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ABSTRACT 

We explored relationships between daily mortality and the major sources of 

airborne particulate matter (PM) using a newly developed approach, Factor Analysis and 

Poisson Regression (FA/PR). We hypothesized that by adding information on PM 

chemical speciation and source apportionment to typical PM epidemiological analysis, 

we could identify PM sources that cause adverse health effects. The F AIPR method was 

applied to a merged dataset of mortality and extensive PM chemical speciation 

(including trace metals, sulfate and extractable organic matter) in New Jersey. 

Statistically significant associations were found between mortality and several of 

the FA-derived PM sources, including oil burning, industry, sulfate aerosol, and motor 

vehicles. The F AIPR method provides new insight into potentially important PM sources 

related to mortality. For the dataset we analyzed, the use ofF A/PR to integrate multiple 

chemical species into source-related PM exposure metrics was found to be a more 

sensitive tool than the traditional approach using PM mass alone. 
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INTRODUCTION 

Prior epidemiological studies have provided compelling and relatively consistent 

evidence of associations between ambient particulate matter (PM) levels and adverse 

health effects, including increases in mortality, increases in respiratory symptoms, 

hospitalizations, and disease, along with declines in lung function (see review paper by 

Pope et al., 1995). Unlike other criteria pollutants, PM has no specified chemical 

formula under the Clean Air Act. The National Ambient Air Quality Standard (NAAQS) 

for PM is set by particle size and mass concentration, but PM is made up of different 

chemical components and particle sizes· emitted from various sources. Limited data are 

available on the day-to-day variations in the chemical constituents of PM. Thus, 

traditional PM epidemiological studies generally use ambient PM mass concentrations 

(e.g., Total Suspended Particle, PMts, PM10, or PM2.s, or mass-equivalent, such as 

visibility, Coefficient of Haze, or British Smoke) or concentrations of a single PM 

component (such as SO/) as metrics of human exposure. These epidemiological. 

analyses implicitly assume that the same amount of PM mass, regardless of its 

constituents and. size distribution, produces equivalent adverse health effects in humans. 

In reality, PM mass contains a complex mixture of multiple chemical components across 

a wide distribution of sizes. PM mass may only serve as a surrogate for the specific 

constituents causing the adverse health effects. Possible causal agents for PM-related 

health effects may be particle mass concentration, particle number concentration, acid 

aerosols, or specific chemicals or combinations of chemicals composing the particles, but 

to date the biological mechanisms are not fully unde~stood. If chemical differences are 

significant in the induced health effects, PM from different sources with different 
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chemical compositions should display different relationships for a given adverse health 

effect. 

Factor Analysis (FA) has been used extensively to identify major PM sources. 

Poisson Regression is often used in epidemiological stu~ies to characterize the 

relationship between mortality (rare events) and ambient air pollution. In this study, it 

was first proposed to integrate these two analytical techniques, Factor Analysis/ Poisson 

Regression (F A/PR), to understanding the relationship between mortality and individual 

PM sources. F AIPR was applied to a unique data set with mortality and extensive PM 

chemical speciation measurements (including trace metals,_ sulfate, and extractable 

organic matter). In addition to F AIPR, the relationship between mortality and single PM

mass related exposure metrics including IPM (inhalable particul~te matter, d50 :::; 15 J.Lm), 

PPM (fme particulate matter, dso :::; 2.5 J.Lm), .sol-, and three fractions of extractable 

organic matter within PM was also investigated. 
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DATA 

1. ENVIRONMENTAL DATA 

The ambient pollution data were obtained from the Airborne Toxic Element and 

Organic Substances study {ATEOS, Lioy and Daisey, 1987). The ATEOS study was 

conducted between 1981 to 1983 at three New Jersey sites: Newark, Elizabeth, and 

Camden (map shown in Figure 1). The sampling site in Newark was in an industrial

residential area of the Ironbound district where heavy traffic and various industrial 

sources were present. fu Camden, the sampling site was in a commercial-residential area 

close to refineries and industrial facilities (in Philadelphia). fu Elizabeth, the sampling 

site was in a residential area close to a business district. The 'sampling sites of Newark 

and Elizabeth were about 8 km apart. The samplers were on the roof of the buildings or 

trailers. Environmental measurements taken were lPM, FPM, trace metals (Pb, Mn, Fe, 

Cd, V, Ni, Zn, Cu), and sulfate constituents of lPM collected by continuous 24-hour Hi-:

Volume samplers. Figures 2-4 show the daily variation in IPM and sulfate at the three·. 

sampling sites. Three fractions of extractable organic matter (EOM), including 

cyclohexane-solubles (CX), dichloromethane-solubles (DCM), and acetone-solubles 

(ACE), were also measured (Daisey, 1987). The sampling periods were two consecutive 

summers and winters with 39 sampling days in each period: July 6-August 14, 1981; 

January 18-February 25, 1982; July 6-August 14, 1982; and January 17-February 25, 

1983. fu additionto the pollutants measured by ATEOS, maximum 1-hour daily CO and 

daily temperature (maximum daily temperature and minimum daily temperature) were 

also included in the following analyses (data summarized in Table 1). 
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The ambient PM monitoring data obtained from the ATEOS study were used as 

exposure metrics for local residents in New Jersey to evaluate the relationship between 

mortality and particulate air pollution in the following analyses. Although the absolute 

concentrations of ambient PM and human exposure may be different, studies have shown 

that the daily changes of ambient PM correlate well with indoor PM or human exposure 

in a relative scale (Janssen, 1998). Using ambient data to represent human exposure is 

not perfect, but it is the best we can do with the data set for this air pollution 

epidemiological study. 

2. MORTALITY DATA 

New Jersey mortality data were obtained from Public Use Data Tape Files: 

Mortality Detail for 1981-1983 (U.S. Department of Health and Human Services, 

National Center for Health Statistics). These data files, recorded by year, contain 

information for every death of a U.S. resident during that year. A subset of the New 

Jersey mortality data for the 3 cities was extracted to match the ATEOS sampling sites by -·

location of residence, not location of occurrence of death. Accidental and homicide 

deaths (ICD codes > 800) were excluded from our analyses. Two death categories were 

defined for statistical analyses in this study: total daily deaths (TDD) and cardiovascular 

and respiratory daily deaths (CRDD; ICD codes: 480-486, 490-496, and 390-448). 

Population number, and averaged TDD and CRDD in the three cities are summarized in 

Table 1. 
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ANALYSIS METHODS 

We applied three approaches in the data analyses. First, as is typical in PM 

epidemiological studies, simple Poisson Regression (PR) was applied to investigate the 

association between TDD or CRDD and individual PM exposure metrics. In the second 

method, we performed FA on the chemical speciation data (excluding PM mass; see 

Table 1 for species included in FA) to resolve PM source-related factors and used these 

factors as exposure metrics in PR to identify statistically significant PM sources 

associated with mortality. Three variations of F AIPR analyses were compared to the 

simple Poisson model using a single exposure metric, PM mass. Finally, multiple 

regression (MR) analysis was used to estimate the risk associated with each PM source 

significantly associated with mortality identified by F NPR. 

SIMPLE POISSON MODEL-- USING A SlNGLE PM EXPOSURE METRIC 

The Poisson model is commonly used to model discrete events (such as mortality) 

that occur infrequently in time or space. It is sometimes called "distribution of rare··. 

events." The Poisson model is as follows: 

log [E(Y)]=Xp, 

where E(Y) is the expected value of daily deaths, Y; X is the matrix of co variates; and p 

is the vector of estimated regression coefficients. 

Poisson regression was applied to assess the association between single PM 

exposure metrics (IPM mass, FPM mass, sulfate, and three organic fractions-- CX, DCM 

and ACE) and daily mortality count (TDD and CRDD) in each city, adjusted for the daily 

average temperature (T avg). Other possible ·confounders, time of week 

(weekday/weekend) and time of year (winter/summer), were evaluated by adding binary 
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variables ("WEEK"=O for weekdays and "WEEK"=1 for weekend; "SEASON"=O for 

winter and "SEASON"=1 for summer) in the Poisson models. These added binary 

· variables were not found to be significant. 

The Generalized Estimating Equation (GEE) (Liang et a/., 1986) with 

autoregressive correlation structure was used to account for the possible autocorrelation 

of the dependent variable, mortality. Lag effects, increased mortality as a result of 

previous cumulative PM exposure, were also evaluated in Poisson models with single 

exposure metrics. Mortality data were regressed against two types of lagged pollutant 

concentrations, single-day concentration (lag-1, lag-2 and lag-3), and the averages of 

current and preceding 1, 2, and 3 days concentrations. 

FACTOR ANALYSIS AND POISSON REGRESSION (F NPR) -- IDENTIFICATION 

OF PM SOURCES SIGNIFICANTLY ASSOCIATED WITH MORTALITY 

Factor analysis (FA), one type of receptor modeling that requires no prior 

knowledge of source emission rate and meteorological conditions, has been used · 

extensively to identify important sources of ambient pollution (e.g., Kleinman, 1977; 

Daisey et al., 1981; Cox eta/., 1981; Hopke, 1985; Morandi, 1985; Morandi eta/., 1991). 

Receptor models, reviewed in Chapter 1, use the differences in physical or chemical 

properties of the emissions from different sources to apportion source contributions. FA 

converts multiple correlated environmental data into a reduced number of conceptually 

meaningful independent vectors, called factors. Factors are hypothetical variables 

selected to reproduce the correlation of measured chemical species using the minimum 

number of vectors. In factor analysis, a common factor is an unobservable, hypothetical 

variable that contributes to the variance of at least two of the observed variables; a unique 
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factor is an unobservable hypothetical variable that contributes to the variance of only 

one of the observed variables. The model for common factor analysis posits one unique 

factor for each observed variable. The equation for the common factor model is: 

Yif = XiJblj + xi2b2j + x;1b1j + ..... + Xtqbqj + e if 

where Yij is the value ofthe ith observation on the /h variable. 

Xiq is the value of the ith observation on the qth common factor. 

bqj is the regression coefficient of the qth common factor for 

predicting the jth variable. 

eij is the value of the ith observation on the /h unique factor. 

q is the number of common factors. 

It is assumed for convenience that all variables have a mean of 0. In matrix terms, 

these equations reduce to 

Y=XB+E 

where X is the matrix of factor scores and B is the factor pattern. Two critical·. 

assumptions are made for the preceding equation: the unique factors are uncorrelated with 

each other and the unique factors are uncorrelated with the common factors (SAS, 1989). 

Factor loading represents the correlation of the chemical species within each 

factor. Sources can be identified by comparing the chemical species that have high 

loadings in each factor with the known source signatures or tracers from PM emissions. 

Examples of source tracers for geological sources are Mn and Fe and for oil burning 

sources are V and Ni. Factor scores, the composite measures of factors resolved from 

FA, are PM source-specific transformations of the original measurements of chemical 
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species. These factor scores were used as exposure metrics to assess the relationship 

between daily mortality and individual PM sources (Figure 5). 

FA was previously applied to the ATEOS data by Morandi et al. (1991) for IPM 

sow:ce apportionment. In Morandi's study, extreme outliers (about 12% oftotal samples) 

were excluded from the factor analysis because the purpose of those studies was to 

identify major PM emission sources in New Jersey. The objective of our study, however, 

was to assess the relationship between changes in ambient pollution levels and changes in 

daily mortality. Therefore, leaving out all high-pollution days (air pollution episodes 

during the ATEOS sampling period reported by Lioy eta!., 1985) as Morandi et al. did 

would not be appropriate because the mortality tends to increase during air pollution 

episodes (shown in Figures 2-4). Factor Analysis with Varimax rotation (SAS, 1989) was 

applied to the entire ATEOS dataset of trace elements, sulfate, and CO. Factor scores 

were then regressed against mortality in a Poisson model to identify the PM sources that 

were significantly associated with mortality. 

The F NPR method cannot be directly used to quantify the risk associated with 

each source because factor scores are normalized with mean zero and standard deviation 

equal to one. Therefore, we incorporated multiple regression into F AJPR to estimate the 

risk of significant sources. 
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[FACTOR ANAL YSISIMUL TIPLE REGRESSIONJ/POISSON REGRESSION 

([FAJMRJ/PR): ESTIMATION OF RISKS ASSOCIATED WITH PM SOURCES 

Factor Analysis is often used as an exploratory tool to identify source tracers or 

patterns in a qualitative manner. Quantitative source apportionment can be achieved by 

combining Factor Analysis with other statistical techniques. Factor Analysis/Multiple 

Regression (FAJMR) was developed in previous studies (Kleinman, 1977; Daisey eta/., 

1981; Morandi , 1985) to quantitatively apportion contributions of pollution sources. In 

F AIMR, source patterns ·and specific source tracers are first identified by FA, and total 

PM mass is regressed against a unique tracer of each PM source using stepwise multiple 

regression. The mathematical expression ofFAJMR is 

Y= l:K;X; + R, 

where Y is the IPM concentration, Ki is the ith regression coefficient, Xi is atmospheric 

concentration of the source tracer for the ith source type, and R is a constant. 

[FAJMR]/PR was used to estimate relative risks (or rate ratio, RR) of PM sources 

indirectly: individual PM sources were first identified by F ~ and then the individual 

source-specific IPM masses for all significant sources were then regressed against the 

mortality by PR to assess the quantitative relationship between source-specific IPM mass 

and mortality. For example, FA/PR identified three significant sources (oil burning, 

Zn/Cd processing and sulfate) associated with TDD in Newark. The RR estimation for 

each significant source is estimated by [F AJMR ]/PR as follows: 
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1) byPAJMR: 

2) byPR: 

RESULTS 

IPMtotal mass = IPMoil burning + IPMind-Zn + IPMsulfate + IP~ust + 

IPMmotor + IPMind-Cu + IPMind-Fe 

log (mortality) = Po+ Pt* IPMoil burning + P2* IPMind-Zn + P3* 

RR _ (Pi *change of source-specific /PM concentration) i-e 

(pi: regression coefficient from PR). 

. Simple Poisson Model 

In Newark, significant associations were found between three single exposure 

metrics- IPM, PPM, and sulfate- and TDD and CRDD.(p ~ 0.01, Table 2). In Camden, 

IPM and PPM were significantly associated with TDD and all three single PM exposure 

metrics were all significantly associated with CRDD (p ~ 0.05). In Elizabeth, none of the 

three PM metrics were significantly associated with TDD or CRDD. 

Of the three organic fractions, only cyclohexane-solubles (CX) was a significant 

predictor for TDD and CRDD in Newark and Camden. This organic fraction contains 

aliphatic hydrocarbons and polycyclic aromatic hydrocarbons, as well as other non-polar 

compounds. Acetone-solubles (ACE) was a significant predictor for TDD and CRDD 

only in Camden. No significant association was found between mortality and three 

organic fractions in E~izabeth. 

The results of lag effect models, the increased mortality as a result of previous 

exposure, were comparable to the results of using concurrent day concentration in the 

simple Poisson models (details in Appendix A). Correlation analysis showed that the 

concentrations of individual pollutants on five consecutive days were highly correlated, as 
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might be expected (p ~ 0.1 0) and thus no difference could be found in the results of 

various lagged predictors (the concurrent day, 1-day lag and 2-day lag concentrations; 2 

to 4 day averages) using simple Poisson models. 

FAIPR 

The results of Factor Analysis in this study were similar to Morandi's (1985), 

though the factor loadings were slightly different because we used an expanded dataset. 

The output of factor analysis on Newark data is shown in Table ,3 as an example (detailed 

output ofF A in three cities shown in Appendix B). Tracers used to identify PM sources 

are as follows (USEP A, 1990): V and Ni for oil burning sources; CO and Pb for motor 

emissions; Mn and Fe for dust; S04 for secondary aerosol and Zn, Cd, and Cu for various 

industrial sources. Statistically significant results of F AIPR using GEE, presented in 

Table 4, are discussed below by city (detailed results ofFAIPR shown in Appendix C). 

fu Newark, oil burning sources (tracers: V and Ni), industrial sources (tracer: Zn 

and Cd) and sulfate aerosol showed positive associations with TDD. For CRDD, only · · 

sulfate was a significant source. 

fu Camden, oil-burning and motor vehicle emissions (tracers: Pb and CO) were 

two important sources for TDD. Sources traced by copper showed a negative association 

with TDD. Three PM sources were significant predictors for CRDD: oil burning, motor 

vehicles and sulfate. 

fu Elizabeth, resuspended dust (tracers: Fe and Mn) showed a negative association 

with TDD. fudustrial sources traced by Cd showed a positive association with CRDD. 

Two other sources, resuspended dust and industrial sources traced by copper, showed 

negative associations with CRDD. 
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[FAIMRJ/PR 

Relative risks (RR) associated with each significant PM source were estimated 

indirectly by [FAIMR]/PR. This method apportioned source-specific PM masses by 

F AIMR first and then estimated the RRs of each IPM source. RRs obtained from 

[FAIMR]/PR and the conventional approach using total PM mass are presented in Table 

5. These results suggest that FA/PR is a more sensitive approach for modeling mortality 

and provides more information about the possible causal relationships between PM 

chemical species exposure/PM sources and mortality than does the conventional approach 

using total IPM mass. 
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Model Comparison 

We compared the traditional approach using a single PM exposure metric to the 

three variations of FA/PR (listed below) by using two statistical tests (described in 

Appendix D), the Akaike Information Criterion (AIC, Sakamoto eta/., 1986) and the 

Coefficient ofDetermination (COD, Nagelkerke, 1991). 

Modell 

Model2 

Model3 

Model4 

Traditional: 

FAIPR(a): 

FA/PR(b): 

log (mortality)= Po+ PI* Tavg+ P2* IPMmass 

log (mortality)= Po+ PI* Tavg+ L (PFsp* Factor ScoreSp), 

log (mortality)= Po+ PI* Tavg+ L (PFsq * Factor Scoresq), a 

refined model from Model 2 in which only statistically significant factors 

were used. 

FAIPR {c): log (mortality) = Po + PI* Tavg+ L (PMq* single markerq), 

modified from Model 3. 

where p is number of all PM sources resolved from FA, q is number of significant 

sources identified in the F AIPR, Ps are the regression coefficients (PFsp and PFsq are· 

regression coefficients for factor scores; PMq are coefficients for single marker). Single 

source tracers used for Model 4 were as follows: V for oil burning sources; S04 for 

sulfate aerosol; Pb for motor vehicle emission; Mn for geological sources. 

The results of AICs, reported in detail in Appendix D, indicate that F A/PR (Model 

2 or Model 3) is generally better than or equivalent to the conventional approach using 

total PM mass as an exposure metric (Model 1 ). In general, Model 3 is better than or 

equivalent to Model2. This suggests that not all PM sources improve the fit of the model 

significantly; thus Model 2 with its larger number of PM source exposure metrics is no 

better than Model 3 which uses only PM sources identified by F AIPR as significantly 
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associated with mortality. The single marker model (Model4), is no better than Model3, 

depending on the number of significant factors and the soUrce characteristics of those 

factors. Models 3 and Models 4 are comparable if the number of significant factors is 

small and those significant sources can be well represented by a unique tracer, such as 

sulfate. Based on the results of COD, Model 3 is better than Model 4 in all cases. This 

suggests that the use of factor scores is better than the use of simplified single marker for 

mortality prediction. Furthermore, using simplified exposure metrics, such as total PM 

mass or sulfate, may not be sufficient to capture the real relationship between PM 

exposure and adverse heath effects. Overall, Model 3 is better than or equivalent to the 

other three models. 

DISCUSSION 

Consistent with previous PM studies (Pope et a/., 1995), we found significant 

associations between single exposure metrics (IPM, FPM, and sulfate) and daily mortality 

in Newark and Camden although the ATEOS dataset is very small. The cyclohexane- · 

soluble (CX) organic fraction was also a statistically significant predictor of mortality for 

Newark and Camden. ACE was significantly associated with mortality found only in 

Camden. Extractable organic matter (sum of CX, ACE, and DCM) accounts for about 

30% of IPM mass in these three ATEOS sites, comparable to sulfate mass. The CX 

fraction accounts for about 9% and 7% of IPM mass in Newark and Camden, 

respectively. Analyses by Morandi (1985) indicate that the major sources of the non

polar CX-solubles in Newark are motor vehicles (26%), soil resuspension (21%), oil

burning (20%), and unidentified (34%). 
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With the F A/PR method, certain PM sources were found to be significant 

predictors for mortality: oil burning, sulfate aerosol, industry (traced by Zn/Cd), and 

motor vehicles. Information on local PM emission sources in each city ("qualitative 

microinventory", Morandi, 1985) and emissions profiles (of such PM sources) with 

known tracers (USEP A, 1990) were used to interpret the results of Factor Analysis, 

especially the industrial sources. Sources traced by zinc and cadmium were the Zn/Cd 

processing (e.g., smelters) located northeast of the sampling site in Newark; sources 

traced by copper were multiple industrial processing (e.g., fabricator, platers and illegal 

wire recovery operations) irt Newark; sources traced by copper in Camden are 

incineration emissions. Oil burning sources, including industrial uses and residential 

heating, were scattered in space. PM from geological sources (tracers: Mn and Fe) or 

other industrial sources (tracers: Cu and Pb) were not significantly associated with 

increased mortality based on our analyses. Relative risks obtained from the F A/PR (or 

[FNMR]/PR) are larger than those from the conventional approach using total PM mass·. 

(Table 5). This suggests that the chemical differences may play a role in the induced PM 

health effects and risks posed are not the same for various PM sources in the 

epidemiological settings. 

The observed positive relationships between ambient PM sources and adverse 

health effects are supported by toxicological studies. For example, Holian et al. (1998) 

showed that urban particles and residual fly ash induced apoptosis of human alveolar 

macrophages, while Mt. St. Helen's volcanic ash showed no effects at all. Taking 

residual oil fly ash (ROF A) as an example, Costa et al. (1997) and Dreher et al. (1997) 

demonstrated that the lung dose ofbioavailable transition metals (e.g., V, Ni and Zn) in 
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ROF A, not the total PM mass, is the primary determinant of the acute inflammatory 

response. Kodavanti eta!. (1998) also found that in vivo ROFA-induced acute pulmonary 

inflammation was associated with its water-leachable V content and protein leakage was 

associated with its water-leachable Ni content. These results suggest that the potency and 

the mechanism of pulmonary injury will differ between emissions containing V and Ni. 

In addition to the difference in source toxicity, those significant factors may also 

represent unmeasured chemical species or other parameters that are related to those PM 

sources and mortality. Those resolved significant sources possibly may serve as 

indicators of non-measured chemical species that are biologically important. Moreover, 

F AIPR cannot differentiate the effects of proximity to residents and toxicity of the PM 

sources. Those identified as significant sources of mortality may be in closer proximity 

to residents and thus have higher exposure effectiveness (EE, the amount of PM reaching 

human's respiratory tract divided by the amount of emissions from each PM source 

category). It is likely that EE may be different for the same PM source in three cities and · 

thus different results of the same sources were found in F AIPR among the 3 cities. We 

have limited understanding in the real causal agent (or "the best exposure metric") for the 

increased mortality, but not all PM sources should be weighed equally for the adverse 

health effects found in this study. 

Sulfate was used both as a single chemical species in the simple Poisson model 

and as a single PM source in F AIPR analyses. In Newark, sulfate was found to be a 

significant predictor for TDD in both types of analyses. Relative risks of sulfate obtained 

from both the simple Poisson model (the first analyses) and [FAIMR]/PR (the third 

analysis) were comparable and thus the use ofF AIPR can be an alternative method to the 
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conventional analysis using total PM mass. Model comparisons using AIC and COD 

suggest that F AIPR may be a better tool for epidemiological studies if chemical 

speciation information is available. 

The associations between mortality and ambient pollution in Elizabeth did not 

show patterns similar to those in Newark and Camden, even though Elizabeth is in close 

proximity to Newark and similar environmental concentrations were observed. A review 

of the population characteristics of the three study cities including socioeconomic status 

(SES, listed in Table 6) may help explain this difference. Elizabeth has the highest 

education levels (percentage of residents with 12 years of school completed or more: 

Elizabeth- 69 %; Newark- 58%; Camden- 66%) and income levels (percentage of 

residents below poverty level: Elizabeth- 8%; Newark- 18%; Camden- 12%) of the three 

cities. Studies (e.g., Lantz et a/., 1998) have shown that people with lower SES tend to 

have higher prevalence of behaviors that correlate with high health risk (e.g., cigarette 

smoking, alcohol drinking, and sedentary lifestyle). People with lower SES may be more. 

likely to be in poor health and thus more susceptible to environmental stress. We 

hypothesize that the higher SES of the Elizabeth population may be the reason for the 

different pollution-mortality results in Elizabeth but appropriate data were not available 

to test the hypothesis. 

Lag effects were evaluated in F AIPR models using an approach similar to that 

used in simple Poisson models. We found no consistent patterns in the lag structure of 

factor scores in F AIPR (details in Appendix C), in contrast to what we found for the 

simple Poisson models. This may be due to an implicit assumption for lag models that 
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health effects caused by all of the identified sources follow the same pattern, either 

decreasing or increasing, over several lagged days. 

The detailed PM speciation measurements from the ATEOS study provided us an 

opportunity to investigate PM health effects by F AIPR. However, the small sample size 

limited the statistical power to detect the small change in daily mortality and made any 

further statistical methods to smooth the time series data impossible. 

PM exposure metrics used in this study were obtained from ambient monitoring 

stations, as is conventional in epidemiological studies. Total human exposure may not be 

the same as the ambient concentrations. It was found that 75% of indoor PM10 and 83% 

of indoor PM2.s in Riverside, California homes was contributed by outdoor air (Ozkaynak 

et al., 1996). In addition, indoor sources of PM, including environmental tobacco smoke, 

may also contribute to total PM exposure and the adverse health effects. However, 

tracers of the significant sources identified in this study (V, Ni, Zn, Cd) are mainly 

distributed in the small particles (d5o < 2J.tm, Lee et al., 1973, Davidson eta!., 1986) that 

are more likely to penetrate indoors and thus have similar concentrations between indoor 

and outdoor environments, provided no presence of indoor sources. 

The F AIPR method identifies important sources associated with mortality. 

However, because of the qualitative nature of factor analysis, quantification of risk 

associated with identified sources was estimated by [FAIMR]/PR. Since FAIMR uses a 

single tracer to apportion PM mass from each source, uncertainties are increased 

especially when tracers used are not unique among sources. Future development of risk 

quantification techniques will further enhance the usefulness of F AIPR in our 

understanding of PM. 
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fu this exploratory study, F AIPR provides a means to extract more useful 

information about relationships between daily mortality and source-related exposure 

metrics composed of various chemical species than does the conventional use of total PM 

mass as an exposure metric. Using the FAIPR method, we have obtained the first 

epidemiological evidence indicating that chemical differences play a role in PM-induced 

health effects and that risks posed are not the same for PM sources with different 

characteristics. Future studies are recommended to apply the F AIPR to other larger-scale 

chemical speciation data to replicate and confmn the findings of this study. 
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Figure 5. The F A/PR method. 

Chemical speciation data: 
Pb, Zn, Mn, Cd, Cu, 
Fe, V, Ni, S(\, CO 

Exposure metrics: 
Ei (source-related PM factors) 

Daily Mortality 

Poisson Regression 
Mortality = f ( T avg , Ei ) 

Identification of significant 
sources associated with mortality 

25 



Table l. Data summary for ATEOS sampling periods: arithmetic mean (standard 

deviation). 

Newark1 Elizabeth Camden 

IPM (!-Lglm3
) 55.5 (26.4) 47.0 (20.9) 47.5 (18.8) 

FPM (!-Lglm3
) 42.1 (22.0) 37.1 (19.8) 39.9 (18.0) . 

Sulfate2 (!-Lglm3
) 12.4 (6.2) 12.4 (5.8) 13.4 (6.5) 

Pb (nglm3
) 467 (335.6) 445.9 (337.5) 321:8 (203.6) 

Mn (ng/m3
) 14.4 (10.3) 8.4 (7.3) 13.0 (12.3 

Cu (nglm3
) 41.2 (52.1) 48.9 (74.7) 22.1 (23.3) 

V (nglm3
) 44.2 (52.9) 42.3 (47.3) 35.8 (31.9) 

Cd (nglm3
) 7.2 (13.5) 3.1 (4.0) 1.9 (2.3) 

Zn (nglm3
) 876.8 (2744.8) 229.2 (413.8) 183.9 (155.4) 

Fe (nglm3
) 860.9 ( 424. 7) 627.5 (377.1) 587.5 (352.3) 

Ni (nglm3
) 20.1 (16.3) 18.0 (16.8) 21.9 (16.0) 

ex (!-Lglm3
) 4.9 (3.5) 4.8 (4.0) 3.4 (2.3) 

DCM (!-Lglm3
) 1.4 (0.9) 1.2 (0.8) 1.2 (0.8) 

ACE (!-Lg/m3
) 9.6 (6.1) 7.8 (5.2) 8.7 (4.8) 

COmax (ppt) 3.5 (2.2) 3.2 (1.7) 2.6 (1.6) 

Tavg eF) 56.0 (23.8) 55.8 (24.2) 54.9 (23.9) 

Population 1,408,088 504,094 471,650 

TDD (deaths/day) 37 (8) 13 (4) 11 (3) 

CRDD 21 (6) 7 (3) 6 (3) 
(deaths/day) 

1 The population characteristics (population number and mortality) in Newark are the summation of 
Essex and Hudson counties. 
2 Chemical species included in the F AJPR are underlined. 
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Table 2. Results of simple Poisson models: parameter estimate (standard error). 

Site TDD CRDD 

IPM FPM Sulfate ex IPM FPM Sulfate ex 
Newark 0.0011 ** 0.0017** 0.0061 ** 0.0057** 0.0015** o.oo2o·· o.oos5** 0.0026 

(0.0001) (0.0003) (0.0018) (0.0017) (0.0004) (0.0004) (0.0009) (0.0014) 

Camden 0.0021 * 0.0022* NS 0.0236** 0.0028** 0.0024* 0.0079** 0.0231 •• 

(0.0010) (0.0011)_ (0.0034) (0.0010) (0.0011) (0.0023} (0.0059) 

Elizabeth NS NS NS NS NS NS NS NS 

*: p ~ 0.05. 

**: p ~ 0.01. 

NS: not significant at p ~ 0.1 0. 
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Table 3. Results of factor analysis in Newark (source tracers underlined). 

Oil burning Industrial-! Geological Industrial-2 Motorveh. Sulfate Industrial-3 

FACTOR! FACTOR2 FACTOR3 FACTOR4 FACTORS FACTOR6 FACTOR7 

Pb 0.37 0.78 0.21 0.08 0.35 0.00 0.01 

Mn 0.13 0.13 0.95 0.14 0.10 0.12 -0.01 

Cd 0.08 0.26 0.17 0.60 0.23 0.07 0.65 

Cu 0.15 0.84 0.20 0.29 0.00 0.13 0.23 

v 0.97 0.12 0.00 0.04 0.07 0.01 0.02 

Zn 0.21 0.19 0.02 0.88 0.27 0.09 0.06 

Fe -0.01 0.33 0.71 -0.11 -0.01 0.20 0.50 

Ni 0.82 0.28 0.18 0.28 0.20 0.04 0.05 

so4 0.02 0.08 0.18 0.09 0.08 0.97 0.06 

co 0.21 0.17 0.09 0.34 0.87 0.10 0.10 

Variance explained by each factor(%) 

47.6 16.9 l1.8 8.7 6.5 5.2 3.2 
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Table 4. Results ofF AJPR analyses: p values (only p values ~ 0.10 were reported). 

~TEOS Newark Camden Elizabeth 
site 

Sourc~ TD CRD TDD CRD TDD 
It tracer) D D D 

fo.o19l1 lo.oo1l ko.oo1l Oil NS NS 
burning 
!(V, Ni) 

~ndustrial NS3 NS 0.056 NS NS 
-1 2 (Cu) 

Geologic NS NS NS NS 0.081 
al (Mn, 
Fe) 

ko.oo1l Industrial NS NS NS NS 
-24 (Zn) 

ko.oo1l ko.oo1! !Motor NS NS. NS 
veh. 5(CO 
/CO, Pb) -

lo.o02l ko.oo1l Sulfate NS 0.055 NS 
aerosol 
lrso4) 

!Industrial 0.089 NS NS NS NS 
-3(Cd) 

1 P values less than 0.05 were boxed; negative and significant associations were underlined 
2 Tracers for lnd-1 are Pb and Cu in Newark and Elizabeth; Cu only in Camden. 
3 NS: non-significant at p ~ 0.1 0. 

CRDD 

NS 

!§.030l 

0.062 

NS 

NS 

NS 

lo.o29l 

4 Tracers for Ind-2 are Zn and Cd in Newark; Zn only in Elizabeth and Camden. 
5 Tracers for motor vehicles are CO and Ph in Camden; CO only in Newark and Elizabeth. Lead was used 
to be a unique marker for automobile emissions. With its phase-out in early 90s, lead from other non-auto 
sources became relatively more important during the transition period in Newark and Elizabeth. 

29 



Table 5. Relative risks associated with an increase of l 0 J...Lg/m3 by the traditional 

approach using total PM mass and [FAIMR]/PR. 

Traditional [FAIMR]/PR 
approach (the third method) 

(the first method) 

Newark IPM total mass IPMon IPM ind-Zn IPM sulfate 

TDD 1.01 ** NS 1.03** 1.02** 

(total daily 
death) 

CRDD 1.02** NA NA 1.04** 

(cardio-
respiratory 

daily death) 

Camden IPM total mass IPMoil IPM motor IPM sulfate 

TDD 1.02* 1.11 ** 1.10* NS 

(total daily 
death) 

CRDD 1.03** 1.12* NS 1.02 

(cardio-
respiratory 

daily death) 

*: p< 0.05 in [FAIMR]/PR. 

**: p < 0.01 in [FAIMR)/PR. 

NS: non-significant in [FAIMR]/PR at p = 0.10 level, but that source was significant in FAIPR. 

NA: Non-significant sources in F AIPR at p = 0.10 level. 
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Table 6. Socioeconomic status and population data in New Jersey 

(Source: 1980 Census data) 

A TEOS counties Union Essex Hudson Camden 

(Elizabeth) (Newark) (Newark) 

Total population (1980) 504,094 851,116 556,972 471,650 

Population per square mile 4,885.6 6,695.9 11,993.4 2,112.5 

Median age 34.7 31.5 32.3 30.5 

Death rate (per 1,000 population) 9.9 10.1 11 9.4 

% living in urban 100 100 100 95.1 

Race 

White(%) 80.9 57.6 77.4 81.4 

Black(%) 16.1 37.2 12.5 14.3 

Others{%) 1.3 1.5 3.0 1.3 

Years of school completed 

( persons 25 or older) 

%with 12 yr. or more 68.6 62.8 51.5 65.5 

2% with 16 yr. or more 19.1 18 11.2 16.2 

Median years of school completed 12.5 12.4 12 12.4 

Income characteristics (1980) 

Personal income (per capita) 13,368 11,664 11,034 10,499 

Median household income 25266 19931 17659 20998 

% families below poverty level 5.8 15.2 14.7 9.6 

% persons below poverty level 7.5 17.9 16.9 l1.8 

Children under 18 below pove 11.4 28.3 26.9 18.2 
level 
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Appendix A. Results of basic Poisson models: Total/ Cardiorespiratory deaths = f (Tavg, IPM I FPM/ S04) 

1. Single day concentration with GEE: 
Note: Only parameter estimates ofp values less than 0.10 are listed; otherwise recorded as NA INS (non significant). 

Newark 
TDD ronn 

.IPM narameter estimate standard error n value narameter estimate standard error n value 

concurrent day 0.0011 0.0001 <0.0001 0.0015 0.0004 0.0009 

1-dlag 0.0015 0.0009 0.0874 NA NA N.S. 

2-dlag 0.0012 0.0003 0.0001 0.0020 0.0004 <0.0001 

3-d lag NA NA N.S. 0.0070 0.0002 0.0003 

.FPM _l)3!Jtmeter estimote stondard error n voJue nammeter estimate ctondord error nvo]ne 

concurrent day 0.0017 0.0003 <0.0001 0.0020 0.0004 <0.0001 

1-d lag 0.0023 0.0009 0.0074 0.0028 0.0011 0.0097 

2-dlag 0.0016 0.0002 <0.0001 0.0028 0.0004 <0.0001 

3-d lag N.S. NA N.S. 0.0013 0.0005 0.0084 

l3. Sulfate narameter estimate standard error n value no~~PtPr P<h~ofp otondorA -.nr n.votnP 

concurrent day 0.0061 0.0018 0.0007 0.0085 0.0009 <0.0001 

1-dlag NA NA N.S. NA NA N.S. 

2-dlag 0.0013 0.0006 0.0212 0.0045 0.0017 0.0084 
3-dla2 NA NA N.S. NA NA N.S. 

Elizabeth 
TDO C'ROO 

...IPM nom meter estimot" stomlord error nvolnP noromeiPr eshmote cton.!or.! ....rnr nvolne 

concurrent day NA NA N.S. NA NA N.S. 

1-d lag NA NA N.S. 0.0032 0.0013 0.0125 

2-dlag NA NA N.S. NA NA N.S. 

3-d lag NA NA N.S. NA NA N.S. 

2.FPM narameter estimate standard error n value narameter estimate stan<~•r" -n. n v•lue 

concurrent day NA NA N.S. NA NA N.S. 

1-d lag NA NA N.S. 0.0024 0.0012 0.0490 
2-d lag 0.0016 0.0007 0.0301 NA NA N.S. 

3-d lag NA NA N.S. NA NA N.S. 

. Sulfate narameter estimate standard error n value narameter e.stimate slonda-;:d. error nvalu• 

_ concurrent day NA NA N.S. NA NA N.S. 

1-dlag NA NA N.S. NA NA N.S. 

2-d lag NA NA N.S. -0.0079 0.0025 0.0013 
3-dla~ . NA NA N.S . NA NA N.S. 

Camden 
Tnn ronn 

.IPM narameter estimate standard error n value narameter estimate ... nAor,!-nr nvalu~ 
. concurrent day 0.0021 0.0010 0.0369 0.0028 0.0010 0.0037 

1-dlag 0.0013 0.0008 0.0958 0.0033 0.0013 0.0095 
2-d lag N.S. NA N.S. 0.0036 0.0022 0./012 
3-d lag 0.0041 0.0012 0.0006 0.0040 0.0019 0.0295 

h.FPM norometer eshmot" standard error n voln• noro~PIPr P<hmote oton.lorA ..rnr nvolnP 

concurrent day 0.0022 0.0011 0.0488 0.0024 0.0011 0.0276 
1-dlag 0.0017 0.0003 <0.0001 0.0033 0.0008 0.0001 
2-d lag N.S. NA N.S. 0.0034 0.002/ 0./063 

3-d lag 0.0047 0.0012 0.0001 0.0036 0.0016 0.0299 

13. Sulfate narameter PStimote stondard error n volne norometer estimotP cton.lo.<l Pn'nr nvoln• 

concurrent day N.S. NA N.S. 0.0079 0.0023 0.0007 
1-d lag N.S. NA N.S. 0.0095 0.0048 0.0450 
2-d lag N.S. NA N.S. 0.0098 0.0042 0.0187 
3-dla~ 00074 0.0035 0.0143 0,0100 0.003'> 0.0010 
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2. Results of moving average: Total death = Tavg + IPM 1 FPM/ 804 

Note: N-day moving average equals to the arithmetic mean of concurrent day concentration up to the (N-1) lag day concentration. 

Newark 
Tnn CROD 

cli'M r estimate_ _ standard_em>r .J) value narameter estimate standanl-=r _D 'ili)UJ: 

concurrent day 0.0011 0.0001 <0.0001 0.0015 0.0004 0.0009 
2-d moving avg. 0.0018 0.0006 0.0033 0.0022 0.0006 0.0001 
3-d moving avg. 0.0023 0.0006 0.0003 0.0032 0.0006 <0.0001 
4-d moving avg. 0.0023 0.0006 0.0001 0.0041 0.0007 <0.0001 

12. FPM ·e.<timate standard error n value standard error n value 
concurrent day 0.0017 0.0003 <0.0001 0.0020 0.0004 <0.0001 

2-d moving avg. 0.0026 0.0008 ,0.0019 0.0032 0.0008 0.0001 
3-d moving avg. 0.0032 0.0006 <0.0001 0.0045 0.0008 <0.0001 
4-d"moving avg. 0.0030 0.0008 0.0001 0.0049 0.0013 0.0001 

13. Sulfate ·estimate standard error n value standard error o value 
concurrent day 0.0061 0.0018 0.0007 0.0085 0.0009 <0.0001 

2-d moving avg. NA NA N.S. 0.0098 0.0060 0.1039 
3-d moving avg. 0.0079 0.0046 0.0864 0.0126 0.0067 0.0616 
4-d movinl! avl!. NA NA NS. 0.0156 0.0094 0.0969 

Elizabeth 
TOO CRDD 

.IPM ·estimate_ <!antiart! MTnr _1) value narnm~t~r_ estimate_ standard ~or nvalne 

concurrent day NA NA N.S. NA NA N.S. 
2-d moving avg. NA NA N.S. NA NA N.S. 
3-d moving avg. NA NA N.S. NA NA N.S. 
4-d moving avg. NA NA N.S. NA NA N.S. 

12 . .FPM ·estimate standard error n value narameter estimate standard error n value 
concurrent day NA NA N.S. NA NA N.S. 

2-d moving avg. NA NA N.S. NA NA N.S. 
3-d moving avg. NA NA N.S. NA NA N.S. 
4-d moving avg. NA NA N.S. NA NA N.S. 

13. Sulfate ·estimote _standard_error .n nlue narnm~ter estiiJlllte standard error _nxalru:_ 
concurrent day NA NA N.S. NA NA N.S. 

2-d moving avg. NA NA N.S. NA NA N.S. 
3-d moving avg. NA NA N.S. NA NA N.S. 
4-d movin" av~>. -0 0076 0.0022 0.0006 NA .NA N.S . 

_Camden 
TDD CRDD 

lt.IPM nammerer estimate ~tandard MTOf _nxalue naTOmerer estimate standard error nvalue 
concurrent day 0.0021 0.0010 0.0369 0.0028 0.0010 0.0037 

2-d moving avg. 0.0028 0.0004 <0.0001 0.0044 0.0005 <0.0001 
3-d moving avg. 0.0036 0.0011 0.0007 0.0057 0.0020 0.0038 
4-d moving avg. 0.0063 0.0019 0.0012 0.0078 0.0032 0.0149 

I2.FPM · estimRte standard error n volue nammerer e.<timate standard error n value 
concurrent day 0.0022 0.0011 0.0488 0.0024 0.0011 0.0276 

2-d moving avg. 0.0026 0.0008 0.0006 0.0040 0.0004 <0.0001 
3-d moving avg. 0.0031 0.0005 <0.0001 0.0050 0.0013 0.0002 
4-d moving avg. 0.0055 0.0008 <0.0001 0.0060 0.0023 0.0089 

I:\. Sulfate ·estimate_ <lantbrd ~n< o value oarameter estimate standard error o value 
concurrent day NA NA N.S. 0.0079 0.0023 0.0007 

2-d moving avg. NA NA N.S. 0.0131 0.0043 0.0026 
3-d moving avg. 0.0026 0.0009 0.0032 0.0193 0.0065 0.0031 
4-d movinl! avl!. 0.0097 0.0019 <0.0001 0.0262 0.0090 0.0037 
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Appendix B. Output of Factor Analysis 

1. Newark 

7 factors, Newark 

Rotation Method: Varimax 

Rotated Factor Pattern 

FACTOR1 FACTOR2 FACTOR3 FACTOR4 FACTORS FACTOR6 FACTOR7 

PB 9.36777 9.77793 9.29S24 9.98328 9.3S99S 9.992S4 9.91348 PB 
MN 9.12991 9.13322 9.94698 9.13S6S 9.19487 9.12444 -9.99961 MN 
CD 9.98339 9.261SS 9.16979 9.S9784 9.23191 9.97373 9.64938 CD 
cu 9.1S199 9.84474 9.19S28 9. 2873s 9.99481 9.13249 9. 232ss cu 
v 9.96869 9.11762 -9.99294 9.94389 9.9742S 9.99538 9.91838 v 
ZN 9.21428 9.19338 9.92368 9.87644 9.2697S 9.99939 9.9S997 ZN 
FE -9.91121 9.33323 e. 711S4 -9.11966 -9.9961S 9.29992 9.S99S9 FE 
NI 9.82193 9.28988 9.18348 9.28399 9.19812 9.94226 9.94S67 NI 
504 9.92311 9.98933 9.17898 9.98713 9.97998 9.96997 9.969S6 504 
co 9. 29744 9.17144 9.98768 9.33S22 9.8749S 9.1924S 9.998S3 co 

Variance explained by each factor 

FACTOR1 FACTOR2 FACTOR3 FACTOR4 FACTORS FACTOR6 FACTOR7 
1.88SS9S 1.681937 1.S84949 1.447746 1. 976996 1.9491S9 9.74S919 

Final Communality Estimates: Total = 9.462212. 

PB HN CD CU V ZN FE NI 504 CO 
9.912842 9.974668 9.942959 9.929999 9.959829 9.936452 9.929696 9.911398 9.997959 9.978218 
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2. Camden 

PB 
MN 
CD 
cu 
v 
ZN 
FE 
NI 
504 
co 

7 factors, Camden 

Rotation Method: Varimax 

Rotated Factor Pattern 

FACTOR! FACTOR2 FACTOR3 FACTOR4 FACTORS FACTOR6 FACTOR7 

6.49275 
6.14879 
6.13951 
9.13365 
9.92195 
9.26757 
9.23439 
6.84235 
9.96348 
9.13279 

9.34624 
9.88899 
9.96343 
9.14452 
9.29869 
0.19599 
9.84844 
9.19284 
9.96748 
0.95835 

9.69843 
9.90959 
9.99259 
9.99387 
9.11964 
0.22464 
9.29337 
9.23192 

-0.91889 
9. 93315 

9.35667 
-9.96391 
9.88998 
9.24865 
9.14316 
9.24527 
9.18758 
9.04922 

-0.94553 
-0.06820 

9.95899 
0.29714 
9.26841 
9.92953 
9.99262 
9.97719 

-9.92437 
9.19585 
9.99497 
6.97433 

-9.91997 
-9.91975 
-9.05669 
6.99744 
6.68116 

-9.66913 
9.11675 
9.91177 
6.99237 

-9.61733 

Variance explained by each factor 

6.15226 
6.17645 
e. 21187 
9.96791 
6.94993 
6.87619 

-9.95136 
9.33691 

-9.94331 
9.14493 

PB 
MN 
CD 
cu 
v 
ZN 
FE 
NI 
504 
co 

FACTOR! FACTOR2 FACTOR3 FACTOR4 FACTORS FACTOR6 FACTOR7 
1.929359 1.753962 1.497866 1.108582 1.914328 1.912554 1.912196 

Final Communality Estimates: Total = 9.237888 

PB MN CD CU V ZN FE NI 504 CO 
9.896267 9.889145 9.934193 9.978977 9.943854 9.979999 9.868148 9.927299 9.997716 9.923289 
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3. Elizabeth 

7 factors, Elizabeth 

Rotated Factor Pattern 

FACTOR1 FACTOR2 FACTOR3 FACTOR4 FACTORS FACTOR6 FACTOR7 

PB 0.39478 9.37912 9.64998 0. 23S13 0.01892 9.2S424 9.23874 PB 
MN 0.33702 0. 81181 9.18982 0.16699 -0.99S3S 9.12S66 9.9394S MN 
CD 0.14S66 9.19891 9.29362 0.13198 9.01622 9.88678 9.21880 CD 
cu 0.14370 0.17S42 9.89036 0.14219 9.02034 9.21440 9.23092 cu 
v 0.922S8 0.2S171 9.11973 0.94912 -9.01140 9.1988S 0.93494 v 
ZN 0.20332 0.16719 9.33098 9.12S83 -9.913S6 9.236S1 9.8S97S ZN 
FE 0.21S88 9.8S447 9.1S694 -9.9S398 . 9.18183 0.12130 9.16189 FE 
NI 0.86639 0.2S889 9.19096 9.19S49 -9.0SS79 9.07239 9.22139 NI 
S04 -0.94973 0.11SS7 0.01SS8 9.14347 9.97782 9.91163 -9.99966 504 
co 9.9988S 9.9S8S4 9.17824 9.9471S 0.1S929 9.11100 9.99969 co 

Variance explained by each factor 

FACTOR1 FACTOR2 FACTOR3 FACTOR4 FACTORS FACTOR6 FACTOR? 
2.913274 1. 771168 1. SS3999 1.969S46 1.01900S 1.912971 0.984889 

Final Communality Estimates: Total = 9.4238S4 

PB HN CD CU V ZN FE Nl 504 CO 
6.891469 9.853667 9.998576 9.963674 9.943587 9.989932 9.877889 9.922592 9.993969 9.989686 
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Appendix C. Results ofFA/PR. 

Note: only results with p values less than 0.10 are recorded; N.S.: non significant at p = 0.10 level. 

1. Newark data 

a. 1 nra1 oauv oearn 1 IIJIJ 

Tavl!' Factor 1 CV IN!) Factor_ HCulPb tFac1or_11Mn/Fel_Fattor 4_ fZn/Cdl F_a_ctor s (C.O!Ph' FactorJilS04l_ Factor_HFelCdl 

!. FA/PR w/o GEE beta (stand. err.) -0.0022 (0.0008) 0.0261 (0.0151) 0.0353 (0.0128) 0.0346 (0.0152) 
o value 0.0079 0.0842 0.0059 0.0233 

2. FAIPR with GEE beta (stand. err.) -0.0023 (0.0008) 0.0225 (0.0096) 0.0328 (0.0033) 0.0350 (0.0093) -0.0191(0.0113) 

o value 0.0028 0.0191 <0.0001 0.0002 0.0895 

3. Only significant factors beta (stand. err.) -0.0025 (0.0010) 0.0204 (0.0089) .· 0.0302 (0.0052) 0.0359 (0.0109) 
w/GEE _ o value 0.0144 0.0214 <0.0001 0.0010 

4. 1-d lag on significant beta (stand. err.) -0.0013 (0.0009) 0.0478 (0.0094) 0.0408 (0.0023) 0.0059 (0.0260) 
factorn w/ GEE n value N.S./0.1602 <0.0001 <0.0001 _N.S) 0.8204 

5. 2-d lag on significant beta (stand. err.) -0.0022 (0.000~) 0.0121 (0.0068) 0.0345 (0.0060) 0.0075 (0.0113) 
factors w/ GEE o value 0.0002 0.0767 <0.0001 N.S.I 0.5032 

6. 3-d lag on significant beta (stand. err.) -0.0023 (0.00 1 0) -0.0054 (0.0051) 0.0039 (0.0029) -0.0069 (0.0251) 

----factors w/ GEE p value 0.0200 ___ N.S./0.2925 _______ -- - N.S./0.1814 N.S./0.7828 

b. Cardio-resniratol1rl"ilv death.fCRDD~ 
_Tatt Factor llWNn Factor 2 (Cu/Pb) Factor 3 (Mn/Fe} Factor 4 (Zn/Cdl Factor 5 (CO/Pb'Factor 6 fS04) Factor 7 (Fe/Cd), 

I. F AIPR w/o GEE beta (stand. err.) -0.0028 (0.0011) 0.0297 (0.0167) 0.0502 (0.0197) 
o value 0.0072 0.0754 0.0107 

I 

2. F AIPR with GEE beta (stand. err.) -0.0039 (0.0004) 0.0540 (0.0079) 
o value <0.0001 <0.0001 

3. Only significant factors beta (stand. err.) -0.0032 (0.0006) 0.0488 (0.0093) 
w/GEE o value <0.0001 <0.0001 

4. 1-d lag on significant beta (stand. err.) -0.0024 (0.0010) -0.0019 (0.0357) 
factors w/ GEE D_ value 0.0184 N.S./0.9582 

5. 2-d lag on significant beta (stand. err.) -0.0025 (0.0005) 0.0327 (0.0075) 
factors w/ GEE D value <0.0001 <0.0001 

6. 3-d lag on significant beta (stand. err.) -0.0024 (0.0007) 0.0084 (0.0247) 
factors w/ GEE o value 0.0013 ---- --· -- ----- --- -- - _ N.S./ 0.7323 
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2. Camden data 

Ao U\cA UA l'Y._U~A\.11. _.I.UJJJ_ 

Tavl! Factor 1 (VJNj) Factor 2 lMn/Fe) Factor 3 lCO/Pb' Factor 4 lCdl Factor 5 lCu) Factor 6 lS04\ Factor 7 lZn) 
I. FA/PR w/o GEE beta (stand. err.) 0.0761 (0.0303) 0.0581 (0.0240) 

nvalue 0.0119 0.0153 
2. F A/PR with GEE beta (stand. err.) 0.0765 (0.0238) 0.0577 (0.0164) ·0.0243 (0.0127) 

nvalue N.S. 0.0013 0.0004 0.0561 
3. Only significant factors beta (stand. err.) 0.0714 (0.0208) 0.0554 (0.0161) 

w/GEE J2_Value 0.0006 0.0006 
4. 1-d lag on significant beta (stand. err.) -0.0024 (0.0011) -0.0215 (0.0168) 0.0226 (0.0063) 

factors w/ GEE nva!ue 0.0250 N.S./ 0.2005 0.0004 
5. 2-d lag on significant beta (stand. err.) 0.0267 (0.0179) -0.0059 (0.0 119) 

factors w/ GEE -ovalue N.S./ 0.1347 N.S./ 0.6192 
6. 3-d lag on significant beta (stand. err.) 0.0729 (0.0129) -0.0035 (0.0086) 

- _ factors w/ GEE_ 
~-

_ D value - _ _ _ _50.000L _ _ _ _ _ _ N.S./ 0.6813 _ -- - - - - - -----·- -- -------~---

.h._Cardio- _dailv deatb_lt:Klll. 
Tavl! Factor 1 fV/Nf) Factor 2 lMn/Fe) Factor J_[CQLPb:_Factor 4 lf'd) Factor_S £Cul Factor 6_(804) Factor 7 lZn) 

I. FAIPR w/o GEE beta (stand. err.) 0.0680 (0.0391) 
nvalue N.S. 0.0819 

2. FA/PR with GEE beta (stand. err.) -0.0018 (0.0009) 0.0664 (0.0197) 0.0381 (0.0101) 0.0248 (0.0129) 
D value 0.0537 0.0007 0.0002 0.0550 

3. Only significant factors beta (stand. err.) -0.0024 (0.0012) 0.0589 (0.0173) 0.0372 (0.0084) 0.0294 (0.0134) 
w/GEE D value 0.0430 0.0007 <0.0001 0.0287 

4. 1-d lag on significant beta (stand. err.) -0.0050 (0.0013) -0.0229 (0.0215) 0.0253 (0.0023) 0.0581 (0.0389) 
factors w/ GEE nvalue 0.0001 N.S./0.2868 <0.0001 N.S./ 0.1354 

5. 2-d lag on significant beta (stand. err.) -0.0036 (0.0020) 0.0226 (0.0307) -0.0200 (0.0147) 0.0485 (0.0238) 
factors w/ GEE n value 0.0699 N.S./0.4628 N.S.I 0.1738 0.0415 

6. 3-d lag on significant beta (stand. err.) -0.0033 (0.0015) 0.0574 (0.0193) -0.0249 (0.0168) 0.0443 (0.0309) 
factors w/ GEE nvalue 0.0279_ 0.0030 N.S./0.1385 N.SJO.I515 
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3. Elizabeth data 

a. ., Otlll oanv oeatn r 1 uu1 

Taw Factor 1 fVJNi) Factor 2_iF'e/MnlFactor 3JCui.Pb)Factor 4 (CQ) Factor_5{SOil_ Factor 6 i_QI) Factor 7 (Zn) 

1. FNPR wlo GEE beta (stanl. err.) 
ovalue N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 

2 FNPR with GEE beta (stanl. err.) -0.0296 (0.0170) 
ovalue N.S. 0.0809 

3. Only significant fuctors beta (stanl. err.) -0.0026 (0.0010) -0.0276 (0.0158) 
w/GEE ovalue 0.0127 0.0807 

4. 1-d lag on significant beta (stanl. err.) -0.0026 (0.0007) -0.0133 (0.0287) 
factors wl GEE ovalue JUXX>4 N.SJ0.6417 

5. 2-d lag on significant beta (stanl. err.) -0.0023 (0.0011) -0.0206 (0.0547) 
factms wl GEE ovalue 0.0323 N.SJJ17070 

6. 3-d lag on significant beta (stanl. err.) -0.0024 (0.0008) -0.0078 (0.0128) 
factors w/ GEE ovalue 0.0022 __ _ _ _ __ _ N.SJ 0.5391_ 

·- ·- ·-- --- - - - ----- -- ---- - -

1. F A/PR wlo GEE beta (stanl. err.) 
value N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 

2 F A/PR with GEE beta (stanl. err.) -0.0335 (0.0180) -0.0284 (0.0131) 0.0051 (0.0023) 
0.0622 0.0 00 0.0288 

3. Only significant factors beta (stan!. err.) -0.0021 (0.0010) -0.0258 (0.0151) -0.0283 (0.0208) 0.0081 (0.0035) 
w/ value 0.0315 0.0868 N.SJ0.1728 0.0208 

4. 1-d lag on significant beta (stanl. err.) -0.0024 (0.0009) 0.0358 (0.0258) -0.0026 (0.0370) 0.0218 (0.0158) 
factors w/ GEE value 0.0082 N.SJO.l651 N.SJ0.9439 N.SJO.l692 

5. 2-d lag on significant beta (stanl. err.) -0.0021 (0.0015) 0.0114 (0.0619) 0.0077 (0.0408) -0.0294 (0.0159) 
fl 1 value N.SJ . 5 N.SJ . .SJ0.84 0. 1 

6. 3-d lag on significant beta (stan:L err.) -0.0018 (0.0006) -0.0076 (0.0243) -0.0375 (0.0195) -0.0478 (0.0143) 
factms wl GEE value 0.0023 N.SJ0.7538 0.0548 0.0008 
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Appendix D. Model Comparison 

In addition to the traditional simple Poisson model using PM mass concentration 

as the exposure metric, we considered three variations ofFA/PR models. Four models of 

interest for comparison are listed in Table E-1. It is not straightforward to compare these 

models since each model has a different number of dependent variables/predictors and 

missing values. Two approaches, Akaike Information Criterion (AIC) and Coefficient of 

Determination, were applied to compare the models. 

The Akaike Information Criterion (AIC) was first proposed in 1973 as a criterion 

for model selection. The goodness of fit for a specific model is measured by the mean 

expected log likelihood; the larger, the better. The mean expected log likelihood is 

estimated by the maximum log likelihood (MLL). MLL has a general tendency to 

overestimate the true value of the mean expected log likelihood and this tendency is more 

prominent for models with a larger number of parameters. This implies that if we select 

the model with the largest maximum log likelihood, a model with an unnecessarily large 

number of parameters is likely to be chosen. The AIC adjusts for the effects of the 

number of parameters on the log likelihood. 

AIC= -2 x (maximum log likelihood of the model) 

+ 2 x (number of parameters of the model) 

The model with the minimum AIC is considered to be the "best" model 

(subjective, not based on statistical tests). The difference of AIC values matters, not the 

actual values themselves. If the difference between the AICs for Model (m) and Model 

(n) is larger than 1-2, then it is considered to be significant. If I AIC (m)-AIC (n) I :::;; I, 
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then the goodness of fits of these two models are almost the· same (Sakamoto et a/., 

1986). 

To further compare Model 3 and Model 4, which have the same number of 

parameters, we used the Coefficient of Determination (COD, Nagelkerke, 1991), the 

pseudo R2
• 

All missing values of the parameters used in the models of interest for comparison 

(Table D-1) were deleted before calculating AICs by SPLUS. The same data set is used 

for all models evaluated by AIC. The parameter estimates reported in the text, however, 

may be based on a larger number of observations than are in that data set, depending on 

the number of missing values in the predictors for each model. As shown in Table D-2, 

F AIPR (Model 2 or Model 3) is generally better or equivalent than the conventional 

approach using PM total mass as exposure metric (Model 1 ). The AICs of Model 2, 

which uses factor scores of all PM sources as mortality predictors, are usually higher than 

those of Model 3. This suggests that not all PM sources are related to increased daily 

mortality; thus Model 2 with its larger number of PM source predictors is no better than 

Model 3 which uses only PM sources identified by F AIPR as significantly associated with 

mortality. The single marker model (Model 4), which uses a unique tracer to represent 

each source, is equivalent to or less effective than Model 3, depending on the number of 

significant factors and the source characteristics of those factors. Generally speaking, 

Model 3 and Model 4 give similar AICs if the number of significant factors is small and 

if those significant sources can be well represented by a single marker/tracer, such as 

sulfate. 
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Model 3 is better than Model 4 in all cases according to COD analysis (Table D-

3). This suggests that the use of factor scores, composite measures of all chemical 

species in the factors, is better than the use of single marker for mortality prediction even 

though the underlying biological mechanism of multiple chemical speciation exposure is 

not clear at this point. Furthermore, using simplified exposure metrics, such as total PM 

mass or sulfate, may not be sufficient to characterize/capture the real relationship between 

PM exposure at_1d adverse heath effects. 
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TABLE D-1. Four models of interest for comparison. 

Simple Poisson Model Mortality= f(Tavg, lPMtotat mass) (1) 

FAIPR (a) Mortality= f (Tavg, (Factor scores)k), k= number (2) 

of all sources resolved from FA 

FA/PR(b) Mortality= f (Tavg , (Factor scores)t), 1= number (3) 

of significant sources identified in the F AIPR, a 

refined model from Model (2). 

FNPR(c) Mortality= f(Tavg, (Single marker1)t), 1 =number (4) 

. of significant sources found in F AIPR, a modified 

model from Model (3). 

1 Examples of single tracer used for each source: V for oil burning; S04 for sulfate aerosol; Mn for dust; Ph
motor for motor vehicle emissions. 
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Table D-2. Model comparison by AIC. 

Dependent variable Model 1 Model2 Model3 Model4 

Newark Total daily death 191.7 187.7 183.4 188.4 

(TDD) 

Cardio-respiratory . 184.3 189.0 182.9 183.4 

daily death (CRDD) 

Camden Total daily death 141.5 142.9 135.0 136.4 

(TDD) 

Cardio-respiratory 138.8 146.6 138.2 136.7 

daily death (CRDD) 
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Table D-3. Model comparison by Coefficient of Determination. 

Dependent COD Model3 Model4 

variable 

Newark-TDD R2 0.228 0.185 

Max-rescaled R2 0.299 0.246 

Newark- CRDD R2 0.423 0.216 

Max-rescaled R2 0.549 0.286 

Camden-TDD R2 0.438 0.393 

Max-rescaled R2 0.569 0.522 

Camden- CRDD R2 0.433 0.403 

Max-rescaled R2 0.563 0.535 
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