling mirrors of the cavity (M1 and M4 in Fig. 6.25b) as well as the

doubling crystal tilt angle, controlled through a micrometer. All mirrors and crystal faces in

the cavity should be cleaned with methanol-moistened lens cleaning tissues if performance is

suboptimal. In general, dust is the single most common issue for poor system performance
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Figure 6.25: M2 laser system

(a) Image of the M2 SolStis system, with the 532 nm pump, the ti-sapph cavity coupling unit, the

ti-sapph cavity, and the reference cavity all visible. (b) An image of the ECD-X unit which consists

of a BBO crystal in a bowtie cavity con�guration. The input (M1) and output (M4) coupling

mirrors should be adjusted during cavity alignment for maximum power output.

throughout both the Solstis and ECD-X units.

Once the power had been optimized in the ECD-X, once again as measured by an intra-

cavity photodiode visible on the ICEBLOC system, the error signal can be adjusted through

manipulation of various photodiode gain and o�set voltage settings involved in Hänsch-

Couillard cavity lock employed to stabilize the system. After performing these steps, the

lock can be engaged and the laser is ready for use.

6.10.4 ND:YAG and Pulsed Dye Laser system

A Q-switched Nd:YAG laser (Spectra-Physics Quanta Ray Lab-170 Series) provides the high

energy pulsed (10 ns width) light used to drive many of the dissociation events in this thesis.

The fundamental output of the system is 1064 nm (∼ 750 mJ/pulse) but a series of BBO

crystals housed in a frequency doubling unit within the system allow for simultaneous output

of both 532 nm (∼ 350 mJ/pulse) as well as 355 nm (∼ 150 mJ/pulse) light. The linewidth

of the fundamental is typically ∼ 2 GHz, but the unit is also equipped with a seeder laser

that, when activated, can lead to Fourier limited linewidths of ∼ 50 MHz. In addition, a
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separate BBO crystal can be introduced into the path of the 532 nm output to produce

FHG 266 nm light (∼50 mJ), which will be featured in the rotational state readout schemes

discussed later in this thesis.

To perform photodissociative spectroscopy of molecular ions, we use a pulsed dye laser

(Sirah Cobra Stretch PDL, dual grating con�guration 1800 lines/mm, .05 cm−1 linewidth)

combined with a Sirah Precision Scan frequency-doubling unit whose output can be tuned

from 205-280 nm using two BBO crystals (205-215 nm and 215-280 nm) and an assortment

of Exalite (p-dioxane solvent) and Coumarin (methanol solvent) dyes. Additional crystals

and solvents can be purchased to a�ord even greater tuning range. Optimizing the many

di�erent components of the system is quite complex and the user manual should be consulted

for a thorough treatment of alignment procedures.

An auto-tracking unit can be used to automatically angle-tune the BBO crystals in order

to optimize the second-harmonic generation; however we have found that it is su�cient to

tune this semi-manually using a look-up table for motor positions for the tuning unit based

on desired wavelength. Frequency-doubled light typically can have pulse energies up to

∼4 mJ at 10 Hz repetition rates. Scanning is primarily achieved by a LabVIEW vi which

generates a signal that is fed back to the PDL cavity grating position following the input of

a wavelength value recorded by an external wavemeter.

6.10.5 Toptica 422 Laser System

To drive the Ca cooling transition in this work, we employ a Toptica TA-SHG-110 laser

system. The unit includes a 845 nm diode housed in the patented Toptica `hockey puck

mount' that enables a mode-hop free fundamental tuning range of roughly ∼30 GHz. The

845 nm output is sent through a tapered ampli�ed (TA) that boosts the fundamental power

to ≈ 2W. The ampli�ed light is then sent through a bowtie doubling cavity featuring a BBO

crystal for 422 nm output (∼200-350 mW, depending on alignment). A piezo fastened to

one of the bowtie mirrors allows for PDH locking of the internal cavity.

When optimizing power output of the system, the TA coupling mirror may �rst be
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Figure 6.26: Toptica TA-SHG-110 laser system

An image of the Toptica TA-SHG-110 laser system including the IR diode, the tapered ampli�er,

and the doubling cavity, along with their associated coupling mirrors and relevant adjustment knobs.
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adjusted for maximal IR output while still permitting doubled light output (see Fig. 6.26).

Then both the doubling cavity input coupling and the doubling crystal rotation angle can

be co-optimized for maximum blue output. If additional power optimization is needed, the

angle of the cavity mirrors themselves may also be adjusted; however, this is not typically

necessary during week-to-week maintenance.

A set of electronics from Toptica are used for the following purposes:

(DTC 110): temperature control of the laser diode/TA/doubling crystal

(DCC 110): current control of the laser diode/TA

(PDD 110): error signal generation for the cavity PDH lock

(PID 110): PDH locking circuitry for the doubling cavity

(SC 110): cavity piezo scanning unit

The diode current/temperature setpoints are typically 107mA/22.4◦ C, while the cor-

responding values for the TA are 2730 mA/28.4◦ C. In particular, stable laser locking is

extremely important to the power output of the laser, and thus, the parameters of the PDD

110 and PDH 110 should be checked regularly for ideal system performance.

A portion of the beam output from the Toptica (∼10 mW) is picked o� and sent to a

saturated absorption lock, referenced to an Ca vapor cell (detailed in Refs. [Sul13,SDC16]).

The lock provides feedback to the diode grating within the Toptica unit and is set such

that the Toptica emits light at ω = ω0 + 85 MHz, when ω0 is the frequency of the cooling

transition.

There are essentially four frequencies that are required from the Toptica output for our

MOT setup: (1) a −Γ detuned cooling beam (∼ 30 mW), (2) an on-resonance beam for

absorption imaging (∼ 2 mW), (3) a −4Γ detuned deceleration beam (∼ 40 mW), 4) a −10Γ

detuned deceleration beam (∼ 40 mW). The frequencies are produced from the AOM setup

in Fig. 6.27. The overall power of the cooling beams may be conveniently adjusted through

installing a variable ND �lter wheel (Thorlabs NDM2) in the cooling laser beam path, a

feature often used for controlling excited state population, as to be discussed later in this

work.
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Figure 6.27: MOT beam setup

The beam setup for the MOT system. The output of the Toptica is locked to a saturated absorption

lock, with a lock frequency of ω0 + 2π×85 MHz, where ω0 is the Ca 1S0 →1 P1 transition frequency.

The �rst AOM shifts this beam to ω0 - 2π×30 MHz, creating the cooling beam (C beam). Two

subsequent AOM's create the two deceleration beams (D Beams), which are set to ω0 - 2π×135 MHz

and ω0 - 2π×355 MHz. Lastly the zeroth order AOM beams are �nally directly to a +85 MHz AOM

which can be used to create an on-resonance beam of frequency ω0, for absorption imaging.
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6.10.6 Laser-locking: wavemeter lock

Essentially all of the laser locking in the lab (aside from the Toptica saturation absorption

lock) is performed through software locks referenced to a High Finesse WSU-2 wavemeter (14

channel, ∼ 2 MHz accuracy). The wavemeter is �ber-connected to two 8 channel multiplexers

(product number MC8) with �ber-coupled inputs, one with wavelength coverage from ≈360

nm - 650 nm and a second capable of reading ≈ 650 nm - 1100 nm light. Each port on

the switch can be fed a separate laser beam sample, and the channel exposure times can be

varied until stable readings are produced.

The wavemeter itself came pre-frequency-calibrated from the manufacturer, but, to ac-

count for frequency drifts over time, is periodically re-calibrated to our Ca saturated absorp-

tion reference. The frequencies for most of the atomic transitions of relevance to this work

are presented in Table 6.4.

The wavemeter reading of each laser can be used as a reference for standard PID locking,

whereby the wavemeter reading is compared to a reference value and a correction signal is

generated. In our lab, this correction signal takes the form of a voltage that is sent to a

piezo element that controls the length of a particular laser cavity.

The correction voltage,Vc(t) is de�ned by the standard kP , kI , and kD parameters as

Vc(t) = S

(
kP e(t) + kI

∫ t

0

e(t′)dt′ + kD
de

dt

)
(6.44)

where e(t) = λ(t)−λ0 where λ(t) is the signal as a function of time, λ0 is the signal reference,

and S is the overall feedback sensitivity. The proportional gain (kP ) terms handles instanta-

neous o�sets with respect to λ0 while the integral term (kI) handles longer-term o�sets that

can accumulate in a feedback system. The derivative term (kD) o�ers an additional degree

of �exibility but is rarely utilized in our feedback loops (kD=0).

The WSU unit is also equipped with a 8 channel DAC card that can be used to generate

feedback signals. The S, λ0, kP , kI , and kD parameters for each feedback signal can be

speci�ed, and further each feedback signal can be linked to a wavemeter channel, whose

readings serve as the λ(t) for the feedback loop. All these parameters can be conveniently
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Transition Frequency (THz) Use Laser system

174Yb+

6s 2S1/2 → 6p 2P1/2 811.291296 369 nm cooling Homebuilt ECDL

5d 2D3/2 → 5d6s 3[3/2]1/2 320.571886 935 nm repump Homebuilt ECDL

172Yb+

6s 2S1/2 → 6p 2P1/2 811.292610 369 nm cooling Homebuilt ECDL

5d 2D3/2 → 5d6s 3[3/2]1/2 320.569285 935 nm repump Homebuilt ECDL

138Ba+

6s 2S1/2 → 6p 2P1/2 607.426130 493 nm cooling Homebuilt ECDL

5d 2D3/2 → 6p 2P1/2 461.311765 650 nm repump Homebuilt ECDL

40Ca

4s2 1S0 → 4s4p 1P1 709.078379 422 nm cooling Toptica TA-SHG-110

3d4s 1D2 → 4s5p 1P1 446.150863 672 nm repump Homebuilt ECDL

3d4s 1D2 → 4s4f 1F3 614.393495 488 nm repump M2 SolStis/ECD-X

3d4s 1D2 → 4snp 1P1 662.057231 453 nm repump M2 SolStis/ECD-X

3d4s 1D2 → 4s5f 1F3 688.180929 436 nm repump M2 SolStis/ECD-X

3d4s 1D2 → 4s7p 1P1 706.783089 424 nm repump M2 SolStis/ECD-X

3d4s 1D2 → 4s6f 1F3 729.478413 411 nm repump M2 SolStis/ECD-X

4s4p 3P2 → 4s4d 3D2 672.612130 445 nm 3P2 optical pumping (preferred) M2 SolStis/ECD-X

4s4p 3P2 → 4s4d 1D2 659.014100 455 nm 3P2 optical pumping M2 SolStis/ECD-X

4s4p 3P2 → 4p2 3P2 696.586670 430 nm 3P2 optical pumping (preferred) M2 SolStis/ECD-X

4s4p 3P1 → 4p2 3P2 699.760770 428 nm 3P1 optical pumping M2 SolStis/ECD-X

4s4p 3P0 → 4p2 3P1 698.724110 429 nm 3P0 optical pumping M2 SolStis/ECD-X

Table 6.4: Frequencies of a majority of the atomic transitions used in this thesis, as determined by

the WSU-2 wavemeter. Due to calibration drifts at the time of each measurement, these readings

are subject to ∼ 100 MHz error.
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controlled via the High Finesse software, which also allows for simple viewing of wavemeter

channel readings as a function of time. For experiments, in which wavemeter readings need

to be extracted in situ, we communicate with the wavemeter through the LabRAD software

interface. Further, if all 8 outputs of the WSU DAC card are occupied, feedback voltages can

also be generated through other DAC cards connected to the central experimental control

computer, with control software for the feedback loops generated in LabVIEW.

6.11 Experimental control software

National Instruments (NI) LabVIEW is used for instrumentation and timing control in

the experiment. The experimental control computer has three data acquisition (DAQ)

cards. First, there is a PCIe 6537 50 MHz digital I/O card which, in conjunction with

an occasionally-used digital pulse generator (Quantum Composer 9518+), handles all the

timing requirements of the experiment. Analog input and output capabilities are covered by

a PCI 6236 and a PCI 6230 card, which handle current and voltage readings, respectively.
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CHAPTER 7

Ca electronic structure and laser-cooling pathways

Ca atoms are used extensively in this thesis as both a chemical reactant and a sympathetic

coolant. For the former, knowledge of the exited state populations while laser-cooling is

critical for being able to determine state-speci�c rate constants. For the latter, obtaining

high MOT densities is important for ensuring the rate of cooling exceeds the heating rate

due to blackbody radaition and background gas collision events. This chapter is dedicated

to investigating the electronic structure of Ca; in particular, we will identify a series of

repumping transitions that may be used to increase typical MOT densities by a factor of

∼ 10. In addition, we will also explain how electronic state populations are modeled during

Ca laser cooling.

7.1 Background motivation

The magneto-optical trap (MOT) [al87] is an integral part of atomic and molecular physics,

where it is the starting point for a variety of experiments including precision tests of fun-

damental physics [al15], studies of quantum many-body physics [al16], and production of

ultracold molecules [RSS12,BMN14]. At present, atomic MOTs have been constructed for

atoms within Groups 1, 2, 6, 12, and 18, as well as the lanthanides. Extension to atoms

in other Groups is often limited by the availability of appropriate laser technology for driv-

ing the necessary cooling transitions and complications due to the electronic structure of

the atom. For example, if there are multiple electronic states below the upper electronic

state of the primary laser cooling transition, then radiative decay into these lower levels can

severely reduce, and even eliminate, the laser cooling force. For these reasons, the Group
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1 atoms, with their lone optically active, unpaired electron, provide the simplest, and often

best performing, MOTs.

Nonetheless, the same `complications' that can limit the laser cooling process often host

interesting and useful phenomena. A prime example of this is the presence of 3P states

of Group 2(-like) atoms, which, while detrimental to the performance of a standard MOT,

allow the construction of next-generation optical atomic clocks that can outperform the Ce-

sium standard [LBY15]. One such MOT of this type is the Ca MOT. Calcium MOTs have

been utilized in atomic optical clock experiments using the 657 nm 3P1 ← 1S0 intercom-

bination line [SDS04,DSL05,WOH06] and have signi�cant appeal due to their simplicity of

construction as portable optical frequency standards [Vut15]. However, despite this appeal,

the details of the Ca electronic structure lead to relatively poor performance of Ca MOTs,

including a short trap lifetime limited by optical pumping into dark states and a low achiev-

able peak atomic density. This is one reason other Group 2(-like) atoms such as Sr, Yb, and

Hg have become more popular choices for optical frequency standards [LBY15,DK11].

Given the potential of Ca as a portable frequency standard, as well as its utility in our

own experiments as a sympathetic coolant for molecular ions [RSS12], we have performed a

detailed combined experimental and theoretical study of Ca MOT operation. Speci�cally,

relativistic many-body calculations are performed for the �rst 75 energy levels of the Ca

atom, providing reliable electronic structure and transition matrix elements for this multi-

electron atom. The results of this calculation are incorporated into a rate equation model for

the populations in the Ca atom, which is used to evaluate speci�c repumping schemes and

identify seven promising transitions. In total, we experimentally investigate �ve alternative

repumping schemes and �nd that all of them yield Ca MOTs with lifetimes and atom numbers

improved by ∼ 10× over the traditional scheme described in Ref. [GH01]. The best of these

schemes, which utilizes repumping to a highly con�guration-mixed state with a 453 nm

repumping laser, produces a Ca MOT with lifetime, number, and density improved over the

standard MOT by ∼ 25×, ∼ 20×, and ∼ 6×, respectively.

In the remainder of this paper, we �rst present the details of the relativistic many-

body calculation of the Ca energy levels and the resulting rate equation model of the Ca
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populations. We then use this rate equation model to explain the poor performance of

the traditional Ca MOT. From this work, we propose seven alternative MOT operation

schemes and experimentally investigate �ve of them. We characterize the di�erences in these

MOT operation schemes, reporting the achievable MOT lifetimes, density, and trapped atom

numbers, as well as the necessary repumping laser frequencies. We conclude with discussion

of the ideal repumping scheme for Ca MOT operation and possible extension to other Group

2(-like) atoms.

7.2 Relativistic many-body calculations of atomic structure

The analysis of MOT performance requires estimates of electric-dipole transition rates be-

tween the 75 lowest-energy levels of Ca, including both spin-allowed and spin-forbidden

(intercombination) transitions. While the energy levels are well established, transition rates

among the �rst 75 lowest-energy states (811 possible channels) are not known completely,

although there are a number of theoretical and experimental determinations. The earlier

theory work provides oscillator strengths for spin-allowed transitions for levels up to 4s10s,

4s9p, 4s6d, and 4s5f , respectively [Mit93,BF94,LH96,HLH99]. Most of these calculations

are non-relativistic with a limited number of low-lying levels treated with ab initio rela-

tivistic methods. The data on transition probabilities for intercombination transitions and

transitions involving the 4s6f states are scarce [PKR01, SJ02,FT03]. In literature, 111 ex-

perimental transition rates are available [ZBR00,Smi88,Kos64,SR81,PRT76,LH87,ALB09,

HWW85,HP86,HR86,KRR16,Mor04, SO75,UHF83,UHF82]. The incompleteness of tran-

sition rate data motivated us to generate a full set of the 811 required transition rates.

To this end we used methods of relativistic many-body theory. Ab initio relativistic cal-

culations are necessary as the analysis requires inclusion of transition amplitudes that are

non-relativistically forbidden.

Calcium is an atom with two valence electrons outside a tightly bound core. We employ

a systematic formalism that combines advantages of both the con�guration interaction (CI)

method and many-body perturbation theory (MBPT), the CI+MBPT method [DFK96].
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Table 7.1: Comparison of CI+MBPT transition energies ∆E (cm−1) and rates Aif (108 × s−1)

with NIST-recommended transition energies and 16 out of the available 111 experimental transition

rates along with their uncertainties.

States ∆E, cm−1 Aif , 108 s−1

Initial Final CI+MBPT NIST CI+MBPT Exp. Deviation (%)

4s4p 1P1 4s2 1S0 23491 23652.304 2.170 2.182(12) [ZBR00] -0.5(5)

4p2 1S0 4s4p 1P1 18846 18133.972 0.778 0.754(21) [Smi88] 3.2(2.9)

4p2 1D2 4s4p 1P1 17691 17067.543 0.576 0.683(11) [HWW85] -16(1)

3d4p 1D2 3d4s 1D2 13901 13985.779 0.341 0.358(9) [SR81] -4.7(2.4)

4snp 1P1 4s2 1S0 44383 43933.477 0.325 0.284(39) [PRT76] 14(16)

4s4f 1F3 3d4s 1D2 19943 20493.953 0.312 0.31(6) [LH87] 1(19)

4s7p 1P1 4s2 1S0 46975 45425.358 0.130 0.148(21) [LH87] -12(12)

4s7s 1S0 4s4p 1P1 21724 20624.234 0.068 0.113(5) [Smi88] -40(3)

4s4d 1D2 4s4p 1P1 14169 13645.983 0.160 0.154(4) [Smi88] 3.9(2.7)

4s6d 1D2 4s4p 1P1 22324 21337.526 0.057 0.080(3) [Smi88] -29(3)

4s5p 1P1 3d4s 1D2 14259 14881.981 0.130 0.147(3) [SR81] -12(2)

4s6p 1P1 4s2 1S0 41788 41679.008 0.092 0.157(22) [PRT76] -41(8)

4s6s 1S0 4s4p 1P1 17451 17038.131 0.014 0.052(4) [Smi88] -73(2)

4s4p 1P1 3d4s 1D2 1041 1802.670 0.0000534 0.0000368(100) [LH87] 45(39)

4s4p 3P1 4s2 1S0 15180 15210.063 0.0000274 0.0000302(7) [HR86] -9.3(2.2)

3d4p 1F3 3d4s 1D2 18651 18688.259 0.057 0.165(7) [SR81] -65(1)

The CI+MBPT method has been used extensively for evaluation of atomic properties (see,

e.g., Ref. [DP11] for optical lattice clock applications and references therein). Relativistic

e�ects are included exactly, as the formalism starts from the Dirac equation and employs

relativistic bi-spinor wave functions throughout the entire calculation. In our treatment,

the CI model space is limited to excitations of valence electrons. Contributions involv-

ing excitations of core electrons are treated within MBPT. In this approach, we �rst solve

for the valence electron orbitals and energies in the �eld of the core electrons. The one-

electron e�ective potential includes both the frozen-core Dirac-Hartree-Fock (DHF V N−2)

and self-energy (core-polarization) potentials. The self-energy correction is computed us-
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ing second-order MBPT diagrams involving virtual core excitations. At the next step, the

computed one-electron valence orbitals are used to diagonalize the atomic Hamiltonian in

the model space of two valence electrons within the CI method. The CI Hamiltonian in-

cludes the residual (beyond DHF) Coulomb interaction between the valence electrons and

their core-polarization-mediated interaction. The latter was computed in the second-order

MBPT. This step yields two-electron wave-functions and energies. Finally, with the obtained

wave-functions we calculated the required electric-dipole matrix elements. In calculations of

transition rates we used experimental energy intervals and the computed CI+MBPT matrix

elements.

We used two independent CI+MBPT implementations: (i) by the Reno group (see the

discussion of the earlier version in Ref. [Der01]) and (ii) a recently published package [KPS15].

The practical goal of the calculations was not to reach the highest possible accuracy, but

rather to generate the large amount of data needed for the transition array involving the

75 lowest-energy levels. An additional computational challenge was the inclusion of high

angular momenta states, e.g., the 4s5g 3G state. The Reno code was run on a large basis

set but without including core-polarization-mediated interaction in the CI Hamiltonian due

to considerable computational costs. The production runs with the package of Ref. [KPS15]

employed a smaller basis set (due to code limitations) but treated the correlation problem

more fully. Our �nal values combine the outputs of the two codes. The bulk of the results

comes from the package of Ref. [KPS15]. These results are augmented with the rate data

involving 4s8s states from the Reno code due to the limited number of roots in the package

of Ref. [KPS15].

We assessed the quality of the calculations by comparing the CI+MBPT energies with

the NIST recommended values [KRR16] and CI+MBPT transition rates with 111 available

experimental values (see subset in Table 7.1) [ZBR00, Smi88, Kos64, SR81, PRT76, LH87,

ALB09,HWW85,HP86,HR86,KRR16,Mor04,SO75,UHF83,UHF82]. The CI+MBPT energy

intervals for tabulated transitions agree with NIST values to better than 1000 cm−1. To

quantify the error of the CI+MBPT transition rates, we calculate the relative deviation

from the experimental values, Eif = 100
Aif,calc−Aif,exp

Aif,exp
, with standard errors corresponding
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Figure 7.1: Comparison of the calculated CI+MBPT transition rates with 111 available exper-

imental data. Transitions involving a state with orbital angular momentum l ≥ 3 or principal

quantum number n ≥ 6 are shown in blue. All other transitions are shown in black. Error bars

correspond to the experimental error.
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to the experimental errors (see Fig. 7.1). The weighted root mean square of Eif yields

an estimate of the error of the CI+MBPT transition rates. We determine this error for

two subsets of transitions: The �rst includes all transitions involving a state with orbital

angular momentum l ≥ 3 or principal quantum number n ≥ 6, where both faithful numerical

representation and inclusion of correlations are important, and yields an average error of

48%. The second subset includes all other transitions and has an average error of 13%. This

di�erence in error is re�ective of the computational di�culty of obtaining transition rates for

these subsets of transitions. For some transitions, the deviation of our theoretical transition

rates from experiment is large; to remedy this, we replace our calculated transition rates

with experimental values when the deviation is greater than twice the experimental error or

the experimental error is less than our expected error.

7.3 Rate equation model of Ca electronic state populations

Using the 811 calculated CI+MBPT transition rates augmented by experimental transition

rates as previously described, we create a rate model including the �rst 75 excited states of

calcium. As an example, the di�erential equation for state i with a monochromatic laser

driving from state i to state k is given by

d

dt
Ni =

∑
j>i

AjiNj −
∑
j<i

AijNi −
Ni

τLoss

+ Aki
π2c3

~ω3
ik

Il
2πc

Γk

(ωik − ωl)2 +
Γ2
k

4

(
Nk −

2jk + 1

2ji + 1
Ni

)
(7.1)

where Ni is the number of atoms in state i, Aij is the decay rate of state i to j, τLoss is

the time in which an uncooled atom drifts outside of the MOT region (for our parameters,

this value is 1.7 ms for the 4s4p 3P0 and 3P2 states and ∞ otherwise), c is the speed of

light in a vacuum, ~ is the reduced Planck constant, ωik is the angular transition frequency

between state i and k, ωl (Il) is the angular frequency (intensity) of the applied laser, Γk is

the natural linewidth of state k, and ji is the total angular momentum quantum number of

state i [Foo05].
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To determine the e�ect of the errors in the CI+MBPT transition rates on the lifetime

of the MOT, we randomly vary each of the 811 transition rates according to their expected

error. Using these modi�ed transition rates, we numerically solve the coupled di�erential

equations to extract a MOT lifetime. We repeat this process 1000 times and report the mean

and the standard deviation of the resulting MOT lifetimes.

7.4 Evaluation of the standard Ca MOT operation

The standard implementation of a Ca MOT is formed by laser cooling on the strong 4s4p 1P1←

4s2 1S0 transition at 423 nm in the presence of an anti-Helmholtz magnetic �eld with gra-

dient of 60 G/cm in the axial direction. This transition incurs loss from the laser cooling

cycle primarily due to decay from the 4s4p 1P1 state to the 3d4s 1D2 state. This 1D2 state,

as shown in Fig. 7.2, decays to the 4s4p 3P1 (83% branching) and 3P2 (17% branching)

states with a total lifetime of 1.71 ms [HR86]. The 3P1 state decays to the ground state

with a lifetime of 0.331 ms, while the 3P2 state has a lifetime of 118 minutes, leading to loss

from the laser cooling cycle [HR86,Der01]. This loss, which is proportional to the 4s4p 1P1

state population, limits the lifetime of the Ca MOT and according to the rate model with

our experimental parameters leads to a MOT lifetime of 27(5) ms. As detailed later, we

experimentally observe a MOT lifetime of 29(5) ms in this con�guration.

To extend the MOT lifetime, a repumping laser is usually added to drive the 4s5p 1P1←

3d4s 1D2 transition at 672 nm in order to return electronic population in the 3d4s 1D2

level to the laser cooling cycle before it decays to the 4s4p 3P1 and 3P2 states [KS92]. In

this con�guration, the rate equation model predicts that the MOT lifetime is increased to

86(18) ms for our experimental parameters. As detailed later, we experimentally observe a

MOT lifetime of 93(6) ms in this con�guration.

Interestingly, it is often assumed that the lack of a further increase in the MOT lifetime

with this repumping scheme is due to an incomplete depletion of the 3d4s 1D2 state, which

is in turn due to unfavorable branching ratios in the 4s5p 1P1 state [KS92]; this state decays

primarily back to the 3d4s 1D2 state and only weakly back in the cooling cycle. However,
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Figure 7.2: Relevant level structure for operation of a standard calcium MOT. Laser cooling is

accomplished on the 423 nm 4s4p 1P1 ← 4s2 1S0 transition. Atoms that decay to the 3d4s 1D2

state are repumped back into the cooling cycle via the 672 nm 4s5p 1P1 ← 3d4s 1D2 transition,

while those in the long-lived 4s4p 3P0,2 states are lost from the MOT.

the rate equation model reveals that the MOT lifetime is actually limited by the decay

of the 4s5p 1P1 state to the 4s5s 3S1, 3d4s 3D1, and 3d4s 3D2 states, all of which decay

primarily to the 4s4p 3P0,1,2 states, as shown in Fig. 7.2 and �rst pointed out in Ref. [OBF99].

Speci�cally, according to the theoretical calculations, the 4s5p 1P1 state decays indirectly to

the lossy 4s4p 3P0 and 3P2 states at a total rate of 8 × 104 s−1, while the 3d4s 1D2 state

decays to the 4s4p 3P2 state at a rate of only 80 s−1. With this understanding, the natural

question arises: Is there an alternative repumping scheme that would suppress the loss into

these triplet states?
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7.5 Evaluation of alternative Ca MOT operation schemes

The ideal repumping laser out of the 3d4s 1D2 state would quickly transfer population from

the 1D2 state back into to the cooling cycle with perfect e�ciency. With this idealized

scheme, the rate model predicts a lifetime of 3.0(4) s with our MOT parameters. This

lifetime is limited by the decay of the 4s4p 1P1 state to 3d4s 3D1 and 3D2 states and is

thus dependent on the 4s4p 1P1 state population; lowering the 4s4p 1P1 state population by

decreasing 423 nm cooling laser intensity while maintaining reasonable MOT performance

can extend the lifetime by ∼ 2×. Since this lifetime is similar to lifetimes set by other

e�ects in most systems, such as collisions with background gas, it is likely unnecessary for

the majority of applications to employ a more complicated multi-laser repumping scheme

out of the 3P states like that used in Sr [LBY15], especially since the longer lifetime of the

3d4s 1D2 and 4s4p 3P1 in Ca make this scheme less e�cient.

Therefore, for this work we choose to only explore single-laser repump transitions from

the 3d4s 1D2 state with high branching ratios back into the laser cooling cycle. With this

metric, we �nd that within the �rst 75 electronic states, there are seven reasonable alternative

repumping transitions from the 3d4s 1D2 state, shown in Fig. 7.3, which go to states in the

1P1 and 1F3 manifolds. Using the rate equation model with our standard MOT parameters,

we calculate the expected MOT lifetimes for these transitions, which are limited by optical

pumping into the 3P0,2 states, and present the results in Table 7.2.

Of these seven transitions, �ve are accessible by lasers available to us and we explore them

using a standard six beam Ca MOT described in Ref. [RSS12]. Brie�y, in this system, laser

cooling is provided by driving the 4s4p 1P1 ← 4s2 1S0 cooling transition with a total laser

intensity of 63 mW/cm2 detuned 34.4 MHz below resonance. The Ca MOT is loaded from

an oven source placed ∼ 3.5 cm away from the MOT. Atoms from the oven are decelerated

by two `deceleration beams' with intensities 110 mW/cm2 and 53 mW/cm2 and detunings

below resonance of 109 MHz and 318 MHz, respectively. The 672 nm traditional Ca MOT

repump laser has an intensity of 11 mW/cm2.

For each single-beam repumping scheme, we characterize the MOT performance by mea-
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Figure 7.3: Simpli�ed calcium electronic level structure showing the eight repumping transitions

considered here. All transitions except the 504 nm and 535 nm have been studied experimentally.

The overall best Ca MOT performance is found when pumping to a highly con�guration-mixed

state, labeled as 4snp 1P1, using the 453 nm 4snp 1P1 ← 3d4s 1D2 transition.
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Figure 7.4: Measured calcium MOT density as a function of repumping laser detuning for the (a)

1F3 and (b) 1P1 repump transitions. Experimental data are shown by points, while Lorentzian �ts

are shown as lines. All measured densities are scaled to the peak MOT density achievable with the

standard 672 nm repumping scheme.

suring the MOT density, lifetime, and temperature. The density is measured using absorp-

tion imaging on the 4s4p 1P1 ← 4s2 1S0 transition. The MOT lifetime, τ , is extracted by

using �uorescence imaging to observe the number of trapped atoms, N , as the MOT is loaded

from the oven at rate R and �tting the data to the form N(t) = Rτ
(
1− e−t/τ

)
. The tem-

perature, T , is found from the ballistic expansion of the Ca atoms after the MOT trapping

beams are extinguished. For this measurement, the e−1 waist of the cloud is extracted from

absorption images taken after a variable time of expansion, and T is extracted by �tting

this data to the form w(t > 0) =
√
w(t = 0)2 + 2kBTt2

m
, where kB and m are the Boltzmann

constant and the mass of the Ca atom, respectively. The results of these measurements are

shown in Fig. 7.4-7.5 and Table 7.2. All of the experimentally explored alternative repump-

ing schemes produce signi�cantly denser MOTs at roughly the same temperature with longer

lifetimes.

Somewhat surprisingly, repumping to 1F3 states leads to similar or sometimes better

MOT performance than repumping to 1P1 states. Population promoted to the 1F3 states
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Figure 7.5: Measured Ca MOT loading curves for the (a) 1F3 and (b) 1P1 repump transitions,

MOT �uorescence is plotted as a function of time elapsed after the cooling lasers are turned on;

curves �tted to N(t) = Rτ
(
1− e−t/τ

)
are shown alongside the data.
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Figure 7.6: Simpli�ed electronic energy level structures illustrating the main loss channels for

the experimentally tested repumping schemes. 1F3 repumps are shown in (a), (b), and (c), and

1P1 repumps are shown in (d) and (e). Here we show only the most signi�cant pathways into lossy

triplet states, shown in red. The omitted decays dominantly return to the main cooling cycle. Using

only these branching ratios and the natural linewidths of the upper states, one can compare the

approximate relative MOT lifetimes for each transition. This simple model reproduces the lifetime

ordering of the more comprehensive 75-level rate equation model and also matches experimental

results.
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quickly decays to states with term 1D2, which in turn primarily decay to the 4s4p 1P1 state.

During this cascade, there is less decay into states of triplet character as compared to decays

from some of the 1P1 repumping states. Thus, despite the more complicated repumping

pathway, repumping to the 1F3 states can be very e�ective.

The relative performance of the 1F3 repumping schemes can be explained by their branch-

ing pathways into lossy triplet states. The total MOT loss rate due to loss from an upper

repump state is given by d
dt
N = −ΓifLossNi, where N is the total number of atoms in the

MOT, Ni is the number of atoms in the upper repump state, Γi is the natural linewidth of the

upper repump state, and fLoss is the fraction of decays which lead to decay into the triplet

states directly or indirectly. Of the three 1F3 repump transitions experimentally tested, we

approximate the relative values of Ni by comparing the average number of repump transition

cycles required before decay into another state. We use the calculated linewidths Γi along

with the most signi�cant loss pathways to estimate fLoss.

Summarizing from Fig. 7.6, the 4s4f 1F3 state decays with ∼ 17% branching into the

4s4d 1D2 state, which has a branching of ∼ 0.2% into the 4s4p 3P2 state. The 4s5f 1F3

state decays to the 4s4d 1D2, 4p2 1D2, and 4s5d 1D2 states with ∼ 8%, ∼ 3%, and ∼ 8%

branching, respectively. The 4p2 1D2 state decays to triplet states with ∼ 0.3% branching,

and the 4s5d 1D2 state decays to triplet states with ∼ 0.1% branching. The 4s6f 1F3 state

decays with branching ratio ∼ 5%, ∼ 3%, ∼ 5%, and ∼ 6% into the 4s4d 1D2, 4p2 1D2,

4s5d 1D2, and 4s6d 1D2 states respectively, the last of which decays with ∼ 0.6% branching

into the 4s5p 3P1 state. Using this method with only the branching ratios shown in Fig. 7.6

and the natural linewidths of the upper repump states, we predict that the lifetime of the

MOT τ488, τ436, τ411, using a 488 nm, 436 nm, or 411 nm repump should obey the relaton:

τ436 > τ488 > τ411. This agrees with the observed MOT lifetimes. For the same reason, we

expect repumping to the 3d4p 1F3 state with a 535 nm laser will exhibit poor performance.

One can use this method to quickly estimate relative performances of potential repump

transitions without developing a comprehensive rate model.

Similarly, the MOT performance when repumping to the 4s6p 1P1 and 4s7p 1P1 states

relative to the traditional 4s5p 1P1 state is understood by their primary branching ratios
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Table 7.2: Summary of the results of this work. Each row of this table lists the calculated and

measured properties of an individual repumping scheme, with the most e�cient repump transition

to the 4snp 1P1 state in bold. We attribute deviations between the model prediction for the

MOT lifetime and the measured lifetime to inaccuracies in the calculated transition rates. These

inaccuracies are expected to be higher for the high-lying F -states, in agreement with the larger

deviations seen between model and data for these states. The experimental errors include statistical

and systematic uncertainties.

State λ (nm) f (THz) ρ0 (cm−3) N τ(s), model τ (s), exp. T (mK) Ca+ Production (relative)

4s5p 1P1 672 446.150837(13) 7.5(7)×109 3.7(3)×106 0.086(18) 0.093(6) 4(1) ≡ 1

3d4p 1F3 535 � � � 0.14(11) � � �

4s6p 1P1 504 � � � 2.3(3) � � �

4s4f 1F3 488 614.393495(22) 2.1(2)×1010 2.7(2)×107 0.73(16) 1.35(6) 5(1) 0.9(1)

4snp 1P1 453 662.057231(22) 5.0(5)×1010 7.8(7)×107 2.4(3) 2.48(8) 5(1) 0.8(1)

4s5f 1F3 436 688.180929(22) 2.8(3)×1010 2.8(3)×107 0.99(15) 1.86(7) 4(1) 1.4(2)

4s7p 1P1 424 706.783089(10) 2.9(3)×1010 5.9(5)×107 2.2(3) 1.77(6) 5(1) 1.7(2)

4s6f 1F3 411 729.478413(22) 2.5(2)×1010 1.6(1)×107 0.45(10) 0.96(3) 4(1) 3.1(4)

Ideal � � � � 3.0(4) � � �

into triplet states. The 4s6p 1P1 state decays with ∼ 0.006% branching into the 3d4s 3D2

state, and the 4s7p 1P1 state decays with ∼ 0.002% branching into the 3d4s 3D2 state, while

the 4s5p 1P1 state decays with ∼ 0.9% branching into the 3d4s 3D1, 3d4s 3D2, and 4s5s 3S1

states.

Interestingly, the best MOT performance, in terms of number, density, and lifetime, is

achieved by repumping to a highly con�guration-mixed state, which we label as 4snp 1P1.

Our calculations �nd this state is primarily composed of the mixture 4s7p (43%), 4p3d

(28%), and 4s8p (13%). The high performance of this repumping transition arises from two

facts. First, its primary branching ratio to triplet states is ∼ 0.001% and the lowest of

all repumping transitions explored here. Second, it exhibits a very high branching ratio of

∼ 43% directly back to ground 4s2 1S0 state.

Because the lifetime of the MOT when operating with the 453 nm repump (∼ 2.5 s) is

close to the idealized limit set by intercombination transitions from the 4s4p 1P1 state (3 s),
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we vary the intensity of the 423 nm cooling laser to measure the lifetime of the MOT as a

function of the 4s4p 1P1 state population. Fig. 7.7 shows our results alongside the predicted

lifetime from the rate model and the calculated limit of 0.24/ρpp s-1 set by the decay from

the 4s4p 1P1 state indirectly to the lossy 4s4p 3P0 and 3P2 states � here ρpp is the population

fraction in the 4s4p 1P1 state. Our results show that the lifetime of the MOT in this scheme

approaches this fundamental limit for any Ca MOT with a single repump out of the 3d4s 1D2

state. Therefore, repumping at 453 nm provides nearly the optimum performance for any

imaginable single-repump scheme in Ca.

Trapping calcium atoms in a MOT also provides us with a cold sample convenient for

metastable state spectroscopy. We take advantage of this as well as the e�ect a repump

laser has on the total number of atoms and �uorescence of a MOT to measure the transition

energies of several repump transitions. Using a low repump laser intensity to minimize power

broadening, we measure MOT �uorescence on the 4s4p 1P1 ← 4s2 1S0 transition as we scan

a given repump frequency. As the repump laser comes into resonance, the number of atoms

in the MOT and the �uorescence drastically increase. We use a HighFinesse Angstrom

WS Ultimate 2 wavelength meter calibrated to the Ca 4s4p 1P1 ← 4s2 1S0 transition via

a saturated absorption lock to measure the absolute frequency [SMD11]. Our results are

shown in Table 7.2, where the reported uncertainties account for the following potential

errors: the absolute accuracy of the wavelength meter, the error in the Lorentzian �ts, the

Zeeman e�ect for a MJ = ±1 transition, the DC Stark e�ect, the AC Stark e�ect, and the

uncertainty in the Ca 4s4p 1P1 ← 4s2 1S0 transition frequency.

7.6 Ca+ production

Due to its relatively light mass and high ionization potential, Ca is especially useful in

hybrid atom-ion traps as a sympathetic coolant [RSS12]. However, as was recently identi-

�ed [al11,SDC16], Ca MOT operation can produce Ca+ and Ca+
2 through multi-photon and

photo-associative ionization, respectively. These ions then produce an unwanted heat load

during the sympathetic cooling process. While techniques exist to cope with these nuisance
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Figure 7.7: Measured Ca MOT lifetime as a function of 4s4p 1P1 state population with a 453 nm

repump. The measured lifetimes are shown alongside the rate model predictions and a curve rep-

resenting the fundamental limit for any single repump laser scheme in a Ca MOT. This limit is the

result of decay from the 4s4p 1P1 state indirectly to the 4s4p 3P0 and 3P2 states and is found as

0.24/ρpp s-1, where ρpp is the population fraction of the Ca 4s4p 1P1 state.

ions [SDC16], it is advantageous to keep their production rate as low as possible. Therefore,

we use time of �ight mass spectrometry [SCR12,SSC14,SSY16] to measure the density nor-

malized Ca+ production rate for each of the tested repump lasers and compare to the Ca+

production rate with a 672 nm repump. As shown in Table 7.2, we �nd that the largest

Ca+ production rate occurs with the 411 nm repump, a factor of 3.1 compared to the Ca+

production rate with the 672 nm repump. The 453 nm repump, which resulted in the MOT

with the longest lifetime, highest density, and largest number of atoms also yields the lowest

Ca+ production rate.

7.7 Summary

In summary, we propose seven alternatives to the traditional 672 nm repumping scheme for

a Ca MOT and experimentally explore �ve of them. We �nd that all �ve produce signi�cant
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improvements in MOT density and lifetime. Three of these repumping transitions appear

particularly convenient from a technological perspective since they occur at wavelengths

that are accessible by diode lasers, i.e. 453 nm, 424 nm, and 411 nm � with the middle

transition of this list occurring at nearly the same wavelength as the cooling transition in

Ca. The overall best MOT performance occurs for repumping at 453 nm on the 4snp 1P1 ←

3d4s 1D2 transition and results in a ∼ 6× and ∼ 25× improvement in density and lifetime,

respectively, over the standard scheme. According to our rate model, this lifetime is near

the maximum theoretical lifetime that can be achieved in a Ca MOT with a single repump

laser from the 3d4s 1D2 state.

In all cases, the relative performance of the di�erent repumping schemes can be under-

stood by their branching into triplet states. Electronic population in these states typically

ends up in either the 4s4p 3P0 or 3P2 state, which due to their long spontaneous emission

lifetimes are lost from the MOT. For this reason, if a Ca MOT lifetime beyond that of ∼ 5 s

is desired it would be necessary to add additional lasers to repump from the 4s4p 3P0 and

4s4p 3P2 states as is done in Sr [LBY15]. If the MOT is not limited by other factors such as

background gas collisions, we estimate this would extend the lifetime to ∼ 29 s. If a further

increase in the lifetime is required, it would be necessary to repump from the 4s4p 3P1 state,

which would completely close the laser cooling cycle. However, even if these lasers are added,

given the longer lifetime of the 3d4s 1D2 state as compared to its analogue in Sr, it will likely

be necessary to retain the 453 nm repump for optimal MOT operation.

Finally, due to their similar atomic structure it may be possible to apply this repumping

scheme in other Group 2(-like) atoms. For example, in Sr MOTs we speculate that repump-

ing on the 5s8p 1P1 ← 4d5s 1D2 transition at 448 nm may be bene�cial since it would

return population from the 4d5s 1D2 more quickly than in the typically employed scheme

and thereby increase the achievable optical force. A likely less e�cient, but perhaps techno-

logically simpler repumping pathway would be to drive the 5s6p 1P1 ← 4d5s 1D2 transition

at 717 nm. In both of these cases, however, it may be necessary to retain the lasers used to

repump population from the 5s5p 3P0 and 3P2 states as the larger spin-orbit mixing in Sr

increases the parasitic intercombination transitions from e.g. the 5s5p 1P1 state.
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CHAPTER 8

High resolution atom-ion collision energy control

Control of collision energy during atom-ion reactions is crucial for comparing measured

cross-sections to long-range capture models and may even be used to identify resonance

features. Here, we demonstrate an ion shuttling technique for high-resolution control of

atom-ion collision energy by translating an ion held within a radio-frequency trap through a

magneto-optical atom trap. The technique is demonstrated both experimentally and through

numerical simulations, with the experimental results indicating control of ion kinetic energies

from 0.05 − 1 K with a fractional resolution of ∼ 10 and the simulations demonstrating

that kinetic energy control up to 120 K with a maximum predicted resolution of ∼ 100 is

possible, o�ering order-of-magnitude improvements over most alternative techniques. Lastly,

we perform a proof-of-principle chemistry experiment using this technique and outline how

the method may be re�ned in the future and applied to the study of molecular ion chemistry.

8.1 Background motivation

Reactant collision energy can strongly in�uence the kinetics and product outcomes of a

reaction, revealing fundamental properties about the underlying chemical system [BON15,

KSS16,GMG12]. Consequently, there has been much work on creating methods capable of

precisely controlling this parameter. Lee, Herschbach, and coworkers developed the crossed

molecular beam apparatus to explore the e�ect of collision energy on the angular distribu-

tions of products in neutral-neutral reactions, revolutionizing the �eld of gas-phase chem-

istry [LML69]. Other groups [SKS15, HGS12, AS17] have since extended the technique to

the millikelvin regime with improved energy resolution, enabling observations of quantum
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scattering resonances in reaction rates [KSS16,VOC15,KWS15,DXW10]. In this work, we

take a step towards enabling similar high-resolution studies of ion-neutral reactions, which

have been observed to play an important role in the formation of the interstellar medium

and other astrophysical processes [IOG10, SB08, MSA99, RGM10], by developing a novel

technique for controlling collision energy in these systems.

Early e�orts to control collision energies in ion-neutral systems, such as the SIFT [SS96,

Arm04] and CRESU [RM87, RP95] techniques, combined gas-discharge ion sources with

neutral beams of tunable temperature. Current implementations of these experiments are

typically restricted to collision energies of ∼ 10 − 500 K with fractional energy resolutions

of ∼ 10 − 100 [SR00], depending on neutral beam parameters. We de�ne the fractional

resolution of a distribution X as RX = X/σX where X and σX are the average and standard

deviation of X, respectively.

Ion-neutral reaction experiments have recently been extended to laser-cooled hybrid

systems [Fig. 8.1(a)] capable of accessing millikelvin temperatures [ZW18, ZRP11, HD14],

where they have been used to explore reaction rate dependencies on conformational and

electronic states [CDK13, SRK12, HW12, RSK11, RZS12] and to produce novel chemical

species [PMS17]. The majority of these hybrid systems contain radio-frequency (rf) ion

traps, and typically the atom-ion collision energy is controlled by manipulating the ion ex-

cess micromotion energy, either by using electric �elds to displace the ions from the rf trap

null [ZPS10,ZPR10,HW12] or by changing the size of the ion sample [HHF13,GCc09,PMS17].

Upon displacing an ion from the rf trap null, the ion excess micromotion energy distribu-

tion approximately follows that of a simple harmonic oscillator [Fig. 8.1(b)]. Mathematically,

the trajectory of a trapped ion in in the low Mathieu-q limit can be approximated [BMB98]

as

r(t) = r0(1 +
q

2
cos(Ωt)) cos(

q

2
√

2
Ωt) (8.1)

where r(t) is the ion radial coordinate at time t, r0 is the ion's initial radial displacement,

and q is the Mathieu-q parameter, given as q = 2eVRF
mr2

0Ω2 , where e is the electronic charge and

m is the mass of the ion. This motion consists of harmonic oscillation at a secular trap
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frequency, q

2
√

2
Ω, modulated by faster micromotion oscillation at the rf drive frequency of

the ion trap. Under laser-cooled conditions, the secular portion of the ion's motion is cooled

to ≤ 1 mK. This energy is negligible relative to the micromotion energy of the ion [CSR13],

and consequentially, the ion velocity can be modeled as follows

v(r0, t) = −r0Ω
q

2
sin(Ωt) (8.2)

The velocity probability distribution function is then given by the probability distribution

function for a classical harmonic oscillator at frequency Ω as

P (r0, v) =


0

(
qΩ
2r0

)2

< v2

1
π

√
1(

qΩ
2r0

)2
−v2

(
qΩ
2r0

)2

≥ v2
(8.3)

P (r0, v), which depends on the initial ion radial position, can further be weighted by the

ion spatial density distribution as

PV (v) =

∫
nion(r, z, φ)P (r, v)dV (8.4)

where PV (v) is the ion velocity probability distribution and nion(r, z, φ) is the integral-

normalized ion-density distribution expressed in cylindrical coordinates, whose parameters

are characterized through �ts to �uorescence images obtained by our EMCCD camera. After

obtaining the velocity probability distribution, it is then straightforward to calculate Ecol,

the average collision energy, as ∫
PV (v)

1

2
µv2dv (8.5)

where µ is the reduced-mass of the atom-ion system. The kinetic energy distribution can

also be found by obtaining PV (v) and performing a change of variable.

Thus is a single ion is displaced from the trap null to vary its energy, following the above

steps, the resulting energy distribution stretches from 0 K to twice its average value, with the

average energy varying quadratically with radial displacement (all energies in this work are

expressed in units J/kB = K). Similarly, when using crystal size to tune the collision energy,

each ion at a distinct radial position within the crystal has a unique harmonic distribution,
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and upon averaging over all radial positions, the resultant energy distribution is peaked at

low energies with a high-energy tail [Fig. 8.1(b)]. While the average kinetic energy of an ion

sample can be precisely controlled using both of these techniques, their energy resolution

is ≈ 1, making it di�cult to measure energetically narrow features. Further, micromotion

interruption collisions [CSH14] and calculations of the atom-ion spatial overlap [RSS12] may

provide further complications for these micromotion-based techniques as collision energy is

scanned. In particular, ions held within rf traps integrated into atom-ion hybrid systems

are known to settle into Tsallis law energy distributions characterized by power-law tails

after undergoing several collisions with an atomic sample [CSH14,RW17], thereby leading to

extreme high energy collision events that can jeopardize controlled collision energy studies.

While active laser-cooling can mitigate many of these concerns, in certain cases they can still

be nontrivial; however, the intricacies of such considerations will be omitted for simplicity

in the following discussion.

Thus, other techniques have been developed to avoid these drawbacks and achieve higher

energy resolutions. For example, Zeeman [CCJ17,DTS15] and Stark decelerators [OBH12]

have been coupled to ion traps to probe atom-ion collision energies in the ∼ 10−100 K range

with an energy resolution of ∼ 50 [PFL09]. In other work, Eberle [Ebe16] and coworkers

recently demonstrated a novel method that uses optical �push� beams to precisely control

the motion of atom clouds for kinetic energies ranging from ≈ 10−500 mK with a resolution

of ≈ 10.

Here, inspired by Eberle et. al. [Ebe16], we describe a simple alternative that can be

immediately used in most existing hybrid systems. In this technique, ions are translated at

�xed velocities across a neutral sample by adjusting their axial trapping potential, maintain-

ing the ions on the rf trap null throughout the process. At constant translational ion velocity,

RE is primarily limited by the micromotion energy of the ion crystal [Fig. 8.1(b)] and can

exceed values of 100. In what follows, we describe the experimental system, investigate the

shuttling technique through both experiment and simulation, and identify parameters where

constant velocity ion motion can be approximately realized.
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Figure 8.1: Shuttling procedure and energy resolution

(a) Schematic of the MOTion trap apparatus displaying an ion cloud being ejected from the 12-

segment LQT (3 segments per rod) into the ToF-MS, with arrows denoting the direction of ejection.

(b) Energy distributions, derived from approximate Mathieu equation solutions, of a Yb+ sample

tuned to an average kinetic energy of ∼ 4 K through ion chain displacement from the trap null, crys-

tal size tuning, and idealized shuttling at a constant velocity of a crystal with an initial micromotion

energy of ∼ 100 mK. The standard deviations for each distribution are denoted by horizontal scale

bars. (c) Voltage waveforms measured on the right and left endcap electrodes (EC) of the LQT,

as well as the corresponding predicted ion velocities, expressed as a function of shuttle time. The

waveforms follow the VS(ω, t) pro�le, presented in Eq. 8.8, with VDC = 30 V, Vamp = 5 V, γ = 0.18,

and ω = 2π · 95 Hz. The portions of the waveform where the ions are stationary are not shown for

clarity. The shaded region denotes the approximate period of overlap between the shuttled ions and

the MOT.
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8.2 Shuttling principles

For small displacements from the ion trap center, the electrostatic potential in the axial

dimension z at time t is given as Uax(z, t) ≈ κVend
z2
A

(z − z0(t))2, where κ is a factor associated

with the ion trap geometry, Vend is the endcap voltage, zA is the endcap electrode spacing

of the LQT, and z0(t) is the time-dependent axial equilibrium position of the trap. In

our system, κ ≈ 0.02 and zA ≈ 10.2 mm. By adding a time-dependent voltage waveform

between right and left endcap electrodes [Fig. 8.1(c)], z0(t), and hence the ion crystal position,

can be modulated at a speed proportional to the time derivative of the applied waveform.

By changing the ramping speed of the waveform while keeping the peak-to-peak voltage

constant, the translational velocity of the ion, and thus the ion kinetic energy E, can be

conveniently controlled.

Experimentally, an arbitrary waveform generator produces the endcap voltage waveforms

that modulate the ion axial position. Output from the generator is ampli�ed and low-pass

�ltered to remove any electrical noise near secular resonances of the trapped ions.

When the modulation technique is used in conjunction with laser cooling, the motion of

the resulting system can be described as a damped harmonic oscillator (DHO):

mz̈ = −keff (z, t)(z − z0(t)) + Fβ(ż), (8.6)

where m is the mass of the ion of interest, keff (z, t) is the e�ective spring constant of the

moving endcap potential, approximated as q d2

dz2Uax(z, t) where q is the charge of the ion of

interest, and Fβ(ż) is a velocity-dependent damping force with an e−1 motional damping

time constant β (units s−1) determined by the laser parameters of a given Doppler-cooled

system. Higher order terms are neglected.

In order to achieve well-controlled energy resolution, the ion position should adiabati-

cally follow the moving equilibrium position of the axial potential. However, if the Fourier

transform of z0(t) possesses frequency components near secular resonances of the ion, the

shuttling motion may excite secular oscillations and heat the ion. To avoid this, we raise the

trap axial con�nement, thereby increasing the ion secular frequency above these frequency
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Figure 8.2: Ion shuttling imaging

False-color experimental �uorescence images of Yb+ ions undergoing shuttling presented for the

following cases: i) a single ion, ii) a �ve-ion chain with one non-laser-cooled dark isotope, iii) a

two-dimensional Coulomb crystal with one embedded dark isotope. As the ions spend ∼ 90% of

the time at the trajectory endpoints, their �uorescence is only evident in these locations.

components, and strategically choose a ramping waveform less prone to ion heating.

Waveform optimization is a well-studied problem in the quantum information commu-

nity [HYO08, BOV09, BOV11, RLB06]. In this work, when transporting an ion from one

shuttling endpoint to another, we implement a hyperbolic tangent pro�le similar to that

presented in Ref. [HYO08], given by

ftanh(τ) =
tanh (2ατ − α)

tanhα
(8.7)

where τ is the shuttle time as a fraction of total shuttle duration and α is a parameter that

characterizes the slope of the function, chosen to have a value of 4 in the work presented

here. While a linear pro�le would seem to produce a �atter velocity pro�le at the trajectory

midpoint, such a pro�le, once Fourier-decomposed, may possess frequency terms near secular

resonances of the ion that could lead to secular heating, especially at high shuttle energies.

The hyperbolic pro�le, while exhibiting a larger velocity spatial dependency, avoids these

e�ects while still allowing for su�cient velocity control over the narrow region of MOT

interaction such that other e�ects, such as excess micromotion compensation, are generally

the limiting factor to energy resolution (see Section 8.4).
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To meet the demands of our experiment, additional modi�cations were made to the

applied shuttling waveform. Firstly, the waveform was chosen to be periodic in time to

allow for waveform frequency, and thus ion velocity, to be varied while not a�ecting other

experimental parameters, such as the time-averaged spatial overlap between the atom and

ion sample [SRK12]. Secondly, the waveform was constructed such that the ions remain

at the stationary endpoints for a majority of the shuttling period, allowing su�cient laser

cooling time to dampen any excitations that may occur during the transport process. A

natural choice of waveform that satis�es the above criteria, shown in Fig. 8.1(c), is given by

the following piecewise function:

VS(ω, t) =



VDC − Vamp 0 ≤ t < T
2
(1− γ)

VDC + ftanh(
t−T

2
(1−γ)
T
2
γ

)Vamp
T
2
(1− γ) ≤ t < T

2

VDC + Vamp
T
2
≤ t < T

2
(2− γ)

VDC − ftanh(
t−T

2
(2−γ)
T
2
γ

)Vamp
T
2
(2− γ) ≤ t < T

(8.8)

where ω is the angular shuttle frequency, VDC is the base endcap voltage, Vamp is the ampli-

tude of the shuttle waveform, T = 2π
ω
is the shuttle period, and γ is a factor that determines

the ratio of stationary time to shuttled time during the ion trajectory. For a standard shuttle

with an endpoint-to-endpoint distance of ∼1 mm, parameters are chosen as follows: VDC

∼ 30 V, Vamp ∼ 2 V, γ ∼ 0.1, and ω can be tuned as desired from ∼ 2π · (0 − 500) Hz,

providing control of the ion kinetic energy from ≈ 0.01−10 K. For reference, the axial secular

frequency of our trap is typically chosen to be ≈ 2π · 30 − 150 kHz for the range of axial

con�nements explored in this work.

Fluorescence from the laser-cooled Yb+ ions was collected with an EMCCD while shut-

tling. Shuttling images are presented in Fig. 8.2 for a single ion, a �ve-ion chain, and a

two-dimensional Coulomb crystal, the last two of which are embedded with a non-laser-

cooled Yb+ isotope, indicating that this technique may also be used with sympathetically

cooled species, such as molecular ions.

200



8.3 Experimental investigation of technique

8.3.1 Fluorescence detection while shuttling

Understanding the energy dynamics of the shuttled ions requires knowledge of their velocity

distribution. In order to experimentally characterize this distribution, a 174Yb+ crystal was

shuttled over a ≈ 1 mm distance by applying VS(ω, t) to the endcap electrodes of the ion

trap. The EMCCD in our imaging system was replaced with a PMT to record the ion photon

scattering rate throughout the shuttling process.

The photon scattering rate of laser-cooled Yb+ can be approximated [MS03] as

Γscatt(vz) =
Γ

2

s

1 + s+ 4 (δ−kzvz)2

Γ2

(8.9)

where Γ is the transition linewidth, s is the saturation parameter of the cooling laser, given

as I/Is where I is the intensity of the laser beam and Is is the saturation intensity of the

transition, δ is the detuning of the laser from resonance, kz is the magnitude of the k-vector of

the axially-aligned cooling laser, and vz is the z-component of the ion velocity. The scattering

rate is insensitive to micromotion or secular motion in the radial dimension.

8.3.2 Ensemble and spatial averaging of velocity distributions

For a single shuttled ion, the velocity-dependent scattering rate (see Eq. 8.9) during each

PMT time acquisition bin (∼ 10 ns width) can be used to measure vz(t). In order to

enhance the PMT signal in the experiment, we interrogate an ensemble of ∼ 100 ions, and

consequently, the velocities extracted in each time bin are ensemble averages of the total

axial velocity distribution, de�ned as 〈vz〉 (Sec. 8.8). Here, we de�ne the ensemble average

of a data set X as 〈X〉.

Further, the shuttled ions are only overlapped with the neutral sample at the center of the

ion trap for a small portion of their trajectory. Therefore, the relevant resolution to consider

is the resolution of [〈vz〉]S, the velocity distribution with weighting factors determined by the

spatial overlap of the ions at each shuttle time with an atom sample of characteristic length
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Figure 8.3: Doppler velocimetry and large crystal simulation results

(a) Experimentally measured [〈vz〉]S of a ∼ 100 ion crystal obtained through Doppler velocimetry at di�erent

shuttling frequencies, where the error bars are displayed at the 1σ level. The experimental results show

reasonable agreement with MD simulations. A linear �t applied to the experimental data shows that varying

the shuttle frequency modi�es the axial velocity of the trapped ions in the expected way. The inset shows the

corresponding mean kinetic energies and energy resolutions obtained at the various shuttling frequencies, with

the dotted line referring to the average resolution. Note here that the plot refers to averages and resolutions

of the distribution [〈Êz〉]S (see text), but the subscript was omitted in the plot for clarity. (b) Experimental

〈vz〉 values, obtained as a function of shuttle time at a shuttle frequency of 120 Hz, are compared to results

of a MD simulation and the predictions of a 1D damped harmonic oscillator model. (c) The e�ects of laser

cooling on damping secular motion from both simulation and experiment. The saturation parameter used

to construct the laser cooling force in the simulations was tuned until β matched well with experiment. (d)

Experimental damping timescales are obtained as a function of laser cooling saturation parameter and are

compared with predictions from a rate equation model. Horizontal and vertical error bars are expressed at

the 1σ level, with the latter being smaller than the data points (e) Measured 〈vz〉 as function of shuttle time

for two di�erent axial con�nement strengths. The shuttle was performed with a linear ramping pro�le more

prone to ion heating than ftanh(t) in order to accentuate the increase in energy resolution that is possible

with greater axial con�nement.
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scale wA (Sec. 8.9). Here, we de�ne the spatially-weighted distribution of a data set X as

[X]S [Pat14]. For optimal resolution, the neutral sample should be placed at the center of

the ion trajectory where the ion velocity is most constant.

8.3.3 Simulation parameters

The experimental results are compared to predictions of molecular dynamics (MD) simu-

lations conducted with the SIMION 8.1 software package [Dah00], as shown in Fig. 8.3(a)

and 8.3(b). The simulation software employs �nite di�erence methods to numerically solve

Laplace's equation for a given set of electrodes and point charges, allowing for determina-

tion of ion trajectories and energy distributions. Time-dependent trapping potentials were

incorporated into the simulation to properly include the e�ects of micromotion, and ion-ion

repulsion was treated by superimposing the Coloumb interaction from co-trapped ions with

the potential produced by the quadrupole trap electrodes. The simulations were performed

using 100 ions, approximately equivalent to the number used during the experiment, and

also employed a laser-cooling damping force whose velocity pro�le was derived from a simple

four-level rate equation model.

In order to optimize the accuracy of the simulated laser cooling force, both in experiment

and simulation, the ions were initialized in the LQT, non-adiabatically transported between

trajectory endpoints through a square-wave-like voltage ramp, and subsequently observed

as the laser cooling force damped the motion of the excitation [Fig. 8.3(c)]. The saturation

parameter of the simulated laser cooling force was adjusted until the e−1 decay constant β

matched that observed in experiment. We also investigated how this damping timescale var-

ied with laser cooling intensity by repeating the above measurement at various laser powers

[Fig. 8.3(d)]. The results are comparable with those expected from our rate equation cool-

ing model and are instructive when considering what laser cooling parameters to implement

while shuttling. Namely, one should operate in a laser cooling regime such that the time

spent at the shuttle endpoints during each cycle is much longer than the damping time,

ensuring the ions are su�ciently cooled before the next shuttle cycle begins. Further, the
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simulations con�rm that at experimental conditions, the laser cooling damping force does

not signi�cantly in�uence the trajectory of the ions while shuttling.

8.3.4 Analysis of results

The experimental and simulated results for [〈vz〉]S are in reasonable agreement [Fig. 8.3(a)].

Both exhibit a linear relationship with waveform frequency, a�rming that wA can be varied

to predictably control the velocity, and thus collision energy, of the ions. The trajectory for

the ions assuming a damped harmonic oscillator model, shown in Fig. 8.3(b), also appears

to describe the ion motion well, con�rming that the model may be used to gain intuition

about the shuttling procedure. We attribute minor discrepancies between the simulation

and experiment, such as di�ering damping timescales and amplitudes of secular oscillation

while shuttling, to imperfect voltage matching due to unmeasured electrode charging and rf

pickup, minor discrepancies in laser cooling velocity pro�les, and e�ects not considered in

the simulation such as micromotion interruption collisions with background gas particles.

The experimental energy resolution can also be compared to predictions from simulation.

[〈Êz〉]S, de�ned as 1
2
m([〈vz〉2]S), was scanned over ≈ 0.01−1 K over the velocities explored in

Fig. 8.3(a), with probing of higher kinetic energies precluded by di�culty in discriminating

between scattering rates at large vz. Shown in the inset to Fig. 8.3(a), the measured ensemble-

averaged axial energy resolutions, R[〈Êz〉]S , were determined to be ≈ 10, in agreement with

simulations.

However, the resolution of the non-ensemble-averaged kinetic energy distribution, [Ez]S =

1
2
m[v2

z ]S, is the more relevant quantity to consider when characterizing collision energy control

since it is sensitive to center-of-mass frame velocity dispersions. Measuring R[Ez ]S involves

knowing the velocities of each individual ion, information unavailable with our velocimetry

technique. Therefore, we utilize the simulations to estimate this quantity and obtain R[Ez ]S ≈

6 (Sec. 8.10).

Experimental average velocity distributions were also obtained at various levels of ax-

ial con�nement, and, as expected, higher axial con�nement o�ered superior resolution. To
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exaggerate this e�ect, we performed a shuttle using a linear ramping pro�le prone to ion-

heating and observed that increased con�nement more e�ectively suppressed secular oscilla-

tions [Fig. 8.3(e)]. Probing of even higher axial con�nements was prohibited in our system

by technical considerations.

8.4 Single ion and molecular ion simulation results

While Section 8.3 demonstrates large ion samples can be successfully shuttled, the resolution

is maximized when used with a single ion, where ion heating e�ects are minimal and the ion

shuttling energy can dominate over its micromotion energy. In this section, kinetic energy

will refer to the total kinetic energy of the ion, including both axial and radial motion.

While our experimental optical detection e�ciency prevents extensive single ion mea-

surements, reasonable best-case-scenario simulations are performed with a single Yb+ ion

utilizing the electrode geometry of the MOTion trap and the laser cooling pro�le described

in Section 8.3. Further, laser cooling while shuttling was necessary in the work discussed in

Section 8.3.1 for Doppler velocimetry purposes, but in general laser cooling may be switched

o� during transport if, for example, �ner control of ion electronic state populations is de-

sired. However, we choose to maintain laser cooling throughout the shuttling process in the

following simulations for consistency with the simulations performed in the previous section.

The end-to-end shuttle distance, experimentally limited to ≈ 1 mm by the �eld of view of

our imaging system, is increased to ≈ 2 mm to enhance energy resolution. Further, idealized

waveforms were implemented in the simulation instead of the waveforms measured in the

experiment, where unintended �ltering due to trap electronics and rf pickup caused slight

waveform distortion.

These simulations, presented in Fig. 8.4(a), were performed at two di�erent axial con-

�nements (VDC = 150 V and 35 V) and once again indicate that con�nement plays a pivotal

role in determining energy resolution. When the endcap voltages were raised to 150 V in

the simulation, the rf voltage amplitude was also increased by a factor of 2 relative to the

low-con�nement case to prevent radial defocusing caused by the increased axial con�nement.
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Figure 8.4: Single ion simulation results

(a) Total kinetic energy for a simulated single ion shuttled at various waveform frequencies, using

two separate axial con�nements. The simulations performed at the higher axial con�nement display

higher energy resolutions and exhibit less signi�cant secular oscillations, as evidenced by their

adherence to the waveform-predicted energy, shown in bands. Error bars are expressed at the 1σ

level. The inset to the �gure shows R[E]S , the total kinetic energy resolution including both axial

and radial motion, for the high axial con�nement simulations, with the average resolution of ≈ 35

denoted by the dotted line. Low axial con�nement simulations produced average energy resolutions

of ≈ 20. (b) R[E]S of a simulated ion shuttled at ≈ 100 K of kinetic energy as a function of neutral

cloud spatial dimension. The results are compared to the resolutions that would be expected if the

ions perfectly followed the motion of the equilibrium position without any micromotion or secular

excitation.
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At high enough axial con�nements, further resolution improvement is eventually limited by

the need to operate at increasingly large rf voltages to avoid this defocusing e�ect, forcing

the trap towards high Mathieu q-parameter regimes where the ions become unstable.

At higher energy in particular, the results presented in Fig. 8.4(a) indicate that low axial

con�nement can facilitate secular excitation of the ion motion. The excitation can cause

the ion to either lag or lead the equilibrium position of the moving potential during MOT

interaction, increasing the ion kinetic energy spread. At high enough energies, the shuttling

process is no longer adiabatic, leading to large-scale secular oscillations that signi�cantly

broaden the ion kinetic energy distribution, as evidenced in the increasing energy spreads

for the low axial con�nement points in Fig. 8.4(a). However, increasing the axial con�nement

postpones this behavior until higher energies. For VDC = 150 V, the ion position follows z0(t)

closely for kinetic energies up to 120 K while the kinetic energy resolution, R[E]S , approaches

35 for E & 2 K. Here the resolution is limited by a combination of increased micromotion

energy at the large axial con�nement, minor secular excitation during transport, and non-

uniformities in the velocity pro�le of the shuttling waveform.

On the other hand, for E . 2 K where secular oscillations play less of a role, the resolution

is ultimately limited by excess micromotion compensation techniques, which are typically

accurate to within ∼ 10 mK in quadrupole traps with dimensions similar to that used in

this work. In this low energy regime, VDC ≈ 5 V is optimal since the reduced con�nement

limits micromotion from radial defocusing, permitting R[E]S ≈ 20.

While a 250 µm neutral cloud size was assumed when computing the energy resolutions

in Fig. 8.4(a), further resolution increases can be realized by reducing the size of the neutral

atom sample, thereby also reducing the sampled velocity spread of the ion trajectory. Often

the spatial dimensions of neutral atom traps can be conveniently tuned using optical or mag-

netic �elds, with some atom systems, such as dipole traps, approaching 5 µm in size [ZFT09].

In Fig. 8.4(b), RE is shown as function of wA, with resolutions in excess of 100 predicted

for atom traps nearing the 100 µm regime. Conversely, resolution may also be improved by

increasing the distance between shuttling endpoints for a �xed atom cloud size. Increases

in shuttle distance would also have the added bene�t of mitigating secular oscillations as
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a lower frequency waveform with Fourier components further spaced from ion secular reso-

nances could be used to obtain a given shuttle velocity. However, this improvement would

come at the expense of more di�cult micromotion compensation, as to be discussed below.

The simulations do not consider the e�ect of atom-ion collisions on the ion trajectory;

however, at experimental atomic densities (≈ 1010 cm−3), over the range of energies explored

in the simulations, there is a ≈ 10−3 probability of a collision occurring with the MOT

atoms in a given shuttle cycle. Therefore, any deviations from the expected ion motion

caused by collision events are not expected to in�uence the energy of subsequent collisions,

as there is only a ≈ 10−6 probability of a second collision occurring before the ion motion

is reinitialized through laser cooling at the trajectory endpoints. Additionally, to reduce

the e�ect of background gas collisions on the ion trajectory, the technique may be used in

ultra-high vacuum conditions.

Further, the technique may ultimately be limited by e�ects unconsidered in the simu-

lations, such as patch potentials and electrode charging, that make it di�cult to optimally

micromotion compensate at each trajectory position, especially given the comparatively large

size of the utilized ion trap and the limited number of compensation electrodes.

For example, in our system, if excess micromotion compensation is performed at the

center of the shuttling trajectory, we experimentally observe ∼ 100 mK of uncompensated

excess micromotion at the trajectory endpoints 2 mm displaced from the center point. While

proper compensation throughout the trajectory may be a challenge in certain applications,

we note that proper compensation in the narrow region of MOT interaction is most important

for determining collision energy resolution, as the micromotion amplitude of the ion motion

generally adiabatically follows any local uncompensated electric �eld (see Sec. 8.11 for a more

detailed treatment on the e�ects of excess micromotion on the shuttling process). Further,

axial micromotion may provide additional complications, although radial micromotion will

likely dominate this e�ect. Through simulations performed using our system, we observe

less than a < 2 mK di�erence in ion energy due to axial micromotion between the center of

our shuttling trajectory and a point displaced 2 mm from the center; however, experimental

imperfections may further increase this value.
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To minimize these e�ects, the appropriate electrode shim voltages can �rst be identi�ed

for the ions at each trajectory position while the ions are stationary. Subsequently, the shim

voltages can be updated while shuttling to ensure uniform micromotion compensation as the

ion transits from one endpoint to the other. Additionally, excess micromotion compensation

techniques, such as photon cross-correlation spectroscopy [BMB98] or parametric excita-

tion [KPB15], may be used to compensate micromotion with greater precision and maintain

ions with excess micromotion energies nearing . 5 mK.

While the precise kinetic energy control of laser cooled species is bene�cial, ultimately this

technique may be most useful when applied to molecular ion chemistry, where it can be used

to detect nuances in long range capture models [SLG16] and possibly illuminate rotational

and vibrational resonance features that have thus far evaded current techniques. To explore

this possibility, simulations are performed while shuttling two laser cooled Ba+ ions and

a sympathetically cooled BaCl+ molecular ion, with the resulting energy distributions of

the molecular ion depicted as a function of shuttle frequency and trajectory position in

Fig. 8.5(a) and Fig. 8.5(b), respectively. In contrast to Yb+, Ba+ possesses a Λ level-

structure system, and thus, the three-level optical Bloch equations are solved to account for

coherent-population-trapping e�ects in the simulated laser cooling force.

The results from the simulation demonstrate that, similar to the Yb+ single-ion case,

energy resolutions for BaCl+ approaching 40 are achievable assuming a neutral atom cloud

size of 250 µm, a value over a order-of-magnitude greater than that o�ered by alternative

micromotion-based techniques in this energy range and one that can be further improved

by changing the axial con�nement and employing a smaller atom cloud size, as discussed

earlier in this section. At kinetic energies below 1 K and when combined with a light

mass atomic partner that would yield a low reduced mass, this resolution may be su�cient

to resolve reaction resonance features, which have been predicted to have collision energy

widths of order ∼ 1− 10 mK [SRA15], although the particulars of the resonance of interest

and control of the systematics alluded to above will ultimately determine if this is feasible.

Here, the collision energy is proportional to the reduced mass of the atom-ion system, and

in most current hybrid systems the average and the width of its distribution are typically a
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Figure 8.5: Controlled chemistry implemented with ion shuttling

(a) Simulated energy distributions for a single shuttled BaCl+ molecular ion sympathetically cooled

by two laser-cooled Ba+ ions. The shuttled distributions are presented for a variety of shuttle fre-

quencies and are compared to the theoretical distribution obtained from using the excess micromo-

tion of a single ion to access an average kinetic energy of ≈ 25 K. (b) Simulated BaCl+ kinetic

energy as a function of axial ion position while shuttling. The dashed lines enclose the 250 µm

e�ective region of MOT interaction where the ion velocity is approximately constant. (c) Decay

of Ba+ amount from the LQT as a function of shuttling time when a Ca MOT is placed at the

center of the trajectory. The inset displays superimposed experimental �uorescence images of a

∼ 500-ion Ba+ sample and a Ca MOT containing roughly one million atoms taken while performing

a shuttling reaction rate measurement. The large ion sample utilized in the experiment was initially

liquid upon loading into the LQT and remained so while shuttling.

factor of ≈ 1− 10 smaller than the corresponding kinetic energy values.
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8.5 Demonstration of technique for charge exchange reaction inves-

tigation

As a proof-of-principle experiment, a cloud of ≈ 500 Ba+ ions was loaded into the LQT

and shuttled through a Ca MOT located at the center of the ion trajectory at an average

kinetic energy of 14(4) K. Here the resolution was limited by the inherent excess micromotion

energy of the three-dimensional crystal. Fig. 8.5(c) shows the decay of Ba+ ion amount in the

LQT, measured by the ToF-MS [PMS17], as a function of shuttling duration due to charge-

exchange collisions with ground-state Ca. The inset to Fig. 8.5(c) presents superimposed

images of the atoms and ions obtained during shuttling, with each image taken using separate

laser line optical �lters. The geometric overlap between the atoms and ions was measured

by phase-triggering the EMCCD cameras on the shuttling waveform to acquire ion images,

and hence ion positions, at various points along their trajectory. This technique allowed

for the e�ective imaging of ions with velocities . 50 m/s, bounded by e�ects related to the

minimum camera exposure time of 10 µs. For velocities in this range, the ions are seen to

follow the expected shuttling trajectory, and numerical simulations are used to verify this

trend at higher collision energies. After the overlap factor was veri�ed, measured atomic

densities were used, in a manner similar to Ref. [PMS17], to calculate a total reaction rate

of 2.4(4)× 10−11 cm3s−1, a value consistent with a previously measured result [SRK12] after

ion excited state fraction normalization.

This proof-of-principle experiment demonstrates that this technique can be used to mea-

sure accurate rate constants for reactions between laser-cooled species and neutrals, paving

the way for similar studies incorporating sympathetically cooled molecular ions.

8.6 Conclusion

Blending techniques from the quantum information and hybrid trapping communities, we

have demonstrated a method for controlling ion-neutral collision energy based on ion axial

position modulation that is capable of o�ering energy resolutions, E/σE, from∼ 10−100 over
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kinetic energies ranging from ≈ 0.05 − 120 K. This combination of both range and resolution

improves on alternative techniques that typically compromise one for the other. In addition

to investigating the technique through experiment and simulation, we also performed a

reaction rate measurement by shuttling laser-cooled atomic ions, and we suggested how

the shuttling method may be implemented in future experiments to study molecular ion

chemistry.

Further, the technique can be immediately implemented in currently existing hybrid traps

with little experimental overhead. The shuttling procedure is also quite adaptable, and

properties such as axial con�nement, neutral atom size, and endpoint-to-endpoint shuttle

distance can be custom-tailored to a variety of experimental conditions to obtain desired

energy resolutions while obeying most experiment-speci�c constraints.

Additional improvements may further increase the e�ectiveness of the technique. Ion

traps with mulitple-segmented endcap electrodes that can more reliably compensate micro-

motion and produce more pure harmonic potentials throughout the trap may be utilized,

allowing the ions to be shuttled over longer axial distances and while minimizing their ac-

celeration in the MOT region. Further, if laser cooling during transport is necessary for a

particular application, Doppler shifting of the ions while shuttling may be problematic if

constant electronic state populations are desired. To this end, one may choose to appropri-

ately adjust the frequency of the Doppler cooling laser while shuttling in order to produce

a constant e�ective laser detuning. In addition, a imaging system with higher capture ef-

�ciency and a radial probe beam may be used to apply the Doppler velocimetry technique

towards detecting the radial micromotion of single ions while shuttling and thus set more

realistic bounds on excess micromotion compensation.

Lastly, the waveforms utilized in this proof-of-principle study were largely chosen out of

convenience and speed of implementation. While su�cient for the purposes of this work,

they are by no means optimal. More sophisticated waveforms [Osw15,FGP14,CLM16] that

maintain �atter velocity pro�les while not inducing secular heating may be used if even �ner

energy resolution is required.
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8.7 Corollary calculations and measurements

The following section summarizes ancillary measurements and calculations that were per-

formed to complement the above study.

8.8 Doppler-cooling velocimetry

In order to extract experimental velocities for shuttled ion samples, we �rst take a linescan of

a sample of stationary ions where ion �uorescence is collected by the PMT at various cooling

beam detunings, allowing for determination of both s and δ in Eq. 8.9 in the manuscript.

Laser cooling detunings are determined from a calibrated High Finesse wavemeter coupled

directly to the laser beams in our system.

Once these two parameters have been determined, the ions can then be shuttled while

their total photon scattering rate is measured by the PMT during each acquisition time bin

(∼ 10 ns). For a single ion, after normalizing by the stationary ion count rate, a time-

dependent ratio, η(t), is produced which can be used to solve the equation η(t) = Γscatt(vz(t))
Γscatt(vz=0)

for vz(t). This velocimetry technique is only e�ective at determining motion along the axial

propagation direction of our cooling beam and is insensitive to micromotion or secular motion

in the radial dimension.

Furthermore, since the stationary count rate of our sample changes over the course of the

experiment, due to ion depletion caused by background gas reactions or slight laser power

�uctuations, we renormalize our background ion count rate by collecting ion �uorescence

from the stationary endpoints of the trajectory during each shuttling procedure. We also

collect a stationary ion count rate at each point along the shuttle trajectory to ensure that ion
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�uorescence changes are indeed caused by velocity changes and are not a result of di�ering

laser cooling alignment or light collection e�ciency along the trajectory.

Due to the low optical detection e�ciency of the system, an ensemble of ions must

be interrogated in order to produce a measurement with an adequate signal-to-noise ratio

on reasonable experimental timescales. Consequently, the resulting PMT signal yields the

collective sum of photons captured from the entire crystal of ions, making individual ion

motion indiscernible. Our velocimetry technique therefore e�ectively measures 〈η(t)〉 =∑
i Γscatt(viz)

NΓscatt(vz=0)
≈ Γscatt(〈vz〉)

Γscatt(vz=0)
, where 〈η(t)〉 is the ensemble average count ratio, N is the total

number of ions in the system, viz is the axial component velocity of the ith ion, and 〈vz〉 is the

ensemble average axial velocity of the entire system. The latter approximation is justi�ed

in our regime since the dispersion of velocities is expected to be low during the shuttling

process, as evidenced by simulations described in Section 8.3.

8.9 Spatial and ensemble averaging of distributions

The velocity and also the energy of the shuttled ions exists as a distribution in two separate

dimensions. Firstly, for a multi-ion sample, at a given instance of time, the ions reside in

a distribution of velocities within the crystal itself. The ensemble-averaged measurements

extract the mean of this distribution while remaining insensitive to its spread, which is de-

termined by ion-ion collision events and di�erences in excess micromotion energy. Secondly,

this distribution of velocities within the crystal also changes as a function of shuttle time

as the ions evolve along their trajectory, meaning all ensemble-averaged measurements will

change as well. To assign weighting factors to each measurement, we consider the spatial

overlap of the ions at each instance of time with a neutral sample located at the center of

the trajectory.

The neutral atom density distribution is approximately Gaussian. The spatial weighting

factor associated with the velocity or energy measured in each time bin along the trajectory

is de�ned as wb = e−(zb/wA)2

λ
where zb is the position of the ion during the bth time bin, wA is

the e−1 decay length scale of the atomic density distribution, and λ is a normalization factor

214



chosen such that
∑

bwb = 1. After the weighting factors have been calculated, the mean

and standard deviations of the weighted distribution can be computed to yield the relevant

distribution resolutions [Pat14].

8.10 Experimental energy resolution

We note the distinction between the energy distributions [〈Êz〉]S and [Ez]S. [Ez]S = 1
2
m[v2

z ]S

while [〈Êz〉]S = 1
2
m([〈vz〉2]S). [〈Êz〉]S only approximately describes the average kinetic energy

of the sample as it assumes this quantity is proportional to [〈vz〉2]S instead of [〈v2
z〉]S, the

latter of which is incapable of being measured in experiment. However, this approximation

is reasonable if the energy dispersion of the sample is expected to be small, as suggested by

simulations.

Further, [〈Êz〉]S is a distribution of ensemble-averaged energies and is distinct from [Ez]S,

the distribution of the non-ensemble-averaged axial kinetic energies. The latter is the more

relevant distribution to consider when characterizing overall atom-ion collision energy control

as it contains information on the spread of the entire axial energy distribution and not just

the spread in the average energy of the sample. The simulations predict R[Ez ]S ≈ 6, while

R[〈Êz〉]S ≈ 10 was measured from experiment. R[Ez ]S is smaller than R[〈Êz〉]S for a variety of

reasons. For example, within a large ion crystal, the ions may experience slightly di�erent

potentials at di�erent points within the crystal and therefore reach di�erent peak velocities,

dispersing their overall energy distribution while keeping their average energy constant.

8.11 The e�ect of micromotion on shuttling trajectories

An uncompensated o�set electric �eld will displace the ion from the rf trap null and lead

to excess micromotion energy. Currently, in our system, excess micromotion energy is com-

pensated by iteratively changing the Mathieu-q and Mathieu-a parameter of our trap and

adjusting compensation voltages on the LQT electrodes until the ion position changes min-

imally with trap parameter modulation, as veri�ed through camera imaging. Ultimately
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Figure 8.6: E�ects of micromotion on shuttling energy

(a) Energy as a function of axial shuttle distance for a single ion in a perfectly excess micromotion

compensated system at various shuttling frequencies. (b) The same simulations in (a) repeated with

an additional electric �eld o�set of 4.2 V/m. The micromotion broadens the energy distribution and

shifts the average energy upwards from the perfectly compensated simulations in (a). The 4.2 V/m

o�set is consistent with what can currently be compensated in our system.(c) Simulations of an ion

being shuttled with radial electric �eld gradients of varying strengths (i-iii) imposed upon the ion.

The ions are assumed to be perfectly compensated at the center of the trajectory with the electric

�eld rising linearly in a symmetric fashion for displacements from the center. The labels re�ect the

maximum electric �eld the ions experience at the outer points of the trajectory. As can be seen in

the �gure, the ions respond nearly adiabatically to the local micromotion compensation at a given

point along the trajectory, making the energy resolution of the ions during MOT interaction less

sensitive to the energy resolution of the ions at other points in the trajectory. Approximate regions

of MOT interaction are shaded in red (color).
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our technique is limited by our imaging resolution of ≈ 5 µm, leading to excess micromo-

tion uncertainties of ≈ 30 mK. This value could certainly be improved with more sophis-

ticated micromotion-compensation techniques, such as photon correlation spectroscopy or

parametric excitation, that have been shown to limit displacements from the null to ≈ 1

µm [BMB98,KPB15], which would potentially result in roughly a factor of 25 improvement

in the minimum excess micromotion energy obtainable in our system.

To illustrate how excess micromotion would a�ect the shuttling trajectory, we performed

additional simulations with a single ion being shuttled at low energy, where micromotion

more signi�cantly a�ects energy resolution. In the simulations, stray voltages were imposed

on trap electrodes to cause a constant ≈ 5 µm shift of the ion from the trap null during

shuttling (approximately equal to our current micromotion compensation limits), and the

results were compared to a perfectly compensated case. The trap and shuttling parameters

utilized during these simulations are as follows: VDC = 5 V, Vamp = 1.2 V, γ = 0.03, and

ω ∼ 2π · (25− 45) Hz.

As can be seen in Fig. 8.6(a) and (b), the additional micromotion energy leads both to an

upward shift in average kinetic energy as compared to the compensated case and a broader

energy distribution. Under perfect compensation, kinetic energy spreads of . 10 mK are

obtainable, whereas this number is increased to . 100 mK in the simulations with excess

micromotion.

Due to stray �elds and patch potentials on the electrodes, the o�set electric �eld experi-

enced by the ion may not always be constant and may change during the shuttling trajectory.

However, the closest sources of charge that could produce such �elds reside on the trap rods,

and thus these �elds are expected to scale as ∼ 1/(r0−re)2, where re is the electrode radius of

our trap rods. While the charges could be arranged in a cluster of any size, point sources may

be particularly problematic since without neighboring charges to broaden their potential, the

electric �eld they produce may change signi�cantly along the shuttling trajectory.

Given the large dimensions of the trap relative to the shuttle trajectory, we can approx-
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imate the potential of these �elds as

Φ(r, z) =
Q

4πε0

1

(r2 + z2)1/2
≈ Q

4πε0

1

r

(
1− 1

2

(z
r

)2
)

(8.10)

which leads to an radial electric �eld gradient with respect to the trap axial dimension

along the trap null of

∂

∂z
Er(r, z)|r→(r0−re) =

∂

∂z

∂

∂r
Φ(r, z)|r→(r0−re)

≈ Q

4πε0

z

(r0 − re)4

(8.11)

where Φ(r, z) is the electrostatic potential due to a point charge on a rod located a trap

electrode, Q is the charge of the point charge of interest, ε0 is the vacuum permittivity of

free space, r is the radial dimension of the trap, Er(r, z) is the component of the electric �eld

in the radial direction, and (r0− re) is the distance between the surface of the electrode and

the center of the trap (r0 − re = 4.1 mm in our system).

While the magnitude of the electric �eld at any given trajectory point can certainly be

signi�cant enough to pull the ion o� the null, the �elds vary approximately linearly as a

function of axial distance. Therefore, we investigated the in�uence of a linearly varying

electric �eld gradient on the shuttling procedure.

Using the same simulation parameters as in the above-mentioned excess micromotion

simulations, we initialized an ion with idealized micromotion compensation at the center of

the shuttling trajectory. We then also included an o�set electric �eld that varied linearly

with axial trap distance, serving to push the ions o� the null as they progressed further from

the trajectory center point during the shuttle.

As the total charge producing such patch potentials is di�cult to estimate, the results for

a variety of reasonable electric �eld strengths are presented in Fig. 8.6(c). Even though the

ions experience signi�cant excess micromotion at the trajectory endpoints, since the changes

in radial displacement from the null occur gradually, the ions can respond nearly adiabatically

to the local excess micromotion amplitude at each trajectory position. Therefore when the

ions reach the MOT region, where the micromotion has been compensated adequately, they

218



experience very little excess micromotion. For all �eld gradients explored in Fig. 8.6(c), the

kinetic energy widths are predicted to be within 10% percent of the perfectly compensated

value of 14 mK, assuming ωA = 200 µm.

Of course, multiple charge patches could result in a stronger gradient along the axial

trap dimension. If the gradient is strong enough, the ions could respond non-adiabatically

to sudden changes in radial positions along the shuttling trajectory, inducing radial secu-

lar oscillations that could signi�cantly compromise the energy resolution. However, when

imaging the ions while stationary at various points along the trap axis, no such electric �eld

pro�le is observed, and the ions are found to be within ≈ 10 µm of the trap null at all points

along the trajectory for given set of micromotion compensation shimming voltages (while

operating the trap at radial secular frequency of ≈ 2π · 45 kHz). Additionally, all �elds

explored in Fig. 8.6(c) above 4.2 V/m produces ion displacements from the null greater than

that observed experimentally, further reducing the likelihood that strong electric �elds that

could compromise ion energy resolution exist in our system. These results indicate that

if compensating micromotion throughout the trajectory is technically infeasible for a give

experimental setup, the less challenging task of compensating in the narrow region of MOT

interaction may provide similar results.
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CHAPTER 9

Synthesis of a mixed hypermetallic oxide

Hybrid trapping platforms provide excellent environments for the control and study of chem-

ical reactions; however, up until this point, the vast majority of such research has been

performed using atoms and atomic ions. Such studies have produced fascinating results;

however, extending these techniques to more complex polyatomic molecules would allow the

tools of ultracold physics to be applied to systems of greater interest to the chemistry and

biology communities.

Hypermetallic alkaline earth (M) oxides of formula MOM have been studied under plasma

conditions that preclude insight into their formation mechanism. We present here the appli-

cation of emerging techniques in ultracold physics to the synthesis of a mixed hypermetallic

oxide, BaOCa+. These methods, augmented by high-level electronic structure calculations,

permit detailed investigation of the bonding and structure, as well as the mechanism of its

formation via the barrierless reaction of Ca (3PJ) with BaOCH+
3 . Further investigations of

the reaction kinetics as a function of collision energy over the range 0.005 K to 30 K and of

individual Ca �ne-structure levels compare favorably with calculations based on long-range

capture theory.

9.1 Background motivation

Molecules usually contain their constituent atoms in well-de�ned ratios predicted by classical

theories of valence. Hypervalent species, however, are well known, and provide an oppor-

tunity to look more deeply into chemical bonding [NSG02] and to anticipate and predict

new chemical species and structures that may have exotic or useful properties [UOY10]. An
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interesting class of hypervalent molecules is the hypermetallic alkaline earth (M) oxides of

form MOM. Theory reveals the bonding in these linear molecules as donation of an electron

from each metal atom to the central O atom, resulting in a system in which the central atom

is closed shell, inhibiting coupling between the radical centers on the terminal metal atoms.

As a result, the singlet-triplet splitting is very small and its prediction sensitive to the level

of theory applied. The hypermetallic alkaline earth oxide BeOBe and its cation have recently

been investigated by Heaven and coworkers using a range of spectroscopic tools, augmented

by high-level electronic structure calculations [MBH09,ABH11]. For BeOBe, the singlet was

found to be the ground state, just 243 cm−1 below the triplet. Theoretical predictions of

bonding and structure have also been reported for MgOMg [OBS11], CaOCa [BSG12], and

SrOSr [OJS13].

Given these properties, MOM molecules and their cations provide an opportunity to

benchmark quantum chemical calculations and explore bonding in molecules containing M

atoms in the +1 oxidation state, which have recently been produced and are expected to

be useful for inorganic synthesis [GJS07]. For mixed hypermetallic oxides MOM', dramatic

e�ects on the electronic structure, single-triplet splitting, and excited state spectra may be

expected to result from breaking the metal atom symmetry, leading to unusual inorganic

diradicaloid systems [Abe13]. In addition, for the mixed cations the asymmetric hole distri-

bution impacts both the dipole moment and bonding. All of these properties could be tuned

through choice of metal atoms for applications such as nonlinear optics, materials science,

or as synthetic intermediates [NC15]. One challenge to such investigations is to develop a

means to synthesize these molecules under controlled conditions and probe the pathways

leading to their formation. Cations are a natural �rst target for such investigations as they

can be manipulated and detected with great ease and sensitivity.

Emerging techniques in ultracold physics are now being adapted to the study of chemical

systems, bringing new capabilities to probe reaction dynamics and mechanisms [EDP15,

DKW11, Hud16]. Recently, a study of the reaction of conformers of 3-aminophenol with

laser-cooled Ca+ ions revealed a fascinating dependence on conformational state [CDK13];

quantum state resolved collisions between OH and NO [KWS12], as well between N+
2 and
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Rb [HW12], have been observed; and quantum e�ects were found to have a major impact

on state-resolved KRb reactions [ONW10]. Reactions involving polyatomic reagents are a

compelling target for such studies as these techniques may be used to cool these species into a

limited number of quantum states, as well as provide precise control over reaction conditions.

Here we describe use of a magneto-optical atom trap coupled to an ion trap and time-of-

�ight mass spectrometer to synthesize a mixed hypermetallic alkaline earth oxide, BaOCa+.

These methods, augmented by high-level electronic structure calculations, permit detailed

investigation of the properties of this molecule as well as the mechanism of its formation via

the barrierless reaction of Ca (3PJ) with BaOCH+
3 .

9.2 Experimental characterization of reaction

The collision energy of the trapped ions and atoms in this study, de�ned as E/kB, where E

is the kinetic energy of the collision complex and kB is the Boltzmann constant, ranged from

0.005 K to 30 K, depending on the size of the ion crystal loaded into the LQT. A standard

Ba+ crystal was used as a sympathetic coolant for other trapped ions (Fig. 9.1B). In a typical

experimental sequence, Ba+ ions were initially loaded into the LQT through laser ablation of

a BaCl2 target. From this initial sample, a small number of BaOH+ and BaOCH+
3 ions were

created by the reaction of Ba+ with CH3OH [DSL93] introduced into the vacuum chamber

at a pressure of ∼ 10−10 Torr. The BaOCH+
3 molecules were translationally cooled by the

Ba+ crystal. Recent studies [RSS12] indicate that collisions with the ultracold Ca atoms

of the MOT should also cool their ro-vibrational internal degrees of freedom; however, ab-

sent spectroscopy of BaOCH+
3 , we assume an internal temperature of < 300 K, bounded by

the temperature of our vacuum chamber. Once a su�cient number of BaOCH+
3 molecules

were produced, BaOH+ ions could be removed from the LQT by resonantly exciting their

motion at a mass-speci�c secular frequency; afterwards, the puri�ed sample was immersed

in a radius r ≈0.6 mm cloud of three million Ca atoms at 0.004(2) K (Fig. 9.1B). After a

variable immersion time, ti, the voltages of the LQT were adjusted to eject the ions into

the ToF, yielding mass spectra (Fig. 9.1C). The ToF spectra indicated the formation of a
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Figure 9.1: Experimental schematic of the hybrid system and ToF apparatus

(A) A schematic of the experimental apparatus, including the LQT, the high voltage pulsing scheme

(shown as solid and dashed lines), and the ToF. (B) An illustrative experimental time sequence that

depicts initialization of a Ba+ crystal, production of BaOCH+
3 (visualized as dark ions in the crystal)

through reactions with methanol vapor, and subsequent MOT immersion. (C) Sample mass spectra

obtained after ejecting the LQT species into the ToF after various MOT immersion times, ti, along

with an inset depicting a superimposed �uorescence image of an ion crystal immersed in the Ca

MOT. (D) Mass spectra of photofragmentation products collected after inducing photodissociation

of BaOCa+. The identi�ed photofragments were used to verify the elemental composition of the

product.

reaction product with mass-to-charge ratio m/z of 193(1) amu, which is consistent with that

of BaOCa+ (193.9 amu). We con�rmed the assignment by introducing a photodissociating

laser into the LQT and analyzing the dissociation fragments of the molecule (see Sec. 9.9).

Depending on which dissociation pathway was resonant with the laser, fragments were de-

tected with mass-to-charge ratios of either 40(1) amu or 153.7(3) amu, consistent with Ca+

and BaO+, respectively (Fig. 9.1D).
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9.3 Electronic Structure Calculations

To aid in the interpretation of the experimental results, electronic structure calculations

were performed for the Ca + BaOCH+
3 → BaOCa+ + CH3 reaction [WKK12a, FTS09].

Optimized geometries for BaOCH+
3 and BaOCa+ and their fragments were obtained from

density functional theory (DFT) using the triple-zeta correlation consistent basis sets (cc-

pwCVTZ on calcium and barium and cc-pVTZ on hydrogen, carbon, and oxygen) and the

B3LYP density functional. The inner shell electrons of calcium and barium were described

by an e�ective core potential (ECP). Harmonic vibrational frequencies were computed at

all stationary points. The calculated vibrational frequencies were used to characterize the

stationary points as minima or saddle points and to obtain vibrational zero point energies.

Coupled cluster theory including single and double excitations with perturbative triples,

denoted CCSD(T), was used to estimate thermochemical energy di�erences. To check the

validity of the DFT geometries for this problem, the CCSD(T) energies of the stationary

points were recalculated at geometries obtained from second-order Møller-Plesset (MP2)

theory, and the changes in thermochemical energy di�erences were less than 1 kcal/mol. DFT

and MP2 o�er di�erent approaches to the electron correlation problem, but they predict

geometries of generally comparable accuracy. Discrepancies between them would be an

indication that a higher level of theory should be used, but their agreement here suggests

such methods are not warranted. The electronic structure calculations were performed using

the Gaussian 09 and Molpro 2012 program packages [WKK12a,FTS09].

The calculated results show the Ca (1S0) + BaOCH+
3 → BaOCa+ + CH3 reaction to be

exothermic by 5.3 kcal/mol at the CCSD(T)/cc-pVTZ level of theory. Interestingly, at this

level of theory, most of the exothermicity results from a loss of vibrational zero point energy

between reactants and products. At the more expensive CCSD(T)/cc-pV5Z level of theory,

the heat of reaction is increased to 8.4 kcal/mol.

In mixed hypermetallic oxides, the electronic degeneracy of the metal atom locations

is removed and our calculations predicted electron localization on the Ca atom due to its

higher ionization potential (Fig. 9.2A). This conclusion was supported by a natural bond
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order analysis assigning partial charges of +1.67 to barium and +0.91 to calcium in BaOCa.

Calculations also indicated the ion has a signi�cantly larger permanent dipole moment (2.80

D) than neutral BaOCa (1.32 D), again supporting principal removal of Ba-centered electron

density upon ionization. The �rst strong electronic transition in BaOCa+ corresponds to

transfer of this electron density from Ca to Ba. As this electron does not strongly participate

in the molecular bonding, the associated Franck-Condon factors are moderately diagonal and

may allow optical cycling and detection [BMN14]. We calculated the ionization energy of

BaOCa to be 4.18 eV, slightly higher than in BaOBa (experimentally reported as 3.87 eV

(28)) but closer to BaOBa than CaOCa, calculated to be 4.90 eV.

The dipole moment calculation was performed at the B3LYP/cc-pVTZ level, using broken

symmetry unrestricted Hartree-Fock (UHF) for the singlet neutral, whereas the singlet-triplet

splitting was calculated at the projected third-order Møller-Plesset (PMP3/cc-pVTZ) level

of theory, again using broken symmetry UHF for the singlet neutral. Further, the ionization

energy was determined at the CCSD(T) with UHF reference/cc-pVTZ level.

The intrinsic reaction coordinate (IRC) calculation, depicted in Fig. 9.2B, was performed

at the B3LYP/cc-pVTZ level of theory, revealing the existence of two bound BaOCH3Ca+

complexes, one in the entrance channel and one in the exit channel. The structure and

relative energy of both of these structures are investigated at the CCSD(T)/cc-pVTZ level

of theory, indicating the existence of a barrier to the reaction, whose height is 10.2 kcal/mol.

The IRC calculations were performed using the Hessian based predictor-corrector integrator

method of Hratchian and Schlegel. The Hessian was recomputed at each integration step.

It is possible that multi-reference e�ects may be signi�cant in this system. To assess

the need for a multi-reference description, valence complete active space (CAS) multi-

con�gurational self-consistent �eld (MCSCF) calculations were performed on all the singlet

and triplet structures presented in Fig. 9.2A. The weight, de�ned as the square of the con-

�guration interaction (CI) coe�cient, of the reference Hartree-Fock con�guration is shown

to be 94% in the triplet state and 80% in the singlet for the transition state (TS) structure,

indicating that multi-reference e�ects play a role in the singlet, but not the triplet, TS. The

second most important con�guration in the singlet TS has a weight of 13%, while all others

225



are found to be less than 2%. Natural orbital analysis of the broken symmetry UHF wave-

function for the singlet TS shows two natural orbitals with signi�cant fractional occupation

(1.2 and 0.8), indicating the broken symmetry UHF gives an approximate description of the

two most important con�gurations in the CAS wavefunction. A CCSD(T)/VTZ calcula-

tion using the broken symmetry UHF wavefunction as a reference results in a 3.4 kcal/mol

increase in the barrier height. Further, CI coe�cients for the remainder of the structures

along the triplet pathway demonstrate reference con�guration weights ≈93%, allowing us

to conclude that multi-reference e�ects would not signi�cantly alter the conclusions of our

computational study (Table 9.1).

Calculations for neutral BaOCa predicted that, like BeOBe, it is a diradicaloid system

with a similarly small singlet-triplet splitting of only 407 cm−1 but with very di�erent energies

for the radical centers. The small singlet-triplet splitting in neutral MOM' molecules is a

manifestation of the spin uncoupling on the metal centers. The reaction experimentally

studied in this work produces the BaOCa+ cation and a CH3 coproduct, two doublets whose

spins are uncorrelated, and thus, the singlet-triplet splitting vanishes and the potential energy

surfaces are degenerate.

9.4 Experimental search for reaction pathway

Given that the predicted barrier is insurmountable at experimentally realized collision en-

ergies and that the tunneling probability through the barrier is negligible, we hypothesized

the observed synthesis occurred through an electronically excited state of the Ca reactant.

To test this explanation, we varied the Ca electronic state populations via control of the

Ca MOT lasers and measured the resultant changes in BaOCa+ production. The excited

state populations of the Ca atoms were determined from a rate equation model spanning 75

electronic states that incorporated the intensities and detunings of all near-resonant laser

�elds present in the MOT trapping volume [MPY17]. The chemical reaction rate for the

Ca + BaOCH+
3 → BaOCa+ + CH3 reaction is given by Γ = nCakt, where nCa is the Ca

atom number density and kt the total reaction rate constant, which is found as kt =
∑

i piki,
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Stationary point Singlet surface con�guration weights (%) Triplet surface con�guration weights (%)

Ca 100(0) 100(0)

BaOCH+
3 94.8(0.5) 94.8(0.5)

Entrance channel complex 88.7 (7.3, 1.6) 95.8(0.6)

Transition state 80.3(13.1, 1.8) 94.5(0.5)

Exit channel complex 93.9(0.8) 94.8(0.5)

BaOCa+ 99.2(0.7) 99.2(0.7)

CH3 96.7(0.4) 96.7(0.4)

Table 9.1: MCSCF calculations to assess multi-reference e�ects

CAS MCSCF calculations were performed on all singlet and triplet structures displayed in Fig. 9.2A

to verify multi-reference e�ects do not play a signi�cant role in our computational study. The weight,

as given by the square of the CI coe�cient, of the Hartree-Fock con�guration is presented for the

triplet and singlet structures, along with the weights of the second most signi�cant con�guration in

parenthesis. For select cases along the singlet surface where the weight of the Hartree-Fock con�gu-

ration is shown to be less than 90%, the weight of the third most signi�cant reference con�guration

is also subsequently presented in parenthesis, with all such con�gurations having weights less than

two percent. While secondary con�gurations appear to be most signi�cant in the singlet transition

state, a CCSD(T)/VTZ calculation involving a broken symmetry UHF wavefunction incorporating

the two most signi�cant reference con�gurations indicates a barrier height increase of 3.4 kcal/mol,

further con�rming the existence of a barrier to reaction along the singlet surface. The initial re-

actant and �nal product states have the same con�guration weights for both the singlet and the

triplet, explaining their equivalency in the table.
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Figure 9.2: BaOCa+ production mechanism

(A) Energy of stationary points along the Ca 1S0 (black) and 3PJ (red) reaction pathways calculated at the CCSD(T)/cc-pV5Z

level of theory. The corresponding energies for the singlet (triplet) pathway in kcal/mol are, from left to right, 0 (43.5), -25.5

(-13.9), 10.2 (18.1), -56.4 (-11.3), and -5.3 (-5.3). The presence of a barrier in the Ca 1S0 pathway precludes reaction at low

temperature, while the transition state in the triplet pathway is well below the energy of the reactants and does not prevent

the exothermic reaction to BaOCa+ and CH3. The geometries of the complexes at each stationary point are shown below

(above) the singlet (triplet) pathway. The inset displays the linear geometry of the BaOCa+ molecule and its open shell highest

occupied molecular orbital. (B-C) Energy along the IRC for both the singlet (B) and triplet (C) surfaces calculated at the

B3LYP/cc-pVTZ level of theory. The circles correspond to the stationary points in (A), and all energies are given with respect

to the ground state reactants. (D) Experimental total reaction rates plotted as a function of aggregate triplet Ca population,

presented alongside a linear �t to the data (weighted by the reciprocal of the standard error squared) and its corresponding

90% con�dence interval band. Experimental uncertainties are expressed at the one-sigma level. The inset shows the temporal

evolution of both BaOCH+
3 and BaOCa+ amounts, normalized by initial Ba+ number, in the LQT as a function of MOT

exposure time as well as the solutions of di�erential equations globally �t to 250 kinetic data points in order to extract reaction

rate constants, with a reduced chi-square statistic of 1.03 specifying the goodness-of-�t to the displayed data set.
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where pi and ki are the population and reaction rate constant of the ith Ca electronic state,

respectively. The total reaction rate constant was experimentally measured by monitoring

the amount of both BaOCH+
3 and BaOCa+ present in the LQT as a function of interaction

time with a Ca MOT of known density. The solution of a di�erential equation incorporat-

ing all measured loss and production rates for each molecular ion due to photodissociation,

chemical reactions, and background loss was then �t to the reaction kinetics data in order

to determine kt.

This system of di�erential equations is similar to that presented in Eqn. 6.2, except

additional reaction and loss pathways have been included to account for interactions with

the MOT and potential photodissociation processes. The general di�erential equation given

for the ion number of the ith species in the trap, Ni, is determined as

dNi

dt
= −ηCaÔCaki,CEX −

∑
j,l

ηlÔlki+l→jNi +
∑
j,l

ηlÔlkj+l→iNj − λLNi (9.1)

where Ôn is overlap factor for the ions with the nth neutral sample, ki,CEX is the charge-

exchange rate constant between the ith ionic species and Ca, ki+a→j is the reaction rate

constant for the i + a → j reaction, ηn is the atom-number density for the nth neutral

reactant, and λL is the loss rate associated with photodissociation and natural trap loss.

The main neutral reactants of interest are Ca, in its various electronically excited states, and

CH3OH. Here, we present the charge-exchange processes outside the summation for clarity.

Lastly, back reactions are included in the above di�erential equation for thoroughness, but

these processes do not necessarily occur for all reactions and their associated rate constants

may �t to 0 when compared to the data.

The experimentally measured reaction rate exhibited no statistically signi�cant depen-

dence (see Sec. 9.8.1) on the population of the singlet Ca electronic states involved in the

laser cooling process, i.e. the 4s2 1S0, 4s4p 1P1, 4s5p 1P1 and 3d4s 1D2 states. This observa-

tion is consistent with preliminary theoretical calculations, which suggested that a reaction

barrier, similar to that of the Ca (1S0) + BaOCH+
3 channel, exists on all of these singlet

channels.

Studies have shown [MPY17,OBF99] spin-forbidden optical transitions lead to the pro-
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duction of a small number of Ca atoms in the 4s4p 3PJ states (Fig. 9.3C) in Ca MOTs.

Though atoms in these metastable states are not trapped by the MOT force, they are con-

tinually produced, leading to a steady-state population in the trapping volume. Further,

controlling the MOT lasers can vary the electronic populations in these states and reveal

how they a�ect the reaction rate in a manner similar to studies of the singlet state. In

particular, the primary method for varying population in the 3PJ levels is controlling the

power of the 423 nm beam, which is used to drive the cooling transition for the MOT. The

423 nm beam intensity directly can a�ect the amount of population in the 1P1 state and,

since the 3PJ levels are populated primarily through decay channels from the 1P1 state, also

has an e�ect on the total 3PJ population.

The observed reaction rate as a function of total population in the 4s4p 3PJ states is

shown in Fig. 9.2D, with a characteristic kinetics data set and the corresponding �tted so-

lutions shown in the inset. Here, the linear dependence of the reaction rate constant on

the 4s4p 3PJ population was shown to be consistent with zero vertical intercept, suggesting

that the observed formation of BaOCa+ initiates predominantly along the triplet Ca (3PJ)

+ BaOCH+
3 surface. While non-adiabatic interactions from the excited singlet surfaces cou-

pling to other electronic states could permit reaction despite the calculated barriers, the

experimental observations indicate that these e�ects, if present, do not play a signi�cant

role. Additionally, since the collected data is sensitive to reaction entrance channel, but not

necessarily to the surface along which the reaction completed, events where coupling from

the triplet surface to the singlet surface occurred and resulted into reaction would not be

experimentally distinguishable from reactions evolving exclusively along the triplet surface.

9.5 Veri�cation of triplet reaction pathway

In order to verify the Ca 3PJ pathway of the reaction, we performed two additional ex-

periments. First we measured the reaction rate of Ca atoms in a single internal quantum

state, the |3P2,mJ = 2〉 state, by loading MOT atoms in this state into a magnetic trap and

overlapping them with the ions. This experiment showed unequivocally that the reaction
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occurs between a Ca atom in the 3PJ state and a BaOCH+
3 ion. In the second experiment,

we employed additional optical pumping lasers to populate only a single 3PJ state during Ca

MOT operation, enabling the extraction of �ne-structure-resolved reaction rate constants

for the 3P states.

Under normal MOT operation, multiple energy levels in the laser cooling cycle are pop-

ulated simultaneously. Although the triplet population data in Fig. 9.2D suggests the 3PJ

pathway of the reaction, it is possible that other electronic states may be contributing to the

observed reaction through non-adiabatic processes. The magnetic trap, introduced above,

provides a means to isolate a sample of triplet Ca atoms and ensure that reaction initi-

ates on the triplet surface. The magnetic trap, a separate atom trap from the MOT whose

non-optical trapping force is produced by the MOT �eld gradients, serves as a nearly pure

reservoir of Ca triplet atoms since only atoms in the |3P2,mJ = 2〉 state have large enough

magnetic moment to produce signi�cant atomic trap densities.

In the magnetic trapping experiment, ions were �rst initialized as described earlier. To

ensure that reaction only occurred between the magnetically trapped Ca atoms and BaOCH+
3

molecules, the voltages of the LQT were adjusted such that BaOCH+
3 ions were �rst displaced

from the center position of the MOT by ∼3 mm, corresponding to a displacement of ∼5

MOT radii, precluding background reactions from direct MOT-BaOCH+
3 overlap. After

the magnetic trap was loaded to capacity, the MOT was depleted by extinguishing the

atom cooling beams, removing any background Ca MOT atoms from the magnetic trap

region within ∼5 ms. The endcap voltages were then adjusted to shuttle the ion crystal

to the center of the magnetic trap, allowing it to react directly with a nearly pure sample

of |3P2,mJ = 2〉 atoms for the duration of the magnetic trap lifetime (∼1000 ms), and this

process was repeated up to 100 times for each ion crystal. Here, mJ is de�ned with respect

to the trap magnetic �eld direction, whereas the relative velocity vector de�ning the reaction

is isotropically distributed, meaning the Ca mJ sublevel is not controlled along the reaction

quantization axis.

BaOCa+ accumulation in the LQT was observed to increase with BaOCH+
3 magnetic

trap immersion time, whereas the chemical reaction rate for a control case, where an optical
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pumping laser was used to depopulate 3P2 atoms throughout the experiment and thus deplete

the magnetic trap, was consistent with zero (Fig. 9.3B). When |3P2,mJ = 2〉 atoms were

present in the magnetic trap, a reaction rate constant of ∼ 10−9 cm3/s was measured,

consistent with the reaction rate measurement described earlier. Here, �uorescence imaging

and spatial estimates of the magnetic trap derived from the magnetic �eld gradients of the

MOT were used to estimate the 3P2 atom number density needed for the rate constant

calculation. The uncertainty of this estimate prevents a more precise measurement of the

reaction rate constant.

Therefore, to �nd more accurate reaction rate constants and to resolve the rate constant

for each of the 3PJ �ne-structure states, optical pumping lasers were used to deplete popu-

lation from two 3PJ levels simultaneously, isolating population in a single triplet state while

reaction kinetics data were measured. All three measured �ne-structure resolved reaction

rate constants (Fig. 9.4D) were of order 10−9 cm3/s, with the 3P1 state exhibiting the largest

rate constant value of 5.4(9) × 10−9 cm3/s. These results are in reasonable agreement with

predictions from a long range capture theory (see below).

9.6 Triplet reaction pathway and long-range capture model

Having concluded experimentally that the synthesis of BaOCa+ occurs via the triplet chan-

nel, electronic structure calculations, as described earlier, were performed to characterize

the Ca (3P) + BaOCH+
3 → BaOCa+ + CH3 reaction. Although the general features of

the triplet potential energy surface leading to the two product doublet molecules were sim-

ilar to those discussed above for the ground state, the transition state for reaction on the

triplet surface (Fig. 9.2C) was calculated to be 25.4 kcal/mol (CCSD(T)/cc-pVTZ ) below

the energy of the reactants (Fig. 9.2, A and B), meaning the reaction proceeds without bar-

rier for each 3PJ �ne-structure state. The ground state and triplet potential surfaces both

have entrance channel complexes that feature a strongly bent Ba-O-Ca backbone with the

methyl attached to the oxygen while retaining the pyramidal sp3 con�guration. The ground

state exit channel shows a strongly bound complex with the methyl chemically bound to
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Figure 9.3: Experimental schematic of the hybrid system and ToF apparatus

(A) The number of atoms (normalized by the initial atom amount in each trap) in both the magnetic

trap and the MOT probed as a function of experiment time by monitoring the amount of �uorescence

produced from each when illuminated with a near-resonant laser. A typical experimental time sequence is

also presented, along with scaled false-color �uorescence images of both the atoms and ions for illustration.

Approximate spatial scales, provided separately for the atom and ion images, are also displayed for reference.

Ions are initially displaced from the MOT as the magnetic trap is loaded. At ts, the atom cooling beams are

extinguished to deplete MOT atoms from the magnetic trap region, and the LQT endcaps are subsequently

adjusted at tm to overlap the ions with the center of the magnetic trap for roughly 500 ms, enabling BaOCH+
3

reactions with Ca (3P2) atoms. (B) BaOCa+ accumulation, expressed as a fraction of initial Ba+ amount,

plotted as a function of interaction time with the magnetic trap. A control case where a laser is used to

depopulate the 3P2 Ca level during magnetic trap loading is also presented. Fitted solutions to di�erential

equations, obtained in the same manner as those in Fig. 9.3C, are presented alongside the data, and, after

estimating the magnetic trap density, they yield reaction rate constants of 8(3) × 10−9 cm3/s and 0(3) ×

10−9 cm3/s for the experimental case and the control, respectively. (C) A level scheme for Ca including the

relevant electronic states involved in the laser cooling process, with the reactive 3P0,1,2, states highlighted.

Ca, whereas the triplet exit channel minimum may be characterized as a van der Waals

type interaction between a planar methyl radical and the incipient BaOCa+ molecule. This
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reaction shows very di�erent dynamics on the singlet and triplet surfaces, but in contrast to

the commonly seen case of a singlet atom inserting into a covalent bond [GLS03], here the

triplet is more reactive as the singlet-triplet splitting is signi�cant in the calcium atom but

small at the transition state and in the product.

Given that calculations suggest the reaction is barrierless, we expect that the observed

reaction rate can be estimated from long-range capture theory. As the ion approaches the

Ca atom, the quadrupole moment of the Ca 3PJ state leads to a long-range R−3 interaction,

in addition to the usual R−4 polarization potential. We assume that both interactions take

place at large separations between reactants, and treat BaOCH+
3 as a point charge. Using

treatment developed in other work [Mie73], we evaluate the potential curves for Ca (3PJ)

in states (J, |mJ |), using the 3PJ quadrupole moment Q and the static polarizabilities αxx

and αzz calculated elsewhere [MZ08]. Accounting for the spin-orbit coupling [Mie73] and

using the �ne structure intervals from NIST [SC85], we obtain the potential curves shown in

Fig. 9.4B. The curves for ±mJ are identical, resulting in three distinct curves for J=2, two

for J=1, and a single curve for J=0. The e�ect of the quadrupole is non-trivial, leading to

barriers that reduce reaction rates for some channels or more attractive curves that increase

the reaction rates for others. We assume a conservative estimated variation of 10% of the

adopted values (in atomic units) of Q = 12.9, αxx = 295.3, and αzz = -28.37 from [MZ08]

to account for the range of published values for these quantities [Der01,SCG04,MTR01].

After the curves were obtained, to compute theoretical energy-dependent reaction rates,

we employed a simple Langevin capture model [Lan05,DMW58]. Fig. 9.4B shows the results

for each (J, |mJ |) state as a function of the collision energy. An energy-dependent rate

constant for each �ne structure component J (Fig. 9.4C) was calculated by summing over

the mJ components. Whereas at collision energies greater than ∼10 K the rate constants

decrease with J, this trend shifts drastically at lower temperatures and even reverses for

collision energies below ∼1 K.

Finally, to directly probe for the existence of a barrier on the triplet surface, we monitored

the collision energy evolution of the reaction rate constant. Since the micromotion energy in

an ion trap scales with the spatial radial width of the ion crystal, average collision energies
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can be controlled by simply changing the size of ion crystals initially loaded into the LQT .

Using this method, we probed reaction rates at average collision energies ranging from 0.1 K

to 30 K and compared the results (Fig. 9.4E) to the capture theory prediction weighted by

the spatially-dependent energy distribution of the ions. As seen here, the measured reaction

rate constant does not have a strong collision energy dependence over these temperatures

and agrees with the capture theory calculation, indicating a barrierless reaction. Here, the

theoretical uncertainty band is based on a 10% range in published theoretical values for the

quadrupole moments and polarizabilities used in the molecular potential calculations is also

included [Der01,SCG04,MTR01].

Further, in experiments with linear ion chains, BaOCa+ formation was still observed at

the lowest collision energies reached of ∼0.005 K, con�rming the absence of potential barriers

to the reaction at temperatures near the ultracold regime. However, at these temperatures,

the ion crystals used in the LQT are extremely small, and due to the large accumulation

time needed for BaOCH+
3 buildup and ToF measurement shot noise, accurate reaction rate

data were experimentally inaccessible. Consequently, such temperatures were excluded from

the kinetics data shown in Fig. 9.4E.

9.7 Outlook

Through precise control of entrance channels and �ne-tuning of reaction energetics, from

high temperature to the ultracold regime, techniques used here and elsewhere o�er promising

platforms for extending the tools of ultracold physics to the study of high precision quantum

chemical dynamics. Therefore, they are expected to enable a next generation of chemical

studies in the quantum regime, providing opportunities to look more deeply into chemical

bonding and to anticipate and predict new chemical species and structures that may have

exotic or useful properties.
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Figure 9.4: Experimental schematic of the hybrid system and ToF apparatus

(A) The molecular potential for each triplet sublevel. (B) The subsequent energy dependent rate

constants obtained from capture theory. (C) The mJ averaged rate constants assuming equal

population of each mJ level for each J level. (D) The rate constant of each individual triplet state,

measured by depopulating the other triplet states through optical pumping and acquiring reaction

kinetics data. Solutions of di�erential equations were �tted to approximately 250 kinetic data points

to obtain reaction rate constants at each triplet setting, with experimental uncertainties expressed

at the one-sigma level. Theoretical estimates, along with uncertainty bands associated with the

polarizability and quadrupole moment values used to construct the molecular potentials in (A), are

presented alongside the data. (E) The temperature dependence of the total reaction rate compared

to theory by varying the micromotion energy of ions in the LQT and recording reaction kinetics data

at each temperature, with the theoretical uncertainty denoted by the thickness of the theory band.

Roughly 250 data points were collected at each collision energy, and experimental uncertainties are

presented at the one-sigma level.
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9.8 Corollary measurements and calculations

This section presents ancillary measurements and theoretical calculations that were per-

formed to augment the work presented in the previous sections.

9.8.1 Exclusion of other reactive pathways

Before the 3PJ reaction pathway for BaOCa+ was identi�ed, it was unclear which electronic

state was participating in the reaction, and statistical methods were employed to exclude

alternative reaction pathways involving other states populated during Ca laser cooling, i.e.

the 4s2 1S0, 4s4p 1P1, 4s5p 1P1 and 3d4s 1D2 states.

First, laser parameters were manipulated in order to vary each electronic state's popula-

tion over a suitable range, as described earlier. Reaction rates were then extracted for the

di�erent population settings and plotted as a function of individual state population. Since

the proposed reaction involves a single Ca atom, if a particular electronic state is involved in

the reaction, a linear relationship between state population and production rate is expected,

and consequently, a linear �t is applied to each data set (Fig. 9.5, A-E).

In order to assess how well the observed reaction rate data matched the expected linear

dependency on state population, the reduced chi-squared statistic, χ2
red=

1
n−f

∑
i

(Mi−Ci)2

σ2
i

,

was calculated for each model, where n is the number of observations, f is the number of �t

parameters, Mi is the model's prediction for the ith data point, Ci is the average value for

the ith data point, and σi is the standard error for the ith data point.

According to standard χ2
red analysis, the model that best represents the data is the 3PJ

production pathway, yielding a χ2
red=0.22 (Fig. 9.5E). The 4s5p

1P1 pathway o�ers the next

lowest χ2
red value; however, BaOCa

+ production is still observed when the 672 nm repump is

shuttered and the 4s5p 1P1 state is unpopulated (Fig. 9.3C), thus invalidating this pathway

as the sole means of BaOCa+ production.

Further, the vertical intercept of the 3PJ �t is consistent with zero, which suggests that

there are no other competing reaction entrance channels. For example, if non-adiabatic
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coupling from excited singlet surfaces to other electronic states were occurring and resulting

in reaction, and the populations of such sates were not correlated with triplet population, we

should observe a background reaction rate that would exist even with a 0% triplet population,

which is what the y-intercept of the �t of Fig. 9.5E signi�es. While we cannot rule out the

possibility of such e�ects occurring, we can experimentally restrict the total reaction rate

constant of such events to be . 10−11 cm3/s, which is derived from the 2σ error in the

y-intercept �t and is an order of magnitude smaller than the rates typically accessed in this

work.

However, since the population of certain electronic states are coupled to others through

spontaneous emission and resonant laser �elds, the population of certain singlet channels,

such as the 3d4s 1D2 state, are correlated with the population of the triplet state. While

no other state beside the 3PJ levels demonstrated a linear correlation with BaOCa+ pro-

duction, this does not necessarily imply no other states are reactive. For example, if an

excited singlet state were indeed reactive through non-adiabatic processes, it is possible that

enhanced BaOCa+ production due to increasing population in this state could be masked by

a corresponding reduction in the population of the triplet state. While we cannot rule out

such multi-component reaction pathways from taking place, the above χ2
red analysis clearly

identi�es the 3PJ surface as the dominant reaction entrance channel. Moreover, the results

of magnetic trap experiment, where the reaction rate between a sample of pure triplet atoms

and BaOCH+
3 ions was measured and shown to be consistent with all other observed reaction

rates in the study, further suggests that BaOCa+ formation initiates predominantly along the

3PJ Ca potential surface, with all other entrance channels likely negligible on experimental

timescales.

9.9 Photofragmentation detection

Although ToF spectra indicated the product of the observed reaction possessed a mass-to-

charge ratio consistent with that of BaOCa+, photofragmentation analysis was conducted to

further verify the identity of the species. Photodissociation of BaOCa+ was �rst measured
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Figure 9.5: BaOCa+ production rate dependency on Ca electronic state populations

Experimentally observed reaction rates are plotted against the (A) 4s2 1S0, (B) 4s4p 1P1, (C) 3d4s

1D2, (D) 4s5p 1P1, (E) 4s4p 3PJ electronic state populations, which are the only states populated

signi�cantly during the Ca laser cooling process. For each plot, experimental points, along with

their associated one-sigma uncertainties, are presented alongside linear �ts (dashed) and their 90%

con�dence interval bands. Further, the χ2
red statistic for each �t is also displayed in the upper left

hand corner of the plot. As can be seen from the χ2
red statistics, the

3PJ model best represents the

data, supporting the theoretical and experimental �ndings detailed throughout this report.
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as a function of laser intensity at both ∼493 nm and ∼422 nm wavelengths (Fig. 9.6, A

and B), which were conveniently accessible with our titanium-sapphire laser system. During

data acquisition, BaOCH+
3 ions were �rst immersed in the MOT for a �xed amount of time

to initialize a sample of BaOCa+. Subsequently, photodissociating lasers were introduced

into the LQT for varying amounts of time before ejecting the ion trap species into the ToF.

A simple exponential decay model N(t) = N0e
−ΓPDt, where N is the amount of BaOCa+

present in the LQT, t is the amount of dissociation time, and ΓPD is the decay rate of

BaOCa+ due to photodissociation, was �t to the data, allowing a dissociation rate to be

extracted. This process was repeated over a wide range of laser intensities at each laser

wavelength.

While ab initio calculations of the molecular structure of BaOCa+ indicate the energy of

the various dissociation asymptotes, estimating the wavelength dependency of the photodis-

sociation cross section is di�cult due to lack of information on the excited state potential

surfaces of the molecule and their Franck-Condon factors with levels in the electronic ground

state potential. While neither a 493 nm photon nor a 422 nm photon possesses enough en-

ergy to drive to the lowest energy Ca+ + BaO dissociation asymptote, a two-photon process

at either of these wavelengths would have enough energy to surpass the Ca+ + BaOCH3,

BaO+ + BaOCH3, and the Ba+ + CaO asymptotes (Fig. 9.6C), indicating that two-photon

photodissociation may be possible at these wavelengths. However, the linear dependency of

the photofragmentation rate on intensity (Fig. 9.6, A and B) is suggestive of a one-photon

process, perhaps indicating the �rst step in the two-photon process was saturated by either

the ion laser cooling beams or the dissociating beam itself. Regardless of the speci�cs of the

dissociation pathway, identi�cation of any of the Ca+, BaO+, or Ba+ photodissociation frag-

ments would provide further evidence con�rming the elemental composition of the molecule,

and thus, such a search was conducted. While detection of Ba+ fragments is precluded by the

unavoidable background of Ba+ from the initial trapped ion crystal, observation of the Ca+

and BaO+ dissociation products is possible, although di�cult due to competing introduction

of these species from other processes in the LQT. Namely, Ca+ ion production also occurs

through ionization of MOT atoms by the laser cooling beams, and BaO+, whose isotopic
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signatures may overlap with BaOH+ in the mass spectra, is produced through reactions of

the Ba+ crystal with the introduced methanol vapor. In order to separate the background

ions from the photofragmentation ions, we employed the well-known LQT mass �ltering

techniques of secular excitation introduction and stability region manipulation to selectively

remove the unwanted background species.

For Ca+ detection, during MOT immersion, the Mathieu q-parameter was modi�ed such

that Ca+ ions were unstable in the ion trap during BaOCa+ production, ensuring no MOT-

produced Ca+ ions would remain trapped. After the MOT beams were shuttered, the q-

parameter was modi�ed to allow stable trapping of Ca+ ions, at which point the 423 nm

photofragmentation laser was introduced into the LQT before the ions were ejected into the

ToF. Substantial Ca+ is observed when the photodissociating laser is present (Fig. 9.1D).

When compared to a control case in which the above process is repeated while the photofrag-

mentation laser remained shuttered, the di�erence in Ca+ production, averaged across ∼50

data points, was signi�cant at the 3σ level, with any background Ca+ in the control case

attributable to BaOCa+ dissociation from the ion laser cooling beams.

In order to detect the BaO+ photodissociation fragments, a mass-speci�c secular excita-

tion frequency was applied during MOT immersion to purge the LQT of BaOH+ molecules

formed from methanol reactions with the Ba+ crystal, preventing potential ToF spectrum

overlap with BaO+ ions produced from photodissociation. After shuttering the MOT beams,

the secular excitation was removed and a 493 nm dissociation beam was introduced into the

chamber before ejecting the ions into the ToF to obtain a mass spectrum (Fig. 9.1D). Af-

ter averaging across ∼50 data points, the di�erence in BaO+ production compared to the

control case was found to be signi�cant at the 3σ level. The detection of both Ca+ and

BaO+ photodissociation fragments, along with the identi�cation of a mass-to-charge ratio

m/z consistent with 193.9 amu for the product molecule through ToF analysis, provides

strong evidence that the product of the observed reaction is in fact BaOCa+.
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Figure 9.6: BaOCa+ photofragmentation analysis

Experimentally observed photodissociation rates are presented as a function of dissociation beam

intensity for both (A) 423 nm and (B) 493 nm lasers. Roughly 30 data points were acquired at

each intensity setting and experimental uncertainties are expressed at the one-sigma level. (C)

A graphical representation of the various dissociation limits of the molecule, with the asymptotic

energy of each represented by arrows labeled in units of photon energy. For comparison, the energy

of a two photon process at both 423 nm and 493 nm wavelengths (dashed) is also presented, with

both processes possessing an energy above several dissociation limits of the molecule.
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CHAPTER 10

Low temperature reactions between BaCl+ and Ca∗

Recent advances have enabled studies of atom-ion chemistry at unprecedentedly low tem-

peratures, allowing precision observation of chemical reactions and novel chemical dynamics.

To date, these studies have primarily concerned reactions between atoms and atomic ions or

non-polar molecular ions, often in their electronic ground state. Here, we extend this work

by studying an excited atom-polar molecular ion chemical reaction (Ca∗ + BaCl+) at low

temperature in a hybrid atom-ion trapping system. The reaction rate and product branch-

ing fractions are measured and compared to model calculations as a function of both atomic

quantum state and collision energy. At the lowest collision energy we �nd that the chemical

dynamics dramatically di�er from capture theory predictions and are primarily dictated by

the radiative lifetime of the atomic quantum state instead of the underlying excited-state

interaction potential. This reaction blockading e�ect, which greatly suppresses the reactivity

of short-lived excited states, provides a means for directly probing reaction range and also

naturally suppresses unwanted chemical reactions in hybrid trapping experiments.

10.1 Background motivation

Over the last decade, techniques from ultracold physics have been adapted to the study

of chemical systems, bringing unique capabilities including precise control of the reagent

quantum states and energy [KSS16, CDK09, DBE, TSC13]. While early work focused on

all-neutral chemistry, more recently there has been a shift to the study of charged-neutral

reactions [HAR13, RSK11, ZW18, RZS12, SMB18], as available techniques allow probing a

wider range of energy [BM18] and species, as well as trapping and study of reaction prod-
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ucts [SSY16, SCR12, SGM17]. Already, these so-called hybrid systems have been used to

study reactions of several atom-ion combinations [TJG17,YLC18a,HW12, ZPS10, ZPR10],

showing a dependence of reactivity on molecular conformation [CDK13] and the production

of novel molecules [PMS17]. Despite this work, there has yet to be a study of atom-polar

molecular ion chemistry in these systems. Given that such reactions play a central role in

chemistry of the interstellar medium [SZ96,Smi92,RGM10], which provides the raw materials

from which stars, planets, and potentially even life developed, understanding these reactions

at low temperature is a fundamental goal for chemistry and physics. Moreover, these same

reactions could severely limit experiments aiming to produce quantum-state-selected polar

molecular ions [CB18,SHD13,WWH16] via sympathetic cooling [RSS12,Hud16,HLC15] for

quantum logic applications [HC18].

Here, we advance these fronts by using a hybrid trap to study the reaction between

electronically-excited Ca atoms and BaCl+ molecules. Using the capabilities of the hybrid

trap, we measure the reaction rates and product branching fractions of these reactions at

collision energies from 15 K down to 0.2 K (all temperatures in this work refer to colli-

sion energies in units of J/kB = K, where kB is the Boltzmann constant). At the lowest

energies in our study, which are amongst the lowest ever studied in a molecular ion-atom

system [MRJ15,HLC15,ADS,HS91], we �nd a chemical regime where the chemical dynam-

ics are primarily dictated by the radiative lifetime of the reagent quantum state instead of

the underlying excited-state interaction potential. Additionally, we provide a simple rule

for calculating at what temperature this regime, where the collision time is longer than the

radiative lifetime of the quantum state, is reached.

This result parallels previous work in excited-state ultracold neutral-neutral systems

where reduced reaction rate constants have been observed and explained as a consequence

of spontaneous emission suppressing short-range excited-state population [JM89a, GP89].

Subsequent studies also demonstrated that external optical �elds could be used to modify

radiative dynamics and directly control reaction outcome [WBZ99,GG98].

The work presented here extends these techniques to the rapidly developing �eld of cold

molecular-ion chemistry. Speci�cally, the phenomenon observed here should be universal to
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atom-ion chemical systems and, through its dependence on the reactive trajectory, provides

a means to probe the range of a chemical reaction. It also greatly suppresses the reactivity

of short-lived excited states. Therefore, this work implies that care must be taken when

interpreting low temperature atom-ion reaction data and that certain unwanted chemical re-

actions in hybrid trapping experiments can be mitigated by simply going to low temperature

and thereby allowing longer molecular ion coherence and interrogation times.

In the remainder of this work, we �rst describe the experimental system and technique

for energy control and then present the observed total reaction rates and branching frac-

tions of the Ca 1P1 and 3P2 states, which show very di�erent behavior. We then describe a

qualitative model for the observed e�ect that provides a simple means to calculate at what

temperature this radiative regime is reached. Finally, we compare our experimental results

to a more rigorous model of the observed e�ect that is integrated into a modi�ed long-range

capture theory.

10.2 Results

10.2.1 Experimental system

To tune reactant collision energy, we employ both a recently developed ion-shuttling tech-

nique [PMW18] as well as the traditional method of micromotion energy tuning through

crystal sample size modulation [GCc09,HHF13]. Additionally, while not measured directly,

we expect that the internal degrees of freedom of the reactant BaCl+ molecules are cooled

via sympathetic cooling collisions [RSS12] with the Ca MOT.

10.2.2 Observation of reaction blockading

The reaction is energetically forbidden in the ground state; however, by using previously

established methods involving optical pumping and magnetic trapping, the reaction is shown

to proceed via the Ca 1P1 and Ca 3P2 electronic states (Fig. 10.2).

After identifying the reaction pathways of the system, the dependence of reaction rate

245



2

4

Trajectory time (ms)
A

xi
al

 p
os

iti
on

 (m
m

)
0 0.1 0.2-0.1-0.2

0

1

2

-1

-2

Imaged position
Waveform
MOT region

3

-3

0 µs

176 176 µµs  s  

118 118 µµs  s  

235 µs  

295 µs  

60 60 µs 

Sh
ut

tle
 ti

m
e

4 mm
200 µm�

� �

ToF-MS

Ion beams

MOT 
beams

LQT
Ablation laser

Figure 10.1: Experimental apparatus and techniques

(a) The MOTion trap atom-hybrid trap apparatus (b) Image of an ion chain being shuttled over

a distance of ≈ 1 mm at a collision energy of ≈ 750 mK. To reduce secular heating, the ions

spend over 90% of the time at the trajectory endpoints, and thus ion �uorescence is only visible at

these locations. (c) The trajectory of a shuttled ion sample, as determined by �uorescence images

acquired by triggering on the phase of the shuttling waveform. Also presented is the location

of the potential minimum of the axial potential as predicted from the endcap waveform voltages

at particular instances of time. For reference, the blue shaded region represents the 1/e spatial

density width of the three-dimensional Coulomb crystal used in the measurement. Additionally the

horizontal red shaded region represents the 1/e spatial distance of the MOT cloud. To the right

of the plot, an inset displays experimental false-color �uorescence images of the shuttled ions at

various times along the shuttling trajectory.
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on the collision energy was explored. Atom-ion chemical reaction cross-sections are typi-

cally estimated through a Langevin capture model [DMW58,Lan05] as σ(Ecol) = πb(Ecol)
2,

where the impact parameter b(Ecol) = (`+1/2)/(µv) is determined by the maximum angular

momentum ` that allows the reaction pair to reach short-range at a given collision energy,

Ecol, where µ is the reduced mass of the system and v is the collision velocity. The energy-

dependent rate constant, k(Ecol), is subsequently calculated by integrating σ(Ecol) over the

relative velocity probability distribution of the reaction pair, as k(Ecol) = 〈σ(Ecol)v〉. Ulti-

mately the long-range form of the studied molecular potential determines how the chemical

reaction rate scales with Ecol. For the excited-state systems studied in this work, standard

capture theory predicts a reaction rate that increases with decreasing collision energy due

to the quadrupole-ion interaction.

To asses this trend in the 3P2 state, a BaCl+ sample was overlapped with a magnetic

trap of pure triplet atoms while micromotion energy tuning was used to change the reactant

collision energy from ≈ 1 − 20 K. The measured reaction rate appears to increase at low

energy as expected for an ion-quadrupole reaction, as shown in Fig. 10.3a.

Two methods, excess micromotion energy tuning through crystal size manipulation and

ion shuttling, were used to measure the collision energy dependence of the Ca (1P1) + BaCl+

reaction. Over their common range (4 K - 20 K), the two methods agree and reveal an essen-

tially energy-independent reaction rate constant. However, interestingly, unlike the Ca (3P2)

state, the measured rate constant decreases at low temperature instead of increasing as pre-

dicted by standard quadrupole-ion capture theory (Fig. 10.3a). All presented theory curves

are averaged over the energy distribution of the ions before comparison with the data, and

the theory error bands are determined by uncertainties in the polarizability and quadrupole

moment values used to construct the molecular potentials utilized in the calculation (see

Section 10.2.6e for a description of the modi�ed capture theory presented in Fig. 10.3a).
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Figure 10.2: Reaction rate characterization

(a) Observed reaction rate constant dependence on Ca 4s4p 1P1 population. The inset displays

a typical reactant decay curve used to extract the rates, with the reactant amount determined

by integrating over ToF-MS spectra. (b) The measured Ca 4s4p 3P2 reaction rate constant, ΓT,

multiplied by the geometric atom-ion overlap factor, Ô, obtained at di�erent spatial o�sets between

the ion sample and the center of a magnetic trap of pure triplet atoms. The corresponding �t curve

(dashed line) along with its 90% con�dence interval (CI) (yellow band) are displayed as well. The

functional form of the �t curve (Eqn. (6.30)) allows for approximate estimation of the magnetic

trap density pro�le. For both plots, each data point consists of approximately 100 measurements,

where error bars represent one standard error.
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10.2.3 Branching fraction analysis

Given this departure from standard capture theory, we then measured the product branching

fractions to gain a fuller understanding of the chemical dynamics. For experimental conve-

nience, reactions between Ca and non-shuttled BaCl+ ions were studied at an average energy

of ≈ 5 K. For reactions with the Ca 1P1 and Ca 3P2 states, there are three energetically

allowed pathways:

BaCl+ + Ca−→ CaCl+ + Ba (10.1)

−→ Ba+ + CaCl (10.2)

−→ Ca+ + BaCl (10.3)

Products from the �rst two reactions are experimentally identi�ed by the appearance

of reaction products in ToF-MS spectra (see Fig. 10.3b). While the reaction products are

created with . 1 eV of energy, the radial (axial) trap depth of the LQT is ≈ 4(0.5) eV,

and thus, ≥ 95% of charged products are expected to be recaptured in the LQT, assum-

ing isotropic scattering of ions after reaction. Products from the direct charge exchange

reaction (Eqn. 10.3) cannot be inferred directly due to a background Ca+ in�ux from MOT

atom photoionization; thus, these products are inferred indirectly through the presence of

the other two products. Additionally, Ba+ products are distinguished via mass from the

isotopically-pure 138Ba+ coolant ions since the initial BaCl+ reactant sample is present in

natural abundance.

By monitoring the appearance of Ba+ and CaCl+ ions in the ToF-MS spectra, branching

fractions, γi, de�ned as the number of product ions in the ith exit channel formed per

BaCl+ loss event, are measured. For the 4s4p 1P1 entrance channel, [γCaCl+ , γBa+ , γCa+ ] =

[0.014(4), 0.43(6), 0.57(6)], while [γCaCl+ , γBa+ , γCa+ ] = [0.0001(8), 0.5(2), 0.5(2)] is measured

for the 4s4p 3P2 state. Notably, the CaCl+ molecule is only de�nitively detected in 1P1

reactions, providing a means for quantum state control of reaction products.

Also shown in Fig. 10.3c are the branching fractions predicted by a phase space theory
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Figure 10.3: Reaction blockading in excited neutral-ion systems

(a) The experimental dependence of reaction rate constant on collision energy, as measured through

both micromotion (MM) tuning (circles) and shuttling (squares) for both the singlet and triplet

reaction surfaces. Note that the y-axis scale is di�erent for the two reactions. Both data sets are

in reasonable agreement with a modi�ed capture theory incorporating reaction blockading, with

the reaction rate of the short-lived Ca 1P1 state signi�cantly suppressed at low temperatures as

compared to its standard capture theory prediction. For the triplet data, an absolute rate constant

is measured at 10 K and all subsequent data points are normalized with respect to this value due to

technical di�culties associated with frequent magnetic trap density measurements. Each data point

consists of approximately 100 measurements, and standard errors are expressed at the 1σ level. (b)

Mass spectra, obtained from the ToF-MS, of the identi�ed product ions of the reaction. The shaded

portions identify the masses corresponding to the product ions, and a control spectrum is included

where the ions were ejected into the ToF-MS without MOT exposure. (c) A comparison of the

measured branching fractions and the predictions of the statistical phase space theory (PST) for

both Ca singlet (top) and triplet (bottom) reactions. Experimental standard errors are expressed

at the 1σ level and, in the case of the CaCl+ values, may be smaller than the plot-marker size.
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calculation [PLR66]. This calculation assumes all product states that are accessible via en-

ergy and angular momentum conservation are equally probable. Thus, product branching

fractions are calculated by counting the total number of states available to each reaction

product (Sec. 10.2.4). The model predicts branching fractions of [γCaCl+ , γBa+ , γCa+ ] =

[0.04(2), 0.42(17), 0.53(19)] for the singlet and [γCaCl+ , γBa+ , γCa+ ] = [0.018(14), 0.56(21), 0.41(23)]

for the triplet, which are in reasonable agreement with the experimental values (Fig. 10.3c).

The error bars are primarily determined by energetic uncertainties in the exothermicity of

each reaction channel. The relative ordering of the branching fractions can be attributed to

two main factors. First, the CaCl+ exit channel has the lowest product exothermicity and

therefore the fewest accessible rovibronic states. Second, the ground state of the CaCl+ +

Ba asymptote is composed of two singlets, whereas the other asymptotes are composed of

two doublets, reducing the number of states accessible to CaCl+ by approximately a factor

of four.

The relatively good agreement of this model with the data suggests that the reaction

proceeds via a long-lived collision complex, which facilitates the realization of ergodicity and

therefore the statistical assumption of the model.

10.2.4 Phase space theory calculation of branching fractions

The phase space model used in the previous section will now be discussed in detail.

Under the assumption of strong coupling, all electronic, orbital, and angular momenta

are expected to mix. Thus, while each individual angular momentum is not a conserved

quantity throughout the reaction, the total angular momentum, K, along with its cylindrical

axis projection, Kz, are conserved [WT72], with K being the magnitude of the vector sum

K = ` + N + L + S (10.4)

where `, N, L, and S are the vectors for the orbital, rotational, electronic orbital, and

electronic spin angular momenta of the reaction complex. For the reactions studied in this

work, |L| and |S| are ≤1, while generally |`| and |N| can often exceed ≈ 10, meaning the

former can be neglected in the following calculation for simplicity.
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Figure 10.4: Phase space diagram for branching fraction calculation

A phase space diagram showing the range of rotational (N) and orbital (`) angular momentum

product states accessible at a given reactant total angular momentum (K). The shaded region of

the curve denotes the �nal states that both obey angular momentum conservation and possess

enough product kinetic energy, εf , to clear the product state centrifugal energy barrier, λf (`f ), and

dissociate from the three body reaction complex into the �nal product atom and diatomic molecule.

In both the reactant (i) and product (f) states, K is bounded as

|`i(f) −Ni(f)| ≤ K ≤ |`i(f) +Ni(f)| (10.5)

Additionally the �nal product must possess enough kinetic energy to escape the angular

momentum barrier of the exit channel, permitting the three-body complex to dissociate into

its molecular and atomic constituents. The later restriction is satis�ed by enforcing

εf ≥ λf (`) (10.6)

where εf is the �nal kinetic energy of a given product state and λf (`f ) is the height of the

centrifugal barrier in each product exit channel at orbital angular momentum `f . εf can be

calculated as

εf (εi, vi, Ni, vf ,Nf , Qi,f ) =

εi + Eint(vi, Ni)− Eint(vf , Nf ) +Qi,f

(10.7)

where εi is the initial collision energy of the reaction complex, Qi,f is the exothermicity of
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reaction for exit channel f , and

Eint(vi(f), Ni(f)) = ωi(f)(vi(f) + 1/2)

+ 2βi(f)Ni(f)(Ni(f) + 1)

− ωi(f)χi(f)(vi(f) + 1/2)2

(10.8)

is the internal energy in the reactant (product) state associated with the vi(f) and Ni(f)

vibrational and rotational level, respectively, which is characterized by the spectroscopic

constants ωi(f), βi(f), and ωi(f)χi(f).

Equations (10.5) and (10.6) restrict the number of `f and Nf states accessible to each

exit channel (see Fig. 10.4) at a given total angular momentum, K, and exit-channel kinetic

energy, εf . By counting the number of states accessible to each possible exit channel at given

K and εf , one can de�ne the probability of accessing each exit channel as

Pf (K, εf (εi, vi, Ni, vf , Nf , Qi,f ))

=

∑
vf ,Nf

dfnf (K, εf (εi, vi, Ni, vf , Nf , Qi,f ))∑
b

∑
vb,Nb

dbnb(K, εb(εi, vi, Ni, vb, Nb, Qi,b))

(10.9)

where nb(K, εb(εi, vi, Ni, vb, Nb, Qi,b)) is the the total number of states accessible for exit chan-

nel b at a given K and εb, and db is a degeneracy factor that accounts for the spin multiplicity

of each product state. We note that nb(K, εb(εi, vi, Ni, vb, Nb, Qi,b)) is proportional to the area

bounded by curves presented in Fig. 10.4.

Therefore, again following Ref. [PL65], the total reaction cross-section for a given exit

channel, f , given an initial reactant rotational quantum number, Ni (assuming the reactant

is in the ground vibrational state), and summed over all accessible product rotational and

vibrational states is given as

σf (Ni, εi) =

`max(εi)∑
`i=0

2(`i + 1)π~2

2µfεi
Pf (`i)

=

`max(εi)∑
`i=0

π~2

2µfεi(2Ni + 1)

∑
|`i−Ni|≤
K≤|`i+Ni|

(2K + 1)

× Pf (K, εf (εi, vi, Ni, vf , Nf , Qi,f ))

(10.10)
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where µf is the reduced mass of the product complex.

Lastly, to calculate the �nal branching fractions, we must average each cross-section

across the rotational temperature of the sample as

σf =
∑
Ni

1

Z
(2Ni + 1)

× e−2βiNi(Ni+1)/(kBT )σf (Ni, εi)

(10.11)

where T ≈ 2εi/kB is the e�ective rotational temperature of the initial reactant molecular ion

and Z is the rotational partition function.

Finally, after the relevant cross-sections have been computed, the branching fraction into

each exit channel, γf , is given by

γf =
σf∑
f σf

(10.12)

Eqn. 10.12 is applied to the Ca∗+BaCl+ system, and the results are compared directly

to experimental branching fractions in Fig. 10.3c. In addition to the product branching

fractions, Eqn. 10.12 is also applied to estimate the percentage of collisions that occur and

result in excited states of [BaCl+ + Ca] that ultimately radiatively decay back into the

[BaCl+ + Ca] ground state. This factor will be included as χS in Eqn. 10.18 and adjusts

our rate constant calculation to account for experimentally indistinguishable events where

inelastic collisions occur but no new molecular products are formed (see Section 10.2.6).

Errors in the calculated branching ratios can be primarily attributed to uncertainties in the

exit channel exothermicities, nonergodicity in the system, and uncertainties in the molecular

constants used in the state counting process.

10.2.5 Modeling of reaction blockading

Given the evidence for a long-lived collision complex from the product branching data and

the dramatic di�erence in reactivity as a function of temperature for quantum states with a

long (3P2, τ ≈ 118 min) and short (1P1, τ ≈ 4 ns) radiative lifetime, the observations suggest

that that spontaneous emission modi�es the chemical dynamics. Because any reaction on

an excited surface starts in the separated atom limit, the reagents must propagate inward to
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short-range separation (∼ 10 a0) before a chemical reaction can occur. If the time it takes

to propagate inward to form a collision complex and pass through the transition state to

products is similar to the radiative lifetime of the excited reagent, it is likely that spontaneous

emission will occur during the chemical event. In this limit, which is more likely at extremely

low temperatures, the reactivity of excited reagents will be given by the reactivity of the

surface reached through spontaneous emission, which in the present case is the endoergic

ground-state surface.

To estimate the temperature at which this e�ect becomes important, it is necessary to

calculate the dependence of the total collision time on temperature. Normally, this would

be estimated by calculating the lifetime of the three-body collision complex from Rice-

Ramsperger-Kassel-Marcus theory [RR27,Dag77]; however, this lifetime, which is typically a

few vibrational periods, severely underestimates the total collision time at low temperature

as it neglects the time it takes for the reagents to fall into the collision complex.

Following similar approaches in neutral-neutral systems [WBZ99], to account for this

e�ect we consider the collision trajectory of the reactants as they spiral inward along their

ground-state and excited-state surfaces. Since these surfaces have di�erent long-range forms,

due to their di�ering polarizabilities and quadrupole moments, they diverge from one another

as the atom-ion separation distance decreases. This causes any lasers resonant with the

system in the dissociation limit to become far-detuned in the region where chemical dynamics

occur. At cold temperatures, this e�ect, dubbed reaction blockading, makes it unlikely that

the Ca atom will remain in the excited state long enough to react before spontaneously

emitting; however, at higher collision velocities, such events are less likely to occur before

the atom reaches short-range.

This e�ect is particularly sensitive to the atomic lifetime of the reactive state, as longer

excited-state lifetimes allow the reaction complex to reach short-range more easily before

being interrupted by a spontaneous emission event. As a result, once reaction blockading is

integrated into the capture theory predictions, we observe good agreement with the Ca 1P1

data; whereas, for the long-lived triplet state, the e�ect of reaction blockading is negligible,

as expected (Fig. 10.3a).
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While a more quantitatively rigorous model of the blockading e�ect is presented in the

next section, we �rst develop a simple model to estimate when radiative e�ects become

signi�cant. The collision energy, EB, at which the blockading e�ect reduces the total reaction

rate by 1/2 can be approximated by considering the amount of time, tB = τ ln(2), it takes

to deplete the excited state population by the same amount, where τ is the excited-state

lifetime.

From conservation of energy, Etot = Ecol(r) +Vex(r), where Etot is the total energy of the

system and Vex(r) is the excited-state potential of the system, and thus, tB can be expressed

in terms of the collision energy as

τ ln(2) =

∫ rs

rc

(
µ

2[Etot − Vex(r)]

)1/2

dr (10.13)

where rs is the short-range distance at which the chemical event occurs (≈ 50 a0 in our

system) and rc is the critical internuclear separation distance where the addressing laser

becomes detuned from its associated atomic transition (≈ 1200 a0 in our system). We

obtain rc by solving Vex(rc) = Vgs(rc)+∆E−~Γ where Vex(r) and Vgs(r) are the excited-state

and ground-state molecular potentials of the system, ∆E is the separation-limit energetic

di�erence between the ground and excited states, and Γ is the linewidth of the neutral cooling

transition.

Further, if we approximate the velocity, and thus the kinetic energy, of the system as

being constant during the latter portion of the trajectory, then Etot − Vex(r) ≈ EB and

Eqn. 10.13 can be inverted to yield the �nal result

EB =
1

ln(2)2

(rc − rs)2

τ 2

µ

2

≈ 1

ln(2)2

r2
c

τ 2

µ

2

(10.14)

where rs � rc in the latter approximation. Applying Eqn. 10.14 to the Ca∗+BaCl+ system,

we calculate EB to be 560 mK for the 1P1 state and � 1 µK for the 3P2 state.
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10.2.6 Modi�ed capture theory

For quantitative comparison to the measured rate constant, we require a more rigorous

model of the blockading e�ect than the one presented in the previous section. To this end,

a semi-classical model for the reaction blockading e�ect was constructed that considers the

e�ect of each participating partial wave on the total reaction cross-section by solving an

Einstein rate equation model for the Ca atom in the presence of a laser �eld. As the atom

approaches the ion along its reactive trajectory, the energy spacing between the ground and

excited state changes from its separation limit value due to the di�ering long-range forms

of the respective potentials. Thus, any laser �elds that are resonant with the atoms in the

separation limit become detuned as the reaction trajectory proceeds, resulting in a reduced

excited-state population at short-range as compared the steady-state value.

To account for this e�ect and to calculate the proper population fractions at short-range,

the model assigns the optical �eld a time-dependent laser detuning, ∆(t) = [Vex(r(t), `) −

Vgs(r(t), `)]/~, where Vex(r(t), `) is the excited-state molecular potential, Vgs(r(t), `) is the

ground-state molecular potential, r(t) is the time-dependent internuclear-separation dis-

tance, and ~ is the reduced Planck's constant.

Two levels are considered in the rate equation model, the ground Ca 1S0 state (N0,0) and

the excited Ca 1P1(mJ = 0) state (N1,0). The system of equations is constructed as follows

dN0,0

dt
= B10(t)(N1,0 −N0,0)

dN1,0

dt
= A10N1,0 +B10(t)(N0,0 −N1,0)

(10.15)

where NJ,mJ refers to population in the (J,mJ) state and A10 is the Einstein-A coe�cient

between the two levels. B10(t) is the time-dependent Einstein-B coe�cient between the two

levels that incorporates ∆(t) and is given as

B10(t) = Γ10
π2c3

~ω3
10

I

2πc

Γ10

(δ −∆(t))2 + (Γ10/2)2
(10.16)

where Γ10 is the transition linewidth, ω10 is the transition energy, and δ is the separation-limit

laser frequency detuning from the atomic transition.
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r(t) is determined by solving Newton's classical law of motion in the collision frame,

µr̈ = d
dr
Vav(r). To estimate the force the system experiences as it transitions between the

ground and excited state potentials, we use an averaged potential, Vav(r), that is weighted

by the ground-state and excited-state populations as

Vav(r) =


ρppVex(r, `) + (1− ρpp)Vgs(r, `) r > rc

Vgs(r, `) r ≤ rc

(10.17)

where ρpp is the steady-state excited-state fraction of the Ca MOT [MPY17] and rc is de�ned

in Eqn. 10.13 (ρpp ≈ 0.2 under standard laser-cooling conditions). In the model, the averaged

potential is approximated as transitioning to a fully ground-state potential at rc. This

approximation is made since at rc, the addressing laser �eld is detuned by one linewidth from

resonance, meaning the atoms primarily reside in their ground state potential. An abrupt

shift in potential was chosen over continuous updating of the weightings of the averaged

potential for computational convenience.

The initial conditions for the equation of motion are chosen as follows: r(0) = 3000 nm

and ṙ(t) = (2Ecol/µ)1/2. The computation was repeated with r(0) being varied across

1000 nm, con�rming that choice of initial condition did not a�ect the trajectory result

within a< 1% level. Both Vex(r(t), `) and Vgs(r(t), `) contain the orbital-angular-momentum-

dependent centrifugal barrier term, ~2`(`+ 1)/(2µr2), where ` is the orbital angular momen-

tum of the system, ensuring that each partial wave has a unique collision trajectory.

The reaction blockade factor for each partial wave, P`(Ecol,mJ), can be determined by

dividing the excited-state fraction predicted by the rate equation model at short-range by its

long-range value, ρpp. The separation distance at which the chemical event occurs is rs, and

therefore the excited-state fraction for the mJ = 0 projection state at short-range is given

as N1,0(tc) where tc is de�ned as r(tc) = rc. Consequently, P`(Ecol,mJ) = N1,mJ (tc)/ρpp, and
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the total cross-section, including the blockading e�ect, can be calculated as

σ(Ecol) ≈

π~2

2µEcol

∑
mJ

ηmJχS
2J + 1

`max(Ecol,mJ )∑
`=0

(2`+ 1)P`(Ecol,mJ)
(10.18)

where ηmJ is the probability that the mJ Zeeman level reacts if it reaches short-range,

χS is the probability that the reaction does not produce an excited BaCl+ molecule, and

`max(Ecol,mJ) is the maximum orbital angular momentum that the entrance system can

possess at energy Ecol while still being able to reach short-range. The collision energy of

the system sets the initial velocity of the collision complex and has a signi�cant e�ect on

how likely the Ca atom is to reach short-range before spontaneously decaying. We note that

exclusion of dark states, such as the Ca 3d4s 1D2 state, in the model is warranted since over

the collision energy range studied, the atom-ion complex accelerates to short-range in < 10

atomic lifetimes, and the branching fraction into dark levels from the excited Ca singlet state

is 1 : 105.

The sum over all ` and mJ states in Eqn. 10.18 is carried out for both the triplet and

singlet manifold, with the results plotted alongside the data in Fig. 10.3a. We also note

for all molecular potentials with repulsive long-range forms, such as the (J,mJ)=(1,±1)

projection states, the reactants repel one another and thus do not reach short-range, resulting

in P`(Ecol,±1) = 0. Lastly, for further explanation of the ηmJ factors in the above equation

as well as a more thorough discussion of cases where P`(Ecol,mJ) = 0, refer to the proceeding

section.

10.2.7 Long range curve and short range potentials

The long-range potentials, assuming the ion to be a positive point charge, are dominated by

the ion-dipole polarizability and ion-quadrupole terms. As depicted in Fig. 10.5a,e, the e�ect

of the quadrupole moment on the long-range curves is non-trivial, leading to barriers that

reduce reaction rates for some channels or more attractive curves that increase the reaction

rates for others.
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Figure 10.5: Potential energy curves and surfaces.

(a) Potential energy curves for each (J,|mJ |) level expressed as a function of internuclear separation

coordinates for BaCl+ + Ca (1P1), where the molecular ion is considered as a point charge placed

at the origin (Ba+ in blue, Cl in red) . (b-d) Potential energy surfaces corresponding to (b) the

A
′′
symmetry and (c and d) the two A′ symmetries for the BaCl+ + Ca (1P1) complex. The x

and y axes are in Å and the z axis in eV. The orange plane is the asymptotic value 3.08 eV above

the global ground state of BaCl+ + Ca, computed with the same level of theory at R = 50 Å.

Short-range energetic barriers along the A
′′
(b) and 2A

′
(d) surfaces prevent the reactants in these

surfaces from reaching the reaction region at short-range, resulting in a reduction of the overall Ca

1P1 reaction rate by a factor of 1/3 (see Eqn. 10.18). (e-h) Similarly for the BaCl+ + Ca(3P2)

complex, potential energy curves (e) and surfaces are displayed corresponding to the A′′ (f) and

the two A′ symmetries (g and h), with axes consistent with those of the singlet. The orange plane

is the asymptotic value 1.88 eV above the global ground state of BaCl+ + Ca (singlet) computed

with the same level of theory at R = 30 Å. Unlike the Ca 1P1 surfaces, no short-range energetic

barriers prevent reaching the reaction region for the triplet surfaces and thus there is no additional

reduction in triplet reaction rate.
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Consequently, the long-range curves have a strong e�ect on the modi�ed capture the-

ory presented in Section 10.2.6. The theoretical cross-sections are dependent on the factor

P`(Ecol,mJ) (see Eqn. 10.18), which is only non-zero if the long-range potential for a partic-

ular mJ projection-state is attractive. Therefore, if a J manifold has repulsive mJ projection

states, its average cross-section, and also its reaction rate, will be reduced accordingly.

The long-range curves plotted in Fig. 10.5a,e can be used to determine these reduction

factors for both the singlet and triplet manifolds. Let σS/TJ,|mJ |(E) correspond to the energy-

dependent cross-section for the (J, |mJ |) projection state within either the singlet (S) or

triplet (T) manifold. For the singlet manifold corresponding to BaCl+ + Ca (1P1), we

�nd that both mJ = ±1 projection states corresponding to the (J, |mJ |) = (1, 1) curve are

repulsive (Fig. 10.5a). Therefore, at low energy, both P`(Ecol, |mJ |) and σSJ,|mJ |(Ecol) are

approximately zero for these states. The total cross-section for the singlet manifold is given

by the sum over all projection states, as described in Eqn. 10.18, leading to a total singlet

cross-section of

σS(Ecol) =
∑
mJ

σSJ,|mJ |(Ecol)

=
2

3
σS1,1(Ecol) +

1

3
σS1,0(Ecol)

≈ 1

3
σS1,0(Ecol)

(10.19)

Similarly, in the triplet case, since only the J = 2 of Ca (3PJ) was excited when reaction

rate data was experimentally acquired, we �nd that

σT (Ecol) =
∑
mJ

σTJ,|mJ |(Ecol)

=
2

5
σT2,2(Ecol) +

2

5
σT2,1(Ecol) +

1

5
σT2,0(Ecol)

≈ 2

5
σT2,1(Ecol) +

1

5
σT2,0(Ecol)

(10.20)

again due to the energetic barrier for (J, |mJ |)=(2,2) projection states (Fig. 10.5e). Note

that for all cases studied in this work, the potentials for both (J,±mJ) are degenerate.

For a complete reaction rate calculation, the results from the long-range potential energy

surfaces (PESs) must be matched the shorter-range PESs; consequently, electronic structure
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calculations are performed to calculate the latter. The reaction surface for each excited-state

reagent is computed using coupled cluster theory including single and double excitations

(CCSD). For the electronically excited states that correlate to Ca∗ + BaCl+, with Ca (4s4p

1P1) and Ca (4s4p 3P2), reaction surfaces are computed using equation-of-motion coupled

cluster theory including single and double excitations (EOM-CCSD). The reaction surface

calculations are performed on a grid of 133 points at various angles and distances of approach

using the triple-zeta correlation consistent basis sets (cc-pwCVTZ-PP on calcium and barium

and cc-pVTZ on chlorine). The core electrons in calcium and barium are replaced by e�ective

core potentials. The electronic structure calculations are performed using the Gaussian

09 [FTS09] and Molpro 2012 [WKK12a] program packages.

The resulting potential surfaces for separation between BaCl+ and Ca ranging from 4

and 10 are shown in Fig. 10.5 for the three excited singlet and triplet symmetries, 1A′, 2A′,

and A′′. The orange mesh in each panel indicates the asymptotic energy of BaCl+ + Ca

� 3.08 eV for the singlet and 1.88 eV for the triplet, neglecting spin-orbit couplings. The

potential energy surfaces (PESs) for the three excited singlet and triplet symmetries, 1A′,

2A′ and A′′, are produced by interpolating the 133 points computed on a grid ranging from

4 to 10 and angles between 0 and 180◦ (i.e. from Ca approaching BaCl+ from Cl to Ca

approaching BaCl+ from Ba, and angles between these two linear approaches corresponding

to 0 and 180◦, respectively). The dark plane in each panel indicates the asymptotic energy

of BaCl+ + Ca∗, 3.08 eV for singlet and 1.88 eV for triplet.

For the singlet case, each of the three long-range curves obtained by considering BaCl+

as a point charge will be mapped roughly equally onto the three shorter-range PESs, as the

BaCl+ molecular axis is randomly oriented along the x, y, or z axis in the laboratory frame

de�ning the mJ long-range projections. We account for this by assigning a probability of

1/3 to each of the (J,mJ) curves to correspond to the 1A′, A′′, or 2A′ PES at shorter-range,

and write the total probability of reaching the short-range reaction region, ηS, as

ηS =
1

3
η1A′ +

1

3
ηA′′ +

1

3
η2A′ , (10.21)

where ηS is the probability of reaching the short-range reaction region for the singlet PES.
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As shown in Fig. 10.5, there is a barrier preventing Ca∗ to reach that region for both PES

corresponding to A′′ and 2A′, while no such barrier exists for 1A′, i.e. ηA′′ = η2A′ = 0 and

η1A′ = 1, leading to ηS= 1/3.

In the case of the triplet manifold, all three short-range PESs corresponding to 1A′, A′′

and 2A′ allow Ca∗ to reach the reaction region, i.e. η1A′ = PA′′ = η2A′ = 1. In this case, any

long-range curve allowing Ca∗ to reach short-range will also permit the system to evolve in

the reaction region, resulting in

ηT = 1 (10.22)

where ηT is the probability of reaching the short-range reaction region for the triplet PES.

Finally, for the present system, there are many inelastic channels that lead to a loss of

the initial reagent population, but result in excited states of [BaCl+ + Ca] that ultimately

radiatively decay back into the [BaCl+ + Ca] ground state, making such reactions indistin-

guishable from non-reaction events. To estimate the probability of such events, we apply

the phase space theory model described earlier (Sec. 10.2.4) to the exit channel product

[BaCl+ + Ca]. After including all energetically accessible excited states, we obtain χS =

0.76(13) and 0.72(17) for the singlet and triplet channels, respectively, with the errors again

determined by uncertainties in exit channel exothermicities (Section 10.2.4).

The results of this modi�ed long-range capture model, after thermal averaging, are shown

in Fig. 10.3a and are in reasonable agreement with the data. Our model, while capturing the

key features of the blockading e�ect, does not consider non-adiabatic processes that could

also play a role in the system. For example, relaxation of the excited-state complex during

the collision through internal conversion processes could lead to ground-state reactions and

thus a global increase in reaction rate at all studied collision energies. Additionally, the

radiative lifetime of the collision complex may change as the system transitions to short-

range; however, in our model, we assume this lifetime to be constant, �xed by its value in

the separated-atom limit.
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10.3 Discussion

The observed reaction blockading is expected to be a general e�ect in low temperature ion-

neutral chemistry, as the monopole �eld of the ion signi�cantly alters the electronic structure

of the neutral at relatively long-range. While the modi�ed capture theory developed here

can quantitatively treat the suppression e�ect, the simple expression presented in Eqn. 10.14

can be used to estimate if reaction blockading will be important for a given system. For

example, in the (Rb + N+
2 ) [HW12] and (Rb + Ba+) [HAR13] systems studied by the Basel

group, Eqn. 10.14 predicts that reaction blockading is important at E . 10 mK, signi�cantly

below the temperatures of their studies.

In addition to the role reaction blockading may play in the interpretation of low-temperature

excited-state reactions, it has an important consequence for the �eld of quantum-state-

selected molecular ions. The reactions studied here represent the dominant loss mechanism

for preparing cold molecular ions with laser-cooled neutral atoms [Hud16], and the described

suppression e�ect may be critical for enhancing sample overlap times in next-generation

hybrid trapping experiments [SHS10,HC18].

In summary, we have presented an investigation of polar molecular ion-neutral chemistry

at cold temperature. A recently developed ion-shuttling technique, along with micromotion-

energy tuning, was employed to measure the dependence of the reaction rate on collision

energy. Branching fractions for the reaction were measured and advanced electronic struc-

ture calculations, complemented by a long-range capture theory analysis, were performed

to understand the collision dynamics of the system, revealing a strong dependence of the

reaction on approach angle of the incoming Ca atom. Further, we have demonstrated that

spontaneous emission during the collision strongly a�ects the reaction rate of the system,

resulting in a reaction blockading phenomenon. This e�ect is incorporated into a modi�ed-

capture theory model and compared to the experimental data, demonstrating reasonable

agreement. Further, a rule of thumb is developed to estimate at what temperature the reac-

tion blockading e�ect becomes important for a given chemical system. This work builds on

previous studies exploring radiative e�ects in neutral-neutral reactions [WBZ99,GG98,GP89]
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and represents an important step towards understanding quantum chemical dynamics in hy-

brid systems and well as controlling such dynamics with optical and electromagnetic �elds.
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CHAPTER 11

Optical control of radiatively suppressed charge exchange

collisions

The reaction blockading e�ect detailed in the previous chapter may have a profound impact

on future atom-ion trapping experiments. This current chapter describes an experiment

where this e�ect was studied in greater detail and even controlled optically, providing another

tool for engineering excited state atom-ion chemistry.

Using a recently developed method for precisely controlling collision energy, we observe

a dramatic suppression of inelastic collisions between an atom and ion (Ca + Yb+) at

low collision energy. This suppression, as detailed previously in Ch. 10, is expected to be

a universal phenomenon and arises when the spontaneous emission lifetime of the excited

state is comparable to or shorter than the collision complex lifetime. We develop a technique

to remove this suppression and engineer excited-state interactions. By dressing the system

with a strong catalyst laser, a signi�cant fraction of the collision complexes can be excited at

a speci�ed atom-ion separation. This technique allows excited-state collisions to be studied,

even at ultracold temperature, and provides a general method for engineering ultracold

excited-state interactions.

11.1 Background motivation

In the last quarter century, the development of techniques for producing ultracold matter

led to the ability to observe few and even single partial wave collision events, enabling the

observation of quantum threshold behavior and unitarity limited processes [TKJ04,ONW10,

NOW10]. It also revealed the impact chemical binding forces, quantum statistics, internal
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structure, and dimensionality have on collisions, as well as provided the potential for control

of chemical reactions [DBB99,JTL06,LWS08,HTS06,RZS12,YLC18b,CXY19].

The overwhelming majority of these studies were performed with collision partners in

their ground electronic state. This is at least partially due to the fact that interactions at

ultracold temperatures tend to naturally suppress electronically excited collisions, as pointed

out in [JM89b] and demonstrated in [WSD95,PMS18]. This suppression arises as the long-

range interactions between collision partners tend to shift any laser that would electronically

excite one of the collision partners out of resonance at very long range. This e�ect, known

as reaction blockading [PMS18], is especially strong in systems with long-range interactions

such as atom-ion or molecule-molecule pairs.

Collisions involving electronically excited atoms and molecules play an important role

in processes such as combustion [SSF08], explosives, atmospheric chemistry [Wie82], stel-

lar evolution [MBH06], interactions in the interstellar medium [AGC10], and the formation

of new molecules [PMS17], yet many studies of these reactions have been limited to high

temperature, where quantum e�ects are often obscured. Here, we demonstrate a general

technique to enable the study of such collisions at ultracold temperatures in a prototypical

atom-ion system. Building from work on hyper�ne-changing collisions in laser-cooled sys-

tems [SWM89,WSD95, SGT95], we apply a strong laser �eld that dresses the system and

promotes the molecular collision complex to a speci�ed excited state at a speci�ed range. In

this way, we engineer the electronic excitation of collision partners at short range and extract

the excited channel rate constants. Additionally, by controlling the range at which this laser

addresses the reactants, this technique is sensitive to the features of molecular potentials,

enabling a new class of experiments to probe molecular potentials at controlled atom-ion

separations. Excitingly, the technique appears to be completely general and can be applied

at higher temperatures.

In what follows, we use a recently developed method [PMW18] for precisely controlling

collision energy to study the charge-exchange collision between Ca(4s4p 1P1) + Yb+(6s 2S1/2)

as a function of collision energy from 0.05 K to 0.65 K. From this data, we observe reaction

blockading of the charge-exchange rate and measure the dependence of this suppression on
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collision energy. Finally, we introduce a strong laser to dress the system and observe an

increased charge-exchange rate for the Ca(4s4p 1P1) + Yb+(6s 2S1/2) channel, e�ectively

eliminating the suppression. A quantum coupled-channels calculation based on ground- and

excited-state diabatic potentials, their couplings, and the in�nite-order sudden approxima-

tion is presented and shows good agreement with the data. The technique is qualitatively

explained using a simple semi-classical model based on dressed molecular potentials and a

Landau-Zener type transition.

11.2 Experimental technique

Using this shuttling method, we measure the charge-exchange rate of Ca(4s4p 1P1) + Yb+(6s

2S1/2) as a function of collision energy and observe reaction blockading of the rate, shown in

Fig. 11.1(d). By extinguishing the 369 nm Yb+ cooling laser when the Yb+ ions are shuttled

through the Ca MOT, the ions are prepared in the ground 6s 2S1/2 state. Speci�cally, for

an ion chain with 50 mK collision energy (de�ned as 〈Ecol〉/kB, where 〈Ecol〉 is the average

kinetic energy in the center of mass frame and kB is the Boltzmann constant), we measure a

rate constant of kp = (4.6± 0.6)× 10−10 cm3/s, compared to the no-suppression theoretical

prediction of kp = 23× 10−10 cm3/s, an observed suppression factor of ∼ 5.

This reaction blockading can be understood by considering the long-range atom-ion in-

teraction [JM89b,PMS18]. At long range the atom and ion interact primarily through the

charge-induced dipole and charge-quadrupole potentials of the forms−α
2
R−4 and−Q

2
(3 cos2(θ)−

1)R−3, respectively, where R is the atom-ion separation, α is the neutral atom polarizability,

Q is the neutral atom quadrupole moment, and θ is the angle between the quadrupole mo-

ment and the internuclear axis. Thus, a laser resonant with two atomic states at long range,

which have di�erent polarizabilities and quadrupole moments, is no longer resonant when

the atom and ion are in close proximity. For the Ca 1P1 ← 1S0 transition with linewidth Γ

and a laser detuning δ = −Γ = 2π×(−34.6 MHz), the laser becomes resonant at R ≈ 1300

a0 and becomes detuned by 10Γ at ∼ 600 a0. Therefore, for a charge-exchange event to

occur, the atom-ion pair must propagate inward without the Ca atom decaying from this
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Figure 11.1: Shuttling in the hybrid atom-ion MOTion trap. (a) Schematic of the MOTion

trap. (b) False-color �uorescence image of 3 shuttled Yb+ ions. As the exposure time is greater

than the shuttling period, �uorescence from the 3 ions is concentrated at the positions of the two end

points, where the ions spend the most time. (c) Experimental sequence illustrating the shuttling

technique. As the Yb+ ions are shuttled through the Ca MOT, the 369 nm Yb+ cooling beams are

extinguished to prepare the ions in the 6s 2S1/2 state. (d)Measured charge-exchange rate coe�cient

(with standard errors) for Ca(1P1) + Yb+(2S1/2) as a function of collision energy using the shuttling

technique. Also shown are rate coe�cients from coupled-channels calculations, one with (solid line)

and one without (dashed line) the e�ect of reaction blockading (RB).
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Figure 11.2: Long-range diabatic potential energy curves. (a) Relevant long-range molecu-

lar potentials. The two crossings between potentials relevant for charge exchange are indicated with

black circular markers. The potential energy zero is located at the Ca(4s2 1S0) + Yb+(6s 2S1/2)

dissociation limit. (b) The �rst pathway corresponds to a collision between an excited 4s4p 1P1

Ca atom with a ground-state 6s 2S1/2 Yb+ ion. The charge-exchange (CE) crossing is shown by

a red circle. The vertical wavy line represents spontaneous emission to the ground Ca(4s2 1S0) +

Yb+(6s 2S1/2) channel. (c) The second pathway corresponds to a collision between a ground-state

4s2 1S0 Ca atom with a 6s 2S1/2 Yb+ ion in the presence of a photon of the MOT laser. The dashed

blue curve corresponds to the dressed-state potential for this entrance channel. It has an avoided

crossing with the excited Ca(4s4p 1P1) + Yb+(6s 2S1/2) potential. (d) In the presence of a catalyst

laser, the incoming Ca(4s2 1S0) + Yb+(6s 2S1/2) state is coupled to the reactive Ca(4s4p 1P1) +

Yb+(6s 2S1/2) state at short range, where spontaneous emission is unlikely before reaction.

distance to distances of ∼ 40 a0, where couplings to other states become signi�cant. For

collision temperatures greater than & 10 K, the atom-ion pair approaches quickly enough

such that the Ca 1P1 state is unlikely to decay before reaching short range, a�ecting the rate

coe�cient by . 1%. For a collision temperature of 1 mK, however, this e�ect leads to a

suppression by a factor of ∼100.

11.3 Theoretical underpinnings

To understand this behavior, we �rst consider charge exchange at low temperatures with

no measures taken to overcome reaction blockading. Fig. 11.2 shows the relevant CaYb+

long-range diabatic potentials, labeled by the projection Ω of the total angular momentum

onto the intermolecular axis, as a function of atom-ion separation R. These potentials are
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the diagonal matrix elements in our diabatic electronic basis, which changes only slowly with

R. Asymptotically, these basis states correspond to atomic eigenstates so that non-adiabatic

coupling among the potentials are negligible. The variable R describes the separation be-

tween the center of mass of the atom and ion. Moreover, the center of mass changes in charge

transfer. The couplings originating from these changes are negligibly small for our purposes,

justifying our de�nition for R. The entrance channel to the studied charge-exchange process,

Ca(4s4p 1P1) + Yb+(6s 2S1/2), has both a four-fold-degenerate (|Ω| = 1/2, 3/2) repulsive

potential and two-fold-degenerate (|Ω| = 1/2) attractive potential. Substantial non-radiative

charge transfer only occurs to the Ca+(4s 2S1/2) + Yb(5d6s 3D2) exit channel. The Ca+(4s

2S1/2) + Yb(5d6s 3D3) channel is energetically inaccessible to this entrance channel, and

the Ca+(4s 2S1/2) + Yb(5d6s 3D1) channel is only crossed at short range R ≈ 25 a0, where

the the estimated couplings between these diabatic potentials, using the Heitler-London

method [TTY98], are too large to signi�cantly contribute to the rate coe�cient. More

details about the potentials, the diabatic couplings, and the calculation are given in our

accompanying paper of Ref. [LMP19].

Therefore, the non-radiative charge transfer is primarily driven by coupling of the |Ω| =

1/2 entrance channel diabats at their crossings with the exit channels. In the diabatic

representation, this coupling arises from the molecular electrostatic interaction and therefore

conserves Ω, implying that only charge transfer to the |Ω| = 1/2 exit channel diabats, at

crossing points Rc = 40.7 a0 and 42.3 a0, is relevant. Since the electronic basis functions are

very di�erent for the two channels, the non-adiabatic coupling is localized and approximated

by identical Lorentzians centered at each Rc. The half width of this Lorentzian, R0, is

chosen to match the experimentally determined charge transfer rates. In the absence of

any additional means to overcome reaction blockading, the atom-ion pair can reach these

crossing points and undergo a charge-exchange reaction via two pathways. The �rst pathway

is directly on the Ca(4s4p 1P1) + Yb+(6s 2S1/2) entrance channel, where we determine

the population of Ca atoms in the 1P1 state by solving a rate equation derived from the

optical Bloch equations, which includes the distance-dependent detuning of the MOT beams

[MPY17]. The second pathway describes a collision on the photon-dressed Ca(4s2 1S0) +
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Yb+(6s 2S1/2) state, which is coupled to the Ca(4s4p 1P1) + Yb+(6s 2S1/2) state via the

MOT laser. Because the MOT laser is tuned 2π×34.6 MHz below the asymptotic transition

energy, as the atom and ion collide the laser is shifted into resonance. At this point, there is

a resonant ampli�cation of the coupling to the Ca(4s4p 1P1) + Yb+(6s 2S1/2) state by the

molecular interaction due to the large density of states near the threshold.

Using the in�nite-order sudden approximation (IOSA) [Pac74, Sec75, Hun75, Kou79], a

coupled-channels calculation is performed on these potentials to determine the charge trans-

fer cross-section, σ(E, `). The e�ect of spontaneous emission is included by classically com-

puting the collision time on the entrance channel and determining the probability, p(E, `),

for a colliding pair to survive to Rc without spontaneously emitting. The charge transfer

rate constant is then determined as

k =
∞∑
`=0

(2`+ 1)p(E, `)σ(E, `) (11.1)

where ` is the average orbital angular momentum quantum number used in the IOSA and E is

the collision energy. The resulting rate constant is displayed alongside the data in Fig. 11.1(d)

for R0 = 0.39 a0, with and without the inclusion of p(E, `). A detailed description of the

excited-state potentials and charge transfer can be found in [LMP19].

11.4 Optical control of reaction blockading

Given that this reaction blockading is expected to occur in all low-temperature excited-state

collisions, it is desirable to develop a method to remove it. Here, we demonstrate one such

means. Building on ideas developed for control of hyper�ne-changing collisions [WSD95,

SGT95,ZMM96], we apply a strong laser, dubbed the catalyst laser, that couples the ground-

state with an excited state at short range. This allows selection of the excited-state reaction

channel and may, in principle, be used to select a desired reaction product in polyatomic

systems.

The operation of the technique is sketched in Fig. 11.2(d), where the CaYb+ molec-

ular potentials dressed by the photon energy of the applied laser are shown. Near the
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Figure 11.3: Dual-isotope technique. False-color �uorescence images of the Yb+ ions and the

Ca MOT (not to scale) illustrating the dual-isotope method used to measure the low decay rate of

172Yb+(2S1/2). We �rst trap 172Yb+ and 174Yb+, while laser-cooling only 172Yb+ ions (shown in

red), while 174Yb+ ions (shown as blue circles) remain dark. We then switch the 369 nm cooling

laser frequency to cool 174Yb+ ions (shown in blue), while the 172Yb+ ions (shown as red dashed

circles) remain dark. We then overlap the MOT with the laser-cooled 174Yb+ ions as well as the

ground-state 172Yb+(2S1/2) ions for a variable amount of time. Finally, we cool and measure the

�nal number of 172Yb+ ions.

catalyst laser avoided crossing distance RCL, the catalyst beam couples the upper and

lower states, promoting the complex to the Ca(1P1) + Yb+(2S1/2) state at short range.

The probability of promotion can be estimated from Landau-Zener transition theory as

P (ΩR) = 1 − Exp
[
−π(~ΩR)2/

(
2~v ∂

∂R
∆E

)]
, where ΩR is the Rabi frequency of the cata-

lyst beam, v is the radial velocity, and ∆E is the energy di�erence between the diabatic

potentials [Wit05]. Thus, for a scattering event with rate constant, k, this technique yields

an experimentally observable rate ko = kP (ΩR)e−∆t(RCL)/τP , where ∆t(RCL) is the time re-

quired for the atom-ion pair to propagate from RCL to short range and τP is the lifetime of

the excited state.

In order to test the catalyst laser technique at the lowest possible collision energy,

where the suppression is strongest, the ions cannot be shuttled but must be arranged

in a stationary linear ion chain overlapped with the MOT. Due to collisional heating ef-
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Figure 11.4: Removing suppression with addition of a catalyst laser. Total charge-

exchange rate coe�cient as a function of catalyst laser (a) frequency and (b) intensity. Plotted

alongside experimental data are the results of a coupled-channels calculation and an estimate using

the Landau-Zener approximation. For reference, the experimental rate with no catalyst beam is

shown. Error bars correspond to the standard error in experimental measurements and error bands

include uncertainties from the theoretical simulations and experimental parameters. Horizontal

error bars in (a) are smaller than the plot marker.

fects [CSR13,CSH14,SDC16], the linear ion chain cannot be maintained during MOT expo-

sure without active laser cooling. However, if the ions are laser cooled, the charge-exchange

rates include collisions originating in the Yb+(2P1/2) and Yb+(2D3/2) states [RSK11]. There-

fore, in order to isolate the Ca(1P1) + Yb+(2S1/2) charge-exchange rate without the shuttling

method, we develop and implement a dual-isotope technique (see Fig. 11.3) for collision rate

measurement. Speci�cally, we simultaneously trap both 172Yb+ and 174Yb+ ions, while laser-

cooling only the 174Yb+ ions, which, in turn, sympathetically cool the 172Yb+ ions. As the

172Yb+ ions are only sympathetically cooled, they remain in the 6s 2S1/2 state. Due to

o�-resonant scattering of the cooling laser for the 174Yb+ ions, it is necessary to apply a

repumping laser for the 172Yb+ ions to prevent population from accumulating in the 5d

2D3/2 state. Therefore, by monitoring the number of 172Yb+ ions with time, we isolate and

measure the charge exchange of Ca(1P1) + Yb+(2S1/2).

Figs. 11.4(a) and (b) show the results of using this dual-isotope technique to monitor

Ca(1P1) + Yb+(2S1/2) charge-exchange reactions as a function of the detuning and intensity

of the catalyst laser, respectively, at a collision temperature of ∼50 mK. For large detunings,
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although the atom-ion pair is promoted at a small value of RCL, increasing the likelihood

of reaching short range before spontaneous emission, the large value of ∂
∂R

∆E and the high

velocity of the reactants leads to a lower probability of promotion to the reactive state

from Landau-Zener transition theory. For the given experimental intensity of 5 W/cm2, the

catalyst beam cannot be closer to resonance than ∼ −2 GHz due to adverse e�ects on the

MOT.

11.5 Theoretical treatment of catalyst laser e�ect

The dependence of the measured rate on the catalyst laser intensity can be understood by

the increased probability of promotion to the reactive state given by Landau-Zener transition

theory for increasing Rabi frequencies ΩR. Also shown are the results of a coupled-channels

calculation. Here, the rates are calculated by allowing for, in addition to the two previously

discussed pathways from the MOT laser, a catalyst-laser-enhanced charge-exchange pathway,

coupling the Ca(1S0) + Yb+(2S1/2) entrance channel to the Ca+(2S1/2) + Yb(3D2) exit

channel via the intermediate Ca(1P1) + Yb+(2S1/2) channel. The experimental data shows

good agreement with both the coupled-channels calculations and the simple Landau-Zener

model, supporting this interpretation of the results.

In summary, we have investigated and engineered electronically excited-state collisions of

Ca with Yb+ at low collision energy. Using a method for precise control of collision energy, we

�nd that the interaction of the atom with the ion leads to a strong shift between the ground

and excited atomic states, causing any laser addressing the bare atomic transition frequency

to be shifted from resonance, even at long range. Thus, at low collision energy, an atomic

excited state is likely to undergo spontaneous emission before reaching short range. This leads

to a strong suppression of scattering events that occur via molecular states corresponding to

an atomic excited state. These features are expected to be universal at low temperature for

systems with short-lived electronic excitations and long-ranged interactions. To overcome

this suppression, we demonstrate a technique using a catalyst laser, which selectively excites

colliding molecular complexes at short range. This technique removes the observed reaction
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blockading, allowing excited-state collisions to be studied even at ultracold temperatures.

As low-temperature techniques provide precise information about the underlying dynamics,

this technique should �nd use as a general tool for studying excited-state collisions. Further,

because the technique selectively excites the colliding pair to a chosen state it may be used

as a means to select a desired product outcome in polyatomic chemical reactions.

Finally, the reaction blockading e�ect observed and controlled here is extremely important

for the growing �eld of hybrid atom-ion trapping, where sympathetic cooling of ions with

laser-cooled atoms is being pursued [RSS12, Hud16, HC18]. The existence of this reaction

blockading e�ect means that detrimental chemical reactions from excited atomic states,

which are energetically unavoidable, will not occur during the sympathetic cooling process.

Thus, a large variety of molecular ions can be cooled by laser-cooled atoms without loss to

unwanted chemical reactions.

We thank Wesley Campbell for helpful discussions. This work was supported in part

by the National Science Foundation and the Army Research O�ce. Work at the Temple

University is supported by the Army Research O�ce, the U.S. Air Force O�ce of Scienti�c

Research, and the National Science Foundation.

11.6 Corollary calculations and measurements

The following section summarizes ancillary measurements and calculations that were per-

formed to complement the above study.

11.6.1 Determination of state-speci�c rate constants

Experimental data is recorded by initializing an ion chain and loading the Ca MOT, which

is overlapped with the Yb+ ions. After a variable amount of exposure time, some ions

undergo charge exchange (CEX), leading to a loss of ion �uorescence, shown in Fig. 11.5.

Also apparent from Fig. 11.5, the presence of Ca does result in the blurring of the Yb+ ions,

due to collisional heating e�ects [SDC16], but does not result in a statistically signi�cant
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Figure 11.5: Charge Exchange Reaction Exponential decay (upper left) of 174Yb+ �uorescence

during immersion in the Ca MOT due to CEX as indicated by the CCD images (right). The excited

state fraction ρpp (bottom left), as determined by �uorescence per ion, is shown to be constant.

change in the fraction of time the Yb+ ion spends in the 6p 2P1/2 state, ρpp. By �tting the

�uorescence decay to an exponential loss, we can determine the reaction rate and calculate

the rate coe�cient using the density of the Ca atom cloud, measured by absorption imaging.

Repeating this measurement for a variety of Yb+ laser cooling parameters with constant

MOT parameters, the rate constant is measured with various sets of Yb+ excitation values,

~ρi = {ρiss, ρipp, ρ
i
dd}. These values are inferred from the �uorescence measurement of ρipp

along with a rate equation model using known experimental parameters. The experimental

results using this method of �uorescence detection are shown by blue data points in Fig. 11.6

as a function of ~ρi. Vertical error bars represent standard errors in the reaction rate, and

horizontal error bars are estimated uncertainties in parameters for the rate equation model.

The positive correlation between rate constant and the populations in the 6p 2P1/2 and

5d 2D3/2 states suggests that theses channels exhibit a larger charge exchange rate with Ca

than the 6s 2S1/2 state. However, because |~ρi| ≡ 1, it is necessary to perform a multidimen-

sional �t of the experimental rate constant, ktot, as a function of 174Yb+ excited fraction to

the model: ktot = ρssks + ρppkp + ρddkd. Here the ki are the channel speci�c rate constants
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Figure 11.6: Measured Charge Exchange Rate Constants CEX rate constants as a function

of excited state fractions of 174Yb+(2P1/2) (top) and 174Yb+(2D3/2) (middle). The CEX rate con-

stant appears to be independent of the excited state fraction of Ca(1P1) (bottom). This, however,

actually re�ects the experimental inability of measuring the reactivity of the Ca(1P1) state due to

its short life time and the shifting of the transition energy in close proximity to the Yb+ ion.
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for the three Yb+ states occupied in the system. From this �t, we �nd the state-speci�c

reaction rate constants given in Table 11.1. The reaction rate constant ks cannot be resolved

with this method, due to the inability of the system to maintain a resolved ion chain at low

cooling power, i.e. low ρipp.

Similarly, we also measure the charge exchange rate constant as a function of the state

populations, ~ρa = {ρass, ρapp, ρ
a
dd}, of the Ca atoms in MOT, while holding the ion cooling

parameters constant. This is accomplished by modulating the presence of the MOT lasers

with an acousto-optic switch, which e�ectively reduces their intensity and changes the values

of ~ρa. The measured rate constant along one of the populations, ρapp is shown in Fig. 11.6(c).

Naively, the lack of dependence on ρapp might be interpreted to suggest that the internal

state of the Ca atom does not a�ect the charge exchange rate. However, as discussed

in [RSK11,JM89b] the relatively short lifetime of the Ca 4p 1P1-state (τp ≈ 4.5 ns) and the

energy shift of the 1P1 ← 1S0 transition as the Yb+ ion approaches the atom combine to

create a dramatic suppression of any collisions on the excited neutral atom channel. Thus,

the reactions we observe here are dominated by the reactive excited states of Yb+ with the

ground state of Ca. To observe the suppressed reactions with the Ca(1P1) state, we use the

dual isotope technique to isolate Yb+ in its 2S1/2 ground state, removing the large charge

exchange rate from the excited Yb+ states and allowing greater sensitivity to reactions from

excited states of Ca.

Table 11.1: Measured state-resolved charge exchange rate coe�cients for the Yb+ + Ca system.

Yb+ state Ca state ki (cm3/s)

6p 2P1/2 4s2 1S0 3.3(3)× 10−9

5d 2D3/2 4s2 1S0 4.2(2)× 10−9

6s 2S1/2 4s2 1S0 < 3× 10−11

6s 2S1/2 4s4p 1P1 7.5(1.5)× 10−10
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Figure 11.7: Measured CEX rate constant for 172Yb+(2S1/2) as a function of Ca(1P1) state

population fraction ρpp. Using the dual isotope method, we are able to detect the Ca(1P1) +

Yb+(2S1/2) rate constant which was previously overshadowed by CEX involving the Yb+(2P1/2)

state.

11.6.2 CEX rate coe�cient uncertainty bands

We estimate uncertainties in the CEX rate coe�cients that are caused by uncertainties in

both experimental measurements and theoretical calculations. The vertical error bars in

Fig. 11.1 and 11.4 show the standard error of the rate coe�cient measurements. The hori-

zontal error bars in Fig. 11.1 come from the uncertainty in the experimental determination

of the ion temperature.

In Fig. 11.4, other uncertainties in the experiment, including the ion temperature and

the intensity of the catalyst laser, are incorporated in the uncertainty bands of the coupled-

channels calculations along with theoretical uncertainties as described in more detail in the

following.

We account for the uncertainty in the relative temperature of the data, which is measured

to lie between 20 mK and 100 mK. As the rate coe�cient is not linear over this temperature

range we compute it every 10 mK within this entire range.

The experimental uncertainty of the intensity of the catalyst laser is due to the uncer-

tainty of its spatial alignment relative to the location of atom and ion clouds. In Fig. 11.4(a),

the intensity is estimated to be I = 5(1) W/cm2. We compute rate coe�cients for I = 4

W/cm2 and 6 W/cm2 and rely on its monotonic dependence on I in this range for other

values. The intensity of the experimental data in Fig. 11.4(b) is assumed to be 5/6 of the
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peak intensity of the given laser power and beam waist with a 20% uncertainty.

A major theoretical uncertainty is due to the uncertainty of the scattering length of the

ground state potential and the bound state structure in the excited attractive |Ω| = 1/2

Ca(4s4p 1P1) + Yb+(6s 2S1/2) potential. There is no spectroscopic data available from

literature about these potentials. We account for such uncertainty by varying the scattering

length of the ground-state Ca(4s2 1S0) + Yb+(6s 2S1/2) potential. We slightly modify the

depth of this potential and create three potentials with vastly di�erent scattering lengths, a ≈

0, β4, and ∞, but with the same number of l = 0 bound states, where β4 =
√

2µ|C4|/~2 =

3.05×103 a0 is the characteristic length scale for the C4/R
4 potential. The range of scattering

lengths modi�es the thermalized rate coe�cients of the catalyst pathway and increase the

width of the uncertainty band to up to 15%.

Another theoretical uncertainty is related to the width of the non-adiabatic coupling

between the excited potentials at their crossings that lead to charge exchange. The area

of the crossings is schematically marked by �CE� in a circle in Fig. 11.2(b), (c), and (d).

Assuming to be a Lorentzian function, the non-adiabatic coupling matrix element has a half

width R0 = 0.37 a0 with an uncertainty ∼ 0.02 a0. The values are determined by �tting the

coupled-channel calculations to the experimentally measured CEX rate coe�cients without

the catalyst laser. Details can be found in [LMP19]. To incorporate this uncertainty, we

compute rate coe�cients for R0 = 0.35 a0 and 0.39 a0 and rely on its monotonic behavior

with R0 for other values.

All these uncertainties are added in quadrature to �nd the �nal uncertainty bands in

both Figs. 11.4(a) and (b).
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CHAPTER 12

Rotational-state readout and future outlook

The following chapter will describe the future of the MOTion project. Primarily, we are

interested in developing a means for ro-vibrational control of our polar molecular ion of in-

terest, BaCl+. Before this control can be established, a method for initializing the molecule

to its internal ground state must be developed. However, as these molecules are initially

produced at room temperature, they occupy hundreds of rotational and vibrational states

and therefore must be cooled to their ro-vibrational ground state. While vibrational cooling

of BaCl+ has previously been demonstrated [RSS12], rotational cooling has not yet been

con�rmed, primarily because a method for rotational state readout has not yet been devel-

oped in our system. Once internal state readout and initialization have been enabled, a new

host of exciting experiments will be accessible with applications to state-to-state chemistry

and quantum information.

For example, one application of internal state control is developing a qubit based on the

rotational levels of BaCl+. Indeed, such a system has been suggested recently [HC18] to

provide an excellent platform for high �delity quantum logic.

There are two main reasons why polar molecular ions are advantageous for quantum

information. Firstly, the two lowest rotational levels in such molecules typically have energy

splittings on the order of ∼GHz, meaning spontaneous emission operates on extremely long

timescales, leaving plenty of time to perform coherent manipulations. Secondly, the dipole

moments of molecules can be quite strong in comparison to atoms, and thus two adjacent

molecules can be entangled solely using the dipole-dipole interaction. On the other hand,

atomic ions, currently one of the most competitive qubit platforms, have comparatively

weaker dipole moments and thus must be entangled using the motional modes of their
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LQT potential. However, as these LQT systems are scaled to the chip-size level, yet-to-be-

fully-understood e�ects of anomalous heating [BKW18] have provided a serious challenge

to maintaining motional state stability, thus making dipole-dipole based entanglement a

potentially attractive alternative.

Before qubit manipulations can be performed on the molecules, we must �rst develop

a method for both initializing and reading out the internal state of these species. In most

laser-coolable atomic ions, the energy structure is fairly hydrogen-like, and thus laser ma-

nipulations can easily be used for both of these purposes. However, molecules have a com-

paratively more complex structure. Speci�cally, due to the absence of vibrational selection

rules in heteronuclear diatomics, excited states can often decay to wide range of lower en-

ergy states, for the moment preventing optical cooling cycles from being identi�ed in a wide

majority of molecules, with notable exceptions [BMN14,KBM17].

As previously demonstrated in BaCl+ and other systems [SHS10, RSS12], sympathetic

cooling o�ers another means for internal state cooling. In BaCl+, collisions with an ultra-

cold Ca bath have been shown to e�ectively cool molecular vibrational degrees of freedom;

however, rotational cooling has not yet been con�rmed since a method for rotational state

readout has not yet been developed for this system. Essentially, before we can tell how cold

these things are, we need a thermometer. The remainder of this section will detail recent

e�orts to develop a method of rotational state readout for BaCl+ that will allow the sample's

rotational temperature to be estimated and future qubit manipulations to be performed.

12.1 Photodissociative thermometry

Many di�erent methods for internal state readout have been proposed and implemented.

For example, quantum logic spectroscopy [WWH16] has been impressively implemented for

state detection in MgH+ and promises to be a general, albeit complex, method for non-

destructive state readout in molecules. Similarly, other creative methods involving detection

of state speci�c heating rates for ro-vibrational readout in polyatomic systems have also been

proposed [Pat18].
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Figure 12.1: Two photon photodissociaton rotational state readout scheme

Rotational readout scheme whereby population from a single rotational level is �rst transferred to

the v=8 state through a midIR photon. At this point, a 266 nm photon dissociates the molecule

into Ba+, which can be detected through laser �uorescence.

However, here we chose to follow a photodissociative thermometry method similar to that

implemented in Ref. [RSS12], where we measure the BaCl+ rotational populations by driving

rotational-state-selective dissociation transitions. This scheme, while destructive by nature

due to the dissociation step, o�ers a balance of performance and ease of implementation.

The photodissociation scheme, illustrated in Fig. 12.1, works in two steps. Firstly, in

order to probe the molecular population in a particular rotational level, population in that

level is �rst driven to a higher vibrational level in the electronic ground state through an

overtone transition (∼ 3800 nm). Once the population has been transferred, a second pho-

todissociating laser can be introduced that selectively dissociates the higher vibrational level

while leaving population in the other states intact. BaCl+ is dissociated into Ba+, which

can subsequently be laser-cooled and imaged; thus, after this process has been performed,

the increase in observed Ba+ number can be used as a one-to-one mapping of the amount of

BaCl+ that was initially present in the rotational state that was probed. This process can
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be repeated with the �rst step being resonant with di�erent rotational levels in the ground

state manifold, allowing the populations, and thus rotational temperature, of these states to

be measured.

12.1.1 Selection of overtone transition

So which overtone transition should be used? Essentially, there are three main considerations.

Firstly, we want to be able to exclusively dissociate the intermediate level in our scheme.

Therefore, if the v=0 state, or any other level feasibly populated by our molecular sample

during the experiment, were to have a signi�cant photodissociation cross-section at the

second-step dissociation laser wavelength, our signal would be comprised since we would

also be dissociating molecules not driven along the overtone transition.

Essentially this precludes using dissociation laser wavelengths bluer than∼260 nm [RSS12]

as the v=0-3 levels that are populated substantially via the 300 K chamber blackbody can be

dissociated here. Of course, during MOT operation, primarily only the v=0 manifold will be

populated, but for reasons to become evident later, being able to use this rotational-state-

readout scheme with a room temperature sample is desirable. This constraint essentially

rules out the v=0-5 levels from being used.

Secondly, we would like the overtone transitions to have as high of a Franck-Condon

factor as possible so we can deplete the population in a particular rotational level with high

e�ciency. The Franck-Condon factors (FCF's) have not been experimentally probed and

thus can only be roughly estimated from theoretical molecular potentials.

Lastly, we would ideally like to use a 266 nm photodissociating laser since it is conve-

nient to produce from the FHG of our ND:YAG laser and thus does not require handling

carcinogenic dyes.

In Fig. 12.2, the Eistein A coe�cient for the R-branch (0, 0)→ (v, 1) transition is plotted

against the photodissociation rate for the upper vibrational state, λPD = σ(266 nm)IPD
~ωPD

, where

σ(266 nm) is the photodissociation cross section for the upper vibrational level at 266 nm,

IPD is the intensity of the photodissociation beam at typical operating parameters, and ωPD
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is the angular frequency of the photodissociation laser.

Ideally we would like to choose a vibrational level with large values in both coordinates;

however, a few caveats need to be considered. Firstly, the Einstein-A coe�cient is dependent

on the square of the transition dipole matrix and thus is highly susceptible to theory noise.

Thus, the theory values should be taken as being within error of one another if they reside

within a factor of ∼5. Further, as a general rule of thumb, experimentally, overtone transition

rates decrease will increasing vibrational number, meaning given two roughly equivalent

theoretical Einstein-A coe�ceints, the lower vibrational level should be preferred. Lastly, an

additional consideration is the ease of which the overtone laser can be obtained.

Keeping these three considerations in mind (see Fig. 12.2), the v = 8 level was the

intermediate level that was chosen. It has a ∼ 3800 transition wavelength that can be

procured from commercial midIR laser manufacturers. Further, it has the largest antici-

pated photodissociation cross section of the levels explored. While higher vibrational states

potentially o�ered larger FCF's, according to theory, ultimately the likelihood that this en-

hancement was legitimate and not merely theory-dependent did not outweigh the risk of

potentially smaller dissociation cross-sections and the added di�culty of procuring the nec-

essary laser system. However, in actuality, due to the reliance on theoretical predictions in

the selection process, which are incredibly di�cult to perform accurately in this many-body

system, ultimately it is di�cult to say with con�dence which choice of intermediate level is

most optimal. Thus our choice of the v=8 is more of an educated guess than anything �rm.

12.2 Experimental scheme

The energy di�erence between the of the v = 8 and v = 0 state (sans any rotational energy

di�erences) can be determined from the spectroscopic constants given in Sec. 6.3.3 as

E[(v = 0)→ (v = 8)] = ωe(8 + 1/2)− ωeχe(8 + 1/2)2 − [ωe(1/2)− ωeχe(1/2)2] (12.1)

where we have taken into account the zero-point energy of the system.

Considering the experimental errors in the utilized spectroscopic constants, this energy
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Figure 12.2: Overtone transition properties

The Einstein A coe�cient for the R-branch (0, 0) → (v, 1) transition plotted against, λPD ==

σ(266 nm)IPD
~ωPD , the photodissociation rate for the v=5-20 levels. Only select vibrational levels are

labeled along with their overtone transition wavelengths. For our scheme, the v=8 band was chosen

as the intermediate state in our two-photon process due to its combination of high λPD, relatively

high Einstein-A coe�cient, and ease of experimental implementation at 3800 nm.

di�erence is 3800(25) nm. Therefore, we need an overtone laser capable of scanning this

range continuously. A laser capable of mod-hop-free tuning in the midIR is a challenge to

construct from scratch, and thus, for this purpose we purchased a Daylight Solutions laser

system (M1038-PC-QCL-J0162, 200 mW output, ∼1 MHz linewidth, 3650-3850 nm tuning

range), whose tuning curve is shown in Fig. 12.3.

Once the laser system has been integrated into our system, �ner spectroscopy of the

overtone transition must �rst be performed so we can identify the overtone transitions more

accurately. We can perform this spectroscopy in-house, but we must �rst choose whether to

do this initial search with an internally cold (through introduction of the MOT) or internally

room-temperature sample (not MOT introduced).

If internally cold, the rotational population would ideally compress to the J=0 level. This
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Figure 12.3: Overtone transition properties

Tuning curve for the Daylight solutions M1038-PC-QCL-J0162 midIR laser system used to drive

the overtone transition in the rotational readout photodissociation scheme

would mean we would be looking for a single transition amidst a 40 nm search region. As our

laser is tunable, the next question in this approach is what step size to use. If we use a step

size too small (∼1 MHz), we may need to acquire tens of thousands of data points before

identifying the transition. On the other hand, if we choose to sweep in ∼100 GHz increments,

we also risk not having enough spectral density to drive the transition of interest. To the

latter point, if the MOT is present, due to reactions between BaCl+ and Ca, our molecule

lifetimes could be on the order of ∼10 s, meaning we would need enough spectral density to

drive the transition signi�cantly within this timeframe. The last restriction, as determined

by a computational model to be discussed below, limits the size of frequency sweeps that
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can be used to the ∼GHz level, which would in turn still likely necessitate thousands of data

points being collected before the transition is identi�ed. Further, proper sympathetic cooling

requires constant optimization of the atomic density and the atom-ion overlap factors, adding

additional layers of complexity to the experiment. These two restrictions make it di�cult,

but certainly not impossible, to perform the initial spectroscopy with the Ca MOT present.

Alternatively, for a room temperature sample, ∼70 rotational levels will be signi�cantly

populated under equilibrium conditions. Since the rotational splitting is of order ∼4 GHz,

this means a band of rotational transitions would be spread across a ∼300 GHz spectral

region. Thus, with a room temperature sample, we could scan our laser across a convenient

∼300 GHz range to address the entire rotational manifold. Further, our molecular ion

lifetimes without a MOT present are of order ∼ 1 hr, meaning we can accrue signal for much

longer timescales than with a MOT present and thus can detect smaller transition rates. Due

to these advantages, once the Daylight system has arrived, we will likely choose to perform

the experiment with a room-temperature sample �rst.

12.3 Experimental implementation

For the 266 nm light in our scheme, we utilize the FHG output of our QuantaRay ND:YAG

laser system (∼5 mJ/pulse). In order achieve greater beam intensity, we focus our beam

using a Galilean telescope (∼ 1 mm waist). However, one must be careful not to overfocus

the beam and thus risk damaging the viewports on the vacuum system.

In a typical experimental sequence, we load a large sample of Ba+ ions into the LQT.

We then react approximately 30% of the sample into BaCl+ using our leak valve apparatus.

Ideally we want as large of a BaCl+ sample as possible, but we also want to maintain

translational sympathetic cooling, which is why the 30% value is chosen.

Once the bi-sample has been initialized, both the midIR and the 266 nm laser are in-

troduced into the system. The 266 nm light actually dissociates the BaOCH+
3 molecules

also present in the LQT due to background gas reactions, a feature convenient for helping

optimize beam alignment. The midIR laser can be aligned by overlapping the beam with one
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of the Ba+ cooling lasers, as veri�ed through Thorlabs midIR viewing cards (VRC6S). One

may also verify the overlap of the beams using two well-stabilized irises and a power-meter

to ensure both lasers are approximately aligned to the same beam path.

Both lasers can now be left in for approximately 1 hr as the frequency of the midIR

beam is swept and the camera records ion-�uorescence images at �xed time intervals. At

the end of this cycle, the entire sample is ejected into the ToF-MS. Utilizing these detection

methods, both an increase in overall ion-�uorescence and a decay in BaCl+ amount can be

searched for as evidence of driving the dissociation transitions.

While both measurements can be made concurrently, for this application, ToF-MS detec-

tion is preferable to �uorescence detection as the latter is subject to slow timescale frequency

and intensity laser drifts in the lab; however, both may be used to corroborate any possible

detection signals that are encountered.

While the Dayligtht Solutions laser system has not yet been integrated into our experi-

mental system, we have performed this experiment with no midIR laser present as a control.

Fig. 12.4 displays the Ba+ �uorescence as a function of time for a sample control point; here,

there are a few features to take note of.

Firstly, the amount of Ba+ �uorescence is a�ected by background methanol reactions

that reduce the amount of Ba+ in the LQT as a function of time. While the e�ect of these

reactions is partially limited since the 266 nm laser dissociates BaOCH+
3 back into Ba+,

BaOH+ is not signi�cantly dissociated by any lasers in our system and thus represents an

avenue of Ba+ loss. Despite this loss channel, the Ba+ amount still appears to increase

in time as there appears to be a background BaCl+ photodissociation rate. This is likely

due to the molecules undergoing micromotion interruption collisions with background gas

particles in our chamber that promote the sample to excited internal states. These states, if

possessing a signi�cant dissociation cross section at 266 nm, can then be dissociated by our

FHG output, resulting in the observed background. Typically we operate our dissociation

energy at < 2 mJ/pulse to limit these events.

When these two e�ects are taken into account the �uorescence curve in Fig. 12.4 is
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Figure 12.4: Overtone transition properties

Ba+ �uorescence as a function of experiment time when no midIR laser is present. The combined

e�ect of background reactions with methanol and background BaCl+ photodissociation combine to

cause a slight increase in Ba+ �uorescence as a function of time.

observed. Once again, here the combined e�ects of Ba+ reactions and BaCl+ background

dissociation combine to create a slight increase in Ba+ over the timescale studied.

12.4 Computational modeling

In order to estimate the anticipated di�erence between our experimental dissociation rates

and that of our controls, we constructed a computational rate equation model of the system

using molecular potentials and dipole moment functions provided by Professor Hua Guo's

group at the University of New Mexico. All photodissociation cross-section values, energy

splittings, and matrix elements were obtained by feeding the potentials and dipole moment

functions into the LEVEL and BCONT program packages.
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The model considers state decay/promotion events due to both blackbody radiation and

laser stimulated emission/absorption, as well as spontaneous emission. The model also con-

siders photodissociation processes for each level. Further, the temperature of the sample is

set to be 350 K instead of the 300 K of our chamber to allow our model to crudely mimic

the micromotion interruption events discussed above, with the 350 K temperature chosen

mainly to �t the observed background BaCl+ decay rate observed in the control.

Given these e�ects, the rate equation for a general (v, j) level is given as

dNv,j

dt
= −σv,j(λ266)

hν
IPDNv,j +

vmax,jmax∑
E(v′,j′)>E(v,j)

A(v′,j′)↔(v,j)

−
E(v′,j′)<E(v,j)∑
v′=0,j′=0

A(v,j)↔(v′,j′) +

vmax,jmax∑
v′=0,j′=0,(v′,j′) 6=(v,j)

ρIR(∆
(v′,j′)
(v,j) )B(v′,j′)↔(v,j)(Nv′,j′ −Nv,j)

+

vmax,jmax∑
v′=0,j′=0,(v′,j′)6=(v,j)

ρBBR(∆
(v′,j′)
(v,j) )B(v′,j′)↔(v,j)(Nv′,j′ −Nv,j)

(12.2)

where Nv,j is the population in the (v, j) level, σv,j(λ266) is the photodissociation cross-

section at λ = 266 nm, IPD is the time-averaged intensity of the photodissociating beam,

A(v′,j′)↔(v,j) is the Einstein A-coe�cient between the (v′, j′) and (v, j) states, ρBBR(∆
(v′,j′)
(v,j) )

is the spectral energy density of the blackbody spectrum at the energy of the (v, j)→ (v′, j′)

transition (∆(v′,j′)
(v,j) ), and ρIR(∆

(v′,j′)
(v,j) ) is de�ned similarly for the midIR laser. Further we note

if the amount of Ba+ is also desired to be tracked as a function of time, the model can be

extended by tracking how many particles are dissociated and also by including the e�ects of

methanol reactions on this species.

For computational convenience, we include the �rst 15 vibrational levels (vmax = 15) and

the �rst 100 rotational levels (jmax = 100) of BaCl+, which allows us to explore if higher order

overtone transitions (v = 1 → v = 9, v = 2 → v = 10, etc.) are also being driven by our

broadband laser source while not bogging down our computation time with an unnecessarily

high vmax. Secondly, we consider the time averaged intensity of the photodissociation beam

when in reality it is supplied through a train of 10 Hz laser pulses with 10 ns pulse widths.
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Figure 12.5: Overtone transition properties

Model predictions of BaCl+ amount both when the midIR laser is present and when it is not. In

the simulation, the photodissociating laser is given a pulse energy of 2 mJ and has a wavelength of

266 nm, while the midIR laser is given 200 mW of power and has a 250 GHz sweep range. As can

be seen in the �gure, the overtone laser is expected to produce a dissociation rate than should be

easily di�erentiable from that of our control.

The functional form of the blackbody spectral energy density is given in standard text-

books; however, the spectral density of the laser is derived assuming a �at-top intensity

pro�le of the laser as it is swept over a particular spectral region. The optimal sweep range

for the laser can be estimated from the model after inputting the parameters of our system,

such as photodissociaiton pulse energy and midIR beam intensity. In general, we �nd over

most operating parameters, a sweep range of ∼250 GHz o�ers a decent combination of both

spectral coverage and spectral density at each rotational transition.

In the model, the internal states of the molecules are initialized according to a Boltzmann

distribution. After solving the di�erential equations numerically, the number of dissociated

BaCl+ molecules can be tracked in the simulation, both when the midIR laser is included

and when it is not, and the corresponding expected change in BaCl+ amount is plotted in
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Fig. 12.5. As can be seen in the plot, over the course of an hour the signal is expected to be

signi�cant when compared to the control.

12.5 Experimental equipment

The midIR laser can be pro�led by both a Miriad S3 midIR spectrometer (1-5 µm range)

and a Bristol 671A-MIR wavemeter. The spectrometer allows for quick (∼1 ms) spectral

pro�ling of the beam and further can be used to ensure even frequency sweeps are being

performed, while the wavemeter (∼500 ms duty cycle, ∼10 MHz resolution) can eventually

be used for locking to rotational transitions.

Once the bandhead for the (v = 0) → (v = 8) transition has been identi�ed, �ner

spectroscopy can be performed to resolve individual rotational lines. Then, the next step

will be to introduce the MOT and see how the rotational population di�ers from that of a

room temperature sample. If the cooling is e�cient enough, we can then attempt to follow

the procedure outlined in Ref. [HC18] and perform high �delity quantum logic on cotrapped

molecular ions. Further once internal state control of BaCl+ has been achieved, a host of

other experiments will become possible, including those involving atom-ion state-to-state

chemistry.

12.6 Wrapping up

Despite how much we've seemingly diverged from this goal in recent years, in some ways

the MOTion project has always been an experiment geared towards obtaining full internal

state control over polar molecular ions. However, as our internal cooling scheme involves

pairing cold samples of molecules and atoms together, along with optical and electromagnetic

�elds, chemistry and energy exchange between the two species are inevitable. While some of

these processes were anticipated and welcomed as avenues of research, it was always an open

question how much unanticipated, yet-to-be-identi�ed processes would hamper our dream of

full internal state control.
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In large part, much of the chemistry [CSK11,RSK11,SRK12,al11,PMS17] research con-

ducted by this lab, as well as much of the previous research into atom-ion thermodynam-

ics [CSH14,CSR13,SDC16], was performed to answer these questions by helping understand

the limitations and challenges that atomic sympathetic cooling poses. While perhaps ini-

tially seen as excursions, these side-projects spawned some of the most interesting work the

lab has produced, demonstrating that as much as you try to plan science, often times you

are led down paths you never anticipated but are glad to have followed.

At this point, we understand how to navigate the chemistry, and we understand how to

make the thermodynamics work in our favor. Now, the path to achieving full internal control

of polar molecular ions appears clear, and the lab may �nally be on the cusp of doing so.

Once a method for reliable rotational readout has been developed, a new host of quantum

information and quantum chemistry experiments will be available, with plenty of room for

side excursions that I'm sure will inspire several more theses-worth of impromptu science.
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