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RESEARCH ARTICLE

Aedes cadherin receptor that mediates Bacillus

thuringiensis Cry11A toxicity is essential for

mosquito development

Jianwu Chen, Karly G. Aimanova, Sarjeet S. GillID*

Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United

States of America

* Sarjeet.Gill@ucr.edu

Abstract

Aedes cadherin (AaeCad, AAEL024535) has been characterized as a receptor for Bacillus

thuringiensis subsp. israelensis (Bti) Cry11A toxins. However, its role in development is still

unknown. In this study, we modified the cadherin gene using ZFN and TALEN. Even though

we obtained heterozygous deletions, no homozygous mutants were viable. Because ZFN

and TALEN have lower off-targets than CRISPR/Cas9, we conclude the cadherin gene is

essential for Aedes development. In contrast, in lepidopteran insects loss of a homologous

cadherin does not appear to be lethal, since homozygous mutants are viable. To analyze

the role of AaeCad in vivo, we tagged this protein with EGFP using CRISPR-Cas9-mediated

homologous recombination and obtained a homozygous AaeCad-EGFP line. Addition of

Aedes Rad51 mRNA enhanced the rate of recombination. We then examined AaeCad pro-

tein expression in most tissues and protein dynamics during mosquito development. We

observe that AaeCad is expressed in larval and adult midgut-specific manner and its expres-

sion pattern changed during the mosquito development. Confocal images showed AaeCad

has high expression in larval caecae and posterior midgut, and also in adult midgut. Expres-

sion of AaeCad is observed primarily in the apical membranes of epithelial cells, and not in

cell-cell junctions. The expression pattern observed suggests AaeCad does not appear to

play a role in these junctions. However, we cannot exclude its role beyond cell-cell adhesion

in the midgut. We also observed that Cry11A bound to the apical side of larval gastric cae-

cae and posterior midgut cells exactly where AaeCad-EGFP was expressed. Their co-locali-

zation suggests that AaeCad is indeed a receptor for the Cry11A toxin. Using this mosquito

line we also observed that low doses of Cry11A toxin caused the cells to slough off mem-

branes, which likely represents a defense mechanism, to limit cell damage from Cry11A

toxin pores formed in the cell membrane.

Author summary

A number of receptors for Bt Cry toxins, have been identified and characterized, including

cadherin proteins. However, the role of these proteins in the insect is unknown and there
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have been few efforts to elucidate their function. First, in this study we show that in the

mosquito, Aedes aegypti, the cadherin protein is essential for development. Secondly, we

provide evidence that AaeCad plays a role in the apical membrane and the maintenance

of midgut integrity by gene tagging using CRISPR/Cas9, which overcomes the limitation

of receptor localization using antibodies in previous studies. These investigations are help-

ful to further investigate the physiological function of AaeCad. Moreover, this study dem-

onstrated successful tagging of an essential gene with fluorescence protein in a non-model

insect. In addition, this study showed that epithelium thinning is possibly a conserved

mechanism for host defense against pore-forming toxins, like Cry11A.

Introduction

Aedes aegypti is an important vector of a number of human diseases, including dengue, yellow

fever, Chikungunya and Zika [1]. Presently the primary means of controlling mosquito vectors

is through use of synthetic chemical insecticides, but increased incidence of insecticide resis-

tance in the field affects their efficacy. Consequently, alternatives such as Bacillus thuringiensis
subsp. israelensis (Bti) are frequently suggested for the control of this insect vector [2,3]. Bti is

used worldwide, being the only larvicide certified for mosquito control in the entire Europe. It

has also been used for decades in the North American, for example, California and Florida,

and is increasingly used in Asia and Africa. It has also been successfully used by the World

Health Organization for control of Simulum, the vector for onchocerciasis in the Niger

delta [4].

Bti is a Gram positive and spore forming bacteria. During its sporulation phase, Bti pro-

duces three major insecticidal three-domain Cry proteins (Cry4Aa, Cry4Ba and Cry11Aa) and

one major cytolytic protein (Cyt1Aa) [5]. Among these, Cry11Aa is one of the most active tox-

ins against Ae. aegypti. The activity of Cry toxins in lepidopteran and dipteran insects is medi-

ated by different protein receptors. In the case of lepidopteran-specific Cry1A toxins, four

different protein receptors have been revealed so far: cadherin [6–8], a glycosylphosphatidyl-

inositol (GPI)-anchored aminopeptidase N (APN) [9,10], a GPI-anchored alkaline phospha-

tase (ALP) [11–14] and more recently ABC transporters [15–17].

Among these receptors, the cadherin, a transmembrane protein, has been the most studied.

Binding of a Cry toxin to the toxin binding region (TBR) on a cadherin receptor is required

for further toxin cleavage, oligomerization and eventual pore-forming that is critical for intoxi-

cation [18]. Presently a number of cadherin mutations have been identified and some confer

resistance to the Cry toxins inHeliothis virescens, Pectinophora gossypiella and Helicoverpa
armigera [6,19,20]. Moreover, homozygous knockout of the cadherin gene inH. armigera
confers resistance to the Cry1Ac toxin [21]. Many of these mutations in lepidopterans are null

alleles, but these insects survive, suggesting the cadherin gene is likely not essential in these

insects [22–26]. Based on early reports of these mutants [6,23], we reasoned that knockouts of

the AaeCad gene would facilitate investigations of its role in Cry11Aa toxicity and larval mid-

gut physiology.

With the exception of ABCC transporters, similar proteins from dipteran insects have been

identified as receptors for mosquitocidal Bt toxins [27]. In fact, for the Cry11A toxin a cad-

herin (AaeCad, AAEL024535), APNs and ALPs have been identified as receptors, and all three

proteins are involved in the mechanism of Bti toxicity to Ae. aegypti larvae. Cells expressing

the AaeCad protein show increased sensitivity to Cry11A toxin, and transgenic mosquitoes
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with silenced AaeCad expression are more tolerant to Cry11A toxin, but not to the Cry4B

toxin [28,29]. Although cadherins play an essential role in the toxicity of Cry toxins, their phys-

iological function(s) are unknown in any insect.

Recent genome editing tools provide new opportunities to investigate gene function in

non-model insects. The gene editing tools, sequence-specific zinc finger nucleases (ZFN) [30]

and transcription activator-like effectors nuclease (TALENs) [31], provided us with the oppor-

tunity to elucidate the role of AaeCad. Using both ZFN and TALEN we could successfully

obtain deletions in the AaeCad gene. However, while we could successfully obtain heterozy-

gous mutants, we could not obtain homozygous mutants.

We therefore hypothesized that AaeCad plays a role in cell-cell adhesion thus being essen-

tial for mosquito development. To test this hypothesis we generated C-terminal EGFP-tagged

AaeCad homozygous mutants. To do so, we used the clustered regularly interspaced palin-

dromic repeats (CRISPR) associated systems [32]. Unlike ZFN and TALEN, CRISPR/Cas9

functions as a monomer and is more susceptible to off-target issue, but is more amenable to

homologous recombination and hence gene tagging [33].

Using CRISPR-Cas9 we generated EGFP-tagged AaeCad homozygous mutants. We then

monitored the expression of AaeCad-EGFP during Aedesmosquito development in these

mutants. We also analyzed its tissue and subcellular localization and response to Cry11Aa

intoxication. Our studies suggest that AaeCad plays a fundamental role in the mosquito devel-

opment but is not involved in septate junctions.

Methods

Ethics statement

Mice were used to feed mosquitoes. The protocol for this was approved by the IACUC of Uni-

versity of California, Riverside (UCR).

Purification and activation of Cry11Aa toxin

Cry11Aa toxin inclusions were isolated from a recombinant strain that was transformed

with pCG6 [34]. Briefly, this B. thuringiensis strain was grown in nutrient broth sporulation

medium containing 12.5 μg/ml erythromycin at 30˚C. Following cell autolysis, the spores and

inclusions were harvested, washed three times with 1 M NaCl plus 10 mM EDTA, pH 8.0

and centrifuged. The resulting pellet was resuspended in 30 ml of the same buffer and purified

by NaBr gradients as previously described [35]. The purified inclusions were solubilized in 50

mM Na2CO3, pH 10.5. Then the solubilized toxins were activated by trypsin (1:20, w/w).

The activated Cry11Aa toxin was then purified by ion-exchange chromatography (Mono Q,

FPLC).

ZFN design and synthesis

To knock out the AaeCad gene in Aedesmosquitoes, we amplified the target DNA fragment

from wild-type Orlando mosquitoes by PCR. After the sequences were confirmed by PCR

product sequencing, we designed two ZFN constructs (Fig 1A): CATGACTTCACCCTGAAT

attgttGTTCAGGTCCGGAACGTT (Exon 4) (ZFN binding sites/cut sites/binding sites); TGC

TCCCATTTGCTATGAtttgaaAACGGAAGTGGCTGCC (ZFN binding sites/cut sites/binding

sites). We had two ZFN constructs made and tested by Sigma-Aldrich (St. Louis, MO, USA).

The mRNA was made by Sigma, and stored at -80˚C until used for embryo injections.

Physiological function of Aedes cadherin
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TALEN plasmid preparation and mRNA synthesis

As an alternative we also attempted to knock out the AaeCad gene by TALEN. In this case we

truncated AaeCad to delete the toxin binding regions and the intracellular domain. DNA frag-

ments between cadherin repeats 6 and 7-coding sequences (in Exon 10) was amplified from

AedesOrlando strain mosquito and PCR product was sequenced and aligned with the AaeCad
sequence from the Liverpool strain. Then the left (TCCTTCAATTGAACGT) and right arms

(CGATGAACAGTTCCAC) targeting this fragment with a 15 nt spacer were designed by the

TALENhit program (Fig 2A). The TALEN construct with corresponding left and right arms

was synthesized by Cellectis Biosearch (Paris, France), and the TALEN cleavage activity was

validated before use. After the TALEN plasmid was linearized byHindIII, the capped TALEN

left and right arm 2.6 kb mRNA was synthesized by mMESSAGE mMACHINE T7 Ultra Kit

(Thermo Fisher Scientific, MA, USA). These mRNA were further processed by polyA tailing.

The resultant mRNA was purified by MEGAclear Kit (Thermo Fisher Scientific, MA, USA),

and the purified mRNA was then used for mosquito embryo injections.

Heteroduplex mobility assay (HMA)

To verify the presence of indels in the AaeCad gene caused by TALEN injection, a heterodu-

plex mobility assay [36] was performed. The AaeCad gene-specific forward primer (5’-GACT

CAACACTCCCTGCAGTAG-3’) and reverse primer (5’-GAATTTCTGCAAGTCCGGA

Fig 1. Use of ZFN results in efficient editing of the AaeCad gene. A. A ZFN construct with zinc finger nuclease binding site (in black, uppercase) and

target site (in red, lower case). B. After G1 mosquitoes were genotyped and the generated data was analyzed and plotted. Profiling of the deletion length

and the mutation rate is shown for a representative group of G1 mosquitoes. C. A chromatogram of a ZFN-targeted AaeCad fragment from wild-type

Orlando strain mosquitoes and heterozygous mutant with 4nt-deletion. For ZFN-targeted AaeCad fragment from the heterozygous mutant, the

overlapping chromatography peaks are displayed after the 4nt deletion.

https://doi.org/10.1371/journal.pntd.0007948.g001
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AACG-3’) were used for amplification of partial AaeCad fragment with the TALEN target

sites. Then the PCR amplicons were analyzed in 15% poly-acrylamide gel. Based on the dena-

turing and annealing, PCR product with strands, which are not fully complementary would

form the heteroduplex, but those with fully complementary stands formed the homoduplex.

Because of an opened single strand configuration surrounding the mismatch region, the het-

eroduplex migrated more slowly and was separated from the homoduplex in the gel. Also the

similar heteroduplex with a larger deletion in one strand would move slower in the gel.

sgRNA design, synthesis and in vitro cleavage assay

A sgRNA target sequence was designed using the CHOPCHOP program (http://chopchop.

cbu.uib.no/) based on 50 bp sequences flanking the stop codon on the last exon of the AaeCad
gene (Fig 3A). A gRNA most proximate to the stop codon with minimum off-targets and rela-

tively high predicted efficiency was chosen. To generate the sgRNA template, PCR by Platinum

High-fidelity Taq polymerase (Thermo Fisher Scientific, MA, USA) was performed with two

Fig 2. TALEN mediated knockout of the AaeCad gene. A. In this TALEN design schematics shows AaeCad gene sequence targeted by TALEN. B. G2

mosquitoes were genotyped by native heteroduplex mobility assay (HMA). Four out of 117 mosquito groups analyzed had 3nt, 4nt, 6nt or 3nt & 4nt

deletions, respectively. Lane M, DNA marker; Lane 1, sample mosquito #31M with 4nt indel; Lane 2, sample #32M with 3nt and 4nt indel; Lane 3,

sample #41 with 3nt indel; Lane 4, sample #70F with 6nt indel; Lane 5, sample #24F with no indel. C. PCR product sequencing from a heterozygous

mutant displayed overlapping chromatogram peaks, but those from wild-type Orlando strain mosquito showed single chromatogram peaks.

https://doi.org/10.1371/journal.pntd.0007948.g002

Physiological function of Aedes cadherin

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007948 February 3, 2020 5 / 23

http://chopchop.cbu.uib.no/
http://chopchop.cbu.uib.no/
https://doi.org/10.1371/journal.pntd.0007948.g002
https://doi.org/10.1371/journal.pntd.0007948


PAGE-purified oligos, CRISPR_F with the T7 promoter and AaeCad target sequence (5’-GA

AATTAATACGACTCACTATAGGAATTCCCGCTCGACGGCAGGGTTTTAGAGCTAGA

AATAGC–3’) and CRISPR_R with the remaining sgRNA sequences (5’-AAAAGCACCGACT

CGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATTTCTA

GCTCTAAAAC–3’). After agarose gel electrophoresis, the PCR product was purified by

Zymoclean Gel DNA Recovery Kit (Zymoresearch, Irvine, CA, USA). In vitro transcription

of purified PCR product was done using a MEGAscript Transcription Kit (Ambion, Foster

City, CA, USA). The resultant mRNA was purified by a MEGAclear Kit (Ambion, Foster City,

CA, USA). The synthesized sgRNA samples were immediately aliquoted and stored at -80˚C

before use.

To test the activity of synthesized sgRNA, an in vitro cleavage assay was performed. The

synthesized sgRNA, 150ng, 100ng of a plasmid pActin-Aaecad DNA [28] and 300 ng of Cas9

Fig 3. CRISPR-Cas9 mediated EGFP tagging at the 3’ end of the last coding exon of AaeCad gene results in an in frame fusion. A. sgRNA (in red)

and PAM sequences (in blue) were designed before the stop codon (in purple) on the last exon of AaeCad gene. B. This donor plasmid for homologous

recombination (HR) contains 1000bp of left arm, 720 bp of EGFP ORF and 1000bp of right arm. To prevent Cas9 cleavage on the left arm in the

plasmid, a silent mutation (CGG! CTG) was introduced into the PAM sequence on the left arm. C. When the homologous recombination occurred,

the EGFP was introduced immediately after the AaeCad gene with the aid of the left and right arms. D. The sequencing results of gDNA showed the

AaeCad gene had been successfully tagged with EGFP and no mutation was introduced into the AaeCad gene except for the silent mutation that was

intentionally introduced.

https://doi.org/10.1371/journal.pntd.0007948.g003
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protein (PNA Bio Inc., Thousand Oaks, CA, USA) were incubated at 37˚C for 1 hr in 10 μL of

1x NEB buffer 3.1 (New England Biolabs, Ipswich, MA, USA). Plasmid DNA in the absence of

Cas9 protein and sgRNA or with the presence of either Cas9 or sgRNA was used as control

groups. All samples were treated with 4μg of RNase at 37˚C for 15 min before running DNA

gel analysis. Then 1μl of stop solution (30% glycerol, 1.2%SDS, 250mM EDTA, pH 8.0) was

added into the reaction mixture and incubated at 37˚C for another 15 min. Then all the sam-

ples were analyzed on 1% agarose gel.

High resolution melt (HRM) analysis

To assess sgRNA efficiency in vivo, 100 embryos were injected with a Cas9-gRNA mixture.

Of these 24 hatched and their genomic DNA and that of three wild-type Orlando larvae were

individually extracted by DNeasy Tissue and Blood Kit (Qiagen, Hilden, Germany). The con-

centration and purity of genomic DNA was measured in a Nanodrop 2000 spectrophotometry

(Thermo Fisher Scientific, Waltham, MA, USA). High resolution melt analyses were performed

by Precision Melt Supermix (Bio-Rad, Hercules, CA, USA) using optimized forward (GTACT

AACTCAACTTTATGGC) and reverse (GGCATTTTCCCCCCAACCTG) primers. In 10μL

reaction was included with 1 μL of primer (2 μM), 4 μL of genomic DNA (50 ng) and 5 μL of

precision melt supermix. Real time PCR was run in Bio-Rad’s CFX 96 under the following con-

ditions: one cycle of 95 C, 2 min; 40 cycles of 95 C, 10 sec, 60 C, 30 sec and 72 C, 30 sec; 1 cycle

of 95 C, 30 sec, 60 C, 1 min and 65–95 C in 0.2 C increments, 10 sec/step. The generated data

files were imported into Precision Melt Analysis software for HRM analysis based on the ther-

mal denaturation properties of double-stranded DNA. The normalized melt curves were

grouped with the wild-type samples as references.

Homologous recombination (HR) plasmid design and synthesis

After the sgRNA efficiency was confirmed in vitro and in vivo, the flanking 1500 bp fragments

were amplified by PCR and sequenced. The plasmid used for HR was designed based on these

sequences. It consists of a 1000 bp left arm immediately before the stop codon, a 1000bp right

arm right after the stop codon and a 720 bp EGFP ORF in between the left and right arms (Fig

3B). To avoid cleavage of the plasmid by the sgRNA, a silent mutation on the PAM sequence in

the left arm was introduced into the plasmid (CGG! CTG). This construct was synthesized

and cloned into pUC57 plasmid by GenScript (Nanjing, China). Plasmid DNA was prepared

by EndoFree Plasmid Maxi Kit (Qiagen, Hilden, Germany) and kept for future use in -20˚C.

Analyses of Aedes mosquitoes in AaeCad knockouts

Three days after ZFN or TALEN mRNA were injected into Ae. aegypti embryos by the Insect

Transformation Facility at University of Maryland (Rockville, MD, USA), G0 eggs were

hatched and reared with a mixture of dog food and yeast (3:1) in deoxygenated tap water at 29

˚C, 16:8h light: dark, and 50% humidity. When they became adults, 3 females were mated with

3 males in a group (S1A Fig). All these females were separated for egg collection. Once G1 larval

mosquitoes turned to adults, they were in-cross mated. After their eggs were collected three

times, half of the eggs were hatched and the resultant G1 adult mosquitoes were collected for

genomic DNA extraction. A PCR product library was made by mixing all the PCR products

from separate groups and sent for PCR product profiling in Beijing Genomics Institute (Bei-

jing, China). The generated genotyping data was analyzed by the Bioinformatics facility at Uni-

versity of California, Riverside (UCR). Then a group with relatively high mutation rate was

chosen and another half of their eggs were hatched. When G2 mosquitoes became adults, their

fresh pupal casings were collected for genomic DNA extraction. After determining the purity

Physiological function of Aedes cadherin
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and concentration, the DNA was used as the template for nested PCR by Choice Taq Blue

Mastermix (Deville Scientific Inc., Metuchen, NJ, USA) under the following conditions: one

cycle of 94 C, 3 min; 35 cycles of 94 C, 45 sec, 60 C, 30 sec and 72 C, 1 min; 1 cycle of 72 C,

10 min. Then the final PCR product was sent for sequencing at the Institute of Integrative

Genome Biology (IIGB) at UCR. G2 mosquitoes with the desired 4nt mutation were mated

with the wild-type Orlando mosquitoes for propagation and their eggs again were collected.

For G3 mosquitoes, a heterozygous mutant was mated with another heterozygous mutant of

the opposite sex expecting 25% of the progeny would be homozygous mutants in G4 mosqui-

toes. Although this process was repeated several times, no homozygous mutants were obtained.

To C-terminally tag the AaeCad with EGFP two embryo injections were performed by

the Insect Transformation Facility at University of Maryland; the first with a mixture of

gRNA, Cas9 protein and HR donor plasmid, and the second had in addition Rad51c mRNA

(Table 2). For both injections, two G0 male adult mosquitoes were mated with 2 female G0

adult mosquitoes. After egg laying all male and female mosquitoes were collected and their

gDNA analyzed for EGFP knockin using nested PCR. Eggs from a positive G0 group were

hatched and 2 G1 females were mated with 2 G1 males. After their eggs were collected, the

gDNA of all adult mosquitoes was again analyzed by PCR for the EGFP knockin. Eggs from

one positive G1 group were hatched and single pair-mating was done for the G2 adult mos-

quitoes. Again, after G3 eggs were collected, G2 adult mosquitoes were genotyped by PCR.

Then G3 eggs from one group with both positive male and female were hatched and G3

adult mosquitoes mated. After G4 eggs were collected, all eggs from the same female were

hatched together and screened for a homozygous group by examining for green fluorescence

in the larval midguts using fluorescence microscopy (Nikon SMZ1500). After screening for

a few possible homozygous groups, G5 adult mosquitoes were sib mated for propagation to

obtain a stable mosquito line. This homozygous line was used for further investigations.

Immunohistochemistry

Ae. aegypti larval guts were dissected in phosphate buffered saline (PBS), transferred into 4%

paraformaldehyde (PFA) and fixed at 4˚C overnight. The tissues were then washed in PBST

(PBS plus 0.1% Triton X-100) three times for 30 min, incubated in 15% sucrose solution

(15% sucrose in PBS) overnight followed by 30% sucrose solution overnight. The tissues

were embedded first in OTC compound (Sakura Finetek USA Inc., Radnor, PA, USA) on

dry ice, and then the embedded sections were frozen in -80˚C. Sections, 10 μm thick, were

made using a Cryostat Leica CM950 (Wetzlar, Germany), placed on poly-L-lysine (Sigma-

Aldrich, St. Louis, MO, USA) slides coated with 1% gelatin (Becton Dickson, Franklin Lakes,

NJ, USA), and then the sections were dried at 40˚C for 1 h before processing.

For immunolocalization, the sections were pre-wetted in PBST for 10min followed by incu-

bation in blocking buffer (2% goat serum in PBST) at room temperature for 1hr. The sections

were incubated with primary antibodies at 4˚C overnight and then washed as described above.

The primary antibodies used here are rabbit polyclonal antibodies to AaeCad (1:100) prepared

in our lab, but mouse monoclonal antibodies to Armadillo (N27A1) were obtained from the

Developmental Studies Hybridoma Bank (DSHB) (Iowa city, Iowa, USA) and were used for

staining at a final concentration of 5μg/mL. All sections were incubated in the dark with either

Alexa Fluor 647 goat-anti-rabbit IgG or Alexa Fluor 555 goat-anti-mouse IgG secondary anti-

bodies (Thermo Fisher Scientific, MA, USA) and DAPI at 0.1μg/mL at room temperature for

1 h. After washing three times in the same buffer, the sections were mounted in Aqua-Poly/

Mount medium (Polysciences, Inc., Warrington, PA, USA). However, for the toxin binding

assay, Cry11A (10ng/μL) was incubated with all sections followed by Cry11A toxin detection

Physiological function of Aedes cadherin
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using anti-Cry11A antibody and an Alexa Fluor 647 goat-anti-rabbit IgG. Images were

obtained using a SP5 Inverted confocal microscope (Leica, Wetzlar, Germany) in IIGB at

UCR. All images were imported into Adobe Photoshop for brightness adjustment and proper

annotation.

Bioassays

Bioassays were performed with fourth instar of Ae. aegypti larvae using a spores/inclusions sus-

pension. Briefly, 20 early 4th instar larvae were placed in water in 10-oz plastic cups (Costar,

USA) to which Cry11Aa suspensions (5.6 ± 0.52 x 108 CFU/mL) of 20, 40, 80, 160 and 320 μL

were added in a total volume of 200 ml, respectively. Mortality was recorded after 24-h incuba-

tion at room temperature. All bioassays were performed at least three times. Dose-response

values were analyzed by a probit program (EPA) and plotted using Origin (Origin Lab, North-

ampton, MA).

Results

The cadherin gene is essential for Aedes development

To knock out the cadherin gene using ZFN, we designed and synthesized a ZFN construct (Fig

1A). Since construct 1 had higher ZFN activity, mRNA synthesized from this construct was

used for embryo injections. Of 741 embryos injected with mRNA only 59 hatched, with a

hatch rate of about 7.9%, (Table 1). Eventually, only 54 G0 developed into adult mosquitoes.

These mosquitoes were mated and eggs collected as described (S1A Fig). Half of the G1 eggs

collected were hatched and used for genotyping. The genotyping data (Fig 1B) showed that 43

out of 54 G1 matings carried an indel, indicating a high mutation rate, about 79.6% (Table 1).

Then we focused on one group with a relatively high mutation rate and crossed them with

wild-type Orlando mosquitoes. We found the G2 mosquitoes had various nucleotides deleted,

but only heterozygous mutants with a 4nt deletion between 1067 and 1070nt in ORF (Fig 1C)

were first processed. When the heterozygous mutants were crossed with each other, we failed

to obtain any homozygous mutants from G4 mosquitoes. Although we analyzed four more

generations, we were unable to obtain any homozygous mutants. Further, when we tested

other mutants with a 2nt, 8nt or 16nt deletion at G2, we could not obtain any homozygous

mutants at G4 either.

When TALEN became available, we tried to knock out the AaeCad gene by TALEN at a

new site, 3’ downstream of the initial ZFN target site. The TALEN left arm and right arm

mRNAs were made and processed by polyA tailing (S1B Fig). The purified tailed mRNAs were

mixed and used for embryo injections. In total, 793 mosquito embryos were injected and 267

hatched (hatch rate of 34%) (Table 1). After G2 eggs were collected, G1 mosquitoes were geno-

typed and analyzed as above for ZFN. Bioinformatics analyses showed 4 out of 117 groups car-

ried 3nt, 4nt, 6nt, 3nt & 4nt deletions, respectively (S1 Table) and their mutation rate ranged

from 6.07% to 29.6%. These bioinformatics results were then confirmed by heteroduplex

mobility assay (HMA). In addition to a 150 bp band amplified from wild-type Orlando strain,

the PCR products from the samples with 6nt, 4nt and 3nt indel had two additional bands with

sizes of about 900 & 700 bp, 600 & 370 bp and 370 & 250 bp, respectively (Fig 2B). We analyzed

Table 1. Use of either ZFN or TALEN led to knockout of the Aedes cadherin gene, but ZFN is far more efficient.

Group Components Injected embryos G0 larval survivors (%) G1 Indel rate (%)

#1 Aacad ZFN 741 59 (7.9%) 43/54 (79.6%)

#2 AaeTALEN 793 267 (34%) 4/117 (3.4%)

https://doi.org/10.1371/journal.pntd.0007948.t001

Physiological function of Aedes cadherin

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007948 February 3, 2020 9 / 23

https://doi.org/10.1371/journal.pntd.0007948.t001
https://doi.org/10.1371/journal.pntd.0007948


further one group, #31M, which had a 4nt indel between 2682 and 2685 nt in the ORF. The

gDNA from pupal casings of the G2 mosquitoes as well as that of all G2 individual mosquitoes

from this 31M strain were analyzed. Wild-type gDNA have distinct chromatographic peaks,

but those with 4nt deletion showed overlapping chromatographic peaks, indicating their het-

erozygosity (Fig 2C). The heterozygous mosquitos were mated with wild-type Orlando strain

mosquito for propagation. After G3 heterozygous mosquitos were identified, single-pair mat-

ings were done to obtain homozygous mosquitoes at G4. However, we could not obtain a

homozygous mutant even though we tried an additional four generations of selection. We

were also unable to obtain a homozygous knockout of the AaeCad gene using ZFN. Taken

together, because ZFN and TALEN have much less off-target issues than CRISPR-Cas9 [37],

the AaeCad gene is very likely essential for normal mosquito development.

AaeCad gene was successfully tagged with EGFP using

CRISPR-Cas9-mediated homologous recombination

Since the AaeCad gene knockout is lethal for Aedesmosquito, we surmised that this gene plays

an important role in the mosquito midgut. We fluorescently tagged AaeCad to facilitate moni-

toring its expression in vivo and help investigate its role in mosquito midgut physiology and in

the toxicity of Cry11Aa. Using CRISPR-Cas9 homologous recombination (HR) we successfully

tagged the AaeCad protein with EGFP at the C-terminus. To do this, we showed using an in
vitro cleavage assay that in the presence of both Cas9 and gRNA, the AaeCad in the plasmid

was cleaved, but not when only Cas9 or gRNA was used (S2B Fig). Then this gRNA and Cas9

were used for an in vivo cleavage assay using high-resolution melt (HRM) analysis. Seven out

of 24 survivors showed differential HRM curves (S2C Fig), suggesting the gRNA also worked

efficiently in vivo. Moreover, as a key player of homologous recombination and DNA repair,

Rad51 recombinase has been shown to facilitate increased HR efficiency [38–40]. Hence,

Aedes Rad51 ORF was amplified from Aedesmosquito, and three different isoforms of Aedes
Rad51, Rad51a, b and c, were identified and cloned into the vector, pcDNA3.1 (S3A Fig).

Among them, Rad51c is the longest isoform. Thus, it was used for mRNA synthesis and polyA

tail processing (S3B Fig). The purified Rad51c mRNA was also used for embryo injections.

Two embryo injections were made to tag AaeCad gene with EGFP. The first was performed

with a mixture of gRNA, Cas9 protein and HR donor plasmid, while the second included in

addition Rad51c mRNA (Table 2). In total, 512 and 516 mosquito embryos were injected for

these two groups and the hatch rate was 24.2% and 22.5%, respectively. Of these, 2 out of 123

G0 survivors from the first injection had EGFP tagged to the AaeCad gene, with a correct HR

rate of 1.6%. Whereas 3 out of 104 survivors from second injection were detected with EGFP-

tagged AaeCad gene, with a HR rate of 2.9%. This suggests that while the precise knock-in rate

for both injections is relatively low, Rad51c mRNA enhances the precise knock-in rate by

about 1.8-fold (Table 2).

To confirm that the AaeCad gene was correctly tagged, PCR products from positive mos-

quitoes were sequenced and analyzed. Sequencing results confirmed the AaeCad gene was

Table 2. CRISPR-Cas9 mediated homologous recombination to generate an EGFP tagged cadherin gene is more efficient with Rad51.

Group Components � Injected embryos G0 larval survivors (%) G0 HR rate (%) G1 HR rate (%)

#1 donor plasmid 512 124 (24.2%) 2/123 (1.6%) N/A

#2 donor plasmid/Rad51 mRNA 516 116 (22.5%) 3/104 (2.9%) 5/65 (7.7%)

� In addition to gRNA and Cas9 protein.

https://doi.org/10.1371/journal.pntd.0007948.t002
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successfully tagged in frame with EGFP and a silent-mutation (CGG! CTG) was also intro-

duced into the AaeCad gene by HR (Fig 3C and 3D). Eggs from G0 mosquitos were hatched,

but eggs from only one out of 5 positive groups successfully hatched and grew into adults.

Eggs from the other 4 groups either did not hatch or did not develop into adults. For G1 mos-

quitoes, only five out of 65 G1 survivors were positive, so the heritable rate is 7.7% (Table 2).

However, when G2 progenies derived from this positive G1 female were screened by nested

PCR, the results showed that half of the mosquitoes had EGFP knock in. When the native Aae-
Cad gene-specific primers were used for PCR, the PCR product could be amplified from all

samples, indicating that all these positive mosquitoes were still heterozygous. After single-pair

mating and screening through an additional two generations, we succeeded in getting an

EGFP-tagged cadherin mutant homozygous line. This homozygous line was then used for fur-

ther investigations. Our results demonstrated successful tagging of an essential gene in non-

model insects.

AaeCad protein is expressed in a tissue specific manner during mosquito

development

In the homozygous EGFP-tagged line, AaeCad protein expression was readily observed in all

stages of larval development except in the neonates. In 2nd, 3rd and 4th instar larvae, Aae-EGFP

was always expressed in posterior midgut, but its expression pattern in the cardia and gastric

caecae was variable (S4A, S4B, S4C and S4D Fig). In 2nd instar larvae, AaeCad-EGFP was

highly expressed in cardia (S4A Fig). In 3rd instar larvae, some Aae-EGFP was observed in gas-

tric caecae (GC), but most of expression was in the cardia (S4B Fig). But in early 4th instar lar-

vae, AaeCad-EGFP was mostly expressed in gastric caecae (S4C Fig). Interestingly, in late 4th

instar larvae, most AaeCad-EGFP was expressed in cardia again (S4D Fig). Thus, it is clear that

AaeCad was first expressed in the cardia and then moved to the gastric caecae gradually with

the larval development, but AaeCad protein migrated back to cardia before pupating. How-

ever, since the cuticle blocks green fluorescence we were unable to monitor in vivo expression

during the pupae and adult stages (S4E, S4F, S4G and S4H Fig).

To more clearly observe AaeCad expression patterns, mosquito midguts were dissected.

As in whole larvae, dissected midguts from early 4th instar larvae showed strong AaeCad

expression in the gastric caecae and in the posterior midguts (Fig 4A). Also, in dissected

midguts from both male and female adult mosquitoes showed AaeCad is expressed strongly

in the foregut but weakly in the midguts (Fig 4C and 4D). But in the dissected pupal gut,

EGFP expression was less intense (Fig 4B). No AaeCad expression was observed in tissues

other than guts in larvae, pupae and adults. Tissues analyzed included ovary, testes, the hind

gut and Malpighian tubules. Therefore, the AaeCad protein is expressed in a tissue specific

manner.

AaeCad localizes primarily to the apical side of larval gastric caecae and

posterior midgut (PM) cells

To determine if AaeCad plays a role in cell-cell adhesion, we analyzed the subcellular localiza-

tion of AaeCad in larval guts. Whole larval midguts were imaged using a confocal microscope

(Leica SP5). Strong AaeCad-EGFP expression was observed in gastric caecae (GC) and poste-

rior midgut (PM) cell membranes (Fig 5A). Notably, cells in gastric caecae are larger than those

in posterior midgut. To further characterize the subcellular localization of AaeCad protein, the

larval midguts were embedded and frozen sections from different parts of midgut were ana-

lyzed. High AaeCad-EGFP expression was observed on the apical side of gastric caecae and

posterior midgut (PM) cells and lower expression in the anterior midgut (AM) (Fig 5B).
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Fig 4. Visualization of AaeCad-EGFP in whole mounts of dissected guts from larva, pupa and adult male and female homozygous

Aedes. A. AaeCad protein localization in early 4th instar larval gut. Expression is observed primarily in the gastric caecae and the posterior

midgut. B. AaeCad protein expression in pupal gut. C. AaeCad protein localization in adult male gut; D. AaeCad protein localization in adult

female gut. Expression in both the male and female was observed primarily in the foregut. Since the tissues were in PBS buffer the samples

move ever so slightly under the different filters, preventing use of the merge function. Bar: 50μm.

https://doi.org/10.1371/journal.pntd.0007948.g004
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Fig 5. AaeCad protein is localized primarily in gastric caecae and posterior midgut of early 4th instar larvae. A.

Whole mount images under low magnification showed that strong AaeCad-EGFP expression in the gastric caecae

(GC) and posterior midgut cell membrane. B. Cross section images showed high AaeCad-EGFP expression in the

gastric caecae (GC) and posterior midgut and low expression in the anterior midgut. In the gastric caecae and midgut,

EGFP-tagged AaeCad is specifically expressed in the epithelial cell membrane. DAPI stains the nucleus. All images

were collected using an SP5 Inverted confocal microscope. Bar: 50μm.

https://doi.org/10.1371/journal.pntd.0007948.g005
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We previously showed that an anti-cadherin antibody binds to the epithelial layer of

gastric caecae and the posterior gut [41]. To confirm that AaeCad-EGFP indeed is expressed

at the same sites as localized by the anti-cadherin antibody (Alexa 647), we analyzed the

expression of AaeCad in the EGFP-tagged mosquito line. We observed that in the gastric

caecae (Fig 6A) and posterior midguts (Fig 6E), the EGFP-tagged cadherin co-localizes with

Fig 6. An anti-AaeCad polyclonal detects the EGFP-tagged AaeCad. Anti-AaeCad polyclonal antibody could detect

the EGFP-tagged AaeCad in gastric caecae (A) and posterior midgut (E), but not in the anterior midgut (C). Whereas,

when only the Alexa 647-labeled antibody was used, no fluorescence was detected in the gastric caecae (B), anterior

midgut (D) and posterior midgut (F). Bar: 50μm, but is 25μm in panel E.

https://doi.org/10.1371/journal.pntd.0007948.g006
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the antibody-detected cadherin. However, since expression of AaeCad protein in the ante-

rior midgut was low as observed with AaeCad-EGFP (Fig 5B), its expression was not

detected with the anti-AaeCad antibody (Fig 6C) and as previously reported [41]. In the

absence of anti-AaeCad antibody, no fluorescence was observed in gastric caecae (Fig 6B),

anterior midgut (Fig 6D) and posterior midguts (Fig 6F).

Cry11A toxins caused the loss of midgut membranes

We have previously reported that the Cry11Aa toxin binds the epithelial layers of the gastric

caeca and the posterior midgut [41]. Here we show that Cry11A toxin binds to the AaeCad-

EGFP in the gastric caecae (Fig 7A) and the posterior midguts (Fig 7E), but not in the anterior

midgut (Fig 7C). In the absence of Cry11A toxin but in the presence of the anti-Cry11A anti-

body, no fluorescence was observed in the gastric caecae (Fig 7B), anterior midgut (Fig 7D)

and posterior midgut (Fig 7F). Hence, the toxin binding ability of the AaeCad receptor C-ter-

minally tagged with EGFP is unaltered. Further, bioassay data showed that the EGFP-tag did

not change Cry11A toxicity against the homozygous AaeCad-EGFP mutants when compared

with Orlando wild-type mosquitoes (S5 Fig).

The EGFP tagged AaeCad provides a better visualization of Aedesmidgut cell structure.

We therefore analyzed the effect of Cry11Aa toxin treatment on cell morphology in the pos-

terior midgut. We monitored changes in cell morphology after 4th instar mosquito larvae

were treated with an LC10 dose of Cry11A toxin for 1h, 4h, 8h and 16h. In mosquito larvae

that showed no change in feeding behavior or ability to move in the first hour, microvilli in

the epithelial cells shrank and some of them were damaged (Fig 8A). At 4h, most microvilli

had detached from the cells, but the epithelial cells remain intact (Fig 8B). At 8h, midgut epi-

thelial cells were deformed, and some extracellular round-shaped membranes surrounded

by clear green fluorescence membrane appeared in the lumen of mosquito guts (Fig 8C).

Finally at 16h, more such membrane components were observed in the midgut lumen (Fig

8D). Apparently, in response to low levels of toxin the lumen-facing epithelial cell mem-

brane is pinched off and lost from the epithelial cells forming extracellular round-shaped

membranes. But the remaining part of the cell, which contains the nucleus, forms a new cell

membrane to maintain cellular integrity (Fig 8E, 8F and 8G). Notably, Armadillo that co-

localizes on the apical side of midgut epithelial cells with EGFP-tagged AaeCad, was also

detected on the shed cell membranes and in the remaining cell membrane as is AaeCad-

EGFP. Armadillo and EGFP-tagged AaeCad staining is also observed within the cell. Collec-

tively, these images show that in both the cell membranes that are lost and that remaining in

the cell, Armadillo always colocalizes with AaeCad-EGFP. It suggests a series of proteins are

involved in the cell membrane shedding, probably including EGFP-tagged AaeCad and

Armadillo proteins.

Discussion

Our previous studies showed AaeCad is a functional receptor for the Cry11A toxin [28,29,41],

and it also binds with high affinity a related mosquitocidal toxin, Cry11Ba [42]. AaeCad is

homologous if not orthologous, to Cry toxin-binding cadherins identified in a number of the

lepidopterans, including Heliothis, Pectinophora,Helicoverpa, Bombyx andManduca [22–26],

and also in coleopterans, Tenebrio and in Leptinotarsa [43,44]. However, all these “cadherin-

like” receptor protein sequences do not align well with the established vertebrate cadherin fam-

ily [45] or those from Drosophila; so they represent a novel and distinct cadherin family.

Although their role in mediating Bt toxicity has been clearly documented, their physiological

function remains unknown.
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Hence with availability of ZFNs and then TALENs, we made knock outs of the AaeCad
gene. While we obtained Aedes heterozygotes of these knockouts with both ZFN and TALEN

(Figs 1 and 2) we were unable to obtain homozygotes, even though the ZFN and TALEN tar-

gets were in different exons. The knockouts made would have affected all the known AaeCad

Fig 7. EGFP-tagged AaeCad co-localizes in the larval gut cells with the Cry11Aa toxin. The Cry11A toxin bound to

the AaeCad-EGFP in the gastric caecae (A) and posterior midgut (E), but not in the anterior midgut (C). However,

when the Cry11A toxin was absent, the fluorescence could not be observed in the gastric caecae (B), anterior midgut

(D) and posterior midgut (F). Bar: 50μm, but is 25μm in panels E and F.

https://doi.org/10.1371/journal.pntd.0007948.g007
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Fig 8. Larval exposure to low level Cry11A toxin concentrations disrupts mosquito midgut cells and causes these

cells to shed its cell membrane. The larval midgut cell morphology was observed under a confocal microscope after

the mosquitos were treated at the LC10 dose for 1 hr (A), 4 hr (B), 8 hr (C) and 16 hr (D). Changes in cell conformation

were observed with Armadillo staining in cadherin-EGFP mosquitoes (E, F and G) at 18h. The same image is observed

with DAPI, EFGP (cadherin) and Alexa 555 (Amardillo). Significant AaeCad-EGFP and Amardillo signaling is also

observed in the intracellular compartments. Bar: 50μm.

https://doi.org/10.1371/journal.pntd.0007948.g008
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alleles. Therefore, we surmise from this data that this Aedes cadherin is likely essential, and

that it differs from lepidopteran cadherins, even though they are at least homologous and they

both bind Bt Cry toxins.

To analyze its role in Aedes, AaeCad-EGFP expression was monitored in larvae and adults.

In both cases this cadherin was expressed exclusively in guts, and also in guts isolated from

pupae, thus showing expression occurs in a tissue-specific manner (Figs 4 and 5). However, we

cannot exclude minor levels of expression in other tissues and in the embryo.

Unless AaeCad is essential for the embryo development, we surmise that the lethality of

AaeCad gene knockout might not be caused by the absence of AaeCad expression in other

tissues but that in the midgut. Other than the cell-cell adhesion, cadherin proteins have also

evolved on cell-cell recognition and sorting, cell and tissue polarity, boundary formation in tis-

sues and coordination of multicell movement [46,47]. Apparently AaeCad is present only in

the apical side of epithelial cells, so it is unlikely involved in the cell-cell adhesion. But it is pos-

sible AaeCad could play a role beyond that in cell-cell adhesion in the larval or adult midgut.

In Drosophila, Cad99C, one of the 17 cadherin-like proteins in cadherin family localizes on

the apical side of follicle cells and adult midgut cells, but it determines the microvillus length

[48,49]. Therefore, this study provides a clue for further investigating the physiological func-

tion of “cadherin-like” receptor proteins for Bt Cry toxins.

Our prior data showed the Cry11A toxin binds to the apical side of epithelial cells in larval

midguts and that an anti-AaeCad antibody also is localized in the same area [41]. In this study,

we also observed that Cry11A bound to the apical side of larval gastric caecae (Fig 7A) and

posterior midgut (Fig 7E) cells exactly where AaeCad-EGFP was expressed (Fig 6A and 6E).

Thus, their co-localization further indicates that AaeCad is indeed a receptor for the Cry11A

toxin. In addition, we detected weak AaeCad-EGFP expression in the anterior midgut, and

this expression was not observed with anti-AaeCad staining, while expression in the gastric

caeca and posterior gut was (Fig 2, [41]). Thus the low-level expression is more visible with

gene tagging than by immunostaining.

With the homozygous AaeCad-EGFP mutant line we analyzed changes in Aedesmidgut

cell morphology after Cry11A toxin treatment for varying periods (Fig 8). At the LC50 levels,

midgut cells were extensively damaged preventing us from obtaining any decent cell struc-

tures. However, using larvae that survived the LC10 dose of Cry11A toxin, we observed there

were significant differences in the apical cell membrane structure. As expected, there was early

loss of microvilli followed by the loss of cell membranes possibly by shedding, and the resulting

thinner epithelium membrane (Fig 8). It appears the midgut cell response to toxin action is an

attempt by the mosquito to maintain a functional midgut. Similarly, when Drosophila intesti-

nal epithelial cells are exposed to the pore-forming toxin, hemolysin, secreted by Serratia mar-
cescens, they undergo epithelium thinning followed by a recovery of epithelium thickness

within a few hours[50]. Therefore, it is likely that epithelium thinning is a conserved mecha-

nism for host defense against the pore-forming toxins.

In Caenorhabditis elegans, pores formed by Cry5B toxins are taken up from the plasma

membrane into the cells by Rab5-controlled endocytosis, transported into lysosomes, and then

expulsed into lumen by Rab11-controlled exocytosis [51]. Here we also observed some fluores-

cence inside midgut cells, but it is unknown if Aedes Rab5 and Rab11 homologs are involved

in the cell’s defense against Cry11A toxin or other mosquitocidal toxins. Moreover, when the

larvae were removed from additional toxin exposure, some of them developed normally (S2

Table). Since the Cry11A toxin forms pores [51], rapid loss of the cell membrane containing

pores and receptors prevents further cell damage. Hence damaged cells can repair themselves

by shedding their membrane that contains the toxin pores, unless toxin concentrations are

high. Therefore, membrane shedding can be considered a defense mechanism.
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Additionally, because the EGFP tagging does not alter Cry11A toxin binding and toxicity

(Fig 7 and S5 Fig), the AaeCad-EGFP homozygous mutant line can be used to further inter-

pret the molecular mechanisms of Cry11A toxicity. For example, the current model of Cry

toxin interaction suggests the cadherin moves into lipid rafts after toxin binding to the cad-

herin and a GPI-anchored receptor [18,52]. Hence AaeCad-EGFP migration into lipid raft

can be monitored by total internal reflection fluorescence microscopy. In addition, fluores-

cently tagged proteins in gene-modified insects can be used for tracing their release in the

field. Finally, out study demonstrates that proteins in a non-model insect can be fluores-

cently-labeled in vivo, and where the homozygous mutant line of an essential gene can be

generated successfully.
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Second instar larvae; B. Third instar larvae; C. Fourth instar larvae; D. Late forth instar larvae;

E. pupae; F. male adult mosquito; G. female adult mosquito; H. AaeCad protein localization in

adult female gut after blood feeding; The right two columns of images especially showed the

fluorescence of AaeCad-EGFP in the cadia or gastric caecae. Bar: 500 μM.
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(TIF)

S1 Table. Bioinformatics analysis for G1 TALEN mosquitoes.

(DOCX)

S2 Table. LC10 dose of Cry11A toxicity on the Aedes mosquito larvae and adults.

(DOCX)

Physiological function of Aedes cadherin

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007948 February 3, 2020 19 / 23

http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007948.s001
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007948.s002
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007948.s003
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007948.s004
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007948.s005
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007948.s006
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007948.s007
https://doi.org/10.1371/journal.pntd.0007948


Acknowledgments

We would like to thank Maria Ramirez Loyola and Aman Jot Kaur for rearing the wild type

and AaeCad-EGFP mosquitoes and assisting on mosquito blood feeding. Also, we appreciate

the help from Amy Evans and Nadia Qureshi on the analysis of the AaeCad gene manipulated

by ZFN.

Author Contributions

Conceptualization: Jianwu Chen, Sarjeet S. Gill.

Data curation: Jianwu Chen.

Formal analysis: Jianwu Chen, Sarjeet S. Gill.

Funding acquisition: Sarjeet S. Gill.

Investigation: Jianwu Chen, Karly G. Aimanova.

Methodology: Jianwu Chen, Karly G. Aimanova.

Project administration: Sarjeet S. Gill.

Resources: Sarjeet S. Gill.

Supervision: Sarjeet S. Gill.

Writing – original draft: Jianwu Chen.

Writing – review & editing: Jianwu Chen, Sarjeet S. Gill.

References
1. Kyle JL, Harris E (2008) Global spread and persistence of dengue. Annu Rev Microbiol 62: 71–92.

https://doi.org/10.1146/annurev.micro.62.081307.163005 PMID: 18429680

2. Zhang Q, Hua G, Adang MJ (2017) Effects and mechanisms of Bacillus thuringiensis crystal toxins for

mosquito larvae. Insect Sci 24: 714–729. https://doi.org/10.1111/1744-7917.12401 PMID: 27628909

3. Ben-Dov E (2014) Bacillus thuringiensis subsp. israelensis and its dipteran-specific toxins. Toxins

(Basel) 6: 1222–1243.

4. Resh VH, Leveque C, Statzner B (2004) Long-term, large-scale biomonitoring of the unknown: assess-

ing the effects of insecticides to control river blindness (onchocerciasis) in West Africa. Annu Rev Ento-

mol 49: 115–139. https://doi.org/10.1146/annurev.ento.49.061802.123231 PMID: 14651459

5. Berry C, O’Neil S, Ben-Dov E, Jones AF, Murphy L, et al. (2002) Complete sequence and organization

of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol

68: 5082–5095. https://doi.org/10.1128/AEM.68.10.5082-5095.2002 PMID: 12324359

6. Gahan LJ, Gould F, Heckel DG (2001) Identification of a gene associated with Bt resistance in Heliothis

virescens. Science 293: 857–860. https://doi.org/10.1126/science.1060949 PMID: 11486086

7. Nagamatsu Y, Koike T, Sasaki K, Yoshimoto A, Furukawa Y (1999) The cadherin-like protein is essen-

tial to specificity determination and cytotoxic action of the Bacillus thuringiensis insecticidal CryIAa

toxin. FEBS Lett 460: 385–390. https://doi.org/10.1016/s0014-5793(99)01327-7 PMID: 10544269

8. Vadlamudi RK, Weber E, Ji I, Ji TH, Bulla LA Jr. (1995) Cloning and expression of a receptor for an

insecticidal toxin of Bacillus thuringiensis. J Biol Chem 270: 5490–5494. https://doi.org/10.1074/jbc.

270.10.5490 PMID: 7890666

9. Gill SS, Cowles EA, Francis V (1995) Identification, isolation, and cloning of a Bacillus thuringiensis

CryIAc toxin-binding protein from the midgut of the lepidopteran insect Heliothis virescens. J Biol Chem

270: 27277–27282. https://doi.org/10.1074/jbc.270.45.27277 PMID: 7592988

10. Knight PJ, Knowles BH, Ellar DJ (1995) Molecular cloning of an insect aminopeptidase N that serves as

a receptor for Bacillus thuringiensis CryIA(c) toxin. J Biol Chem 270: 17765–17770. https://doi.org/10.

1074/jbc.270.30.17765 PMID: 7629076

Physiological function of Aedes cadherin

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007948 February 3, 2020 20 / 23

https://doi.org/10.1146/annurev.micro.62.081307.163005
http://www.ncbi.nlm.nih.gov/pubmed/18429680
https://doi.org/10.1111/1744-7917.12401
http://www.ncbi.nlm.nih.gov/pubmed/27628909
https://doi.org/10.1146/annurev.ento.49.061802.123231
http://www.ncbi.nlm.nih.gov/pubmed/14651459
https://doi.org/10.1128/AEM.68.10.5082-5095.2002
http://www.ncbi.nlm.nih.gov/pubmed/12324359
https://doi.org/10.1126/science.1060949
http://www.ncbi.nlm.nih.gov/pubmed/11486086
https://doi.org/10.1016/s0014-5793(99)01327-7
http://www.ncbi.nlm.nih.gov/pubmed/10544269
https://doi.org/10.1074/jbc.270.10.5490
https://doi.org/10.1074/jbc.270.10.5490
http://www.ncbi.nlm.nih.gov/pubmed/7890666
https://doi.org/10.1074/jbc.270.45.27277
http://www.ncbi.nlm.nih.gov/pubmed/7592988
https://doi.org/10.1074/jbc.270.30.17765
https://doi.org/10.1074/jbc.270.30.17765
http://www.ncbi.nlm.nih.gov/pubmed/7629076
https://doi.org/10.1371/journal.pntd.0007948


11. Jurat-Fuentes JL, Gahan LJ, Gould FL, Heckel DG, Adang MJ (2004) The HevCaLP protein mediates

binding specificity of the Cry1A class of Bacillus thuringiensis toxins in Heliothis virescens. Biochemistry

43: 14299–14305. https://doi.org/10.1021/bi048500i PMID: 15518581

12. McNall RJ, Adang MJ (2003) Identification of novel Bacillus thuringiensis Cry1Ac binding proteins in

Manduca sexta midgut through proteomic analysis. Insect Biochem Mol Biol 33: 999–1010. https://doi.

org/10.1016/s0965-1748(03)00114-0 PMID: 14505693

13. Sangadala S, Walters FS, English LH, Adang MJ (1994) A mixture of Manduca sexta aminopeptidase

and phosphatase enhances Bacillus thuringiensis insecticidal CryIA(c) toxin binding and 86Rb(+)-K+

efflux in vitro. J Biol Chem 269: 10088–10092. PMID: 8144508

14. Guo Z, Kang S, Chen D, Wu Q, Wang S, et al. (2015) MAPK signaling pathway alters expression of mid-

gut ALP and ABCC genes and causes resistance to Bacillus thuringiensis Cry1Ac toxin in diamondback

moth. PLoS Genet 11: e1005124. https://doi.org/10.1371/journal.pgen.1005124 PMID: 25875245

15. Endo H, Tanaka S, Adegawa S, Ichino F, Tabunoki H, et al. (2018) Extracellular loop structures in silk-

worm ABCC transporters determine their specificities for Bacillus thuringiensis Cry toxins. J Biol Chem

293: 8569–8577. https://doi.org/10.1074/jbc.RA118.001761 PMID: 29666188

16. Atsumi S, Miyamoto K, Yamamoto K, Narukawa J, Kawai S, et al. (2012) Single amino acid mutation in

an ATP-binding cassette transporter gene causes resistance to Bt toxin Cry1Ab in the silkworm, Bom-

byx mori. Proc Natl Acad Sci U S A 109: E1591–1598. https://doi.org/10.1073/pnas.1120698109

PMID: 22635270

17. Gahan LJ, Pauchet Y, Vogel H, Heckel DG (2010) An ABC transporter mutation is correlated with insect

resistance to Bacillus thuringiensis Cry1Ac toxin. PLoS Genet 6: e1001248. https://doi.org/10.1371/

journal.pgen.1001248 PMID: 21187898

18. Bravo A, Gomez I, Conde J, Munoz-Garay C, Sanchez J, et al. (2004) Oligomerization triggers binding

of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion

into membrane microdomains. Biochim Biophys Acta 1667: 38–46. https://doi.org/10.1016/j.bbamem.

2004.08.013 PMID: 15533304

19. Zhang H, Yu S, Shi Y, Yang Y, Fabrick JA, et al. (2017) Intra- and extracellular domains of the Helicov-

erpa armigera cadherin mediate Cry1Ac cytotoxicity. Insect Biochem Mol Biol 86: 41–49. https://doi.

org/10.1016/j.ibmb.2017.05.004 PMID: 28576655

20. Fabrick JA, Ponnuraj J, Singh A, Tanwar RK, Unnithan GC, et al. (2014) Alternative splicing and highly

variable cadherin transcripts associated with field-evolved resistance of pink bollworm to bt cotton in

India. PLoS One 9: e97900. https://doi.org/10.1371/journal.pone.0097900 PMID: 24840729

21. Wang J, Wang H, Liu S, Liu L, Tay WT, et al. (2017) CRISPR/Cas9 mediated genome editing of Heli-

coverpa armigera with mutations of an ABC transporter gene HaABCA2 confers resistance to Bacillus

thuringiensis Cry2A toxins. Insect Biochem Mol Biol 87: 147–153. https://doi.org/10.1016/j.ibmb.2017.

07.002 PMID: 28705634

22. Xie R, Zhuang M, Ross LS, Gomez I, Oltean DI, et al. (2005) Single amino acid mutations in the cad-

herin receptor from Heliothis virescens affect its toxin binding ability to Cry1A toxins. J Biol Chem 280:

8416–8425. https://doi.org/10.1074/jbc.M408403200 PMID: 15572369

23. Morin S, Biggs RW, Sisterson MS, Shriver L, Ellers-Kirk C, et al. (2003) Three cadherin alleles associ-

ated with resistance to Bacillus thuringiensis in pink bollworm. Proc Natl Acad Sci U S A 100: 5004–

5009. https://doi.org/10.1073/pnas.0831036100 PMID: 12695565

24. Zhang H, Wu S, Yang Y, Tabashnik BE, Wu Y (2012) Non-recessive Bt toxin resistance conferred by

an intracellular cadherin mutation in field-selected populations of cotton bollworm. PLoS One 7:

e53418. https://doi.org/10.1371/journal.pone.0053418 PMID: 23285292

25. Hara H, Atsumi S, Yaoi K, Nakanishi K, Higurashi S, et al. (2003) A cadherin-like protein functions as a

receptor for Bacillus thuringiensis Cry1Aa and Cry1Ac toxins on midgut epithelial cells of Bombyx mori

larvae. FEBS Lett 538: 29–34. https://doi.org/10.1016/s0014-5793(03)00117-0 PMID: 12633848

26. Chen J, Hua G, Jurat-Fuentes JL, Abdullah MA, Adang MJ (2007) Synergism of Bacillus thuringiensis

toxins by a fragment of a toxin-binding cadherin. Proc Natl Acad Sci U S A 104: 13901–13906. https://

doi.org/10.1073/pnas.0706011104 PMID: 17724346

27. Likitvivatanavong S, Chen J, Evans AM, Bravo A, Soberon M, et al. (2011) Multiple receptors as targets

of Cry toxins in mosquitoes. J Agric Food Chem 59: 2829–2838. https://doi.org/10.1021/jf1036189

PMID: 21210704

28. Lee SB, Chen J, Aimanova KG, Gill SS (2015) Aedes cadherin mediates the in vivo toxicity of the

Cry11Aa toxin to Aedes aegypti. Peptides 68: 140–147. https://doi.org/10.1016/j.peptides.2014.07.015

PMID: 25064814

29. Rodriguez-Almazan C, Reyes EZ, Zuniga-Navarrete F, Munoz-Garay C, Gomez I, et al. (2012) Cad-

herin binding is not a limiting step for Bacillus thuringiensis subsp. israelensis Cry4Ba toxicity to Aedes

aegypti larvae. Biochem J 443: 711–717. https://doi.org/10.1042/BJ20111579 PMID: 22329749

Physiological function of Aedes cadherin

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007948 February 3, 2020 21 / 23

https://doi.org/10.1021/bi048500i
http://www.ncbi.nlm.nih.gov/pubmed/15518581
https://doi.org/10.1016/s0965-1748(03)00114-0
https://doi.org/10.1016/s0965-1748(03)00114-0
http://www.ncbi.nlm.nih.gov/pubmed/14505693
http://www.ncbi.nlm.nih.gov/pubmed/8144508
https://doi.org/10.1371/journal.pgen.1005124
http://www.ncbi.nlm.nih.gov/pubmed/25875245
https://doi.org/10.1074/jbc.RA118.001761
http://www.ncbi.nlm.nih.gov/pubmed/29666188
https://doi.org/10.1073/pnas.1120698109
http://www.ncbi.nlm.nih.gov/pubmed/22635270
https://doi.org/10.1371/journal.pgen.1001248
https://doi.org/10.1371/journal.pgen.1001248
http://www.ncbi.nlm.nih.gov/pubmed/21187898
https://doi.org/10.1016/j.bbamem.2004.08.013
https://doi.org/10.1016/j.bbamem.2004.08.013
http://www.ncbi.nlm.nih.gov/pubmed/15533304
https://doi.org/10.1016/j.ibmb.2017.05.004
https://doi.org/10.1016/j.ibmb.2017.05.004
http://www.ncbi.nlm.nih.gov/pubmed/28576655
https://doi.org/10.1371/journal.pone.0097900
http://www.ncbi.nlm.nih.gov/pubmed/24840729
https://doi.org/10.1016/j.ibmb.2017.07.002
https://doi.org/10.1016/j.ibmb.2017.07.002
http://www.ncbi.nlm.nih.gov/pubmed/28705634
https://doi.org/10.1074/jbc.M408403200
http://www.ncbi.nlm.nih.gov/pubmed/15572369
https://doi.org/10.1073/pnas.0831036100
http://www.ncbi.nlm.nih.gov/pubmed/12695565
https://doi.org/10.1371/journal.pone.0053418
http://www.ncbi.nlm.nih.gov/pubmed/23285292
https://doi.org/10.1016/s0014-5793(03)00117-0
http://www.ncbi.nlm.nih.gov/pubmed/12633848
https://doi.org/10.1073/pnas.0706011104
https://doi.org/10.1073/pnas.0706011104
http://www.ncbi.nlm.nih.gov/pubmed/17724346
https://doi.org/10.1021/jf1036189
http://www.ncbi.nlm.nih.gov/pubmed/21210704
https://doi.org/10.1016/j.peptides.2014.07.015
http://www.ncbi.nlm.nih.gov/pubmed/25064814
https://doi.org/10.1042/BJ20111579
http://www.ncbi.nlm.nih.gov/pubmed/22329749
https://doi.org/10.1371/journal.pntd.0007948


30. Bibikova M, Golic M, Golic KG, Carroll D (2002) Targeted chromosomal cleavage and mutagenesis in

Drosophila using zinc-finger nucleases. Genetics 161: 1169–1175. PMID: 12136019

31. Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science

333: 1843–1846. https://doi.org/10.1126/science.1204094 PMID: 21960622

32. Cong L, Ran FA, Cox D, Lin S, Barretto R, et al. (2013) Multiplex genome engineering using CRISPR/

Cas systems. Science 339: 819–823. https://doi.org/10.1126/science.1231143 PMID: 23287718

33. Koo T, Lee J, Kim JS (2015) Measuring and Reducing Off-Target Activities of Programmable Nucleases

Including CRISPR-Cas9. Mol Cells 38: 475–481. https://doi.org/10.14348/molcells.2015.0103 PMID:

25985872

34. Chang C, Yu YM, Dai SM, Law SK, Gill SS (1993) High-level cryIVD and cytA gene expression in Bacil-

lus thuringiensis does not require the 20-kilodalton protein, and the coexpressed gene products are syn-

ergistic in their toxicity to mosquitoes. Appl Environ Microbiol 59: 815–821. PMID: 8481007

35. Zhuang M, Oltean DI, Gomez I, Pullikuth AK, Soberon M, et al. (2002) Heliothis virescens and Manduca

sexta lipid rafts are involved in Cry1A toxin binding to the midgut epithelium and subsequent pore forma-

tion. J Biol Chem 277: 13863–13872. https://doi.org/10.1074/jbc.M110057200 PMID: 11836242

36. Ota S, Hisano Y, Muraki M, Hoshijima K, Dahlem TJ, et al. (2013) Efficient identification of TALEN-

mediated genome modifications using heteroduplex mobility assays. Genes Cells 18: 450–458. https://

doi.org/10.1111/gtc.12050 PMID: 23573916

37. Zischewski J, Fischer R, Bortesi L (2017) Detection of on-target and off-target mutations generated by

CRISPR/Cas9 and other sequence-specific nucleases. Biotechnol Adv 35: 95–104. https://doi.org/10.

1016/j.biotechadv.2016.12.003 PMID: 28011075

38. McClendon TB, Sullivan MR, Bernstein KA, Yanowitz JL (2016) Promotion of Homologous Recombina-

tion by SWS-1 in Complex with RAD-51 Paralogs in Caenorhabditis elegans. Genetics 203: 133–145.

https://doi.org/10.1534/genetics.115.185827 PMID: 26936927

39. Jayathilaka K, Sheridan SD, Bold TD, Bochenska K, Logan HL, et al. (2008) A chemical compound that

stimulates the human homologous recombination protein RAD51. Proc Natl Acad Sci U S A 105:

15848–15853. https://doi.org/10.1073/pnas.0808046105 PMID: 18840682

40. Song J, Yang D, Xu J, Zhu T, Chen YE, et al. (2016) RS-1 enhances CRISPR/Cas9- and TALEN-medi-

ated knock-in efficiency. Nat Commun 7: 10548. https://doi.org/10.1038/ncomms10548 PMID:

26817820

41. Chen J, Aimanova KG, Fernandez LE, Bravo A, Soberon M, et al. (2009) Aedes aegypti cadherin

serves as a putative receptor of the Cry11Aa toxin from Bacillus thuringiensis subsp. israelensis. Bio-

chem J 424: 191–200. https://doi.org/10.1042/BJ20090730 PMID: 19732034

42. Likitvivatanavong S, Chen J, Bravo A, Soberon M, Gill SS (2010) Cadherin, alkaline phosphatase, and

aminopeptidase N as receptors of Cry11Ba toxin from Bacillus thuringiensis subsp. jegathesan in

Aedes aegypti. Appl Environ Microbiol 77: 24–31. https://doi.org/10.1128/AEM.01852-10 PMID:

21037295

43. Fabrick J, Oppert C, Lorenzen MD, Morris K, Oppert B, et al. (2009) A novel Tenebrio molitor cadherin

is a functional receptor for Bacillus thuringiensis Cry3Aa toxin. J Biol Chem 284: 18401–18410. https://

doi.org/10.1074/jbc.M109.001651 PMID: 19416969

44. Park Y, Abdullah MA, Taylor MD, Rahman K, Adang MJ (2009) Enhancement of Bacillus thuringiensis

Cry3Aa and Cry3Bb toxicities to coleopteran larvae by a toxin-binding fragment of an insect cadherin.

Appl Environ Microbiol 75: 3086–3092. https://doi.org/10.1128/AEM.00268-09 PMID: 19329664

45. Fabrick JA, Wu Y. (2015) Roles of Insect Midgut Cadherin in Bt Intoxication and Resistance. In:

Soberon M, Gao Y., Bravo A., editor. Bt resistance: characterization and strategies for GM crops pro-

ducing Bacillus thuringiensis toxins. Boston, MA: Wallingford, Oxfordshire. pp. 69–86.

46. Halbleib JM, Nelson WJ (2006) Cadherins in development: cell adhesion, sorting, and tissue morpho-

genesis. Genes Dev 20: 3199–3214. https://doi.org/10.1101/gad.1486806 PMID: 17158740

47. Hill E, Broadbent ID, Chothia C, Pettitt J (2001) Cadherin superfamily proteins in Caenorhabditis ele-

gans and Drosophila melanogaster. J Mol Biol 305: 1011–1024. https://doi.org/10.1006/jmbi.2000.

4361 PMID: 11162110

48. D’Alterio C, Tran DD, Yeung MW, Hwang MS, Li MA, et al. (2005) Drosophila melanogaster Cad99C,

the orthologue of human Usher cadherin PCDH15, regulates the length of microvilli. J Cell Biol 171:

549–558. https://doi.org/10.1083/jcb.200507072 PMID: 16260500

49. Lee KA, Kim B, Bhin J, Kim DH, You H, et al. (2015) Bacterial uracil modulates Drosophila DUOX-

dependent gut immunity via Hedgehog-induced signaling endosomes. Cell Host Microbe 17: 191–204.

https://doi.org/10.1016/j.chom.2014.12.012 PMID: 25639794

Physiological function of Aedes cadherin

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007948 February 3, 2020 22 / 23

http://www.ncbi.nlm.nih.gov/pubmed/12136019
https://doi.org/10.1126/science.1204094
http://www.ncbi.nlm.nih.gov/pubmed/21960622
https://doi.org/10.1126/science.1231143
http://www.ncbi.nlm.nih.gov/pubmed/23287718
https://doi.org/10.14348/molcells.2015.0103
http://www.ncbi.nlm.nih.gov/pubmed/25985872
http://www.ncbi.nlm.nih.gov/pubmed/8481007
https://doi.org/10.1074/jbc.M110057200
http://www.ncbi.nlm.nih.gov/pubmed/11836242
https://doi.org/10.1111/gtc.12050
https://doi.org/10.1111/gtc.12050
http://www.ncbi.nlm.nih.gov/pubmed/23573916
https://doi.org/10.1016/j.biotechadv.2016.12.003
https://doi.org/10.1016/j.biotechadv.2016.12.003
http://www.ncbi.nlm.nih.gov/pubmed/28011075
https://doi.org/10.1534/genetics.115.185827
http://www.ncbi.nlm.nih.gov/pubmed/26936927
https://doi.org/10.1073/pnas.0808046105
http://www.ncbi.nlm.nih.gov/pubmed/18840682
https://doi.org/10.1038/ncomms10548
http://www.ncbi.nlm.nih.gov/pubmed/26817820
https://doi.org/10.1042/BJ20090730
http://www.ncbi.nlm.nih.gov/pubmed/19732034
https://doi.org/10.1128/AEM.01852-10
http://www.ncbi.nlm.nih.gov/pubmed/21037295
https://doi.org/10.1074/jbc.M109.001651
https://doi.org/10.1074/jbc.M109.001651
http://www.ncbi.nlm.nih.gov/pubmed/19416969
https://doi.org/10.1128/AEM.00268-09
http://www.ncbi.nlm.nih.gov/pubmed/19329664
https://doi.org/10.1101/gad.1486806
http://www.ncbi.nlm.nih.gov/pubmed/17158740
https://doi.org/10.1006/jmbi.2000.4361
https://doi.org/10.1006/jmbi.2000.4361
http://www.ncbi.nlm.nih.gov/pubmed/11162110
https://doi.org/10.1083/jcb.200507072
http://www.ncbi.nlm.nih.gov/pubmed/16260500
https://doi.org/10.1016/j.chom.2014.12.012
http://www.ncbi.nlm.nih.gov/pubmed/25639794
https://doi.org/10.1371/journal.pntd.0007948


50. Lee KZ, Lestradet M, Socha C, Schirmeier S, Schmitz A, et al. (2016) Enterocyte Purge and Rapid

Recovery Is a Resilience Reaction of the Gut Epithelium to Pore-Forming Toxin Attack. Cell Host

Microbe 20: 716–730. https://doi.org/10.1016/j.chom.2016.10.010 PMID: 27889464

51. Los FC, Kao CY, Smitham J, McDonald KL, Ha C, et al. (2011) RAB-5- and RAB-11-dependent vesicle-

trafficking pathways are required for plasma membrane repair after attack by bacterial pore-forming

toxin. Cell Host Microbe 9: 147–157. https://doi.org/10.1016/j.chom.2011.01.005 PMID: 21320697

52. Soberon M, Fernandez LE, Perez C, Gill SS, Bravo A (2007) Mode of action of mosquitocidal Bacillus

thuringiensis toxins. Toxicon 49: 597–600. https://doi.org/10.1016/j.toxicon.2006.11.008 PMID:

17145072

Physiological function of Aedes cadherin

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007948 February 3, 2020 23 / 23

https://doi.org/10.1016/j.chom.2016.10.010
http://www.ncbi.nlm.nih.gov/pubmed/27889464
https://doi.org/10.1016/j.chom.2011.01.005
http://www.ncbi.nlm.nih.gov/pubmed/21320697
https://doi.org/10.1016/j.toxicon.2006.11.008
http://www.ncbi.nlm.nih.gov/pubmed/17145072
https://doi.org/10.1371/journal.pntd.0007948



