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Molecular recognition processes guide the preferential association of molecular species in 

chemical and biological systems through physical differentiation and complementarity. 

Recognition exists at many scales, including the long-range interactions dictating 

diffusional association, as well as the short-range intermolecular interactions that 

discriminate the selectivity of a substrate to a host molecule and dictate the 

configurational transition to the bound state. In this work, methods are developed and 

employed to study three situations in molecular association processes. 

Diffusional association was investigated in the intermediate transfer between enzymes in 

engineered spatially organized nanostructures. In particular, the glucose oxidase-

horseradish peroxidase enzyme pair was investigated in several geometric arrangements 

of DNA-origami scaffolds.  A computationally efficient Brownian dynamics software 

package was developed for the determination of substrate association probability over 

microsecond to millisecond time scales. We found that arrangements of enzymes on a 
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planar scaffold primarily gain efficiency from induced enzyme colocalization with 

moderate enhancement due to the scaffold acting as a diffusive barrier. Confinement of 

the enzyme system within a nanotube scaffold greatly enhanced substrate transfer, up to 

ten fold relative to colocalization, and up to 150 fold relative to a disorganized solution of 

the enzymes and substrate over the same time period. Our results have implications for 

the efficient engineering of synthetic enzyme cascades. 

A computational method was developed for the determination of final non-covalent 

binding pathways for molecular complexes. Normal mode calculations were used to 

model coordinated natural motions of a host-guest complex, which were then utilized to 

connect conformational minima to form non-covalent binding pathways. Our results 

demonstrate that conformational transitions can be modeled and extended to construct 

coordinated final binding events. This approach has advantages over simulation-based 

methods for studying systems with slow binding processes and can help design molecules 

with preferred binding kinetics. 

A procedure for determining receptor subtype specificity for inhibitors of the human 

proteasome was performed. A natural product derivative inhibitor was simulated with 

molecular dynamics, and molecular recognition was assessed through structural stability 

and energetic affinity with each receptor subtype. The determined energetic and structural 

preference for two of the three catalytic sites suggests potential for desirable activity as a 

human proteasome inhibitor. 
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Chapter 1: Introduction 

1.1 Overview 

Molecular recognition is the broad study of how molecular entities can preferentially 

associate by differentiation through physical interaction. Its study resides at the junction 

between pharmacology, biology, chemistry, physics, and computer science. 

Computational study of physical processes of chemical and biological systems have been 

ongoing for decades.3–7 The turn of the 21st century brought about advances in 

computational power that have allowed computational physical science to bloom into an 

essential part of the study of chemistry and biology, including the study of molecular 

recognition processes. Computational modeling and simulation of molecular recognition 

processes has taken an integral predictive and explanatory role in bioengineering and 

pharmaceutical drug design. This work aims to use modern computational chemical 

theory and technology to extend the understanding of the processes involved in the 

association, binding, and interaction of molecular entities. Subsequent sections outline 

the computational and chemical theory that allow for the computational study of 

molecular association. The chapters that follow describe novel computer software to 

model specific parts of the association process, as well as several studies of association 

processes in chemical, biological, and bioengineered molecular systems. 

Understanding the association process of two molecules requires an understanding of the 

chemical and physical behavior at multiple spatial and temporal scales. The first step in 

an association process is the diffusional encounter of two molecular entities, which 

occurs over a long time scale and large spatial scale. Brownian motion describes the 
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random diffusive motion of the molecules through a solution. Molecular recognition at 

this scale takes the form of intermolecular forces that bias the diffusive motion, guiding 

the translation of the molecules in the vicinity of one another towards desirable locations 

of interaction. Chapters 2 and 3 outline a novel software application applied to 

bioengineered protein systems to elucidate various factors that influence the successful 

diffusional encounter of a small molecule to its protein target. 

Following the diffusional encounter of the molecules, the distinct binding process can 

take place. This is a subtle process guided by the thermodynamics of the interacting 

molecules. However, there are often energetic barriers to binding that prevent facile 

elucidation with more traditional computational methods, such as dynamics simulations. 

Thus, modeling the conformational changes as the binding process occurs, as well as the 

changes in the enthalpy, entropy, and free energy of the molecules, is desirable. Chapter 4 

introduces such a technique, known as Hopping Minima, to model the energetics and 

conformational structures of intermediate steps in the binding process of a ligand-

receptor complex. 

Finally, the bound state of a ligand-receptor complex can be studied using dynamics 

simulations, energetic analysis, and structural analysis to understand the intermolecular 

interactions that lead to favorable or unfavorable affinity. Chapter 5 demonstrates the 

study of bound state dynamics in differentiating receptor subtype specificity within the 

human proteasome. 
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1.2 Modeling with molecular mechanics 

1.2.1 Molecular mechanical theory 

Molecular mechanics is a molecular modeling theory that utilizes classical mechanics 

paired with empirical parameterization to model the structure and behavior of atomic and 

molecular systems.8–11 Molecular mechanics typically refers to the modeling of each 

atom in a molecular or atomic system as explicit parameterized hard spheres. The 

principles that define molecular mechanics, however, are applied to many types of 

models that abstract the structure or energetics of traditional all-atom molecular 

mechanics. 

In all-atom molecular mechanics models, atoms are defined explicitly and treated as 

simple rigid spheres with a defined radius and a point charge embedded in its center. A 

potential energy function describes the atomic and molecular interactions. The potential 

energy function of an atomic system is defined generally as follows: 

 

 𝐸 = 𝐸𝑏𝑜𝑛𝑑𝑒𝑑 + 𝐸𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 

𝐸𝑏𝑜𝑛𝑑𝑒𝑑 = 𝐸𝑏𝑜𝑛𝑑 + 𝐸𝑎𝑛𝑔𝑙𝑒 + 𝐸𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 

𝐸𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 = 𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 + 𝐸𝑣𝑎𝑛 𝑑𝑒𝑟 𝑊𝑎𝑎𝑙𝑠 

eq. 1.1 
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Molecular entities are defined by a series of atoms connected by bonded, or covalent, 

terms. Explicit bonds between atoms are modeled as classical harmonic springs with a 

reference bond length and bond strength specific to the two atomic species involved. The 

functional form is defined as: 

 
𝐸𝑏𝑜𝑛𝑑 =

1

2
𝑘(𝑙0 − 𝑙)2 

eq. 1.2 

where l0 is the reference bond length, l is the measured distance between the two atoms 

involved in the bond, and k is the force constant corresponding to the bond strength or 

rigidity. 

Further defining the geometry of a molecule, an angular potential is defined for each set 

of three atoms connected sequentially by bonds. Angular terms are most commonly 

defined by a harmonic potential: 

 
𝐸𝑎𝑛𝑔𝑙𝑒 =

1

2
𝑘(𝜃0 − 𝜃)2 

eq. 1.3 

where θ0 is the reference angle, θ is the angle measured about three atoms, and k is the 

force constant dictating the propensity of the atoms to hold their angular conformation. 

Finally, dihedral angles are defined for each set of four atoms involved in sequential 

bonds. For the four atoms defined by labels i, j, k and l, each dihedral angle Φ is defined 

as the angle between the two planes defined by atoms i, j, and k and atoms j, k, and l 

(Figure 1.1). 
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Figure 1.1. Dihedral torsion angle Φ defined between a set of four sequentially bonded 

atoms i, j, k, and l. 

 

Dihedral angles play a crucial role in defining the geometry of molecular entities, as the 

other bonded and nonbonded potentials cannot adequately capture the forces required to 

differentiate conformational preference in a molecular fragment. The potential form most 

commonly used to model dihedral angles is: 

 
𝐸𝑑𝑖ℎ𝑑𝑒𝑟𝑎𝑙 =

1

2
𝑉𝑛(1 + cos(𝑛𝛷 − 𝛾))2 

eq. 1.4 

where 𝑉𝑛 is the force constant, or barrier height, n is the periodicity, defining the number 

of potential minima and maxima with a 360 degree rotation, Φ is the measured dihedral 

angle, and γ translates the function dictating the angle at which minima and maxima 

occur. For example, a dihedral angle potential defined by n=2 and γ=180° will have 

minima at Φ=0° and 180°. 

A second form of dihedral angle is referred to as the improper dihedral angle, describing 

the angle at which one atom deviates from a plane defined by three others. For four atoms 

i, j, k and l in which atom i shares a covalent bond with each of j, k, and l, an improper 



6 

 

dihedral angle Φ is defined as the angle between the planes defined by atoms i, j, and k 

and atoms j, k, and l (Figure 1.2).  

 

Figure 1.2. Improper dihedral angle Φ defined between a set of three sequentially bonded 

atoms j, i, and k, and a fourth atom l bound to atom i. 

 

A potential is defined for atoms involved in improper dihedral angles to prevent out-of-

plane motion. This is common to ensure a rigid planar geometry for sp2 hybridized 

species, such as the carbonyl of peptide bonds in proteins. The aforementioned cosine 

dihedral potential as well as a harmonic potential are both commonly utilized for 

improper dihedral potentials: 

 
𝐸𝑑𝑖ℎ𝑑𝑒𝑟𝑎𝑙,𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟 =

1

2
𝑘(1 + cos(𝛷 − 𝜋))2 

eq. 1.5 

 
𝐸𝑑𝑖ℎ𝑑𝑒𝑟𝑎𝑙,𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟 =

1

2
𝑘(𝛷)2 

eq. 1.6 

where k is the force constant and Φ is the measured improper dihedral angle. 

In addition to bonded molecular forces, nonbonded potentials are included to model 

electrostatic and van der Waals forces. Classical molecular mechanical models take the 

atom-centered monopole approach to electrostatic interactions. Charges are assigned to 

each atom as a partial electron charge that is derived from experiment or quantum 

mechanical calculations.10–12 Atomic species that are not involved directly in a bond, 
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angle or dihedral exert nonbonded forces on one another. Electrostatic interactions are 

modeled using Coulomb interaction potential: 

 𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 = 𝑘𝑒

𝑞𝑖𝑞𝑗

𝑙
 

eq. 1.7 

where 𝑞𝑖 and 𝑞𝑗 are the partial electron charges assigned to interacting atoms i and j, l is 

the measured distance between the two atoms, and 𝑘𝑒 is Coulomb's constant ( (4π𝜖0)-1, 

where 𝜖0 is the electric permittivity of free space).  

Van der Waals forces define the non-polar component of the nonbonded forces in 

molecular mechanics, and are modeled with the Lennard-Jones (LJ) potential. 

 
𝐸𝑣𝑎𝑛 𝑑𝑒𝑟 𝑊𝑎𝑎𝑙𝑠 = 4𝜀 [(

𝜎

𝑙
)

12

− (
𝜎

𝑙
)

6

] 
eq. 1.8 

where ε is the depth of the potential well specific to the types of interacting atoms, σ 

defines the distance at which the potential value is zero, and l is the measured distance 

between two interacting atoms. Each atom in a molecular mechanical model is assigned a 

radius derived from the van der Waals radius of the element, with empirical deviations 

related to specific molecular environments.13,14 The σ parameter of the LJ potential is 

calculated by averaging the radii of the two atoms involved in the interaction. 

1.2.2 Force fields 

Each term in the potential energy function relies on empirically determined parameters to 

accurately describe the structure and energetics of a molecular system. Decades of 

experimental data have been rigorously tabulated and integrated into packages of 

parameters known as force fields.15–19 Force fields often focus on specific types of 

molecular systems, such as proteins or nucleotides, while others attempt to generalize 
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parameters for use with any type of molecular entity including novel compounds.16,18–20 

While force fields can exist independently of specific computer software, they are often 

paired together to make the process of creating a parameterized molecular mechanical 

model easier and less time consuming. For example, the AMBER software package 

contains both force fields and a tool known as LeAP to create a complete parameterized 

description of the molecular mechanical system, as well as many modeling and 

simulation tools.11,20,21 

1.2.3 Solvent modeling 

As many chemical and biological processes occur in solution, properly modeling the 

solvent is important for the accuracy of a solvated model. Water as a solvent has been 

studied extensively due to its existence in biology and common use in chemistry. Force 

fields and potential functions specific to water have been actively developed and are in 

common use.22,23 In molecular mechanics, the solvent is either modeled explicitly, with 

hard sphere models, or implicitly through the introduction of forces. Common explicit 

water models include TIP3P, TIP4P, TIP5P, and SPC(/E).24,25 These models combine a 

molecular mechanical description of the water molecule structure with intermolecular 

force field parameters that attempt to accurately describe the structure and energetics of 

water. The explicit water models represent the most accurate molecular mechanical 

models of water. However, the large number of water molecules that are necessary to 

solvate a molecular system significantly slows the calculation of the potential energy 

function. In cases where this makes a particular model impractical for a desired 

application, an implicit water model is often used.  
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The Poisson-Boltzmann (PB) equation is an accurate function for modeling the 

electrostatic properties of a charged solute in an ionic solution.26 The PB equation 

accurately models the electrostatic field of a charged solute in an implicit solvent with 

defined salt content:27  

 
∇ ∙ [𝜀(𝑟)∇𝜙(𝑟)] = −4𝜋𝜌(𝑟) − 4𝜋𝜆(𝑟) ∑ 𝑧𝑖𝑐𝑖𝑒

(
−𝑧𝑖𝜙(𝑟)

𝑘𝑏𝑇
)

𝑖

 
eq. 1.9 

where 𝜀(𝑟) is the dielectric constant, 𝜙(𝑟) is the electrostatic potential, 𝜌(𝑟) is the solute 

charge, 𝜆(𝑟) is the Stern layer masking function, 𝑘𝑏 is Boltzmann's constant, T is the 

temperature, 𝑧𝑖 is the charge of ion type i, and 𝑐𝑖 is the number density of ion type i in 

solution far from the solute.20 Summation is performed over all ion types (i.e. monovalent 

cations, divalent anions). Formulations of the PB equation can also be solved to calculate 

the solvation free energy of a molecular system. Due to the computational expense of 

solving the PB equation, it is commonly used to investigate energies of static structures 

of a molecular model, rather than as a part of a dynamics simulation. 
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The relatively efficient generalized Born (GB) equation is used to approximate the 

solvation free energy:28–31  

 
∆𝐺𝑠𝑜𝑙𝑣 = −

1

2
∑

𝑞𝑖𝑞𝑗

𝑓𝐺𝐵
(1 −

𝑒(−𝜅𝑓𝐺𝐵)

𝜀
)

𝑖𝑗

 
eq. 1.10 

where 𝑞𝑖 and 𝑞𝑗 are the charges on two interacting particles, 𝜀 is the solvent dielectric, 

and 𝜅 is Debye-Huckel electrostatic salt screening parameter. The choice of the function 

𝑓𝐺𝐵 typically takes the following form: 

 

𝑓𝐺𝐵 =
√

𝑙𝑖𝑗 + 𝑅𝑖𝑅𝑗𝑒
(

−𝑙𝑖𝑗
2

4𝑅𝑖𝑅𝑗
)
 

eq. 1.11 

where 𝑙𝑖𝑗 is the distance between two interacting particles, 𝑅𝑖 and 𝑅𝑗 are the effective 

Born radii of the atoms. The effective Born radii describes the degree to which a particle 

is buried within its parent molecule. For an isolated ionic particle, this is equal to its van 

der Waals radius. The calculation of these radii is imperative to the accuracy of the 

model.31 GB is a commonly used electrostatic water model in dynamics simulations due 

to its relative simplicity and computational practicality. 

The computational cost of the PB and GB equations can make their use prohibitive in 

many situations. A distance dependent dielectric is often used as a coarse approximation 

to the screening of electrostatic potential imposed by the solvent and salt.32,33 It is 

implemented by scaling the Coulombic potential in eq. 1.7 by the inverse of the product 

of the interparticle distance and a dielectric constant or function 𝜀: 

 𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐,𝑑𝑑𝑑 = 𝑘𝑒

𝑞𝑖𝑞𝑗

𝑙2𝜀
 

eq. 1.12 
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Beyond the electrostatic effects of a solvent, other implicit solvent forces may be 

included in a molecular model to further approximate an omitted solvent, including non-

polar contributions to solvation. A non-polar solvation term, related to the surface area of 

a solute, is commonly combined with either PB or GB to include the effects of solvent 

implicitly in energetic analysis of molecular structure or interactions.34 These joint 

models are commonly referred to as PBSA or GBSA, depending on the use of the PB or 

GB equation. 

Algorithms used to simulate the dynamics of a molecular system, such as Langevin 

dynamics, include forces to reproduce the friction and random fluctuations a solute incurs 

in a solvent (Section 1.3). These models and algorithms are not mutually exclusive, and 

oftentimes implicit electrostatic and non-polar solvent models are combined with a 

dynamics algorithm like Langevin dynamics to more completely model a solvent 

implicitly.  

1.2.4 Coarse grain modeling 

While standard molecular mechanics model the atomic-level detail of a molecular 

system, the vast number of degrees of freedom inherent in systems with a large number 

of atoms can make the simulation or calculation of structural properties computationally 

prohibitive. For this reason it is often desirable to abstract the structure of a molecular 

system to reduce the number of degrees of freedom by combining atoms into larger 

interaction spheres. This type of model is referred to as a coarse grain molecular model. 

Coarse grain models typically target a specific type of molecular entity, such as proteins 

or hydrocarbons, and can range from simply combining non-polar carbon and hydrogen 
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atoms (united atom models)12,35–37, to abstracting entire functional groups, molecular 

fragments, or entire molecules.32,38,39 

Structural abstraction comes at the cost of the physical detail obtainable with the model 

due to fewer parameters and functional forms defining the behavior of the system.40 

Simple abstractions, such as the united atom models, provide similar physical resolution 

relative to all-atom models while reducing the computational demand. There are many 

cases where united atom models accurately approximate the behavior of the 

corresponding explicit atom model, however system-specific tuning is often required for 

accuracy.41–45 

Further structural abstraction leads to efficient modeling of the structural dynamics and 

molecular interactions of large molecules. Proteins are often the subject of coarse grain 

modeling due to their size and long time scale dynamics. Coarse grain models of proteins 

often abstract the amino acid monomers into 1 or 2 interaction spheres, depending on the 

application.38,40 These models retain the nanometer-scale global geometry of the protein. 

The lack of atom-specific interactions and the isotropic forces induced by the large 

spherical interaction sites limit the system to large scale structural dynamics and 

simplified intermolecular encounter.46–48 However, these have less influence on the 

accuracy of the model when applied appropriately to simulate large scale processes, such 

as protein backbone fluctuations and intermolecular interactions in diffusion 

processes.49,50 In the context of molecular recognition, coarse grain modeling is 

applicable to simulating protein-protein association.51,52 For the association of a small 

molecule to a protein, coarse grain models are capable of simulating the initial diffusional 
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encounter and association of a molecular complex. The details of the final binding 

process most often requires the atom-level detail provided by a standard all-atom 

molecular mechanical model due to the complex chemical environment and detail 

required to model the structural changes upon binding .50,53 

The potential energy function terms for coarse grain models vary with application. CG 

models intended for general dynamics often retain the bond, angle, and dihedral angle 

terms described in Equations 1.2 - 1.6 to define the bonded terms that dictate structure. 

Nonbonded interactions typically also retain full electrostatics, often with a distance 

dependent dielectric to approximate screening, and a van der Waals term similar to the LJ 

potential. General models, such as the MARTINI model, generalize van der Waals 

interactions between combinations of types of amino acids (e.g. polar, non-polar, neutral, 

charged). 

Other models intended for the study of structural fluctuations or normal mode analysis 

define the structure in terms of a harmonic elastic network. Elastic network models 

constrain the relative position of all beads in a CG model with harmonic bonds to retain 

the general conformation of the starting reference structure. The harmonic bonds are 

defined similarly to Equation 1.2. Variations on the elastic network model include 

applications to the study of conformational transitions in proteins. In these cases, multi-

welled potentials are used to define multiple conformational states of a protein.46 

Another type of CG model defines the molecules in a system as rigid bodies. In this 

model, CG molecular structures retain the exact relative position of all particles 
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throughout the duration of the simulation. Forces acting on particles within a rigid body 

are propagated to a singular translational and rotational force for that rigid body.  

 𝐹 = ∑ 𝐹𝑖 
eq. 1.13 

 𝜏 = ∑ 𝑟 × 𝐹𝑖 
eq. 1.14 

where F is translation force on the rigid body, 𝐹𝑖 is the force acting on particle i within 

the rigid body, 𝜏 is the rotational force (torque) on the rigid body, and r is the 

displacement vector of particle i relative to the center of mass of the rigid body. These 

collective forces are used to translate and rotate the component particles of the rigid body 

in unison about the center of mass. This model can greatly accelerate simulations and is 

well suited to studies where structural fluctuation is not important. 

Another use for rigid body modeling features the embedding of a collection of point 

charges as a rigid body within a single CG bead (see Chapter 3). This has the benefit of 

providing detailed electrostatic interactions for charged interaction sites, and introduces 

electrostatic interactions to net neutral interaction sites. 

1.3 Techniques and applications of molecular models 

1.3.1 Minimization 

With a defined molecular mechanical system, and an initial set of coordinates, the 

potential energy function can be subject to an iterative mathematical minimization 

algorithm to optimize the structure with respect to the forces in the system. These 

algorithms use the gradient and/or hessian of the potential energy function to iteratively 

alter the coordinates of the system to minimize the energy in the terms of the potential 
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energy function. This is an important procedure to perform on a newly constructed 

molecular mechanical model so that the structure is free from steric clashes or other 

unfavorable interactions, preventing large forces in subsequent operations performed on 

the model. 

A second-order optimization algorithm used for molecular minimization is the Newton-

Raphson method.54 This method uses contributions from the gradient and hessian of the 

potential energy function to quickly and accurately minimize a function to its minimum 

in only a few steps. The computational cost and memory requirements of calculating the 

hessian makes this method impractical for molecular systems with a large number of 

atoms.  

First-order optimization algorithms include the steepest descent, conjugate gradient, and 

BFGS methods. The steepest descent method is a simple algorithm that minimizes a 

function E(x) to a local energy minimum by stepping x in a direction following the 

negative of the gradient of E(x). The algorithm is efficient at arriving near the closest 

local minimum, but suffers from a slow rate of convergence to the local minimum, 

oscillating about the solution. For this reason, the steepest descent method is most often 

used for coarse initial minimization of a molecular model. 

The conjugate gradient method uses both the current and past gradient calculations to 

greatly improve the convergence rate to the local minimum. However, the conjugate 

gradient method can be quite slow far from a local minimum. Thus, the steepest descent 

and conjugate gradient methods are often used together to minimize a molecular 

system.55 
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The Broyden–Fletcher–Goldfarb–Shanno, or BFGS, algorithm is a quasi-Newton 

method, meaning it attempts to approximate the second-order Newton-Raphson 

algorithm.56–59 BFGS uses the gradient calculations at each successive step to 

progressively approximate the Hessian of a function. The approximate hessian is used 

with the exact gradient at each step to minimize a function. BFGS performance and 

convergence is similar to the conjugate gradient method, but in some cases can converge 

in fewer steps. A limited memory variant of the algorithm is also available.60 

1.3.2 Dynamics  

The dynamics of a molecular system can be simulated using computational methods 

known as molecular dynamics (MD). At its simplest, MD calculates the time dependent 

behavior of a molecular mechanical system by solving Newton's equations of motion. 

The first MD simulations were performed in the 1950s and 1960s, and explored simple 

atomic liquid systems.61,62 Advances in the 1960s and 1970s led to molecular simulations 

of water followed by the first molecular dynamics simulation of a protein.5,63 Molecular 

dynamics is now popularly used to simulate the atomic-level dynamics of solvated 

biomolecular systems in the nanosecond to microsecond time scale.  A variation to the 

standard form of molecular dynamics, called Brownian dynamics (BD), allows for the 

simulation of the diffusive motion of a molecular system on the microsecond to second 

time scale. It is often employed to investigate problems with a larger scale, in space and 

time, relative to standard MD.  For this reason it is commonly paired with a coarse grain 

molecular model. 
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1.3.2.1 Molecular dynamics 

MD calculates the time dependent behavior of a molecular system by solving Newton's 

equations of motion, given a potential energy function and coordinates of a molecular 

system. Newton's second law of motion states that the force acting on a particle is equal 

to the product of the particle's mass, m, and acceleration, a: 

 𝑭𝑖 = 𝑚𝑖𝒂𝑖 eq. 1.15 

This can also be stated in relation to gradient of the potential energy function, E, with 

respect to a particle's coordinates r: 

 
𝑭𝑖 = −∇iE = −

𝑑𝐸

𝑑𝒓𝑖
 

eq. 1.16 

Combining the Equations 1.15 and 1.16, the acceleration of a particle can be stated in 

relation to a potential energy function. 

 
𝑚𝑖𝒂𝑖 = −

𝑑𝐸

𝑑𝒓𝑖
 

eq. 1.17 

Given a position r, velocity and acceleration can be defined in relation to position: 

 
𝒗𝒊 =

𝑑𝒓𝑖

𝑑𝑡
 

eq. 1.18 

 
𝒂𝑖 =

𝑑𝒗𝒊

𝑑𝑡
=

𝑑2𝒓𝑖

𝑑2𝑡
 

eq. 1.19 

Integration gives rise to the following, assuming constant acceleration over the time 

interval: 

 
𝒗𝒊 = ∫ 𝒂𝑖𝑑𝑡 = 𝒂𝑖𝑡 + 𝒗𝑖,0 

eq. 1.20 

 
𝒓𝑖 = ∫ 𝒗𝒊𝑑𝑡 = ∫(𝒂𝑖𝑡 + 𝒗𝑖,0)𝑑𝑡 =

𝒂𝑖𝑡2

2
+ 𝒗𝑖,0𝑡 + 𝒓𝑖,0 

eq. 1.21 
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Substituting Equations 1.17 into 1.21 yields a relation that defines the position of a 

particle in relation to the initial position, initial velocity, and a potential energy function: 

 
𝒓𝑖 = −

1

2𝑚𝑖

𝑑𝐸

𝑑𝒓𝑖
𝑡2 + 𝒗𝑖,0𝑡 + 𝒓𝑖,0 

eq. 1.22 

Thus, Equation 1.22 defines the position of a particle i at time t as a function of the initial 

position, 𝒓𝑖,0, the initial velocity, 𝒗𝑖,0, and a potential energy function E. A classical 

molecular mechanical potential energy function is commonly utilized for molecular 

dynamics simulations, though more complex forms are also used in practice.64,65 The 

initial position of the particles in a simulation varies with the system type, requirement, 

and availability of experimental structures. For biomolecular simulations, experimentally 

determined X-ray diffraction or NMR structural coordinates are most commonly 

available, as evidenced by the entries in the Protein Data Bank.66 Initial velocities are 

typically assigned a random distribution of values related to an assigned temperature for 

the system such that the total initial momentum of the system is zero.  

As the potential energy function is complex and dependent on the many degrees of 

freedom in the system, the equation of motion must be solved numerically. Thus, 

numerical integration algorithms must be used to advance time with a time step, Δt, from 

an initial state to some final time t. The historically used integration algorithms include 

the Verlet4, velocity-Verlet67, and Leapfrog algorithms. While the algorithms take 

slightly different approaches, they all assume that accelerations, velocities, and positions 

can be approximated by a Taylor series expansion. The expansions are typically truncated 

after the acceleration term. 
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𝑟(𝑡 + Δ𝑡) = 𝑟(𝑡) + 𝑣(𝑡)Δ𝑡 +

𝑎(𝑡)Δ𝑡2

2
+ ⋯ 

eq. 1.23 

 
𝑣(𝑡 + Δ𝑡) = 𝑣(𝑡) + 𝑎(𝑡)Δ𝑡 +

𝑏(𝑡)Δ𝑡2

2
+ ⋯ 

eq. 1.24 

The Verlet algorithm does not calculate or store a velocity at any time during the 

simulation. Rather, it uses the difference between the positions of the current and 

previous time step to estimate velocity. This was particularly attractive when computer 

memory was a resource in short supply. However, the algorithm does suffer from issues 

with precision. Because of this it is no longer commonly used for MD. The algorithm is 

derived by first defining a change in position forward and backward in time: 

 
𝑟(𝑡 + Δ𝑡) = 𝑟(𝑡) + 𝑣(𝑡)Δ𝑡 +

𝑎(𝑡)Δ𝑡2

2
 

eq. 1.25 

 
𝑟(𝑡 − Δ𝑡) = 𝑟(𝑡) − 𝑣(𝑡)Δ𝑡 +

𝑎(𝑡)Δ𝑡2

2
 

eq. 1.26 

Combining Equation 1.26 into Equation 1.25 yields the Verlet equation: 

 𝑟(𝑡 + Δ𝑡) = 2𝑟(𝑡) − 𝑟(𝑡 − Δ𝑡) + 𝑎(𝑡)Δ𝑡2 eq. 1.27 

The velocity-Verlet algorithm uses Equation 1.25 to advance the position of a particle. As 

the name implies, velocities are calculated and stored throughout the duration of the 

simulation. The velocity-Verlet algorithm requires, during each step, a partial calculation 

of the velocity before and after the calculation of potential energy function forces: 

 
𝑣(𝑡 + Δ𝑡) = 𝑣(𝑡) +

1

2
(𝑎(𝑡) + 𝑎(𝑡 + 𝛿𝑡))Δ𝑡 

eq. 1.28 

The Leapfrog algorithm is a numerical method, similar to the velocity-Verlet algorithm. 

Leapfrog differs from velocity-Verlet in that it staggers the calculation of positions and 



20 

 

velocities by a factor of 
1

2
Δ𝑡 such that, at each step, the velocity "leaps" over the position 

followed by the position "leaping" over the velocity. 

Due to the sensitivity of the potential energy function to the position of the particles in an 

MD simulation, a time step, Δ𝑡, on the order of the fastest possible fluctuation of this 

system must be used. Because bond stretching occurs on a femtosecond timescale, a time 

step of 1 femtosecond is commonly used in MD simulations.3 There exist modifications 

to the previously mentioned integration algorithms that constrain the bond vibrations 

throughout the duration of a simulation allowing for larger time steps, potentially 

accelerating the computation of the simulation.68–70 

MD is often employed to calculate macroscopic observable phenomena, such as the 

change in energy of a molecular system during a chemical or physical process. While 

MD simulations calculate information about microscopic states of a molecular system, in 

the form of positions and momenta, statistical mechanical theory connects these 

microscopic states to the macroscopic observables. Due to the large number of molecular 

entities in a macroscopic chemical system, statistical mechanics describes macroscopic 

observable molecular process variables as averages over a statistical ensemble of all 

microscopic states of a system. A fundamental premise of statistical mechanics is the 

Ergodic hypothesis, which states that over a adequately long period of time, all accessible 

microstates of system are equiprobable.71,72 Thus, a statistical ensemble average of a 

process variable is equal to the time average of the process variable in a single system 

given a sufficiently long sample. MD simulations are performed using one of several 

statistical ensembles corresponding to the state variables of the system that are held 
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constant during the simulation. The microcanonical ensemble, or NVE ensemble, is 

obtained by integrating the equations of motion with no pressure or temperature control, 

only holding the number of particles, system volume, and energy constant.73 The 

canonical ensemble, or NVT ensemble, corresponds to system in thermal equilibrium 

with a heat bath, corresponding computationally to a thermostat algorithm.6,74–77 The 

temperature of the system is held fixed along with the number of particles and volume of 

the system. In the isothermal-isobaric, or NPT, ensemble, the pressure and temperature 

are conserved through the simulation through the use of a thermostat and barostat.6,76,78–82 

This ensemble corresponds most closely to experimental conditions, as chemical 

reactions typically take place under constant pressure. 

1.3.2.2 Brownian dynamics 

Brownian motion describes the diffusive behavior of solute in a solution. A simulation 

technique known as Brownian dynamics (BD) has been developed to describe the 

diffusive processes of molecular systems. There exist many applications of BD to 

biological systems, such as protein folding, particle coagulation, and diffusion limited 

reactions.83 

Brownian dynamics belongs to a class of dynamics techniques known as stochastic MD. 

BD is derived from Langevin dynamics.83 Langevin dynamics is a variant of MD that 

uses stochastic differential equations to model the dynamics of a molecular mechanical 

system that has omitted solvent degrees of freedom. In particular, Langevin dynamics 

assumes that explicit solvent molecules are not included in the simulation, and instead 

includes random atomic forces to model the jostling of a solvent as well as a velocity 
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damping term to model the friction incurred by a solute in solution. It should, however, 

be noted that Langevin dynamics does not fully model a solvent implicitly, and thus must 

be paired with an implicit solvent model, such as GBSA. Starting from Equation 1.17, 

Langevin dynamics introduces two terms to the equation of motion:  

 
𝑚𝑖𝒂𝑖 = −

𝑑𝐸

𝑑𝒓𝑖
− 𝛾𝑚𝑖𝒗𝑖 + √2𝛾𝑘𝑏𝑇𝑚𝑖𝑅(𝑡) 

eq. 1.29 

where 𝛾 is the damping coefficient, 𝑘𝑏 is Boltzmann's constant, T is the temperature, and 

R is a zero-mean white noise vector.84 The introduced terms dictate that the system reach 

and fluctuate around the temperature T according to the fluctuation-dissipation theory. 

Thus Langevin dynamics acts as a thermostat and approximates the canonical ensemble.85 

When the damping coefficient 𝛾 is set to zero, the classical equation of motion is 

restored. With increasing 𝛾, the Langevin equation crosses the inertial regime and 

approaches the diffusive regime. At this overdamped limit, no acceleration occurs, and 

Langevin dynamics becomes Brownian dynamics: 

 
0 = −

𝑑𝐸

𝑑𝒓𝑖
− 𝛾𝑚𝑖𝒗𝑖 + √2𝛾𝑘𝑏𝑇𝑚𝑖𝑅(𝑡) 

eq. 1.30 

Rearranging Equation 1.30 for velocity, then substituting into Equation 1.21 gives: 

 

𝒓𝑖 = ∫ 𝒗𝒊𝑑𝑡 = ∫ (−
1

𝛾𝑚𝑖

𝑑𝐸

𝑑𝒓𝑖
+ √2

𝑘𝑏𝑇

𝛾𝑚𝑖
𝑅(𝑡)) 𝑑𝑡 

eq. 1.31 

Integration with a discrete time Euler-Maruyama scheme86 leads to:  

 

𝒓𝑖(𝑡 + Δ𝑡) = −
1

𝛾𝑚𝑖

𝑑𝐸

𝑑𝒓𝑖
Δ𝑡 + √2

𝑘𝑏𝑇

𝛾𝑚𝑖
Δ𝑡 ξ + 𝒓𝑖(𝑡) 

eq. 1.32 

where ξ is a zero-mean, stationary Gaussian process satisfying: 
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 〈𝑅(𝑡)〉 = 0 eq. 1.33 

 〈𝑅(𝑡)𝑅(𝑡′)〉 = 𝛿(𝑡 − 𝑡′) eq. 1.34 

Equation 1.32 is typically written in terms of a damping value, 𝜁𝑖 = 𝛾𝑚𝑖, and the Einstein 

relation defining the diffusion coefficient 𝐷𝑖 =
𝑘𝑏𝑇

𝜁𝑖
: 

 
𝒓𝑖(𝑡 + Δ𝑡) = −

𝐷𝑖

𝑘𝑏𝑇

𝑑𝐸

𝑑𝒓𝑖
Δ𝑡 + √2𝐷𝑖Δ𝑡 ξ + 𝒓𝑖(𝑡) 

eq. 1.35 

Thus, the Brownian dynamics of a particle i can be simulated using Equation 1.35 given a 

potential energy function, E, and a diffusion coefficient, Di. The diffusion coefficient can 

also be derived from experiment or calculated with respect to the radius of a spherical 

particle, 𝛼, and the viscosity of the solvent, 𝜂: 

 
𝐷𝑖 =

𝑘𝑏𝑇

6𝜋𝜂𝛼𝑖
 

eq. 1.36 

The choice of time step, Δ𝑡, should be selected such that Δ𝑡 ≫  
𝑚𝑖𝐷𝑖

𝑘𝑏𝑇
, but small enough so 

the force acting on the particles is effectively constant over the time step to prevent the 

introduction of error.83 

1.3.2.3 Model preparation 

All-atom model preparation 

Simulating the dynamics of an all-atom molecular mechanical system requires careful 

preparation of the structure because the potential energy function is very sensitive to 

small changes in the coordinates of the system. Thus, steps must be taken before a 

molecular dynamics simulation is run to ensure a stable system at equilibrium. 

First, the initial set of coordinates must be defined. If an experimentally determined set of 
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coordinates for the molecule of interest exist in a database, such as the PDB, these 

coordinates can be used as a starting structure.66 For proteins, if experimental structures 

do not exist, but molecules with similar sequence have been characterized, homology 

model algorithms can predict folding patterns for use as a starting point for the initial 

coordinates of a model.87 Small molecules can be constructed manually using molecular 

visualization and editing software, such as Avogadro or VEGA ZZ.2,88  

Regardless of the choice of initial coordinates, the protonation state of the molecule must 

be taken into account. For small molecules with known pKa, and a known pH of the 

desired model system, the protonation state can be assigned manually by adding or 

removing hydrogen atoms. For a large molecule, the pKa of the appropriate residues 

should be calculated in their local chemical environment to determine the correct 

protonation states.89 The correct protonation state for a protein is important for the study 

of protein dynamics and protein-ligand interactions, as hydrogen bonding and 

electrostatic interactions play important roles in these situations. 

With the initial coordinates and correct protonation state determined, a force field can be 

applied to the set of initial coordinates. A generalizable force field can be applied to 

organic compounds, such as drugs and other small molecules. Protein force fields are 

templated by amino acid. Therefore, when a protein force field is applied to an initial set 

of coordinates using software packages like AMBER, missing atoms will be added 

automatically in positions relative to the resolved atoms in the residues. The coordinates 

from both experiment and homology modeling of proteins are likely to be missing at least 

a few atoms. Experimental structures from X-ray crystallographic experiments do not 
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resolve hydrogens, and homology models may not be able to predict certain side chain 

coordinates. If entire amino acid side chains are added, their conformations can be more 

accurately predicted with software.90 If only hydrogen atoms and/or a few missing atoms 

are added by the templating procedure, a constrained minimization, where only the new 

atoms are minimized, can be performed. 

Once the initial coordinates, correct protonation state, and a force field have been 

assigned, the system can be solvated. Explicit ions, such as sodium and chloride, can be 

added to the system to render the total charge of the system neutral. If an implicit water 

model is desired, no further actions are needed. If an explicit water model is to be used, 

the water molecules can be added to the system using an algorithm that ensures the 

accurate placement and density of the solvent.  

Starting from a solvated model, thorough minimization should be performed to stabilize 

all intramolecular and intermolecular forces. A set of constrained minimizations should 

be performed successively. For proteins, this can include minimizing hydrogen atoms, 

side chain atoms, water molecules, followed by a full system minimization. 

Finally, before starting a production molecular dynamics simulation, the system should 

be brought slowly to equilibrium. This can be accomplished by running simulations with 

a thermostat for a set system temperature of 50K, 100K, 150K, etc. until the final desired 

temperature is reached. Each equilibration simulation should be run until the energy of 

the system is stable over time. Once the system has reached equilibrium, a production 

simulation can be performed. 
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Coarse grain model preparation 

Coarse grain molecular models abstract the atomic structure of a molecular system. As 

such, the spatial resolution and sensitivity of the potential energy function with respect to 

the coordinates is greatly reduced. This means that running a CG Brownian dynamics 

simulation requires a less rigorous preparation procedure than an all-atom MD 

simulation. 

The initial all-atom coordinates of a molecular system are obtained in the same way as 

stated above for an all-atom model. Protonation states for this all-atom structure should 

also be considered to ensure correct formal charges are assigned. The all-atom 

coordinates can then be abstracted into coarse grain beads with a desired coarse graining 

scheme and accordingly parameterized with a CG force field. CG models are often 

system specific and require specialized procedures. 

1.3.3 Structural and energetic analysis 

The structure and energy of a molecular system can be analyzed, either from a static 

structure or a set of snapshots from a completed dynamics simulation, to derive 

information about the system or a process.  

The root mean square deviation (RMSD) of a molecular system is the average distance of 

particles between two states of the system. It allows for analysis of stability of a 

conformational state.91 It is also used as the function of minimization for the alignment, 

or superposition, of two molecular structures. RMSD is defined as: 
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𝑅𝑀𝑆𝐷 = √
1

𝑁
∑(𝑟𝑖 − 𝑟0)2

𝑁

𝑖=1

 

eq. 1.37 

where 𝑟𝑖 is a set of coordinates in some state of interest i, and 𝑟0 is the set of coordinates 

in a reference state denoted by 0. 

Similarly, the root mean square fluctuation (RMSF) of a molecular system is the 

deviation of a single particle from a reference state over a period of time: 

 

𝑅𝑀𝑆𝐹 = √
1

𝑇
∑(𝑟𝑖(𝑡) − 𝑟𝑖,0)

2
𝑇

𝑡=1

 

eq. 1.38 

where 𝑟𝑖(𝑡) is the position of particle i at some time t, 𝑟𝑖,0 is the reference position of 

particle i, and T is the total period of time to average over. RMSF allows for the 

quantification of the dynamics of atoms in a molecular system, and can also assess the 

stability or flexibility of specific parts of a molecular system over time.92 

MMPBSA (Molecular Mechanics Poisson Boltzmann/Surface Area) and MMGBSA 

(Molecular Mechanics Generalized Born/Surface Area)  are techniques for assessing 

specific intermolecular interactions and estimating the binding energy of a ligand-

receptor system from the trajectory of a dynamics simulation.93,94 The trajectory of a 

simulation is stripped of explicit solvent if it is present, and the molecular mechanical 

energy, including the implicit solvent model defined by either PBSA or GBSA, is 

calculated and averaged over snapshots from the simulation. For the evaluation of 

binding energy of a molecular complex, the calculation is performed over three separate 

simulations, and calculated as the difference between the average energy of the complex, 
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the free protein, and the free ligand. MMPBSA and MMGBSA are also useful for 

decomposing the interactions in a single simulation into the interatomic or intermolecular 

energies. This is useful for molecular recognition and drug design, as it can pinpoint 

specific sites of attraction or repulsion.95 

1.3.4 Free energy and entropy 

The statistical properties of a system in thermodynamic equilibrium can be expressed 

with a partition function. A classical partition function is a function of position and 

momentum of a thermodynamic state defined by temperature, volume, and other 

parameters. It encodes how the probabilities of microstates are partitioned based on their 

energies. Thermodynamic values, such as total energy, entropy, free energy, and 

pressure, can be derived from the partition function of a system. In modeling of 

molecular recognition processes, the calculation of these thermodynamic properties can 

allow for the investigation into the stability of a drug bound to protein receptor, or the 

relative affinity of a series of drug candidates to a target protein. 

The canonical ensemble is commonly used in molecular modeling for investigation of a 

molecular system with a fixed number of particles, in a system with a specific volume 

and temperature. The corresponding classical canonical partition function is given by: 

 
𝑍 = 𝑁 ∫ 𝑒−𝛽𝐸(𝑥) 𝑑𝑥 

eq. 1.39 

where x is condition of the system that defines the microstate (momentum and position),  

𝛽 is the Boltzmann factor 𝑘𝑏𝑇−1, 𝑘𝑏 is the Boltzmann's constant, T is temperature, E 

defines the total energy function of the system, and N is a constant that renders this 
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classical form unitless. The probability of the system occupying a microstate defined by x 

is: 

 
𝑃(𝑥) =

𝑁𝑒−𝛽𝐸(𝑥)

𝑍
=

𝑒−𝛽𝐸(𝑥)

∫ 𝑒−𝛽𝐸(𝑥) 𝑑𝑥
 

eq. 1.40 

The probability function can be used to calculate ensemble averages, or expectation 

values, of an observable, such as the total energy, E, of a system: 

 
〈𝐸〉 = ∫ 𝐸(𝑥)𝑃(𝑥) 𝑑𝑥 =

∫ 𝐸(𝑥)𝑒−𝛽𝐸(𝑥) 𝑑𝑥

∫ 𝑒−𝛽𝐸(𝑥) 𝑑𝑥
 

eq. 1.41 

In the canonical ensemble, the free energy is defined by the Helmholtz free energy, A, in 

terms of a temperature T and the partition function: 

 𝐴 = −𝑘𝑏𝑇 ln 𝑍 eq. 1.42 

The entropy can also be defined according to the probability density function: 

 
𝑆 = −𝑘𝑏 ∫ 𝑃(𝑥) ln 𝑃(𝑥) 

eq. 1.43 

or in terms of the other thermodynamic values: 

 
𝑆 =

−𝐴 + 〈𝐸〉

𝑇
 

eq. 1.44 

One practical application of Equation 1.43 is to the calculation of configuration entropy 

of biomolecules using a dynamics trajectory. This approach analyzes the trajectory of a 

molecular system in internal coordinates to assess the torsional configuration entropy by 

calculating a probability distribution for each torsional angle.96 Other dynamics analysis 

methods include Free Energy Perturbation, empirical linear regression, and mean field 

potential calculations.97–99 

Approximations to the calculation of these thermodynamic values is necessary because of 
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the difficulty in sampling the extremely complex phase space of a molecular system. 

Many approximations seek to build the partition function of a molecular system through 

contributions of the minimum energy conformational states: 

 𝑍 = ∑ 𝑍𝑖 
eq. 1.45 

 These approaches attempt to obtain all relevant minimum conformations through 

systematic conformational search and minimization algorithms.100,101 The energy well 

surrounding each minimum conformation is defined through various methods, and 

integration of this well leads to an approximation of the partition function for a single 

well, 𝑍𝑖. The configuration entropy is then defined as: 

 𝑆 = ∑ 𝑆𝑖 = − 𝑘𝑏 ∑ 𝑃𝑖(𝑥) ln 𝑃𝑖(𝑥) 
eq. 1.46 

where  

 
𝑃𝑖(𝑥) =

𝑍𝑖

𝑍
 

eq. 1.47 

Mining Minima generation 2 (M2) is a computational method for the determination of the 

free energy of a molecular system. Its intended use is for the calculation of the change in 

binding free energy of a molecular complex. M2 calculates the free energy of a molecular 

system through the determination of  configuration integrals for a robust set of minimum 

conformational states of the system.102 The Tork algorithm is used to quickly generate a 

large set of molecular conformations through perturbations on the structure in Bond-

Angle-Torsion (BAT) coordinates, allowing for elucidation of conformations that are 

difficult to sample otherwise.103 M2 combines several approaches to free energy 

calculations, utilizing a modified harmonic approximation. M2 calculates the normal 
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modes of the system in BAT coordinates through calculation and diagonalization of the 

potential energy function Hessian matrix, and each mode is associated with a Guassian 

integrand. The structure is perturbed along the normal modes, and energies are calculated 

to determine if the well can be treated harmonically. Harmonic treatments are improved 

in M2, avoiding double counting of neighboring wells by limiting integration over the 

normal modes. Anharmonic minima are treated separately with numerical integration.102 

1.3.4 Docking 

A primary challenge in molecular recognition, drug design, and drug discovery studies is 

the prediction of the position, orientation, conformation, and energetic affinity of a small 

molecule in the binding pocket of a molecular receptor.104 Computational methods known 

as molecular docking predict bound conformational states and corresponding energetic 

affinities of a ligand-receptor complex. Docking methods are typically composed of a 

conformational search routine coupled to an energetic evaluation function. A large 

number of conformational states are sampled and subsequently subject to an evaluation 

function to determine the states with the most favorable intermolecular interaction. 

Various simplifications to energy evaluation and conformational search are employed to 

ensure docking methods are computationally practical for their intended use.105  

The estimation of the energetic interaction between a ligand and receptor is handled by an 

evaluation routine known as a scoring function.106 Scoring functions typically fall into 

three categories: molecular mechanical potential energy functions, empirical scoring 

functions, and knowledge based potentials.107–112 Using these approaches, the chemical 

and steric complementarity are evaluated for a given conformation, relative position, and 
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relative orientation of the ligand and receptor. The output of scoring functions can 

include potential energy values, free energy values, binding constants, or simple rankings 

of the various sampled conformations. 

Conformational search routines for docking algorithms modify the position and 

orientation of the ligand relative to the receptor in an attempt to sample a wide range of 

complex conformational states for evaluation with the scoring function. Docking search 

algorithms are defined generally by the rigidity imposed on the molecular species. For the 

fastest sampling of the complex conformations, rigid body constraints are placed on the 

ligand and receptor such that only the ligand translational and rotational degrees of 

freedom are modified. In these cases, a single receptor conformation is used in 

combination with the results of an independent ligand conformational search to start 

multiple complex conformational searches. In flexible docking methods, certain portions 

of the receptor structure, such as the side chains of proteins, are also allowed 

conformational degrees of freedom. Flexible docking algorithms can oftentimes be more 

accurate than rigid docking algorithms because of their ability to sample induced-fit 

bound complex conformational states.113,114 More complex docking schemes can include 

minimization or dynamics procedures of the sampled complex conformation to refine the 

bound states. 

In the context of drug discovery, it is desirable to screen large libraries of small 

molecules against a molecular receptor to predict drug candidates with high affinity for 

further empirical study.  Traditionally, high throughput in situ screening has been used to 

test libraries of small molecules against a molecular target receptor. Docking methods for 
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in silico virtual screening were developed to replace or complement existing high 

throughput screening methods.115,116 Rigid docking with an empirical or semi-empirical 

scoring function is often employed for virtual screening purposes.  

For molecular recognition studies with molecular dynamics, docking methods can serve 

as a means to generate starting conformations for simulations. This has the benefit of 

starting the molecular system reasonably near a local energy minimum, as well as 

removing human bias of manually placing a ligand in a binding pocket. Docking typically 

is not used for direct energy evaluation for molecular recognition studies, as statistical 

mechanical free energy calculation methods, such as M2, can more accurately predict 

both the bound state conformation and binding free energy of a complex.102  
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Chapter 2: Modeling of Enhanced Catalysis in Multi-enzyme Nanostructures: Effect 

of Molecular Scaffolds, Spatial Organization, and Concentration 

2.1 Introduction 

Many biological catabolic and metabolic processes occur within colocalized multi-step 

enzymatic reaction pathways with high yield and specificity.1–5 In these complexes, the 

relative orientation and position of the enzymes can allow for efficient diffusion of 

substrates between the active sites of enzymes in the complex.6,7 Enzymes often associate 

when freely diffusing in solution, but they also commonly associate on membrane 

surfaces, peripherally or as integral membrane proteins. The organization on surfaces has 

been proposed to increase local substrate concentration or substrate dwell time, caused by 

reduced dimensionality, potentially leading to additional gains in efficiency.8–11 These 

factors may all help create an efficient environment for catalysis, but we do not fully 

understand their contribution to the efficiency of multi-enzyme constructs. A 

fundamental understanding of the factors that lead to this efficiency can result in 

engineered reaction-coupled enzyme systems in vitro to develop novel synthetic 

pathways or replace costly or wasteful existing procedures.  

Techniques have been developed to create various types of spatially organized reaction-

coupled enzyme systems.4,12–19 Studies have explored fixating the relative positions of 

enzyme systems, such as anchoring enzymes to various molecular scaffold.20–24 Recent 

advances in DNA synthetic procedures have been exploited for anchoring enzymes to 

various types of DNA scaffolds with highly accurate positioning.20,25–30 Such experiments 
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have attempted to establish the advantage of immobilizing enzyme systems and a 

relationship between enzyme distance and enhancement of enzyme efficiency.  

Taking advantage of complimentary nucleic acid base-pairing, Wilner et al synthesized a 

flexible, hexagonal DNA scaffold with dangling DNA anchor points for two DNA-

modified enzymes that share a product-reactant interdependence: glucose oxidase (GOx) 

and horseradish peroxidase (HRP).20,31,32 The GOx-HRP system is an appropriate model 

for assessing the efficiency of spatially organized reaction-coupled enzyme systems 

because GOx produces H2O2 as a side product, a required co-substrate for HRP turnover. 

The authors observed enhanced enzymatic efficiency because of enhanced interenzyme 

substrate transfer of H2O2 from GOx to HRP, showing the rate in the mutual turnover of 

GOx and HRP is dependent on this intermediate transfer under certain conditions.20 Fu et 

al expanded on this work by constructing a more rigid DNA origami surface with highly 

accurate programmable anchor points for the enzymes.25 Enzymatic enhancement was 

high at small interenzyme distance, with reduced efficiency with increasing separation. 

The enhancement was considered due to increased local substrate concentration from 

restricted diffusion, attributable to the DNA scaffold. However, these conclusions remain 

controversial.33 

Previous work has used analytical approaches to characterize the efficacy of spatially 

organized systems under various conditions.33,34 These insightful models account for 

important features of spatially organized systems over macroscopic timescales but are 

based on theory that may not fully consider the implications of subtle geometric features 

of scaffolded systems on the diffusive behavior of the substrate.35,36 Previous 
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computational simulations have shown promise in accurately describing diffusive 

behavior in the presence of coarse-grained (CG) biomolecular structures.37–39 Bauler et al 

used Brownian dynamics (BD) simulations to help characterize the effect of interenzyme 

distance and relative rotational orientation on intermediate substrate transfer in generic 

enzyme systems with simplified geometry.38  

In this work, we explored the geometric features of an enzyme system anchored to a 

planar scaffold by using parallel CG BD simulations in microsecond to millisecond 

timescales. We investigated the mechanisms and revealed key features that enhance the 

efficiency of enzymes spatially organized on a DNA origami scaffold. We modeled the 

GOx-HRP system and assessed the substrate transfer probability dependence with spatial 

organization, system concentration, and surface scaffold interaction. We introduce BD 

simulation software, GeomBD, optimized for assessing specific geometric effects of large 

biomolecular systems over long timescales. To efficiently approach simulation over 

millisecond timescales, we developed this software by using modern parallelization 

techniques and a distance-dependent time-stepping algorithm.40  

2.2 Methods 

We simulated a CG GOx-HRP scaffolded enzyme system using BD implemented in the 

GeomBD package. The H2O2 intermediate transfer, from the release site of GOx to the 

binding site of HRP, was simulated in parallel to determine the probability of binding-site 

association over the timespan of the turnover of the originating GOx enzyme 

(approximated as 300 s-1).25,41–43 Interenzyme distance, enzyme concentration, and the 

presence of scaffold were investigated for their impact on intermediate transfer. 
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Figure 2.1: Coarse-grained model of glucose oxidase (GOx; left, orange) and horseradish 

peroxidase (HRP; right, purple) scaffolding system. The 2D plane represents the DNA 

origami scaffold model, and a black sphere, close to GOx, represents the H2O2 substrate. 

 

2.2.1 Molecular Systems 

The HRP isozyme C and GOx atomic structures were obtained from the protein data bank 

(PDB: 1ATJ and 1GPE, respectively).44,45 CG enzyme models were created from the 

obtained atomic PDB structures. Each amino acid was represented by an interaction 

sphere centered on the alpha-carbon of each residue. The radii of the amino acids were 

obtained from previous work: derived from hundreds of all-atom protein structures, the 

radii were calculated from the maximum distance from the alpha-carbon to all other 

atoms and then increased by a constant, 1.4 Å, to account for van der Waals radii.46,47 

Similarly, a CG H2O2 molecule was created by using a single bead with radius derived 

from the radius of gyration of the all-atom structure, then increased by the constant 1.4 Å, 

for a radius of approximately 2.5 Å. The DNA origami scaffold was represented by a 

simple 2D rectangular plane barrier of 60 by 80 nanometers, matching the dimensions of 

the experimental DNA tile.25 The structural details of the DNA are abstracted into a 
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smooth plane; thus the results arising from this model are generalized to generic planar 

scaffolds. Explicit CG representations of the DNA strands that link each enzyme to the 

2D scaffold were created from all-atom representations of a randomly sequenced DNA 

strand created using the NAB AMBER software interface.48 For each nucleoside base in 

this CG DNA representation, two beads were positioned to represent the base and the 

associated sugar–phosphate backbone atoms. A Lennard-Jones-like potential was used 

for the CG ligand–protein and ligand–DNA linker interactions, as described previously, 

with the form: 
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where r is the distance between a ligand and an interaction bead, and σ is the sum of the 

radii of the two interacting spheres.49 The ligand interaction with the 2D planar scaffold 

was modeled with the same potential, however with the calculation of r modified for the 

implicit planar geometry. The radius of the implicit field radiating from the 2D planar 

scaffold was set to 1 nanometer to match the thickness of the experimental DNA origami 

tile. 

 

The H2O2 CG model was assigned an experimentally determined diffusion coefficient of 

1 x 10-3 nm2/ps.50 Electrostatic interactions between the ligand and other molecular 

structures were excluded from the simulations because of the neutrally charged substrate. 

Excluding electrostatic interactions isolates the effects brought about by the geometry of 

the spatially organized system without the system specific bias of long-range guided 

association. As shown previously, electrostatic interactions play a significant role in 
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diffusive association in highly charged systems.38 Thus, the impact of electrostatic 

interactions can be investigated in future studies using an embedded partial charge 

scheme. All structures, aside from the ligands, were held fixed in space during the 

simulations. Thus, no intramolecular potentials were included. A cubic simulation 

volume was used for all simulations. Volumetric bounds for all simulations involved 

periodic boundary conditions. As each simulation replicate contains one GOx enzyme, 

one HRP enzyme, and one substrate, the concentration of each solute was dictated by the 

simulation volume, with concentrations of 1, 10, and 100 nM corresponding to box edge 

lengths of approximately 1184, 550 and 255 nm, respectively (Figure 2.2). 

 

 

Figure 2.2: The GOx–HRP–DNA origami-scaffold model centered in the cubic 

simulation volume corresponding to 100 nM system concentration. The box edge length 

is approximately 255.13 nm.  
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2.2.2 Simulation Configuration 

We performed a set of simulations over 1.5 s at enzyme and substrate concentrations of 

10 nM to assess the variance of interenzyme substrate transfer probability with spatial 

configuration. The simulations of GOx and HRP on a planar scaffold were performed at 

several interenzyme distances, measured from the anchor points: 10, 15, 20, and 25 nm. 

Because the enzyme orientations in situ cannot be fixed, simulation subsets were 

systematically performed with varying enzyme orientations. Starting from rotational 

states corresponding to the active sites of GOx and HRP directly facing each other, each 

enzyme was successively rotated 90º clockwise for a total of 16 combinations of GOx 

and HRP orientations (Figure 2.3). Thus, for each interenzyme distance, 16 simulation 

subsets were performed, each with 3000 parallel replicates for a total of 48,000 parallel 

simulations for each interenzyme distance. Each 3000 replicate simulation was completed 

in approximately 3 - 5 hours on 16 CPU cores. 

To assess the role of the scaffold in the efficiency of initial ligand association probability, 

all simulations were repeated with the planar scaffold and DNA–linker molecules 

excluded while retaining the colocalized positions and orientations of the enzymes. This 

allowed for isolation of the effect of the scaffold beyond the effect of colocalization. 
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Figure 2.3. Top-down view of the rotational states for GOx and HRP varied in all subsets 

of simulation experiments. The grey circle represents the active site of each enzyme. 

Rotations were performed clockwise. 

 

Long timescale (4 millisecond) simulations were performed to assess the efficacy of the 

scaffolded enzyme system relative to a solution of the substrate and an unmodified, 

unscaffolded target HRP enzyme. Because concentration effects are important at this 

timescale, simulations were performed with equal enzyme and substrate concentrations of 

1, 10, and 100 nM. 

Long timescale scaffolded simulations were performed with 16 orientation combinations 

in the same manner as described for the 1.5 us simulations. However, only a single 

interenzyme distance of 10 nm was simulated. Each enzyme orientation simulation set 

was replicated 3000 times, for 48,000 simulations per system concentration. Simulations 

were run in sets of 1000 replicates and completed in approximately 18 hours running on 

16 CPU cores. 

A model of a disorganized solution containing an unmodified HRP enzyme with a freely 

diffusing H2O2 solute was simulated. For computational practicality, the CG HRP model 

was fixed in the center of the simulation volume. The substrate of each of 14,000 
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replicates was placed randomly in the simulation and allowed to diffuse either until 

associated with HRP or the 4 millisecond time limit was reached. These simulations were 

completed in batches of 2000 replicates, requiring 17 - 20 hours running on 16 CPU 

cores. 

2.2.3 Software Implementation and Optimization 

GeomBD, our BD simulation software, was written in C++ with the CilkPlus extension 

for parallelization.40 Because of the use of a generic short-range potential and omission of 

electrostatic interactions, the BD software is most appropriate for single-particle substrate 

diffusion investigations of the geometric effects of spatial configurations of large 

molecular systems. Though not used in the current work, electrostatic potentials are 

supported for single point charges centered in interaction spheres. To allow for 

electrostatic interaction of net neutral particles with a polarized charge distribution, rigid 

body partial charge embedding will be implemented for future investigation into system 

specific long range electrostatic guidance and its effect on diffusional association.  

The software was based on the first-order Ermak-McCammon equation for propagating 

the Brownian trajectory.51–53 The BD algorithm was implemented with a distance-

dependent time step ranging from 0.05 to 50 ps, depending on a ligand’s distance, r, from 

the closest point to the enzyme–DNA system: 
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𝑟 < 10 𝑛𝑚, 

10 𝑛𝑚 <  𝑟 < 25 𝑛𝑚, 

25 𝑛𝑚 <  𝑟 < 50 𝑛𝑚, 

𝑟 > 50 𝑛𝑚, 

𝑑𝑡 = 0.05 𝑝𝑠 

𝑑𝑡 = 0.5 𝑝𝑠 

𝑑𝑡 = 5.0 𝑝𝑠 

𝑑𝑡 = 50.0 𝑝𝑠 

All parallel replicates independently advanced through time. The input file allows for 

configuration of all simulation parameters as well as manipulation of structure 

coordinates for ease of spatial configuration. Planar potential fields, such as that used for 

the DNA origami scaffold in this work, are added to a model system through the 

configuration file. Multiple planar potentials can be added for more complex 

arrangements. Although not used in the current work, cylindrical potential fields can be 

included in model systems for investigation of nanotube-like systems. 

2.3 Results and Discussion 

2.3.1 Catalytic Enhancement on a Short Timescale  

We performed a set of simulations over 1.5 s to assess how differences in spatial 

configuration affect initial interenzyme substrate transfer probability of the GOx/HRP 

planar scaffold system. The model was sensitive to orientation and interenzyme distance 

and agreed with previously reported trends.25,38 The highest probability of initial binding-

site association occurred when the interenzyme distance was at its smallest value (10 nm) 

and the substrate release site of GOx directly faced HRP (θGOx =  θHRP =  0°). Increasing 

the interenzyme distance affected the overall probability of substrate–binding-site 

association and induced an initial delay in the association distribution (Figure 2.4). 
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Figure 2.4: Binding time distribution for scaffolded GOx-HRP systems at different 

interenzyme distances. Each plot shows the percentage of ligands among 48,000 

replicates (3000 x 16 orientational subsets) associated with the binding site of HRP 

within the first 1.5 µs with interenzyme distances of a) 10 nm, b) 15 nm, c) 20 nm, and d) 

25 nm. 

 

With rotation of the enzymes, the probability of substrate transfer decreased. However, 

because of the concave binding-site region of HRP, when only HRP was rotated 240 

degrees, the binding site was partially oriented toward GOx, which led to behavior 

similar to unrotated HRP (Table 1). Analysis of the trajectories revealed that the general 

reduction in binding probability with rotation is due to the occlusion of the direct 

diffusion pathway from GOx to the binding site of HRP.  The interenzyme distance and 
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orientation dependence on efficiency are system-specific and suggest that the geometric 

details of the enzymes used for spatial organization study are important when modeling 

potential production systems.38,54  

 θGOx =  0° θGOx =  90° θGOx =  180° θGOx =  240° 

θHRP =  0° 0.127 0.083 0.060 0.070 

θHRP =  90° 0.090 0.068 0.055 0.051 

θHRP =  180° 0.085 0.059 0.043 0.057 

θHRP =  240° 0.117 0.088 0.055 0.067 

Table 2.1: Probabilities of direct stream binding for rotational orientations of GOx and 

HRP assembled on a planar scaffold at 10 nM enzyme concentration and 10 nm 

interenzyme distance. 

 

2.3.2 Role of Planar Scaffold on Initial Enhancement 

The impact of the DNA origami-scaffold on initial binding after release of the substrate 

was determined by comparing simulations of the colocalized and spatially organized 

GOx–HRP system assembled on a planar scaffold with an artificially colocalized GOx-

HRP model without a scaffold model. The results are significant for all interenzyme 

distances tested and are summarized in Table 2.  

Interenzyme 

Distance 

Colocalized Complex 

With Scaffold 

Colocalized Complex 

Without Scaffold 

Fold Enhancement 

Due to Scaffold 

10 nm 0.073 0.055 1.34 

15 nm 0.049 0.034 1.45 

20 nm 0.038 0.023 1.65 

25 nm 0.030 0.018 1.68 

Table 2.2: Fold enhancement in probability of transfer for the spatially organized GOx–

HRP complex with and without a DNA origami scaffold. Simulations were performed at 

various interenzyme distances, averaged across enzyme orientations, over 1.5 s. 
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The overall transfer probability decreased with increasing interenzyme distance, but 

enhancement accountable to the scaffold increased with interenzyme distance. The planar 

scaffold blocked the diffusion of substrate in the direction of the scaffold. The substrate-

scaffold affinity temporarily retained the substrate, allowing for transient 2D diffusion of 

the substrate on the plane. This led to longer substrate dwell times in the vicinity of the 

target enzyme relative to the artificially colocalized configuration. For most substrate, 

this retention was followed by diffusion back to the volume occupied by the enzymes.  

Approximately 18% of the total substrate from the planar scaffold simulation sets 

interacted with the scaffold. By the end of these simulations, 1% of the total substrate 

remained associated with the scaffold. This value is likely underestimated due to a lack of 

hydrodynamic interactions between the ligand and scaffold as well as a lack of atomic 

features on the planar scaffold. Regardless, this finding suggests that the scaffold has the 

potential to increase the local concentration of the substrate, in agreement with previous 

theoretical and experimental conclusions.20,34  

2.3.3 Catalytic Enhancement on a Long Timescale  

The efficiency of the planar scaffold model system over time on the order of the turnover 

of GOx was compared to that with a model of an unorganized solution of the substrate 

and target enzyme, HRP. Simulations were run for 4 ms simulation time to determine the 

cumulative probability of binding-site association of the substrate to HRP for the two 

systems. Because system concentration is relevant at this timescale, simulations were run 

at three system concentrations. Results are summarized in Table 3. In the most dilute 

solution (1 nM), the initial enhanced probability of substrate transfer with the scaffold 
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system dominated the cumulative probability over the time period because of the 

relatively low rate of bulk substrate binding-site association in the unorganized solutions. 

The higher concentration solutions revealed nearly identical cumulative binding 

probabilities for the scaffolded and disorganized solution, with the binding distributions 

at the 100 nM concentration converging by 4 ms simulation time (Figure 2.5). Despite the 

convergence at higher concentration, the spike of initial binding probability within the 

first several microseconds after substrate release from GOx may still offer temporary 

kinetic advantages. Further optimization of initial interenzyme substrate transfer could 

result in improved kinetic advantages for spatially organized systems.  

Concentration 
Complex With 

Scaffold 

Disorganized 

HRP-H2O2 Solution  

Spatial Organization 

Fold Enhancement 

1 nM 0.10 0.02 5 

10 nM 0.25 0.19 1.32 

100 nM 0.89 0.87 1.02 

Table 2.3: Enhancement in transfer probability with the spatially organized enzyme 

complex system and disorganized solution of HRP and substrate over long timescales (4 

ms). Cumulative binding-site association probabilities are compared at various system 

concentrations. 
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Figure 2.5: Probability of cumulative binding-site association comparison over 4 ms for 

spatially organized system and disorganized solutions at various system concentrations. 

For the scaffolded enzyme complex, the initial spike in binding-site association within 

the first microseconds of substrate diffusion after release from GOx may suggest a kinetic 

advantage of reaction-coupled enzyme systems assembled on a scaffold. 

 

2.4 Conclusions 

We used coarse grain Brownian dynamics simulations with the GeomBD package to 

assess enhancement in catalysis with spatial organization of GOx and HRP assembled on 

a planar scaffold. Our method builds on the findings of previous computational studies of 

interenzyme substrate transfer by including more system specific geometric detail and 

assessing the separate impacts of colocalization and assembly on a planar scaffold. 
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Colocalization of the enzymes dominated the enhancement of the planar scaffold-bound 

spatially organized system. Specifically, interenzyme distance and rotational orientation 

were the primary factors affecting the efficiency of our model enzyme system on a 

scaffold surface. The diffusive barrier induced by the scaffold played a significant but 

secondary role in the enhanced transfer. Maximum enhancement in intermediate transfer 

of the substrate was achieved for the enzyme system assembled on a planar scaffold with 

small interenzyme separation and enzyme binding sites oriented toward one another.  Our 

results from varying enzyme orientation suggest that the geometric details of the enzymes 

used for spatial organization studies must be considered. As suggested, the interenzyme 

distance dependence on efficiency is also specific to the system geometry.38,54 

With our model, a low system concentration is required to retain the initial benefit of 

spatial organization throughout millisecond timescales. At a higher concentration (100 

nM), the cumulative probability of HRP–substrate association in the disorganized 

solutions competed with that the spatially organized system over 4 milliseconds. 

More complex spatial configurations that include compartmentalization of enzyme 

systems, which appear to offer additional benefits to efficiency beyond that of a planar 

scaffold, will be explored computationally in the future.55 

 

  



61 

 

2.5 References 

(1)  Kahn, R. A.; Fahrendorf, T.; Halkier, B. A.; Møller, B. L. Substrate Specificity of 

the Cytochrome P450 Enzymes CYP79A1 and CYP71E1 Involved in the 

Biosynthesis of the Cyanogenic Glucoside Dhurrin in Sorghum Bicolor (L.) 

Moench. Arch. Biochem. Biophys. 1999, 363, 9–18. 

(2)  Winkel, B. S. J. Metabolic Channeling in Plants. Annu. Rev. Plant Biol. 2004, 55, 

85–107. 

(3)  Miles, E. W. The Molecular Basis of Substrate Channeling. J. Biol. Chem. 1999, 

274, 12193–12196. 

(4)  Kim, Y. H.; Kwon, T. K.; Park, S.; Seo, H. S.; Cheong, J. J.; Kim, C. H.; Kim, J. 

K.; Lee, J. S.; Choi, Y. D. Trehalose Synthesis by Sequential Reactions of 

Recombinant Maltooligosyltrehalose Synthase and Maltooligosyltrehalose 

Trehalohydrolase from Brevibacterium Helvolum. Appl. Environ. Microbiol. 2000, 

66, 4620–4624. 

(5)  Jandt, U.; You, C.; Zhang, Y. H.-P.; Zeng, A.-P. Compartmentalization and 

Metabolic Channeling for Multienzymatic Biosynthesis: Practical Strategies and 

Modeling Approaches. Adv. Biochem. Eng. Biotechnol. 2013, 137, 41–65. 

(6)  Burack, W. R.; Shaw, A. S. Signal Transduction: Hanging on a Scaffold. Curr. 

Opin. Cell Biol. 2000, 12, 211–216. 

(7)  Savage, D. F.; Afonso, B.; Chen, A. H.; Silver, P. A. Spatially Ordered Dynamics 

of the Bacterial Carbon Fixation Machinery. Science 2010, 327, 1258–1261. 

(8)  Singer, S. J. The Molecular Organization of Membranes. Annu. Rev. Biochem. 

1974, 43, 805–833. 

(9)  Adam, G.; Delbrück, M. Reduction of Dimensionality in Biological Diffusion 

Processes. In Structural chemistry and molecular biology; Rich, A.; Davidson, N., 

Eds.; W. H. Freeman and Co., 1968; pp. 198–215. 

(10)  Axelrod, D.; Wang, M. D. Reduction-of-Dimensionality Kinetics at Reaction-

Limited Cell Surface Receptors. Biophys. J. 1994, 66, 588–600. 

(11)  Hrazdina, G.; Jensen, R. A. Spatial Organization of Enzymes in Plant Metabolic 

Pathways. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 241–267. 



62 

 

(12)  Bülow, L.; Ljungcrantz, P.; Mosbach, K. Preparation of a Soluble Bifunctional 

Enzyme by Gene Fusion. Bio/Technology 1985, 3, 821–823. 

(13)  Conrado, R. J.; Varner, J. D.; DeLisa, M. P. Engineering the Spatial Organization 

of Metabolic Enzymes: Mimicking Nature’s Synergy. Curr. Opin. Biotechnol. 

2008, 19, 492–499. 

(14)  Ljungcrantz, P.; Carlsson, H.; Mansson, M. O.; Buckel, P.; Mosbach, K.; Buelow, 

L. Construction of an Artificial Bifunctional Enzyme, .beta.-

Galactosidase/galactose Dehydrogenase, Exhibiting Efficient Galactose 

Channeling. Biochemistry 1989, 28, 8786–8792. 

(15)  Riedel, K.; Bronnenmeier, K. Intramolecular Synergism in an Engineered Exo-

Endo-1,4-Beta-Glucanase Fusion Protein. Mol. Microbiol. 1998, 28, 767–775. 

(16)  Mao, Q.; Schunk, T.; Gerber, B.; Erni, B. A String of Enzymes, Purification and 

Characterization of a Fusion Protein Comprising the Four Subunits of the Glucose 

Phosphotransferase System of Escherichia Coli. J. Biol. Chem. 1995, 270, 18295–

18300. 

(17)  De Pascale, D.; Di Lernia, I.; Sasso, M. P.; Furia, A.; De Rosa, M.; Rossi, M. A 

Novel Thermophilic Fusion Enzyme for Trehalose Production. Extremophiles 

2002, 6, 463–468. 

(18)  Orita, I.; Sakamoto, N.; Kato, N.; Yurimoto, H.; Sakai, Y. Bifunctional Enzyme 

Fusion of 3-Hexulose-6-Phosphate Synthase and 6-Phospho-3-Hexuloisomerase. 

Appl. Microbiol. Biotechnol. 2007, 76, 439–445. 

(19)  Levasseur, A.; Navarro, D.; Punt, P. J.; Belaïch, J.-P.; Asther, M.; Record, E. 

Construction of Engineered Bifunctional Enzymes and Their Overproduction in 

Aspergillus Niger for Improved Enzymatic Tools to Degrade Agricultural by-

Products. Appl. Environ. Microbiol. 2005, 71, 8132–8140. 

(20)  Wilner, O. I.; Weizmann, Y.; Gill, R.; Lioubashevski, O.; Freeman, R.; Willner, I. 

Enzyme Cascades Activated on Topologically Programmed DNA Scaffolds. Nat. 

Nanotechnol. 2009, 4, 249–254. 

(21)  Delebecque, C. J.; Lindner, A. B.; Silver, P. A.; Aldaye, F. A. Organization of 

Intracellular Reactions with Rationally Designed RNA Assemblies. Science 2011, 

333, 470–474. 

(22)  Dueber, J. E.; Wu, G. C.; Malmirchegini, G. R.; Moon, T. S.; Petzold, C. J.; Ullal, 

A. V; Prather, K. L. J.; Keasling, J. D. Synthetic Protein Scaffolds Provide 

Modular Control over Metabolic Flux. Nat. Biotechnol. 2009, 27, 753–759. 



63 

 

(23)  Mosbach, K.; Mattiasson, B. Matrix-Bound Enzymes. II. Studies on a Matrix-

Bound Two-Enzyme-System. Acta Chem. Scand. 1970, 24, 2093–2100. 

(24)  Mingardon, F.; Chanal, A.; López-Contreras, A. M.; Dray, C.; Bayer, E. A.; 

Fierobe, H.-P. Incorporation of Fungal Cellulases in Bacterial Minicellulosomes 

Yields Viable, Synergistically Acting Cellulolytic Complexes. Appl. Environ. 

Microbiol. 2007, 73, 3822–3832. 

(25)  Fu, J.; Liu, M.; Liu, Y.; Woodbury, N. W.; Yan, H. Interenzyme Substrate 

Diffusion for an Enzyme Cascade Organized on Spatially Addressable DNA 

Nanostructures. J. Am. Chem. Soc. 2012, 134, 5516–5519. 

(26)  Rothemund, P. W. K. Folding DNA to Create Nanoscale Shapes and Patterns. 

Nature 2006, 440, 297–302. 

(27)  Seeman, N. C. Nanomaterials Based on DNA. Annu. Rev. Biochem. 2010, 79, 65–

87. 

(28)  Lin, C.; Liu, Y.; Yan, H. Designer DNA Nanoarchitectures. Biochemistry 2009, 

48, 1663–1674. 

(29)  Michelotti, N.; Johnson-Buck, A.; Manzo, A. J.; Walter, N. G. Beyond DNA 

Origami: The Unfolding Prospects of Nucleic Acid Nanotechnology. Wiley 

Interdiscip. Rev. Nanomed. Nanobiotechnol. 4, 139–152. 

(30)  Winfree, E.; Liu, F.; Wenzler, L. A.; Seeman, N. C. Design and Self-Assembly of 

Two-Dimensional DNA Crystals. Nature 1998, 394, 539–544. 

(31)  Veitch, N. C. Horseradish Peroxidase: A Modern View of a Classic Enzyme. 

Phytochemistry 2004, 65, 249–259. 

(32)  Raba, J.; Mottola, H. A. Glucose Oxidase as an Analytical Reagent. Crit. Rev. 

Anal. Chem. 1995, 25, 1–42. 

(33)  Idan, O.; Hess, H. Diffusive Transport Phenomena in Artificial Enzyme Cascades 

on Scaffolds. Nat. Nanotechnol. 2012, 7, 769–770. 

(34)  Idan, O.; Hess, H. Origins of Activity Enhancement in Enzyme Cascades on 

Scaffolds. ACS Nano 2013, 7, 8658–8665. 

(35)  Takahashi, K.; Arjunan, S. N. V.; Tomita, M. Space in Systems Biology of 

Signaling Pathways--towards Intracellular Molecular Crowding in Silico. FEBS 

Lett. 2005, 579, 1783–1788. 



64 

 

(36)  Ridgway, D.; Broderick, G.; Lopez-Campistrous, A.; Ru’aini, M.; Winter, P.; 

Hamilton, M.; Boulanger, P.; Kovalenko, A.; Ellison, M. J. Coarse-Grained 

Molecular Simulation of Diffusion and Reaction Kinetics in a Crowded Virtual 

Cytoplasm. Biophys. J. 2008, 94, 3748–3759. 

(37)  Klann, M. T.; Lapin, A.; Reuss, M. Stochastic Simulation of Signal Transduction: 

Impact of the Cellular Architecture on Diffusion. Biophys. J. 2009, 96, 5122–5129. 

(38)  Bauler, P.; Huber, G.; Leyh, T.; McCammon, J. A. Channeling by Proximity: The 

Catalytic Advantages of Active Site Colocalization Using Brownian Dynamics. J. 

Phys. Chem. Lett. 2010, 1, 1332–1335. 

(39)  Klann, M.; Koeppl, H. Spatial Simulations in Systems Biology: From Molecules to 

Cells. Int. J. Mol. Sci. 2012, 13, 7798–7827. 

(40)  Blumofe, R. D.; Joerg, C. F.; Kuszmaul, B. C.; Leiserson, C. E.; Randall, K. H.; 

Zhou, Y. Cilk. ACM SIGPLAN Not. 1995, 30, 207–216. 

(41)  Frederick, K. R.; Tung, J.; Emerick, R. S.; Masiarz, F. R.; Chamberlain, S. H.; 

Vasavada, A.; Rosenberg, S.; Chakraborty, S.; Schopfer, L. M.; Schopter, L. M. 

Glucose Oxidase from Aspergillus Niger. Cloning, Gene Sequence, Secretion from 

Saccharomyces Cerevisiae and Kinetic Analysis of a Yeast-Derived Enzyme. J. 

Biol. Chem. 1990, 265, 3793–3802. 

(42)  Bright, H. J.; Gibson, Q. H. The Oxidation of 1-Deuterated Glucose by Glucose 

Oxidase. J. Biol. Chem. 1967, 242, 994–1003. 

(43)  Yamanaka, S. A.; Nishida, F.; Ellerby, L. M.; Nishida, C. R.; Dunn, B.; Valentine, 

J. S.; Zink, J. I. Enzymatic Activity of Glucose Oxidase Encapsulated in 

Transparent Glass by the Sol-Gel Method. Chem. Mater. 1992, 4, 495–497. 

(44)  Gajhede, M.; Schuller, D. J.; Henriksen, A.; Smith, A. T.; Poulos, T. L. Crystal 

Structure of Horseradish Peroxidase C at 2.15 A Resolution. Nat. Struct. Biol. 

1997, 4, 1032–1038. 

(45)  Wohlfahrt, G.; Witt, S.; Hendle, J.; Schomburg, D.; Kalisz, H. M.; Hecht, H. J. 1.8 

and 1.9 A Resolution Structures of the Penicillium Amagasakiense and Aspergillus 

Niger Glucose Oxidases as a Basis for Modelling Substrate Complexes. Acta 

Crystallogr. D. Biol. Crystallogr. 1999, 55, 969–977. 

(46)  Reva, B. A.; Finkelstein, A. V.; Sanner, M. F.; Olson, A. J. Residue-Residue 

Mean-Force Potentials for Protein Structure Recognition. Protein Eng. Des. Sel. 

1997, 10, 865–876. 



65 

 

(47)  Shen, T.; Wong, C. F.; McCammon, J. A. Atomistic Brownian Dynamics 

Simulation of Peptide Phosphorylation. J. Am. Chem. Soc. 2001, 123, 9107–9111. 

(48)  Pearlman, D. A.; Case, D. A.; Caldwell, J. W.; Ross, W. S.; Cheatham, T. E.; 

DeBolt, S.; Ferguson, D.; Seibel, G.; Kollman, P. AMBER, a Package of 

Computer Programs for Applying Molecular Mechanics, Normal Mode Analysis, 

Molecular Dynamics and Free Energy Calculations to Simulate the Structural and 

Energetic Properties of Molecules. Comput. Phys. Commun. 1995, 91, 1–41. 

(49)  Kang, M.; Roberts, C.; Cheng, Y.; Chang, C. A. Gating and Intermolecular 

Interactions in Ligand-Protein Association: Coarse-Grained Modeling of HIV-1 

Protease. J. Chem. Theory Comput. 2011, 7, 3438–3446. 

(50)  Henzler, T. Transport and Metabolic Degradation of Hydrogen Peroxide in Chara 

Corallina: Model Calculations and Measurements with the Pressure Probe Suggest 

Transport of H2O2 across Water Channels. J. Exp. Bot. 2000, 51, 2053–2066. 

(51)  Ermak, D. L.; McCammon, J. A. Brownian Dynamics with Hydrodynamic 

Interactions. J. Chem. Phys. 1978, 69, 1352. 

(52)  Długosz, M.; Zieliński, P.; Trylska, J. Brownian Dynamics Simulations on CPU 

and GPU with BD_BOX. J. Comput. Chem. 2011, 32, 2734–2744. 

(53)  Greives, N.; Zhou, H.-X. BDflex: A Method for Efficient Treatment of Molecular 

Flexibility in Calculating Protein-Ligand Binding Rate Constants from Brownian 

Dynamics Simulations. J. Chem. Phys. 2012, 137, 135105. 

(54)  Eun, C.; Kekenes-Huskey, P. M.; Metzger, V. T.; McCammon, J. A. A Model 

Study of Sequential Enzyme Reactions and Electrostatic Channeling. J. Chem. 

Phys. 2014, 140, 105101. 

(55)  Fu, Y.; Zeng, D.; Chao, J.; Jin, Y.; Zhang, Z.; Liu, H.; Li, D.; Ma, H.; Huang, Q.; 

Gothelf, K. V; Fan, C. Single-Step Rapid Assembly of DNA Origami 

Nanostructures for Addressable Nanoscale Bioreactors. J. Am. Chem. Soc. 2013, 

135, 696–702.  

 

 



66 

 

Chapter 3: Colocalization in Multi-enzyme Bioreactor Scaffolds: Computational 

Assessment of Planar and Tubular Geometry Scaffolds 

3.1 Introduction 

Nanostructures have become a promising technology in chemical and biological 

engineering for the construction of catalytic reactors that produce desirable chemical 

species. Engineering of enzymes into synthetic spatially organized nanostructures has 

been shown to increase the efficiency of enzyme reaction cascades relative to 

disorganized solutions.1–7 These systems are inspired by the high specificity and yield of 

biological metabolic channeling, where colocalization of the enzymes involved in a 

cascade improves the rate of successful intermediate substrate diffusion between 

enzymes.8–11 It is thus desirable to produce nanostructures that provide an environment 

that optimizes the intermediate diffusion processes between a series enzymes of interest 

in vitro.  

There have been many approaches to colocalization of enzymes for biocatalytic 

applications, such as synthetic fusion protein synthesis,12–18 immobilization of enzyme 

aggregates,1,2,6 and adhesion to nanoparticles19 and protein scaffolds.11,20 Recent advances 

in the synthesis of self-assembling DNA nanostructures, called DNA origami, have 

presented new avenues for the controlled design of enzyme nanostructures.21–23 DNA 

origami technology allows for the construction of multidimensional self-assembling 

nanostructures with geometries including sheets, cubes, spheres, tubes, and more 

complex arrangements.22,24–30 In addition to controlled geometry, accurate placement of 

molecular species on DNA origami scaffolds is "programmable" in the synthetic 
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procedure, utilizing complimentary single-stranded DNA spatial addressing to anchor 

specific molecules to specific locations with nanometer resolution.4,31–35 As such, DNA 

origami represent an attractive scaffold for the construction of catalytic nanostructures 

with designed spatial organization. 

Reaction coupled enzyme pairs are commonly used as model systems to explore catalytic 

nanostructure designs due to the dependence on the transfer of an intermediate for joint 

enzyme turnover. One such model system is the glucose oxidase (GOx) and horseradish 

peroxidase (HRP) enzyme pair, which relies on the transfer of hydrogen peroxide (H2O2) 

from GOx to HRP for mutual turnover to occur. Thus it is an appropriate system for 

assessing the effect of spatial organization due to the observable change in HRP product 

concentration over a given time span. Jinglin Fu et al anchored a GOx-HRP enzyme pair 

on a planar DNA origami scaffold, realizing a kinetic advantage relative to the free 

solution of the enzymes.4 More recently, Yanming Fu et al synthesized a similar system, 

anchoring a GOx-HRP enzyme pair within the interior of a tubular origami.36 While not 

directly quantified, the results of the nanotube system show a distinct increase in turnover 

efficiency for the tubular origami scaffold geometry over the planar geometry. The 

present study focuses on this DNA origami nanotube system, with comparisons drawn to 

our previous work characterizing the planar geometry scaffold GOx-HRP system 

(Chapter 2). 

Computational modeling and simulations with the GeomBD package are used to 

characterize the GOx-HRP enzyme system assembled in a nanotube, on a planar scaffold, 

and free in a disorganized solution. The effects of nanotube geometry, enzyme 
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placement, and scaffold-substrate affinity are investigated for their effect on successful 

intermediate diffusional transfer from GOx to HRP. A new version of the GeomBD 

package, featuring partial charge embedding, is used to investigate the system through 

coarse grain (CG) Brownian dynamics (BD). Our previously reported results of the 

planar geometry DNA origami assembly of GOx and HRP (Chapter 2) are updated with 

electrostatic interactions enabled, and are presented here for comparison to the nanotube 

system. In addition, a fully diffusive free solution of hydrogen peroxide and its target 

enzyme, HRP, were modeled and simulated to assess the baseline association probability 

for comparison to the scaffolded systems. 

3.2 Methods 

3.2.1 Overview 

Diffusion studies using coarse grained (CG) Brownian dynamics (BD) simulations were 

performed under various conditions to assess the factors that affect the probabilities of 

successful intermediate substrate transfer of H2O2 between GOx and HRP under various 

conditions. Successful substrate transfer is considered if a substrate diffuses to and 

interacts with the active site of HRP. The number of simulations resulting in successful 

transfer is divided by the total number of simulations performed to arrive at a final 

association probability. 
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Figure 3.1. The GOx/HRP pair assembled (a) within an implicit nanotube model and (b) 

on a planar scaffold. The GOx and HRP enzymes, colored in blue and red respectively, 

and the DNA linker strands, colored in grey, are modeled with a coarse grain scheme. 

The substrate is marked by a black sphere near the active site of GOx. 

 

The GOx/HRP pair was modeled as an organized assembly within a nanotube scaffold 

(Figure 3.1a), as an assembly on a planar scaffold (Figure 3.1b), and freely diffusing in a 

disorganized solution. The enzymes, enzyme-scaffold DNA strand linkers, and substrate 

were modeled using a coarse grain molecular model, while the scaffolds were modeled as 

implicit structures defined by simple geometry and potential energy functions. 

Simulations were performed with a new version of the GeomBD package. Rigid body 

force propagation has been included allowing for multi-bead substrate, and in this case, 

the embedding of atomic partial charges in a single-bead representation of a molecule. 

Neutral molecules abstracted into a single bead can now consider electrostatics and 

interact with other charged species. Our previously reported results of the GOx-HRP pair 
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assembled on a planar scaffold (Chapter 2) have been updated with electrostatic 

interactions enabled using this new GeomBD version. 

3.2.2 Structure and Preparation 

In vitro, the structure of the tubular scaffold GOx-HRP molecular system consists of a 

DNA origami nanotube with DNA strands linking each of GOx and HRP to the inner 

nanotube surface. Computationally, the nanotube scaffold was modeled implicitly as a 

cylindrical force field, while the enzymes and 10 nm double-stranded DNA enzyme-

scaffold linkages were represented as explicit CG structures (Figure 3.1a). The planar 

scaffold GOx-HRP system was similarly constructed, using an implicit planar force field 

(Figure 3.1b). 

The HRP isozyme C and GOx atomic structures were obtained from the protein data bank 

(PDB: 1ATJ and 1GPE, respectively).37,38 CG models were generated from the all-atom 

PDB structures using the cgProtein utility in the geomBD package. In this CG model, 

each protein residue is represented as a single sphere, centered on the alpha carbon of the 

amino acid. The radii were derived from the average radius of gyration about the alpha 

carbon for each standard amino acid type from hundreds of unique molecular dynamics 

simulations.39,40 Formal charges were assigned to the center of CG beads corresponding 

to charged amino acid residues. DNA strands linking the scaffold and enzymes were 

created from all-atom representations of a randomly sequenced DNA strand created using 

the NAB AMBER software interface.41 For each nucleoside base in this CG DNA 

representation, two beads were positioned to represent the base and the associated sugar–

phosphate backbone atoms. Bead radii for the DNA CG model were calculated as the 
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radius of gyration of the abstracted atoms about their average position, accounting for 

their atomic radii. Formal charges were placed on the phosphate beads. The H2O2 

substrate was abstracted into a single particle. Utilizing improvements to the GeomBD 

package, atomic partial charges for the atoms in H2O2 were embedded in the substrate 

bead as a rigid body. Electrostatic forces on each point charge are propagated to 

translating the CG particle and internally rotating the point charges. This allows the 

neutral, but polar, H2O2 substrate to interact electrostatically with the proteins, linkers, 

and scaffold. 

The scaffolds in both the planar and tubular geometries were modeled implicitly. Because 

the structures are highly abstracted, our models are generalizable to generic planar and 

tubular scaffolds. The structures were defined using geometric expressions coupled with 

polar and non-polar potential energy functions that dictate the interactions with the 

substrate. The geometry of the planar scaffold was 80 nanometers by 60 nanometers, 

matching the dimensions of the experimental structure.4 The same dimensions were used 

for the “rolled” nanotube scaffold, resulting in a length of 80 nanometers and diameter of 

approximately 20 nanometers.36 
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3.2.3 Model Parameters 

The substrate, H2O2, was assigned an experimentally determined diffusion coefficient of 

1 x 10-3 nm2/s.42 For simulations that included a scaffold model, no diffusion coefficients 

were assigned for the enzymes and scaffold, as they were held fixed in space. However, 

for the simulation of a free solution of HRP and hydrogen peroxide, the HRP enzyme was 

assigned a diffusion coefficient according to the Stokes-Einstein equation. The radius of 

gyration of HRP was used as the radius for this calculation.  

Intermolecular interactions include terms for both van der Waals and electrostatic 

interactions. Van der Waals interactions were modeled using a Lennard-Jones like 

potential: 

 
E = ε a [(

σ

l
)

8

−
3

2
(

σ

l
)

6

] 
eq. 3.1 

where l is the distance between two interacting particles, σ is the sum of the radii of the 

two interacting spheres, 𝜀 is the well depth of the potential, and a is a proportionality 

constant scaling the function to match the desired well depth. This function is similar to 

the 12-6 Lennard Jones equation, but accounts for the structural abstraction of the CG 

model by softening the repulsive term, allowing for more particle interpenetration. The 

ligand-enzyme and ligand-linker interactions were assigned well depths of 0.267 

kcal/mol, matching the previously parameterized form of the equation.43 The non-polar 

ligand-scaffold interactions were also defined by Equation 3.1. The potential radiates 

equally from the area and edges of the planar and cylindrical geometries. The well depth 

of this function was varied through 𝜀 to assess the impact of affinity on substrate transfer.  
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Electrostatic interactions were modeled with a Coulombic potential, with a distance 

dependent dielectric of 15, of the form: 

 
E = ke

qiqj

l215
 

eq. 3.2 

where 𝑞𝑖 and 𝑞𝑗 are the charges assigned to interacting species i and j, l is the measured 

distance between the two atoms, and 𝑘𝑒 is Coulomb's constant (𝑘𝑒 = (4π𝜖0)-1, where 𝜖0 is 

the electric permittivity of free space). The distance dependent dielectric is utilized to 

account for electrostatic screening.44 Electrostatic forces exerted on a partial charge 

embedded within a single CG bead were propagated to angular and linear forces on the 

bead. This results in translation of the bead and internal rotation of the partial charge 

distribution. The polar ligand-scaffold interactions were defined using Equation 3.2, 

where the charge of the scaffold was set to -1. Like the non-polar potential function, the 

polar potential radiates equally from the area and edges of the geometries.  

3.2.4 Simulation Configurations 

Simulations were performed for 10 microseconds to determine the probability of 

successful substrate transfer from the active site of GOx to that of HRP in several 

spatially organized configurations. All simulations were performed within a cubic 

simulation volume corresponding to an enzyme and substrate concentration of 10 nM 

(edge length equal to 549.65 nm). System temperature was set to 298K. Solvent viscosity 

was set to that of water.  
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Free Solution Model 

A fully diffusive free solution of a single HRP enzyme and hydrogen peroxide substrate 

were simulated using rigid body BD to assess the association probability of H2O2 to HRP 

over the course of 10 microseconds. Each molecule was randomly placed in the 

simulation volume. The simulations were performed 16,000 times. Each simulation took 

approximately 8 minutes to complete on 6 CPU cores. 

Artificially Colocalized Enzyme Model 

A series of simulations was performed with the GOx and HRP enzymes colocalized and 

artificially fixed in space with defined interenzyme distances and orientations. These 

simulations sets were performed to determine the effect of colocalization on intermediate 

substrate transfer relative to a free solution without the influence of a scaffold. The 

interenzyme distance was set to 10, 20, and 30 nanometers to assess the effect of 

interenzyme distance on interenzyme substrate transfer probability. Enzyme orientation 

was not considered as an explicit simulation parameter because the orientations of the 

enzymes are not fixed in vitro. Instead, each enzyme was successively rotated 90 degrees, 

creating 16 orientation states for each simulation configuration. Each simulation 

configuration was replicated a total of 16,000 times. Thus, for the GOx-HRP colocalized 

enzyme pair, 16 orientation combinations were simulated with 1000 replicates, resulting 

in a total of 16,000 replicates for each configuration. 
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Planar Scaffold Model 

We previously reported the results of simulations assessing the interenzyme substrate 

transfer probability of hydrogen peroxide from GOx to HRP while assembled on a planar 

scaffold (Chapter 2). These simulations had been performed with the first generation of 

the GeomBD software, which did not support partial charge embedding for electrostatic 

interactions of net neutral molecules, like the substrate in these studies. With the 

introduction of this feature, we revisited this system to assess the effect of electrostatic 

interactions on the interenzyme substrate transfer probability. The GOx-HRP pair was 

assembled on a planar scaffold to determine the substrate transfer probability relative to 

the free solution and colocalized enzyme pair. The planar scaffold geometry was defined 

as 80 nanometers by 60 nanometers with interaction potentials defining a 2 nanometer 

thickness. The implicit scaffold was centered in the simulation volume, with the 80 

nanometer length running along the X-axis. The enzymes were assembled on this 

scaffold, approximately 8 nanometers above the plane, with their separation running 

along the X-axis. Explicit CG DNA linkers were positioned to span the gap between the 

enzymes and the scaffold. The interenzyme distance was simulated with values of 10, 20, 

and 30 nanometers to determine its impact on substrate transfer. Like the colocalized 

enzyme pair model, each enzyme was rotated 90 degrees, creating 16 orientation states 

for each simulation configuration. Thus, for the GOx/HRP enzyme pair assembled with 

the planar scaffold model, 16 orientation combinations were simulated with 1000 

replicates each, resulting in a total of 16,000 replicates for each configuration. 
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Each 1000 replicate simulation required 0.75 to 2.5 hours on 16 CPU cores. Simulations 

with a strong ligand-scaffold affinity proceeded more slowly due to the increased 

residence time on the scaffold, restricting the time step to its smallest value. 

Tubular Scaffold Model 

The GOx-HRP pair was assembled in a tubular scaffold to determine the substrate 

transfer probability relative to the free solution, colocalized enzyme pair, and the enzyme 

pair assembled on a planar scaffold. The tubular scaffold had the same geometry as the 

planar scaffold, but was “rolled” into a tube geometry. The tube had an 80 nanometer 

length and 60 nanometer circumference resulting in a 20 nanometer diameter. The 

scaffold model was centered at the origin with the length of the tube running along the X-

axis. The enzymes and DNA linkers were positioned within the tubular scaffold, 

approximately 8 nanometers above the bottom of the inside of the tube, with their 

separation running along the X-axis. Explicit CG DNA linkers were positioned to span 

the gap between the enzymes and the scaffold. These nanotube scaffold simulations were 

run for the combinations of the following parameters: nanotube radii of 10nm, 15nm, and 

20nm; nanotube affinity ranging from a well depth of 0.267 to 2.5 kcal/mol; enzyme 

positions with interenzyme distances of 10, 20, and 30nm.  

Sixteen orientation combinations were simulated with 1000 replicates each, resulting in a 

total of 16,000 replicates for each configuration. Each 1000 replicate simulation required 

1.5 to 3 hours on 16 CPU cores. Simulations with a strong ligand-scaffold affinity 

proceeded more slowly due to the increased residence time on the scaffold, restricting the 

time step to its smallest value. 
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Tubular Scaffold with Multiple Target HRP Enzymes 

A novel system was constructed with two HRP target enzymes assembled with a single 

GOx enzyme inside a nanotube. In this system, the HRP/GOx/HRP trio, the GOx enzyme 

was mounted in the center, lengthwise, of the nanotube. Both HRP enzymes were placed 

on either side of the GOx enzyme, with a specified interenzyme distance. The effect of 

multiple target enzymes was assessed for its ability to impact association probability. The 

interenzyme distance was varied with values of 10, 20, and 30nm. In this system, 64 

states of enzyme orientation were simulated each with 250 replicates for a total of 16,000 

simulation replicates. Each 250 replicate simulation required 1.5 to 3.5 hours on 16 CPU 

cores.  

3.3 Results and Discussion 

Simulations of the GOx/HRP system were performed with the enzymes organized within 

a nanotube scaffold, on a planar scaffold, and artificially colocalized with no scaffold 

model. As well, a model free solution of HRP and a hydrogen peroxide substrate were 

simulated for comparison to all spatially organized and scaffolded simulations. 

3.3.1 Free Solution 

Simulations of the substrate, hydrogen peroxide, and the GOx and HRP enzymes were 

simulated to assess the probability of substrate-HRP association in a free solution. Both 

HRP and a substrate were randomly placed in a cubic simulation volume corresponding 

to substrate and enzyme concentrations of 10 nM. Both the enzyme and the substrate 

diffused freely throughout the course of 16,000 simulations with a simulation length of 
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10 microseconds. The probability of substrate association was 0.42% with an average 

binding time of 5.6 microseconds. 

3.3.2 Artificially Colocalized Enzymes 

The GOx-HRP enzyme pair was colocalized artificially in a solution of the same volume 

and concentration as the free solution simulation. Colocalization enhanced the 

interenzyme substrate transfer by 46.5, 20, and 11 fold for interenzyme distances of 10, 

20, and 30 nanometers relative to the free solution over the 10 microsecond simulation 

duration. (Figure 3.2). 

 

Figure 3.2. Substrate transfer probability, over 10 microseconds, for the GOx/HRP pair 

artificially colocalized by fixation in the solution volume. Simulation result of a free 

solution of GOx, HRP, and the substrate is presented for comparison.  
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3.3.3 Planar Geometry Scaffold 

The GOx-HRP enzyme pair was spatially organized on a planar scaffold under the same 

conditions as the free solution and artificially colocalized systems. The scaffold imparted 

additional enhancement in substrate transfer. Relative to the artificially colocalized 

system, the substrate transfer probability increased by 1.2, 1.4, and 1.5 fold for 

interenzyme distances of 10, 20, and 30 nanometers. Relative to the free solution, the 

enzymes on a planar scaffold increased 54, 27, and 16 fold for interenzyme distances of 

10, 20, and 30 nanometers (Figure 3.3). 

 

Figure 3.3. Substrate transfer probability, over 10 microseconds, for the GOx/HRP pair 

assembled on a planar scaffold. Simulation results of the artificially colocalized 

GOx/HRP pair are presented for comparison. The scaffold-substrate affinity well depths 

were set to the default value of 0.267 kcal/mol for the planar scaffold simulations. 

 

0.4%

18.6%

8.0%

4.4%

21.6%

10.9%

6.4%

0

5

10

15

20

25

30

0 10 20 30 40

P
ro

b
ab

ili
ty

 o
f 

Su
b

st
ra

te
 

Tr
an

sf
e

r 
o

ve
r 

1
0

 u
S

Interenzyme Distance (nm)

Free Solution

Artificial Colocalization

Planar Scaffold



80 

 

As previously stated, the GOx-HRP enzyme pair assembled on a planar scaffold was 

previously characterized with a version of GeomBD that did not support partial charge 

embedding, and thus did not include electrostatic interactions in the simulations. These 

results, performed over the course of 1.5 microseconds, are presented in Figure 3.4 for 

comparison to the new results with electrostatic interactions included. The new results 

were performed over the course of 10 microseconds, but only the data for the first 1.5 

microseconds is presented in Figure 3.4 for direct comparison to the previous results. 

 

Figure 3.4. Data comparison between previous and current simulation results of the 

substrate transfer probability, over 1.5 microseconds, for the GOx/HRP pair assembled 

on a planar scaffold. The artificially colocalized systems from both data sets are 

presented to demonstrate the systematic increase of colocalized enhancement with 

electrostatic interactions. 
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It is clear from these results that electrostatic interactions are imperative for the proper 

assessment of protein-substrate association, even for molecular substrate with a net 

neutral charge. Including electrostatics increases the effect of colocalization most 

significantly, as evidenced by the increase in substrate transfer probability for both 

colocalized simulation sets. This effect is further emphasized by the steeper increase in 

substrate transfer probability with decreasing interenzyme distance, relative to the 

systems without electrostatic interactions.  

3.3.4 Tubular Geometry Scaffold 

The nanotube scaffold increased the successful transfer of the hydrogen peroxide 

intermediate significantly across all configurations relative to the planar scaffold 

assembly. 

Effect of Interenzyme Distance 

Varying the interenzyme distance over 10, 20, and 30 nanometers, the interenzyme 

substrate transfer probability for the nanotube scaffold system increased by 3, 5, and 6 

fold, respectively, relative to the planar scaffold system. Comparison to the artificially 

colocalized simulations shows that confinement within the nanotube enhances successful 

substrate diffusion beyond simple colocalization by 3, 6, and 9 fold for interenzyme 

distances of 10, 20, and 30 nanometers, respectively (Figure 3.5).  
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Figure 3.5. Substrate transfer probability, over 10 microseconds, for the GOx/HRP pair 

assembled within a nanotube scaffold and on a planar scaffold. Simulation results of the 

GOx/HRP pair colocalized, but with the scaffold model removed, are presented for 

comparison. In addition, the baseline probability for free solution substrate association 

over the same time period is provided for comparison. The scaffold-substrate affinity 

well depths were set to the default value of 0.267 kcal/mol. 
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The geometry of the nanotube scaffold was explored for its ability to affect successful 

intermediate substrate transfer from GOx to HRP. Simulations were performed with a 

nanotube radius of 10, 15, and 20 nanometers and a single interenzyme distance of 30 

nanometers. The nanotube radius increase from 10 nm to 15 nm reduced the substrate 
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to 20 nm reduced the substrate transfer probability to 51% of its original value (Figure 

3.6). 

 

Figure 3.6. Substrate transfer probability as it varies with nanotube radius, over 10 

microseconds, for the GOx/HRP pair assembled within a nanotube scaffold. Simulations 

were performed at an interenzyme distance of 30 nanometers. The scaffold-substrate 

affinity well depths were set to the default value of 0.267 kcal/mol. 
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7% when increased from 0.267 kcal/mol to 1.07 kcal/mol, and by 38% when increased 

from 0.267 kcal/mol to 2.163 kcal/mol. For the GOx/HRP pair assembled on the planar 

scaffold, the probability of substrate transfer dropped by 4% when the well depth was 

increased from 0.267 kcal/mol to 0.534 kcal/mol, by 6% when increased from 0.267 

kcal/mol to 1.07 kcal/mol, and by 23% when increased from 0.267 kcal/mol to 2.163 

kcal/mol. This further emphasizes the importance of the scaffold in the efficiency of 

substrate transfer in the GOx/HRP nanotube system. 

 

 

Figure 3.7. Substrate transfer probability as it varies with substrate-scaffold non-polar 

affinity, over 10 microseconds, with a fixed interenzyme distance of 30 nanometers. The 

nanotube radius was set to 10 nanometers. The scaffold-substrate affinity well depths 

were set to the default value of 0.267 kcal/mol. 
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3.3.5 Tubular Scaffold with Multiple Target HRP Enzymes 

A novel spatially organized enzyme system, the HRP/GOx/HRP trio, was created by 

assembling a GOx enzyme with two target HRP enzymes within a nanotube scaffold. The 

GOx enzyme was centered in the nanotube, and both HRP enzymes were placed on either 

side of the GOx enzyme. The interenzyme distance between the GOx enzyme and each 

HRP enzyme was varied in the same manner as the GOx/HRP pair assembled in a 

nanotube. For the interenzyme distances of 10, 20, and 30 nanometers, the probability of 

interenzyme transfer increased by 31%, 51%, and 73%, respectively, relative to the GOx-

HRP pair assembled in the nanotube scaffold (Figure 3.8). This trend also demonstrates 

that increasing interenzyme distance has less of a detrimental effect on interenzyme 

substrate transfer in the HRP/GOx/HRP trio than with the GOx/HRP pair.  
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Figure 3.8. Substrate transfer probability comparison between the GOx/HRP pair and 

HRP/GOx/HRP trio. These systems were assembled within a nanotube and simulated 

over 10 microseconds. The nanotube radius was set to 10 nanometers, and the scaffold-

substrate affinity well depths were set to the default value of 0.267 kcal/mol for all 

simulations. 

 

However, the GOx enzyme may be shielded in this configuration due to occlusion by the 

HRP enzymes on either side. This could reduce the probability of diffusional encounter 

between GOx and its primary substrate, preventing or delaying the initiation of the 

GOx/HRP cascade. This may have a detrimental effect on the overall enzyme efficiency. 

Future investigation into the association of GOx and HRP to their respective co-

substrates is thus warranted. 
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3.4 Conclusions 

Simulations were performed to determine the probability of successful substrate transfer 

from GOx to HRP when the enzymes were spatially organized on a scaffold, colocalized 

artificially in solution, and disorganized in solution. An improved version of GeomBD 

was utilized for these simulations which included both non-polar and electrostatic 

interactions. The introduction of coarse grain partial charge embedding in the newest 

revision of GeomBD was shown to increase the substrate transfer probability for the 

GOx/HRP pair assembled on a planar scaffold by at least 2.5 fold relative to our 

previously reported results that excluded electrostatic interactions (Chapter 2). Our 

results suggest that the primary effect leading to enhanced throughput of the GOx/HRP 

pair assembled on a planar scaffold is colocalization, rather than the effect of the scaffold 

as a diffusive barrier.  

The simulations performed with the GOx/HRP pair within a cylindrical nanotube scaffold 

were shown to increase the probability of interenzyme substrate transfer by 3 to 6 fold 

relative to the planar scaffold system. In addition, confinement within the nanotube led to 

a 3 to 9 fold increase in substrate transfer beyond the effects of colocalization. Thus, 

confinement is the primary means of efficiency in the nanotube system. Increasing the 

radius of the nanotube scaffold led to a decrease in substrate transfer, but still retained 

high efficiency relative to the planar scaffold. 

Increasing scaffold-substrate affinity sequestered the substrate away from the enzymes, 

resulting in a reduction of substrate transfer of up to 23% for the planar scaffold in the 

range of affinities assessed. The effect of increasing the substrate-scaffold affinity in the 
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nanotube scaffold system led to a maximum of 38% reduction of substrate transfer 

probability in the range of affinities simulated. While increasing substrate affinity lowers 

the probability of substrate transfer on a short timescale, high substrate-scaffold affinity 

may lead to advantages from increased local concentration on a longer timescale.  

The effect of adding a second target HRP enzyme to the system increases the 

interenzyme substrate transfer markedly. Because both GOx and HRP require co-

substrate association for catalytic turnover, in addition to hydrogen peroxide transfer, the 

trio configuration may hinder cosubstrate association with GOx, potentially delaying the 

initiation of the chain reaction. Future research into the co-substrate association steps of 

all GOx/HRP pair and HRP/GOx/HRP trio configurations assembled within a nanotube 

scaffold would allow for thorough assessment of the most efficient configurations. In 

these future studies, we suggest varying the length of the nanotube to assess the impact 

on the accessibility of the GOx and HRP enzymes to their respective co-substrate. 
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Chapter 4: Ligand binding pathway elucidation for cryptophane host-guest 

complexes 

4.1 Introduction 

The mechanisms of molecular association are critical to the understanding of many 

problems in chemistry, biology, and medicine.1–4 In addition to studying the final ligand–

receptor bound complexes, investigating binding processes helps elucidate fundamental 

mechanisms, including allostery, induced fit, and gated control associations. An 

understanding of the binding pathway of a molecular complex can lend thermodynamic 

and kinetic information which is relevant in medical and pharmaceutical research, and 

can aid in the development of new or improved drugs and drug carriers. The kinetic 

behavior, in particular, is relevant to the efficacy of drugs in vivo.5,6 This study focuses on 

chemical host-guest systems as approachable ligand-receptor models to gain insight into 

the thermodynamics and kinetics of binding.7,8 Supramolecular systems are ideal systems 

for method development and optimization because they are simple but preserve all the 

important characteristics of more complicated ligand–protein systems.   

The standard free energy change of binding is an alternative way of expressing its 

equilibrium constant, Keq=exp(-∆G°/RT), which in turn is the ratio of the rate constants 

for association (kon) and dissociation (koff), Keq ≈ kon/koff.
9–11

 A free energy barrier is 

coupled with association or dissociation rates, which may result from entropy loss, 

desolvation penalty, and conformational changes. Important and elegant work has been 

done on the gated theories and statistical thermodynamics of non-covalent 

association.2,12–14 However, real molecular systems are usually quite complicated, and the 
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theoretical studies and analytical solutions may not be able to provide direct links to real 

molecular systems of practical interest. Computational modeling is a powerful tool to 

explain fundamental processes of molecular binding. 

Computational methods capable of establishing binding pathways traditionally rely on 

various forms of molecular dynamics (MD) or Monte Carlo (MC) simulations.15–25 

Standard simulations are computationally expensive, and in some cases impractical, for 

this determination because of the relatively long timescales under which binding 

processes typically occur.8 In addition, many repeated simulations are required to 

adequately sample possible binding pathways.26 Dedicated hardware has been engineered 

to make this direct simulation route more practical, but at a high monetary cost.27,28 This 

has been more commonly addressed, at the cost of accuracy, through the use of 

accelerated dynamics simulations or through a reduction in system complexity with 

coarse-grained models and/or Brownian dynamics simulations.29–40 The computation of 

ligand binding free energy barriers is even more challenging. One popular method is to 

apply steered MD simulations to gradually “pull” a ligand from the ligand binding site to 

the solvent or use simulations with various sampling techniques to obtain the potential of 

mean force (PMF).20,22,23,41–48 Other methods apply metadynamics or the adaptive biasing 

force (ABF) methods to bias the simulations.31,38,49,50 These methods generate a free 

energy profile along a ligand dissociation/association pathway; thus, an energy barrier 

may be observed from the PMF plot. However, because the pathways are not known 

beforehand, one may need to perform very thorough sampling.18,45,51–55 Moreover, both 

the ligand and receptor may undergo conformational changes during ligand association, 



96 

 

so adequate sampling to compute an accurate binding free energy landscape can be 

difficult. 

Because transition/intermediate states are too rare, standard unbiased dynamics-based 

simulations have difficulty finding accurate pathways and free energy landscapes. Many 

methods, for example transition path sampling (TPS), nudged elastic band (NEB) and 

string methods, have been developed to determine proper transition pathways between 

adjacent stable states without making a priori assumption about transition paths.24,49,56–65 

They provide accurate coordinates and energy barriers of transition states, and can be 

applied to study chemical reactions or conformation transitions. However, applying these 

rigorous but computationally intensive methods to protein-ligand association remains a 

daunting task; especially binding pathways which cover large configuration space and 

involve several states.66 

This article describes a new methodological approach called Hopping Minima for the 

determination of conformational transitions and association/dissociation pathways by 

connecting local energy minima using the molecular system’s natural motions. The 

natural motions of a molecular system are modeled from their normal modes, which are 

exaggerated into the coordinated motions of the molecule or host-guest complex. The 

method is similar to the superposition approach, termed reaction path Hamiltonian 

superposition approach (RPHSA), developed by Strodel and Wales; however, there are 

several key differences between the two methods.67 Both methods begin with using 

conformational search engine to find local energy minima and utilize harmonic 

approximations. Our objective is to rapidly identify connected intermediate states to 
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determine binding pathways from numerous local energy minima. Because we aim to 

work on much more complex molecular systems, we have developed an automated 

algorithm to bridge minima in the HM method using internal coordinates. The RPHSA 

method obtains more detailed free energy surface (FES), but due to the concern of 

computation time, our method provides a simpler approximation for the FES of a ligand-

receptor binding pathway. 

We present a proof of concept implementation of the method which uses the 

conformational search program Tork to perform conformational searches and a set of 

programs to carry out the detection of conformational transitions and building of the 

binding pathways.68–71 The method is exemplified by utilizing our implementation to 

connect distinct conformations of the alanine dipeptide. Alanine dipeptide has served as a 

standard model system for various computational works, including the development of 

new sampling methods, benchmark of force field, and determination of transition paths 

between two stable states.56,58,66,67 Unlike existing works that constructed detailed free 

energy surfaces of a transition pathway, our work shows a quick method to illustrate 

possible pathways of conformational changes. We then extend the implementation to a 

set of host-guest systems: two cryptophane hosts with two cation guests. The 

cryptophanes are a class of spherically-shaped organic molecular capsules with hollow 

internal cavities. They are commonly studied in the context of molecular recognition 

because of their propensity to bind atoms and small molecules.72–75 For example, a 

129Xe-cryptophane biosensor was designed for potential use as a magnetic resonance 

imaging (MRI) contrast agent.76  A well-studied member of the cryptophanes, 
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cryptophane-E, has proven to form supramolecular complexes with small neutral and 

cationic guest molecules. Cryptophane-ES, a derivative of cryptophane-E with the 

methoxy gating arms replaced with thiomethyl gates, has been shown to have similar 

binding characteristics.72 The association and dissociation rates of a guest binding to 

cryptophane-E can be 103 to 104 times faster than with the same guest binding to 

cryptophane-ES, but the net binding affinities (G) are essentially the same. However, it 

is not clear how such a tiny difference in the arms of the host can significantly affect the 

kinetics but not the thermodynamics. We therefore applied the method presented in this 

work to crytophanes-E and  -ES with trimethylammonium and tetramethylammonium 

cation guests to reveal interesting guest binding pathways and shed light on the nature of 

the interactions between cryptophanes and their guests. The work also characterizes 

changes in free energy, entropy and enthalpy of minimum conformations along ligand-

receptor association pathways. 
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4.2 Methods 

4.2.1 Overview 

 

 

Figure 4.1. Overview of the hopping minima method. Rectangles represent distinct steps 

in the method, while ovals represent input and output structures and trajectories of 

structures. Arrows direct the work flow through the method. 

 

The procedure, termed “Hopping Minima,” has been summarized as follows (Figure 

4.1). An extended conformational search procedure is performed on the molecular 

system. Free energies of the individual minima are calculated using the Mining Minima 

generation 2 (M2) program. Natural motions are then sampled using a modified M2 

program.68 The second derivative (Hessian) matrix of the potential energy function is 

computed and diagonalized to obtain eigenvalues and eigenvectors in Bond-Angle-
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Torsion (BAT) coordinates for each local minimum.70,71 The eigenvalues are sorted and 

only eigenvectors corresponding to the first 3 to 10 small eigenvalues are considered. 

Soft modes, or normal modes with a small eigenvalue, represent the most relevant natural 

motions of a molecular system for our purposes as they have the largest associated ranges 

of vibration. The system's coordinates are scanned along the normal modes and snapshots 

are saved as a trajectory during the scanning. Transitions between conformational minima 

are determined by structurally comparing the saved trajectories to the minimum 

conformations. If a motion approaches multiple local energy minima, the trajectory is 

saved as a molecular path. For molecular complexes, multiple paths can be combined to 

reveal possible ligand binding pathways. If local energy minima are numerous, several 

steps and analyses are carried out in order to determine tractable pathways and/or 

pathways that connect more popular (low energy) local energy minima. 

This method relies on the principles of the energy landscape theory.77 As such, only the 

local energy minimum conformations are explicitly sampled in the conformational search 

procedure. We rely on the natural motion sampling to capture the high energy transition 

state structures. 

4.2.2 Finding local energy minima 

Tork is a conformational search utility that distorts a molecular system's initial 

conformation along internal coordinates, minimizing along the way in order to find new 

minima. This process is automated, but conceptually similar to previous manual methods 

of exploring conformational space.71  The results of a given search are dependent on the 

conformation used to seed the search. Thus, many conformations, including both high 
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and low energy conformations, should be used as input to thoroughly sample the 

conformational space of a molecular system.  

Unlike the free energy calculations where one can examine if the integration has 

converged, it is less straightforward to tell whether a conformational search is complete. 

Conformational search should be targeted to structures in and around conformations of 

relevance, if the algorithm allows. Searches should be performed until relevant 

conformational states are well represented. Because we aim to study association 

pathways, many local energy minima should be available in addition to the global energy 

minimum. For complexes, we are most notably interested in those local energy minima in 

which the ligand is in the intermediately bound and unbound states. To more efficiently 

find local energy minima, multiple intermediate partially bound or unbound 

conformations are used as initial structures for successive runs of conformational search. 

Root mean square deviation (RMSD) based alignment of all conformations can help 

reveal areas around the host with sparse ligand population.78 Minimum conformations 

with a guest molecule near the sparsely populated areas can be used to start additional 

searches. Because the search will result in the same conformations multiple times, repeat 

conformations are filtered out. Eliminating repeats is nontrivial when a molecular system 

has symmetries, so a symmetry detection algorithm is applied.79 For example, for our 

Me4N
+ guest, simply rotating a methyl group by 120 degree is considered the same 

conformation. 
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4.2.3 Free energy calculation 

The M2 method is used to compute the free energy for all conformations in a system via 

a modified harmonic approximation. The M2 method calculates the configuration integral 

as a sum of contributions from the conformational states, which is Boltzmann weighted 

by each conformation.68 The configuration integral for each local minimum is calculated 

upon the harmonic approximation. The M2 method builds upon the harmonic 

approximation by correcting for anharmonicities in BAT coordinates.70,71 To compute the 

binding free energy, the calculation is carried out for three species: the complex, free 

host, and free guest. These values are then subtracted to find the absolute binding free 

energy for the complex. For the HM method, the free energy is calculated for all sampled 

conformational states of the complex only with no Boltzmann sum applied. 

4.2.4 Natural motion sampling 

Natural motions are modeled using the normal modes of the host-guest complex. 

Although the mass of the atom is not considered and it is not equivalent to classical 

normal modes in mechanics, we term each set of eigenvalue and eigenvectors a “normal 

mode”. Internal BAT coordinates are built for the structures, instead of using standard 

Cartesian coordinates. With a set of local energy minima of intermediate states available, 

the second derivative (Hessian) matrix of the potential energy function is computed for 

each local minimum and diagonalized to obtain eigenvalues and eigenvectors. The 

eigenvalues are sorted and Gaussian integrands associated with the harmonic 

approximation are constructed.70,71 The molecular system’s coordinates are scanned along 

the soft normal modes in increments of 0.05 radians or Angstroms until the eigenvectors 
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reach the nine standard deviation (9σ) point of the Gaussian. The scanned conformations 

are recorded and the results output as a trajectory. In this study, we scan the lowest 5 

normal modes to obtain 5 paths of natural motions for a given local energy minimum. 

4.2.5 Identifying paths 

There are two RMSD-based methods for comparing similarity in molecular structure 

between natural motion trajectories and conformational minima: Cartesian coordinate 

RMSD and dihedral angle RMSD. Cartesian coordinate RMSD compares absolute 

position of atoms between the natural motion trajectory and conformational minima. 

Alignment of all structures to the same reference minimum is required. Because of this 

alignment, two atomic selections are required: an alignment selection, and an RMSD 

comparison selection. Cartesian coordinate RMSD is appropriate for all types of systems, 

whether a single molecule or complex of molecules. Dihedral angle RMSD compares all, 

or a subset of, dihedral angles containing only heavy atoms. This comparison is fast 

relative to standard Cartesian coordinate RMSD because alignment of the structures is 

not required. Dihedral angle RMSD is appropriate for single molecules only, as it is 

unable to capture relative positions and orientations of multiple molecules. 

For the alanine dipeptide, dihedral RMSD and Cartesian RMSD are both employed using 

alignment and RMSD selections of all heavy atoms and amide hydrogens. For the 

cryptophane complexes, we selected atoms in the two 9-membered rings, the least 

flexible portions of the host molecule, for alignment. 

The Hopping Minima application performs the Cartesian RMSD comparison as follows: 

for a natural motion trajectory ti calculated from minimum conformation mi, each frame 
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in ti, ti,f, is aligned to mi. All conformational minima, mj (j ≠ i), are then aligned to mi, and 

the cartesian RMSD comparison is performed between ti,f and mj. The dihedral RMSD 

comparison similarly cycles through all ti,f and calculates the dihedral RMSD between 

minima mj (j ≠ i) and ti,f. For either type of comparison, if the RMSD value is within a 

user-supplied tolerance, then mi and mj are considered to have a conformational transition 

described by ti, and is saved as a separate path trajectory.  

RMSD tolerance is the main variable that affects resultant conformational transitions. 

RMSD tests with more lenient tolerance values result in numerous pathways, and most of 

them are not of interest. Therefore we introduced several techniques to our 

implementation to reduce redundancy in minimum conformations and to filter out highly 

similar or unlikely pathways. These techniques are provided to help the user reduce noise 

in the results of calculations with lenient RMSD tolerance values. 

4.2.5.1 Thinning 

After a thorough conformational search, numerous distinct conformations, including high 

energy conformations, may populate spatially small regions near an equilibrium basin. 

Therefore, before we build any paths, or binding pathways, low-energy regionally 

representative conformations are determined in order to limit the search results (Figure 

4.2). A thinning cutoff parameter is provided by the user that dictates that no two ligands 

will be within the cutoff distances from one another. The thinning step starts with sorting 

the conformations based on their computed free energy. The conformations are 

sequentially analyzed. Each minimum conformation’s position is compared with its 

predecessors. If any previous conformation is within a thinning cutoff, then the 
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conformation will be ignored; otherwise, the new conformation will be reported as a new 

representative conformation.  

 

Figure 4.2: Thinning filter. (Left) An aligned set of conformational minima for a host-

guest complex, showing the many bound and unbound ligand states. (Right) The set of 

minima after thinning, showing the regionally representative conformational minima. A 

thinning cutoff of 1.5A was used, thus no ligand is within a 1.5Å radius from another. 

 

4.2.5.2 Intersection threshold 

Because the natural motion paths may not intersect directly with the minimum 

conformations, and to complement the thinning procedure, we included an intersection 

threshold parameter (Figure 4.3). This parameter is provided by the user as a distance in 

angstroms that the ligand in the natural motion path must be from a given ligand position 

in a minimum conformation for the two to be considered intersecting. 
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Figure 4.3: Intersection cutoff parameter. Distance calculation between the center of each 

ligand in a path from the natural motion sampling (centers of each ligand shown as a blue 

sphere) and the center of a minimum ligand conformation (center shown as a red sphere). 

The intersection between the path and the minimum conformation is determined by the 

intersection threshold parameter. In this example, the distances range from 1.8 to 2.7Å, 

thus any intersection threshold parameter greater or equal to 1.8Å would yield an 

intersection. 

 

4.2.5.3 Minimum path length 

To remove any particularly short paths, we implemented a minimum path length 

parameter, a value provided by the user in angstroms (Figure 4.4). After a path is 

determined to pass between at least two conformational minimum conformations, the 

total length of the path is calculated. If the length is less than the minimum path length 

parameter, then the path is discarded. 
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Figure 4.4: Minimum path length. For a path (represented here only as blue spheres, the 

center of each ligand in the path) intersecting two more minimum conformations (shown 

in full representation, with centers shown with red spheres), the total distance from the 

first to the last intersected minimum is calculated. If this distance is less than the 

minimum path length parameter, the path is discarded. For this example, the distance 

between the two intersected minima is 1.3Å apart. Thus, a minimum path length 

parameter greater than 1.3Å would exclude this path from being recorded. 

 

4.2.5.4 Scan filtering 

As multiple normal modes are scanned for each conformational minimum, paths formed 

from a given minimum may be very similar, resulting in similar paths intersecting the 

same local minima.  Thus if two or more motions, sampled from the same minimum 

conformation, yield similar paths, we will only keep the one built from the lowest normal 

mode. 
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4.2.6 Combining multiple paths 

To illustrate guest association processes and possible binding pathways, individual 

minima-connecting paths will be combined to form a more complete and longer binding 

pathway (see Figures 4.8 – 4.11). A script was written that aids in determining 

combinations of relevant paths for the formation of binding pathways. This script 

prompts the user for minima of interest and returns information on paths involving those 

minima. The output is sorted by the potential energy of the path, and provides 

information such as maximum, minimum, and average potential energy of the natural 

motion paths, and the index of local energy minima that the path intersects. This allows 

the user to inspect paths that may possibly join to form a binding pathway, and quickly 

select paths of low potential energy. Note that high potential energy suggests that a 

normal mode scanning path may contain steric clashes or overly distorted structures. 

Although these paths are often not relevant, occasionally a rare and high potential energy 

pathway may be of interest. Thus, we do not explicitly exclude the high energy paths.  

A strategy that we found useful was to construct the pathway of unbinding. Any paths 

that linked a bound state conformation to an intermediate state conformation were used as 

the starting point for construction. These intermediate state conformations were then used 

to find paths leading to further unbound conformations. This process is repeated until 

there are no additional linking paths. 

4.2.7 Computational details 

The alanine dipeptide was parameterized using AMBER FF03 forcefield.80 The initial 

structure of the free cryptophane-E host was obtained from the Cambridge Structural 
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Database, ID SEDPOG.81 As only this experimental structure was available, all other 

structures were created manually. We created the sulfurous derivative, cryptophane-ES, 

using the cryptophane-E initial structure as a template and manually constructed the 

ligands using Avogadro82. The DREIDING force field was used to describe all complex 

structures with parameters assigned by the program Vdock, and partial charges computed 

with the program Vcharge with the VC/2004 parameter set.83–85 The solvation energy, W, 

is computed with the generalized Born model using the water dielectric constant of 80.0 

for the alanine dipeptide system and the tetrachloroethane dielectric constant of 8.42 for 

the complexes.86 For the cryptophane hosts with an open cavity, the dielectric cavity 

radius of each atom is set to the mean of the size of chlorine (~1.8 Å) and the atom’s van 

der Waals radius.87 All local energy conformations were energy-minimized by the 

conjugate gradient method and then the Newton-Raphson method until the energy 

gradient is < 10-3 kcal/mol/Å. Once the free cryptophane hosts and free guest molecules 

were fully constructed, we created the complex systems by combining each combination 

of host and guest and minimizing the structures using the aforementioned minimization 

methods. When running the Hopping Minima application, the alanine dipeptide required 

no filtering methods. RMSD tolerances of 0.2 and 0.3 Å and radians were used to explore 

conformational transitions of the alanine dipeptide. For the four complexes, the thinning 

cutoff was set to 1.5 Å, except for cryptophane-E in complex with trimethylammonium, 

where a value of 2.5 Å was used. The RMSD tolerance was set to 2.5 Å for all complex 

systems. All calculations were performed as single processes on an Intel Xeon 2.67GHz 

quad core processor computer using Ubuntu Linux 10.10. Each conformational search 
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run with Tork took about 10 minutes, with 10 to 15 runs performed in total on each 

complex system and at least 6 on each free host structure. All conformational minima 

were obtained for the alanine dipeptide after 3 Tork search runs. The free energy 

calculations took 6-8 hours for the 160-255 cryptophane-E host-guest complexes, 16 

hours for the 144-174 cryptophane-ES host-guest complexes, 4 hours for the 120 free 

cryptophane-E host conformations, and 6 hours for the 197 free cryptophane-ES host 

conformations. The alanine dipeptide and ligand free energies were calculated in less 

than one minute due to having few minimum conformations. RMSD-based identification 

of conformational transitions took less than 20 minutes to complete for all systems. Each 

manual path construction time for the complexes took an hour or less to complete. 

4.3 Results and Discussion 

Because alanine dipeptide has been used as a model system by many computational 

methods, we first apply the HM method to the system as an example to demonstrate the 

procedures of the method. Five consecutive conformational searches were performed on 

the alanine dipeptide, at which point the conformational search converged. Additional 

searches were performed on the identified minima to ensure that the conformational 

space was thoroughly sampled. The HM application was applied using the 16 

conformations that were found. Utilizing either RMSD calculation method, with no 

thinning of the minima, five unique conformational transitions were found for the system 

that connect two minimum states within 0.2 angstroms. Larger RMSD tolerance values 

revealed conformational transitions between additional minima. As seen in Figure 4.5, an 

RMSD tolerance value of 0.3 angstroms yielded two conformational transitions that were 
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combined to form a transition spanning 3 minima. This transition is driven by rotation 

around the psi and phi dihedral angles. The first motion primarily rotates the psi angle, 

while the second motion rotates the psi and phi angles in concert. These results 

demonstrate that for small single molecule systems, a single normal mode can accurately 

describe specific conformational transitions. 

 
Figure 4.5: Conformational transitions of the Alanine dipeptide. Two conformational 

transitions connect three local energy minimum conformations of the alanine dipeptide. 

The major dihedral angles of rotation are the phi and psi angles of the alanine backbone. 

The first motion primarily rotates the psi angle, while the second motion rotates the psi 

and phi angles in concert. 
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Table 4.1 shows the binding free energies, entropies, and mean energy components for 

the four cryptophane systems. We first computed the binding free energy on each system 

using the M2 method to validate the molecular mechanical force field parameters and 

partial charges model employed. For easier comparison, we separated the systems into 

two groups based on the guest molecules. The relative binding free energies, ΔΔG, are in 

a reasonable range when compared with experiments, although the absolute binding free 

energies are not as accurate as other reported values.68,88,89 All complexes are stabilized 

upon binding primarily by van der Waals interactions, as assessed experimentally with a 

neutral ligand.73 However, with the force field utilized for these systems, the 

cryptophane-ES system over stabilized the guest molecules through van der Waals 

interaction, resulting in a free energy calculation that did not perfectly match 

experiments. While the electrostatic interaction between the hosts and guests are 

significantly favorable, the desolvation penalty negates this impact. Because the free 

energies of only local minimum conformations are available to the HM method, the free 

energy barrier to binding cannot be known exactly. However, with multiple constructed 

binding pathways for a complex, one can analyze the free energies of each 

conformational minimum along the pathway to rule out unlikey paths that contain 

unfavorable conformational transitions. 
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Guest Host ΔGcal ΔΔGcal ΔGexp ΔΔGexp -TΔSconf ΔE ΔWGB ΔG*cal ΔΔG*cal kon 

Me3NH+ 

Cryp. E -8.5 0 -4.3 0 10.6 -27.5 9.1 2.4  76.6 

Cryp. ES -9.3 -0.8 -4.1 0.2 12.2 -43.3 22.3 14.2 11.8 2.32 x 10-3 

Me4N+ 

Cryp. E -9.5 0 -7.6 0 12.4 -30.3 8.8 8.9  7.2 

Cryp. ES -12.4 -2.9 -7.3 0.3 11.9 -41.7 17.9 27.7 18.8 2.88 x 10-3 

Table 4.1: Free energies and mean energies for cryptophane-cation systems. The 

calculated binding free energy (ΔGcal) and experimental binding free energy (ΔGexp) are 

presented for comparison, along with relative binding free energies for each (ΔΔG). The 

calculated entropy term (-TΔSconf), contribution to solvation free energy (ΔWGB), and 

mean potential energy contributions (ΔE) for electrostatics, van der Waals, and bonded 

terms. The calculated binding free energy (ΔG*cal), difference in the binding free energy 

between hosts for each guest molecule (ΔΔG*cal), and experimental association constant 

(kon) from reference 72 are presented.  All data are in units of kcal/mol, except for the 

association constant (units of M-1s-1). 

 

The results of the conformational search of free hosts, cryptophane-E and cryptophane-

ES, were analyzed for trends in gating, flexibility, and the degree each host exhibited 

structural preorganization for binding. Identical conformational search procedures 

yielded more conformational minima for cryptophane-ES relative to cryptophane-E. 

However, cryptophane-E had more conformations in the low energy states relative to its 

global minimum, while cryptophane-ES had higher population of conformations in the 
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high energy states. For example, cryptophane-E had 30 out of 120 total conformations 

within 10RT (where R is the gas constant, T is the temperature, 300K), or ~6 kcal/mol, of 

its global minimum conformation. Cryptophane-ES had 14 out of 197 conformations 

within 10RT. As seen in Figure 4.6, cryptophane-E displays a distinctly more open cavity 

structure relative to cryptophane-ES. Cryptophane-E conformations also show a higher 

propensity for gating arms to be in the “open” position, while the gating arms of 

cryptophane-ES tend to be in the closed position. Cryptophane-ES does exhibit these 

“open” conformations, but they are higher energy transition state structures to binding. 

The closed arm conformations from cryptophane-ES may be due to the larger radius of 

the sulfur atom than the oxygen atom, resulting in stronger intra-molecular interactions 

between the two arms. The distribution of partial charges is also different in cryptophane-

ES and cryptophane-E, which contributes further to the overall shape of the cavity. 
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Figure 4.6: Structural comparison of cryptophane-E and cryptophane-ES. The global 

energy minimum conformation of cryptophane-E (left, green) has distinctly open gating 

arms and open cavity while those of cryptophane-ES (right, cyan) have a more compact 

structure with closed gating arms. 

 

4.3.1 Analysis of the binding pathways 

Upon analysis of the binding pathways, we found that the cryptophane-E host was 

preorganized for binding and had little structural movement during the course of the 

binding process. Cryptophane-ES, unexpectedly and on the contrary, underwent large 

structural changes to accommodate the entry of the ligand to the interior of the host 

structure. The consistency in the entropic penalties matched these flexibility trends, 

staying constant for cryptophane-E and fluctuating for cryptophane-ES before dropping 

for both systems in the final step of the binding process. Interestingly, the guest molecule 

quickly lost configurational entropy, mainly from translation/rotation entropy loss while 
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approaching the host surface. However, it did not fully gain favorable intermolecular 

attractions before reaching the final bound states, resulting in unfavorable free energy 

intermediates (Figure 4.7).  

 

 

 

Figure 4.7: Free energy distributions for pathways developed for the cryptophane-cation 

systems. Energetic breakdown for the lowest free energy barrier binding pathways 

developed for the four test systems. All values are calculated relative to a reference 

energy (point 0), which is calculated as the free energy of the host and ligand when not 

interacting. 
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In the following sections we discuss the results of the four host-guest systems in more 

detail. While many high potential energy and high free energy pathways can be sampled 

for each system, only those with reasonable free energy barriers are discussed and 

presented. 

4.3.1.1 Trimethylammonium and Cryptophane-E  

Two low free energy barrier binding pathways were found for the complex of 

cryptophane-E with the trimethylammonium guest (Figure 4.8). Of the four complexes, 

this system exhibited the lowest free energy transition state and the most favorable 

enthalpy upon binding. Rather than approaching the host directly from free space, the 

pathways had ligands that first associated with the surface of the host molecule, then 

approached the window from the surface. The initial contacts provide intermolecular 

attractions. However, these interactions are not large enough to overcome the 

configurational entropy loss. (Figure 4.7a). 
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Figure 4.8: Hopping Minima resulting binding pathway for Cryptophane-E with 

Trimethylammonium guest. Four natural motion paths, represented by yellow traces, 

connect five distinct minimum states, with free energies of 664.2, 664.3, 663.6, 663.6, 

and 654.7 kcal/mol, in order of decreasing distance from the center of the host. 

 

4.3.1.2 Trimethylammonium and Cryptophane-ES 

Three binding pathways were sampled for the complex of cryptophane-ES with 

trimethylammonium.(Figure 4.8) The three pathways sampled binding processes through 

each of the three host windows and approached the binding site from free space. While 

the conformational search found guests on the host surface, our method did not connect 

any pathways from these local energy minima. The gating arms were in the closed 

position when the guest approached the surface, therefore the guest may need to return to 
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free space and rebind to induce gate opening. Positive enthalpies were observed upon 

association, which dropped dramatically upon binding (Figure 4.7b). The intermediate 

state conformations, specifically those conformations with ligands near the gating arms of 

the host, suffered van der Waals repulsions and/or structural perturbations that resulted in 

penalties in the calculated enthalpy and free energy. 

 

Figure 4.9: Hopping Minima resulting binding pathway for Cryptophane-ES with 

Trimethylammonium guest. Three natural motion paths, represented by yellow traces, 

connect six distinct minimum states, with free energies of 652.5, 656.3, 640.4, and 633.2 

kcal/mol, in order of decreasing distance from the host window. 
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4.3.1.3 Tetramethylammonium and Cryptophane-E 

One association pathway was determined for cryptophane-E with tetramethylammonium, 

involving a ligand path to the window of the host starting from the surface of the host 

molecule (Figure 4.10). The pathway had a negative enthalpy upon association with 

significant entropic compensation (Figure 4.7c). The last step of the binding process, 

connecting the tetramethylammonium in the window to the center of the host cavity, was 

not found. Because the guest has a larger size that limits its flexibility while in the 

window and final bound state, the trajectories sampled following the normal mode 

motions show small ranges of vibration. Therefore, the Hopping Minima method could 

not connect the two minima using the parameters applied for building other paths. 

However, the final step is not complicated as it only has one direction to move forward; 

thus it does not affect the illustration of the binding pathway.  
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Figure 4.10: Hopping Minima resulting association pathway for Cryptophane-E with 

Tetramethylammonium guest. Three natural motion paths, represented by yellow traces, 

connect four distinct minimum states, with free energies of 698.5, 699.1, 702.6 and 697.9 

kcal/mol, in order of decreasing distance from the host window. The lowest free energy 

bound state ligand conformation, with a value of 685.8 kcal/mol, is included to visualize 

free energy trends. 

 

4.3.1.4 Tetramethylammonium and Cryptophane-ES 

Two binding pathways were generated for the complex of cryptophane-ES with the 

tetramethylammonium guest. Both sampled pathways approached the binding site from 

free space (Figure 4.11). Analysis of the minima involved in these paths revealed free 

energy values for the intermediate state conformations that deviate from that expected 

based on experimental free energy barrier values. The results suggest that correctly 
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computing energies for intermediate states may require more accurate force field 

parameters than those in the free and bound conformations. Our results again show 

positive changes in enthalpies and free energies for the intermediate conformations were 

due to steric clashes resulting in van der Waals repulsion and unfavorable structural 

perturbation. High repulsion (>40 kcal/mol) was observed in several minima hopping 

paths that approached the host window. The repulsive potentials were more pronounced 

in this system than in cryptophane-ES with trimethylammonium due to the increased size 

of the ligand in this system.  

 

Figure 4.11: Hopping Minima resulting association pathway for Cryptophane-ES with 

Tetramethylammonium guest. A single natural motion path, represented by a yellow 

trace, connects three distinct minimum states, with free energies of 687.66, 695.99, and 

701.74 kcal/mol, in order of decreasing distance from host window. The lowest free 

energy bound state ligand conformation is included to visualize free energy trends. 
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4.4 Comments 

The alanine dipeptide test system demonstrated the efficacy and speed of the HM 

method. After parameterization of the system, only a few minutes were required to carry 

out all required calculations, and multiple transitions between several different 

conformations were found. Thus, the HM method may be an attractive and competitive 

option for quickly exploring conformational transitions in single molecules without the 

need for time-consuming dynamics or the need to specify starting and ending 

conformational states. 

The results of modeling binding pathways of the cryptophane-guest systems are 

promising, provide insight into molecular recognition, and show potential for use in a 

wide range of applications, such as designing drug carriers and inhibitors with preferred 

binding kinetics. Actual guest binding processes can take milliseconds to seconds; 

therefore, applying classical molecular dynamics simulations to sample binding pathways 

can be very expensive computationally. As with all methods that rely on molecular 

mechanical force fields, our method is dependent on the force field for its accuracy. 

Although we validated our force field parameters by reproducing experimental binding 

affinities using the M2 free energy calculation method, the free energy barriers found 

from Hopping Minima, particularly for the cryptophane-ES systems, show the sensitivity 

of the method to the choice of force field parameters. Our models reveal that when a 

guest is passing the window of a host, the intermediate states have very small spatial 

restrictions, and small errors in force field parameters may result in a local minimum with 

unrealistically large computed free energy. 
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While the AMBER FF03 molecular mechanical force field, DREIDING force field and 

VC/2004 partial charge models were utilized for the series of test systems, any molecular 

mechanical model can be employed.90–94 Other implicit solvent models, in addition to the 

generalized Born model, can be used as well. 

Thorough conformational search is a key to successfully finding binding pathways and 

building binding free energy landscapes. This study used the Tork conformational search 

tool which has advantages in efficiently finding conformations for chemical hosts with 

macro-cyclic rings. Nevertheless, any conformational search method used together with a 

duplicate conformation filtering algorithm that accounts for symmetry can be used. For 

example, other conformational search methods, such as the basin-hopping approach or 

commercial packages also can be used.95–97 The method can also be scaled up, with 

regards to system size. For larger molecular systems, such as protein-ligand complexes, 

significant speed increases can be obtained by fixing regions of the protein that are not 

critical to ligand binding while allowing the rest of the atoms to be flexible. 

For the cryptophane host-guest systems, our experiments were setup such that the RMSD 

intersection tests between conformational minima and natural motions used only the 

distance between the center nitrogen atom of the ligands. This measurement works 

efficiently for small molecules with symmetry, such as the guests in this work. For more 

complicated ligand structures, more atoms should be included in the RMSD selection. 

Additionally, host atoms could be added to the selection to capture conformational 

transitions that occur during ligand translation. Because the Hopping Minima method is 

based on connecting distinct local energy minima, occasionally binding processes from 
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the free to intermediate bound states are sampled, but a complete binding pathway to the 

final bound state could not be found. Molecular dynamics simulations could be employed 

to sample the final binding event for the route to bridge the gap. Molecular dynamics or 

existing methods for transition path samplings, such as the RPHSA, string and TPS 

methods, can be further applied to the distinct local energy minima found in a binding 

pathway to smooth the transitions between each energy state. If one is interested in 

applying steered or targeted molecular dynamics in explicit solvent, the binding pathway 

could be used as a physically based reaction coordinate, thus avoiding the potential for 

introducing unnatural bias to the simulation. 
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4.5 Conclusions 

The presented method allows for the computational modeling of molecular transitions as 

well as binding pathways for host-guest systems. Investigating binding pathways helps 

elucidate fundamental mechanisms, including allostery, conformational changes, gated 

control associations, and can guide molecular design. Our study also illustrated that the 

gating effects and molecular distortion contribute mainly to slow association rate in guest 

binding to the cryptophane-ES system. Our analysis reveals the balance or imbalance 

between enthalpy and configuration entropy changes during a ligand binding process. 

The method relies on multiple filters and analysis procedures, and thorough minimum 

conformational search of a host-guest complex. The method has a distinct computational 

cost advantage over existing methods. Calculations performed on the alanine dipeptide 

provided evidence of the efficacy of the method to capture conformational transitions. 

Using four cryptophane complexes as example systems, the method demonstrated the 

effectiveness of sampling multiple binding pathways for each system and deepened our 

understanding of cryptophane-guest associations. 
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Chapter 5: Differentiating Receptor Subtype Specificity in Proteasome Inhibitors 

5.1 Introduction  

The proteasome is a cellular supramolecular catalytic protein complex that plays an 

essential role in cellular proteolysis, maintaining homeostasis and controlling signaling 

pathways.1–4 The fully assembled constitutive 26S proteasome is characterized by a 

barrel-like catalytic 20S core particle (20S CP) capped at both ends by regulatory 

domains, the 19S regulatory particles (19S RP), that control the entrance of proteins to 

the catalytic sites.5 This complex segregation of proteolytic enzymes from the cytosolic 

environment ensures orderly, specific protein degradation which is critical to normal 

cellular function.2 Disruption of the proteasome regulation pathway is implicated in 

several forms of cancer as well as the pathogenesis of human diseases.6,7 Targeting the 

proteasome of malignant or diseased cells with designed inhibitors has been revealed as a 

successful avenue for the treatment of specific types of cancer, such as multiple 

myeloma.3,8–10 Inhibition of the proteasome active sites blocks protein degradation, 

inducing apoptosis, particularly in tumor cells.11 

Structurally, the 20S CP consists of four homologous rings of proteins with the domain 

sequence α7β7β7α7.
1,12 The outer α rings are composed of seven non-catalytic α domains, 

while the inner β rings each contain three catalytic domains (β1, β2, β5) and four non-

catalytic domains (β3, β4, β6, β7). In the mature 26S proteasome, each catalytic domain 

has an active nucelophilic N-terminal threonine residue that is responsible for peptide 

bond hydrolysis.13 However, each catalytic domain has unique activity, specifically 

caspase-like (β1), trypsin-like (β2), and chymotrypsin-like (β5) activities.14,15 The 



137 

 

specificity of the domains is the result of molecular recognition processes brought about 

by subtly different chemical environments in the binding pocket surrounding the active 

threonine residues in each domain. Understanding the specificity of novel proteasome 

inhibitors to each of the receptor subtypes can predict their potential to block protein 

degradation, and thus promote apoptosis.11 

A class of irreversible proteasome inhibitors, known as the syrbactins, has been 

discovered and researched in recent years.9,16 This class of inhibitors is characterized by a 

molecular structure derived from the natural products syringolin A and glidobactin A. 

One such derivative, referred to here as TIR-199 (Figure 5.1), has shown promise as a 

future cancer therapeutic drug. 

 

Figure 5.1. Two dimensional structure of the syrbactin derivative, TIR-199. The twelve-

membered ring is characteristic of syrbactin molecules. The highlighted double bond is 

involved in covalent bonding to the N-terminal threonine of a proteasome active site. 
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In this study, a computational affinity assessment of the syrbactin-derivative proteasome 

inhibitor TIR-199 covalently bound to each of the three receptor subtypes is presented. 

Energetic and structural analysis is performed to elucidate the primary environmental 

differences between the receptor subtypes that affect the subtype specificity of the drug.  

5.2 Method 

5.2.1 Overview 

The human proteasome and syrbactin proteasome inhibitor TIR-199 were modeled 

computationally. The ligand TIR-199 covalently binds in vivo via a Michael addition 

reaction between the outer syrbactin ring double bond (Figure 5.1) and the N-terminal 

threonine hydroxyl oxygen of a proteasome active site. As such, the ligand was modeled 

and simulated in the bound state. Covalent docking of the inhibitor in each of the three 

binding pockets was performed to explore the conformational states of the covalent 

complex. Docking poses were used as starting conformations for molecular dynamics 

simulations.17 Energetic decomposition of MMGSA interaction energies was then 

performed on the resulting trajectories, as well as an analysis of the conformational 

stability of the ligand. 

5.2.2 Homology Modeling 

Homology models of the human proteasome were created, using known mammalian 

crystal structures as the reference coordinates.1 The sequence of each β-subtype protein 

was provided as input to the online SWISS-MODEL homology modeling software, along 

with the reference PDB structure and appropriate chain identifier.18 The bovine 
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proteasome crystal structure (PDB id: 1IRU) was selected for use as the reference 

structure due to its sequence similarity (>= 99.6%) to that of Homo sapiens. 

5.2.3 Structure Preparation  

Molecular recognition takes place within a distinct binding pocket at each catalytic site in 

the proteasome, which includes both the active catalytic enzyme as well as the domain 

directly adjacent to the active site (Figure 5.2). Therefore, three binding pocket PDB 

structures were constructed from the homology models for use in all subsequent 

calculations, simulations, and analyses: caspase-like binding pocket (β1 and β2), trypsin-

like binding pocket (β2 and β3), and chymotrypsin-like binding pocket (β5 and β6).  
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Figure 5.2. A proteasome β ring taken from PDB entry 2ZCY.9,19 The catalytic active 

sites are shown with a covalently bound syringolin A ligand. 

 

Using the crystal structure coordinates of the primary syrbactin ring of syringolin A from 

PDB entry 2ZCY as a starting point, the structure of TIR-199 was constructed manually 

using the Avogadro molecular modeling software.9,19 All modeling and simulations 
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procedures were performed on the ligand in the bound state. Modeling of this covalent 

system is complicated by the fact that separate forcefields must be used for the protein 

and ligand, and subsequently merged into a single system. To accommodate this merging 

process, the structure of the syrbactin ligand was constructed with a lone attached 

threonine oxygen acting as a placeholder for constructing the final bound-state complex. 

5.2.4 Docking 

Covalent docking of the ligand TIR-199 to the three distinct proteasome binding pockets 

was performed using AutoDock 4.2.20 The ligand was prepared as an AutoDock PDBQT 

formatted file using the AutoDockTools graphical interface. The three prepared binding 

pockets were converted to PDBQT files, and the grid and docking parameter files were 

generated using AutoDockTools. 

Modifications were then made to the parameter files, ligand structure, and protein 

structures to accommodate covalent docking sessions. The ligand structure file was 

modified, replacing the threonine oxygen placeholder atom attached to the syrbactin ring 

with a special anchoring “Z” type atom. Covalent anchoring is achieved with a potential 

well that only affects the Z-type atom, funneling this anchor atom into the zero-point 

energy at the well minimum. 
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To the parameter files, a “map” command was added to generate and include the special 

Z atom type potential map in the docking session. For example, the grid and dock 

parameter files for the caspase-like binding pocket were modified from: 

map Caspase.C.map                  # atom-specific affinity map 

map Caspase.HD.map                 # atom-specific affinity map 

map Caspase.OA.map                 # atom-specific affinity map 

map Caspase.N.map                  # atom-specific affinity map 

to: 

map Caspase.C.map                  # atom-specific affinity map 

map Caspase.HD.map                 # atom-specific affinity map 

map Caspase.OA.map                 # atom-specific affinity map 

map Caspase.N.map                  # atom-specific affinity map 

map Caspase.Z.map                  # atom-specific affinity map 

The “ligand_type” command was modified to include the Z atom by appending the letter 

Z to the command: 

ligand_types C HD OA N Z 

A “covalentmap” command was added to the grid parameter file to define the potential 

well properties and potential minimum position for anchoring the Z atom of the ligand: 

covalentmap 13.0 1000.0 18.6940 15.9240 58.8120 

The first two terms of the command define the potential well half-width and maximum 

potential energy outside the well. These were configured to achieve a smooth energetic 

transition from the edges of the docking region to the well minimum at the anchor point. 

The well minimum anchor position was set as the binding site coordinate of the N-

terminal threonine’s hydroxyl oxygen. To prevent steric clashes in the docking session 

between the anchor atom on the ligand and the actual hydroxyl group on the N-terminal 

threonine, the N-terminal threonine hydroxyl group was removed from the binding 

pocket structure files. These modifications have the effect of anchoring the ligand to the 
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appropriate location in the active site in each binding pocket while the rest of the 

molecule can freely explore the surrounding chemical environment (Figure 5.3).  

 

Figure 5.3. Radial potential generated within the rectangular docking bounds by the 

AutoDock “covalentmap” command. A syrbactin ligand is depicted with the Z-type 

anchoring atom positioned at the potential well zero-point energy minimum. The 

potential energy increases radially from the minimum value of 0 kcal/mol (blue) to the 

maximum value of 1000 kcal/mol (red). 

 

Docking sessions were run with a population size of 150, with 2.5e7 maximum energy 

evaluations, and 2.7e4 maximum generations. The three lowest energy bound-state 

complex conformations for each binding pocket were exported to PDB format. 

5.2.5 Molecular Mechanical System Preparation 

The ligand structure, with the placeholder oxygen attached to the syrbactin ring, was 

parameterized with the AMBER GAFF force field using the ANTECHAMBER, 

PARMCHK, and TLeAP software utilities in the AMBER10 software package.21–23 The 

threonine oxygen placeholder bound to the prepared ligand structure was temporarily 



144 

 

parameterized as a hydroxyl functional group for later modification upon covalent 

attachment to each receptor structure. Each of the three binding pocket PDB structures 

was parameterized with the AMBER FF99SB protein force field using the TLeAP 

software. The protein structures were minimized to ensure a stable starting conformation. 

The hydrogen atoms were first minimized with the rest of the protein held fixed, followed 

by a minimization of the side chain atoms. 

In order to form a covalent bond between the parameterized ligand and protein structures, 

an AMBER force field modification file, or FRCMOD, was created to bridge the bonded 

parameter terms between the GAFF (ligand) and FF99SB (protein) atom types. The 

parameters for the bond, angle, and dihedral terms were taken from the GAFF force field: 

BOND 

CT-oh     648.00   1.214  

 

ANGLE 

n -c3-c2   66.341     111.760 

c3-oh-CT   62.1       113.935 

CT-CT-oh   50.0       108.836 

H1-CT-oh   50.0       110.856 

 

DIHE 

c3-oh-CT-H1       1    0.167        29.480           1.000 

c3-oh-CT-CT       1    0.167       -88.000           3.000 

These terms create bond, angle, and torsion parameters that bridge the ligand structure 

and the N-terminal threonine residue. Ligand atom types are notated in lower case while 

the protein atoms are uppercase. This FRCMOD file was loaded into the XLeAP visual 

parameterization software, along with the parameterized structures of the ligand and one 

of each of the three binding pockets. The N-terminal threonine hydroxyl group was 

deleted manually from the loaded structures, and the hydrogen was deleted from the 

temporary hydroxyl group on the syrbactin ring. A bond was then manually drawn 
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between the syrbactin-ring oxygen (atom type oh) and the N-terminal threonine side 

chain carbon atom (atom type CT) of each binding site to establish a covalent bond. The 

generated topologies were used in conjunction with bound-state complex conformations 

generated by the docking procedures to define nine total systems: three conformational 

states for each of the three binding pocket complexes. No explicit water molecules were 

added to the system. Instead, the generalized Born implicit water model was used for all 

minimization and simulation procedures. 

The nine systems were initially prepared for molecular dynamics simulations through a 

set of minimization procedures with the NAMD2 simulation software.24,25 The first 

minimization was performed with an entirely fixed protein structure, allowing the ligand 

to adjust its conformation relative to the receptor. This was necessary because the 

conformations of the complexes were defined according to the scoring function of the 

docking software, and needed to be minimized according to the molecular mechanical 

potential energy function. A second minimization was performed with the backbone 

atoms of the proteins constrained, allowing mutual side chain and ligand conformational 

adjustment. A final short minimization was run with the system unconstrained to ensure 

no backbone atoms were in unfavorable positions. 

Langevin dynamics was used to simulate all systems, and was selected to control 

temperature as well as impart random solvent jostling to complement the generalized 

Born electrostatic solvation model. A series of three equilibration simulations were 

performed on each of the nine systems. Ten thousand simulation steps were performed at 

100K, 200K, and 298K. Production simulations of each system were performed for 10 
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nanoseconds simulation time at 298K. Computations were executed on the XSEDE 

national super computer system. For all simulations, a selection of protein atoms within 

10Å of the ligand’s initial positions defined the unconstrained, mobile region of the 

simulation, while the rest of the protein structure was held fixed. 

5.2.6 Energetic Analysis with MMGBSA 

Trajectories of the molecular dynamics simulations were subject to molecular 

mechanics/generalized Born/surface area (MMGBSA) energetic analysis.23,26 The last 5 

nanoseconds of each simulation trajectory were isolated and converted to AMBER 

MDCRD formatted trajectory files. Using a self-authored analysis automation script, 

MMGBSA-Decomp.py, the MMGBSA interaction energy was calculated for every frame 

in each trajectory, and the energy decomposed into per-residue interaction energies 

between each binding pocket residue and the ligand. The script separates the per-residue 

interaction into polar interactions, combining Coulombic and generalized Born 

interaction energies, and non-polar interactions, combining van der Waals and non-polar 

solvation solvent-accessible surface area (SASA) interaction energies. 

5.3 Results 

5.3.1 Structural Analysis 

Simulation of the caspase-like binding receptor with the bound TIR-199 ligand revealed 

two stable ligand conformations. Steric complementarity and non-polar interactions 

stabilized the tail region of the ligand in the lower cleft of the binding pocket (Figure 5.4, 

left). A folded ligand conformation, characterized by the tail region folded back towards 

the syrbactin ring, was sampled in all simulations (Figure 5.4, right). The root mean 
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square deviations (RMSD) of the trajectories, relative to their starting positions, were 

0.736Å±0.235, 0.634Å±0.367, and 0.768Å±0.237. This analysis revealed that the ligand 

moved away from its initial conformation at the beginning of the simulation. It also 

confirmed that the tail region was mobile and alternated between the aforementioned 

conformations throughout each of the simulations.  

  

Figure 5.4. Most commonly sampled conformations of TIR-199 in the caspase-like 

receptor. The protein receptor is colored according to the partial charge distribution. 

 

The simulation of the ligand in the trypsin-like receptor resulted in three similar 

trajectories. The tail region in all simulations was highly mobile and interacted 

temporarily with many regions in the binding pocket. The presence of charged residues 

around the entire binding site prevented a high residency in any one region. A deep 

pocket extends behind the binding site of this receptor. However, the pocket contains 

charged and polar residues, preventing favorable interaction with the hydrophobic tail 

region of the ligand. The large size and polar nature of the pocket suggests the pocket 

may be occupied by water molecules in vivo and in situ, rendering the pocket inaccessible 
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to the hydrophobic tail. No interaction was observed between the tail region of the ligand 

and this deep, polar pocket in any of the three simulations. RMSD calculations showed 

that one starting conformation resulted in high mobility of the free portions of the ligand 

with a value of 0.831Å±0.296. The other two starting conformations resulted in RMSD 

values of 0.611Å±0.282 and 0.680Å±0.396. On average, the coordinates of the ligand in 

the trypsin-like receptor were only slightly more stable on average than the caspase-like 

receptor. 

The trajectories resulting from the ligand-chymotrypsin-like receptor complex revealed a 

uniquely stable conformational state. The chymotrypsin-like receptor contains a deep 

pocket behind the binding site. The initial conformation with the highest predicted 

affinity from the docking runs was defined by the ligand’s hydrophobic tail extending 

into this pocket (Figure 5.5). This interaction stabilized the ligand conformation for the 

majority of the simulation, and resulted in the smallest RMSD value (0.397Å±0.370) of 

all simulations performed. The large size and few polar interaction sites that exist in the 

deep pocket suggest that, similar to the trypsin-like receptor, water molecules may inhabit 

the region prior to binding. However, the chymotrypsin-like deep pocket contains a 

channel through the rear of the pocket to the bulk solution that is adequately sized to 

accommodate the exit of water molecules, potentially facilitating desolvation. 
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Figure 5.5. Lowest energy docked and simulated conformation of TIR-199 in the 

chymotrypsin-like receptor. The hydrophobic tail region of the TIR-199 ligand extended 

deep into the binding pocket, and remained stable for the majority of the simulation. The 

protein receptor is colored according to the partial charge distribution. 

 

The other starting conformations for the chymotrypsin-like receptor resulted in 

simulation trajectories with highly mobile ligand tail regions, similar to the caspase-like 

binding pocket simulation results. The tail regions transiently explored many 

conformations, interacting with the superficial regions of the receptor. The tail region 

most commonly extended to and interacted with the hydrophobic clefts (Figure 5.6). In 

several cases, the hydrophobic tail region extended into the solvent, and then folded over 

itself into a globular structure. The RMSD values for these two simulations were 
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0.583Å±0.220 and 0.587Å±0.284. On average, the coordinates of the ligand in this 

pocket were significantly more stable than either of the two binding pockets. 

  

Figure 5.6. Stable alternate conformational states of TIR-199 in the chymotrypsin-like 

receptor. The ligand interacts with hydrophobic clefts. The protein receptor is colored 

according to the partial charge distribution 

 

5.3.2 Energetic Analysis 

The average affinity of TIR-199 in the caspase-like, trypsin-like, and chymotrypsin-like 

binding pockets is presented in Figure 5.7. The simulation with the most favorable 

average intermolecular interaction for each receptor is presented in Figure 5.8, 

demonstrating the sensitivity of simulation results to the initial conformation. 
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Figure 5.7. Average MMGBSA interaction between the ligand TIR-199 and each 

receptor. The values for each receptor are averaged across each of three molecular 

dynamics simulations with unique ligand starting conformations.  

 

 

Figure 5.8. MMGBSA interaction between the ligand TIR-199 and receptors, averaged 

over the simulation trajectory with the most favorable interaction.  
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The polar contribution to the interaction was consistent across the three receptors, with 

little variance in the polar affinity between each of the three conformational states of each 

binding pocket. The polar interactions in these complexes were decomposed into per-

residue interactions. This revealed that polar interactions occur primarily between the 

receptors and the syrbactin ring of the ligand. The primary protein residues of polar 

interaction were amino acids 16 – 35 and 44 – 56 in each of the mature catalytic subunits. 

The consistency of the interactions is due to the polar complementarity of the ring with 

the receptor, which is held fixed in the favorable position by the covalent bond. The 

differentiating interaction between the three binding pockets was thus the non-polar 

affinity, occurring between the receptor and the flexible non-polar tail region of the 

ligand.  

The affinity of the ligand to the trypsin-like binding pocket was low relative to other 

receptor subtypes due to a lack of non-polar stabilization of the tail region. As mentioned 

previously in the structural analysis, the hydrophobic tail region was highly mobile, 

primarily interacting with residues 127 – 131 and 166 – 170 of the β2 catalytic subunit, as 

well as residues 94 – 106, 122 – 131 of the neighboring β3 subunit. 

The caspase-like receptor stabilized the tail region of the ligand in the clefts of the 

binding site. This led to a significantly higher affinity relative to the trypsin-like binding 

site. The ligand interacted with residues 125 – 135 and residues 112 – 120 of the 

neighboring catalytic β2 subunit (Figure 5.4). The residues of interaction in this 

neighboring catalytic subunit are very close to the β2 active site N-terminal threonine. 
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The ligand conformation in the most stable and highest-affinity simulation had a high 

residency time with the hydrophobic tail of the ligand nearest to the β2 active site. These 

interactions may affect the association or binding process of another ligand molecule to 

the trypsin-like binding site due to conformational perturbation of the trypsin-like active 

site by the long tail-like region of the ligand.  

The high non-polar affinity of TIR-199 to the chymotrypsin-like receptor is brought 

about through complementarity between the hydrophobic hydrocarbon tail of the ligand 

and a deep pocket behind the binding site (Figure 5.5). The primary protein residues of 

non-polar interaction in this pocket were amino acids 121 – 146 of the neighboring 

mature β6 subunit. This interaction may act as a mechanism of stabilization for the initial 

encounter and subsequent covalent binding process. Of the three initial ligand 

conformations, a unique rotation after the peptide bond was required for the ligand to 

extend into the deep pocket. This also had the effect of lowering the internal energy of 

the ligand by 2.5 - 3 kcal/mol relative to the other starting conformations. These 

advantages suggest a non-covalent preference to the chymotrypsin-like receptor. The 

other starting conformations for the chymotrypsin-like binding pocket resulted in affinity 

similar to that of the caspase-like receptor, primarily interacting with residues 92 – 109, 

residues of the binding pocket clefts, in the neighboring β6 subunit (Figure 5.6).    

Future modification to the TIR-199 structure for increased stability and affinity may 

include functional modification to the hydrophobic tail region of the ligand. Due to the 

presence of polar interaction sites in the binding pocket of all receptor subtypes, polar 

functionalization near the end of the tail could provide further stabilization through 
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hydrogen bonding or electrostatic interaction with surrounding polar and charged 

residues. In particular, this could dramatically improve conformational stability and 

affinity to the trypsin-like receptor. However, this could potentially disrupt the uniquely 

favorable interaction of the tail region with the deep pocket of the chymotrypsin-like 

receptor, of affect other pharmacologically relevant phenomena. 

5.4 Conclusions 

The affinity of the syrbactin-derivative TIR-199 was assessed in the bound state of each 

of the three catalytic proteasome receptor subtypes. A distinct energetic and structural 

preference was found for the chymotrypsin-like receptor. The deep pocket behind the 

binding site of the chymotrypsin-like receptor led to exceptionally high affinity and 

conformational stability throughout the simulated trajectory when starting in this 

conformation. When bound to the trypsin-like and caspase-like receptors, the ligand had 

low structural stability. The polar residues surrounding the active site of the trypsin-like 

receptor energetically penalized the ligand in this receptor relative to the caspase-like 

receptor. Thus, our model suggests a distinct preference to the chymotrypsin-like 

subtype, and to a lesser degree the caspase-like receptor subtype, of the human 

proteasome. Inhibition of the chymotrypsin-like receptor has traditionally been the target 

of inhibition for drug development due to its ability to substantially reduce proteolytic 

activity in eukaryotic proteasomes. However, simultaneous inhibition of the 

chymotrypsin-like and caspase-like receptors is required to inhibit proteolytic activity by 

greater than 50%.11 Thus our computational procedure predicts appropriate capacity for 

inhibitory action on the human proteasome. 
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Chapter 6: Molecular Simulation, Modeling, and Analysis Software Documentation 

The original software introduced in Chapters 2-4 are here documented and discussed in 

technical detail. Both the operation and programmatic composition of the software are 

defined. In addition, modeling and analysis software that automate tedious or time 

consuming tasks are presented. 

6.1 GeomBD 

6.1.1 Overview 

GeomBD is a software package for simulating coarse grain (CG) Brownian dynamics 

(BD) of a small substrate molecule in a spatially organized biomolecular environment. It 

simulates thousands of replicate small molecule diffusion pathways, in parallel, and 

calculates the probability of association between the small substrate molecule and one or 

more target molecular binding sites. In GeomBD simulations, the biomolecular 

environment is held fixed in space at all times, while the substrate molecule diffuses 

freely as rigid bodies throughout the environment. The software was designed to analyze 

the efficiency of intermediate substrate transfer between enzymes in spatially organized 

engineered bioreactor systems, but is generally applicable to the investigation of 

biological systems. 

The software is compatible with POSIX compliant operating systems, such as Linux, 

Mac OS X, and BSD. The code is targeted for compilation with the Intel C++ Compiler, 

but can also be compiled with the GNU compiler collection (GCC) with the CilkPlus 

extension.1 
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6.1.2 Usage 

The execution of a GeomBD simulation requires molecular structure files and an input 

file that dictates the parameters of the simulation. A GeomBD molecular structure file 

contains a description of the particles in a single molecule. Each particle in a molecule is 

described in terms of the position, charge, radius, and mass. The structural description 

allows for complex multi-particle rigid body structures that are subject to translational 

and rotational diffusion and intermolecular forces. Flexibility in the structural description 

allows for complex multi-particle structural descriptions as well as single particles with 

embedded charge distributions. A GeomBD input file specifies simulation parameters, 

such as temperature of the system and solvent viscosity, and computational parameters, 

such as the number of threads to utilize for parallel computing. In addition, the input file 

imports molecular structure files into the simulation system and provides a set of 

commands to modify the coordinates of each imported molecule for simulation system 

setup. 

6.1.2.1 Structure preparation 

GeomBD contains two utilities for creating CG protein and DNA structures from all-

atom representations of molecules. The protein CG utility, CGProtein, and the DNA CG 

utility, CGDNA, both accept protein data bank (PDB) file formatted input on the 

command line interface, given the “-i” flag. The output is printed to STDOUT and can be 

routed to an output file: 

cgProtein –i Protein.pdb > Protein_CG.gbd 

cgDNA –i DNA.pdb > DNA_CG.gbd 
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The CG structure that is created by these utilities is a format specific to the GeomBD 

software package. It is similar to the PDB file format, but is more flexible and contains 

additional fields for the charge, radius, and mass of each CG particle. The format is 

insensitive to whitespace, and allows for flexible numerical precision in the values 

specified. 

While utilities are provided to generate files in the GeomBD structure format, small 

molecule structures must be created manually. The format is simple enough that a 

structure can easily be constructed by hand. For the computational experiments outlined 

in Chapter 2, hydrogen peroxide was modeled as a single neutral particle. The 

corresponding GeomBD structure file contained a single line: 

particle   0.0 0.0 0.0  0.0  2.5  34.0 

The string “particle” defines an atom or CG bead. The three numbers that follow specify 

the Cartesian X, Y, and Z coordinates. The three values that follow the coordinates are 

the charge, radius, and mass respectively. All spatial units are specified in Angstroms, 

charge units in electron charges, and mass in AMU. 

With the addition of rigid body partial charge embedding to the GeomBD package, the 

simulations in Chapter 3 included additional lines for the positions of the partial charges 

within the CG sphere: 

particle    0.000  0.000  0.000   0.0     2.5   0.0 

particle   -0.173 -0.585  0.430  -0.2528  0.0  16.0 

particle    0.451 -0.526  1.206   0.2528  0.0   1.0 

particle    0.173  0.584 -0.430  -0.2528  0.0  16.0 

particle   -0.451  0.525 -1.206   0.2528  0.0   1.0 

The CG particle is listed first, and acts as the van der Waals interaction sphere with a 

radius of 2.5Å. The embedded partial charges were then specified as particles 
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corresponding to the atomic positions and masses in the all-atom structure. The radii for 

these embedded particles were set to 0 to indicate they should not be considered as van 

der Waals interaction sites. These charged particles are essentially embedded within the 

uncharged van der Waals interaction sphere.  

As previously mentioned, rigid body multi-particle structures can also be specified. For 

example, if a rigid body explicit all-atom representation of hydrogen peroxide was 

desired, the previous example could be modified to remove the CG bead and specify radii 

for each atomic particle: 

particle   -0.173 -0.585  0.430  -0.2528  1.4  16.0 

particle    0.451 -0.526  1.206   0.2528  0.8   1.0 

particle    0.173  0.584 -0.430  -0.2528  1.4  16.0 

particle   -0.451  0.525 -1.206   0.2528  0.8   1.0 

6.1.2.2 Input file 

Explicit Structure Commands 

Molecules in GeomBD structure format must be individually imported by the input file 

into the simulation with the “body” command. The body command is followed directly 

by a filename for the structure: 

body Protein_CG.gbd 

Multiple instances of the same structure file can be imported into the simulation system. 

The “substrate” command is analogous to the “body” command, but specifies the 

molecule as the diffusing body of the simulation. It requires a third argument specifying 

the number of replicate simulations desired. The “substrate” command is required for the 

simulation to run. For example, 1000 substrate replicate simulations are specified as: 

substrate Ligand_CG.gbd 1000 
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Modifications to the coordinates of an imported body or substrate set can be performed 

using “center”, “translate”, and “rotate” commands. These commands are performed on 

the most recently imported molecule. The “center” command translates the body such 

that the center of mass is located at the origin. The “translate” command accepts three 

arguments corresponding to displacements along the X, Y, and Z axes. The rotate 

command accepts three arguments, in radians, corresponding to rotations about the X, Y, 

and Z axes. In addition to the structural modification commands, the “D” command can 

also be issued to explicitly set the diffusion coefficient of the most recently imported 

substrate in units of Å2 ps-1. 

Implicit Structure Commands 

In addition to explicitly importing a structure file, planar and tubular implicit structures 

can be defined for the simulation system in the input file. These implicit structures are 

used when a large molecular structure with defined planar or tubular structure are 

impractical to model and simulate with particles. Instead, the structures are defined as 

force fields, implicitly defining the geometry through polar and non-polar forces. For 

example, a nanotube can be introduced into a simulation with the “tube” command, 

followed by a set of geometry and force parameters: 

tube 1 0 0   0 100 0   1000   100   10   0.1  -1.0 

The first three parameters define the orientation of the tube, where (1 0 0) specifies X-

axis orientation, meaning the hollow portion of the tube is aligned with the X-axis. The 

following three parameters specified the position of the center of the tube. The next 

parameter specifies the length of the tube, followed by a parameter specifying the radius 
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of the tube. The last three parameters specify force parameters, corresponding 

respectively to the non-polar field radius, effectively specifying the thickness of the tube, 

the non-polar field well-depth, specifying the non-polar ligand-tube affinity, and the 

electrostatic charge of the implicit field. 

An implicit plane is specified in a similar manner:  

plane 0 1 0   0 0 0   800 0 600   10   0.1  -1.0 

The first three parameters correspond to the vector normal to the plane, where (0 1 0) 

corresponds to an XZ plane. The next three parameters define the position of the center of 

the plane. The three parameters that follow specify the dimensions of the plane. The last 

three parameters configure the non-polar field radius, non-polar field well-depth, and the 

polar charge of the implicit field. 

Simulation Configuration Commands 

Additional input file commands configure various aspects of the simulation. 

The “temperature” command sets the system temperature, in Kelvin. If this command is 

not included in the input file, the value defaults to 298K. 

The “viscosity” command sets the viscosity of the solvent, in centipoise. This is included 

in the calculation of diffusion coefficients for the bodies in a simulation that do not have 

diffusion coefficients set explicitly in the input file. If this is not specified, the value 

defaults to the viscosity of water. 

The “bind” command defines a binding site in the simulation. This command accepts one 

argument corresponding to the index of a particle in the system to be considered a 

binding site. Any interaction between a substrate and a particle defined as an active site 
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with the “bind” command is considered a substrate binding event. This will halt that 

substrate replica’s simulation and increment the count of bound substrate. The number of 

bound replicates is used to calculate the final probability of association. Multiple binding 

sites are supported. 

The “boundary” command defines the rectangular periodic boundary dimensions of the 

system. It accepts three parameters for the length, width, and height of the simulation 

volume. The resultant volume is used to define the system concentration. 

The “time” command defines the maximum length of time to be simulated, in 

picoseconds, for all replicates. Any substrate that reaches this time limit without 

interacting with a binding site is considered unbound for the final binding probability 

calculation. 

The “threads” command defines the number of threads to be used for parallel computing. 

This command accepts an integer value. If not assigned, threads will be created equal to 

the number of available CPUs on the host computer. 

Execution 

GeomBD simulations are run from the command line. Three command line arguments 

are required, and must be specified by argument flags. For example: 

geomBD –i INPUT –o TRAJECTORY.pqr –l LOG 

This example command would execute a GeomBD simulation with a system specified by 

the inputfile INPUT. Logging information would be output to a file named LOG, and a 

structural trajectory file would be output to TRAJECTORY.pqr. As the file extension 
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implies, output trajectory files are in the PQR format.2 Trajectories can be viewed using 

the Visual Molecular Dynamics3 (VMD) software by issuing the following command:  

vmd Trajectory.pqr –pdb Trajectory.pqr 

Because each replicate simulation advances in time independently at different rates, 

trajectories are asynchronous with respect to time position of replicates in each frame. 

The output log file contains information regarding the binding processes during a 

simulation. The binding time of each successfully bound substrate is reported. As well, 

the probability of association is continuously output through the simulation to give the 

user an active view of the simulation progress. The final probability of association, as 

well as the elapsed real-world simulation execution time, is reported at the end of the log 

file. 
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6.1.3 Composition 

GeomBD is written in C++, and makes use of the CilkPlus extension of the Intel C/C++ 

compiler for parallel execution of various parts of the simulation. The source code can 

also be compiled with the Gnu Compiler Collection (GCC) with the CilkPlus extension.  

The C++ classes contained in the code base are described below. 

6.1.3.1 StringParser 

A simple base class that provides a text parsing interface. 

Member Properties 

None 

Member Functions   

bool StringParser::parseNextValue(string *buffer, string *value); 

This function accepts a string pointer buffer, stores the next white-space separated 

token in value, and front-truncates buffer to remove the token and any 

surrounding white-space. 

6.1.3.2 Particle 

Particle is a simple storage class for an individual particle description. Every child 

particle of a rigid body is represented by an instance of this class. 

Member Properties 

double q; //partial electron charge 

double r; //radius, A 

double m; //mass, amu 

vertex R; //position 

vertex F; //force 
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6.1.3.3 Body  

Body is a class that stores instances of Particle that represent the components of a rigid 

body. This class also calculates and stores a description of the assembled rigid body. In 

addition, member functions are provided to manipulate the coordinates of the child 

Particle objects in unison about the rigid body center of mass. 

Parent Class 

StringParser 

Member Properties 

//particle pointer storage 

vector<Particle*> particles; 

int    N;     //number of child particles 

double m;     //total mass 

double I;     //moment of inertia 

double r;     //diffusive radius 

double r_max; //maximum protrusion 

double D;     //translation diffusion coefficient 

double Da;    //rotational diffusion coefficient 

vertex R;     //linear position 

vertex Ra;    //angular position 

vertex F;     //linear force 

vertex Fa;    //angular force 

bool   bound; //bound state 

//restraints 

bool fixed; 

//time stepping 

double dt;           //current time step 

double t;            //current time 

double l_min;        //minimum distance to interaction 

vector<double> dt_l; //time step thresholds 
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Member Functions    

Body::Body(string filename); 

The constructor initializes all default values and calls member functions to parse the 

structure file. Particle objects are allocated when requested. 

void Body::bake(); 

After the creation of all particles in the constructor, the bake function is called. The 

rigid body properties are defined here. The total mass is summed and the moment of 

inertia is calculated. The property r_max is the maximum protrusion distance on the 

rigid body. The Particle with position most distant from the center of mass is 

determined, and its distance from the center of mass, plus its radius, defines the value 

of r_max. 

void Body::translate(double dx, double dy, double dz); 

The translate function offsets the center of mass position of a body by the factors 

dx, dy, and dz. In addition, all constituent particles are translated by the same offsets. 

void Body::rotate(double dax, double day, double daz); 

The rotate function increments the angular position value of the body by dax, 

day, and daz. The positions of all constituent particles are transformed according to 

the rotations. 
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6.1.3.4 BarrierPlane 

BarrierPlane is a simple storage class for a the parameters that define the geometry and 

forces exerted by an implicit planar body. An electrostatic field and Lennard-Jones like 

field exude from the defined two dimensional plane. 

Member Properties 

bool Ax;  // normal vector 

bool Ay;  //   N=(Ax,Ay,Az)  

bool Az;  // 

vertex R; // center 

vertex d; // dimensions 

double a; // tube radius 

double r; // field radius 

double e; // field well depth, vdw 

double q; // field charge 

 

6.1.3.5 BarrierTube 

BarrierTube is a simple storage class for a the parameters that define the geometry and 

forces exerted by an implicit tubular body. An electrostatic field and Lennard-Jones like 

field exude from the defined cylindrical geometry. 

Member Properties 

bool Ax;  // orientation vector 

bool Ay;  //   V=(Ax,Ay,Az)  

bool Az;  // 

vertex R; // center 

double L; // length 

double a; // tube radius 

double r; // field radius 

double e; // field well depth, vdw 

double q; // field charge 

 

  



170 

 

6.1.3.6 Model 

Model is the primary class in GeomBD. It is responsible for parsing the input file and 

storing all molecular bodies and simulation parameters. The class contains the Brownian 

dynamics simulation algorithm and propagates time for all substrate replicates in the 

simulation system. This class also handles logging and trajectory output. 

Parent Class 

StringParser 

Member Properties 

//explicit bodies 

vector<Body*> bodies; 

vector<Body*> substrate; 

//implicit bodies 

vector<BarrierPlane*> barrierPlanes; 

vector<BarrierTube*>  barrierTubes; 

//binding site particle indices 

vector<int> bindingSites; 

// simulation parameters 

int    Nbodies;      //# fixed bodies 

int    Nsubstrate;   //# substrate bodies 

double T;            //Temperature, K 

double viscosity;    //kcal.ps/A^3 

double cutoff;       //A, fixed value of 20A 

double t_limit;      //simulation time limit, picoseconds 

vertex boundary;     //rectangular simulation bounds 

//normal random number generator 

VSLStreamStatePtr rngNormal; //IntelMKL random number generator 

vertex *noise;               //storage for random distribution 

//file output 

string log_filename; //log output filename 

fstream log;         //log file stream 

string out_filename; //trajectory filename 

Member Functions    

Model::Model(string intputfn, string outputfn, string logfn); 

The constructor initializes all default values, initializes the random number generator. 

It also calls member functions to parse the input file, and carries out memory 

allocation for the model. 
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void Model::parseInputFile(string filename); 

This method reads and interprets the input file. A call is made to the parseTerm 

member method for each input command that is interpreted, allowing for subclasses to 

expand the input file vocabulary. This method allocates Body and implicit 

BarrierTube and BarrierPlane objects, modifies structures, and sets 

simulation parameters as requested by the contents of the input file.  

virtual void Model::parseTerm(string *term, 

                              string *args, Body *active); 

The parseTerm method offers an interface to the input file parsing process for 

subclasses of Model. The first token from an input file line is passed into the member 

in term, while the rest of the input file line is stored in args. The most recently 

loaded Body object is provided in active for structural modification commands. 

void Model::bake(); 

The bake method finalizes the definition of a model. The Nbodies and 

Nsubstrate values are set appropriately, memory is allocated for the normal 

random number distribution noise, and diffusion coefficients are calculated for all 

bodies in the simulation. This is called at the end of the Model constructor. 
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void Model::calculateDiffusionCoefficients(); 

The diffusion coefficients of substrate rigid bodies are calculated according to the 

Stokes-Einstein equation: 

 
𝐷 =

𝑘𝑏𝑇

6𝜋𝜂𝑟
 

eq. 6.1 

 
𝐷𝑟 =

𝑘𝑏𝑇

8𝜋𝜂𝑟3
 

eq. 6.2 

where 𝑘𝑏 is Boltzmann’s constant, T is the temperature of the system, 𝜂 is the solvent 

viscosity, and r is the diffusive radius of the Body. 

void Model::calculateTimestepCutoffs(); 

A variable time step for each substrate is implemented to allow substrate bodies that 

are diffusing at large distances from all other bodies to advance through time more 

quickly. The time step for each substrate is varied between 0.05 picoseconds and 50.0 

picoseconds, by factors of 10, according to the minimum distance between the 

substrate and all other bodies. The cutoffs for the use of a time step are calculated 

according to: 

 𝜌𝑑𝑡 = 𝑐𝑢𝑡𝑜𝑓𝑓 + √3 ∙ 2 ∙ 𝐷 ∙ (2𝛼)2 ∙ 𝑑𝑡 eq. 6.3 

where dt is a timestep, D is the translational diffusion coefficient of the substrate, 

cutoff is the non-bonded force cutoff, and 𝛼 is a reasonable estimate of the largest 

value obtained in the normal random distributions. A value of 7Å is used for 𝛼 based 

on the statistical maximum of millions of calculated random distributions. 

The timestep cutoffs for each substrate are stored as the square of the value in the 

Body object’s dt_l vector. 
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void Model::calculateForces(int i); 

The intermolecular forces between a substrate replicate i and each immobile rigid 

Body stored in bodies are calculated in the calculateForces method. The force 

variables for the substrate Body and each child Particle object are all cleared 

before starting the calculation. Iterating over all bodies, a distance calculation is 

performed between the centers of mass of the substrate i and body j. From this 

distance, the r_max of substrate i and body j are subtracted. If this value is less than 

the cutoff, force calculations will be performed between substrate i and body j. 

Force calculations are performed between the constituent particles in each body. The 

distance between two interacting particles, particle k and particle l,  is first calculated. 

Coulombic and Lennard-Jones-like forces are then calculated for pairs of particles 

with distance values below the cutoff value (Chapter 2). 

Next, the forces between a substrate replicate i are calculated for any implicit bodies. 

The closest point to the substrate on the tubular or planar geometry of BarrierTube 

and BarrierPlane is calculated. A distance calculation is then performed between 

the substrate center of mass and the closest point. Distances beyond the cutoff value 

are excluded from force calculations. The Coulombic and Lennard-Jones-like forces 

are then calculated. 
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Finally, the individual Particle forces are propagated to the parent rigid body: 

 𝐹 =∑𝐹𝑖 
eq. 6.4 

 𝜏 =∑𝑟 × 𝐹𝑖 
eq. 6.5 

where F is translation force on the rigid Body, F_i is the force acting on particle i 

within the rigid body, τ is the rotational force on the rigid body, and r is the 

displacement vector of particle i relative to the center of mass of the rigid body. 

Throughout all the aforementioned calculations, the minimum distance between the 

substrate and all explicit and implicit structures is determined. This minimum distance 

determines the integration time step for the substrate, where a longer minimum 

distance corresponds to a larger time step (Chapter 3). 

void Model::advanceTime(int i);  

The position and rotational state of substrate body i are propagated in time according 

to Equation 1.29. The calculateForce function is then called for substrate i to 

calculate the forces on the substrate particle in the new position. 

void Model::run(); 

The main loop of the simulation is in the run function, which repeats until there are 

no active simulating bodies. With each step of the main loop, a parallel Cilk for loop 

calls the advanceTime function on each substrate. This has the effect of parallel 

time advancement and force calculations for all bodies, significantly increasing 

computational efficiency. Every 5000 steps, logging and trajectory data are written to 

their respective files. 



175 

 

void Model::writePQR(); 

Trajectory data is output in the PQR format. Molecules defined in each Body are 

separated into individual chains.  

6.1.4 Analysis tools 

The primary output of a GeomBD simulation is the association probability. As previously 

stated, this is explicitly written to the end of a log file upon completion of a simulation. 

However, more information can be obtained from simulation results. Two Python4,5 

scripts, making use of the Matplotlib6 graphing module, are supplied with the GeomBD 

software to visually display the binding distribution of a simulation or set of simulations. 

 

  

Figure 6.1: Comparison of the output of the plotHistogram.py (left) and 

plotCumulative.py (right) scripts on the same set of simulation data. The histogram was 

produced with a bin width of 100 nanoseconds. 

 

The “plotHistogram.py” accepts command line input arguments of one or more GeomBD 

log file. This script reads in all binding times in each log file, bins the binding times 
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according to user preference, and produces a histogram showing the distribution of the 

probability of binding. Similarly, the “plotCumulative.py” script reads in all binding 

times from one or more log files. However, instead of binning and plotting as a 

histogram, this script calculates and plots a cumulative probability as a function of time. 

The graphs created by both scripts can provide visual insight into the binding kinetics and 

dynamics of a biomolecular system. 

6.1.5 Derivative Application – RBBD 

A software derivative of GeomBD, called RBBD, was developed for general purpose 

rigid body Brownian Dynamics (RBBD). All classes and functions remain intact. In 

RBBD, the concept of parallel replicate simulations is removed. Instead, all bodies in the 

simulation are mobile, interactive, and diffuse throughout the simulation at the same rate. 

RBBD was constructed to evaluate the association probability of substrate-protein 

association in freely diffusing solutions. Parallelization of force calculation and time 

advancement replaces replicate parallelization. 
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6.2 Python Molecular Mechanics Framework Module 

6.2.1 Overview 

The Python Molecular Mechanics Framework Module, or PYMM, is a Python module 

framework for the programmatic description of all-atom molecular mechanical systems 

(see Chapter 1 for molecular mechanics theory). It is used as a foundation for creating 

computational methods or utilities that interact with molecular mechanical systems. 

PYMM contains a set of Python classes that generically describe the topology and 

parameters of a molecular system, including the details of all atoms, bonds, angles, 

dihedral angles, and non-bonded potentials. A set of interpreter modules parse various 

file formats of molecular mechanical systems, including AMBER and Mining Minima 

Generation 2 (M2) topologies and parameters, and produce a set of Python objects that 

fully describe the system. This makes interaction with the data in a molecular mechanics 

system quick and easy, and requires no end-user knowledge of proprietary file formats. 

Operations can then be performed on the system, such as energy calculations, MMGBSA 

calculations, structural minimizations, RMSD calculations, and alignment procedures. 

First and second derivatives of the potential energy function can be calculated. 

6.2.2 Composition 

PYMM is a Python-C module. The majority of code in the module is written in C using 

the C Python interface, defining classes and functions programmatically. The primary 

Python module interface is stored within the mm/ directory. All C files are stored within 

the mm/c/ directory. 
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The primary class, model, for the molecular mechanical system description, is defined in 

model.c and model.h. The model class stores pointers to all atomic and topological 

objects, as well as pointers to all functions, such as minimize and calculate_energy. 

The align.c, qcprot.c, and qcprot.h files provide an interface to QCProt RMSD alignment 

algorithm. It is utilized for the calculation of RMSD and alignment via RMSD 

minimization.7 It provides the function align to the model class. 

The energy source files calculate the individual components of potential energy function. 

Energy, force, and hessian calculations are supported for the various components of the 

bonded and non-bonded potentials. It provides the function calculate_energy to the model 

class. 

The Generalized Born radii, energy, and force calculations are supported via the gb.c 

file.8 It provides the function calculate_energy_gb to the model class. 

The solvent accessible surface area is calculated in sasa.c. The non-polar solvation 

energy contribution is calculated according to the linear scaling scheme of AMBER.9 It 

provides the function calculate_energy_sasa to the model class. 

A basic steepest descent minimization algorithm is provided in minimize.c. It provides the 

function minimize to the model class. 

Double precision storage classes that act as a bridge between C and Python are defined in 

vector.h, array.h, and matrix.h:. 

  



179 

 

File Format Interpreters 

Two interpreter modules are available for AMBER and M2 topology and parameter files. 

The interpreters are written in Python, making the writing of an interpreter module quick 

and facile relative to a systems language like C++.  

The AMBER interpreter is stored in mm/amber/__init__.py and provides an interface to 

the PRMTOP topology file format through the prmtop class. The AMBER v7+ formatted 

coordinate files are supported with the inpcrd class, while the trajectory files are 

interpreted with the mdcrd class. An example script that calculates the MMGBSA 

interaction energy for a protein-ligand complex is given below. 

import mm, mm.amber 

 

top = mm.amber.prmtop('Complex.prmtop') 

crd = mm.amber.mdcrd('Complex.mdcrd', top.natoms) 

model = mm.amber.model(top, crd) 

model.gb = 1 # enable GB calculation 

 

print('system contains %d atoms, %d trajectory frames.' %     

         (model.natoms, model.trajectory_in.nframes)) 

 

for i in range(model.trajectory_in.nframes): 

  print('frame', i) 

  model.set_frame(i) 

  model.calculate_energy() 

  model.calculate_energy_sasa() 

  model.print_energies() 
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An M2 interpreter module is provided under mm/m2/.  The m2 module provides access to 

M2 topology files with the top class, coordinate files with the crd class, and trajectory 

files with the trj class. An example script is given below that calculates the force vector 

and hessian matrix of an M2 formatted system. 

import mm.m2 

 

top = mm.m2.top('Receptor.top', 'Ligand.top')  # combine complex 

crd = mm.m2.trj('Complex.trj') # load m2 trajectory of complex 

model = mm.m2.model(top, crd) 

model.hesse = 1      # enable hessian calculation 

model.gb = 1         # enable GB 

 

print('system contains %d atoms.' % model.natoms) 

print('coordinates contain %d frame(s).' % crd.nframes) 

 

model.calculate_energy() 

model.print_energies() 

Due to the generalized nature of PYMM, it is not the most computationally efficient 

software. However, the design makes it ideal for creating small modeling utilities and 

tools. It is also an ideal framework for rapidly prototyping computational methods. 
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6.3 Hopping Minima  

6.3.1 Overview 

The Hopping Minima (HM) method is a procedure, and corresponding set of programs, 

for the determination of association/dissociation pathways. HM connects local energy 

minima using the molecular system’s natural motions. The natural motions of the 

molecular system are modeled from their normal modes, which are exaggerated into the 

coordinated motions of a host-guest complex. These coordinated motions are then used to 

bridge multiple conformational minima of the complex forming an association pathway. 

6.3.2 Usage 

To begin, the HM method requires an established Mining Minima generation 2 (M2) 

molecular system with thorough conformational search of a host-guest complex.10,11 Free 

energy calculations should be performed on the conformational minima.  

With a set of conformational states for a complex, the first HM program, called 

HoppingMinimaScan, is performed on the conformational states to calculate the natural 

motions of the complex. HoppingMinimaScan is a modified version of the Mining 

Minima Generation 2 (M2) free energy calculation program.12 The mode scanning 

algorithm of M2 is modified to exaggerate the calculated normal modes of the complex 

three fold into broad motions. These motions are output to a trajectory. 

The HoppingMinima script can then be run. This is the primary script for the HM 

method. It requires a set of conformational minima with corresponding free energy 

values, along with sampled natural motions. After an alignment procedure, the script 

calculates intersections between the conformational minima and the natural motions of 
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the complex. Intersections between two or more minima are output to a trajectory as 

potential association/dissociation paths. 

A final HM script, called HoppingMinimaAnalysis, is an interactive tool for linking 

multiple paths generated by the HoppingMinima script into a full association/dissociation 

process. It provides information about potential path connections, and ranks them 

according to potential energy of the structural transitions during the natural motion, as 

well as free energies of the minima involved in the path. This energy information is 

useful for ruling out energetically unlikely paths.  

6.3.2 Composition 

The HoppingMinima script is written in Python using the PYMM Python module. The 

PYMM m2 module is used to interpret and interact with the M2 molecular mechanical 

system. The HoppingMinima script utilizes the QCProt alignment functions from PYMM 

for initial alignment of all natural motions and conformational minima. Intersections 

between the conformational minima and frames from the natural motions are compared 

using the QCProt RMSD calculation routine. 

The HoppingMinimAnalysis script is written in Python. It compares the minima involved 

in the paths output by HoppingMinima to determine which paths involve common 

minima. These are then clustered and sorted according to the free energies of the minima 

and the maximum potential energy of the natural motions. The user can interactively 

search for paths containing specific minima. 
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6.4 MMGBSA-Decomp.py 

6.4.1 Overview 

The MMGBSA-Decomp.py Python script is a script to automate the execution and 

analysis of MMGBSA energetic decomposition calculations on a protein-ligand complex 

using AMBER version 10.13 Starting from a completed molecular dynamics simulation 

trajectory with explicit waters removed, the MMGBSA interaction energies are 

calculated and decomposed into pairwise interaction energies between the ligand and 

each residue in the protein. This is particularly useful in molecular recognition studies for 

understanding the most important interactions in a protein-ligand complex, and can 

suggest avenues for drug design and optimization. 

6.4.2 Usage 

The MMGBSA-Decomp.py is a command line utility that requires an input file as its only 

command line argument. The input file contains information about the protein-ligand 

complex AMBER topology, coordinates, and dynamics trajectory. It specifies which 

residues in the topology correspond to the ligand and protein. Additionally, the input file 

specifies which frames within the dynamics trajectory should be analyzed. An example 

input file is given on the next page (note, the variables defined are case sensitive). 
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prmtopFile = 'Complex.prmtop'                        

coordFile  = 'Complex.rst7'                          

mdcrdFile  = 'MDTrajectory.mdcrd'                  

                                                           

# specify our selection ranges 

lres = [1, 1]    # resid 1, our ligand                     

rres = [2, 412]  # resid 2 to 412, our protein             

cres = [1, 412]  # resid 1 to 412 

                                                           

# specify trajectory frame info, base 0                    

fstart = 0    # start with frame 0 

fend = 5000   # end at frame 5000 

fstep = 20    # calculate every 20th frame 

The pairwise MMGBSA interaction energies are output into three separate files: 

mmgbsa.polar.csv, mmgbsa.nonpolar.csv, and mmgbsa.total.csv. Each row in the file 

represents a separate frame from the trajectory. Column i on each row correspond to 

interactions between the ligand and ith protein residue. The polar energies, including the 

Coulombic and Generalized Born energies, are output to the mmgbsa.polar.csv output 

file, while the van der Waals and SASA energies are combined and output to the 

mmgbsa.nonpolar.csv output file. All energies are totaled and output to the 

mmgbsa.total.csv output file. 
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6.4.3 Composition 

The MMGBSA-Decomp.py script automates the calculation of MMGBSA interaction 

energies, as well as the extraction and analysis of the output data. The topology and 

dynamics trajectory are parsed and interpreted using simplified components from 

PYMM. Each trajectory frames is extracted into a temporary file by the mmgbsa_decomp 

class of the script, and an AMBER MMGBSA calculation is subsequently executed using 

the frame as the input coordinates. The decomp_log class parses and interprets the 

energetic data, which is returned in a simplified form to the mmgbsa_decomp script for 

output to the log files. 

6.5 libFicus C++ Molecular Mechanics Framework 

6.5.1 Overview 

libFicus is a C++ molecular mechanics library. It provides an object oriented framework 

for writing applications utilizing molecular mechanical theory. The class inheritance of 

C++ is used extensively to abstract geometric and energetic calculations. In addition to 

providing a framework for the description of molecular mechanical systems, it provides 

access to alignment routines, dynamics algorithms, and robust FORTRAN minimization 

algorithms. The objective of this library is to provide a flexible, generic, computationally 

efficient molecular mechanics interface for the development of molecular mechanics 

methods, or to integrate molecular mechanics into an existing method. 
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6.5.2 Composition 

6.5.2.1 Atom 

Atom is class provides storage of atomic properties, such as mass, radius, and charge. It 

also provides pointers into the main coordinate and potential gradient arrays for the atom. 

Member Properties 

int       id;         //index identifier 

Molecule *molecule;   //parent molecule 

double    charge;     //partial charge 

double    mass;       //atomic mass (amu) 

double    radius;     //vdw radius 

string    name;       //element identity 

string    type;       //storage for ff type info 

bool      fixed;      //atom should be fixed in space 

double    *position;  //cartesian position x, y, z 

double    *gradient;  //gradient of potential energy 
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6.5.2.2 Bond 

Bond is a base class that represents a covalent bond between two atoms. This base class 

calculates the distance between the two atoms and provides a generic subclasssable 

interface to calculating a potential energy function and its derivatives.  

Member Properties 

Atom *atomi;   //pointer to first atom in bond 

Atom *atomj;   //pointer to second atom in bond 

double rij[3]; //displacement vector between atoms 

double lij2;   //squared distance 

double lij;    //distance 

double U;      //potential energy 

double dU;     //  1st derivative 

double ddU;    //  2nd derivative 

Member Functions    

Bond::Bond(Atom *ai, Atom *aj); 

The constructor initializes all default values and sets the atom pointers. 

void Bond::CalculateLength(); 

The atomic displacement vector rij is calculated, and the distance lij and its 

square lij2 are recorded. The square is recorded for efficiency purposes for use in 

potential energy calculations, if needed.  

virtual void Bond::CalculatePotential(bool firstDerivative, 

                                      bool secondDerivative); 

A virtual function is provided to subclasses for calculation of specific potential energy 

forms describing bond forces. In this base class, nothing is executed in this function.  

void Bond::PopulateGradients(); 

The gradient of the bond’s potential energy function that has been recorded to dU is 

propagated to the potential gradient storage in each of atomi and atomj.  
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void Bond::PopulateHessian(double **hessian); 

The contributions to the global hessian, stored in ddU by subclasses, are applied in 

this member function. 

Provided Subclasses 

BondHarmonic provides a harmonic bond subclass. The potential is calculated as: 

 
𝑈𝑏𝑜𝑛𝑑 =

1

2
𝑘(𝑙𝑖𝑗 − 𝑙0)2 

eq. 6-x 

where k is the force constant and l0 is the reference bond length provided to the object 

constructor, and lij is the atomic distance calculated by the base class. 

BondQuartic provides a quartic potential bond subclass. The potential is calculated 

as: 

 
𝑈𝑏𝑜𝑛𝑑 =

𝑘1

2
(𝑙𝑖𝑗 − 𝑙0)2 +

𝑘2

3
(𝑙𝑖𝑗 − 𝑙0)3 +

𝑘3

4
(𝑙𝑖𝑗 − 𝑙0)4 

eq. 6.6 

where k1, k2, and k3 are the force constants and l0 is the reference bond length 

provided to the object constructor, and lij is the atomic distance calculated by the 

base class. 

BondMorse provides a quartic potential bond subclass. The potential is calculated as: 

 𝑈𝑏𝑜𝑛𝑑 = E0(1 − 𝑒−𝑎(𝑙𝑖𝑗−𝑙0))
2
 eq. 6.7 

where E0 is the potential well depth, a is the well width, and l0 is the reference bond 

length provided to the object constructor, and lij is the atomic distance calculated by 

the base class. 
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6.5.2.3 Angle 

Angle is is a base class defining the angle between three atoms. This base class calculates 

the angle. 

Member Properties 

Atom *atomi;          //pointer to first atom in bond 

Atom *atomj;          //pointer to second atom in bond 

Atom *atomk;          //pointer to third atom in bond 

double rij[3];        //i,j displacement vector 

double rkj[3];        //k,j displacement vector 

double lij, lij2;     //i,j distance, and square 

double lkj, lkj2;     //k,j distance, and square 

double lik;           //i,j distance 

double cos_theta;     //cosine of the i,j,k angle 

double sin_theta;     //sine of the i,j,k angle 

double theta;         //the i,j,k angle 

double U;             //potential energy 

double dUdcos;        //1st derivative w.r.t. cosine of angle 

double dcosdr[3][3];  //1st derivative of cosine theta 

double ddUddcos;      //2nd derivative w.r.t. cosine of angle 

double ddcosddr[9][9];//2nd derivative of cosine theta 

Member Functions    

Angle::Angle(Atom *ai, Atom *aj, Atom *ak); 

The constructor initializes all default values and sets the atom pointers. 

void Angle::CalculateAngle(); 

The atomic displacement vectors, atomic distances and their squares are calculated. 

This information is then used to calculate the cosine and sine of the angle, as well as 

the angle itself. The square is recorded for efficiency purposes for use in potential 

energy calculations, if needed.  

virtual void Bond::CalculatePotential(bool firstDerivative, 

                                      bool secondDerivative); 

A virtual function is provided to subclasses for calculation of specific potential energy 

forms describing bond forces. In this base class, only the derivatives of the cosine of 
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the angle are calculated. Subclasses are responsible for calculating the derivative of 

their potential form with respect to the cosine of the angle. 

void Angle::PopulateGradients(); 

The gradient of the bond’s potential energy function that has been recorded to 

dUdcos is propagated to the potential gradient storage in each of atomi, atomj, 

and atomk.  

void Angle::PopulateHessian(double **hessian); 

The contributions to the global hessian, stored in ddU by subclasses, are applied in 

this member function. 

Provided Subclasses  

AngleHarmonic provides a harmonic bond subclass. The potential is calculated as: 

 
𝑈𝑎𝑛𝑔𝑙𝑒 =

1

2
𝑘(𝑡ℎ𝑒𝑡𝑎 − 𝑡ℎ𝑒𝑡𝑎0)2 

eq. 6.8 

where k is the force constant and theta0 is the reference angle provided to the object 

constructor, and theta is the angle calculated by the base class. 

AngleQuartic provides a quartic potential bond subclass. The potential is 

calculated as: 

 
𝑈𝑎𝑛𝑔𝑙𝑒 =

𝑘1

2
(𝜃 − 𝑡0)2 +

𝑘2

3
(𝜃 − 𝑡0)3 +

𝑘3

4
(𝜃 − 𝑡0)4 

eq. 6.9 

where k1, k2, and k3 are the force constants and t0 is the reference angle provided to 

the object constructor, and θ represents the angle variable theta calculated by the 

base class. 
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6.5.2.4 Torsion 

Torsion is base class calculates the dihedral angle between four atoms.14  

Member Properties 

//pointers to atoms in dihedral angle 

Atom *atomi; 

Atom *atomj; 

Atom *atomk; 

Atom *atoml; 

// ref: blondel and karplus 

//   distance vectors 

double F[3], G[3], H[3], A[3], B[3] , C[3]; 

//   lengths 

double lF, lG, lH, lA, lB; 

//   dihedral angle 

double phi; 

//   cosine and sine of angle 

double cos_phi, sin_phi; 

//potential energy and derivatives 

double U; 

double dUdphi; 

double dphidF[3], dphidH[3], dphidG[3]; 

double ddUddphi; 

double ddphiddF[3][3], ddphiddH[3][3], 

       ddphiddG[3][3], ddphidFdG[3][3], 

       ddphidGdH[3][3]; 

Member Functions    

Torsion::Torsion(Atom *ai, Atom *aj, Atom *ak, Atom *al); 

The constructor initializes all default values and sets the atom pointers. 

void Torsion::CalculateAngle(); 

The dihedral angle is calculated between the four atoms defined in the torsion object.14  

virtual void Torsion::CalculatePotential(bool firstDerivative, 

                                         bool secondDerivative); 

A virtual function is provided to subclasses for calculation of specific potential energy 

forms describing bond forces. In this base class, only the derivatives of the angle with 
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respect to the displacement vectors are calculated. Subclasses are responsible for 

calculating the derivatives of the potential energy function with respect to the angle.  

void Torsion::PopulateGradients(); 

The gradient of the potential energy function that has been recorded to dUphi is 

propagated to the potential gradient storage in each of atomi and atomj.  

void Torsion::PopulateHessian(double **hessian); 

The contributions to the global hessian, stored in ddUddphi by subclasses, are 

applied in this member function. 

Provided Subclasses 

TorsionHarmonic provides a harmonic torsion subclass. The potential is 

calculated as: 

 
𝑈𝑡𝑜𝑟𝑠𝑖𝑜𝑛 =

1

2
𝑘(𝑝ℎ𝑖 − 𝑝ℎ𝑖0)2 

eq. 6.10 

where k is the force constant and phi0 is the reference dihedral angle provided to the 

object constructor, and phi is the dihedral angle calculated by the base class. 

TorsionHarmonic provides a harmonic torsion subclass. The potential is 

calculated as: 

 𝑈𝑡𝑜𝑟𝑠𝑖𝑜𝑛 = 𝑘(1 + cos(𝑛 ∙ 𝑝ℎ𝑖 − 𝑝ℎ𝑎𝑠𝑒)) eq. 6.11 

where k is the force constant, n is the multiplicity of the potential, and phi0 is the 

reference dihedral angle provided to the object constructor, and phi is the dihedral angle 

calculated by the base class.  
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6.5.2.5 NBPair 

NBPair is a class for defining the interaction between two unbounded atoms. This class 

is storage class for use with NBPotential objects, and should not be subclassed. 

Member Properties 

Atom *atomi;   //pointer to first atom in bond 

Atom *atomj;   //pointer to second atom in bond 

double rij[3]; //displacement vector between atoms 

double lij2;   //squared distance 

double lij;    //distance 

double U;      //potential energy 

double dU;     //  1st derivative 

double ddU;    //  2nd derivative 

Member Functions    

NBPair::NBPair(Atom *ai, Atom *aj); 

The constructor initializes all default values and sets the atom pointers. 

void NBPair::CalculateLength(); 

The atomic displacement vector rij is calculated, and the distance lij and its 

square lij2 are recorded. The square is recorded for efficiency purposes for use in 

potential energy calculations, if needed.  

void NBPair::PopulateGradients(); 

The gradient of the potential energy function that has been recorded to dU is 

propagated to the potential gradient storage in each of atomi and atomj.  

void NBPair::PopulateHessian(double **hessian); 

The contributions to the global hessian, stored in ddU by subclasses, are applied in 

this member function. 
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6.5.2.6 NBPotential 

NBPotential is is a generic interface to non-bonded potential energy functions. It 

provides virtual functions for initializing a non-bonded calculator and for calculating the 

potential energy and its derivatives between a pair of atoms. 

Member Properties 

//cumulative potential energy storage 

double U; 

//exclusion paramters provided if needed 

bool nbexclude11; //exclude self calculation 

bool nbexclude12; //exclude atoms in bonds 

bool nbexclude13; //exclude atoms in angles 

bool nbexclude14; //exclude atoms in torsions 

// scale nonbonded potential for atoms in torsions 

double scale14; 

//enable or distable intra- and intermolecular forces 

bool intra; 

bool inter; 

Member Functions    

NBPair::NBPair(Atom *ai, Atom *aj); 

The constructor initializes all default values and sets the atom pointers. 

virtual void InitializeCalculation(); 

An interface is provided for initializing a potential energy calculation. This is called 

directly before calculating potential energy for individual atom pairs. 

virtual void CalculatePotential(NBPair *nbpair, 

                                bool firstDerivative, 

                                bool secondDerivative); 

A virtual function is provided for subclasses to calculate the potential energy and 

forces between two atoms in an NBPair. Propagation of forces to the individual 

atoms is handled by the NBPair class. In this base class, nothing is calculated.  
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6.5.2.7 Model 

Model is a container class for the total description of a molecular mechanical system. It 

stores pointers to all objects of the system, and coordinates calculations of energy and 

forces.  

Member Properties 

//object storage 

vector<Molecule*> molecules; 

vector<Atom*> atoms; 

vector<Bond*> bonds; 

vector<Angle*> angles; 

vector<Torsion*> dihedrals; 

vector<Torsion*> impropers; 

vector<NBPotential*> nbpotentials; 

//coordinates for all atoms in system 

double *coordinates; // cartesian coordinates 

//potential energy 

double U;          //total energy 

double Ubond;      //cumulative bond energy 

double Uangle;     //cumulative angle energy 

double Utorsion;   //cumulative torsion energy 

//gradient of total potential, 3xN vector 

double *gradient; 

//hessian of total potential, 3Nx3N triangle matrix 

double **hessian;   

Member Functions    

Model::Model(bool includeHessian); 

The constructor initializes all default values and sets the atom pointers. The 

constructor argument includeHessian determines whether a hessian matrix is 

calculated. If hessian calculations are desired, this value should be False, as the 

hessian can consume a significant amount of memory. 
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void Model::AllocateArrays(); 

When a system has been constructed, this method is called to allocate adequate 

memory for calculating energies and forces. This method also assigns the appropriate 

coordinate and gradient pointers in each atom object into the global coordinates and 

gradient arrays. 

void Model::CreateNBExclusions(); 

According to the parameters of any allocated NBPotential objects, a non-bonded 

calculation exclusion list is created here. If desired, this should be called directly after 

allocating memory for the system. 

void Model::CalculatePotential(bool firstDerivative, 

                               bool secondDerivative); 

The potential energy calculation routines in each topological object and non-bonded 

potential are dispatched here. The total of each energy term is tallied into the Model 

objects storage variables. 

Provided Subclasses  

ModelBAT provides additional functionality for working with the model in terms of 

internal Bond-Angle-Torsion coordinates. 
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6.5.2.8 Optimizer 

Optimizer provides a generic interface for numerical minimization algorithms. 

Member Properties 

Model   *model;  //model to perform optimization upon 

Member Functions    

Optimizer::Optimizer(Model *model); 

The constructor sets the model pointer.  

virtual void Optimizer::Run(int steps); 

The Run function provides a generic interface for subclasses to override and 

implement a numerical optimization algorithm. 

void Model::CreateNBExclusions(); 

Provided Subclasses  

L-BFGS and truncated Newton-Raphson minimization algorithms are provided in 

OptimizerLBFGS and OptimizerTNR subclasses, respectively. These subclasses 

utilize the LBFGS and TNPACK FORTRAN libraries and call their functions 

directly.15–17 These classes act as a data translation layer between the coordinate and 

force data stored in a Model object and the FORTRAN functions. 
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Chapter 7: Conclusion and Future Directions in Substrate-Enzyme Association 

Research 

7.1 Conclusion 

Molecular recognition processes guide the preferential association of molecular species in 

chemical and biological systems through physical differentiation and complementarity. 

Molecular recognition was studied at several scales by creating and applying novel 

computational techniques. 

The long-range interactions dictating diffusional association were studied through the use 

of a new computational package, GeomBD. Diffusional association was investigated in 

the intermediate transfer between enzymes in engineered spatially organized 

nanostructures. In particular, the glucose oxidase-horseradish peroxidase enzyme pair 

was investigated on several geometric arrangements of DNA-origami scaffolds. We 

found that arrangement of enzymes on a planar scaffold primarily gains efficiency from 

induced enzyme colocalization with moderate enhancement due to the scaffold acting as 

a diffusive barrier. However, confinement of the enzyme system within a nanotube 

scaffold greatly enhances substrate transfer, up to ten fold relative to colocalization, and 

up to 150 fold relative to a disorganized solution of the enzymes and substrate over the 

same time period. Our results have implications for the efficient engineering of synthetic 

enzyme cascades. 

The short-range intermolecular interactions that discriminate the selectivity of a substrate 

to a host molecule and dictate the configurational transition to the bound state was 

studied using the Hopping Minima software. Normal mode calculations were used to 
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construct coordinated natural motions of a host-guest complex. These motions were then 

utilized to connect conformational minima and combined to form non-covalent binding 

pathways. Our results demonstrate that conformational transitions can be modeled and 

extended to construct coordinated final binding events, allowing for the study of systems 

with binding kinetics that are traditionally impractical to sample. 

Finally, a bound-state affinity study was performed for determining receptor subtype 

specificity. Specifically, a natural product derivative proteasome inhibitor was simulated 

with molecular dynamics, and molecular recognition was assessed through structural 

stability and energetic affinity with each receptor subtype. The determined energetic and 

structural preference suggests desirable activity as a human proteasome inhibitor. 

7.2 Future Work 

The computational study of substrate-enzyme association has been limited by the high 

computational cost of simulating molecular systems over large time scales relative to the 

scope of traditional dynamics techniques. Approaching such systems typically requires 

compromise over the level of structural and theoretical detail included in the 

computational model. With the increasing availability of high powered computer clusters 

and parallel development tools, I plan to improve the scalability of the GeomBD package 

(Chapter 2 and 3) and include additional theoretical and structural detail for the 

assessment of substrate association probability calculations. Modeling tools will be 

implemented to increase electrostatic detail of macromolecules with highly abstracted 

coarse grain structures. Multi-scale structures will also be introduced to allow for 

increased level of structural details in important regions of macromolecules, such as 
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catalytic active sites. In addition to the assessment of diffusional association, the package 

will also be expanded to allow for determining the probability of deep pocket binding 

after superficial association with the binding site. 

Utilizing the aforementioned augmentations to the GeomBD package, the simulations 

outlined in Chapter 3 will be revisited. 

7.2.1 Multi-scale Structure 

Bridging multiple levels of detail, I plan to implement a tool for the GeomBD package to 

integrate multiple modeling scales of macromolecular structures into a single multi-scale 

structural model. For example, a 1-bead-per-residue coarse grain protein model could be 

combined with an all-atom protein structure. In this way, areas of the protein important 

for association, such as the binding site, could be modeled in full atomic detail while the 

rest of the protein is modeled more coarsely. Support for well-established coarse graining 

schemes, such as MARTINI, will be included in the future for inclusion in multi-scale 

structural models.1,2 

As well, a multi-scale electrostatic model will be implemented for coarse grain models 

using the RESPAC coarse grain partial charge method.3 Highly abstracted coarse grain 

models of macromolecules will gain detailed electrostatic interactions with the substrate, 

more accurately modeling their interactions.  

7.2.2 Deep Pocket Binding 

The current implementation of GeomBD is intended for modeling the diffusional 

encounter of a substrate with a target binding site. Due to the coarse grain nature of the 

structural models in use, only superficial association (collision with binding site residues) 
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is considered. In many cases, diffusional association is only the first step to the binding of 

a substrate to an active site, and a substrate is required to diffuse deeper into the binding 

pocket and rearrange its conformation to fully bind. For example, acetylcholine esterase 

has a catalytic active site contained at the bottom of a deep gorge-like pocket.4 

Superficial association is followed by progression of the substrate through the pocket to 

the catalytic site. Therefore, we propose an extension to the GeomBD package for 

calculating the probability of a full binding event after superficial association with a 

macromolecule. Using the results of diffusional association simulations, a more detailed 

structural model of the binding pocket will be used to start new simulations. Thousands 

of replicate rigid body simulations will be run simultaneously from each superficial 

association starting point to determine the probability of substrate progression deeper into 

the binding pocket and, finally, to the bound state. It is possible that in some cases 

multiple diffusional barriers exist within deep binding pockets. In these cases multiple 

sequential simulation sets will be performed to assess the distinct probabilities of passing 

diffusional barriers. Both the forward and backward barrier transition probabilities can be 

calculated to provide insight into kinetic differences between association and dissociation 

rates. Several sets of simulations will be performed on the well-studied 

acetylcholinesterase enzyme for development of this technique. Simulations will be 

performed over 100 microseconds, as the turnover time of acetylcholinesterase at high 

substrate concentration is approximately 63 microseconds.5 A coarse grain model with 

multi-bead representations for protein residues, such as MARTINI, will be used in an 

attempt to more fully capture the specific substrate-enzyme interactions. 
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Several coarse grain Brownian dynamics techniques will be explored. Because flexibility 

in both the ligand and macromolecule structure is often necessary for final bound state 

conformations to be achieved, we will investigate two flexible structure modeling 

approaches. We will explore a harmonic network approach to introducing a flexible 

structure to ligand and protein side chains. This would retain the relative position of each 

particle within a molecular entity relative to its starting reference conformational state 

with a network of harmonic bonds between each pair of particles. 
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