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ABSTRACT OF THE DISSERTATION

Throughput Optimal Routing in Wireless Ad-hoc Networks

by

Hairuo Zhuang

Doctor of Philosophy in Electrical Engineering
(Communication Theory and Systems)

University of California, San Diego, 2010

Professor Rene L. Cruz, Chair

This dissertation considers the problem of routing multi-commodity data

over a multi-hop wireless ad-hoc network. The few well-known throughput opti-

mal routing algorithms in literature are all based on backpressure principle, which

shows poor delay performance under many network topologies and traffic condi-

tions. In contrast, heuristic routing algorithms which incorporated information of

closeness to destination are either not throughout optimal or the thoughts optimal-

ity was unknown (e.g. opportunistic routing policy with congestion diversity aka.

ORCD). The primary goal of this dissertation is to find routing policies beyond

xii



backpressure type that not only ensure throughput optimality but also maintain

satisfactory average delay performance.

In the single commodity scenario, by considering a class of continuous, dif-

ferentiable, and piece-wise quadratic Lyapunov functions, we propose a large class

of throughput optimal routing policies called K policies, which include both back-

pressure algorithm and ORCD as special cases. The proposed class of Lyapunov

functions allow the routing policies to control the traffic along short paths for a

large portion of state-space while ensuring a negative expected drift, hence, en-

abling the design of routing policies with much improved delay performances.

We then extend K-policy to multi-commodity case by considering non-

quadric Lyapunov functions. A multi-commodity version of ORCD algorithm is

proposed based on the generalized K-policy and is shown to be throughput optimal

under mild conditions. Interestingly, the algorithm selects the commodity that has

the maximum backlogs ratio instead of the maximum difference of backlogs as in

the original backpressure algorithm. Simulation results show that the proposed

algorithms have better delay performances in all scenarios we considered.
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Chapter 1

Introductions

1.1 Routing in Wireless Ad-hoc Networks

Wireless ad-hoc networks consist of a group of nodes which communicate

with each other over a wireless channel without any centralized control. Each node

in a wireless ad-hoc network can act as and terminal point (i.e. source and desti-

nation nodes) as well as a store-and-forward relay. Source nodes transmit data to

their designated destination nodes through a shared wireless channel, with or with-

out the help of intermediate relays. The infrastructureless, dynamic and broadcast

nature of wireless ad-hoc networks give rise to many design issues at the network,

medium access, and physical layers, which have no counterparts in the wired net-

works and the cellular networks where each cell has a central base station through

which all cell data is transmitted. This, along with the diverse applications of these

networks in many different scenarios demand new set of networking strategies to

be implemented in order to provide efficient end-to-end communication.

One main research area in wireless ad-hoc networks is routing. The general

routing problem is to define a policy which chooses which nodes should next trans-

mit which packet, given the history of past transmissions. The main challenges in

1
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designing an efficient routing algorithm include

1) Unreliability of wireless links: Due to fading and noise of wireless chan-

nel, transmission over wireless links is not reliable. The outcome of a particular

transmission is usually unpredictable. It is usually assumed that certain statistic

estimates of the transmission outcome are available for these links.

2) Dynamic of network topology: Due to mobility of nodes, fading and

interference, the topology of networks changes much more frequently than wired

network. A node may join or drop from the network randomly, and a link may

be created or broken. All these make the traditional routing algorithms for wired

networks difficult to be implemented in wireless ad-hoc networks.

3) Multiple data flows compete for limited network resources: Since mul-

tiple streams of data flows share the same wireless channels and simultaneous

transmission is allowed, the transmission from one node causes interference to its

neighboring nodes. Due to the broadcast nature of wireless channel, the capacity

of a wireless network in interference-limited. It is shown in [1] that the throughput

per node decreases in order of Θ( 1√
n
) as the number of nodes n increases.

4) Lack of centralized control: As a result, it is usually desirable that the

policy can be implemented in a distributed manner, so that the transmission de-

cisions can be made locally without knowledge of the rest parts of the network.

The above mentioned difficulty have made designing of an efficient and re-

liable routing strategy a very challenging task. The last decade has seen a rapid

growth of research interests in wireless ad-hoc networks, and routing has received

a tremendous amount of research attentions from researchers. Most conventional

routing strategies in wireless ad-hoc networks can be categorized as proactive proto-

cols and reactive protocols. Proactive protocols periodically update topology infor-

mation in the network independent of traffic flow. (See, for example [2][3][4][5][6][7]

and [8]). Reactive protocols, on the other hand are algorithms which only update
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routing tables when a new message arrives. (See, for example [9][10][11][12][13][5]

and [14])

1.2 Opportunistic Routing

Opportunistic routing for multi-hop wireless ad-hoc networks has seen re-

cent research interest to overcome deficiencies of conventional routing (see for ex-

ample, [15][16][17][18] and [19]). Opportunistic routing mitigates the impact of

poor wireless links by exploiting the broadcast nature of wireless transmissions

and the path diversity. More precisely, the routing decisions are made in an on-

line manner by choosing the next relay based on the actual transmission outcomes

as well as a rank ordering of neighboring nodes. The authors in [19] provided a

Markov decision theoretic formulation for opportunistic routing. In particular, it

is shown that for any given packet and at any relaying epoch, the optimal routing

decision, in the sense of minimum cost or hop-count, is to select the next relay

node based on an index. This index is equal to the expected cost or hop-count of

relaying the packet along the least costly or the shortest feasible path to the des-

tination. Furthermore, this index is computable in a distributed manner and with

low complexity using a time-invariant probabilistic description of wireless links and

the time-invariant transmission costs or transmission times. As such, [19] provides

a unifying framework for different versions of opportunistic routing [15][16][17],

where the variations are due to the authors’ choices of costs. e.g. for ExOR

[17], the cost to be minimized is the expected hop-counts (ETX). When multiple

streams of packets are to traverse the network, however, it might be necessary to

route some packets along longer paths, if these paths eventually lead to links that

are less congested. More precisely, and as noted in [20][21], the above opportunis-

tic routing schemes can potentially cause severe congestion and unbounded delays
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(see examples given in [21]). In other words, these routing schemes are said to fail

to stabilize otherwise stabilizable traffic. In contrast, it is known that a simple

routing policy, known as backpressure [22], ensures bounded expected total back-

log for all stabilizable arrival rates. Backpressure routing policy is essentially a

variant of maximum weight matching (MWM) policy [23][24] originally proposed

in package switches implementated in a multi-hop network setup. The routing

policy provides throughput optimality without knowledge of the network topology

or the traffic rates. In the opportunistic context, diversity backpressure routing

(DIVBAR) proposed in [25] and [20] provides an opportunistic generalization of

backpressure which incorporates the wireless local transmission diversity.

Note that to ensure throughput optimality, backpressure-based algorithms

[22][25] and [20] do something very different from [15]-[19]. Rather than using the

metric of closeness to the destination, they choose the forwarder with the largest

positive differential queue backlog (routing responsibility is retained by the sender

if no such forwarder exists). This very property of ignoring the cost to the desti-

nation, however, becomes the bane of this approach, leading to poor delay perfor-

mance (see [20],[21]). As a consequence, various enhanced versions of backpressure

algorithms were proposed recently intended to improve the delay performance of

original backpressure algorithm (e.g. [26][27][28] and [20]). However, these policies

are still based on the backpressure principle.

In [21], the authors consider the single commodity routing problem, i.e.

multiple arrivals from different nodes are destined to a single destination. A rout-

ing policy, known as Opportunistic Routing with Congestion Diversity (ORCD) are

proposed with an improved delay performance. ORCD combines the congestion

information with the shortest path calculations inherent in opportunistic routing

[21]. The throughput optimality of ORCD was conjectured in [21] but was left un-

proven, due to the difficulty of identifying appropriate (and universal) Lyapunov
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functions with negative expected drift. In fact backpressure [22] and its variants

[26][27][28][25][20][29][30][31], with quadratic Lyapunov function, and randomized

strategies [32] with an exponential Lyapunov function remain to be the only known

throughput optimal routing policies. However, using simple quadratic or exponen-

tial Lyapunov function fails to guarantee a negative expected drift under ORCD.

Therefore, a more general and complicated construction of Lyapunov function is

required, which is a major motivation of this dissertation.

1.3 Dissertation Overview

In this dissertation, we first consider the single commodity routing prob-

lem: i.e. multiple arrivals from different nodes are destined to a single destination.

We provide a large class of throughput optimal policies called K policy by con-

sidering a class of piece-wise quadratic Lyapunov functions. The proposed class

of Lyapunov functions allow for the routing policies to control the traffic along

short paths for a large portion of state-space while ensuring a negative expected

drift, hence, enabling the design of routing policies without many of the deficien-

cies of backpressure-based algorithms. We also specialize our result to recover

the throughput optimality of two known routing policies, backpressure (already

known to be throughput optimal) and ORCD (whose throughput optimality only

was conjectured in [21]).

We then extend K policy to multi-commodity scenario by considering non-

quadratic Lyapunov function. A multi-commodity version of ORCD algorithm

is proposed and is shown to be throughout optimal under mild conditions. The

algorithm is first proposed under the assumption that CSI (channel state infor-

mation) is known at the transmitters. We then modify it for the case when only

CDI (channel distribution information) is known at the transmitters and an op-
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portunistic implementation is proposed. Interestingly, the proposed algorithms

are designed to select the commodity with the maximum ratio of backlogs instead

of the maximum difference of backlogs as in the classical backpressure algorithm.

Indeed, we show via a counter example that selecting commodity based on the

difference of backlog might not be throughput optimal when K policy is used.

The organization of the rest chapters is as follows:

Chapter 2 provides a brief review of some preliminaries results that will

be used throughout the dissertation, including the stability of Markov chain, Lya-

punov drift criterion for stability, and capacity region of a wireless ad-hoc network.

Chapter 3 is devoted to the single commodity scenario, where multiple

arrivals from different nodes are destined to a single destination. A large class

of policy called K policy is proposed and shown to be throughput optimal by

considering a class of piece-wise quadratic Lyapunov function. Some application

of K policy is then discussed. We show that both single commodity backpressure

algorithm and ORCD algorithm can be viewed as a special implementation of K

policy.

Chapter 4 and Chapter 5 are devoted to the multi-commodity scenario.

In Chapter 4, we first propose an generalized form of backpressure algorithm

by considering non-quadratic Lyapunov function. As a special case of general-

ized backpressure algorithm, we propose BP-R as an improvement over classical

backpressure algorithm in multi-commodity scenario. Using the similar technique,

we extend K policy to multi-commodity scenario and K-R policy is shown to be

throughput optimality. Some application of K-R policy is considered in Chapter 5,

including both CSI-Tx (channel state information at transmitters) case and CDI-

Tx (channel distribution information at transmitters) case. Delay performance of

these routing algorithms are simulated and compared.

A brief summary and some concluding remarks are made in Chapter 6.



Chapter 2

System Model and Preliminaries

2.1 System Model

2.1.1 On/Off Network Model

In this work, we consider the on/off network model, which can be regarded

as a special case of the more general discrete network model used in [33].

Consider a network with N nodes and transmission link set L. We label

the nodes by 1,2,...,N and let N = {1, 2, ..., N} denote the set of nodes. Each

transmission link in L is an ordered node pair, labelled by its corresponding or-

dered node pair (a, b) (a, b ∈ N ), representing a communication channel for direct

transmission from a given node a to another node b. Note that link (a, b) is distinct

from link (b, a). We say node a is able to transmit to node b if (a, b) ∈ L. As a

convention, we always assume that (a, a) ∈ L for any a ∈ N , since a node can

always ‘transmit’ to itself by actually transmit nothing.

Let Lall := {(a, b) : a, b ∈ N} represent the set of all ordered pairs of

nodes in a network with node set N . In a wireless network, direct transmission

between two nodes may or may not be possible and this capability, may change

7
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over time due to weather conditions, mobility or node interference. Hence in the

most general case one can consider that L consists of all ordered pairs of nodes, i.e.

L = Lall, where the transmission rate of link (a, b) is zero if direct communication

is impossible. However, in cases where direct communication between some nodes

is never possible, it is helpful to consider that L is a strict subset of Lall.

The network is assumed to operate in slotted time with slots normalized to

integral units, so that slot boundaries occur at times t ∈ {0, 1, 2, ...}. Hence, time

slot t refers to the time interval [t, t + 1). Let hab(t) be the state process of link

(a, b) taking values in {0, 1}, where hab = 1 if node b is able to successfully receive

a packet from node a at time slot t, and hab(t) = 0 otherwise. We say node b can

hear node a at time t if hab = 1. Note that b can hear node a (hab(t) = 1) at time

t should not be confused with node a is able to transmit to node b ((a, b) ∈ L).
Clearly, b can hear node a at time t implies a is able to transmit to node b. e.g. if

(a, b) /∈ L, then hab(t) ≡ 0 for all t. As a convention, we assign haa(t) ≡ 1 for all t

and a ∈ N , which can be interpreted as the fact that a node can always reserve the

packet for itself without forwarding to any other nodes at a given time slot. Such

an definition is only for technical purpose to simplify some of the writing later.

Define the potential forwarder set of node a at time t as Sa(t) := {b :

hab(t) = 1}, which is the set of nodes that can hear node a and successfully receive

a packet from node a at time t. Note that the definition of potential forwarder set

here is slightly different from other literature such as [21], which doesn’t include

node a itself. In this work, since haa(t) ≡ 1 for all t, we always have a ∈ Sa(t) for

any node a.

The topology state process is defined as the joint state process H(t) =

(hab(t))ab. For simplicity, we assume in the work that the topology state process

H(t) is i.i.d. Note that even though H(t) is i.i.d. implies that the individual state

process hab(t) is i.i.d., the state process of different links can be dependent. It is
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easy to see that the topology state H(t) can be fully characterized by the potential

forwarder sets of all nodes in N , i.e. {Sa(t), a ∈ N}. Indeed, if we write H(t) as

an N by N matrix, Sa(t) simply corresponds to the a-th row of H(t).

2.1.2 Routing in an On/Off Network

All data that enters the network is associated with a particular commodity,

which can be defines the destination of the data, but might also specify other

information, such as the source node of the data or its priority service class. Let

K represent the set of commodities in the network.

Let Ac
a(t) represent the amount of new commodity c data that exogenously

arrives to source node a during slot t (for all a ∈ N and all c ∈ K). We assume

that Ac
a(t) takes units of packets, although it can take other units when appropriate

(such as units of bits). We assume Ac
a(t) is bounded, i.e. there exists a constant

Amax such that

Ac
a(t) ≤ Amax (2.1)

for all c, a and t. (2.1) it imposes a limit on the number of packets arrived during

a time slot. The assumption in (2.1) always hold in practice since the number of

arrival is always bounded due to the physical limitation in a real network.

We assume Ac
a(t) is an i.i.d process with rate E[Ac

a(t)] = λc
a. Define λ =

(λc
a)ac as the matrix of arrival rates. We assume that the input rate matrix is

stabilizable, and in particular that is within the relative interior of the capacity

region Λ, i.e.there exists a value ε > 0 such that λ+ε ∈ Λ. The notion of stability

and network capacity region will be formally defined in the next section.

Each node amaintains a set of internal queues for storing network layer data

according to its commodity. Let Qc
a(t) represent the current backlog, or unfinished

work, of commodity c data stored in a network layer queue at node a.
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The queue backlog Qc
a(t) can contain both data that arrived exogenously

from the transport layer at node a as well as data that arrived endogenously

through network layer transmissions from other nodes. In the special case when

node a is the destination of commodity c data, we formally define Qc
a(t) = 0 for

all t, so that any data that is successfully delivered to its destination is assumed

to exit the network layer.

We assume that all network layer queues have infinite buffer storage space.

Our primary goal for this layer is to ensure that all queues are stable. Even thought

the infinite buffer assumption is not realistic in practice system, this performance

criterion tends to yield algorithms that also perform well when network queues

have finite buffers that are sufficiently large.

Let Q(t) := (Qc
a(t))ac denote the joint queue backlog state. And let Q

denote the space of Q(t). We assume Q is a discrete set (and hence a countable

state space), which is always the case in practical applications as data is always

transmitted in a discrete manner (e.g. in unit of bits or packets). This assumption

allows us to take advantage of existing results on stability of a Markov decision

process in a countable state space.

Figure 2.1 shows an example of a network with 8 nodes and 2 commodities.

where commodity 1 data input from node 7 and 8 are destined to node 1, and

commodity 1 data input from node 7 and 5 are destined to node 2.

Define µc
ab(t) as the routing control variables, representing the amount of

commodity c data delivered over link (a, b) during slot t. For our problem, µc
ab(t) ∈

{0, 1}, i.e. at time t, node a either transmits a packet to node b or doesn’t transmit

any packet. We assume that only the data currently in node a at the beginning of

slot t can be transmitted during that slot. Hence, the slot-to-slot dynamics of the

queue backlog Qc
a(t) satisfies the following inequality:

Qc
a(t+ 1) ≤ max[Qc

a(t)− µc
a,out(t), 0] + Ac

a(t) + µc
a,in(t) (2.2)
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Figure 2.1: Example of a network with 8 nodes and 2 commodities

where µc
a,out(t) :=

∑
b µ

c
ab(t) and µc

a,in(t) :=
∑

a µ
c
ai(t). The above expression is an

inequality rather than an equality because the actual amount of commodity c data

arriving to node a during slot t may be less than µc
a,in(t) if the neighboring nodes

have no commodity c data to transmit.

Let µ(t) := (µc
ab(t))abc denote the collection of these routing control vari-

ables at time t. We refer to µ(t) as a routing control action at time t, representing

the routing decision chosen by the network controller. Due to the network and

topology constraints, not all routing control actions are feasible. We assume that

the controller chooses the routing control actions µ(t) subject to the following
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routing constraints: ∑
c∈K

µc
ab(t) ≤ hab(t) (2.3)

∑
b

∑
c∈K

µc
ab(t) = 1 (2.4)

Constraint in (2.3) says that node a can transmit to node b only when node

b can hear node a during time slot t (hab(t) = 1). And only a single commodity

can be transmitted over a link during a single time slot. Constraint in (2.4) says

that at most one packet can be transmitted from any given node during a single

time slot. The above constraints can also be rewritten as

∑
b∈Sa(t)

∑
c∈K

µc
ab(t) = 1 (2.5)

µc
ab(t) = 0, if b /∈ Sa(t) (2.6)

Note that µaa(t) = 1 implies that node a doesn’t forward a packet to any

neighboring node during time t . We refer to the routing control action µ(t) =

(µc
ab(t))abc that satisfies (2.3) and (2.4) (or equivalently, (2.5) and (2.6)) as an

admissible control action. Let M(H) denote the set of all admissible routing

control actions under topology state H .

A network layer routing policy makes decisions about routing, scheduling,

and resource allocation in reaction to the topology state process H(t) and queue

backlog state process Q(t). Generally, a routing policy π = {πt}t is a collection of

(potentially randomized) functions taking values among admissible control actions,

each corresponds to one time slot and is a function of the network’s past history.

That is, πt belongs to the σ-field generated by

{Q(0),H(0),Q(1),H(1), ...,Q(t),H(t)}.

A policy is called stationary if it is independent of time t, in which case the

policy π can be represented by a single function. A policy is called Markov if it
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only depends on current topology state and queue state (i.e. it doesn’t depends

on the past history). So the policy can be written as a bi-variable (potentially

randomized) function π(H ,Q), which takes values among the set of control actions.

In this work, we will focus on the class of Markov stationary policy.

A routing policy is called admissible if the control actions under any topol-

ogy state and queue state are admissible. i.e.

π(H ,Q) ∈ M(H) for all H ∈ H,Q ∈ Q

Let Π denote the set of all admissible routing policies.

Given a Markov policy and i.i.d. packet arrivals process and i.i.d. topology

state process, the network queue state process {Q(t)} forms a Markov chain on

the countable queue state space Q. The stochastic evolution of queues affects the

delay and throughput performance of the network. Hence, the problem of routing

under Markov policies can be mapped to a Markov decision problem [34][35].

Though in this work, we restrict our attention to the i.i.d. topology state

process and i.i.d. arrival process, it worths noting that the results can be gener-

alized to the non-i.i.d case with general admissible inputs and Markov modulated

topology state process. In [36] [37], the classical backpressure algorithm is dis-

cussed under the general admissible inputs and Markov modulated topology state

process. Similar techniques can be used to prove the results in this work.

2.1.3 Other Assumptions

Inter-channel interference

We assume each network node transmits over an orthogonal channel, so

that there is no inter-channel interference. This assumption allows for a clear

presentation of the routing problem and illuminate the main concepts in their

simplest forms. However, we emphasize that the generalization to the networks
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with inter-channel interference can follow as shown in [20]. In [20]. the price of this

generalization is shown to be the centralization of the routing/scheduling globally

across the network or a constant factor performance loss of the distributed variants.

Trapping nodes

For simplicity, we assume that there is no ”trapping nodes”. A ”trapping

node” is a node with no outgoing links or a node that is part of a group of notes

with outgoing links that only connect to other nodes of the group [33].

Routing restrictions

In addition to the set of transmission links L for the whole network, it

is also useful to impose routing restrictions for each commodity, and we define

Lc ⊆ L as the set of all links (a, b) that commodity c data is allowed to use.

To ensure more predictable performance and to potentially reduce these delay

problem, the link sets Lc can be designed in advance to ensure that all transmission

move commodities closer to their destinations. Another special case is single-

hop networks where only direct transmission between nodes is allowed. Such a

restriction can be accomplished by setting Lc{(a, b)} for each commodity c whose

traffic is originated at node a and destined to node b.

In this work, for easier of presentation, we assume Lc = L and all nodes

except for the destination nodes keep internal queues for the each commodity.

However, it is worthy pointing out that additional routing restrictions can be easily

applied. A handling of these restrictions for the classical backpressure algorithm

case can be found in [33]. Imposing these routing restrictions to our problem is

similar and trivial.
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2.2 Network Stability and Network Capacity

2.2.1 Network Stability

First consider a single discrete time queue with arrival process A(t) and

departure process µ(t), where A(t) is the amount of data that enter the queue

during time slot t, and µ(t) is the transmission rate of the server during time slot

t. We assume that the A(t) arrivals occurs at the end of the time slot t, so that

they cannot be transmitted during that time slot. Let Q(t) be backlog in the queue

at time slot t. Then the process Q(t) evolves according to the following discrete

time queueing law:

Q(t+ 1) = max[U(t)− µ(t), 0] + A(t) (2.7)

The queue might be located within a larger network, in which case the

arrival process A(t) is composed of random exogenous arrivals as well as endoge-

nous arrivals resulting from routing and transmission decisions from other nodes

of the network. Similarly, the transmission rate µ(t) can be determined by a

combination of random channel state variations and controlled network resource

allocations, both of which can change from slot to slot. Therefore, it is important

to develop a general definition of queueing stability that handles arbitrary A(t)

and µ(t) processes.

We begin with the general definition of stability.

Definition 2.1 A queue with backlog process Q(t) is stable if

lim sup
t→∞

1

t

t∑
τ=0

Pr[Q(τ) > M ] → 0 (2.8)

as M → ∞. A network of queues is stable if all individual queues are stable

The above stability definition is general in that it does not require a countably
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infinite state space, nor does it require ergodicity. A more detailed discussion of

stability issues is given in [38][39][36][34].

2.2.2 Stability On a Countable State Space Markov Chain

The general definition of stability in Definition 2.1 is not very intuitive for

our problem. By exploiting the special structure of countable state space Markov

chain, we can obtain more structural results on the stability.

To begin with, let us first review some basic concept on a countable state

space Markov chain:

Consider a Markov chain Φ = {Φn} on some countable state space X.

A state i is said to be transient if, given that we start in state i, there is

a non-zero probability that we will never return to i. Formally, let the random

variable τij be the first time to state j from state i (the ”hitting time”):

τij = inf{n ≥ 1 : Φn = j|Φ0 = i}. (2.9)

Then, state i is transient if and only if

Pr(τii = ∞) > 0 (2.10)

where τii is also called return time since it represents the first time return time to

state i. If a state i is not transient (it has finite hitting time with probability 1),

then it is said to be recurrent.

The occupation time ηi is the number of visits by Φ to i after time zero,

and is given by

ηi :=
∞∑
n=1

I{Φn = i} (2.11)

where I{·} is the indicator function. It is easy to see that

ηi =
∞∑
n=1

p
(n)
ii (2.12)
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where p
(n)
ii the n step transit probability from state i to i. It can be shown that a

state is recurrent if and only if

ηi =
∞∑
n=1

p
(n)
ii = ∞ (2.13)

Although the hitting time is finite, it need not have a finite expectation.

Let Mi be the expected return time, i.e. Mi = E[τii]. Then, state i is positive

recurrent if Mi is finite; otherwise, state i is null recurrent.

A Markov chainΦ is called recurrent if all its states are recurrent; A Markov

chain Φ is called transient if all its states are transient. It can be shown that if Φ

is irreducible, then either Φ is transient or Φ is recurrent.

A Markov chain is called positive recurrent if all its states are positive

recurrent. A state i is said to be ergodic if it is aperiodic and positive recurrent.

If all states in a Markov chain are ergodic, then the chain is said to be ergodic.

If the Markov chain is a time-homogeneous Markov chain, so that the pro-

cess is described by a single, time-independent matrix pij, then the vector π is

called a stationary distribution (or invariant probability distribution) if its entries

πj sum to 1 and it satisfies

πj =
∑
i∈S

πipij (2.14)

An irreducible chain has a stationary distribution if and only if chain is

positive recurrent (i.e. all of its states are positive recurrent) In that case, π is

unique and is related to the expected return time:

πj =
1

Mj

(2.15)

Further, if the chain is ergodic (i.e. all states are positive recurrent and aperiodic),

then for any i and j,

lim
n→∞

p
(n)
ij =

1

Mj

(2.16)
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Note that there is no assumption on the starting distribution; the chain converges

to the stationary distribution regardless of where it begins. Such π is called the

equilibrium distribution of the chain.

In the special case when queue backlog evolves according to an ergodic

Markov chain with a countably infinite state space, then the notion of stability is

equivalent to the existence of a steady state probability distribution for the chain

[22]. Generally, irreducibility of the queue length process is not guaranteed. In

that case, the state space is partitioned into transient and recurrent states. We

consider the system to be stable if all recurrent states are positive recurrent and

the queue length process hits the recurrent states with probability one. That is,

Φ does not remain in the set of transient states forever.

Formally, we say a state i is reachable by some state j if Pr(Φn+m = i|Φn =

j) > 0 for some m ≥ 1. The states i and j communicate if they are reachable by

each other. A set of states R is closed if Pr(Φn+1 = i|Φn = j) = 0 for all j ∈ R,

i /∈ R. The state space of the chain is partitioned in the sets T , R1, R2,..., where

Rj, j = 1, 2, .., are closed sets of communicating states and T contains all states

which do not belong to any closed set of communicating states and therefore are

transient. For any i ∈ T consider the time

τi = inf{n ≥ 0 : Φn /∈ T |Φ0 = i}. (2.17)

at which the chain hits some of the sets Rj for the first time when it starts from

state i ∈ T . Note that τi = ∞ if Φn ∈ T for any n > 0. We can now define

stability as follows

Definition 2.2 The system is stable if for the Markov process Φ, we have

Pr(τi < ∞) = 1 ∀i ∈ T (2.18)

and all states i ∈ ⋃
j Rj are positive recurrent.
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2.2.3 Lyapunov Stability

The key mathematical tool we are going to use to prove stability of queueing

networks and develop stabilizing control algorithms is the technique of Lyapunov

drift. It utilizes some recurrence criterion based on the existence of a so called

Lyapunov function with certain property. The idea is to define a non-negative

function, called a Lyapunov function, as a scalar measure of the aggregate conges-

tion of all queues in the network. Network control decisions are then evaluated in

terms of how they affect the change in the Lyapunov function from one slot to the

next. This type of criterion first appeared in the literature in paper of F.G Foster

[40]. Some literature also called it Foster’s criterion.

Let Φ = {Φn}∞n=0 be a Markov chain on a countable state space X with

transmission probability {pij}i,j∈X .
Let L : S 	→ [0,∞) be a test function, which we referred as Lyapunov

function. Then the Lyapunov drift ∆L(x) is defined as

∆L(x) :=
∑
y∈X

L(y)pxy − L(x), x ∈ X (2.19)

Theorem 2.1 (Lyapunov drift criteria for recurrence [34]) The irreducible Markov

chain Φ is recurrent if there exists a finite set C ⊂ X and a Lyapunov function L

such that

∆L(x) ≤ 0, x ∈ Cc (2.20)

and

{x : L(x) ≤ n} (2.21)

is finite for all n.

It is well known that positive recurrence provides a much stronger kind of

stochastic stability than recurrence, since it is implies the existence of steady state
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distribution of a Markov chain. The following theorem provides a Lyapunov drift

criterion for positive recurrence, which is a stronger version than Theorem 2.1.

Theorem 2.2 (Lyapunov drift criteria for positive recurrence [34]) The irreducible

Markov chain Φ is positive recurrent if there exists a finite set C ⊂ X and a Lya-

punov function L such that

∆L(x) ≤ −1, x ∈ Cc (2.22)

and

∆L(x) ≤ M, x ∈ C (2.23)

Condition (2.22) and (2.23) can be compactly written as

∆L(x) ≤ −1 + bI{x ∈ C} (2.24)

for some constant b < ∞.

Note that Theorem 2.1 and Theorem 2.2 are for irreducible Markov chain

only. The following theorem is an extension of Theorem 2.2 for a general Markov

chain on a countable state space.

Theorem 2.3 (Lyapunov drift criteria of stability of a general Markov chain [22])

Consider a Markov chain Φ. If there exists a finite set C ⊂ X and a Lyapunov

function L such that

∆L(x) ≤ −1, x ∈ Cc (2.25)

and

∆L(x) ≤ M, x ∈ C (2.26)

then for the time τi as defined in (2.18), we have

Pr(τi < ∞) = 1 ∀i ∈ T (2.27)
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and all states i ∈ ⋃
j Rj are positive recurrent. So by Definition 2.2, Φ is stable.

Now we are going to utilize Theorem 2.3 to get some useful criterion on the

queue stability.

Let L(Q) denote the Lyapunov function of queue state. From (2.19), it can

be seen that the Lyapunov drift can be calculated by

∆L(Q(t)) := E{L(Q(t+ 1))− L(Q(t))|Q(t)} (2.28)

which is the expected change in the Lyapunov function from one slot to the next.

Assume that Q(t) evolves according to some probabilistic law, and that the

initial conditions are such that E{L(Q(0))} < ∞. Then we have the following

criterion on queue stability, which will serve as the basis for our main results.

Lemma 2.1 (Lyapunov Stability) If there exist constants B > 0, ε > 0, such that

for all timeslot t we have:

∆L(Q(t)) ≤ B − ε
∑
c

∑
a

Qc
a(t) (2.29)

then the network is stable.

Proof:

Define set C as

C := {Q ∈ Q :
∑
c

∑
i

Qc
a(t) ≤

B + 1

ε
, } (2.30)

It is easy to see that C is a finite set. This is because we can rewrite (2.30) as

C = Q∩ Ĉ where Ĉ := {Q ∈ R
N×|K|
+ :

∑
c

∑
i Q

c
a(t) ≤ B+1

ε
}. Since Ĉ is a compact

set and Q is discrete, Q ∩ Ĉ must be a finite set. Note that for Q(t) ∈ Q \ C, we

have

∆L(Q(t)) ≤ B − ε
∑
c

∑
a

Qc
a(t) ≤ −1, (2.31)
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and for Q(t) ∈ C, we have

∆L(Q(t)) ≤ B (2.32)

By Lemma 2.3, the Markov process {Q(t)} is positive recurrent, i.e. the network

is stable.

�

Remark: It turns out that the criteria in (2.29) not only implies stability,

but also strong stability. The proof of strong stability can be found in [33] (Lemma

4.1).

2.2.4 Network Capacity

The capacity region Λ of a network is the closure of the set of all arrival

rate matrices λc
i(t) that can be stably supported by the network, considering all

possible strategies for choosing the control variables to affect routing, scheduling,

and resource allocation (including strategies that have perfect knowledge of future

events).

The capacity region Λπ of a given routing policy π of is the closure of the

set of all arrival rate matrices λc
i(t) that can be stably supported by the network

under the policy

The capacity region of the network should be distinguished from the ca-

pacity region of a specific policy. Clearly Λπ ⊆ Λ, i.e the network capacity is the

superset of the capacity region of any policy. The capacity region of the network is

the union of the individual policy capacity regions, taken over all possible policies.

One way to characterize the performance of a policy is by its rate capacity region

itself. The larger the capacity region the better the performance will be since the

network will be stable for a wider range of traffic loads and therefore more robust

to traffic fluctuations. Such a performance criterion makes even more sense in the
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context of wireless ad-hoc networks where both the traffic load as well as the net-

work capacity may vary unpredictably. A policy A is termed better than B with

respect to their capacity regions, if the capacity region of A is a superset of the

capacity region of B.

A policy is said to be throughput optimal if its capacity region is the superset

of the capacity region of any other policies. Clearly, a throughput optimal policy,

if exist, stabling the network for all arrival rate that belongs to the interior of the

capacity region. i.e. the capacity region of a throughput optimal policy coincides

with the network capacity region.

Generally, it is not clear if a throughput optimal policy exists. However, it

is well known that for any arrival rate within the capacity region, there exists a

randomized policy that only depends on the topology of the network (independent

of the queue backlogs) and stabilizes the network. Formally, we have the following

theorem:

Theorem 2.4 [Corollary 3.9 in [33]]. If the topology state H(t) is i.i.d. from slot

to slot, then a rate matrix (λc
i) is within the capacity region Λ if and only if there

exists a stationary randomized control algorithm that makes decisions µc
ab(t) based

only on the current topology state H(t), and that yields for all i, c and all time t:

E

{∑
b

µc
ib(t)−

∑
a

µc
ai(t)

}
= λc

i , for all i, c, i �= dest(c), (2.33)

where dest(c) denote the destination of commodity c, and the expectation is taken

with respect to the random topology state H(t) and the (potentially) random control

action based on this state.

Randomized policies are rarely used in practice since 1) finding such a ran-

domized policy requires global network knowledge and extensive calculations and

2) ignoring queue state information generally results in poor delay performance.
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The significance of Theorem 2.4 is that it provides a reference policy that is inde-

pendent of backlog state. In later chapters, we will use the randomized policy to

compare with other policies in order to prove their throughput optimality.
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Chapter 3

Single Commodity Case: K Policy

and Its Throughput Optimality

In this chapter, we will start with a simpler case when the set of commodity

K is a singleton. In this case, multiple arrivals from different nodes are destined

to a single destination (The destination could be a single node or a set of nodes).

For notation convenience, in this chapter we will assume there are N nodes

in the network except the destination nodes and label them by 1, 2, 3..., N . (So the

total number of nodes in the network is N plus the number of destination nodes.

Also because there is only one commodity, we will drop the commodity superscript

notation in this chapter as this won’t cause any confusion.

3.1 Priority Routing

For the single commodity case, we will focus on a special class of routing

policies called priority routing policies. Priority routing policies forms a subset of

stationary Markov policies. It turns out that when there is only a single commodity,

by restricting to a smaller class of routing polices among the whole set of stationary

25
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Markov policies, we are still able to achieve the capacity of the network. We will

be able to prove this later in this chapter.

To define the general priority routing policy, we need some new definitions.

3.1.1 Priority Class and Priority List

A priority class is an non-empty subset of N . The set of destination nodes,

denoted by C0, is a special priority class and is assigned with the lowest pri-

ority among all priority classes. In case there is a single destination, C0 is a

singleton. But generally C0 can include more than one node. A priority list

P = (C1, C2, ..., C|P |) is an ordered list, where |P | represents the number of pri-

ority classes of priority list P and C1, C2, ..., C|P | are priority classes that make

up a complete partition of N \ C0 (all network nodes except for the destination

node(s)). i.e. Ci ∩ Cj = ∅, i �= j and
⋃|P |

i=1Ci = N \ C0.

Given a priority list P = (C1, C2, ..., C|P |), if a ∈ Ci, b ∈ Cj and i < j, then

we say Ci is a lower priority class than Cj (Cj is a higher priority class than Ci)

and node a has lower priority than node b under priority list P (node b has higher

priority than node a under priority list P ). We concisely write a ≺P b. Similarly,

if a ∈ Ci, b ∈ Cj and i ≤ j, we write a �P b.

Note that set Ci is unordered, while P is ordered. Let Pall denote the set

of all possible priority lists.

The introduction of notion of priority classes allows us to group several

nodes in the same priority class as a “super node” to study its behavior as a

whole. For convenience, we introduce some more notations below:

Let QCi
(t) :=

∑
a∈Ci

Qa(t).

Let ACi
(t) denote the amount of data arriving to priority class Ci during
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time slot t, i.e.

ACi
(t) :=

∑
a∈Ci

Aa(t) (3.1)

And also define the arrival rate to priority class Ci as

λCi
:=

∑
a∈Ci

λa (3.2)

We further define

µCi,in(t) :=
∑
a/∈Ci

∑
b∈Ci

µa,b(t) (3.3)

µCi,out(t) :=
∑
a∈Ci

∑
b/∈Ci

µa,b(t) (3.4)

µCi,in(t) is the amount of data transmitted into priority class Ci from other nodes.

µCi,out(t) is the amount of data transmitted from priority class Ci into other nodes.

3.1.2 Priority Policy

Given a priority list P , an admissible control action {µc
ab(t)} is said to be

a control action based on priority list P at time slot t if µab(t) = 1 implies b �P b′

for any b′ ∈ Sa(t). That is, node a forwards a packet to b only if b has the lowest

priority among the potential forwarder set of node a. Let S∗
a(t) ⊆ Sa(t) denote the

set of nodes with the lowest priority among Sa(t). There are 3 cases:

Case 1: S∗
a(t) = {a}: i.e. node a has lower priority than any other nodes

in {µc
ab(t)}. In this case, node a doesn’t forward any packet, i.e. µaa(t) = 1.

Case 2: {a} ⊂ S∗
a(t). Then either node a holds the packet or forwards to

one of the nodes in S∗
a(t) \ a.

Case 3: a /∈ S∗
a(t). Then node a forwards a packet to one of the nodes in

S∗
a(t).

As a special priority class, the nodes in C0 always have the lowest priority

among all other nodes since other nodes should forward directly to a destination

node whenever possible.
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It can be seen from above that when S∗
a(t) is not a singleton, the routing

control action based on a given priority list is not unique. Let M(H , P ) denote

the set of admissible routing control actions based on priority list P under topology

state H . Obviously, we have M(H , P ) ⊆ M(H)

A Markov stationary routing policy π is called a priority routing policy if

there exists a so called priority function P : RN
+ 	→ Pall such that

π(H ,Q) ∈ M(H ,P(Q)) (3.5)

for all H , Q

We call the priority function P in (3.5) as a priority policy. It should be

noted that a priority policy π that takes values in Pall should not be confused with

a priority routing policy π that takes values in the set of routing control actions.

Since the right hand side of (3.5) is generally a set of routing control actions, a

priority policy P generally defines a class of priority routing policy π. In the rest

of this chapter, we will focus on priority policy P instead of priority routing policy

π. Let us start with more definitions about P .

A priority policy P is called a cone policy if

P(Q) = P(cQ) (3.6)

for all Q ∈ R
N
+ and c > 0.

Given two priority lists P and P ′, P ′ is a refinement of P if node a ≺P b

implies a ≺P ′
b for any a, b ∈ N \ C0. Note that by definition, a priority list is a

refinement of itself.

Given two priority policies P and P ′, if P ′(Q) is a refinement of P(Q) for

any Q ∈ R
N
+ , then we call P ′ a refined policy of P .

Clearly, by definition, if P ′ is a refinement of P , then the routing control

action based on P ′ is also a routing control action based on P . (The converse is

generally not true). Formally, we have
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Proposition 3.1 If P ′ is a refinement of P , then M(H , P ′) ⊆ M(H , P )

By Proposition 3.1, if P ′ is a refined policy of P , then

M(H ,P ′(Q)) ⊆ M(H ,P(Q)) (3.7)

for all H and Q. Then by the definition in (3.5), the set of priority routing policies

π defined by P is superset of that defined by P ′. Hence we have the following simple

but important result.

Proposition 3.2 If a priority policy is throughput optimal, all its refined polices

are throughput optimal.

3.1.3 Critical Priority List

So far we have restricted ourself to the class of priority policies that take

values among the set all possible priority lists Pall. It turns out when the set of link

L doesn’t include all possible links, some priority lists are not required to achieve

the throughput optimality, thus these priority lists are non-critical. In practice,

by excluding these non-critical priority listings, the delay performance might be

further improved.

Before formally classifying the priority lists into critical ones and non-

critical ones, we need to first classify the nodes in a priority list. Given a priority

list P , under a link set L, each node a can be in one of the three following status:

1. Node a is non-isolated under P if there exists a node b such that b ≺P a and

(a, b) ∈ L. That is a is able to transmit directly to a node in a lower priority

class than that of a.

2. Node a is semi-isolated under P if a is not non-isolated but there exists

a non-isolated node b in the same priority class such that (a, b) ∈ L or
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there exist intermediate nodes a1, a2, ..., ak from same priority class such that

(a, a1), (a1, a2), ..., (ak, b) ∈ L. Since we know that non-isolated nodes can

transmit directly to a node in a lower priority class, semi-isolated nodes,

in other words, are those who can indirectly transmit to a node in a lower

priority class via a “path” within the priority class.

3. Node a is isolated under P if a is neither non-isolated nor semi-isolated.

Figure 3.1 shows an example of non-isolated nodes, semi-isolated nodes,

and isolated nodes.

0

Class 3

Class 2

Class 1

Non-isolated

Semi-isolated

Isolated

Figure 3.1: Example of classification of nodes in a priority list

A priority list is critical if each node is either non-isolated or semi-isolated

(i.e. no isolated nodes). A priority list is non-critical if there exists an isolated

node.

By this definition, if a priority list is critical, then for each node a (ei-

ther semi-isolated or non-isolated) there exist intermediate nodes a1, a2, ..., ak ∈
N \ C0 with priority order a �P a1 �P a2 �P ... �P ak and b ∈ C0 such that
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(a, a1), (a1, a2), ..., (ak, b) ∈ L. That is, there exists a “path” to destination via

nodes with priorities non-increasing in order.

Given a link set L, denote the set of critical priority lists by PL. Clearly PL

is a subset of Pall since the latter contains all possible priority lists.

Proposition 3.3 If P is a critical list, all its confinements are critical.

Proof: By the definition of non-isolated node, if a node is non-isolated under

P , it is either non-isolated or semi-isolated under the confinement of P . By the

definition of semi-isolated node, if a node is semi-isolated under P , it is still semi-

isolated under the confinement of P . So we conclude that if a priority list contains

only non-isolated and semi-isolated nodes, all its confinements contain only non-

isolated and semi-isolated nodes. By definition of critical list, all its confinements

are critical.

�

Consider two link sets L′ and L. Assume L′ ⊂ L, that is L′ has less connec-

tivity than L has. We refer to L′ as a sub-network of L, and L as a super-network

of L′. The following proposition states the node classification relationship between

a sub-network and a super-network. Note that the reverse of the propostion is

generally not true.

Proposition 3.4 If L′ ⊂ L, then for any priority list P , a non-isolated node

under L′ is also non-isolated under L; a isolated node under L is also isolated

under L′. And any critical list under L′ is critical under L, i.e. PL′ ⊆ PL.

Proof: The proof is straightforward by definition.

�

The following figure illustrates the relationship between a sub-network and

a super-network.
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Non-isolated node

Semi-isolated
node

Isolated node

Non-isolated node

Semi-isolated
node

Isolated node

Sub-network Super Network

Figure 3.2: Sub-network and super-network

3.2 K Policy and Its Stability

In this section, we define a class of stationary priority policies called K

policy and we show that K policy is throughput optimal. To formally define K

policy, some more definitions need to be introduced first.

The following weight function will play a key role in defining K policy:

WK(n,m) :=
1

Kn(Km − 1)
(3.8)

Note that if we approximate Km − 1 by Km, the function can be approxi-

mated by

WK(n,m) ≈ K−(n+m) (3.9)

(3.9) is a good approximation when K is large. It will be useful to provide some

intuitions later.

The following simple property of the weight function is very important and

will be used later.

Proposition 3.5

1

WK(n,m1 +m2)
=

1

WK(n,m1)
+

1

WK(n+m1,m2)
(3.10)

Proof: By definition of WK(n,m) in (3.8)

�
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Given two priority lists, P = (C1, C2, ..., C|P |) and P ′ = {C ′
1, C

′
2, ..., C

′
|P ′|},

we say P ′ is a one-step refinement of P (and P is a one-step confinement of P ′)

with regard to priority class Ci(1 ≤ i ≤ |P |) if |P | = |P ′|+ 1 and




Ck = C ′
k if 1 ≤ k ≤ i− 1

Ci = C ′
i ∪ C ′

i+1

Ck = C ′
k+1 if i+ 1 ≤ k ≤ |P |

(3.11)

We also refer to P and P ′ as an adjacent list pair. Clearly, P ′ is a refinement of

P . i.e. one-step refinement is a special case of refinement.

If P ′ is a one-step refinement of P with regard to priority class Ci, then the

hyperplane that separates the adjacent list pair P and P ′ is defined as

HK(P ;P ′) :=
{
Q | WK(|C ′

<i|, |C ′
i|)QC′

i
= WK(|C ′

<i+1|, |C ′
i+1|)QC′

i+1

}
(3.12)

where | · | denote the cardinality of a set, and C ′
<i denote the set of nodes that has

lower priority than nodes in the i-th priority class, i.e.

C ′
<i :=

i−1⋃
j=1

C ′
j (3.13)

(3.12) separates the whole space into two half spaces. The half space of the

one-step refinement list P ′ is given by

H+
K(P ;P ′) :=

{
Q | WK(|C ′

<i|, |C ′
i|)QC′

i
≤ WK(|C ′

<i+1|, |C ′
i+1|)QC′

i+1

}
(3.14)

The half space of the one-step confinement list P is given by

H−
K(P ;P ′) :=

{
Q | WK(|C ′

<i|, |C ′
i|)QC′

i
≥ WK(|C ′

<i+1|, |C ′
i+1|)QC′

i+1

}
(3.15)

By using the approximation in (3.9), the linear equation in (3.12) can be

approximated by

K |C′
>i|QC′

i
= K |C′

>i+1|QC′
i+1

(3.16)
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or equivalently

K |C′
i+1|QC′

i
= QC′

i+1
(3.17)

As we can see, the equation compares the total queue length of two consecutive

priority classes by a factor approximated by K |C′
i+1|.

Recall that PL is the set of critical lists under link set L. In what follows,

we will construct K policy based on PL. We are going to define priority cone for

each P ∈ PL and these cones make up a complete partition of queue space R
N
+ .

Define P+
L(P ) as the set of one-step critical refinements of P , i.e. P+

L(P ) :=

{P ′ ∈ PL : P ′ is one-step refinement of P}. And likewise, define P
−
L(P ) as the set

of one-step confinements of P i.e. P−
L(P ) := {P ′ : P ′ is one-step confinement of P}.

By Proposition 3.3, P−
L(P ) ⊆ PL.

Given K, for each P ∈ PL, define DL
K(P ) ⊂ R

N
+ as follows:

DL
K(P ) := R

N
+ ∩


 ⋂

P ′∈P−
L (P )

H+
K(P

′;P )


 ∩


 ⋂

P ′∈P+
L (P )

H−
K(P ;P ′)


 (3.18)

where H+
K(P

′;P ) and H−
K(P ;P ′) are defined in (3.14) and (3.15), respectively.

Each DL
K(P ) is a cone since it is an intersection of half spaces. (That is, if

Q ∈ DL
K(P ) then cQ ∈ DL

K(P ) for any positive real number c). Therefore we refer

to DL
K(P ) as a priority cone of priority list P parameterized by K.

The following lemma gives two useful properties of queue length of a non-

isolated node from a priority cone:

Lemma 3.1 Given a critical priority list P = (C1, ..., C|P |) ∈ PL, if Q ∈ DL
K(P )

and a ∈ Ci is a non-isolated node, then

1)

Qa ≥ K − 1

K |Ci| − 1
QCi

(3.19)

2)

Qa > (K − 1)QC<i
(3.20)
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where QC<i
:=

∑i−1
s=1 QCs.

Proof: See Appendix A.1.

�

The first property in Lemma 3.1 states that the queue length of non-isolated

node cannot be “too small” compared to the total queue length of within its priority

class. The second property says that the queue length of non-isolated node cannot

be “too small” compared to the total queue length of the nodes in lower priority

classes. These two properties are very important for establishing our results.

To get some intuition about priority cone and its properties Lemma 3.1,

notice that second terms on the right hand side of (3.18) can be interpreted as the

inter-class constraints. It basically, compares any two consecutive priority classes

Ci and Ci+1 and impose the following constraint:

WK(|C<i|, |Ci|)QCi
≤ WK(|C<i+1|, |Ci+1|)QCi+1

(3.21)

Using the approximation in (3.9), (3.21) is approximated by

K |Ci+1|QCi
≤ QCi+1

(3.22)

The intuition here is that in order to separate priority class Ci+1 from Ci.

The total queue length of Ci+1 has to be K |Ci+1| times larger than that of Ci. The

ratio increases as K increases.

The last term on the right hand side of (3.18) can be interpreted as the

intra-class constraints. It basically require the nodes within the same priority

class not to have a queue length significantly different from the others. To get

some intuition, say we want to find the intra-class constraints for priority class Ci

of P . And for simplicity, let us assume that all confinements of P with regards to
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Ci are critical. Then the last term on the right hand side of (3.18) will impose the

following constraint for priority class Ci of P .

WK(|C<i|+ |U |, |V |)QV ≤ WK(|C<i|, |U |)QU , for all U ∪ V = Ci, U, V �= ∅

(3.23)

Using the approximation in (3.9), (3.23) is approximated by

QV ≤ K |V |QU , for all U ∪ V = Ci, U, V �= ∅ (3.24)

Due to the symmetry of U and V , (3.24) can also be written as

K−|V |QU ≤ QV ≤ K |V |QU , for all U ∪ V = Ci, U, V �= ∅ (3.25)

The intuition here is that any subset of nodes within priority class Ci should

have the total queue length K |V | times less than the total queue length of the rest

nodes in Ci but K
−|V | times greater than the total queue length of the rest nodes

in Ci. The ratio increases as K increases.

To summarize, roughly speaking, DL
K(P ) has inter-class constraints

K |Ci+1|QCi
≤ QCi+1

(3.26)

for any two consecutive priority classes and intra-class constraints with in each Ci

in the following form

K−|V |QU ≤ QV ≤ K |V |QU , for all U ∪ V = Ci, U, V �= ∅ (3.27)

Note that both (3.26) and (3.27) are approximations.

We haven defined {DL
K(P ), P ∈ PL} for a given link set L. To ensure that

K policy is well defined, we need to answer two questions: First, are these DL
K(P )

are non-overlapped? Secondly, would these DL
K(P ) be able to cover the whole

queue space? It turns out that the answers to both questions are YES, which is

formally stated in the following proposition:
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Proposition 3.6 Given a link set L of a network and K ≥ 2, {DL
K(P ), P ∈

PL} are a complete partition of queue space R
N
+ , i.e.

⋃
P∈PL D

L
K(P ) = R

N
+ and

int(DL
K(P1)) ∩ int(DL

K(P2)) = ∅ for P1, P2 ∈ PL and P1 �= P2, where int(·) stands
for interior.

Proof: See Appendix A.2.

�

Remark: One might think of using the approximation relationship in

(3.26) and (3.27) to characterize priority cones for its simplicity in form. However

this resulted priority cones don’t form a complete partition. The weight function

WK(|C<i|, |Ci|) is introduced to technically construct the priority cones to form a

complete partition.

With Proposition 3.6 established, we are now ready to define K policy.

Definition 3.1 (K policy) Given a link set L and K ≥ 2, K policy PK based on

critical list set PL is a priority policy defined as follows:

PK(Q) = P if Q ∈ DL
K(P ) (3.28)

In other words, the policy PK routes the packet according to priority list P

when Q(t) ∈ DL
K(P ) at time slot t. By Proposition 3.6, K policy is a well defined

priority policy as long as K ≥ 2. Moreover, it is clear that K policy is a cone

policy, since all DL
K(P )s are cones. By definition, we have Q ∈ DL

K(PK(Q)) for

any Q ∈ R
N
+

The important property of K policy is its throughput optimality. The main

result is stated as follows. The proof will be given in the next section.

Theorem 3.1 Given a network with link set L′, if the arrival rate λ is strictly

within its capacity region Λ, then any K policy (K ≥ 2) based on PL with L′ ⊆ L
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stabilizes the network. i.e. K policy based on PL is throughput optimal for any

network with link set L′ such that L′ ⊆ L.

Remark: L′ is a link set with the same or less connectivity than L. The theorem
indicates certain robustness of K-policies. In practice, some links in a network

might go down accidentally, resulting a sub-network with less connectivity than

the original network. The theorem shows that the K policy designed based on the

original network will still stabilize the network as long as the arrival rate is still

within the capacity region of the sub-network.

3.3 Proof of Stability of K Policy

Similar to the proof of stability of backpressure algorithm, the central tool

we are going to use to proof stability is Lemma 2.1. The main problem is then

to find and construct a Lyapunov function, such that the one-step drift of the

Lyapunov function is negative as long as the total backlog is sufficiently large.

It is easy to see that the quadric form function used in the proof of stability

of backpressure algorithm would not work. In what follows, we will construct a

special Lyapunov function, which is weighted quadric in the cone of each critical

priority list. The weights are different from cone to cone, but the function keep

its continuality and smoothness on the boundary of the cones. Hence the entire

function is piecewise quadric. By utilizing this special piecewise quadric function,

we will be able to obtain negative drift for large total backlog.
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3.3.1 Construction of the Lyapunov Function

Given a priority list P = (C1, C2, ..., C|P |), the Lyapunov function under list

P and parameter K is defined as

LK(Q;P ) :=

|P |∑
i=1

WK(|C<i|, |Ci|)Q2
Ci

(3.29)

where WK(n,m) is defined in (3.8). Note here n is substituted by the number

of nodes that is in the lower priority classes than Ci and m is substituted by

the number of nodes in priority class Ci. To get some intuitions, we use the

approximation of WK(n,m) in (3.9) to rewrite (3.29) as

LK(Q;P ) ≈
|P |∑
i=1

K |C>i|Q2
Ci

(3.30)

where |C>i| is the number of nodes that has higher priority than nodes in Ci. As

we can see from (3.30), the function imposes lower cost on the higher priority class.

Proposition 3.7 For any adjacent list pair P and P ′, LK(Q;P ) and LK(Q;P ′)

are equal and have equal gradient on separation hyperplane HK(P ;P ′) defined in

(3.12)

Proof: Suppose we are given an adjacent list pair, P = {C1, C2, ..., C|P |}
and P ′ = (C ′

1, C
′
2, ..., C

′
|P ′|). Without loss of generality, assume P ′ is a one-step

refinement of P with regard to priority class Ci(1 ≤ i ≤ |P |), then |P ′| = |P | + 1

and 


Ck = C ′
k if 1 ≤ k ≤ i− 1

Ci = C ′
i ∪ C ′

i+1

Ck = C ′
k+1 if i+ 1 ≤ k ≤ |P |

(3.31)

On the hyperplane that separates the adjacent list pair P and P ′, we have by

definition

WK(|C ′
<i|, |C ′

i|)QC′
i
= WK(|C ′

<i+1|, |C ′
i+1|)QC′

i+1
(3.32)



40

Rewrite (3.32) as

QC′
i
+QC′

i+1

WK(|C ′
<i+1|, |C ′

i+1|)
=

QC′
i+1

WK(|C ′
<i|, |C ′

i|)
+

QC′
i+1

WK(|C ′
<i+1|, |C ′

i+1|)
(3.33)

By using Proposition (3.5), we have

1

WK(|C ′
<i+1|, |C ′

i+1|)
(QC′

i
+QC′

i+1
) =

1

WK(|C ′
<i|, |C ′

i|+ |C ′
i+1|)

QC′
i+1

(3.34)

By using (3.31) and after proper arrangement, we have

WK(|C<i|, |Ci|)QCi
= WK(|C ′

<i|+ |C ′
i|, |C ′

i+1|)QC′
i+1

(3.35)

So on the hyperplane HK(P ;P ′) that separates the adjacent list pair P and P ′,

we have

WK(|C<i|, |Ci|)QCi
= WK(|C ′

<i+1|, |C ′
i+1|)QC′

i+1
= WK(|C ′

<i|, |C ′
i|)QC′

i
(3.36)

By (3.29),

∂LK(Q;P )

∂Qa

= WK(|C<i|, |Ci|)QCi
(3.37)

So for a ∈ C ′
i, on HK(P ;P ′), we have

∂LK(Q;P ′)
∂Qa

= 2WK(|C ′
<i|, |C ′

i|)Q′
Ci

= 2WK(|C<i|, |Ci|)QCi
=

∂LK(Q;P )

∂Qa

(3.38)

Similarly, for a ∈ C ′
i+1, on HK(P ;P ′), we have

∂LK(Q;P ′)
∂Qa

= 2WK(|C ′
<i+1|, |C ′

i+1|)QC′
i+1

= 2WK(|C<i|, |Ci|)QCi
=

∂LK(Q;P )

∂Qa

(3.39)

This proves that they have equal gradient on the separation hyperplane

HK(P ;P ′).

Now we are going to show that on the hyperplane HK(P ;P ′), we have

LK(Q;P ′) = LK(Q;P ) (3.40)
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Notice that

WK(|C ′
<i|, |C ′

i|)Q2
C′

i
+WK(|C ′

<i+1|, |C ′
i+1|)Q2

C′
i+1

=
1

WK(|C ′
<i|, |C ′

i|)
(WK(|C ′

<i|, |C ′
i|)QC′

i
)2

+
1

WK(|C ′
<i+1|, |C ′

i+1|)
(WK(|C ′

<i+1|, |C ′
i+1|)QC′

i+1
)2

=

(
1

WK(|C ′
<i|, |C ′

i|)
+

1

WK(|C ′
<i+1|, |C ′

i+1|)
)
(WK(|C<i|, |Ci|)QCi

)2

=
1

WK(|C<i|, |Ci|)(WK(|C<i|, |Ci|)QCi
)2

=WK(|C<i|, |Ci|)Q2
Ci

(3.41)

So

LK(Q;P )

=

|P |∑
k=1

WK(|C<k|, |Ck|)Q2
Ck

=

|P |∑
k=1

WK(|C<k|, |Ck|)Q2
Ck

+WK(|C<i|, |Ci|)Q2
Ci

+

|P |∑
k=i+1

WK(|C<k|, |Ck|)Q2
Ck

=
i−1∑
k=1

WK(|C ′
<k|, |C ′

k|)Q2
C′

k
+WK(|C ′

<i|, |C ′
i|)Q2

C′
i
+WK(|C ′

<i+1|, |C ′
i+1|)Q2

C′
i+1

+

|P ′|∑
k=i+2

WK(|C ′
<k|, |C ′

k|)Q2
C′

k

=

|P ′|∑
i=1

WK(|C ′
<i|, |C ′

i|)Q2
C′

i

=LK(Q;P ′)

(3.42)

This completes the proof.

�
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Now, we are ready to write the Lyapunov function given a complete priority

list set PL:

LK(Q;PL) :=
∑
P∈PL

LK(Q;P )I{Q ∈ DL
K(P )} (3.43)

where I{Q ∈ DL
K(P )} is indicator function, which equals 1 when Q ∈ DL

K(P ) and

0 otherwise.

Proposition 3.8 LK(Q;PL) is a well-defined continuous function with continuous

gradient (aka. derivative).

Proof: Follow from Proposition 3.6 and Proposition 3.7.

�

Remark: One might think of using (3.30) instead of (3.29) to define Lya-

punov function for its simplicity in form. However this won’t result in the nice

continuity property on the boundary points between priority cones. The weight

functionWK(|C<i|, |Ci|) is introduced to technically construct a Lyapunov function

with continuity.

Given parameter K, consider objective function fK is defined as follows:

For each queue state Q ∈ R
N
+ , if Q ∈ DL

K(P ) with P = (C1, C2, ..., C|P |) then

fK(Q,µ) :=

|P |∑
i=1

WK(|C<i|, |Ci|)QCi
(µCi,out − µCi,in) (3.44)

Recall that M(H , P ) is the set of admissible routing control actions based

on priority list P under topology H . The following Lemma provides an alternative

way to describe K policy: It is a policy that maximizes utilities function fK .

Lemma 3.2 Let M(H , P ) be the set of admissible routing control actions based

on priority list P under topology H. Then for any K policy PK, we have

M(H ,PK(Q)) ⊆ arg max
µ∈M(H)

fK(Q,µ) (3.45)
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for all Q ∈ R
N
+ , where M(H) is the set of all admissible routing control actions

that satisfies (2.3) and (2.4) under topology state H.

Proof: For easier presentation, define UCi
as follows

UCi
:=


 WK(|C<i|, |Ci|)QCi

if 1 ≤ i ≤ |P |
0 if i = 0

(3.46)

We adopt notation [a] to denote the priority class node a belongs to. i.e. [a] := Ci

if a ∈ Ci. Hence we have U[a] = UCi
if a ∈ Ci.

Now we rewrite (3.45) in another form:

fK(Q,µ) :=

|P |∑
i=1

WK(|C<i|, |Ci|)QCi
(µCi,out − µCi,in)

=

|P |∑
i=0

UCi
(µCi,out − µCi,in)

=
∑

a∈N\C0




∑
b∈N\C0

µab

[
U[a] − U[b]

]
+
∑
b∈C0

µabU[a]




=
∑

a∈N\C0

{∑
b∈N

µab

[
U[a] − U[b]

]}
(3.47)

where the second equation is due to the fact that UC0 := 0.

By definition of DL
K(P ), we have the following constraint for any i, given a

priority list P :

WK(|C<i|, |Ci|)QCi
≤ WK(|C<i+1|, |Ci+1|)QCi+1

(3.48)

(3.48) is obtained by considering the separation hyperplane between P and all

its one-step confinement lists (By Proposition 3.3, all confinement lists of P are

critical)

Apply the definition of UCi
in (3.46) to (3.48), we have

UC0 ≤ UC1 ≤ ... ≤ UC|P | (3.49)
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By the routing constraints defined in (2.3) and (2.4), under topology state

H , for each node a, there exists one and only one node b from the potential

forwarder set of a (b may be equal to a) such that µab = 1. So we have

max
µ∈M(H)

fK(Q,µ)

= max
µ∈M(H)

∑
a∈N\C0

{∑
b∈N

µab

[
U[a] − U[b]

]}

=
∑

a∈N\C0

max
b∈Sa(t)

{
U[a] − U[b]

}

=
∑

a∈N\C0

{
U[a] − min

b∈Sa(t)
U[b]

}
(3.50)

From (3.50), it is clear that to maximize fK under topology state H , a should

forward its packet to the node in the lowest priority class among its forwarders.

And this is exactly how K policy is defined.

�

3.3.2 Proof of Stability

The following simple Lemma will be very useful. It serves as a basic building

block for proving our main results

Lemma 3.3 If Q+, Q, µ,A are nonnegative real random variables, and there exist

nonnegative real numbers v, c such that µ ≤ c,A ≤ c and the following relations

hold:

Q+ ≤ Q+ A (3.51)

Q+ ≤ Q− µ+ A, if Q > v (3.52)

then there exists a constant β such that

(Q+)2 −Q2 ≤ β − 2Q(µ− A) (3.53)
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Proof : If Q > v, we have

Q+ ≤ Q− µ+ A (3.54)

After taking the square of (3.54) at both sides and proper arrangement, we have.

(Q+)2 −Q2 ≤ (µ− A)2 − 2Q(µ− A) (3.55)

On the other hand, if Q ≤ v, by (3.51), we still have

Q+ ≤ Q+ A (3.56)

After taking the square of (3.56) at both sides and proper arrangement, we have.

(Q+)2 −Q2 ≤ A2 + 2Qµ− 2Q(µ− A) (3.57)

Let β := 4c2 + 2vc and notice that

β ≥ (µ− A)2 (3.58)

and

β ≥ A2 + 2Qµ, if Q < v. (3.59)

The proof is completed by applying (3.58) and (3.59) to (3.55) and (3.57), respec-

tively.

�

The following Lemma gives queue dynamics when the total backlog within

a priority class is sufficiently large.

Lemma 3.4 If K policy PK (K ≥ 2) based on PL is used in a network with link

set L′ and L′ ⊆ L, then there exists a constant αK such that for any priority class

Ci from any priority list P = (C1, C2, ..., C|P |) ∈ PL, as long as Q(t) ∈ DL
K(P ) and

QCi
(t) > αK, the queue dynamics can be written as

QCi
(t+ 1) ≤ QCi

(t)− µCi,out(t) + µCi,in(t) + ACi
(t) (3.60)
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where µCi,in(t), µCi,out(t), and ACi
are defined in (3.3) (3.4), and (3.1), respectively.

Proof : It is sufficient to prove that when QCi
is sufficiently large, all non-

isolated nodes in priority class Ci under link set L′ will become larger than µmax.

So these queues will not become empty (no edge effect). Then (3.60) must hold.

First notice that by Proposition 3.4, a non-isolated node in priority class

Ci under link set L′ is also non-isolated under link set L since L′ ⊆ L. So it

is sufficient to prove that when QCi
is sufficiently large, all non-isolated nodes in

priority class Ci under link set L will become larger than µmax.

For any non-isolated node a ∈ Ci under L, since P ∈ PL is critical, by

Lemma 3.1 (1),

Qa ≥ K − 1

K |Ci| − 1
QCi

(3.61)

Now choose αK > µmax
K|Ci|−1
K−1

. Then QCi
> αK implies Qa > µmax. We can

repeat this procedure for all priority classes of all priority lists. Since the number of

priority classes and number of priority lists are finite, there exists a single constant

αK , such that for any priority class of any priority lists, if Q(t) ∈ DL
K(P ) and

QCi
(t) > αK , then all non-isolated nodes in Ci have queue length greater than

µmax. Thus these nodes will not go to empty from time t to time t+ 1. Therefore

QCi
(t+ 1) ≤ QCi

(t)− µCi,out(t) + µCi,in(t) + ACi
(t) (3.62)

�

Lemma 3.5 If K policy PK (K ≥ 2) based on PL is used in a network with link

set L′ and L′ ⊆ L, then for any priority list P = (C1, C2, ..., C|P |) ∈ PL, and

Q(t) ∈ DL
K(P )

Q2
Ci
(t+ 1)−Q2

Ci
(t) ≤ βK − 2QCi

(t) (µCi,out(t)− µCi,in(t)− ACi
(t)) (3.63)

where βK is some constant.
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Proof :

By Lemma 3.4, when K policy is used, there exists αK such that if Q(t) ∈
DL

K(P ) and QCi
(t) > αK , then

QCi
(t+ 1) ≤ QCi

(t)− µCi,out(t) + µCi,in(t) + ACi
(t) (3.64)

On the other hand, if QCi
(t) ≤ αK , then

QCi
(t+ 1) ≤ QCi

(t) + µCi,in(t) + ACi
(t) (3.65)

(3.63) follows by applying Lemma 3.3 with Q+ = QCi
(t + 1), Q = QCi

(t),

A = µCi,in(t) + ACi
(t), µ = µCi,out(t), v = αK , and c = N max{µmax, Amax}.

�

Note that Q(t) ∈ DL
K(PK(Q(t))), but it is not necessarily true that Q(t+

1) ∈ DL
K(PK(Q(t))). This is because the queues at time slot t + 1 might cross

the boundary points of the priority cone and the priority list might change. How-

ever, the following Lemma shows that due to the differentiability of the Lyapunov

function, the error introduced by crossing boundary is of a higher order.

Lemma 3.6 If K policy PK (K ≥ 2) based on PL is used in a network with link

set L′ and L′ ⊆ L, then for any priority list P = (C1, C2, ..., C|P |) ∈ PL, and

Q(t) ∈ DL
K(P )

LK(Q(t+ 1);PL)− LK(Q(t);PL) ≤

γK−2
∑
i

WK(|C<i|, |Ci|)QCi
(t)(µCi,out(t)−µCi,in(t)−ACi

(t))+o(‖Q(t+1)−Q(t)‖)

where γK is some constant.

Proof:
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It follows from Lemma 3.5 and (3.29) that

LK(Q(t+ 1);P )− LK(Q(t);P )

≤ γK − 2
∑
i

WK(|C<i|, |Ci|)QCi
(t)(µCi,out(t)− µCi,in(t)− ACi

(t)) (3.66)

for Q(t) ∈ DL
K(P ), where γK is some constant.

Since LK(Q(t);P ) is differentiable, we have

LK(Q(t+ 1);P ) = LK(Q(t);P ) +∇LK(Q(t);P ) · (Q(t+ 1)−Q(t))

+ o(‖Q(t+ 1)−Q(t)‖) (3.67)

Likewise, LK(Q(t);PL) is differentiable by Proposition 4.2. So

LK(Q(t+ 1);PL) = LK(Q(t);PL) +∇LK(Q(t);PL) · (Q(t+ 1)−Q(t))

+ o(‖Q(t+ 1)−Q(t)‖) (3.68)

Subtracting (3.67) from (3.68) and noting that LK(Q(t);P ) = LK(Q(t);PL) and

∇LK(Q(t);P ) = ∇LK(Q(t);PL) for Q(t) ∈ DL
K(P ), we have

LK(Q(t+ 1);PL)− LK(Q(t+ 1);P ) ≤ o(‖Q(t+ 1)−Q(t)‖) (3.69)

The proof is completed by adding (3.66) and (3.69) and substituting LK(Q(t);P )

by LK(Q(t);PL).

�

Now, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1:

Suppose K policy is used, and Q(t) ∈ DL
K(P ), where P = (C1, C2, ..., C|P |),

then by Lemma 3.6:

LK(Q(t+ 1);PL)− LK(Q(t);PL) ≤

γK−2
∑
i

WK(|C<i|, |Ci|)QCi
(t)(µCi,out(t)−µCi,in(t)−ACi

(t))+o(‖Q(t+1)−Q(t)‖)
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Taking the conditional expectation yields,

∆LK(Q(t);PL) = E{LK(Q(t+ 1);PL)− LK(Q(t);PL)|Q(t)}

≤γK − 2
∑
i

WK(|C<i|, |Ci|)QCi
(t)E {(µCi,out(t)− µCi,in(t)− ACi

(t))|Q(t)}

+ o(‖Q(t+ 1)−Q(t)‖)

=γK − 2E[fK(Q(t),µ(t))]−
∑
i

(WK(|C<i|, |Ci|)λCi
) + o(‖Q(t+ 1)−Q(t)‖)

(3.70)

Because the control action µ(t) in (3.70) has to be admissive, we require

µ(t) ∈ M(H(t)). This implies that the set of feasible values µ(t) could take

depends on the topology state H(t), which is a random variable. Hence, we

conclude that fK(Q(t),µ(t)) is a random variable.

Since λ is strictly within the capacity region Λ, there exist a positive vector

ε > 0 such that λ + ε ∈ Λ. By Theorem 2.4 there exists a stationary randomized

algorithm that makes decisions based only on the current topology state (and hence

independent of the current queue backlog) so that

E {(µ̃Ci,out(t)− µ̃Ci,in(t)− ACi
(t))|Q(t)} ≥ ε (3.71)

where µ̃Ci,out(t) and µ̃Ci,out(t) denote the amount of date transmitted under such

randomized policy.

By the definition of fK in (3.45) and Lemma 3.2, K policy PK chooses

routing control action µ to minimize the right hand side over all polices. i.e. if

µ̂(t) ∈ M(H(t),PK(Q(t))), then we have

fK(Q(t), µ̃(t)) ≤ max
µ(t)∈M(H(t))

fK(Q(t),µ(t)) = fK(Q(t), µ̂(t)) (3.72)
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where µ̃(t) denote the control action under the randomized policy. By applying

(3.72) to (3.70) we have

∆LK(Q(t);PL)

≤γK − 2E [fK(Q(t), µ̂(t))]−
∑
i

(WK(|C<i|, |Ci|)λCi
) + o(‖Q(t+ 1)−Q(t)‖)

≤γK − 2E [fK(Q(t), µ̃(t))]−
∑
i

(WK(|C<i|, |Ci|)λCi
) + o(‖Q(t+ 1)−Q(t)‖)

=γK − 2
∑
i

WK(|C<i|, |Ci|)QCi
(t)E {(µ̃Ci,out(t)− µ̃Ci,in(t)− ACi

(t))|Q(t)}

+ o(‖Q(t+ 1)−Q(t)‖)
(3.73)

By using (3.71), we have

∆LK(Q(t);PL) ≤ γK−2ε
∑
i

WK(|C<i|, |Ci|)QCi
(t)+o(‖Q(t+1)−Q(t)‖) (3.74)

Note that WK(|C<i|, |Ci|) ≥ 1 for any K,Ci, so

E{LK(Q(t+ 1);PL)− LK(Q(t);PL)|Q(t)}

≤γK − 2ε
∑
i

QCi
(t) + o(‖Q(t+ 1)−Q(t)‖)

=γK − 2ε
∑
a

Qa(t) + o(
‖Q(t+ 1)−Q(t)‖∑

a Qa(t)
)
∑
a

Qa(t)

=γK − 2

(
ε− o(

‖Q(t+ 1)−Q(t)‖∑
a Qa(t)

)

)∑
a

Qa(t)

(3.75)

Since ‖Q(t + 1) − Q(t)‖ is bounded, ‖Q(t+1)−Q(t)‖∑
a Qa(t)

→ 0 as
∑

a Qa(t) increases.

Therefore, for sufficiently large
∑

aQa(t), o(
‖Q(t+1)−Q(t)‖∑

a Qa(t)
) ≤ ε

2
. Thus we conclude

for sufficiently large
∑

a Qa(t), we have

E{LK(Q(t+ 1);PL)− LK(Q(t);PL)|Q(t)} ≤ γK − ε
∑
a

Qa(t) (3.76)

The stability follows from Lemma 2.1.

�
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3.4 Examples of K Policies

In this section, we give a few toy examples to get some intuition and insights

of the structure of K policy.

Example 1:

Consider the network of 3 nodes as given in Figure 3.3.

0

1

2

Figure 3.3: A 3 nodes network, (N = 2). Node 0 is the destination node

The underlying Lyapunov function of the network (scaled by factor K2−1)

is given by

L(Q) =




(K + 1)Q2
1 +

K+1
K

Q2
2 Q2 > KQ1

K+1
K

Q2
1 + (K + 1)Q2

2 Q1 > KQ2

(Q1 +Q2)
2 otherwise

(3.77)

Figure 3.4 shows the priority cone partition and corresponding priority list

assigned for each cone, where the solid curves are the contour lines of underlying

Lyapunov function. As we can see that the contour lines are smooth, due to the

fact that the Lyapunov function is continuous and differentiable.

Note that in the central cone where Q2 ≤ KQ1 and Q1 ≤ KQ2, the two

nodes are grouped into a single priority class. So the transmission between these

two nodes are not specified by K policy. Compared with backpressure algorithm,

K policy provides more flexibility in designing a throughput optimal policy with

potentially better delay performance thanks to the existence of the central cone.

It is easy to see that the central cone becomes “narrower” when K is pushed

towards 1 and completely vanishs when K = 1. The resulting cones are depicted in
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1

1.5

2

2.5

3

Q
1

Q
2

(1,2)

(2,1)

({1,2})

Figure 3.4: Priority cone partition and contour lines of underlying Lyapunov
function of network in Figure 3.3

Figure 3.5. Now K policy is reduced to backpressure algorithm, and the underlying

Lyapunov function is simply in the quadratic form: L(Q) = Q2
1 + Q2

2. It turns

out such an observation holds for networks with any size. Indeed it can be shown

that backpressure algorithm is K policy based on Pall when K = 1. This in one

way, implies that backpressure algorithm is a special case of K policy. We will

provide an alternative way to show that backpressure algorithm is a special case

of K policy later in this chapter.

Example 2:

Now consider the network of 3 nodes as given in Figure 3.6. Unlike Example

1, now node 2 cannot transmit to node 0 directly (i.e. (2, 0) /∈ L). So priority list

(2, 1) is non-critical.

The underlying Lyapunov function of the network (scaled by factor K2−1)
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0 0.5 1 1.5 2 2.5 3
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1
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2.5
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Q
1

Q
2

(1,2)

(2,1)

Figure 3.5: Priority cone partition and contour lines of underlying Lyapunov
function of network when K = 1

02 1

Figure 3.6: A 3 nodes network, (N = 2). Node 0 is the destination node

is given by

L(Q) =


 (K + 1)Q2

1 +
K+1
K

Q2
2 Q2 > KQ1

(Q1 +Q2)
2 otherwise

(3.78)

Figure 3.7 shows the priority cone partition and contour lines of underlying

Lyapunov function. It can be seen that even Q1 is K times larger than Q2, K

policy will not necessarily route packet from node 1 to node 2 since priority list

(2, 1) is non-critical. This could potentially reduces redundant routing that causes

poor delay performance in backpressure algorithm.

Example 3:

Consider the network of 4 nodes as given in Figure 3.8.
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Figure 3.7: Priority cone partition and contour lines of underlying Lyapunov
function of network in Figure 3.6

02

1

3

Figure 3.8: A 4 nodes network, (N = 3). Node 0 is the destination node

Figure 3.9 shows the priority cone partition and corresponding priority list

assigned for each cone.

Example 4:

Consider the network of 4 nodes as given in Figure 3.10.

Unlike Example 3, some priority lists are not critical due to the fact that

node 2 is not able to transmit to destination node 0 directly. The “tree” of priority

lists is shown in Figure 3.11. Each arrow in Figure 3.11 points from a list to one

of its one-step refinement lists.
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0

Q2

Q1

Q3

({1,2,3})

(3,2,1)

(2,3,1)

(2,1,3)

({1,2},3)

(2,{1,3})

(3,{1,2})

(1,{2,3})

(1,3,2)(3,1,2)

(1,2,3)

({2,3},1)

({1,3},2)

Figure 3.9: Priority cones of the 4 nodes network, (N = 3)

02

1

3

Figure 3.10: A 4 nodes network, (N = 3). Node 0 is the destination node

Figure 3.12 shows the priority cone partition and corresponding priority list

assigned for each cone.

As shown in Figure 3.4, Figure 3.7, Figure 3.9, and Figure 3.12, K policy

groups the queues based on their backlogs. In the central cone, all nodes belong

to the same priority class. The Lyapunov function in this cone is the squared sum

of all queue backlogs. Since the Lyapunov drift won’t be affected by any packet

forwarding within the same priority class, it allows a routing policy to potentially

deviate from backpressure decisions to arrive at a better delay performance, How-

ever, when one of the queues becomes relatively large in comparison to the other
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({1,2,3})

({1,2},3) (1,{2,3}) ({1,3},2) (3,{1,2}) ({3,2},1) Not critical

(2,{3,1})

(1,2,3)(2,1,3) (1,3,2) (3,1,2) (3,2,1)
Not critical

(2,3,1)

Figure 3.11: Priority lists of the 4 nodes network, (N = 3)

nodes’s backlogs, the backlog vector falls in a cone in which the node with large

backlog is in a separate priority class. The Lyapunov function for this cone, now, is

the squared queue backlog of the node with large backlog plus the squared sum of

other queue backlogs and its negative drift is ensured only when packets are routed

from the node with disportionately large backlog to other nodes. Similarly one can

analyze the behavior of the Lyapunov function in other cones. This structure al-

lows a routing policy to potentially achieve a better delay performance, while at

the same time still maintaining the stability of the network whenever possible.

3.5 Extension

3.5.1 On Choice of WK(n,m)

We have previous defined WK(n,m) as

WK(n,m) :=
1

Kn(Km − 1)
(3.79)

It turns out that (3.79) is not the unique choice. From the proof of Proposition

3.6, it is not difficult to see that any positive bivariable integer function W :

N ∪ {0} × N 	→ R
+ that satisfies
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0

Q2

Q1

Q3

({1,2,3})

(3,2,1)

({2,3},1)

({1,2},3)

(3,{1,2})

(1,{2,3})

(1,3,2)(3,1,2)

(1,2,3)

({1,3},2)

Figure 3.12: Priority cones of the 4 nodes network, (N = 3)

1)

1

W (n,m1 +m2)
=

1

W (n,m1)
+

1

W (n+m1,m2)
(3.80)

2)

W (0, n)

W (n, 1)
> 1 (3.81)

will result in a complete partition of RN
+ and a K policy defined on the partition

is throughput optimal. Note that condition 2) is sufficient but not necessary for a

non-overlapped partition.

From (3.80), we have

1

W (n,m)
=

1

W (0,m+ n)
− 1

W (0, n)
(3.82)

From (3.81) and (3.80), we have

1

W (n, 1)
=

1

W (0, n+ 1)
− 1

W (0, n)
>

1

W (0, n)
(3.83)

i.e.

W (0, n)

W (0, n+ 1)
> 2 (3.84)
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From (3.82) and (3.84), it can be seen that function W can be uniquely

determined by values of W (0, n), n = 1, 2, 3...

The function can be constructed as follows:

1) For each n = 1, 2, 3..., assign a positive value to W (0, n), such that

W (0, n) is monotonically decreasing in n and

W (0, n)

W (0, n+ 1)
> 2 (3.85)

2) For any n,m, W (n,m) is defined by

W (n,m) :=

(
1

W (0,m+ n)
− 1

W (0, n)

)−1

(3.86)

W (n,m) is ensured to be positive since W (0, n) is monotonically decreasing in n.

Now we verify that such a construction indeed satisfies (3.80) and (3.81):

For any n,m1 and m2, by construction,

1

W (n,m1 +m2)
=

1

W (0, n+m1 +m2)
− 1

W (0, n)
(3.87)

1

W (n,m1)
=

1

W (0, n+m1)
− 1

W (0, n)
(3.88)

and

1

W (n+m1,m2)
=

1

W (0, n+m1 +m2)
− 1

W (0, n+m1)
(3.89)

(3.80) follows as (3.87) = (3.88) +(3.89). And by construction, (3.81) is trivially

satisfied.

In this paper, we have used W (0, n) = 1
Kn−1

. To satisfy (3.81), we require

Kn+1 − 1

Kn − 1
> 2 (3.90)

which holds when K ≥ 2 (Sufficient but not necessary condition).
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3.5.2 Shifted K policy

Consider a vector variable θ = [θ1, θ2, ..., θN ] ∈ R
+
N . Given a link set L, the

shifted K policy PK based on critical list set PL is defined as

PK(Q) = P if Q+ θ ∈ DL
K(P ) (3.91)

In other words, the policy PK routes the packet according to priority list P when

the shifted queue state Q(t) + θ belongs to DL
K(P ) at time slot t.

Proposition 3.9 Shifted K policy with θ ≥ 0 is throughput optimal.

Proof:

Consider the shifted queues Q′(t) := Q(t) + θ. The one-step dynamics of

Q′(t) is given by

Q′
a(t+ 1) ≤ max{Q′

a(t)− µa,out(t), θa}+ µa,in(t) + Aa(t) (3.92)

Note that Q′
a(t) ≥ θa, so we have

Q′
a(t+ 1) ≤ Q′

a(t) + µa,in(t) + Aa(t) (3.93)

Hence

Q′
Ci
(t+ 1) ≤ Q′

Ci
(t) + µCi,in(t) + ACi

(t) (3.94)

By Lemma 3.4, if Q′(t) ∈ DL
K(P ), there exists αK such that when Q′

Ci
(t) >

αK , all non-isolated nodes in priority class Ci will be larger than µmax + θmax. So

the queue dynamic of Q′
a is given by

Q′
a(t+ 1) ≤ Q′

a(t)− µa,out(t) + µa,in(t) + Aa(t) (3.95)

and hence when Q′
Ci
(t) > αK , the queue dynamics of Q′

Ci
(t) can be written as

Q′
Ci
(t+ 1) ≤ Q′

Ci
(t)− µCi,out(t) + µCi,in(t) + ACi

(t) (3.96)
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Apply Lemma 3.3 to (3.94) and (3.96), we have a result similar to Lemma

3.5:

Q′2
Ci
(t+ 1)−Q′2

Ci
(t) ≤ βK − 2Q′

Ci
(t) {µCi,out(t)− µCi,in(t)− ACi

(t)} (3.97)

The proof of throughput optimality of shifted K policy then can be com-

pleted by following the same proof as that of Theorem 3.1, except that Q(t) is

replaced with Q′(t).

�

3.6 Stability of General Priority Policy

In previous sections, we have showed that a wide class of priority policies

called K policy is throughput optimal. Now we utilize K policy to show the stability

of other priority policies. Particularly, we will specialize our result to recover the

throughput optimality of two known routing policies, backpressure (already known

to be throughput optimal) and ORCD (whose throughput optimality only was

conjectured in [21]).

By Proposition 3.2, given a priority policy P , if there exists a K policy PK

for sufficiently large K, such that P is a refined policy of PK , then priority policy

P is throughput optimal. Since the domain of Q is divided into finite number

of cones by K policy, each corresponding to one critical priority list, we have the

following Theorem that gives the condition under which a general routing policy

is throughput optimal

Theorem 3.2 For a general priority policy P, if there exists a priority list set PL

and for each P ∈ P, there exist θ ≥ 0 and sufficiently large K such that P(Q) is

a refinement of P as long as Q+ θ ∈ DL
K(P ), then priority policy P is throughput

optimal.
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As a simple (and maybe convoluted) application of Theorem 3.2, we show

that backpressure policy PBP is throughput optimal.

Recall that Lall denote the set of all possible links in a network. It is easy

to see that Pall = PLall
. We will show that backpressure policy PBP is a refined

policy of K policy based on Pall. And therefore by Theorem 3.2, it is throughput

optimal for any network. (Since any network can be viewed as a sub-network of

Lall.)

To see why backpressure policy is a refined policy of K policy based on Pall,

first notice that Pall contains all possible priority lists and all nodes in a priority

list are non-isolated, since Lall contains all possible links. So by Lemma 3.1, for

K ≥ 2, Qa ∈ Ci and Qb ∈ C<i, we have Qa ≥ (K − 1)QC<i
≥ Qb. It is well

known that backpressure policy is a priority policy that ranks the nodes according

to their backlogs. So backpressure policy will assign all nodes in Ci higher priority

than nodes in C<i. This implies that PBP (Q) is a refinement of P as long as

Q ∈ DL
K(P ) and K ≥ 2. i.e. backpressure policy PBP is a refined policy of K

policy based on Pall.

To get some more intuitions, let us consider a simple 3 nodes network in

Figure 3.13. We can graphically see that both backpressure and ORCD algorithm

(which will be formally discussed in next section) are throughput optimal according

to Theorem 3.2.

3.7 Review of ORCD

In [21], a stationary priority routing policy called Opportunistic Routing

with Congestion Diversity (ORCD) was proposed to improve the delay performance

of existing backpressure type schemes. In this section, we briefly review ORCD.

Let pab := P (hab(t) = 1) denote the probability that node a is able transmit
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(a) Back Pressure (b) ORCD (c) K policy

Figure 3.13: A toy example of a three nodes network (N = 2)

a packet to node b. Generally, pab might not be equal to pba. Assume each node

a is able to estimate pab. And assume L contains the set of node pair (a, b) with

pab > 0, i.e. L := {(a, b) : pab > 0}.
In ORCD policy, nodes are prioritized according to cost function Va(t) (a ∈

N \ C0), with higher cost meaning higher priority. Va(t) is roughly interpreted

as the current estimated waiting time of node a to destination C0. Va(t) can be

calculated for each slot t in a recursive manner. The recursive procedure results

in a vector (V1(t), .., VN (t)) that satisfies the following equation for all a ∈ N \C0:

Va(t) =
Qa(t)

p(a, t)
+

∑
b∈U+

a (t)

p(a, b, t)

p(a, t)
Vb(t) (3.98)

where U+
a (t) := {k|Vb(t) < Va(t), (a, b) ∈ L} is the set of nodes of priority strictly

lower than node a at time t. Note that U+
a (t) is different from the set of potential

forwarder nodes Sa(t) in that it also includes nodes that are not able to transmit

to at time t as long as its cost function is strictly less than Va(t).

p(a, t) := P (
⋃

b∈U+
a (t)

[hab(t) = 1]) (3.99)
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is the probability that at least one node of higher priority that hear a.

p(a, b, t) := P ([hab(t) = 1] ∩ (
⋂

c∈U+
a (t),Vc(t)<Vb(t)

[hac(t) = 0])) (3.100)

is the probability that b is the lowest priority node to hear a. It is easy to see that

p(a, t) =
∑

b∈U+
a (t)

p(a, b, t) (3.101)

ORCD policy requires centralized computation of the costs, making it un-

suitable for distributed implementation in an ad-hoc network. The authors in [21]

then proposed a decentralized algorithm called distributed ORCD (D-ORCD) to

compute the costs. In D-ORCD, each node uses the costs at time slot t − 1 to

update its own cost at time slot t. The following formula is used to update the

cost of each node:

Va(t) =
Qa(t)

p(a, t− 1)
+

∑
b∈U+

a (t−1)

p(a, b, t− 1)

p(a, t− 1)
Vb(t− 1) (3.102)

3.8 Throughput Optimality of ORCD

In [21], the authors showed that ORCD has better delay performance than

backpressure algorithm, as ORCD combines the congestion information with the

shortest path calculations inherent in opportunistic routing. The throughput op-

timality of ORCD was conjectured in [21] but was left unproven. However, with

the help of Theorem 3.2 and thanks to the special structure of K policy, we will

show in this section that ORCD is indeed throughput optimal. More specially, we

will show that ORCD is a refined policy of K-policy.

We begin with a useful lemma before proving our main result.

Lemma 3.7 For any two nodes, a, b, if pab > 0, then under ORCD,

Va(t) ≤ Qa(t)

pab
+ Vb(t) (3.103)
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Proof:

If Va(t) ≤ Vb(t) then clearly (3.103) holds. So in what follows, we assume

Va(t) > Vb(t). Since pab > 0, by definition, b ∈ U+
a (t). So the problem becomes to

prove that

Va(t) ≤ Qa(t)

pab
+ Vb(t) (3.104)

for any b ∈ U+
a (t).

Assume U+
a (t) = {n1, ..., nK}, (K ≥ 1). And without loss of generality,

assume Vn1(t) ≤ Vn2(t) ≤, ...,≤ VnK
(t). (3.98) can now be rewritten as

Va(t) =
Qa(t)

p(a, t)
+

K∑
k=1

p(a, nk, t)

p(a, t)
Vnk

(t) (3.105)

where

p(a, t) = P (
K⋃
k=1

[hank
(t) = 1]) (3.106)

p(a, nk, t) = P ([hank
(t) = 1] ∩ (

k−1⋂
i=1

[hani
(t) = 0])) (3.107)

Now we focus on a node in U+
a (t), say nj, and we want to show that

Va(t) ≤ Qa(t)

panj

+ Vnj
(t) (3.108)

Since Vn1(t) ≤ ... ≤ Vnj−1
(t) ≤ Vnj

(t) ≤ Vnj+1
(t) ≤, ...,≤ VnK

(t), (3.105) can be

bounded by

Va(t) ≤ Qa(t)

p(a, t)
+

∑j
k=1 p(a, nk, t)

p(a, t)
Vnj

(t) +

∑K
k=j+1 p(a, nk, t)

p(a, t)
VnK

(t) (3.109)

For notation concision, we define

p1 :=

j∑
k=1

p(a, nk, t) (3.110)

and

p2 :=
K∑

k=j+1

p(a, nk, t) (3.111)
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So we have

p(a, t) = p1 + p2 (3.112)

(3.109) now becomes

Va(t) ≤Qa(t)

p(a, t)
+

p1
p(a, t)

Vnj
(t) +

p2
p(a, t)

VnK
(t)

=
p1

p(a, t)

(
Qa(t)

p1
+ Vnj

(t)

)
+

p2
p(a, t)

VnK
(t)

(3.113)

Note that

p1
p(a, t)

+
p2

p(a, t)
= 1 (3.114)

i.e. Va(t) can be bounded by a linear combination of Qa(t)
p1

+Vnj
(t) and VnK

(t). But

since VnK
(t) ≤ Va(t), we must have

Va(t) ≤ Qa(t)

p1
+ Vnj

(t) (3.115)

Finally, notice that [hanj
(t) = 1] ⊆ ⋃j

i=1[hani
(t) = 1], so panj

= P (hanj
(t) = 1) ≤

p1. Substitute into (3.115), we conclude

Va(t) ≤ Qa(t)

panj

+ Vnj
(t) (3.116)

�

Now we are ready to prove the main result of this section:

Theorem 3.3 ORCD algorithm is throughput optimal.

Proof:

Let pmin := min{pab|a, b, pab > 0} andK = 1
pmin

+1. We prove it by showing

that ORCD is a refined policy of K policy. More specifically, given ORCD policy

PORCD, for each P = (C1, ..., C|P |) ∈ PL, we are going to show that PORCD(Q(t))

is a refinement of P as long as Q(t) ∈ DL
K(P ).
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Let us focus on the priority class Ci. Let C<i denote the set of nodes that

is in lower priority classes than Ci. i.e. C<i =
⋃i−1

j=1Cj.

For any non-isolated node a ∈ Ci, by Lemma 3.1 (2), we have

Qa(t) ≥ (K − 1)QC<i
(t) (3.117)

And it is easy to see the following trivial lower bound of Va(t) for a ∈ Ci:

Va(t) ≥ Qa(t) (3.118)

One the other hand, since P is critical, for each node b ∈ C<i, there exist

intermediate nodes b1, b2, ..., bk ∈ C<i such that pbb1 > 0,pb1b2 > 0...,pbk0 > 0. By a

simple induction using Lemma 3.7, we have the following upper bound of Vb(t):

Vb(t) ≤
∑

m∈C<i

Qm(t)

pmin

=
QC<i

(t)

pmin

= (K − 1)QC<i
(t) (3.119)

Combining (3.117), (3.118) and (3.119), we have

Va(t) ≥ Qa(t) ≥ (K − 1)QC<i
(t) ≥ Vb(t), b ∈ Ci (3.120)

So we conclude that ORCD algorithm will assign all non-isolated nodes in

Ci higher priority than nodes in C<i.

Now let us focus on the semi-isolated nodes in Ci. Since the semi-isolated

nodes in Ci cannot transmit directly to nodes in C0, ..., Ci−1, it can only transmit

to the non-isolated nodes in Ci or nodes in higher priority class. By (3.98), these

nodes will be assigned higher priorities than nodes in C<i.

Therefore we conclude that ORCD algorithm will assign all nodes (both

non-isolated and semi-isolated) in Ci higher priority than nodes in C<i.

By repeating this procedure for Ci, i = |P |, |P | − 1, ..., 2 in order, we

conclude that PORCD(Q(t)) is a refinement of P as long as Q ∈ DL
K(P ) and

K = 1
pmin

+ 1. By Theorem 3.2, priority policy PORCD is throughput optimal.

�
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Chapter 4

Multi-commodity Case:

Extension of K Policy

In Chapter 3, a general routing policy, called K policy, is proposed, which

is an extension of backpressure (BP) algorithm and is shown to be throughput

optimal. As a major application of K policy, ORCD, which was shown to exhibit

better delay performance than BP algorithm in [21], is proved to be a special case

of K policy and thus it is throughput optimal. The routing problem considered

in Chapter 3 is restricted to single commodity case, where data arriving at one or

more nodes are routed to a single destination node or a single set of nodes. How-

ever, more common in practice, multiple incoming data flows carrying different

commodities sharing the same ad hoc network are routed to different destination

nodes. Therefore, it is of interests to extend the single commodity routing algo-

rithm such as K policy to solve the routing problem in a multi-commodity network.

It is well known that backpressure algorithms can be trivially extended to

multi-commodity case and preserves its throughput optimality without scarifying

it distributed nature [22][33]. Unfortunately, as we will see, a similar extension of

K policy based algorithm (such as ORCD) to multi-commodity case would require

68
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the a centralized controller with global network knowledge.

Classical backpressure routing algorithm is designed to select the commod-

ity that results in the largest backlog difference. Since single commodity backpres-

sure algorithm can be viewed as a special case of K policy, one might conjecture

to use the same commodity selection criterion to extend K policy. However, we

will show via an example later that, contrary to the intuition, such a commodity

selection policy generally doesn’t preserve the throughput optimality when com-

bined with a K policy. Therefore, different commodity selection criteria need to

be considered.

Motivated by these difficulties, our goal in the rest of the dissertation is to

find multi-commodity routing algorithms with the following properties:

1. It preserves throughput optimality;

2. It can be implemented in a decentralized manner, i.e. it only requires local

network information such as the backlog of the neighboring codes;

3. It has good delay performance over existing multi-commodity routing algo-

rithms such as classical backpressure algorithm.

When there is only a single commodity in the network, the routing algo-

rithm can be naturally implemented as an opportunistic routing algorithm. This

is because each node doesn’t have to choose a commodity before broadcasting

its packet. However, in a multi-commodity network, to take advantage of oppor-

tunistic routing, each node has to decide which commodity to transmit before its

broadcast transmission. Since under the opportunistic routing assumption, the

outcome of transmission (i.e. current topology state) is unknown before transmis-

sion occurs, the commodity selection criterion cannot depend on current topology

state. This further complicates the routing algorithm design.
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Nevertheless, in this chapter, we will assume that the current topology

state is fully known when making commodity selection and routing decision. We

concisely refer to this case as CSI-Tx (channel state information at transmitters).

CSI-Tx assumption would allow for a clear presentation of the routing problem

and illuminate the main concepts in a simpler form. The resulting algorithm

is not opportunistic in nature. Though CSI-Tx assumption results in a larger

network capacity (i.e. throughput), it is at the expense of requiring accurate

chancel measurement and fast reliable feedback, which would be very demanding

in a resource-limited network. In Chapter 5, we will relax the condition to CDI-Tx

(channel distribution information at transmitters), where current topology state is

unknown before each transmission and the commodity selection decision is made

based only on the queue state and the statistics of topology state. The algorithm

proposed under CSI-Tx assumption can be naturally modified and implemented

as an opportunistic routing algorithm under CDI-Tx assumption. The technique

used here is very similar to [41][25], in which the so called DIVBAR algorithm

was proposed as an opportunistic version of original backpressure algorithm under

CDI-Tx assumption.

By assuming CSI-Tx, we will focus on multi-commodity routing policies

with a structure denoted by A-B, where A is a single commodity routing policy

such as BP or ORCD, and B is a commodity selection criterion. Suppose there are

multiple commodities and the set of commodities is denoted by K, at each time

slot t, routing policy A and commodity selection criterion B are integrated by the

following steps:

Step 1: For each commodity c ∈ K, each node a selects the optimal for-

warder node according to A routing policy as if c is the only commodity in the

network. The selection is denoted by ba(c).

Step 2: From the outcome of each commodity in step 1), the commodity
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selection criterion B selects the optimal commodity c∗a based on certain criterion.

Step 3: Node a forwards a commodity c∗a packet to node ba(c
∗
a).

We called a multi-commodity algorithm with the above structure as an A-B

policy. Note that not all multi-commodity routing policies can be classified as A-B

policies. Therefore, A-B policies forms a strict subset among all multi-commodity

routing policies. Several reasons for considering only A-B type policy include

• A-B type policy decomposes the problem into two subproblems: single com-

modity routing and commodity selection, which can potentially reduce the

complexity of the problem and makes the derivation more trackable.

• It can take advantage of the existing results on single commodity routing

algorithms such as ORCD, which is shown to be throughput optimal and

delay efficient.

• As we will see soon, A-B type policy allows for a simple commodity selection

criterion, which is usually easy to be implemented in a distributed manner.

Two major commodity selection criteria we will consider in this work are

D criterion and R criterion. D criterion is designed to select the commodity with

the maximum backlog difference. In contrast, R criterion is designed to select the

commodity with the maximum backlog ratio. By the naming rules of A-B policy,

classical backpressure algorithm in a multi-commodity network is indeed BP-D

policy, i.e. it can be viewed as single commodity backpressure algorithm combined

with maximum difference commodity selection criterion.

In this chapter, we first consider a generalized extension of backpressure

(BP) algorithm in multi-commodity scenario. To allow for a generalized commod-

ity selection criterion, a non-quadric Lyapunov function construction is introduced.

Particularly, we propose BP-R policy as an alterative to the classical backpressure

algorithm (aka. BP-D policy).
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We then consider the problem of applying similar commodity selection cri-

terion to K policy in a multi-commodity network. We extend K policy by con-

structing a piecewise non-quadric Lyapunov function. K-R policy is shown to be

throughout optimal under mild conditions.

4.1 Generalized Backpressure Algorithm

Before discussing the generalized backpressure algorithm, let us first briefly

review the original classical multi-commodity backpressure algorithm, which is well

known for its throughput optimality in multi-commodity networks [22][33][36].

4.1.1 Review of Classical Multi-commodity Backpressure

Algorithm

Consider the on/off network introduced in Chapter 2. Suppose there are

multiple commodities and the set of commodities is denoted by K. In classical

multi-commodity backpressure algorithm, the optimal commodity and the opti-

mal forwarder node for node a at time t are determined by the following joint

optimization:

b∗a, c
∗
a = arg max

b∈Sa(t),c∈K
(Qc

a(t)−Qc
b(t)) (4.1)

where c∗a and b∗a are the optimal commodity and optimal forwarder node for node

a, respectively. A tie can be broken in an arbitrary manner. Note that if b∗a = a,

node a retains the packet without any forwarding. Rewrite (4.1) as a two-level

optimizations:

b∗a, c
∗
a = argmax

c∈K
max
b∈Sa(t)

(g(Qc
a(t))− g(Qc

b(t))) (4.2)
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Notice that the inner optimization is to choose a node in Sa(t) such that Qc
b(t) is

minimized, i.e.:

ba(c) = arg min
b∈Sa(t)

(Qc
b(t)) (4.3)

where ba(c) is the optimal forwarder node to be chosen by the single commod-

ity backpressure algorithm if commodity c is transmitted at time t. The outer

optimization of (4.2) becomes

c∗a = argmax
c∈K

(Qc
a(t)−Qc

ba(c)(t)) (4.4)

That is, the commodity with the largest backlog difference is selected. We

refer to the commodity selection criterion in (4.4) as D criterion where D stands

for “difference”. So classical backpressure algorithm can be viewed as single com-

modity backpressure (BP) algorithm combined with D criterion. By the naming

rule of A-B policy, we refer to classical backpressure algorithm as BP-D policy.

4.1.2 Generalization

Now we generalize (4.1) by introducing a utility function g(·) . At time t,

consider the following routing criterion for each a ∈ N

b∗a, c
∗
a = arg max

b∈Sa(t),c∈K
g(Qc

a(t))− g(Qc
b(t)) (4.5)

where utility function g : R+ 	→ R
+ is a function satisfying the follow properties

1) g(x) is non-decreasing;

2) g(x) → +∞ as x → +∞;

3) g(x) has bounded derivative (i.e. there exists gsup > 0 such that g′(x) ≤
gsup).

Rewrite (4.5) as a two-level optimizations

b∗a, c
∗
a = argmax

c∈K
max
b∈Sa(t)

(Qc
a(t)−Qc

b(t)) (4.6)
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where the inner optimization is to choose a node in Sa(t) such that Qc
b(t) is mini-

mized:

ba(c) = arg min
b∈Sa(t)

g(Qc
b(t)) = arg min

b∈Sa(t)
Qc

b(t) (4.7)

Here ba(c) is the optimal forwarder node if commodity c is transmitted at time t,

which is the same as (4.3) in BP-D due to the non-decreasing property of g(·). In
other words, the choice of g(·) won’t affect the routing decision made by the single

commodity backpressure algorithm. Priorities of nodes are always ranked by their

queue lengths regardless of the choice of g(·). Now the outer optimization of (4.6)

becomes

c∗a = argmax
c∈K

(g(Qc
a(t))− g(Qc

ba(c)(t))) (4.8)

Hence the generalized backpressure algorithm can be viewed as the single commod-

ity backpressure algorithm combined with commodity selection criterion defined

in (4.8). Unlike in the single commodity case where the priority rank is indepen-

dent of the choice of g(·), when there are multiple commodities, the commodity

selection criterion depends on the choice of g(·). Let us look at two examples of

g(·):
Special case 1: g(x) = x

If g(x) = x, the commodity selection criterion becomes

c∗a = argmax
c∈K

(Qc
a(t)−Qc

ba(c)(t)) (4.9)

which is exactly D criterion we have just defined. Generalized backpressure be-

comes classical backpressure algorithm (BP-D).

Special case 2: g(x) = log(x+ d)

If g(x) = log(x + d) where d is a positive constant, then generalized back-

pressure algorithm becomes:

b∗a, c
∗
a = argmax

b,c
{log(Qc

a(t) + d)− log(Qc
b(t) + d)} = argmax

b,c

Qc
a(t) + d

Qc
b(t) + d

(4.10)
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Here, positive constant d is applied to avoid infinity when the queue is empty. The

resulting algorithm can be viewed as the single commodity backpressure algorithm

combined the following commodity selection criterion:

c∗a(t) = argmax
c

{log(Qa(t) + d)− log(Qba(c)(t) + d)} = argmax
c

{ Qc
a(t) + d

Qc
ba(c)

(t) + d
}

(4.11)

Roughly speaking, the (4.11) selects the commodity with the largest ratio of back-

logs. We refer to the commodity selection criterion in (4.11) as R criterion, where

R stands for “ratio”. And we refer to the policy in (4.10) as BP-R policy.

4.1.3 Throughout Optimality

Theorem 4.1 Generalized backpressure algorithm is throughput optimal.

To prove Theorem 4.1, we first need an extension of Lemma 2.1 on Lyapunov

stability.

Lemma 4.1 (Lyapunov Stability) If there exist constants B > 0, ε > 0, such that

for all time slot t we have:

∆L(Q(t)) ≤ B − ε
∑
c

∑
a

g(Qc
a(t)) (4.12)

then the network is stable.

Proof:

Define set C as

C := {Q ∈ Q :
∑
c

∑
i

g(Qc
a(t)) ≤

B + 1

ε
, } (4.13)

It is easy to see that C is a finite set. This is because we can rewrite (4.13) as

C = Q∩ Ĉ where Ĉ := {Q ∈ R
N×|K|
+ :

∑
c

∑
i g(Q

c
a(t)) ≤ B+1

ε
}. Since g(x) → +∞

as x → +∞, there exists constant K such that g(x) > B+1
ε

as long as x > M .
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Therefore each component of Q restricted in set Ĉ is bounded, which implies Ĉ is

a compact set. This, together with the fact that Q is discrete, implies that C is a

finite set. Note that for Q(t) ∈ Q \ C, we have

∆L(Q(t)) ≤ B − ε
∑
c

∑
a

g(Qc
a(t)) ≤ −1, (4.14)

and for Q(t) ∈ C, we have

∆L(Q(t)) ≤ B, x ∈ C (4.15)

So by Lemma 2.3, the Markov process {Q(t)} is stable.

�

Let G(x) :=
∫ x

0
g(v)dv denote the integration of g. The following lemma is

a extension of Lemma 3.3. It is a direct consequence Taylor’s theorem and serves

as a basic building block for proving our main results

Lemma 4.2 If Q+, Q, µ,A are nonnegative real random variables, and there exist

nonnegative real numbers v, c such that µ ≤ c,A ≤ c and the following relations

hold:

Q+ ≤ Q+ A (4.16)

Q+ ≤ Q− µ+ A, if Q > v (4.17)

then there exists a constant β such that

G(Q+)−G(Q) ≤ β − g(Q)(µ− A) (4.18)

Proof: If Q > v, since g is non-decreasing, from (4.17)

G(Q+) ≤ G(Q− µ+ A) (4.19)

By Taylor’s theorem, we have

G(Q− µ+ A) = G(Q)− g(Q)(µ− A) +
g′(ξ)
2

(µ− A)2 (4.20)
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where ξ is some real number between Q and Q− µ+ A. From (4.19) and (4.20),

G(Q+)−G(Q) ≤ g′(ξ)
2

(µ− A)2 − g(Q)(µ− A) (4.21)

On the other hand, if Q ≤ v, from (4.16), we have

G(Q+) ≤ G(Q+ A) (4.22)

By Taylor’s theorem, we have

G(Q+ A) = G(Q) + g(Q)A+
g′(ξ)
2

A2 (4.23)

where ξ is some real number between Q and Q+ A. From (4.22) and (4.23),

G(Q+)−G(Q) ≤ g′(ξ)
2

A2 + g(Q)A =
g′(ξ)
2

A2 + g(Q)µ− g(Q)(µ− A) (4.24)

Now choose β := cg(v) + c2gsup
2

, which is a constant and notice that

β ≥ g′(ξ)
2

(µ− A)2 (4.25)

β ≥ g′(ξ)
2

A2 + g(Q)µ (4.26)

The proof is completed by applying (4.25) and (4.26) to (4.21) and (4.24),

respectively

�

Proof of Theorem 4.1:

Let Q(t) represent the matrix of queue backlogs, and define the following

Lyapunov function:

L(Q(t)) =
∑
i

∑
c

Gic(Q
c
i(t)) (4.27)
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Now we are going to calculate the drift ∆L(Q(t)). It is easy to see that the

queueing dynamics in (2.2) satisfies the conditions in Lemma 4.2. So there exists

a constant β such that for any (i, c),

G(Qc
i(t+ 1))−G(Qc

i(t)) ≤ β − g(Qc
i(t))(µ

c
i,out(t)− Ac

i(t)− µc
i,in(t)) (4.28)

Summing over all (i, c), we have

L(Q(t+ 1))− L(Q(t)) ≤ βNM −
∑
ic

g(Qc
i(t))(µ

c
i,out(t)− Ac

i(t)− µc
i,in(t)) (4.29)

Taking the conditional expectations yields the following bounds for Lyapunov drift:

∆L(Q(t)) ≤ βNM +
∑
ic

g(Qc
i(t))E{Ac

i(t)|Q(t)}

− E

{∑
ic

g(Qc
i(t))

(
µc
i,out(t)− µc

i,in(t)
) |Q(t)

}
(4.30)

Since arrivals A(t) are i.i.d. over time slots, we have E{Ac
i(t)|Q(t)} = λc

i for all

(i, c). Hence

∆L(Q(t)) ≤ βNM +
∑
ic

g(Qc
i(t))λ

c
i − E

{∑
ic

g(Qc
i(t))

(
µc
i,out(t)− µc

i,in(t)
) |Q(t)

}

(4.31)

Note that ∑
ic

g(Qc
i(t))

(
µc
i,out(t)− µc

i,in(t)
)

=
∑
ic

g(Qc
i(t))

[∑
b

µc
ib(t)−

∑
a

µc
ai(t)

]

=
∑
ab

∑
c

µc
ab(t) [g(Q

c
a(t))− g(Qc

b(t))]

(4.32)

We conclude from (4.32) that general backpressure algorithm is designed

to minimize the bound in the right hand side of (4.30) at each time slot over all

admissible policies.
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However, because λ + ε ∈ Λ, we know by Theorem 2.4 that there exists

a stationary randomized policy that makes decisions based only on the current

topology state and independent of the current queue backlog so that all (i, c), we

have

E

{∑
ic

g(Qc
i(t))

(
µ̃c
i,out(t)− µ̃c

i,in(t)
) |Q(t)

}
= ε+ λc

i (4.33)

Applying (4.33) to (4.31), we conclude

∆L(Q(t)) ≤ βNM − ε
∑
ic

g(Qc
i(t)) (4.34)

This drift inequality is in the exact form for application of Lemma 4.1, completing

the proof.

�

4.2 K Policy with Multi-commodity

Now we turn to the central question of this chapter: How K policy can be

extended to apply in a multi-commodity network? More specifically, we would like

to find the answers to these questions:

1) How the Lyapunov function is defined in multi-commodity scenario?

2) What is the commodity selection criteria to adopt with K policy?

From the generalized backpressure algorithm, we have seen that by general-

izing the quadratic Lyapunov function to non-quadratic, the routing policy within

the same commodity remains the same, but the commodity selection criterion is

generalized. We have shown in Chapter 3 that K policy is based on piece-wise

quadratic Lyapunov function, which is a quadratic function in each priority cone.

These priority cones forms a complete partition of the queue space. It is then

natural to extend K policy to multi-commodity scenario by considering piece-wise

non-quadratic Lyapunov function.
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4.2.1 Construction of the Lyapunov Function

We first consider a single commodity c.

Given a priority list P c = (Cc
1, C

c
2, ..., C

c
|P c|), the Lyapunov function under

list P c and parameter K is defined as

LK(Q
c;P c) :=

|P c|∑
i=1

∫ Qc
Cc
i

0

g (WK(|Cc
<i|, |Cc

i |)x) dx

=

|P c|∑
i=1

1

WK(|Cc
<i|, |Cc

i |)
G
(
WK(|Cc

<i|, |Cc
i |)Qc

Cc
i

) (4.35)

where WK(n,m) is defined in (3.8) and Cc
<i denote the set of nodes that has lower

priority than nodes in the i-th priority class, i.e.

Cc
<i :=

i−1⋃
j=1

Cc
j (4.36)

Proposition 4.1 For any adjacent list pair P and P ′, LK(Q;P ) and LK(Q;P ′)

are equal and have equal gradient on separation hyperplane HK(P ;P ′) defined in

(3.12)

Proof:

Given an adjacent list pair, P = {C1, C2, ..., C|P |} and P ′ = (C ′
1, C

′
2, ..., C

′
|P ′|),

without loss of generality, assume P ′ is a one-step refinement of P with regard to

priority class Ci(1 ≤ i ≤ |P |), then |P ′| = |P |+ 1 and




Ck = C ′
k if 1 ≤ k ≤ i− 1

Ci = C ′
i ∪ C ′

i+1

Ck = C ′
k+1 if i+ 1 ≤ k ≤ |P |

(4.37)

On the hyperplane that separates the adjacent list pair P and P ′, we have by

definition

WK(|C ′
<i|, |C ′

i|)QC′
i
= WK(|C ′

<i+1|, |C ′
i+1|)QC′

i+1
(4.38)
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Rewrite (4.38) as

1

WK(|C ′
<i+1|, |C ′

i+1|)
(QC′

i
+QC′

i+1
) =

1

WK(|C ′
<i|, |C ′

i|)
QC′

i+1
+

1

WK(|C ′
<i+1|, |C ′

i+1|)
QC′

i+1

(4.39)

By using Proposition (3.5), we have

1

WK(|C ′
<i+1|, |C ′

i+1|)
(QC′

i
+QC′

i+1
) =

1

WK(|C ′
<i|, |C ′

i|+ |C ′
i+1|)

QC′
i+1

(4.40)

By using (4.37) and after proper arrangement, we have

WK(|C<i|, |Ci|)QCi
= WK(|C ′

<i|+ |C ′
i|, |C ′

i+1|)QC′
i+1

(4.41)

This, together with (4.38), gives

WK(|C<i|, |Ci|)QCi
= WK(|C ′

<i+1|, |C ′
i+1|)QC′

i+1
= WK(|C ′

<i|, |C ′
i|)QC′

i
(4.42)

So on the hyperplane HK(P ;P ′) that separates the adjacent list pair P and P ′,

we have

g(WK(|C<i|, |Ci|)QCi
) = g(WK(|C ′

<i+1|, |C ′
i+1|)QC′

i+1
) = g(WK(|C ′

<i|, |C ′
i|)QC′

i
)

(4.43)

For a ∈ Ci, we have

∂LK(Q;P )

∂Qa

= g (WK(|C<i|, |Ci|)QCi
) (4.44)

By (4.44), for a ∈ C ′
i, on HK(P ;P ′), we have

∂LK(Q;P ′)
∂Qa

= g(WK(|C ′
<i|, |C ′

i|)Q′
Ci
) = g(WK(|C<i|, |Ci|)QCi

) =
∂LK(Q;P )

∂Qa

(4.45)

Similarly, for a ∈ C ′
i+1, on HK(P ;P ′), we have

∂LK(Q;P ′)
∂Qa

= g(WK(|C ′
<i+1|, |C ′

i+1|)QC′
i+1

) = g(WK(|C<i|, |Ci|)QCi
) =

∂LK(Q;P )

∂Qa

(4.46)
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This proves that they have equal gradient on separation hyperplaneHK(P ;P ′).

Now we are going to show that on HK(P ;P ′),

LK(Q;P ′) = LK(Q;P ) (4.47)

That is, we need to show that∫ QC′
i

0

g (WK(|C ′
<i|, |C ′

i|)x) dx+

∫ QC′
i+1

0

g
(
WK(|C ′

<i+1|, |C ′
i+1|)x

)
dx

=

∫ QCi

0

g (WK(|C<i|, |Ci|)x) dx
(4.48)

Notice that

LHS =
1

WK(|C ′
<i|, |C ′

i|)
∫ WK(|C′

<i|,|C′
i|)QC′

i

0

g(x)dx

+
1

WK(|C ′
<i+1|, |C ′

i+1|)
∫ WK(|C′

<i+1|,|C′
i+1|)QC′

i+1

0

g(x)dx

=

(
1

WK(|C ′
<i|, |C ′

i|)
+

1

WK(|C ′
<i+1|, |C ′

i+1|)
)∫ WK(|C<i|,|Ci|)QCi

0

g(x)dx

=
1

WK(|C<i|, |Ci|)
∫ WK(|C<i|,|Ci|)QCi

0

g(x)dx

=RHS

(4.49)

This completes the proof.

�

For multi-commodity case, the joint queue state Q(t) is a collection of

queue state vectors, with Qc(t) corresponds to the queue state of commodity c, i.e.

Q(t) := {Qc(t)}c∈K. Let Pc
L denote the set of critical priority lists of commodity

c. Then the joint critical priority list set is defined as PL := {Pc
L}c∈K.

Now, we are ready to write the Lyapunov function given a priority list set

PL:

LK(Q;PL) :=
∑
c∈K

∑
P∈Pc

L

LK(Q
c;P )I{Qc ∈ DL

K(P )} (4.50)
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where I{Qc ∈ DL
K(P )} is the indicator function which equals 1 when Qc ∈ DL

K(P )

and 0 otherwise.

Proposition 4.2 LK(Q;PL) is a continuous function with continuous gradient

(aka. derivative).

Proof: Follow from Proposition 4.1.

�

4.2.2 K-R Policy and Its Throughput Optimality

Similar to the single commodity case, given parameter K, we define the

multi-commodity version of fK as follows: Given queue state Q, if for each com-

modity c, Qc ∈ DL
K(P

c), where P c = (Cc
1, C

c
2, ..., C

c
|P |), then

fK(Q,µ) :=
∑
c=1

|P c|∑
i=1

g(WK(|Cc
<i|, |Cc

i |)QCc
i
)(µCc

i ,out
− µCc

i ,in
) (4.51)

Like in the single commodity case, we define U c
Ci

as follows

U c
Ci

:=


 WK(|C<i|, |Ci|)Qc

Ci
if 1 ≤ i ≤ |P |

0 if i = 0
(4.52)

We also use notation [a] to denote the priority class node a belongs to. i.e. we

have U c
[a] = U c

Ci
if a ∈ Ci.

From the discussion of single commodity case, it is easy to see that any

policy that maximize fK(Q,µ) in (4.51) would be throughput optimal. However,

unlike the single commodity case, maximizing fK(Q,µ) under multi-commodity

case requires global network information, more specifically, it requires the knowl-

edge of current classes of current priority list.
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To see why this is the case, we have

fK(Q,µ)

=
∑
c=1

|P c|∑
i=1

g(WK(|Cc
<i|, |Cc

i |)QCc
i
)(µCc

i ,out
− µCc

i ,in
)

=
∑
a∈N

∑
b∈N

∑
c∈K

µc
ab

(
U c
[a] − U c

[b]

)
(4.53)

So

max
µ∈M(H)

fK(Q,µ)

= max
µ∈M(H)

∑
a∈N

∑
b∈N

∑
c∈K

µc
ab

(
U c
[a] − U c

[b]

)

=
∑
a∈N

max
b∈Sa(t),c∈K

(
U c
[a] − U c

[b]

)

=
∑
a∈N

{
max
c∈K

max
b∈Sa(t)

(
U c
[a] − U c

[b]

)}

=
∑
a∈N

max
c∈K

{
U c
[a] − min

b∈Sa(t)
U c
[b]

}

(4.54)

From (4.54), it can be seen that to maximize fK(Q,µ), a joint optimization over

commodity c ∈ K and destination b ∈ Sa(t) is required for each node a. Such

a joint optimization can be divided into two-level of optimizations. The inner

optimization is to choose destination node b such that U c
[b] is minimized for given

c. This is exactly, what K policy (such as ORCD) would do. Let b∗a(c) denote the

optimal node K policy would choose if commodity c is chosen to transmit from

node a (If there are multiple optimal nodes, b∗a(c) can be arbitrarily chosen). By

substituting b by b∗a(c), we removed the inner optimization. Now (4.54) becomes

max
µ∈M(H)

fK(Q,µ)

=
∑
a∈N

max
c∈K

{
U c
[a] − U c

[b∗a(c)]
} (4.55)

That is, each node chooses an optimal commodity c such that U c
[a] − U c

[b∗a(c)]
is

maximized. However, note that the value of U c
[a] is generally different for different
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commodity c and the value requires the knowledge of the priority class that contains

a, which is not known. Though technically, it is possible to calculate the value

given sufficient global information of the network, it is difficult to realize in a

practical wireless network.

Therefore, alternative approaches need to be considered. First of all, it

is not difficult to see that maximizing fK(Q,µ) is not a necessary condition for

throughput optimality. The following Lemma provides a relaxed condition for the

throughput optimality.

Lemma 4.3 If the routing policy π∗ ∈ Π is chosen such that for each Q

EH {fK(Q, π∗(H ,Q))} ≥ γmax
π∈Π

EH {fK(Q, π(H ,Q))} −D (4.56)

for some constant γ (0 ≤ γ ≤ 1 ), D (0 ≤ D < ∞), where the expectation is taken

over the statistics of H(t), then the network is stable provided that the arrival rates

are interior to γΛ, which is a γ-scaled version of the capacity region Λ.

Proof: See Appendix A.3.

�

With Lemma 4.3 in mind, we are trying to find a simple commodity selection

criterion that might not maximize fK(Q(t),µ(t)), but guarantees its gap from the

maximum is bounded.

The following lemma shows that if we choose g(x) := log(x + d), then the

error introduced by using g(Qc
a) as an estimate of U c

[a] is bounded.

Lemma 4.4 If g(x) := log(x+d), and node a ∈ N is non-isolated under P c, then

|g(Qc
a)− U c

[a]| ≤ D (4.57)

for some positive constant D.
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Proof: Assume a ∈ Cc
i , and recall that

U c
Ci

:=


 g(WK(|C<i|, |Ci|)Qc

Ci
) if 1 ≤ i ≤ |P |

0 if i = 0
(4.58)

Then, (4.57) can be written as

| log(Qc
a + d)− log(WK(|Cc

<i|, |Cc
i |)Qc

Cc
i
+ d)| ≤ D (4.59)

Since a ∈ Cc
i is non-isolated, by Lemma 3.1,

Qc
a ≥

K − 1

K |Cc
i | − 1

Qc
Cc

i
(4.60)

Then

Qc
a ≥

K − 1

(K |Cc
i | − 1)WK(|Cc

<i|, |Cc
i |)

WK(|Cc
<i|, |Cc

i |)Qc
Cc

i

=
K − 1

K |Cc
<i|

WK(|Cc
<i|, |Cc

i |)Qc
Cc

i

≥ K − 1

KN
WK(|Cc

<i|, |Cc
i |)Qc

Cc
i

≥ 1

KN
WK(|Cc

<i|, |Cc
i |)Qc

Cc
i

(4.61)

So

Qc
a + d ≥ 1

KN
WK(|Cc

<i|, |Cc
i |)Qc

Cc
i
+ d ≥ 1

KN

(
WK(|Cc

<i|, |Cc
i |)Qc

Cc
i
+ d

)
(4.62)

Taking logarithm on both sides, we have

log(Qc
a + d) ≥ −N logK + log(WK(|Cc

<i|, |Cc
i |)Qc

Cc
i
+ d) (4.63)

On the other hand,

Qc
a ≤ Qc

Cc
i

(4.64)

Therefore

Qc
a ≤

1

WK(|Cc
<i|, |Cc

i |
WK(|Cc

<i|, |Cc
i |)Qc

Cc
i

= K |Cc
<i|(K |Cc

i | − 1)WK(|Cc
<i|, |Cc

i |)Qc
Cc

i

≤ KNWK(|Cc
<i|, |Cc

i |)Qc
Cc

i

(4.65)
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So

Qc
a + d ≤ KNWK(|Cc

<i|, |Cc
i |)Qc

Cc
i
+ d ≤ KN

(
WK(|Cc

<i|, |Cc
i |)Qc

Cc
i
+ d

)
(4.66)

Taking logarithm on both side, we have

log(Qc
a + d) ≤ N logK + log(WK(|Cc

<i|, |Cc
i |)Qc

Cc
i
+ d) (4.67)

Combine (4.63) and (4.67), and choose D = N logK, we conclude

|g(Qc
a)− U c

[a]| ≤ D (4.68)

This completes the proof.

�

Lemma 4.4 implies that using log(Qc
a + d) as an estimate of U c

[a] can guar-

antee a bounded error, which could in turn suggest throughout optimality ac-

cording to Lemma 4.3. The commodity selection criterion in form of (4.8) with

g(x) := log(x + d) is exactly R criterion. We refer to K policy combined with R

criterion as K-R policy. Note that Lemma 4.4 requires the node to be non-isolated,

which is always the case when K policy is designed based on Pall. Therefore, we

have the following main result of this chapter.

Theorem 4.2 K-R policy based on Pall is throughput optimal.

Proof:

By Lemma 4.3, it is sufficient to show

{
U

c∗a
[a] − U

c∗a
[b∗a(c∗a)]

}
≥ max

c∈K
{
U c
[a] − U c

[b∗a(c)]
}−D (4.69)

for some constant D (0 ≤ D < ∞), where c∗a is the commodity chosen under R

criterion, that is

c∗a = argmax
c

Qc
a + d

Qc
b∗a(c)+d

(4.70)
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Let c′a denote the commodity that maximizes
{
U c
[a] − U c

[b∗a(c)]

}
. Then we are

going to prove {
U

c∗a
[a] − U

c∗a
[b∗a(c∗a)]

}
≥
{
U

c′a
[a] − U

c′a
[b∗a(c′a)]

}
−D (4.71)

Since g(x) := log(x+ d), it is easy to rewrite (4.70) as

c∗a = argmax
c

{g(Qc
a)− g(Qc

b∗a(c))} (4.72)

Then by definition we have

g(Qc∗a
a )− g(Q

c∗a
b∗a(c∗a)

) ≥ g(Qc′a
a )− g(Q

c′a
b′a(c′a)

) (4.73)

By comparing (4.71) with (4.73), it is sufficient to prove that for any node

a and commodity c

|g(Qc
a)− U c

[a]| ≤ D/4 (4.74)

which follows directly from Lemma 4.4, since all nodes are non-isolated when the

set of priority lists is given by Pall.

�
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Chapter 5

Application of K-R Policy and

Performance Comparison

5.1 ORCD-R

In Chapter 3, we have proved the throughput optimality of ORCD as an

application of K policy. In Chapter 4, the extension of K policy called K-R policy

is proved to be throughput optimal in a multi-commodity network under CSI-Tx

assumption. Since ORCD is a special case of K policy, it is naturally to extend

ORCD to multi-commodity scenario by adding R criterion as commodity selection

criterion.

Recall that we refer to the backpressure algorithm with R criterion as BP-R

policy. In a similar way, we refer to ORCD algorithm with R criterion as ORCD-

R policy. Since both BP and ORCD are special cases of K policy, it is clear by

Theorem 4.2, both BP-R and ORCD-R are throughput optimal under CSI-Tx

assumption.

We have so far discussed BP-D, BP-R, and ORCD-R, it is then naturally

to have ORCD-D policy, which is ORCD algorithm combined with D criterion.

89
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Unlike the other policies, there is no theoretical results to ensure the throughput

optimality of ORCD-D. Indeed, in this chapter, we will see via simulations, that

under certain scenario, ORCD-D is not stable even the input rate is within the

capacity region of the network.

The following table is a summary of the routing schemes under CSI-Tx

assumption:
Routing scheme Throughput

optimality
Underlying Lyapunov function

BP-D (Classical back-
pressure)

Yes Quadric function

BP-R Yes Log-quadric function
ORCD (Single com-
modity)

Yes Piecewise quadric function

ORCD-R Yes Piecewise Log-quadric function
ORCD-D No –

5.2 Opportunistic Routing under CDI-Tx

Assumption

So far we have assumed CSI-Tx and the routing control decision is made

based on current topology state and queue state. To obtain CSI (i.e. topology

state), a channel measurement is required for each node. More specifically, before

forwarding the actual data packet at each time slot, some probing data (e.g. pilot

symbols) are first broadcasted to its neighboring nodes and these nodes measure

the pilots symbols to see if the link is reliable and send the information back to

the sender via a feedback channel. There are several major drawbacks of this

mechanism. First of all, overhead needs to be added for channel measurement,

which effectively reduces the actual data throughput. Secondly, since the actual

transmission takes place after the channel measurement, measurement error is

inevitable due to the time varying nature of wireless channels. Furthermore, the

feedback chancel could also introduce errors. These errors would further reduce
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the effective throughput. Lastly, the complexity of implementing such routing

mechanism is very high.

A more relaxed and practical assumption is to assume CDI-Tx, in which

case the transmitters don’t know the chancel state information but have certain

knowledge of the statistics of the topology state (i.e. channel). In recent years,

the concept of opportunistic routing has attracted great research interests for its

ability to mitigate the impact of poor wireless links by exploiting the broadcast

nature wireless transmissions and the path diversity. In an opportunistic routing

algorithm, the sender of each node identifies a set of potential forwarders and mul-

ticasts the message to them. The successful recipients respond with ACKs. The

sender then identifies the best among these receivers, according to some predefined

criteria, and sends a forwarding order to it. Hence the actual routing decision is

made after each transmission. As opposed to wired network where connectivity is

limited by physical wiring, wireless networks have an inherently broadcast nature.

Overhearing a message by those other than the intended recipient was considered

as interference and detrimental to the network performance. Opportunistic rout-

ing turns this belief around and uses this receiver diversity to boost the network

throughput. As we can see, one major advantage of opportunistic routing is that

CSI is not required at transmitters. Therefore, opportunistic routing is a very

suitable choice for networks under CDI-Tx assumption.

In [41][25], diversity backpressure routing (DIVBAR) is proposed as an op-

portunistic version of backpressure algorithm under CDI-Tx assumption, which

incorporates the wireless local transmission diversity. Like backpressure algo-

rithm, DIVBAR uses backpressure to learn efficient routes, where incoming data

“pushes” old data in directions of least resistance. It is known that DIVBAR

ensures bounded expected total backlog for all stabilizable arrival. However, DI-

VBAR suffers from poor delay performance in a lightly loaded network as the
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packets may be routed in in appropriate directions before enough backlog builds

up to suggest alternative routs. In [20], a follow-up work to DIVBAR proposes

a heuristic enhancement , known as E-DIVBAR, which uses a sum of the queues

and expected number of transmissions as the new differential backlog metric.

ORCD in a single commodity network can be naturally implemented in

an opportunistic manner under CDI-Tx assumption. The theoretical analysis and

capacity region of single commodity ORCD in CDI-Tx case are exactly the same

as those in CSI-Tx case since there is no commodity selection procedure before

each transmission. It is shown in [21] that ORCD outperforms both DIVBAR and

E-DIVBAR in terms of delay performance in a single commodity network under

CDI-Tx assumption.

When there are multiple commodities, an opportunistic routing algorithm

has to select commodity before each transmission. Since under CDI-Tx assump-

tion, current topology state is not known at transmitters, the commodity can only

be selected based on the queue state and the statistic of the network topology. Let

C(Q) denote the commodity selection policy, which is a (potentially randomized)

function of queue state only and taking values as the commodity selection for each

node. Given a commodity selection for each node c = (ca)a∈N , where ca is the

commodity selection of node a, let M(H , c) denote the set of all admissible rout-

ing control actions when the commodity selection for each node is given by c. i.e.

M(H , c) is the set of routing control actions {µ} satisfying

µca
ab ≤ hab (5.1)

µc
ab = 0, c �= ca (5.2)

and ∑
b

µca
ab = 1 (5.3)
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Then a routing policy (potentially randomized) is called admissible under

CDI-Tx assumption if there exists a commodity selection policy C such that for all

H ∈ H, Q ∈ Q
π(H ,Q) ∈ M(H , C(Q)) (5.4)

Let ΠCDI denote the set of all admissible routing policies under CDI-Tx

assumption. Since ΠCDI is a strict subset of Π , the capacity region under CDI-Tx

assumption is generally a subset of that under CSI-Tx assumption.

In previous chapters, we have proposed BP-R and ORCD-R as improved

routing schemes over original backpressure algorithm (BP-D) for multi-commodity

network under CSI-Tx assumption. BP-R and ORCD-R cannot be implemented

under CDI-Tx assumption since they select commodity based on current topology.

However, by adopting a similar technique used for DIVBAR in [41][25], we can

modify BP-R and ORCD-R to opportunistic routing algorithms under CDI-Tx

assumption.

We refer to the modified BP-R under CDI-Tx assumption as DIVBAR-R

1. The algorithm is described as follows:

DIVBAR-R

Define Zc
a(t) := {b|Qc

b(t) < Qc
a(t), (a, b) ∈ L}

The following algorithm is applied for each node a:

1) For each commodity c, the receivers b ∈ Zc
a(t) are priority ranked ac-

cording to Qc
b(t), so that the receivers with larger values are ordered with higher

priority (breaking ties arbitrarily). We define b(a, c, t, k) as the node b ∈ Sa(t) with

k-th largest value V c
b (t) for commodity c. Thus by definition we have:

Qc
a,b(a,c,t,1) ≥ Qc

a,b(a,c,t,2) ≥ Qc
a,b(a,c,t,3)... (5.5)

2) Define φc
ab(t) as the probability that a packet transmission from node a

1Note that despite of its name, DIVBAR-R is not an A-B type policy by definition
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is successfully received by node b, but is not received by any other nodes in Zc
a(t)

that are ranked with lower priority than node b according to the commodity c rank

ordering of the previous step.

3) Select commodity c∗a(t) as the commodity c ∈ Zc(t) that maximizes

(breaking ties arbitrarily):

|Za(t)|∑
k=1

log

(
Qc

a(t) + d

Qc
b(a,c,t,k)(t) + d

)
φc
a,b(a,c,t,k)(t) (5.6)

where |Zc
a(t)| denote the number of nodes in the set Zc

a(t). Node a transmits a

packet of commodity c∗a(t) for time slot t.

4) After receiving ACK/NACK feedback about the successful recipients

of the transmission, node a shifts responsibility of the packet forwarding to the

successful receiver b with the smallest Qc
b(t). If the node with smallest Qc

b(t) is a

itself, node a retains the responsibility of the packet.

�

It is easy to show that DIVBAR-R maximizes EH {fK(Q, π(H ,Q))} over

all admissible policies in ΠCDI and thus it is throughput optimal under CDI-Tx

assumption by Lemma 4.3.

The modified ORCD-R under CDI-Tx assumption (called Opportunistic

ORCD-R) 2 ) is described as follows:

Opportunistic ORCD-R

Recall that U c
a(t) := {b|V c

b (t) < V c
a (t), (a, b) ∈ L}

The following algorithm is applied for each node a:

1) For each commodity c, the receivers b ∈ U c
a(t) are priority ranked ac-

cording to V c
b (t), so that the receivers with larger values are ordered with higher

2Note that thought letter “O” in ORCD-R stands for opportunistic, ORCD-R described in
Chapter 5 is not an opportunistic routing algorithm in nature.
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priority (breaking ties arbitrarily). We define b(a, c, t, k) as the node b ∈ U c
a(t)

with k-th largest value V c
b (t) for commodity c. Thus by definition we have:

V c
a,b(a,c,t,1) ≥ V c

a,b(a,c,t,2) ≥ V c
a,b(a,c,t,3)... (5.7)

2) Define φc
ab(t) as the probability that a packet transmission from node a

is successfully received by node b, but is not received by any other nodes in U c
a(t)

that are ranked with lower priority than node b according to the commodity c rank

ordering of the previous step.

3) Select commodity c∗a(t) as the commodity c ∈ K that maximizes (break-

ing ties arbitrarily):

|Uc
a(t)|∑
k=1

(
g(Qc

a(t))− g(Qc
b(a,c,t,k)(t))

)
φc
a,b(a,c,t,k)(t) (5.8)

where |U c
a(t)| denote the number of nodes in the set U c

a(t), and g(x) = log(x + d)

for some positive constant d. Node a transmits a packet of commodity c∗a(t) for

time slot t.

4) After receiving ACK/NACK feedback about the successful recipients

of the transmission, node a shifts responsibility of the packet forwarding to the

successful receiver b with the smallest V c
b (t). If the node with smallest V c

b (t) is a

itself, node a retains the responsibility of the packet.

�

Similar to DIVBAR which inherits its throughput optimality from back-

pressure algorithm, the opportunistic ORCD-R inherits its throughput optimality

from ORCD-R, which is stated in the following theorem:

Theorem 5.1 Opportunistic ORCD-R is throughput optimal among all routing

policies under CDI-Tx assumption.
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Proof:

Let π∗ ∈ ΠCDI denote the opportunistic ORCD-R policy. By Lemma 4.3,

it is sufficient to show that

EH(t) {fK(Q(t), π∗(H(t),Q(t)))} ≥ max
π∈ΠCDI

EH(t) {fK(Q(t), π(H(t),Q(t)))} −D

(5.9)

for some constant D. Note that the optimization on the right hand side is over

the set of all admissible policies ΠCDI defined in (5.4).

It is then sufficient to show that for each node a

|Uc
a(t)|∑
k=1

(
g(Qc

a(t))− g(Qc
b(a,c,t,k)(t))

)
φc
a,b(a,c,t,k)(t)

≥
|Uc

a(t)|∑
k=1

(
U c
[a](t)− U c

[b(a,c,t,k)](t)
)
φc
a,b(a,c,t,k)(t)−D2

(5.10)

for some constant D2, where g(x) = log(x+ d).

(5.10) holds due to Lemma 4.4, i.e. there exists D3 such that for any a,

|g(Qc
a)− U c

[a]| ≤ D3 (5.11)

�

5.3 Numerical Results: CSI-Tx Case

Consider the 2-commodity network shown in Figure 5.1. All links are inde-

pendent with probability of successful reception denoted on the graph. Commodity

data 1 with arrival rate λ1 is input from node 3 with destination node 1; Com-

modity data 2 with arrival rate λ2 is input from node 4 with destination node

2;

We first consider CSI-Tx case. The routing schemes of interests under

CSI-Tx assumption are BP-D, BP-R, ORCD-D and ORCD-R. Figure 5.2 and 5.3
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Figure 5.1: A 4 nodes network with 2 commodities. p13 = p31 = 1, p24 = p24 =
p13 = p31 = 0.4, p23 = p32 = p14 = p41 = 0.2.

show the simulation results of these schemes under the 4 nodes network in Figure

5.1. It is easy to see that the network capacity of each commodity is bounded

by Cmax = 0.4 + 0.2 − 0.2 · 0.4. In this simulation, we constraint our arrival rate

to satisfy λ1 = λ2 = ρCmax, where ρ is the traffic load, which is a real number

between 0 and 1. For an easier comparison, in Figure 5.3 we use the average queue

backlog of classical backpressure algorithm (BP-D) as a performance reference.

For each input rate, the average queue backlog of different strategies is normalized

by the corresponding average queue backlog of classical backpressure algorithm

(BP-D). (Hence BP-D has a normalized queue backlog 1 for all input rates.) By

Little’s theorem, average queue backlog is proportional to average delay, and hence

normalized queue backlog can also be interpreted as normalized delay.

Several observations are made from the results:

1) BP-R has uniformly better delay performance than BP-D. BP-D and

BP-R perform almost the same in low traffic region. But the performance of BP-R

starts to improve as the traffic increases.

2) ORCD-R has uniformly better delay performance than BP-R. The per-

formance gain of ORCD-R over BP-R is more evident in low traffic region. And

the gain decreases as the traffic increases. And the two curves almost converge as

the traffic load approaches 1.



98

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
0

10
1

10
2

10
3

Traffic Load

A
ve

ra
ge

 T
ot

al
 B

ac
kl

og
s

 

 
BP−D
BP−R
ORCD−D
ORCD−R

Figure 5.2: Average total backlogs of the 4 nodes network in Figure 5.1

3) ORCD-R has uniformly better delay performance than ORCD-D. ORCD-

D and ORCD-R perform almost the same in low traffic region. But the performance

of ORCD-D degrades rapidly in high traffic region and eventually becomes instable.

From this example we can see that selecting commodity based on D criterion is

generally not throughput optimal for K policy based algorithm.

A heuristic explanation why R criterion shows better delay performance

than D criterion: To reduce backlog build-up, it is important to avoid empty

queue. With the same backlog difference among different commodities, R criterion

tends to give priority to the commodity that has higher tendency to have empty

queues. For example, in Figure 5.4, node 1 has two commodities to forward.

For the given backlogs, D criterion would select commodity 2 while R criterion
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Figure 5.3: Normalized average total backlogs of the 4 nodes network in Figure
5.1

would select commodity 1. Since commodity 1 at node 2 has smaller backlog

than commodity 2 at node 3, it is more likely to become empty in future. Hence

intuitively, selecting commodity 1 is a better choice in terms of avoiding empty

queue and reducing backlog build-up.

5.4 Numerical Results: CDI-Tx Case

Now we turn to CDI-Tx case. The routing schemes proposed under CDI-Tx

assumption include DIVBAR [25], E-DIVBAR [20], DIVBAR-R and Opportunistic

ORCD-R. We are going to compare these routing schemes under the same 2-

commodity network shown in Figure 5.1.
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Figure 5.4: An example in which R criterion and D criterion choose different
commodities

Figure 5.5 and 5.6 show the simulation results of the 4 nodes network in

Figure 5.1. We constraint our arrival rate to satisfy λ1 = λ2 = ρCmax, where Cmax

is the upper bound of arrival rate of each commodity as given in Section 5.3. As

expected, the maximum arrival rate that λ1 and λ2 can achieve simultaneously

under CDI-Tx assumption is lower than that under CSI-Tx assumption (around

80%). This is due to the fact that the network under CDI-Tx assumption doesn’t

have CSI at transmitters and thus has a smaller capacity region.

For ease of comparison, in Figure 5.6 we normalized the average queue

backlog of different strategies by the average queue backlog of DIVBAR. Hence

DIVBAR has a normalized queue backlog 1 for all input rates. By Little’s theorem,

average queue backlog is proportional to average delay. So the normalized queue

backlog can also be interpreted as normalized delay.

Several observations are made from the results:

1) As expected , E-DIVBAR shows better delay performance than DIVBAR

especially in the low traffic region [20].

2) DIVBAR-R shows better delay performance than DIVBAR especially in

the high traffic region.

3) From 1) and 2), it is natural to combine E-DIVBAR and DIVBAR-R to
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take advantages of both schemes. The combined scheme E-DIVBAR-R is the same

as DIVBAR-R described above except that instead of using actual queue backlog

Qc
a(t), the following modified backlog metric Q̃c

a(t) is used throughput the whole

algorithm [20]:

Q̃c
a(t) := Qc

a(t) +Xc
a (5.12)

where Xc
a is proportional to the estimated number of hops from node a to desti-

nation of commodity data c. For example, in our simulation, Xc
a is taking value

as ETX defined in [42]. As we can see that E-DIVBAR-R has evident delay

performance improvement over DIVBAR in both low traffic and high traffic re-

gion. Moreover, it outperforms DIVBAR-R in all traffic region, and outperforms

E-DIVBAR except for the low traffic region.

4) Finally, the opportunistic ORCD-R has uniformly the best delay perfor-

mance among all schemes in all traffic region.
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Chapter 6

Concluding Remarks

This dissertation considered the problem of routing multi-commodity data

over a multi-hop wireless ad-hoc network. The primary goal is to find routing

policies beyond backpressure type that not only ensure throughput optimality but

also have improved average delay performance.

The main contributions of this dissertation include

1) In the single commodity scenario, by considering a class of continuous,

differentiable, and piece-wise quadratic Lyapunov functions, we proposed a large

class of throughput optimal routing policies called K policies, which include back-

pressure algorithm as a special case. The proposed class of Lyapunov functions

allow for the routing policies to control the traffic along short paths for a large por-

tion of state-space while ensuring a negative expected drift, hence, enabling the

design of routing policies with much improved delay performances. We specialized

our result to recover and prove the throughput optimality of two known routing

policies,i.e. backpressure and ORCD.

2) We then extended K-policy to multi-commodity case by considering non-

quadric Lyapunov functions. A multi-commodity version of ORCD algorithm for

multi-commodity routing problem was proposed based on K-R policy and was
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shown to be throughout optimal under mild conditions. Interestingly, the algo-

rithm we proposed was designed to select the commodity that has the maximum

backlog ratio instead of the maximum difference of backlogs as in the classical

backpressure algorithm. Indeed, we showed via a counter example that selecting

commodity based on the difference of backlog might not be throughput optimal

for K policy based algorithm.

3) We showed via simulations that R criterion shows better delay perfor-

mance than D criterion in all scenarios we considered. Particularly, ORCD-R and

opportunistic ORCD-R show very promising delay performance improvement over

with existing schemes.

Some of future research areas include

1) Analytical delay performance evaluation: In this dissertation, the de-

lay performance was evaluated via numerical simulations. No analytical delay

performance analysis is given. In [33], a congestion bound as a by product of Lya-

punov drift criterion was derived for backpressure algorithm. A similar congestion

bound can be derived for K policy. However, we found that the congestion bound

produced by Lyapunov drift criterion is rather loose, which makes it not useful in

practice for performance evaluation. A more accurate analytical delay performance

evaluation will be an important topic of future research.

2) Flow control and fairness: In this dissertation, we have considered the

problem of controlling a network to achieve stability when the exogenous arrival

rate is within the capacity region. However, in practice, the capacity is hardly

known and very often the exogenous arrival is outside the capacity region. In

this case, the network cannot be stabilized without a transport layer flow control

mechanism to limit the amount of data that is admitted. Therefore, it is of interests

to design a cross-layer strategy for joint flow control and routing that provides

stability while achieving optimal network fairness. There are many different ways
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to measure fairness. For example, in [43][33][44][45], the authors measure fairness

in terms of a utility function of the long term admission rates of each session. By

extending Lyapunov drift theory to enables stability and performance optimization

to be treated simultaneously, the authors proposed a modified backpressure type

dynamic control algorithm that stabilizes the network and at the same time pushes

the achieved utility arbitrarily close to optimal. This performance however, comes

at the cost of a linear increase in network congestion. Though similar techniques

can be applied to K policy based routing algorithm, we found that the convergence

to optimal utility is rather slow due to the loose congestion bound used in the

analysis. It is therefore of interests to develop a practical flow control mechanism

to more efficiently control the data flow and achieve stability and fairness at the

same time.



Appendix A

Proofs

A.1 Proof of Lemma 3.1

1)

Consider a one-step confinement list of P defined by

P ′ := (C1, ..., Ci−1, {k}, Ci/{k}, Ci+1, ..., C|P |)

where k ∈ Ci and Ci/{k} is the set of all nodes in Ci except node k.

Since P is critical and k is a non-isolated node of P , P ′ is also critical, i.e.

P ′ ∈ PL. Then DL
K(P ) by definition has the following constraint:

WK(|C<i|, 1)Qk ≥ WK(|C<i|+ 1, |Ci| − 1)QCi/{k} (A.1)

where C<i :=
⋃i−1

j=1Cj is the set of nodes in priority classes higher than Ci. i.e.

(WK(|C<i|, 1) +WK(|C<i|+ 1, |Ci| − 1))Qk ≥ WK(|C<i|+ 1, |Ci| − 1)QCi
(A.2)

After some algebra, we have

Qk ≥ WK(|C<i|, |Ci| − 1)

WK(|C<i|, 1) +WK(|C<i|+ 1, |Ci| − 1)
QCi

=
WK(|C<i|, |Ci|)
WK(|C<i|, 1) QCi

=
K − 1

K |Ci| − 1
QCi

(A.3)
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2) By definition, DL
K(P ) also has the following constraints:

WK(|C<s+1|, |Cs+1|)QCs+1 ≥ WK(|C<s|, |Cs|)QCs (A.4)

for s = 1, ..., i− 1. So

WK(|C<i|, |Ci|)
WK(|C<s|, |Cs|)QCi

≥ QCs (A.5)

for s = 1, ..., i− 1.

Summing over s = 1, ..., i− 1 yields

WK(|C<i|, |Ci|)
i−1∑
s=1

1

WK(|C<s|, |Cs|)QCi
≥

i−1∑
s=1

QCs (A.6)

By Proposition 3.5,

i−1∑
s=1

1

WK(|C<s|, |Cs|) =
i−1∑
s=1

1

WK(
∑s−1

j=1 |Cj|, |Cs|)
=

1

WK(0, |C<i|) (A.7)

Substitute (A.7) into (A.6)

WK(|C<i|, |Ci|)
WK(0, |C<i|) QCi

≥ QC<i
(A.8)

Combining (A.8) and (A.3)

Qk ≥ WK(0, |C<i|)
WK(|C<i|, 1)QC<i

=
Km(K − 1)

Km − 1
> (K − 1)QC<i

(A.9)

where we use the fact that |C<i| :=
∑i−1

j=1 |Cj| > 0, when i ≥ 2.

A.2 Proof of Proposition 3.6

To prove that {DL
K(P ), P ∈ PL} are a complete partition, we have to prove

the following two statements:

1) Prove int(DL
K(P1))∩ int(DL

K(P2)) = ∅ for and P1, P2 ∈ PL and P1 �= P2.

i.e. no intersections between any of two cones except for the boundary points.

Pick any two distinct list P = {C1, C2, ..., C|P |} and P ′ = {C ′
1, C

′
2, ..., C

′
|P ′|}

from PL. There are two cases:
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Case A: P and P ′ has common refinement, i.e. that there exist P ′ such

that P ′ � P and P ′ � P ′ (Note that it is possible that P ′ = P or P ′ = P ′). Then

there exist a priority class from one of the pair (WLOG say C ′
j from P ′) and two

consecutive priority classes from the other list of the pair (say Ck and Ck+1 from

P ) such that for some sets of nodes U1, U2, V1 and V2, the following relationship

hold

C ′
j = U1 ∪ U2 (A.10)

Ck = V1 ∪ U1 (A.11)

and

Ck+1 = U2 ∪ V2 (A.12)

where U1 and U2 are non-empty while V1 and V2 could be empty. Such sets could

always be found for any distinct lists with a common refinement.

The following facts are important:

Fact 1: The one-step refinements of P , {C1, ..., Ck−1, V1, U1, Ck+1, ..., C|P |}
and {C1, ..., Ck, U2, V2, Ck+2, ..., C|P |} are critical and thus belong to PL. (The ar-

gument is trivial if V1 and V2 are empty)

Fact 2: The one-step refinement of P ′, {C ′
1, ..., C

′
j−1, U1, U2, C

′
j+1, ..., C

′
|P ′|}

is critical and thus belongs to PL.

(Quick proof of Fact 1 and 2: Suppose {C1, ..., Ck−1, V1, U1, Ck+1, ..., C|P |}
is not critical. Since P is critical, the only possibility is that some node in V1 has

no path to destination via nodes in priority classes not lower than that of V1. On

the other hand, the fact that P ′ is critical implies that all nodes in V1 must have a

path to destination via nodes in priority classes not lower than that of V1, which

result in a contradiction. The proof of the rest statements are similar )

If V1 and V2 are not empty, by Fact 1, we have the following constraints for
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DL
K(P ):

WK(|C<k|, |V1|)QV1 ≥ WK(|C<k|+ |V1|, |U1|)QU1 (A.13)

WK(|C<k+1|, |U2|)QU2 ≥ WK(|C<k+1|+ |U2|, |V2|)QV2 (A.14)

From (A.13), we have

QU1 +QV1

WK(|C<k|+ |V1|, |U1|) ≥ (
1

WK(|C<k|, |V1|) +
1

WK(|C<k|+ |V1|, |U1|))QU1 (A.15)

Noticing that QU1 + QV1 = QCk
by (A.11) and applying Proposition 3.5 to the

right side hand, we have

1

WK(|C<k|+ |V1|, |U1|)QCk
≥ 1

WK(|C<k|, |Ck|)QU1 (A.16)

From (A.14), we have

(
1

WK(|C<k+1|, |U2|)+
1

WK(|Ck+1|+ |U2|, |V2|))QU2 ≥
1

WK(|C<k+1|, |U2|)(QU2+QV2)

(A.17)

Noticing that QU2 + QV2 = QCk+1
by (A.12) and applying Proposition 3.5 to the

left side hand, we have

1

WK(|C<k+1|, |Ck+1|)QU2 ≥
1

WK(|C<k+1|, |U2|)QCk+1
(A.18)

Note that (A.16) and (A.18) hold trivially when V1 and V2 are empty (then

U1 = Ck and U2 = Ck+1)

Since {C1, ..., Ck−1, Ck ∪ Ck+1, ...C|P |} is a one-step confinement list of P ,

we have the following constraint of DL
K(P )

WK(|C<k|, |Ck|)QCk
≥ WK(|C<k+1|, |Ck+1|)QCk+1

(A.19)

Combining (A.16), (A.18) and (A.19), we have

WK(|C<k+1|, |U2|)QU2 ≥ WK(|C<k|, |U1|)QU1 (A.20)

Note that strict inequality holds in (A.20) for Q ∈ intDL
K(P ).
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On the other hand, from Fact 2, we have the following constraint for

DL
K(P

′):

WK(|C<k+1|, |U2|)QU2 ≤ WK(|C<k|, |U1|)QU1 (A.21)

And strict inequality holds for Q ∈ intDL
K(P

′).

By comparing (A.20) and (A.21), we conclude that intDL
K(P )∩intDL

K(P
′) =

∅.

Case B: P and P ′ don’t have a common refinement. Now we claim that

there exist non-isolated node a from P ′ and non-isolated node b from P such that

a is in a higher priority class than b under P but in a lower priority class than b

under P ′. i.e. we must have

a ∈ C<k, b ∈ C≥k (A.22)

and

b ∈ C ′
<j, a ∈ C ′

≥j (A.23)

for some priority class index j,k.

If the claim is true, then by Lemma 3.20 (2), for Q ∈ intDL
K(P

′), we have

Qa > (K − 1)QC′
<j

≥ Qb (A.24)

Whereas for Q ∈ intDL
K(P ), we have

Qb > (K − 1)QC<k
≥ Qa (A.25)

Clearly, (A.24) and (A.25) cannot hold simultaneously when K ≥ 2. Therefore,

intDL
K(P ) ∩ intDL

K(P
′) = ∅.

It remains to show the claim is true. First of all, since P and P ′ don’t have

a common refinement, there exist ã and b̃ (not necessarily non-isolated) such that

ã ∈ C<k, b̃ ∈ C≥k (A.26)
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and

b̃ ∈ C ′
<j, ã ∈ C ′

≥j (A.27)

for some priority class index j,k.

If b̃ is a non-isolated node of P and ã is a non-isolated node of P ′, then we

are done. If not, we can do the following to find non-isolated nodes a and b:

Since P is a critical list, by definition, there exists a path starting from ã

to destination 0 that only possing nodes in C<k. Now consider this path under

priority list P ′. Since the path starting from ã ∈ C ′
≥j to destination 0, there exists

a node (name it a) belongs to C ′
≥j and transmit to nodes in C ′

<j. By construction,

a is a non-isolated node under P ′, and a ∈ C<k, a ∈ C ′
≥j.

By symmetry, we can repeat the same procedure for node b̃ to find b.

This completes the proof of the claim.

Now combining Case A and Case B, we conclude that

int(DL
K(P )) ∩ int(DL

K(P
′)) = ∅ for any P, P ′ ∈ PL and P �= P ′.

2) Prove
⋃

P∈PL D
L
K(P ) = R

N
+ . i.e. each of point in R

N
+ must belong to

DL
K(P ) for some P .

The proof of this part can be found in the appendix of [46].

�

A.3 Proof of Lemma 4.3

To prove Lemma 4.3, we need a few more lemmas:

Lemma A.1 If K policy PK (K ≥ 2) based on PL is used in a network with link

set L′ and L′ ⊆ L, then for any priority list P c = (Cc
1, C

c
2, ..., C

c
|P c|) ∈ P

c
L, and
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Qc(t) ∈ DL
K(P

c)

G(WK(|Cc
<i|, |Cc

i |)Qc
Cc

i
(t+ 1))

WK(|Cc
<i|, |Cc

i |)
− G(WK(|Cc

<i|, |Cc
i |)Qc

Cc
i
(t))

WK(|Cc
<i|, |Cc

i |)
≤ βK − 2g(WK(|Cc

<i|, |Cc
i |)Qc

Cc
i
(t))(µc

Cc
i ,out

(t)− µc
Cc

i ,in
(t)− Ac

Cc
i
(t)) (A.28)

where βK is some constant.

Proof :

By Lemma 3.4, when K policy is used, there exists αK such that if Q(t) ∈
DL

K(P ) and QCc
i
(t) > αK , then

QCc
i
(t+ 1) ≤ QCc

i
(t)− µc

Cc
i ,out

(t) + µc
Cc

i ,in
(t) + Ac

Cc
i
(t) (A.29)

On the other hand, if QCc
i
(t) ≤ αK , then

QCc
i
(t+ 1) ≤ QCc

i
(t) + µc

Cc
i ,in

(t) + Ac
Cc

i
(t) (A.30)

(A.28) follows by applying Lemma 4.2 with

Q+ = WK(|Cc
<i|, |Cc

i |)QCc
i
(t+ 1)

Q = WK(|Cc
<i|, |Cc

i |)QCc
i
(t)

A = WK(|Cc
<i|, |Cc

i |)(µc
Cc

i ,in
+ Ac

Cc
i
)

v = WK(|Cc
<i|, |Cc

i |)αK

µ = WK(|Cc
<i|, |Cc

i |)µc
Cc

i ,out

c = NWK(|Cc
<i|, |Cc

i |)max{µc
max, Amax}

.

�

The following lemma is a trivial extension of Lemma 3.6 for the non-

quadratic Lyapunov function.
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Lemma A.2 If K policy PK (K ≥ 2) based on PL is used in a network with link

set L′ and L′ ⊆ L, then for any priority list P = (Cc
1, C

c
2, ..., C

c
|P |) ∈ PL, and

Q(t) ∈ DL
K(P )

LK(Q(t+ 1);PL)− LK(Q(t);PL) ≤

γK − 2
∑
c

∑
i

g(WK(|Cc
<i|, |Cc

i |)QCc
i
(t))(µc

Cc
i ,out

(t)− µc
Cc

i ,in
(t)− Ac

Cc
i
(t))

+ o(‖Q(t+ 1)−Q(t)‖) (A.31)

where γK is some constant.

Proof: Except for using Lemma A.1 instead of Lemma 3.5, the proof is

almost identical to the proof of Lemma 3.6.

�

Now, we are ready to prove Theorem 4.3.

Proof of Theorem 4.3:

Given queue state Q, if for each commodity c, Qc ∈ DL
K(P

c), where P c =

(Cc
1, C

c
2, ..., C

c
|P |), then by Lemma A.2:

LK(Q(t+ 1);PL)− LK(Q(t);PL) ≤

γK − 2
∑
c

∑
i

g(WK(|Cc
<i|, |Cc

i |)Qc
Cc

i
(t))(µc

Cc
i ,out

(t)− µc
Cc

i ,in
(t)− Ac

Cc
i
(t))

+ o(‖Q(t+ 1)−Q(t)‖) (A.32)
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Taking the conditional expectation yields,

∆LK(Q(t);PL) = E{LK(Q(t+ 1);PL)− LK(Q(t);PL)|Q(t)}

≤γK − 2
∑
c

∑
i

g(WK(|Cc
<i|, |Cc

i |)Qc
Cc

i
(t))E

{
(µc

Cc
i ,out

(t)− µc
Cc

i ,in
(t)− Ac

Cc
i
(t))|Q(t)

}

+ o(‖Q(t+ 1)−Q(t)‖)

=γK − 2E[fK(Q(t),µ(t))]−
∑
c

∑
i

g
(
WK(|Cc

<i|, |Cc
i |)Qc

Cc
i
(t)
)
λCc

i

+ o(‖Q(t+ 1)−Q(t)‖)
(A.33)

Since λ is strictly within the capacity region γΛ, there exist a positive

vector ε > 0 such that λ
γ
+ ε ∈ Λ. By Theorem 2.4 there exists a stationary

randomized algorithm that makes decisions based only on the current topology

state (and hence independent of the current queue backlog) so that

E

{
(µ̃Cc

i ,out
(t)− µ̃Cc

i ,in
(t)− Ac

Cc
i
(t)

γ
)|Q(t)

}
≥ ε (A.34)

where µ̃Cc
i ,out

(t) and µ̃Cc
i ,out

(t) denote the amount of date transmitted under such

randomizeD criterion.

By the given condition, we have

EH {fK(Q, µ̂(t))} ≥ γmax
π∈Π

EH {fK(Q, µ̃(t))} −D (A.35)
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So start from (A.33), we have

∆LK(Q(t);PL)

≤γK − 2E [fK(Q(t), µ̂(t))]−
∑
c

∑
i

g
(
WK(|Cc

<i|, |Cc
i |)Qc

Cc
i
(t)
)
λCc

i

+ o(‖Q(t+ 1)−Q(t)‖)

≤γK +D − 2γE [fK(Q(t), µ̃(t))]−
∑
c

∑
i

g
(
WK(|Cc

<i|, |Cc
i |)Qc

Cc
i
(t)
)
λCc

i

+ o(‖Q(t+ 1)−Q(t)‖)

=γK +D

− 2γ
∑
c

∑
i

g(WK(|Cc
<i|, |Cc

i |)Qc
Cc

i
(t))E

{
(µ̃Cc

i ,out
(t)− µ̃Cc

i ,in
(t)− Ac

Cc
i
(t)

γ
)|Q(t)

}

+ o(‖Q(t+ 1)−Q(t)‖)
(A.36)

By using (A.34), we have

∆LK(Q(t);PL) ≤ γK+D−2γε
∑
c,i

g(WK(|Cc
<i|, |Cc

i |)Qc
Cc

i
(t))+o(‖Q(t+1)−Q(t)‖)

(A.37)

Since WK(|Cc
<i|, |Cc

i |) ≥ 1 for any K,Cc
i and g(·) is non-decreasing, (A.37) implies

∆LK(Q(t);PL) ≤ γK +D − 2γε
∑
c

∑
i

g(Qc
Cc

i
(t)) + o(‖Q(t+ 1)−Q(t)‖)

=γK +D − 2γε
∑
c

∑
a

Qc
a(t) + o(

‖Q(t+ 1)−Q(t)‖∑
c

∑
aQ

c
a(t)

)
∑
c

∑
a

Qc
a(t)

=γK +D − 2γ

(
ε− o(

‖Q(t+ 1)−Q(t)‖∑
c

∑
a Q

c
a(t)

)

)∑
c

∑
a

Qc
a(t)

(A.38)

Since ‖Q(t + 1) −Q(t)‖ is bounded, ‖Q(t+1)−Q(t)‖∑
c

∑
a Qc

a(t)
→ 0 as

∑
c

∑
a Q

c
a(t) increases.

Therefore, for sufficiently large
∑

c

∑
a Q

c
a(t), o(

‖Q(t+1)−Q(t)‖∑
c

∑
a Qc

a(t)
) ≤ ε

2
. Thus we con-

clude for sufficiently large
∑

c

∑
aQ

c
a(t), we have

E{LK(Q(t+ 1);PL)− LK(Q(t);PL)|Q(t)} ≤ γK +D − γε
∑
c

∑
a

Qc
a(t) (A.39)



117

The stability follows from Lemma 4.1.

�



Appendix B

A Framework for Optimal Power

and Rate Allocation in Multiuser

Fading Channels with Average

Throughput Constraints

B.1 Introduction

Data applications, such as Internet service, which have become more and

more popular in the emerging new generation of wireless systems, have fundamen-

tally different QoS requirement and traffic characteristics than voice applications.

Although data application usually require larger long-term throughput, the traffic

is burstier and relatively delay tolerant. Using the average throughput, instead

of instantaneous SINR, as a QoS measure to exploit the relative delay tolerance

of data applications can lead to more efficient resources allocation strategies. By

adapting both rate and power based on the channel conditions, the total system ca-

pacity could be further increased and the power assumption could be reduced. The

118
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problem of adapting power and rate when both transmitter and receiver can track

the channel has been extensively studied by the information theory community in

the context of ergodic capacity. It has been shown in [47] that single user single

antenna ergodic capacity can be achieved with “water filling over fading states”.

The results have been generalized to multiuser scalar multiaccess channel (MAC)

[48] and broadcast channel (BC) [49]. A water-filling technique for vector MAC

is proposed in [50], which can asymptotically achieve the maximum sum capacity

in a large system with many users and receive antennas. In [51][52], the authors

develop “simultaneous water-filling” to maximize the ergodic sum capacity of the

MIMO MAC under individual power constraints.

Prior works focused on maximizing the sum capacity or weighted sum ca-

pacity, a commonly used figure of interest in multiuser information theory. How-

ever, in QoS-based wireless networks, one is more interested in the dual problem:

minimizing the average sum power while satisfying the minimum average through-

put constraints. Furthermore, information theoretical approaches assume optimal

coding and decoding, which are hard to implement in real systems. In practice,

simpler suboptimal techniques such as linear multiuser transmitter and receiver

(e.g. zero-forcing, linear MMSE) are often used due to their lower complexity.

Motivated by these observations, in this work, we are seeking a generic framework

to characterize the optimal power and rate allocation polices in a multiuser multi-

ple antenna system with individual average throughput constraints for each user.

The approach taken in this work is strongly motivated by the results in [48]. We

will focus on the uplink (e.g. multiple access channel) for ease of presentation.

However, it is worth noting that most results in the uplink can be carried over to

the downlink (e.g. broadcast channel).
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B.2 System Model and Problem Formulation

B.2.1 Channel Model

Consider the uplink of a multiuser narrowband wireless system where a

set of K users each with a single antenna is communicating with a base station

equipped with N antennas. To capture the time-varying nature of the wireless

channel, we adopt the block flat fading channel model. Let hi[n] (i = 1, 2, ..., K)

denote the channel gain vector between user i and the base station at block time

n, where the j-th component (j = 1, 2, ..., N) is the complex channel gain between

user i and the j-th antenna of the base station. Denote H [n] = [h1[n], ...,hK [n]].

The joint fading state process, {H [n]}∞n=1 is assumed to be stationary and ergodic.

For a fixed block time n, H [n] is a N by K random matrix, which we assume has

a continuous density on its sample space H ⊂ CN×K . We assume the channel is

perfectly known at both transmitter and receiver. The uplink discrete time channel

model is given by

yul[t] = H [n]xul[t] +wul[t], t = 1, 2, ... (B.1)

where integer t is the symbol time index, and n = �t/L� is the block time index

with block length L. xul[t] = [x1[t], ..., xK [t]]
T is the K by 1 transmit vector, where

xi[t] is the information stream of user i. yul[t] is the N by 1 receive vector. wul[t]

is an N by 1 additive white complex circularly Gaussian process with covariance

matrix σ2I.

B.2.2 Power and Rate Allocation Policies

A simple power allocation policy P is a mapping from the fading state

space H to RK
+ , i.e. P(H) = [P1(H), ...,PK(H)]T , where Pi(H) is the power

allocated to user i when channel is in fading state H . One limitation of the
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simple power allocation policy is that it doesn’t allow timesharing. In this work,

we consider a general power allocation policy that is a nonnegative function of

fading state H and a parameter z, where z is referred as a timesharing parameter.

The power allocation process is given by {P(H [n], Z[n])}∞n=1 where {Z[n]}∞n=1 is an

i.i.d. random process. We assume that Z[n] is uniformly distributed over [0, 1] and

independent of H [n]. Similarly, a general rate allocation policy R is a nonnegative

function of fading state H and timesharing parameter z. R is called a simple rate

allocation policy if it is only of function of H , independent of z.

Let P̄ and R̄ denote the average power of a power allocation policy and

average throughput of a rate allocation policy, respectively i.e.,

P̄ := E[P(H [n], Z[n])], R̄ := E[R(H [n], Z[n])]

where the expectation is taken with respect to the distribution of H [n] and Z[n].

B.2.3 Detector

An important element of this work is the detector set and function which

is defined with a view towards enabling consideration of practical implementation

structures. In the uplink of a wireless system, the maximum instantaneous rates

users can achieve depends not only on the power allocation p and channel state

H , but also on the MAC and physical layer schemes employed by the system,

which usually include user scheduling, coding, decoding, multiuser detection etc.

We capture the impact of all these options through a detector ϕ and its associated

detector function.

Definition B.1 (detector function) For a given detector ϕ, its detector function

rϕ(H ,p) = [rϕ1 (H ,p), ..., rϕK(H ,p)]T is a function that maps fading state H ∈ H
and power allocation p = [p1, ..., pK ]

T ∈ RK
+ to a vector of rates, where pi and
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rϕi (H ,p) are the power and rate of the user i, respectively. In what follows, we

consider detectors with the following structure:

rϕi (H ,p) = Ξ(piI
ϕ
i (H ,p)), i = 1, 2..., K (B.2)

where Iϕ(H ,p) = [Iϕ1 (H ,p), ..., IϕK(H ,p)] for all p ≥ 0 satisfies

A1) Iϕ(H ,p) ≥ 0 (Positivity)

A2) If p ≥ p′, then Iϕ(H ,p) ≤ Iϕ(H ,p′) (Monotonicity)

And the real function Ξ : R+ 	→ R+ satisfies

B1) Ξ(γ) is a nondecreasing function of γ.

B2) Ξ(0) = 0

Here, Iϕ(H ,p) is similar to the interference function introduced in [53], and

piI
ϕ
i (H ,p) has a physical meaning as SINR. For the case with ideal Gaussian

coding and decoding, Ξ(γ) = log(1 + γ), which is the classical Shannon capacity

formula.

Usually, there is more than one detector implemented in a system and this

will become clearer in the application section. Let Φ denote the set of detectors

that is implemented in a system. Let Up be the set of all feasible power allocation

dictated by the system design. For a given detector set Φ, let FΦ denote the set

of all feasible rate and power allocation policy pairs.

FΦ := {(R,P) : P(H , z) ∈ Up,R(H , z) = rϕ(H ,P(H , z)),

ϕ ∈ Φ for all H ∈ H and 0 ≤ z ≤ 1} (B.3)

Let CΦ ⊂ RK
+ denote the set of all admissible rates under detector set Φ. i.e.

CΦ = {R ∈ RK
+ : R = R̄ for some (R,P) ∈ FΦ} (B.4)

CΦ is a convex set since timesharing is allowed.
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B.2.4 Problem Formulation

For a given system with detector set Φ, we are interested in the optimal

power allocation policy P and the rate allocation policy R that minimize the

average weighted sum transmit power while satisfying an average throughput con-

straint. The problem is formally defined as follows:

Problem A: Given a detector set Φ, some power weight λ ∈ RK
+ , and

rate requirement Rt ∈ CΦ, we want to find a policy pair (R∗,P∗) (re-
ferred to as optimal policy pair) that achieves the minimum of following
constrained optimization problem:

min
(R,P)∈FΦ

λT P̄ subject to R̄ ≥ Rt (B.5)

Note that the sum power is just a special case where λ is an all 1 vector. Let

SA denote the set of all optimal rate and power allocation pairs that achieve the

minimum of (B.5).

B.3 Structural Results

Problem A is a constrained optimization problem over functions. A direct

solution appears to be difficult. In this section, we will provide some structural

results for the optimal policies in terms of their range. Similar to the results in

[48], we will show that for each channel state, there is a corresponding optimization

problem over vectors (Problem B). The average rate constraint is taken care of by

the rate weight vector µ, which plays a similar role as the Lagrangian coefficient

in nonlinear programming. Problem B is defined as follows:

Problem B: Given a vector µ ∈ RK , a power weight λ ∈ RK
+ , a detec-

tor set Φ and a fading state H ∈ H, find vector pair (ϕ∗,p∗) that achieves the

maximum of following constrained optimization problem:

max
ϕ∈Φ,p∈Up

µTrϕ(H ,p)− λTp (B.6)
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Generally, there could be infinitely many solutions for Problem B. Let

SB(µ,H) denote the set of all (ϕ∗,p∗) pairs that achieves the maximum of (B.6).

For any (ϕ∗,p∗) ∈ SB(µ,H), we refer to p∗ and rϕ∗
(H ,p∗) as the optimal power

and optimal rate of Problem B, respectively.

The relationship between Problem A and Problem B is established by the

following theorem. Due to space limitations, the proof is omitted.

Theorem B.1 Given Φ, Rt ∈ intCΦ and λ > 0, (R′,P ′) ∈ SA (solution set of

Problem A) if and only if the following two conditions are satisfied:

1. There exists µ ∈ RK (not necessarily unique) such that for almost every

given H ∈ H,0 ≤ z ≤ 1, there exists ϕ′ = ϕ′(H , z) ∈ Φ (not necessarily

unique) such that

R′(H , z) = rϕ′
(H ,P ′(H , z)),

(ϕ′,P ′(H , z)) ∈ SB(µ,H)

2. R̄′ = Rt.

Theorem B.1 relates Problem A to Problem B, a simpler optimization problem.

However, Problem B determines the range of the optimal policy and determines an

unique policy only if the rate and power vectors resulting from solving Problem B is

unique. Otherwise, Theorem B.1 offers no constructive procedure for determining

the optimal policies. Fortunately, for many practical receiver structures this does

not appear to be an issue.

Another issue in applying Theorem B.1 is determining µ. Finding an analyt-

ical solution for µ in Theorem B.1 is difficult. We therefore resort to a numerical

approach and propose the use of the following Robbins-Monro (RM) stochastic

approximation algorithm [54] to choose µ and the rate solution in an adaptive

manner.

µ[n+ 1] = µ[n]− an(r(µ[n],H [n])−Rt) (B.7)
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where {an} are positive step sizes, r(µ[n],H [n]) is an optimal rate of Problem B

for current µ[n] and H [n]. If Problem B has multiple optimal rates, r(µ[n],H [n])

is chosen to be an arbitrary solution.

B.4 Applications and Numerical Experiments

In this section, we will apply the structural results to different uplink

schemes and compare their performance numerically. We assume Up =
⊗K

i=1[0,∞)

and unless specified, Ξ(γ) = log(1 + γ). The application of the framework is quite

straightforward and involves the following steps. For each scheme, a detector set

and detector function for each detector are first defined. Then Problem B is solved

using the defined detector function and current channel state. The solution is re-

lated to Problem A by Theorem B.1. To demonstrate the application and utility

of the framework, we now consider some popular detectors.

B.4.1 TDMA with dynamic slot assignment and variable

rate (DSA-VR)

In this scheme, only one user is allowed to transmit at any one time. The

detector set is then by ΦTDMA = {ϕ1, ..., ϕK}, where ϕi is the detector when only

user i is transmitting. The detector function is given by

rϕi

j (H ,p) =


 log(1 + pi‖hi‖2) j = i

0 j �= i
(B.8)

Note that the detector function implicitly supports the one user at a time transmit

policy and this simple example serves to indicate the multifaceted nature of the

detector function and hence the framework. By substituting (B.8) into (B.6),
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Problem B in this setting is reduced to

max
1≤i≤K

max
pi

{
µi log(1 + pi‖hi‖2)− λipi

}
(B.9)

The solution to the inner optimization of (B.9) is based on the classic water-filling

principle

pi =

[
µi

λi

− 1

‖hi‖2
]+

(B.10)

And the criterion of choosing the optimal user to transmit is

i = arg max
1≤i≤K

(
µi

[
log

µi‖hi‖2
λi

]+
−
[
µi − λi

‖hi‖2
]+)

(B.11)

Given current channel state H , (B.11) is used to decide which user transmits. If

user i is selected, it is allocated with power level given in (B.10) and rate level

log(1 + pi‖hi‖2). Note that it is possible that no user is scheduled to transmit

when all users experience deep fading.

B.4.2 TDMA with dynamic slot assignment and fixed rate

(DSA-FR)

It is similar to the DSA-VR scheme. The only difference is that the trans-

mission rate of user i is fixed to be C if it is selected for transmission, where

C =
∑K

i=1R
t
i is the total throughput requirement. This can be done by modifying

function Ξ as follows:

Ξ(γ) =


 C if log(1 + γ) ≥ C

0 if log(1 + γ) < C
(B.12)

B.4.3 Zero-forcing (ZF)

To further confirm the general nature of the framework developed, we now

consider a more complex multiuser receiver, the zero-forcing receiver. Define ac-

tive antenna set U as a set that contains indexes of all users with nonzero power
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allocations. The detector set is then given by

ΦZF = {ϕU : U ⊂ {1, ..., K}, 1 ≤ |U| ≤ N} (B.13)

where ϕU denotes the detector with active user set U . The detector function is

given by

rϕU
i (H ,p) =




log

(
1 + pi

‖gU,i‖2

)
i ∈ U

0 i /∈ U
(B.14)

where

[gU ,i1 , ..., gU ,i|U| ] = HU(HH
U HU)−1 (B.15)

To solve Problem B with detector set ΦZF , we need to consider the following

problem

max
U

∑
i∈U

(
max
pi≥0

µi log
(
1 +

pi
‖gU ,i‖2

)− λipi

)
(B.16)

The inner maximization (B.16) is simple, and the maximum is obtained when

pi =

[
µi

λi

− ‖gU ,i‖2
]+

(B.17)

and the criterion for choosing optimal active antenna set U∗ is

U∗ = argmax
U

∑
i∈U

(
µi

[
log

µi

λi‖gU ,i‖2
]+

−
[
µi − λi‖gU ,i‖2

]+)
(B.18)

The framework has also been applied to other more complex receiver structures

such as optimal linear receiver (linear MMSE), MMSE-SIC etc and used to provide

interesting insight.

We now provide some numerical results to provide a feel for the utility of the

framework. For this numerical study, we assume λ = [1, ..., 1]T . For comparison

purpose, we also include two traditional TDMA schemes: FSA-FR, and FSA-VR.

In both schemes, the users transmit in a round-robbin manner. The difference is

that in the former one, the user transmits with fixed rate when selected, while the

latter uses water-filling power and rate allocation.
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The above schemes can be grouped into 3 classes: Class 1 is TDMA schemes

with no DSA, including FSA-FR and FSA-VR; Class 2 is TDMA schemes with

DSA, including DSA-FR and DSA-VR; Class 3 is SDMA schemes including ZF,

linear MMSE, and MMSE-SIC.

Figure B.1 shows the numerical results of the above schemes under different

system configurations. Each curve corresponds to one configuration. For example,

“4x2 C=4 equal rate” denotes 4 users, 2 receive antennas at the base station, total

throughput requirement is 4 bits/symbol and users have the same rate requirement,

e.g. Rt = [1, 1, 1, 1] bits/symbol. “4x2 C=4 [2,1,2/3,1/3]” is similar except that

the rate requirement of users are not equal and is given by Rt = [2, 1, 2/3, 1/3].

The rate weight µ is found by the adaptive algorithm in (B.7) with diminishing

step size an = 1
n
. Several observations can be made based on the numerical results:

• Class 2 outperforms Class 1 and the gain is more pronounced when the num-

ber of users is large. However, within Class 2, DSA-VR is only slightly better

than DSA-FR. This implies that in a system with many users, by taking

advantage of multiuser diversity, scheduling alone can achieve most of per-

formance gain. The benefit of additional rate adaption is much smaller than

those obtained with scheduling. In practice, DSA-FR might be preferable

due to its lower complexity compared with DSA-VR.

• Class 3 outperforms Class 2 due to the spatial multiplexing of SDMA schemes.

The gain increases with total throughput and the number of receive anten-

nas. When total throughput requirement is low (C = 4), simple TDMA-DSA

schemes in Class 2 performs quite close to SDMA schemes in Class 3.

• The performances of schemes within Class 3 are quite close. Linear MMSE

is slightly better than ZF as expected. Somewhat surprisingly, MMSE-SIC,

which is the optimal scheme, is only about 0.5 db better than linear receiver
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Figure B.1: Comparison of total average power consumption of different schemes

(ZF and MMSE). Considering that error propagation is likely in practical

implementations of MMSE-SIC, its performance in reality can be even worse.
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